
Temporal Data Management

Christian S. Jensen and Richard T. Snodgrass

June 9, 1997

TR-17

A TIMECENTER Technical Report



Title Temporal Data Management

Copyright c
 1997 Christian S. Jensen and Richard T. Snodgrass. All rights re-
served.

Author(s) Christian S. Jensen and Richard T. Snodgrass

Publication History June 1997. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta
Sudha Ram

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called Rune al-
phabet used one millennium ago by the Vikings, as well as by their precedessors and successors, The Rune alphabet
(second phase) has 16 letters. They all have angular shapes and lack horizontal lines because the primary storage
medium was wood. However, runes may also be found on jewelry, tools, and weapons. Runes were perceived by
many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

A wide range of database applications manage time-varying information. Existing database technology currently
provides little support for managing such data. The research area of temporal databases has made important con-
tributions in characterizing the semantics of such information and in providing expressive and efficient means to
model, store, and query temporal data. This paper introduces the reader to temporal data management, surveys
state-of-the-art solutions to challenging aspects of temporal data management, and points to research directions.

Keywords: query language, temporal database, temporal data model, time-constrained database, transaction time,
user-defined time, valid time

1 Introduction

A temporal database records time-varying information. Most database applications are temporal in nature, e.g.,
financial applications such as portfolio management, accounting, and banking, record-keeping applications such
as personnel, medical-record, and inventory management, scheduling applications such as airline, train, and hotel
reservations and project management, and scientific applications such as weather monitoring.

The study of temporal databases is a vibrant research topic, with an active community of several hundred re-
searchers who have produced some 1600 papers over the last two decades. These papers are listed in a series of
seven cumulative bibliographies (the last, [21] provides pointers to the previous ones). The field has produced a
comprehensive glossary of terminology [7], a book-length survey providing a snapshot circa 1993 [20], and two
workshop proceedings [3, 16]. The nascent SQL3 draft standard now includes Part 7, SQL/Temporal [12].

The present paper examines a variety of central areas of temporal database research. For each area, we first
present the motivation for the research. Then, we survey sample contributions, to give the reader a feel for the type
of challenges and issues that are faced in each particular area.

Given the space limitation, we cannot survey all areas, let alone all contributions, and the presentation must be
brief. Thus, we have omitted a wide range of contributions that we consider important. A recent survey [13] and
the slightly older book on temporal databases [20] go into more depth. We have also found it useful to focus on re-
lational databases. The relational model is well-known, and its simplicity is conducive to maintaining an emphasis
on the temporal essence of past research.

2 Ontological Foundations

Before we proceed to consider temporal data models and query languages, we examine in data model-independent
terms the association of times and facts, which is at the core of temporal data management.

Initially, a brief description of terminology is in order. A database models and records information about a
part of reality, termed the mini-world. Aspects of the mini-world are represented in the database by a variety of
structures that we will simply term database entities. We will employ the term “fact” for any statement that can
meaningfully be assigned a truth value, i.e., that is either true or false. In general, times are associated with database
entities.

Our focus will be on the facts that databases record. Several different temporal aspects have been associated
with these. Most importantly, the valid time of a fact is the collected times—possibly spanning the past, present,
and future—when the fact is true in the mini-world [7]. Valid time thus captures the time-varying states of the
mini-world. By definition, all facts have a valid time. However, the valid time may not necessarily be recorded in
the database, for any of a number of reasons. For example, the valid time may not be known, or recording it may
not be relevant for the applications supported by the database. If a database models different possible worlds, the
database facts may have several valid times, one for each such world.

Next, the transaction time of a database fact is the time when the fact is current in the database. Unlike valid
time, transaction time may be associated with any database entity, not only with facts. For example, transaction
may be associated with objects and values that are not facts because they cannot be true or false in isolation. Thus,
all database entities have a transaction-time aspect. This aspect may or may not, at the database designer’s discre-
tion, be captured in the database. The transaction-time aspect of a database entity has a duration: from insertion to
(logical) deletion. Transaction time captures the time-varying states of the database, and applications with demands
for accountability or traceability rely on databases that record transaction time.

