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Abstract

Systems for On-Line Analytical Processing (OLAP) considerably ease the process of analyzing busi-
ness data and have become widely used in industry. OLAP systems primarily employ multidimensional
data models to structure their data. However, current multidimensional data models fall short in their
ability to model the complex data found in some real-world application domains. The paper presents
nine requirements to multidimensional data models, each of which is exemplified by a real-world, clin-
ical case study. A survey of the existing models reveals that the requirements not currently met include
support for many-to-many relationships between facts and dimensions, built-in support for handling
change and time, and support for uncertainty as well as different levels of granularity in the data. The
paper defines an extended multidimensional data model, which addresses all nine requirements. Along
with the model, we present an associated algebra, and outline how to implement the model using rela-
tional databases.

1 Introduction

With the continued advances in the underlying hardware technologies for on-line mass storage and the
recent focus on data warehousing, the notion of On-Line Analytical Processing (OLAP) [5] is attracting
increasing interest, as business managers attempt to extract useful information from large on-line databases
in order to make informed management decisions.

Reports indicate that traditional data models, such as the ER model [2] and the relational model, do not
provide good support for OLAP applications. As a result, new data models based on amultidimensional
view of data have emerged. These multidimensional data models typically categorize data as beingmea-
surable business facts(measures) ordimensions, which are mostly textual and characterize the facts. For
example, in a retail business,productsare sold tocustomersat certaintimesin certainamountsat certain
prices. A typical fact would be apurchase, with the amount and price as the measures, and the customer
purchasing the product, the product being purchased, and the time of purchase as the dimensions.

In OLAP research, most work has concentrated on performance issues; and higher-level issues, such as
conceptual modeling, have received less attention. Several researchers have pointed to this lack in OLAP
research, and it has been suggested to try to combine the traditional OLAP virtues of performance with the
more advanced data model concepts from the field ofscientific and statistical databases[9]. This appears
to be a very valuable direction, as it is necessary to put more semantics into the database schema to support
the typical OLAP style of working directly with the data instead of using pre-formatted reports.

A data model for OLAP applications should have certain characteristics in order to support the complex
data found in many real-world systems. We present nine advanced requirements that a multidimensional
data model should satisfy and illustrate the requirements using a real-world case study from the clinical
world. We present an extended multidimensional data model that addresses all nine requirements. The
data model supports modeling explicit hierarchies in the dimensions, to aid the user in navigating the data.
Multiple hierarchies in each dimension is supported, to allow for different aggregation paths, and the non-
strict hierarchies found in real-world dimensions, i.e., where a dimension item may have several parents,
are also supported. The model treats dimensions and measures symmetrically, to allow measures to be used
as dimensions and vice versa. Many-to-many relationships between facts and dimensions can be captured
directly in the model, which is important as these relationships often occur in real-world data, e.g., a patient
may have several diagnoses. The data model supports getting correct results when aggregating data, e.g.,
data will not be double-counted and non-additive data cannot be added. Data change over time, so support
for handling change and time is part of the model. Aspects of the uncertainty often associated with data are
also handled by the model. Finally, the model supports handling data with different levels of granularity,
which is a need in some applications.
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The model is equipped with an algebra that is closed and at least as strong as relational algebra with
aggregation functions. Finally, we outline how the model can be implemented using relational databases.

Eight previously proposed data models, which are representative for the spectrum of multidimensional
data models, are evaluated against the nine requirements, and it is shown that no other model satisfies more
than four of these requirements. Importantly, no other model supports many-to-many relationships between
facts and dimensions, handling of uncertainty, and different levels of granularity at all, and no other model
completely supports handling change and time or non-strict hierarchies.

The presentation is structured as follows. Section 2 sets the stage by first presenting a real-world case
study from the clinical world together with nine requirements to multidimensional data models; it then
describes and evaluates previously proposed models against the requirements. Section 3 proceeds to first
define the basic extended multidimensional data model, using examples from the case study for illustration,
then adds support for handling time and uncertainty to the model. With the data structures of the model
available, Section 4 defines an algebra for the model and discusses its properties. Section 5 evaluates the
model against the requirements, and Section 6 summarizes and points to future directions. An appendix
outlines how to implement the model using relational databases.

2 Motivation

This section illustrates the shortcomings of the previously proposed multidimensional models. First, we
present a case study that shows some of these limitations. The case is taken from the domain of healthcare,
where we look at patients, their diagnoses, and their place of residence. Second, we list the requirements
for features that a data model should satisfy in order to meet the needs of the case study. Third, we relate
these requirements to the existing multidimensional data models.

2.1 A Case Study

The case study concerns the patients in a hospital, their associated diagnoses, and their place of residence.
The goal is to investigate whether some diagnoses occur more often in some areas than in others, in which
case environmental or lifestyle factors might be contributing to the disease pattern. An ER diagram illus-
trating the underlying data is seen in Figure 1.

The most important entities are thepatients. For a patient, we record Name, Social Security Number
(SSN), and Date of Birth. From the Date of Birth and the current date, we can derive the Age attribute,
which is parenthesized to show that it is derived.

Each patient can have one or morediagnoses. The attribution of diagnoses to patients can vary over
time, and we also record the time interval where a diagnosis is considered to be valid for a patient. We also
record thetype of diagnostization, to show whether a diagnosis is considered to beprimary or secondary. A
primary diagnosis is considered to be the most important reason for a treatment, while secondary diagnoses
complete the view of the patient’s condition. A patient may have only one primary diagnosis at any one
point in time.

When registering a diagnosis of a patient, physicians often use different levels of granularity. Some
will use the very precise diagnosis “Insulin dependent diabetes,” while others will use the more imprecise
diagnosis “Diabetes,” which covers a wider range of patient conditions, corresponding to a number of more
precise diagnoses. To model this, the relationship from patient to diagnoses is to the supertype “Diagnosis.”
The Diagnosis type has three subtypes, corresponding to different levels of granularity, thelow-level diag-
nosis, the diagnosis family, and thediagnosis group. Examples of these are “Insulin dependent diabetes
during pregnancy,” “Insulin dependent diabetes,” and “Diabetes,” respectively. The higher-level diagnoses
are both (imprecise) diagnoses in their own right, but also function as groups of lower-level diagnoses, as
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Figure 1: Patient Diagnosis Case Study

will be discussed later.
For diagnoses, we record an alphanumeric code and a descriptive text. The code and text are usually

determined by a standard classification of diseases, e.g., the World Health Organization’s International
Classification of Diseases (ICD-10) [13], but we also allow user-defined diagnoses.

Over time, medical knowledge evolves, and a disease classification reflects this by changing its contents.
What often happens is that a diagnosis is superseded by one or more new diagnoses that better reflect the
current understanding of this particular medical condition. To model this fact, we associate with each
diagnosis aperiod of validity, represented by the attributesValid FromandValid To. This period of validity
is the time interval in the real world where the diagnosis can be used for diagnostization, and has the
associated code and text. The classifications evolve only slowly, so the granularity of time used can be quite
high, e.g., days.

As there are several thousand diagnoses in the classification, the diagnoses are grouped intodiagnosis
familiesand these in turn intodiagnosis groups, thus creating a hierarchy in the classification. We have two
types of hierarchies: the standard hierarchy determined by the classification owner, e.g., the WHO, and the
user-defined hierarchy, which is used by physicians to group diagnoses on an ad-hoc basis in other ways
than the standard classification allows.

First, the hierarchy groups low-level diagnoses intodiagnosis families, each of which consists of 5–
50 related diagnoses. For example, the diagnosis “Insulin dependent diabetes during pregnancy1” is part
of the family “Diabetes during pregnancy.” In the standard classification, a low-level diagnosis is part of
exactly one diagnosis family. However, physicians often have a need to group diagnoses in other ways
than the standard allows, so we also allow auser-definedhierarchy. TheTypeattribute on the relationship

1The reason for having a separate pregnancy related diagnosis is that diabetes must be monitored and controlled particularly
intensely during a pregnancy to assure good health of both mother and child.
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determines whether the relation between two entities is part of the standard or the user-defined hierarchy.
Thus, a diagnosis can be part of several diagnosis families, e.g., the “Insulin dependent diabetes during

pregnancy” diagnosis is part of both the “Diabetes during pregnancy” and the “Insulin dependent diabetes”
family. The participation of individual diagnoses in a family may change over time, so we record the time
interval during which a diagnosis is part of a family.