1



Observe that the transaction time of a database fact, say “F,” is the valid time of the related fact, “F is current
in the database.” This would indicate that supporting transaction time as a separate aspect is redundant. However,
both valid and transaction time are aspects of the contents of all databases, and recording both of these is essential in
a wide range of applications. In addition, transaction time is, due to its special semantics, particularly well-behaved
and may be supplied automatically by the DBMS. Specifically, the transaction time of facts stored in the database
marches monotonically forward, and is bounded at both ends, by the time the database was created and the current
time. This provides the rationale for the focus of most temporal database research on providing improved support
for valid time and transaction time, as separate aspects.

In addition, some other times have been considered, e.g., decision time. But the desirability of building deci-
sion time support into temporal database technologies is limited, because the number and meaning of “the decision
times” of a fact varies from application to application and because decision times, unlike transaction time, generally
do not exhibit specialized properties.

Much research has been conducted on the semantics and representation of time, from quite theoretical topics
such as temporal logic and infinite periodic time sequences to rather applied questions such as how to represent
time values in minimal space and how to utilize calendars. Also, there is a large body of research on time data
types, e.g., time points, time intervals (or “periods”), and temporal elements (sets of intervals).

3 Temporal Data Models

Temporal data management is very difficult using conventional (non-temporal) data models and query languages.
Accommodating the time-varying nature of the enterprise is largely left to the developers of database applications,
leading to ineffective and inefficient ad-hoc solutions that must be reinvented each time a new application is de-
veloped. The result is that data management is currently an excessively involved and error-prone activity.

The first step to provide support for temporal data management is to extend the database structures of the data
model supported by the DBMS to become temporal. More specifically, means must be given for capturing the valid
and transaction times of the facts recorded by the relations, leading to temporal relations.

Subsequent steps are to provide support for temporal data modeling and database design, and to design tem-
poral query languages that operate on the databases of the temporal data models. These topics are covered in Sec-
tions 4 and 5, respectively.

Adding time to the relational model, then, has been a daunting task, and more than two dozen extended re-
lational data models have been proposed [8]. Most of these models support valid time only; some also support
transaction time. We will consider three of these latter models and related design issues.

As a simple example, consider a video store where customers, identified by CustomerIDs, rent video tapes,
identified byTapeNums. We consider a few rentals during May 1997. On the 2nd, customer C101 rents tape T1234
for three days. The tape is subsequently returned on the 5th. Also on the 5th, customer C102 rents tape T1245 with
an open-ended return date. The tape is eventually returned on the 8th. On the 9th, customer C102 rents tape T1234
to be returned on the 12th. On the 10th, the rental period is extended to include the 13th, but this tape is not returned
until the 16th. The video store keeps a record of these rentals in a relation termed CheckedOut.

Figure 1 illustrates a relation instance in the Bitemporal Conceptual Data Model (BCDM) [8] that corresponds
to the sample rental scenario. To the right, there is a graphical illustration of the three timestamps. The tuples corre-
spond to facts and are timestamped with bitemporal elements, which are finite unions of intervals or, equivalently,
sets of time points in the (finite and discrete) two-dimensional space spanned by valid and transaction time.

The timestamp of the second tuple is explained as follows. On the 5th, it is believed that customer C102 has
checked out tape T1245 on the 5th. Then, on the 6th, the rental period is believed to include the 5th and the 6th. On
the 7th, the rental period extends to also include the 7th. From then on, the rental period remains fixed. The current
time is the 17th, and as this time increases, the region grows to the right; the arrows indicate this and correspond
to the UC values in the textual representation.

The idea behind the BCDM is to retain the simplicity of the relational model while also allowing for the cap-
ture of the temporal aspects of the facts stored in a database. Because no two tuples with mutually identical explicit
attribute values (termed value-equivalent) are allowed in a BCDM relation instance, the full history of a fact is con-
tained in exactly one single tuple. In addition, BCDM relation instances that are syntactically different have differ-
ent information content, and vice versa. This conceptual cleanliness is generally not obtained by other bitemporal
models where syntactically different instances may record the same information.

2



CustomerID TapeNum T

C101 T1234 f(2; 2); (2; 3); (2; 4); (3; 2); (3; 3); (3; 4);
: : : ; (UC; 2); (UC; 3)(UC; 4)g

C102 T1245 f(5; 5); (6; 5); (6; 6); (7; 5); (7; 6); (7; 7);
(8; 5); (8; 6); (8; 7); : : : ;

(UC; 5); (UC; 6); (UC; 7)g
C102 T1234 f(9; 9); (9; 10); (9; 11);

(10; 9); (10; 10); (10; 11); (10; 12);
(10; 13); : : : ;

(13; 9); (13; 10); (13; 11); (13; 12);
(13; 13); (14; 9); : : : ; (14; 14);
(15; 9); : : : ; (15; 15); (16; 9); : : : ;

(16; 15); : : : ; (UC; 9); : : : ; (UC; 15)g

1

2

3

4

5

6

10

11

13

15

16

17

14

12

9

8

7

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17

VT

3

TT

Figure 1: Bitemporal Conceptual CheckedOut Instance

However, when it comes to the internal representation and the display to users of temporal information, the
BCDM falls short. Although it is arguably a first-normal-form relation, the non-fixed-lengthand voluminous times-
tamps of tuples are impractical to manage directly, and the timestamp values are also hard to comprehend in the
BCDM format. Alternative representations of temporal information may be better suited for these purposes.

Figure 2 illustrates the same temporal information as in Figure 1, in two different data models. The model
exemplified to the left uses a practical and popular (particularly when implementation is considered) fixed-length
format for tuples. In this format, each tuple’s timestamp records a rectangular or stair-shaped region of times, and
it may take several tuples to represent a single fact. The relation format to the right in Figure 2 is a typical non-1NF
format. In this format, a relation is thought of as recording information about some type of objects. The present
relation records information about customers and thus holds one tuple for each customer in the example, with a
tuple containing all information about a customer. In this way, a single tuple records multiple facts. For example,
the second tuple records two facts: rental information for customer C102 for the two tapes T1245 and T1234.

Unlike in the BCDM where relations must be updated at every clock tick, relations in the two other formats
stay up-to-date; this is achieved by introducing variables (e.g., now) as database values that assume the (changing)
current time value. It should be noted that all of the three types of bitemporal relations are equally expressive in
that they may record the same facts. Put more formally (and briefly), the relation instances that these models may
record are snapshot equivalent.

4 Designing Temporal Databases

Database design is typically considered in two contexts. In conceptual design, a database is modeled using a high-
level design model that is independent of the particular (implementation) data model of the DBMS that is eventually
to be used for managing the database. The second context of database design is the implementation data model,

3



CustomerID TapeNum Ts Te Vs Ve

C101 T1234 2 UC 2 4
C102 T1245 5 7 5 now
C102 T1245 8 UC 5 7
C102 T1234 9 9 9 11
C102 T1234 10 13 9 13
C102 T1234 14 15 9 now
C102 T1234 16 UC 9 15

CustomerID TapeNum

[2,Now] � [2,4] C101 [2,Now] � [2,4] T1234
[5,7] � [5,1] C102 [5,7] � [5,1] T1245
[8,Now] � [5,7] [8,Now] � [5,7]
[9,9] � [9,11] [9,9] � [9,11] T1234
[10,13] � [9,13] [10,13] � [9,13]
[14,15] � [9,1] [14,15] � [9,1]
[16,Now] � [9,15] [16,Now] � [9,15]

Figure 2: Alternative Representations of the CheckedOut Instance

which is assumed to conform to the ANSI/X3/SPARC three-level architecture. In this context, database design
must thus be considered at the view level, the logical level (originally termed “conceptual”), and the physical (or,
“internal”) level. We proceed to consider conceptual and logical design of temporal databases.