ID Name SSN Date of Birth
1 John Doe 12345678 25/05/69
2 Jane Doe 87654321 20/03/50

Patient Table

PatientID DiagnosisID ValidFrom ValidTo Type
1 9 01/01/89 NOW Primary
2 3 23/03/75 24/12/75 Secondary
2 8 01/01/70 31/12/81 Primary
2 5 01/01/82 30/09/82 Secondary
2 9 01/01/82 NOW Primary

Has Table

ID Code Text ValidFrom ValidTo
3 P11 Diabetes during pregnancy 01/01/70 31/12/79
4 O24 Diabetes during pregnancy 01/01/80 NOW
5 O24.0 Insulin dependent diabetes during pregnancy 01/01/80 NOW
6 O24.1 Non insulin dependent diabetes during pregnancy01/01/80 NOW
7 P1 Other pregnancy related diseases 01/01/70 31/12/79
8 D1 Diabetes 01/10/70 31/12/79
9 E10 Insulin dependent diabetes 01/01/80 NOW
10 E11 Non insulin dependent diabetes 01/01/80 NOW
11 E1 Diabetes 01/01/80 NOW
12 O2 Other pregnancy related diseases 01/10/80 NOW

Diagnosis Table

ParentID ChildID ValidFrom ValidTo Type
4 5 01/01/80 NOW WHO
4 6 01/01/80 NOW WHO
7 3 01/01/70 31/12/79 WHO
8 3 01/01/70 31/12/79 User-defined
9 5 01/01/80 NOW User-defined
10 6 01/01/80 NOW User-defined
11 9 01/01/80 NOW WHO
11 10 01/01/80 NOW WHO
12 4 01/01/80 NOW WHO

Grouping Table

Table 1: Data for the Case Study

Second, the diagnosis families are grouped intodiagnosis groups, consisting of 5–25 families, and one
family may be part of several groups. For example, the family “Diabetes during pregnancy” may the part
of the “Diabetes” and the “Other pregnancy related diseases” groups. In the standard hierarchy, however, a
family belongs to exactly one group. Here we also use theTypeattribute to distinguish between the standard
and the user-defined hierarchy. The grouping of families into groups can also change over time, so we
record the time interval during which a family is part of a group.

In the standard hierarchy, a lower-level item belongs to exactly one higher-level item, thus the standard
hierarchy is astrict, partitioninghierarchy. In the user-defined hierarchy, a lower-level item can be a member
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of zero or more higher-level items, making it anon-strict, non-partitioninghierarchy. Properties of the
hierarchies will be discussed in more detail in Section 3.4.

We also record the place of residence for the patients. A patient may only live in one place at any one
point in time. When people move, their previous address is still interesting, so we also record the associated
period of residence. We record the place of residence at the granularity of anarea, which designates a
small, bounded area of a few square kilometers. An area is part of exactly onecounty, which in turn is part
of exactly oneregion. Thus, we have astrict, partitioning hierarchy. For areas, counties, and regions we
just record the name.

In order to list some example data, we assume a standard mapping of the ER diagram to relational
tables, i.e., one table per entity type, one-to-many relationships handled using foreign keys, and many-to-
many relationships handled using separate tables. Relationships that change over time are also handled
using separate tables. We also assume the use of surrogate keys, namedID, with globally unique values.
Dates are written in the format dd/mm/yy. For theValid Toattribute, we use the special value “NOW” value
that denotes the current time2 [25]. As the three subtypes of the Diagnosis type do not have any attributes of
their own, all three are mapped to a common Diagnosis table. The “is part of” and “grouping” relationships
are also mapped to a common “Grouping” table. The data consists of two patients, four diagnostizations,
and 10 diagnoses in a hierarchy. On January 1, 1980, a new, more detailed classification with a new coding
scheme is introduced. The resulting tables are shown in Table 1 and will be used in examples throughout
the paper.

2.2 Requirements for Data Analysis

This section describes the features that a data model should possess in order to fully support our sample
case and other advanced uses. Current multidimensional models are evaluated against these features in the
next section.

1. Explicit hierarchies in dimensions. The hierarchies in the dimensions should be captured explicitly
by the schema, so the user has available the relation between the different levels in the hierarchy. In
our example, the hierarchiesdiagnosis � family � group andarea � county � region should be
captured.

2. Symmetric treatment of dimensions and measures. The data model should allow measures to be
treated as dimensions and vice versa. In our example, the attribute Age for patients would typically
be treated as a measure, to allow for computations such as average age, etc., but we should also be
able to define an Age dimension which allows us to group the patients into age groups.

3. Multiple hierarchies in each dimension. In one dimension, there can be more than one path along
which to aggregate data. As an example, let us assume that we have a Time dimension on the Date of
Birth attribute. Days roll up to weeks and to months, but weeks do not roll up to months. To model
this, multiple hierarchies in each dimension are needed.

4. Support for correct aggregation. The data model should support getting results that are “correct,” i.e.,
meaningful to the user, when aggregating data. One aspect of this is to avoid double-counting of data.
In our case study, when asking for the numbers of patients in different diagnosis groups, we should
only count the same patient once per group, even though the patient has several diagnoses in a group.
The user should also be able to specify what aggregations are considered meaningful for the different
kinds of data available, and the model should provide a foundation for enforcing these specifications.
For example, it may not be meaningful to add inventory levels together, but performing average

2Note that this value isdynamic, i.e., it continues to grow.
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calculations on them does make sense. In the field of statistical databases, a closely related concept
is summarizability[7, 8], which means that an aggregate result, e.g., total sales, can be computed by
directly combining results from lower-level aggregations, e.g., the sales for each store.

5. Non-strict hierarchies. The hierarchies in a dimension are not always strict, i.e., we can have many-
to-many relationships between the different levels in a dimension. In our example, the diagnosis
hierarchy is not strict. The data model should be able to handle these just as well as “ordinary” strict
dimensions.

6. Many-to-many relationships between facts and dimensions. The relationship between fact and dimen-
sion is not always the classical many-to-one mapping. In our case study, the same patient may have
several diagnoses, even at the same point in time.

7. Handling change and time. Data change over time, but we should be able to get meaningful analysis
results across changes. In the example, one diagnosis can be superseded by two new ones, but patients
are still diagnostizised with the old one. It should be possible to easily combine data across changes.
The problem typically referred to as handlingslowly changing dimensions[4, 20] is part of this
problem.

8. Handling uncertainty. In our case study, one diagnosis is superseded by two new ones. We know
that in 90% of the cases where we used the old diagnosis, we will now use the first of the new
diagnoses. Thus, when requesting data grouped by diagnosis for a period that spans the change, we
want the old diagnosis to be counted together with the first new diagnosis. The data model should
allow expressing this and also support giving some kind of indications in the query results, indicating
how many of these “converted” diagnoses are counted in the result.

9. Handling different levels of granularity. Fact data might be registered at different granularities. In
our example, the diagnosis of a diabetes patient may be registered differently by different physicians.
Some will use a very specific diagnosis such as “Insulin dependent diabetes,” while others will use
the more imprecise “Diabetes,” which covers several lower-level diagnoses. It should still be possible
to get correct analysis results when data is registered at different granularities.

2.3 Related Work

In this section we evaluate data models that have previously been proposed for data warehousing according
to the requirements in the previous section.

We consider the models of Rafanelli & Shoshani [7], Agrawal et al. [6], Gray et al. [3], Kimball [4],
Li & Wang [11], Gyssens & Lakshmanan [10], Datta & Thomas [14], and Lehner [12]. The models can be
divided into three groups:simple cube models, structured cube models, andstatistical objects.

The simple cube models [3, 4, 10, 14] treat data as n-dimensional cubes. Generally, the data is divided
into facts, or measures, e.g., Age, on which calculations should be performed, anddimensions, e.g., Di-
agnosis, which characterize the facts. Each dimension has a number of attributes, which can be used for
selection and grouping. In our example, a “Residence” dimension having the attributes “Area,” “County,”
and “Region” would be used to characterize the patients. The hierarchy between the attributes is not cap-
tured explicitly by the schema of the simple cubes, so the user will not be able to learn from the schema
that Area rolls up to County and not the other way around. Star schema designs [4] are also considered as a
simple cubes, as they are semantically equivalent to these.

The structured cube models [6, 11, 12] capture the hierarchies in the dimensions explicitly, providing
better guidance for the user navigating the cubes. This information may also be useful for query optimization
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[15]. The hierarchies are captured using eithergrouping relations[11], dimension merging functions[6], or
an explicit tree-structured hierarchy as part of the cube [12].

The last group of models is thestatistical objects[7]. For this group, a structured classification hierarchy
is coupled with an explicit aggregation function on a single measure to produce a “pre-cooked” object that
will answer a very specific set of questions. This approach is not as flexible as the others, but unlike most
of these, it provides some protection (summarizability) against getting incorrect results from queries.

The results of evaluating the eight data models against our nine requirements are seen in Table 2. If a
model supports all aspects of a requirement, we say that the model providesfull support, denoted by “

p
”.

If a model supports some, but not all, aspects of a requirement, we say that it providespartial support,
denoted by “p”. When it is not possible for the authors to determine how support for a requirement should
be accomplished in the model, we say that the model providesno support, denoted by “-”.