4.1 Conceptual Design

By far, most research on conceptual design of temporal databases has been in the context of the Entity-Relationship
(ER) model. This model, in its varying forms, is enjoying a remarkable, and increasing, popularity in industry.
Building on the example introduced in Section 3, Figure 3 illustrates a conventional ER diagram for video rentals.

RentalPrice
TapeNum CustomerID

(0,n)

Title

VideoTape CustomerCheckedOut
(0,1)

Figure 3: Non-temporal Conventional ER Diagram for Video Rentals

The research on temporal ER modeling is well motivated. It is widely known that the temporal aspects of
the mini-world (we use “mini-world” to denote the part of reality that the database stores information about) are
very important in a broad range of applications, but are also difficult to capture using the ER model. Put simply,
when attempting to capture the temporal aspects, these tend to obscure and clutter otherwise intuitive and easy-to-
comprehend diagrams.

The diagram in the figure is non-temporal, capturing the mini-world at a single point in time. Attempting to cap-
ture the temporal aspects that are essential for this application clutters up the simple diagram. For example, since
the same customer may check out the same tape at different times, the CustomerID and TapeNum attributes do
not identify a single instance of CheckedOut. Instead, it is necessary to make CheckedOut a ternary relation-
ship type, with the third entity type capturing start dates of rentals. There is also the issue of where to place the
end-time attribute of rentals. Next, rental prices may vary over time, e.g., due to promotions and films getting old.
Finally, including also transaction time complicates matters.

As a result, some industrial users simply choose to ignore all temporal aspects in their ER diagrams and supple-
ment the diagrams with textual phrases to indicate that a temporal dimension to data exists, e.g., “full temporal sup-
port.” The result is that the mapping of ER diagrams to relations must be performed by hand; and the ER diagrams
do not document well the temporally extended relational database schemas used by the application programmers.

The research community’s response has been to develop temporally enhanced ER models. Indeed, almost a
dozen such models have been reported in the research literature [5]. These models represent attempts at modeling

4



the temporal aspects of information more naturally and elegantly. The proposed extensions are based on quite dif-
ferent approaches. One approach is to devise new notational shorthands that replace some of the patterns that occur
frequently in ER diagrams when temporal aspects are being modeled. One example is the pattern that occurs when
modeling a time-varying attribute in the ER model. Another approach is to change the semantics of the existing ER
model constructs, making them temporal. In its extreme form, this approach does not result in any new syntactical
constructs—all the original constructs have simply become temporal. With this approach, it is also possible to add
new constructs.

The ideal temporal ER model is easy to understand in terms of the ER model; does not invalidate legacy dia-
grams and database applications; and does not restrict database to be temporal, but rather permits the designer to
mix temporal and non-temporal parts.

The existing models typically assume that their schemas are mapped to schemas in the relational model that
serves as the implementation data model. The mapping algorithms are constructed to add appropriate time-valued
attributes to the relation schemas. None of the models have one of the many time-extended relational models pro-
posed [13] as their implementation model. These models have data-definition and query-language capabilities that
better support the management of temporal data and would thus constitute natural candidate implementation plat-
forms. Also, mappings to emerging models (e.g., SQL3) are missing. It is a challenge to design mappings that
maximally exploit these and other candidate implementation platforms.

4.2 Logical Design

A central goal of conventional relational database design is to produce a database schema, consisting of a set of
relation schemas. Normal forms constitute an attempt at characterizing “good” relation schemas. A wide variety
of normal forms has been proposed, the most prominent being third normal form and Boyce-Codd normal form.
An extensive theory has been developed to provide a solid formal footing.

The existing normalization concepts are not applicable to temporal relational data models because these models
employ relational structures that are different from conventional relations. There is thus a need for new temporal
normal forms and underlying concepts that may serve as important guidelines during temporal database design.

In response to this need, an array of temporal normalization concepts have been proposed [9], including tem-
poral dependencies, keys, and normal forms. Consider the CheckedOut relation schema from Section 3, as ex-
emplified in Figures 1 and 2. Does CustomerID (temporally) determine TapeNum or vice versa? Looking at
the first representation in Figure 2 and applying conventional dependencies directly, the answer to both questions
is no. The second representation is so different from a regular relation that it makes little sense to directly apply
conventional dependencies. The relation in Figure 1 also rules out any of the dependencies when we apply regular
dependencies directly.

Stepping back, it should be that the same dependencies hold for the CheckedOut relation independently of
how it is represented. And at any point in time, a customer may have checked out several tapes. In contrast, a tape
can only be checked out by a single customer at a single point in time. With this view, TapeNum temporally deter-
mines CustomerID, but the reverse does not hold. This notion of dependency naturally generalizes conventional
dependencies and may be applied to other dependencies than functional. With this notion of dependency, a tempo-
ral normalization theory may be built that parallels conventional normalization theory and that is independent of
any particular representation of a temporal relation.

5 Adding Time to Query Languages

Given the prevalence of applications that currently manage time-varying data, one might ask why a temporal query
language is even needed. Is the existence of all this SQL code not proof that SQL is sufficient for writing such
applications? The reality is that in conventional query languages like SQL, temporal queries can be expressed, but
with great difficulty.

In addition to theCheckedOut relation from Section 3, we assume in this section aVideoTape relation with
attributes TapeNum, Title, and RentalPrice. Consider first this database with only current information. To
determine who has checked out which titles, SQL provides a natural solution.

SELECT CustomerID, Title FROM CheckedOut, VideoTape
WHERE CheckedOut.TapeNum = VideoTape.TapeNum

5



We then extend the VideoTape and CheckedOut relations to record also past and future states by adding
to each relation two additional attributes, StartDate and EndDate, specifying the interval of validity of the
tuples. To request the history of who checked out which titles requires 25(!) lines of SQL: fourSELECT statements,
UNIONed together, performing a case analysis of how the interval of validity ofCheckedOut overlaps the interval
of validity of VideoTape.

As another example, referential integrity on the non-temporal relations is trivial in SQL: “CONSTRAINT TapeNum
REFERENCES VideoTape.” When the two relations are time-varying, referential integrity requires a 28-line
SQL assertion, with triply-nested EXISTS/NOT EXISTS subqueries. (Readers are encouraged to try their hand
at these two examples.) Ordinary queries on the non-temporal relations become extremely challenging when times-
tamp attributes are added. Even SQL experts would be hard pressed to express the following in SQL: what is the
history of the average rental price for checked out video tapes?

Some 40 temporal query languages have been defined [22], most with their own data model. The most recent
is TSQL2 [17], developed as a second-generation language by many of the designers of first-generation temporal
query languages. The goal of TSQL2 was to consolidate approaches to temporal calculus-based query languages,
to achieve a consensus extension to SQL-92 [11] upon which future research could be based.

With a temporal query language, simple queries should remain simple when time is added. The temporal join
can be expressed in the variant of TSQL2 being proposed for inclusion into SQL3 [18] as follows.

VALIDTIME SELECT CustomerID, Title
FROM CheckedOut, VideoTape
WHERE CheckedOut.TapeNum = VideoTape.TapeNum

Similarly, referential integrity can be expressed as “CONSTRAINT TapeNum VALIDTIME REFERENCES
VideoTape.” Even with this minimal explanation, the reader should have no difficulty in expressing the average
rental price query in this extension to SQL.

Early query languages were based on the relational algebra. Calculus-based, Datalog-based, and object-oriented
temporal query languages appeared later. Much of the recent work involves extensions to SQL.

As query languages are strongly influenced by the underlying data model, many of the issues raised in Sec-
tion 3 have analogues in temporal query languages. As one example, whether the data model timestamps tuples
or attribute values influences the language. The history of who checked out which titles can be expressed in the
TempSQL [4] query language, which utilizes attribute-value timestamps, as shown in Figure 2.