1 2 3 4 5 6 7 8 9
Rafanelli & Shoshani [7]

p
- -

p
p - - - -

Agrawal et al. [6] p
p p

- p - - - -
Gray et al. [3] -

p p
p - - - - -

Kimball [4] - -
p

p - - p - -
Li & Wang [11] p -

p
p - - - - -

Gyssens & Lakshmanan [10] -
p p

p - - - - -
Datta & Thomas [14] -

p p
- p - - - -

Lehner [12]
p

- -
p

- - - - -

Table 2: Evaluation of the Data Models

1. Explicit hierarchies in dimensions: The simple cube models [3, 4, 10, 14] do not capture the hierar-
chies in the dimensions explicitly. Some models provide partial support by thegrouping relation[11]
anddimension merging function[6] constructs, but do not capture the complete hierarchy together
with the cube. This is done by the last two models [7, 12], thus capturing the full cube navigation
semantics in the schema.

2. Symmetric treatment of dimensions and measures: Half of the models [4, 7, 11, 12] distinguish sharply
between measures and dimensions. An attribute designated as a measure cannot be used as a dimen-
sional attribute and vice versa. This restricts the flexibility of the cube designs, e.g., if the Age
attribute of the example is a measure, it cannot be used to group patients into age groups. The other
half of the models [3, 6, 10, 14] do not impose this restriction. They either do not distinguish between
measures and dimensions [3, 10], or they allow for the conversion of measures to dimensions and
vice versa [6, 14].

3. Multiple hierarchies in each dimension: Some models [7, 12] require that the dimension hierarchies
are tree-structured. To support multiple hierarchies, a more general lattice structure is required. All
the other models [3, 4, 6, 10, 11, 14] allow multiple hierarchies.

4. Support for correct aggregation: Half of the models [3, 4, 10, 11] support correct aggregation par-
tially, by implicitly requiring the dimension hierarchies to bestrict andpartitioning, i.e., a lower-level
item maps to exactly one item on the next level. This is one of the conditions of summarizability [8].
Two of the models allow for non-strict hierarchies, while not addressing the issue of double-counting,
thus providing no support [6, 14]. The remaining two models [7, 12] place explicit conditions on both
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the hierarchy (strict and partitioning) and the aggregation functions used (only additive data may be
added, etc.), thus providing full support for correct aggregation.

5. Non-strict hierarchies: Most of the models [3, 4, 10, 11, 12] implicitly or explicitly require that
hierarchies be strict. Two models [6, 14] mention briefly that non-strict hierarchies are allowed, but
does not go deeper into the issues raised by allowing this, e.g., the possibility of double-counting and
the use of pre-computed aggregates. The remaining model [7] investigates the possible problems with
allowing non-strict hierarchies and advises against using this feature.

6. Many-to-many relationships between facts and dimensions: None of the models allow many-to-many
relationships between facts and their associated dimensions, such as the relationship between patients
and diagnoses in the example.

7. Handling change and time: Only one model [4] discusses this issue, but none the proposed solutions
fully support analysis across changes in the dimensions. None of the other models support analysis
across changes, although one mention that this is a very important issue [12].

8. Handling uncertainty: None of the models provide built-in support for uncertainty in the data.

9. Handling different levels of granularity: None of the models handle different levels of granularity in
the data.

To conclude, the models generally provide full or partial support for most of requirements 1–4. Require-
ment 5 (non-strict hierarchies) is partially supported by three of the models, while requirement 7 (handling
change and time) is only partially supported by Kimball [4]. Requirements 6, 8, and 9 are not supported by
any of the models. The objective of the model proposed in this paper is to support all nine requirements.

3 An Extended Multidimensional Data Model

In this section we define our model. For every part of the model, we define theintension, the extension,
and give an illustrating example. To avoid unnecessary complexity, we first define the basic model and then
define extensions for handling time and uncertainty later.

3.1 The Basic Model

An n-dimensional fact schemais a two-tupleS � �F �D�, whereF is afact typeandD � fTi� i � �� ��� ng
is its correspondingdimension types.

Example 1 In the case study from Section 2.1 we will havePatientas the fact type, andDiagnosis, Res-
idence, Age, Date of Birth (DOB), Name, andSocial Security Number (SSN)as the dimension types. The
intuition is thateverythingthat characterizes the fact type is considered to bedimensional, even attributes
that would be considered asmeasuresin other models.

A dimension typeT is a four-tuple�C��T ��T ��T �, whereC � fCj � j � �� ��� kg are thecategory
typesof T , �T is a partial order on theCj ’s, with �T � C and�T � C being the top and bottom element
of the ordering, respectively. Thus, the category types form a lattice. The intuition is that one category type
is “greater than” another category type if members of the former’s extension logically contain members of
the latter’s extension, i.e., they have a larger element size. The top element of the ordering corresponds to
the largest possible element size, that is, there is only one element in it’s extension, logically containing all
other elements.
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We say thatCj is a category type ofT , writtenCj � T , if Cj � C. We assume a functionPred � C �� �C

that gives the set of immediate predecessors of a category typeCj.

Example 2 Low-level diagnoses are contained in diagnosis families, which are contained in diagnosis
groups. Thus, theDiagnosisdimension type has the following order on its category types:�Diagnosis

= Low-level Diagnosis� Diagnosis Familiy� Diagnosis Group� �Diagnosis. We have thatPred �Low-
level Diagnosis� � fDiagnosis Familyg. Other examples of category types areAgeandTen-year Age Group
from the Age dimension type, andDOBandYearfrom the DOB dimension type. Figure 2, to be discussed
in detail later, illustrates the dimension types of the case study.

Many types of data, e.g., ages or sales amounts, can be added together to produce meaningful results.
This data has an ordering on it, so computing the average, minimum, and maximum values make sense. For
other types of data, e.g., dates of birth or inventory levels, the user may not find it meaningful in the given
context to add them together. However, the data has an ordering on it, so taking the average, or computing
the maximum or minimum values do make sense. Some types of data, e.g., diagnoses, do not have an
ordering on them, and so it does not make sense to compute the average, etc. Instead, the only meaningful
aggregation is to count the number of occurrences.

We can support correct aggregation of data by keeping track of what types of aggregate functions can
be applied to what data. This information can then be used to either prevent users from doing “illegal”
calculations on the data completely, or to warn the users that the result might be “wrong,” e.g., the same
patient is counted twice, etc. In line with this reasoning and previous work [12, 19], we distinguish between
three types of aggregate functions:�, applicable to data that can be added together,�, applicable to data that
can be used for average calculations, andc, applicable to data that is constant, i.e., it can only be counted.
Considering only the standard SQL aggregation functions, we have that� � fSUM, COUNT, AVG, MIN,
MAX g, � � fCOUNT, AVG, MIN, MAXg, and c � fCOUNTg. The aggregation types are ordered,
c � � � �, so data with a higher aggregation type, e.g.,�, also possess the characteristics of the lower
aggregation types. For each dimension typeT � �C��T �, we assume a functionAggtypeT � C �� f�� �� cg
that gives the aggregation type for each category type.

Example 3 In the case study,Aggtype�Low-level Diagnosis� � c, Aggtype�Age� � �, Aggtype�Ten-year
Age Group� � c, andAggtype�DOB� � �.

A dimensionD of typeT � �fCjg��T ��T ��T � is a two-tupleD � �C���, whereC � fCjg is a
set ofcategoriesCj such thatType�Cj� � Cj and� is a partial order on�jCj , the union of all dimension
values in the individual categories. A categoryCj of type Cj is a set ofdimension valuese such that
Type�e� � Cj.

The definition of the partial order is: given two valuese�� e� thene� � e� if e� is logically contained in
e�. We say thatCj is a category ofD, writtenCj � D, if Cj � C. For a dimension valuee, we say thate is
a dimensional value ofD, writtene � D, if e � �jCj .

The category type�T in dimension typeT contains the values with the smallest value size. The
category type with the largest value size,�T , contains exactly one value, denoted�. For all valuese of the
category types ofD, e � �. Value� is similar to theALL construct of Gray et al. [3].

Example 4 In our Diagnosisdimension we have the following categories, named by their type.Low-level
Diagnosis= f�� �� 	g, Diagnosis Family= f
� �� �� � ��g, Diagnosis Group= f��� ��g, and�Diagnosis �
f�g. The values in the sets refer to theID field in the Diagnosis table of Table 1. The partial order� is
given by the first two columns in the Grouping table in Table 1. Additionally, the top value� is greater
than, i.e., logically contains, all the other diagnosis values.
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We say that the dimensionD� � �C ����� is asubdimensionof the dimensionD � �C��� if C� 	 C

ande� �� e� 
 �C�� C� � C ��e� � C�� e� � C� � e� � e�� , that is,D� has a subset of the categories of
D and�� is the restriction of� to these categories. We note thatD is a subdimension of itself.

Example 5 We obtain a subdimension of the Diagnosis dimension from the previous example by removing
theLow-level DiagnosisandDiagnosis Familycategories, retaining onlyDiagnosis Groupand�Diagnosis .

It is desirable to distinguish between the dimension values in themselves and the real-world “names”
that we use for them. The names might change or the same value might have more than one name, making
the name a bad choice for identifying an value. In common database terms, this is the argument forobject
ids or surrogates.

To support this feature, we require that a categoryC has one or morerepresentations. A representation
Rep is a bijective functionRep � Dom�C� DomRep, i.e., a value of a representation uniquely identifies
a single value of a category and vice versa, thus making the representation an “alternate key.” We use the
notationRep�e� � v to denote the mapping from dimension values to representation values.

Example 6 A diagnosis value has two representations,CodeandText. Using the ID’s from the Diagnosis
table to identify the values, we haveCode��� � �O�
�� andText��� � �Diabetes during pregnancy���

Let F be a set of facts, andD � �fCjg��� a dimension. Afact-dimension relationbetweenF and
D is a setR � f�f� e�g, wheref � F ande � �jCj. ThusR links facts to dimension values. We say
that factf is characterized bydimension valuee, written f � e, if �e� � D ��f� e�� � R � e� � e�.
We require that�f � F ��e � �jCj ��f� e� � R��; thus we do not allow missing values. The reasons for
disallowing missing values are that they complicate the model and often have an unclear meaning. If it is
unknown which dimension value a factf is characterized by, we add the pair�f��� to R, thus indicating
that we cannot characterizef within the particular dimension.

Example 7 The fact-dimension relationR links patient facts to diagnosis dimension values as given by the
Has table from the case study. Leaving out the temporal aspects for now, we get thatR � f(1,9), (2,3),
(2,5), (2,8), (2,9)g. Note that we can relate facts to values in higher-level categories, e.g., fact 1 is related
to diagnosis 9, which belongs to theDiagnosis Familycategory. Thus, we do not require thate belongs to
�Diagnosis , as do the existing data models. If no diagnosis is known for patient 1, we would have added the
pair ����� toR.

A multidimensional object(MO) is a four-tupleM � �S� F�D�R�, whereS � �F �D � fTig� is
the fact schema,F � ffg is a set offacts f whereType�f� � F , D � fDi� i � �� ��� ng is a set of
dimensionswhereType�Di� � Ti, andR � fRi� i � �� ��� ng is a set of fact-dimension relations, such that
�i��f� e� � Ri � f � F � �Cj � Di�e � Cj��.

Example 8 For the case study, we get a six-dimensional MOM � �S� F�D�R�, whereS � �Patient,
fDiagnosis, DOB, Residence, Name, SSN, Ageg� andF � f�� �g. The definition of the diagnosis di-
mension and its corresponding fact-dimension relation was given in the previous examples. Due to space
constraints, we do not list the contents of the other dimensions and fact-dimension relations, but just outline
their structure. The Name and SSN dimensions are simple, i.e., they just have a� category type, Name
respectively SSN, and a� category type. The Age dimension groups ages (in years) into five-year and
ten-year groups, e.g., 10–14 and 10–19. The Date-of-Birth dimension has two hierarchies in it: days are
grouped into weeks, or days are grouped into months, with the further levels of quarters, years, and decades.
We will refer to this MO as the “Patient” MO. A graphical illustration of the schema of the “Patient” MO is
seen in Figure 2.
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Figure 2: Schema of the Case Study.

A collection of multidimensional objects, possibly with shared subdimensions, is called amultidimen-
sional object family.

Example 9 To illustrate the usefulness of shared subdimensions in multidimensional object families, imag-
ine performing the following steps. Create a subdimension of the Diagnosis dimension that includes only
Diagnosis Groupand�Diagnosis, and a subdimension of the Age dimension that includes onlyTen-Year
Group and�Age. Make an MO with these two dimensions and the fact type Patient for all patients in the
country. This results in an MO capturing all patients in the country together with their diagnosis groups
and their ten-year age groups. Putting this MO together with the “Patient” MO from the example above, we
obtain a multidimensional object family with two shared subdimensions. The shared subdimensions could
be used to investigate how diagnoses versus age groups for the patient group from the case study compare
to the national average.

To summarize the essence of our model, the facts are objects with aseparate identity. Thus, we can test
facts for equality, but we do not assume an ordering on the facts. The combination of dimensions values
that characterize the facts of a fact set isnot a “key” for the fact set. Thus, we may have “duplicate values,”
in the sense that several facts may be characterized by the same combination of dimension values. But, the
facts of an MO is aset, so we do not have duplicatefactsin an MO.

3.2 Handling Time

We now investigate how to build temporal support into the model. The vast majority of research in temporal
data models assumes a discrete time domain (for example, most data models in the most recent collection
of temporal database papers [16] explicitly assume a discrete model of time). Also the temporal data types
offered by the SQL standard [17] are discrete and bounded. Thus, we assume a time domain that is discrete
and bounded, i.e., isomorphic with a bounded subset of the natural numbers. The values of the time domain
are calledchronons. They correspond to the finest granularity in the time domain [22]. We letT , possibly
subscripted, denote a set of chronons.
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Thevalid timeof a statement is the time when the statement is true in the modeled reality [1]. Valid time
is very important to capture because the real world is where the users reside, and weallow the attachment
of valid time to the data, but do not require it. If valid time is not attached to the data, we assume the data
to bealwaysvalid. If valid time is attached to an MO, we call it avalid-timeMO.

In general, valid time may be assigned to anything that has a truth value. In our model, this is the par-
tial order between dimension values, the mapping between values and representations, the fact-dimension
relations, and the membership of values in categories. It is important to be able to capture all these aspects.

We add valid time to the dimension partial order� by addingTv, the set of chronons during which the
relation holds in the real world, to each relation between two values. We write thate� �Tv e� if e� � e�
during each chronon inTv. The partial order�Tv has the following property:e� �T�v e� � e� �T�v e� �
e� �T�v�T�v e�. Similarly, we writeRep�e� �Tv v to denote that the representationRep of the valuee has
valuev during each chronon inTv. For each fact-dimension relation between a factf and a dimension value
e, we capture the set of chrononsTv when the two are related. We write�f� e� �Tv R when�f� e� � R

during each chronon inTv. We use the notationf �Tv e when �f� e�� �Tv R � e� �Tv e. Finally, we
add valid time to membership of dimension values in categories, writinge �Tv C whene � C during each
chronon inTv.

The set of chronons that is attached to a statement is themaximalset of chronons when the statement
is valid, so the data is always “coalesced” [1]. Thus, we do not have the problem of “value-equivalent”
statements [1, 21, 23], where the same statement appears several times with different times attached to it,
e.g.,e� �T� e� ande� �T� e�, whereT� �� T�. However, by implication, statements are valid for any subset
of their attached time, e.g.,T� 	 T� � e� �T� e� � e� �T� e�.

Example 10 For our examples, we use interval notation forTv, with the chronon size equal to Day. For the
partial order for the Diagnosis dimension, we have� �������������������� �. For the representation, we have
Code���������������������� � D�. For the fact-dimension relation, we have��� �� ������������	������� R.
For the category membership, we have�� ��������
��NOW � Diagnosis Family.

To sum up, by extending the dimension partial order with links between dimension values that represent
the “same” thing across change, we have a foundation for handling analysis across changes. This allows us
to obtain meaningful results when we analyze data across changes in the dimension.

Example 11 When looking at the data from the current point in time, we want to count the patients diag-
nosed with the old “Diabetes” diagnosis�ID � �� together with those diagnoses with the new “Diabetes”
diagnosis�ID � ��� when we look at diagnostizations from 1970 to the present. This is done by defining
that� ��������
��NOW � ��, i.e., from 1980 up till now, we consider the diagnosis 8 to be logically contained
in the diagnosis 11.

Valid time is not the only temporal aspects that may be interesting to our model. It is also interesting
to capture when statements are present in the database, as the time a statement is present in the database
almost never corresponds to the time it is true in the real world. We need to know when data are present in
the database for accountability and traceability purposes.

Thetransaction timeof a statement is the time when the statement is current in the database and may be
retrieved [1]. Generally, transaction time can be attached to anything that valid time can be attached to. The
addition of transaction time is orthogonal to the addition of valid time. Additionally, transaction time can
be added to data that does not have a truth value. In our model, we could record when facts, e.g., patients,
are present in the database. We do not think that this is very interesting in itself, as facts are only interesting
when they participate in fact-dimension relations. Thus, we do not record this.

If transaction time is attached to an MO, we call it atransaction-timeMO. If both valid and transaction
time is attached to an MO, we call it abitemporalMO. If no time is attached to an MO, we call it asnapshot
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MO. In our notation, we useTt to denote the set of chronons when data is current in the database. We use
Tt � Tv to denote sets of bitemporal chronons.

3.3 Handling Uncertainty

Sometimes the data available contains uncertainties that cannot adequately be captured using standard tech-
niques such as default values, etc. Instead, we handle this uncertainty explicitly in our data model. To do so,
we introduce measures of probability. In general, it makes sense to attach a probability to a statement if the
statement can be given a valid time. In our model, this applies to dimension partial orders, fact-dimension
relations, mappings between values and representations, and category memberships for values. However,
we attach probabilities to the former two only. It is of little use to have a probability for the mapping be-
tween values and representations, which would violate the requirement that a representation is an alternate
key. Also, giving probabilities to the membership of categories is omitted, as values belong fully to one
category at any given time.