SELECT CustomerID, Title
WHILE [[CheckedOut.TapeNum = VideoTape.TapeNum]]\ [Now ;Now ]� [0;1]
FROM CheckedOut, VideoTape

Here, the WHILE construct restricts the time domain of the resulting attributes to those times when the equality
was satisfied. The intersection ensures we only examine the data that is current in the database, that is, data with a
transaction time of now.

Language design must consider the impact of the time-varying nature of data on all aspects of the language, in-
cluding predicates on temporal values, temporal constructors, supporting states or events (or both) in the language,
supporting multiple calendars, modification of temporal relations, cursors, views, integrity constraints, temporal
indeterminacy, handling now, aggregates, schema versioning, vacuuming, and periodic data. Most of these top-
ics have been the sole focus of one (or several) papers. However, these aspects interact in subtle ways, requiring
consideration of all (or a substantial subset) to ensure that the design makes sense. Adequately documenting the
design, rationale, and semantics of a comprehensive attack on the problem is daunting: the description of TSQL2
required 700 pages [17].

Recently a set of criteria for temporal query languages has emerged. These include temporal upward compati-
bility (that is, conventional queries and modifications on temporal relations should act on the current state), support
for sequenced queries (that request the history of something, such as the temporal join above), adequate expressive
power (a query language-independent test suite [6] is useful for such evaluations), and the ability to be efficiently
implemented.

6



6 Temporal DBMS Implementation

There has been a vast amount of work in storage structures and access methods for temporal data, as well as a dozen-
odd temporal DBMS prototypes [1]. There have been two basic approaches. Most authors assume an integrated
approach, in which the internal modules of a DBMS are modified or extended to support time-varying data. More
recently, there has been work using a stratum approach, in which a layer converts temporal query language state-
ments into conventional statements executed by an underlying DBMS, which is itself not altered. While the former
approach ensures maximum efficiency, the latter approach is more realistic in the medium term. In the following
we will, consistent with the vast majority of papers on temporal DBMS implementation, assume an integrated ap-
proach, utilizing timestamping of tuples with time intervals.

6.1 Query Processing

Optimization of temporal queries is more involved than that of conventional queries, for several reasons. First, the
relations that temporal queries are defined over are often larger; this justifies trying harder to optimize the queries,
and spending more execution time to perform the optimization. Second, the predicates used in temporal queries
are harder to optimize. In traditional database applications, predicates are usually equality predicates (hence the
prevalence of equijoins and natural joins). In temporal queries, conjunctions of inequality predicates appear more
frequently. As an example, the TSQL2 temporal join query given in Section 5 determines the overlap between
validity intervals from the CheckedOut relation and the VideoTape relation. This overlap is translated into
two “�” predicates on the underlying timestamps, as follows.

BEGIN(CheckedOut) <= END(VideoTape) AND BEGIN(VideoTape) <= END(CheckedOut)

Conventional DBMSs focus on equality predicates and often implement inequality joins as Cartesian products, with
their associated inefficiency.

There is greater opportunity for query optimization when time is present. Time advances in one direction; the
time domain is continuously expanding, and, for transaction time, the most recent time point is the largest value in
the domain. This implies that a natural clustering or sort order will manifest itself, which can be exploited during
query optimization and evaluation. The integrity constraint BEGIN(i) <= END(i) holds for every interval i.
Also, for many relations, the intevals associated with a key are contiguous in time, with one interval starting ex-
actly when the previous interval ended (an example is the VideoTape relation). Semantic query optimization can
exploit these integrity constraints, as well as additional ones that can be inferred.

6.2 Implementing Algebraic Operators

Attention has been directed at the common (and often expensive) temporal algebraic operators: selection, joins,
aggregates, and duplicate elimination. We examine selection in Section 6.3, on temporal indexes.

A wide variety of binary joins have been considered, including time-join and time-equijoin (TE-join), event-
join and TE-outerjoin, contain-join, contain-semijoin and intersect-join, and temporal natural join. The various
algorithms proposed for these joins have generally been extensions to nested loop or merge joins that exploit sort
orders or local workspace, as well as hash joins ([19] surveys these algorithms). Next, time-varying aggregates are
especially challenging. While there has been much work on the topic in the data warehousing context, only a few
papers have considered the more general problem [10]. Finally, Coalescing is an important operation in temporal
databases [2]. Coalescing merges value-equivalent tuples with intervals that overlap or meet. This operation may
be implemented by first sorting the argument relation on the explicit attribute values as well as the valid time. In a
subsequent scan, the merging is then accomplished.

6.3 Indexing Temporal Data

Conventional indexes have long been used to reduce the need to scan an entire relation to access a subset of its
tuples, to support the selection algebraic operator and temporal joins. Indexes are even more important in temporal
relations due to their size. Many temporal indexing strategies are available [15]. Many of the indexes are based
on B+-trees, which index on values of a single key; most of the remainder are based on R-trees, which index on
ranges (intervals) of multiple keys. The worst-case performance for most proposals has been evaluated in terms of

7



total space required, update per change, and several important queries. Most of this work is in the context of the
selection operator. As also mentioned, indexes may be used to efficiently implement temporal joins, coalescing,
and aggregates—this is still an area of active investigation.

7 Summary

This paper has briefly introduced the reader to temporal data management, emphasizing what we believe are im-
portant concepts and surveying important results produced by the research community. In what remains, we first
summarize the current state-of-the-art, then point to issues that remain challenges and which require further atten-
tion.

A great amount of research has been expended on temporal data models and query languages, which has shown
itself as an extraordinarily complex challenge with subtle issues. We feel that the semantics of standard temporal
relational schemas and their logical design are well understood, and the Bitemporal Conceptual Data Model is gain-
ing acceptance as the appropriate model in which to consider data semantics.

Many languages have been proposed for querying temporal databases, half of which have a formal basis. The
numerous types of temporal queries are fairly well understood. The TSQL2 query language has consolidated many
years of research results into a single, comprehensive language. Constructs from that language are being incorpo-
rated into a new part of SQL3, called SQL/Temporal.

The semantics of the time domain, including its structure, dimensionality, and indeterminacy, is quite well un-
derstood, and representational issues of timestamps have recently been resolved. Operations on timestamps are
now well understood, and efficient implementations exist.

Temporal joins, aggregates, and coalescing are well understood, and efficient implementations exist. More than
a dozen temporal index structures have been proposed, supporting valid time, transaction time, or both. A handful
of prototype temporal DBMS implementations have been developed.

While many important insights and results have been reported, there are still many research challenges. First,
the conceptual and physical database design of temporal schemas are still in their infancy. In the past, such in-
vestigation has been hindered by the plethora of temporal data models. Concerning performance, more empirical
studies are needed to compare temporal algebraic operator implementations, and to possibly suggest even more
efficient implementations. While preliminary performance studies have been carried out for each of the proposed
temporal indexes in isolation, there has been little effort to empirically compare them. More work is also needed
on exploiting temporal indexes in algebraic operations other than selection.

Next, most research so far has assumed that applications will be designed using a new temporal data model,
implemented using novel temporal query languages, and run on as yet nonexistent temporal DBMSs. In the short
to medium term, this is an unrealistic assumption. Indeed, in part because of this and despite the obvious need in
the marketplace, there is as yet no prominent commercial temporal relational DBMS.

Approaches for transitioning legacy applications will become increasingly sought after as temporal technology
moves from research to practice. Also, there has been little work on adding time to so-called fourth-generation
languages that are revolutionizing user interfaces for commercially available DBMSs. Finally, little has been done
in integrating spatial, temporal, and active data models, query languages, and implementation techniques.

Acknowledgements

This research was supported in part by the National Science Foundation through grants IRI-9632569and ISI-9202244,
the Danish Natural Science and Technical Research Councils through grants 9400911 and 9502695, and by the
CHOROCHRONOS project, funded by the European Commission DG XII Science, Research and Development,
as a Networks Activity of the Training and Mobility of Researchers Programme, contract no. FMRX-CT96-0056.