First, we add probability to the partial order on dimension values. Given two dimension valuese�� e�
and a numberp such that� � p � �, we write thate� �p e� if e� � e� with probability p. Second,
we add probability to a fact-dimension relationR. Given a factf , a dimension valuee and a numberp
such that� � p � �, we write that�f� e� �p R if �f� e� � R with probability p. We writef �p e if
�f� e�� �p� R � e� �p� e � p � p� � p�. Note that a probability is assigned toall (ancestor,descendent) links
in the partial order, not just the direct (parent,child) links.

Example 12 Before 1980, diagnostizations in the case study do not differentiate between insulin dependent
and non insulin dependent diabetes. From 1980 and on this is the case. Suppose that we know that 90%
of the diagnostizations made with the old “Diabetes” diagnosis were for insulin dependent diabetes cases.
When looking for the number of insulin dependent diabetes patients from 1970 up till now, we want to
count the old “Diabetes” diagnostizations too. We do this by extending the Diagnosis partial order with the
information that� ���� .

Suppose that physicians are allowed to express their belief in the correctness of a diagnostization by
attaching a probabilityp to it. In the case study, the physician is 95% certain that John Doe�ID � �� has
insulin dependent diabetes�ID � �. Thus, for the fact-dimension relation R,��� � ����� R.

To summarize, the addition of uncertainty to the model is orthogonal to the features for handling time,
thus any combination of extensions is valid. If both time and probabilities are added to an MO, we assign
a probabilitypt for eachchronont in the chronon setT . This is done to avoid the problems of value-
equivalent tuples. However, interval notation such as� �������
��NOW �  is used in examples. If probability
is assigned to an MO, we call it aprobabilistic MO. If no probability is assigned, we call it adeterministic
MO.

3.4 Properties of the Model

In this section important properties of the model that relate to the use of pre-computed aggregates is defined
and discussed. The first important concept issummarizability, which intuitively means that individual
aggregate results can be combined directly to produce new aggregate results.

Definition 1 Given a typeT , a setS � fSj � j � �� ��� kg, whereSj � �T , and a functiong � �T �� T , we
say thatg is summarizablefor S if g�fg�S��� ��� g�Sk�g� � g�S� � ���Sk�. The set of arguments on the left
side of the equation is a multi-set, or bag, i.e., the same result value can occur multiple times.
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Summarizability is an important concept as it is a condition for the flexible use of pre-computed aggre-
gates. Without summarizability, lower-level results generally cannot be directly combined into higher-level
results. This means that we cannot choose to pre-compute only a relevant selection of the possible aggre-
gates and then use these to compute higher-level aggregates on-the-fly. Instead, we have to pre-compute the
total results for all the aggregations that we need fast answers to, while other aggregates must be computed
from the base data. Space and time constraints can be prohibitive for pre-computing all results, while com-
puting aggregates from scratch results in long response times. In this case, an attractive alternative is the
use ofsamplingtechniques to answer the queries [24]. Using sampling, only a small sample of the available
data is read and used toestimatethe result of the query. This can produce very fast response times, while
maintaining a relatively high degree of accuracy for the result.

It has been shown that summarizability is equivalent to the aggregation function beingdistributive, all
paths beingstrict, and the hierarchies beingpartitioning in the relevant dimensions [8]. If data with time
attached to it is aggregated such that data for one fact is only counted for one point in time, this result extends
to hierarchies that aresnapshot strictandsnapshot partitioning. These concepts are formally defined below.
In the definitions, we assume a dimensionD � �C���.

Definition 2 If �C�� C� � C�e�� e� � C� � e� � C� � e� � e� � e� � e� � e� � e�� then the mapping
betweenC� andC� is strict. Otherwise, it isnon-strict. The hierarchy in dimensionD is strict if all
mappings in it are strict; otherwise, it isnon-strict. Given a categoryCj � Di, we say that there is astrict
path from the set of factsF to Cj iff �f � F � f � e� � f � e� � e� � Cj � e� � Cj � e� � e�

3. The
hierarchy in dimensionD is snapshot strict, if at any given timet, the hierarchy is strict.

Definition 3 If �C� � C�C� �� �D � e� � C� � �C� � Pred �C����e� � C��e� � e����, i.e., if every
non-top value has a direct parent, we say that the hierarchy in dimensionD is partitioning; otherwise, it is
non-partitioning. The hierarchy in dimensionD is snapshot partitioningif at any given timet, the hierarchy
is partitioning.

Example 13 The hierarchy in the Residence dimension is strict and partitioning. The hierarchy in the Di-
agnosis dimension is non-strict and partitioning, but could have been non-partitioning. The sub-hierarchy of
the Diagnosis dimension obtained by restriction to the standard classification is snapshot strict and snapshot
partitioning.

4 The Algebra

This section defines an algebra on the multidimensional objects just defined. In line with the model defi-
nition, we first define the basic algebra and then define extensions for handling time and uncertainty. For
some of the more complex operators, we provide examples of their use.

4.1 The Basic Algebra

We first define the fundamental operators. These are close to the standard relational algebra operators.
For unary resp. binary operators, we assume a multidimensional objectM � �S� F�D � fDig� R �
fRig�� i � �� ��� n and multidimensional objectsMk � �Sk� Fk� Dk � fDkikg� Rk � fRkik

g�� k � �� �.
We note that the representations of the categories in the resulting MO’s are the same as in the argument
MO’s, thus we do not specify the values representations for the resulting MO’s. The aggregation types are
only changed by the aggregate formation operator, so they are not specified for the other operators.

3Note that the paths from the set of factsF to the�T categories are always strict.
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For the operator definitions, we need some preliminary definitions. First, we defineGroup, that groups
the facts characterized by the same dimension values together. Given an n-dimensional MO,M � �S� F�D �
fDig� R � fRig�� i � �� ��� n, a set of categoriesC � fCi j Ci � Dig� i � �� ��� n, one from each
of the dimensions ofM , and an n-tuple�e�� ��� en�, whereei � Ci� i � �� ��� n, we defineGroup as:
Group�e�� ��� en� � ff j f � F � f �� e� � �� � f �n eng.

Next, we define aunionoperator on dimensions, which performs union on the categories and the partial
orders. Given two dimensionsD� � �C����� andD� � �C����� of type T , whereCk � fCkjg� k �
�� �� j � �� ���m, we define the union operator on dimensions,

S
D, as: D�

S
DD� � �C �����, where

C � � fC �
jg� j � �� ���m, C �

j � C�j � C�j, where� denotes regular set union, ande� �� e� 
 e� ��

e� � e� �� e�.

selection: Given a predicatep on the dimension typesD � fTig, we define the selection� as:��p��M� �
�S �� F �� D�� R��, whereS � � S, F � � ff � F j �e� � D�� ��� en � Dn � p�e�� ��� en��f �� e�� ���f �n

en�g, D� � D, R� � fR�
ig, andR�

i � f�f �� e� � Ri j f � � F �g. Thus, we restrict the set of facts to
those that are characterized by values wherep evaluates to true. The fact-dimension relations are restricted
accordingly, while the dimensions and the schema stay the same.

Example 14 If selection is applied to the “Patient” MO with the predicateName �”John Doe,” the result-
ing MO has the same schema, the factsF� � f�g, the fact-dimension relationsR�i � f��� e� j ��� e� � Rig,
e.g.,R� � f��� �g, and the dimensionD� � D.

projection: Without loss of generality, we assume that the projection is over thek dimensionsD�� ���Dk.
We then define the projection� as: ��D�� ��� Dk��M� � �S �� F �� D�� R��, whereS � � �F ��D��� F � �
F � D� � fT�� ���Tkg� F � � F� D� � fD�� ��� Dkg, andR� � fR�� ��� Rkg. Thus, we retain only thek
dimensions, but the set of facts stays the same. Note that we do not remove “duplicate values.” Thus the
same combination of dimension values may be associated with several facts.

Example 15 If projection over the Name and Diagnosis dimensions is applied to the “Patient” MO, the
resulting MO has the same fact type, only the Name and Diagnosis dimension types, the same set of facts,
the Name and Diagnosis dimensions, and the fact-dimension relations for these two dimensions. A graphical
illustration of the resulting MO is seen to the left in Figure 3.
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Figure 3: Resulting MO’s for Projection and Aggregate Formation
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rename: Given a multidimensional object,M � �S� F�D�R�, and fact schemaS� � �F ��D��, such that
D is isomorphic withD�, we define the rename� as:��S���M� = M �, whereM � � �S �� F�D�R�. We see
that rename just return the contents ofM with the new schemaS�, which has the same structure as the old
schemaS. Rename is used to alter the names of dimensions so that dimensions with the same name, e.g.,
resulting from a “self-join,” can be distinguished.

union: Given two n-dimensional MO’s,Mk � �Sk� Fk�Dk� Rk�� k � �� � such thatS� � S�, we define
the union

S
as: M�

S
M� � �S �� F ��D�� R��, whereS � � S�� F

� � F� � F�� D
� � fD�i

S
DD�i � i �

�� ��� ng� andR� � fR�i �R�i � i � �� ��� ng. In words, given two MO’s with common schemas, we take the
set union of the facts and the fact-dimension relations. The

S
D operator is used to combine the dimensions.

difference: Given two n-dimensional MO’s ,Mk � �Sk� Fk�Dk� Rk�� k � �� � such thatS� � S�, we
define the differencen as: M� n M� � �S �� F ��D�� R��, whereS � � S�� F

� � F� n F�� D� � D�,
R� � fR�

i� i � �� ��� ng, with R�
i � f�f �� e� j f � � F � � �f �� e� � R�i . Thus, given two MO’s with common

schemas, we take the set difference of the facts, the dimensions of the first argument MO are retained, and
the fact-dimension relations are restricted to the new fact set. Note that we do not take the set difference of
the dimensions, as this does not make sense.

Example 16 Performing the difference operator on the MO resulting from the projection example and the
MO resulting from applying the selectionName � ��Jane Doe�� to the projection MO gives as a result an
MO with the same schema, with the fact setF � f�g, the dimensions from the first argument, and the
fact-dimension relationsR� � f��� �g andR� � f��� John Doe�g.

identity-based join: Given two MO’s,M� andM�, and a predicatep�f�� f�� � ff� � f�� f� �� f�� trueg,
we define the identity-based join� as: M� ��p� M� � �S �� F ��D�� R��, where�S � � �F ��D��, F � �
F� � F�, D� � D� � D�, F � � f�f�� f�� j f� � F� � f� � F� � p�f�� f��g, D� � D� � D�,
R� � fR�

i� i � �� ��� n��n�g, andR�
i � f�f �� e�jf � � �f�� f��� f � � F � � ��i � n�� �f�� e� � R�i�� �i �

n� � �f�� e� � R�i�n�
��g. In words, the new fact type is the type ofpairs of the old fact types, and the new

set of dimension types is the union of the old sets. The set of facts is the subset of the cross product of the
old sets of facts where the join predicatep holds. Forp equal tof� � f�, f� �� f�, andtrue, the operation
is anequi-join, non-equi-join, andCartesian product, respectively. For the instance, the set of dimensions
is the set union of the old sets of dimensions, and the fact-dimension relations relates a pair to an value if
one member of the pair was related to that value before.

Example 17 We want to know if any patients are registered with more than one name. We take two copies
of the “Patient” MO and perform projection over the Name dimension for both. For the second copy, the
Name dimension type is renamed to “Name2”. We then perform an identity-based join of the two with the
predicatef� � f�. This gives us an MO with two dimension types,NameandName2. The fact type is
the type of pairs of patients; the set of facts is stillF � f�� �g, and the contents of the two dimensions
are identical. The fact-dimension relations are also identical:R� � f��� John Doe�� ��� Jane Doe�g and
R� � f��� John Doe�� ��� Jane Doe�g. We can now perform a selection on this MO with the predicate
Name�� Name2to find patients with more than one name.

aggregate formation: The aggregate formation operator is used to compute aggregate functions on the
MO’s. For notational convenience and following Klug [18], we assume the existence of afamily of aggre-
gation functionsg that take somek-dimensional subsetfDi� � ��� Dikg of then dimensions as arguments,
e.g.,SUM i sums thei-th dimension andSUMij sums thei-th andj-th dimensions. We assume a function
Args�g� � fj j g uses dimensionj as argumentg that returns the argument dimensions ofg.
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Given an n-dimensional MO,M , a dimensionDn�� of typeTn��, a function,g � �F �� Dn��
4 such that

g � MIN fAggtype��Dij
�� j � Args�g�g, and a set of categoriesCi � Di� i � �� ��� n, we define aggregate

formation,�, as: ��Dn��� g� C�� ��� Cn��M� � �S �� F ��D�� R��, whereS � � �F ��D��, F � � �F , D� �
fT �

i � i � �� ��� ng � fTn��g, T �
i � �C�i���

Ti
���

Ti
���

Ti
�, C�i � fCij � Ti j Type�Ci� �Ti Cijg, ��

Ti
� �TijC�

i

,

��
Ti

� Type�Ci�,��
Ti

� �Ti ,F
� � fGroup�e�� ��� en� j �e�� ��� en� � C�����Cn�Group�e�� ��� en� �� �g,

D� � fD�
i� i � �� ��� ng � fDn��g, D�

i � �C �
i���

i�, C
�
i � fC �

ij � Di j Type�C �
ij� � C�ig, ��

i � �ijD�
i

, R� �

fR�
i� i � �� ��� ng�fR�

n��g,R�
i � f�f �� e�i� j ��e�� ��� en� � C�����Cn �f

� � Group�e�� ��� en��f � � F ��
ei � e�i�g, andR�

n�� � ��e�����en�C�����Cn f�Group�e�� ��� en�� g�Group�e�� ��� en��� j Group�e�� ��� en� ��
�g. The aggregation types for the remaining parts of the argument dimensions are not changed. The
aggregation types for the result dimension is given by the following rule. Ifg is distributive, the paths
to C�� ��� Cn are strict, and the hierarchies up toC�� ��� Cn are partitioning, thenAggtype��Dn��� �
MIN fAggtype��Dj

�� j � Args�g�g. Otherwise,Aggtype��Dn��� � c. For the higher categories in
the result dimension,Aggtype�C�

m� � MIN fAggtype�Cm��Aggtype��Dn���g.
Thus, for every combination�e�� ��� en� of dimension values in the given “grouping” categories, we

apply g to the set of factsffg, where thef ’s are characterized by�e�� ��� en�, and place the result in the
new dimensionDn��. The facts are of typesetsof the argument fact type, and the argument dimension
types are restricted to the category types that are greater than or equal to the types of the given “grouping”
categories. The dimension type for the result is added to the set of dimension types. The new set of facts
consists of sets of facts, where the facts in a set share a combination of characterizing dimension values. The
argument dimensions are restricted to the remaining category types, and the result dimension is added. The
fact-dimension relations for the argument dimensions now link sets of facts directly to their corresponding
combination of dimension values, and the fact-dimension relation for the result dimension links sets of facts
to the function results for these sets. If the functiong is distributive, the paths up to the grouping categories
are strict, and the hierarchy up to the grouping categories is partitioning, i.e., g is “summarizable,” then
the aggregation type for the bottom category in the result dimension is the minimum of the aggregation
types for the bottom categories in the dimensions thatg uses as arguments ; otherwise, the aggregation type
is c. For the higher categories, the minimum of the aggregation types given in the result dimension and
the bottom category’s aggregation type is used. Thus, aggregate results that are “unsafe” in the sense that
they contain overlapping data, cannot be used for further aggregation. This prevents the user from getting
incorrect results by accidentally “double-counting” data.

Example 18 We want to know the number of patients in each diagnosis group. To do so, we apply the
aggregate-formation operator to the “Patient” MO with theDiagnosis Groupcategory and the� categories
from the other dimensions. The aggregate functiong to be used isset-count, which counts the number of
members in a set. The resulting MO has seven dimensions, but only the Diagnosis and Result dimensions
are non-trivial, i.e., the remaining five dimensions contain only the� categories. The set of facts is still
F � f�� �g. The Diagnosis dimension is cut, so that only the part fromDiagnosis Groupand up is kept.
The result dimension groups the counts into two ranges: “0–1” and “�1”. The fact-dimension relation for
the Diagnosis dimension links the sets of patients to their corresponding Diagnosis Group. The content
is: R� � f�f�� �g� ���� �f�g� ���g, meaning that the sets of patientsf�� �g andf�g are characterized by
diagnosis groups�� and��, respectively. The fact-dimension relation for the result dimension relate each
group of patient to the count for the group. The content is:R� � f�f�� �g� ��� �f�� g� ��g, meaning that the
results ofg on the setsf�� �g andf�g are� and�, respectively. A graphical illustration of the MO, leaving
out the trivial dimensions for simplicity, is seen on the right side of Figure 3. Note that each patient is only
counted once for each diagnosis group, even though patient� hasseveraldiagnoses in each group.

4The functiong “looks up” the required data for the facts in the relevant fact-dimension relations, e.g.,SUMi finds its data in
fact-dimension relationRi.
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Now, we will show how other common OLAP and relational operators can be defined in terms of the
fundamental operators.

value-based join: A join of two MO’s on common dimension values can be made in the usual way by
combining Cartesian product (a special case of the identity-based join), selection, and projection.Natural
join is a special case of the value-based join, where the selection predicate requires that values from the
“matching” dimensions should be equal, followed by projecting “out” the duplicate dimensions. Perform-
ing drill-across from one MO to another is just the value-based join of the two MO’s on their common
dimensions.

duplicate removal: We can remove “duplicate values,” i.e., several facts characterized by the same com-
bination of dimension values, by performing aset-countaggregate formation on the� categories, followed
by projecting out the result dimension.