References

[1] M. Böhlen. Temporal Database System Implementations. ACM SIGMOD Record, 24(4):53–60, December,
1995.

8



[2] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal Databases. In Proceedings of the
22nd International Conference on Very Large Data Bases, pp. 180–191, Bombay, India, September 1996.

[3] J. Clifford and A. Tuzhilin (eds). Recent Advances in Temporal Databases: Proceedings of the International
Workshop on Temporal Databases. Workshops in Computing Series. Springer-Verlag, Berlin, 1995.

[4] S. K. Gadia and G. Bargava. SQL-like Seamless Query of Temporal Data, in [16].

[5] H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models—A Survey. Technical Report R-96-
2039, Aalborg University, Department of Mathematics and Computer Science, September 1996.

[6] C. S. Jensen (editor), J. Clifford, S.K. Gadia, F. Grandi, P.P. Kalua, N. Kline, N. Lorentzos, Y. Mitsopou-
los, A. Montanari, S.S. Nair, E. Peressi, B. Pernici, E.L. Robertson, J.F. Roddick, N.L. Sarda, M.R. Scalas,
A. Segev, R.T. Snodgrass, A. Tansel, R. Tiberio, A. Tuzhilin, and G.T.J. Wuu. A Consensus Test Suite of Tem-
poral Database Queries. Technical Report R 93-2034, Dept. of Mathematics and Computer Science, Aalborg
University, Denmark, November, 1993, 45 pages.

[7] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (eds). A Glossary of Temporal
Database Concepts. ACM SIGMOD Record, 23(1):52–64, March 1994.

[8] C. S. Jensen and R. T. Snodgrass. Semantics of Time-Varying Information. Information Systems, 21(4):311–
352, 1996.

[9] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending Existing Dependency Theory to Temporal Databases,
IEEE Transactions on Knowledge and Data Engineering, 8(4):563–582, August 1996.

[10] N. Kline and R. T. Snodgrass. Computing Temporal Aggregates. In Proceedings of the IEEE International
Conference on Database Engineering, Taipei, Taiwan, March 1995.

[11] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufmann Publishers,
Inc., 1993.

[12] J. Melton (ed.). SQL/Temporal. July 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-0012.)

[13] G. Özsoyoǧlu and R. T. Snodgrass. Temporal and Real-Time Databases: A Survey. IEEE Transactions on
Knowledge and Data Engineering, 7(4):513–532, August 1995.

[14] J. F. Roddick and J. D. Patrick. Temporal Semantics in Information Systems—a Survey. Information Systems,
17(3):249–267, October 1992.

[15] B. Salzberg and V. J. Tsotras. A Comparison of Access Methods for Time Evolving Data. ACM Computing
Surveys, to appear, 1997.

[16] R. T. Snodgrass (ed.). Proceedings of the International Workshop on an Infrastructure for Temporal
Databases. Arlington, TX, June 1993.

[17] R. T. Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri, F. Grandi,
C. S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Y. Leung, N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo
and S. M. Sripada. The TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995.

[18] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen and A. Steiner. Adding Valid Time to SQL/Temporal, ANSI X3H2-
96-501r2, ISO/IEC JTC 1/SC 21/WG 3 DBL-MAD-146r2, November, 1996.

[19] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the Valid-Time Natural Join. In Pro-
ceedings of the International Conference on Data Engineering, pp. 282–292, February 1994.

[20] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. T. Snodgrass (eds.). Temporal Databases: Theory,
Design, and Implementation. Database Systems and Applications Series. Benjamin/Cummings, Redwood
City, CA, 1994.

9



[21] V. J. Tsotras and A. Kumar. Temporal Database Bibliography Update. ACM SIGMOD Record, 25(1):41–51,
March, 1996.

[22] R. T. Snodgrass. Temporal Databases. Part II of Advanced Database Systems, Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1997.

10