SQL-like aggregation: Computation of an SQL aggregate function on an MO, grouped by a set of di-
mension categories, is done by first applying the aggregate formation operator to the MO with the given
categories5, and the given function. The dimensions not in the “GROUP BY” clause are then projected out.

star-join: A star-join as described in [4] is just a selection on the dimensions, usually combined with an
aggregate formation with a given aggregate function on a set of category types.

drill-down: A drill-down on an MO means giving “more detail” by descending the dimension hierarchies.
An implicit aggregation function, e.g., COUNT or SUM, is assumed. Thus, a drill-down corresponds to
performing aggregate formation on “lower” category types with the given aggregate function. To get to the
lower category types, a reference to theoriginal MO is needed. In order to obtain the required detail, the
aggregate formation is applied to the original object.

roll-up: A roll-up on an MO means giving “less detail” by ascending the dimension hierarchies, aggregat-
ing with an implicit aggregation function. This corresponds to performing aggregate formation on “higher”
category types with the given aggregate function. Sometimes, wealsoneed a reference to the original MO
in this case. This is caused by the possiblenon-summarizabilityin the MO, which means that we cannot
necessarily combine the aggregate results from intermediate levels into higher-level results, but need to
compute the result directly from the lowest-level data (base data).

Theorem 1 The algebra is closed.

Proof: By examining the output of all operators, we see that the results are always MO’s.

Theorem 2 The algebra is at least as powerful as the relational algebra with aggregation functions[18].

Proof: A relation r with schemaSr � �a�� ��� an� is mapped to an n-dimensional MOM � �S� F�D�R�,
whereS � �r� fTi� i � �� ��� ng�, Ti � �fai��Tig��i��Ti � ai�, ai �i ai� ai �i �Ti ��Ti �i �Ti , F �
f�v�� ��� vn� � rg, D � fDig� i � �� ��� n, Di � �fAi��ig���, Ai � Dom�ai�, �v � Ai � v � �,
R � fRig� i � �� ��� n, andRi � f��v�� ��� vi� ��� vn�� vi� j �v�� ��� vi� ��� vn� � rg. Thus, ann-ary relation
is mapped to an MO withn “flat” dimensions, each containing the domain of the corresponding attribute.

5The categories not in the “GROUP BY” clause are the� categories of their dimensions.
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The facts, corresponding to tuples in the relation, are mapped to the corresponding values in the respective
dimensions by the fact-dimension relations.

For every relational algebraic operator, we apply the corresponding operator in our algebra to the cor-
responding MO, followed by removing duplicates using the method described above. In this way we can
emulate all the relational algebraic operations.

4.2 Handling Time in the Algebra

We will now turn our attention to how time can be handled in the algebra. Our requirements are to be able
to view data as it appeared at a given point in time, in the database or in the real world, and to do analysis
related to time, including analysis across times of change in the data. We note that the operators do not
introduce any “value-equivalent tuples,” thus the data stays coalesced. First, we consider valid-time MO’s.
To support the need to view data as they appeared at any given point in time in the real world, we introduce
thevalid-timeslice operator[1].

valid-timeslice operator: Given an MO,M � �S� F�D�R�, and a chronont, we define the valid-
timeslice operator,	v, as: 	v�M� t� � �S �� F ��D�� R��, whereS � � S, F � � F , D� � fD�

ig� i � �� ��� n,
D�
i � �C �

i���
i�, C

�
i � fe j e �T Ci � t � Tg, e� ��

i e� 
 �e� �iT e� � t � T �, R� � fR�
ig� i � �� ��� n,

andR�
i � f�f� e� j �f� e� �T Ri � t � Tg. For a representationRep of a category typeCj , we have that

Rep�e� � v 
 �Rep�e� �T V � t � T �. Thus, the valid-timeslice operator returns the parts of the MO
that are valid at timet, with no valid time attached, i.e., the valid-timeslice operator changes the temporal
type of the MO from valid-time or bitemporal to snapshot or transaction-time, respectively.

To support analysis related to time, we allow predicatesp and functionsg, to be used in selections and
aggregate formations that refer to time. We will not go deeper into the structure of temporal predicates and
functions; for a full treatment, see, e.g., the TSQL2 language [21].

The last step is to define how the basic algebra operations deals with the time attached to MO’s. Neither
the selection operator, the projection operator, or the rename operator change the time attached to the result-
ing MO’s. For the union operator, time attachments for the resulting MO is computed according to the fol-
lowing rules6. �f� e� �T� R�i � �f� e� �T� R�i � �f� e� �T��T� R�

i, e� ��T�
e�� e� ��T�

e� � e� ��
T��T�

e�,Rep��e� �T� v �Rep��e� �T� v � Rep��e� �T��T� v, e ��T� Cj � e ��T� Cj � e ��T��T� Cj. Thus,
we simply take the union of the chronon sets for data that occur in both MO’s; otherwise, we just transfer
the original time. For the difference operator, the following rules are used.�f� e� �T� Ri� � �f� e� �T�
Ri� �T� n T� �� � � �f� e� �T�nT� R�

i, F
� �

T
i������nff j ��f� ei� � R�

i ��f� ei� �T � R�
i �T � �� ��g. Thus,

the time for a pair in a fact-dimension relation for the first MO is cut by the time that the corresponding pair
has in the fact-dimension relation for the second MO. Only pairs with non-empty chronon sets are retained.
The facts in the resulting MO are those that participate in all the resulting fact-dimension relations during a
non-empty set of chronons. As in the non-temporal case, we do not alter the dimensions of the first MO.

The identity-based join operator does not change the time attached to the dimensions of the resulting
MO. For the fact-dimension relations, the following rule is used.�fk� ek� �Tk Rki � k � �� � � p�f�� f���
��f�� f��� ek� �Tk R�

i��k��n�
. Thus the pair�f�� f�� inherits its time attachment from the fact-dimension

relation of the relevant argument MO, i.e,��f�� f��� e� �T R�
i getsT from �f�� e� �T R�i if i � n� and

from �f�� e� �T R�i if i � n�.
The aggregate formation operator does not change the time attached to the remaining parts of the ar-

gument dimensions or to the result dimension. The time attached to the fact-dimension relations between
the facts and the argument dimensions is given by the following rule. Given a tuple of dimension values

6We use subscriptT� to denote time for the first argument MO, andT� for the second.
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�e�� ��� en� from the grouping categories,�Group�e�� ��� en�� ei� �T �i R�
i, whereT �

i � �f�Group�e�����enftf j
f �tf eig. Thus, the time attached to the fact-dimension relation between a set of facts and a dimension
value is the intersection of the time attached to the relations between the members of the set and that value.
The fact-dimension relation for the result dimension is given by the following rule. Given a tuple of dimen-
sion values�e�� ��� en� from the grouping categories,�Group�e�� ��� en�� g�Group�e�� ��� en�� �T �n�� R�

n��,

whereT �
n�� �

T
f�Group�e�����en�i�Args�gftfi j f �tfi

eig. Thus, the time attached to the fact-dimension
relation between a set of facts and the result ofg on that set is the intersection of the time attached to
the relations between the members of the set and the dimension values for the dimensions thatg uses as
arguments.

For transaction time support, we can define thetransaction-timeslice operator, 	t, in the same way as
the valid-timeslice operator. Given a transaction-time or bitemporal MO, it returns a snapshot or valid-time
MO, respectively. The operators in the algebra support transaction time in the same way as valid time.

4.3 Handling Uncertainty in the Algebra

We now consider the integration of uncertain data in the algebra. Our requirements are that we are able to
view only data which has at least a given probability associated and to do analysis related to the probabilities.
To support the former, we introduce thecut-off operator, which is similar to the time-slice operators from
the previous section.

cut-off operator: Given an MO,M � �S� F�D�R�, and a probabilityp, we define the cut-off operator,

 as: 
�M�p� � �S �� F ��D�� R��, whereS � � S, F � � F , D� � fD�

ig� i � �� ��� n, D�
i � �C �

i���
i�,

C �
i � Cig, e� ��

i e� 
 e� �ip� e� � p� � p, R� � fR�
ig� i � �� ��� n, andR�

i � f�f� e� j �f� e� �p�
Ri� p� � pg. Thus, the cut-off operator returns the parts of the MO, with a probability of at leastp, with no
probabilities attached, i.e., the cut-off operator changes the probabilistic type of the MO from probabilistic
to deterministic.

To support analysis related to probabilities, we allow predicatesp and functionsg that refer to the proba-
bilities. Thus, we can compute results weighted by probability, etc. We will not go deeper into the structure
of probabilistic predicates and functions [26].

Next, we define how the basic algebra operations handles the probabilities attached to the MO. Neither
the selection operator, the projection operator, or the rename operator change the probabilities attached
to the resulting MO’s. For the union operator, we do the following. The union operator on dimensions
attaches the maximum of the probabilitiesp�� p� as: e� ��p�

e� � e� ��p�
e� � e� ��

MAX �p��p�
e�. For

the fact-dimension relations, the maximum ofp� andp� is assigned as:�f� e� �p� R�i � �f� e� �p� R�i �
�f� e� �MAX �p��p� R

�
i. The difference operator retains the probabilities from the first argument MO for the

facts that do not appear in the second argument MO.
The identity-based join operator does not change the probabilities in the dimensions. For the fact-

dimension relations, the probability of the participation of a pair is inherited from the relevant category of
the pair as given by the rule:�fk� e� �p Rki � ��f�� f��� e� �p R�

i��k��n�
� k � �� �.

The aggregate-formation operator does not change the probabilities in the remaining parts of the argu-
ment dimensions or in the result dimension. For the fact-dimension relations between the facts and the argu-
ment dimensions the following rule is used. Given a tuple of dimension values�e�� ��� en� from the grouping
categories,�Group�e�� ��� en�� ei� �p�

i
R�
i, wherep�i � AVG�fpf j f � Group�e�� ��� en� � f �pf eig�.

Thus, the probability we assign to the membership for a set of facts and a dimension value is theaver-
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ageof the probabilities of membership for the individual facts and that dimension value7. For the fact-
dimension relation between the facts and the result ofg, the rule is: Given a tuple of dimension val-
ues�e�� ��� en� from the grouping categories,�Group�e�� ��� en�� g�Group�e�� ��� en��� �p�n�� R�

n��, where

p�n�� � AVG�fpfi j f � Group�e�� ��� en�� i � Args�g� � f �pfi
eig�. Thus, the probabilities we assign

to the result dimension are theaverageof the probabilities of the arguments used for computing the function
g, giving a rough “measure of quality” for the results ofg.

5 Addressing the Requirements

In this section, we discuss how our model addresses the nine requirements presented in Section 2.2.
The model captures theexplicit hierarchies in dimensionsusing the lattice structure of the dimension

types. The structure of the case study, seen in Figure 2, is an example. The modeltreats dimensions
and measures symmetricallyby treating all data as being dimensional. Computations can be performed
on dimension values and the results are placed in a dimension. For example, the Age attribute from the
case study is used both as a measure and as a dimensional entry.Multiple hierarchiesare allowed in a
dimension. The model requires that the dimension types form a lattice, i.e., with a unique top and bottom
type, thus allowing several aggregation paths. The Time dimension in Figure 2 has multiple hierarchies
in it. TheAggtype mechanism ensures that only aggregation functions that the user finds meaningful are
applied to the data, and the specification of the aggregate-formation operator ensures that every fact is only
counted once in each result. Thus, the model provides a foundation forcorrect aggregation. For example,
in Example 18 every patient is only counted once perDiagnosis Group, even though the same patient has
several diagnoses in a diagnosis group.

An value in a dimension may have several direct parents in the model , e.g., the diagnosis “Insulin de-
pendent diabetes during pregnancy” has both “Insulin dependent diabetes” and “Diabetes during pregnancy”
as direct parents in the Diagnosis dimension. Thus,non-strict hierarchiesin dimensions are supported. The
fact-dimension relations of the model supportmany-to-many relationships between facts and dimensions,
e.g., the relationship between Patient and Diagnosis from the case study. By building valid- and transaction-
time support into the model, we can view data as it appeared at any given point in time. By extending the
partial order of a dimension, it is possible to link values that represent the “same” thing across change, e.g.,
the old and the new “Diabetes” diagnosis. In this way, we may obtain meaningful analysis results across
changes in the data. In this respect, the model supportshandling change and time. The model alsocaptures
uncertaintyin the data, by assigning probabilities to the partial order and the fact-dimension relations. As
an example, we can express that “John Doe” has “Diabetes” with probability���. The dimension values
that are part of the fact-dimension relations can belong to any category in the dimension, supporting in
this mannerdifferent levels of granularityin the data. For example, we can express that some patients are
diagnostizised withlow-level diagnosesand some withdiagnosis families.

6 Conclusion and Future Work

Motivated by the popularity of On-Line Analytical Processing (OLAP) systems for analyzing business data,
multidimensional data models have become a major database research area. However, current models do
not handle well the complex data found in some real-world systems.

We present a real-world case study from the clinical world, where we track patients, their diagnoses,
names, social security numbers, dates of birth, ages, and places of residence. We use the case study to

7This is not necessarily the true, mathematical probability for the membership. Thus, our approach is “fuzzy” rather than
probabilistic. The average is chosen to suit our purpose of giving a rough “measure of inclusion.”
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justify nine requirements that a multidimensional data model must satisfy in order to support the complex
data found in real-world applications. Requirements not handled by current models include many-to-many
relationships between facts and dimensions, handling change and time, handling uncertainty, and handling
different levels of granularity. Eight previously proposed data models are evaluated according to the re-
quirements, and it is shown that none of them satisfies more than four requirements fully or partially.

We propose a new, extended multidimensional data model, which addresses all nine requirements. The
data model improves over previously proposed models by supporting non-strict hierarchies, many-to-many
relationships between facts and dimensions, handling change and time, handling uncertainty, and handling
different levels of granularity. Especially, time is handled by adding valid time and transaction time to
the basic model, while uncertainty is handled by adding probabilities to the basic model. We propose an
algebra on the multidimensional objects from the model, and we show that it is closed and at least as strong
as relational algebra with aggregation functions. The algebra is extended to handle time and probabilities.
Finally, we show how to represent the multidimensional objects as relational tables, thus providing a basis
for implementing the model using relational technology.

In the future it should be investigated how the model can be efficiently implemented using special-
purpose algorithms and data structures. It is also interesting to investigate if the lattice structures of the
schema can be used directly in the user interface for an OLAP tool based on the model. Next, a notion of
completeness for multidimensional algebras, similar to Codd’s relational completeness would be an exciting
research topic. Finally, we believe that it is important to investigate how multidimensional models can cope
with the hundreds of dimensions found in some applications.
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A Representation of the Model

This appendix outlines how to implement the model using relational databases. Our primary concern is a
relational representation that allows efficient evaluation of queries in the model. The metadata specified
in the model, e.g., the aggregation types, must be stored separate from the data and handled by the tool
accessing the data, e.g., a query tool. We do not go into how to represent this metadata in a relational
database.

The traditional way to map a multidimensional data model to a relational database is to use astar
schema[4], where thefact tablecontains measures and foreign keys to thedimension tables. However, a
star schema design requires the relationships between the fact and dimension tables to be many-to-one, and
that the hierarchies in the dimensions be strict. To represent many-to-many relationships between facts and
dimensions, several rows in the fact table are necessary for each fact. To represent non-strict hierarchies,
several rows in the dimension tables are necessary for each dimension key. These violations of the pure star
schema design can lead users to get incorrect results when aggregating data, as it is easy to accidentally
double-count data. Alternatively, if the users understand the potential problems, they need to employ the
expensive SELECT DISTINCT clause in SQL statements to get correct results.

To avoid these problems, we use a non-standard mapping to relational tables. The basic idea for rep-
resenting the dimensions is to encode the partial order on a dimension composed with a category repre-
sentation, directly in one table. Thus, for each representationRep of a categoryCj in the given MO,
we get a tableTCj�Rep that encodes the composition ofRep with the partial order on the dimension. If
Rep is encoded in the tableTRep � �RepValue�DimensionValue� and the direct parent-child relation-
ships in the partial order is encoded in the tablePO � �ParentValue�ChildValue� then TCj�Rep �
TRep �DimensionValue�ParentValue PO

�, wherePO� denotes the reflexive, transitive closure ofPO. Note
thatTCj�Rep does not contain duplicates. This means that we will not get double-counting of data when
computing aggregates in term of the base table if the hierarchy is non-strict, as would have been the case with
the star schema representation described above.TCj�Rep can be updated incrementally during insertions to
PO using the rule:PO� � f�e�� e��g � PO � PO�� � PO� � PO�

� f�e�� e��g � PO�.

Example 19 The Grouping table in Table 1 encodes the direct parent-child relationships in the Diagnosis
dimension. We perform the reflexive, transitive closure of the Grouping table, thus getting all ancestor-
descendent pairs in the Diagnosis partial order. This is joined with the Diagnosis table, which encodes the
Coderepresentation for the Diagnosis Group category. This gives us the the tableTDiagGroup�Code which
can be seen in Table 3. The temporal aspects of the table will be discussed later.

Code ParentValue ChildValue ValidFrom ValidTo
E1 11 5 01/01/80 NOW
E1 11 6 01/01/80 NOW
E1 11 9 01/01/80 NOW
E1 11 10 01/01/80 NOW
E1 11 11 01/01/80 NOW
O2 12 4 01/01/80 NOW
O2 12 5 01/01/80 NOW
O2 12 6 01/01/80 NOW
O2 12 9 01/01/80 NOW
O2 12 12 01/01/80 NOW

Table 3: TheTDiagGroup�Code Table for the Example

Several alternatives exist for the representation of the fact-dimension relations. If the fact-dimension
relationships are many-to-one, a standard fact table approach with “foreign keys” to the dimension-encoding
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tables will suffice. If relationships are many-to-many, there are three alternatives: a) maintain the dimension
encoding tables joined with the fact-dimension relation, with no duplicates, making the resulting table
“point to” the facts, b) make a new “lowest” level in the dimension-encoding tables for eachcombination
of dimension values pointed to by one fact, and make the fact table point to the combination, and c) encode
the fact-dimension relation directly as a separate table.

Example 20 For the example above, alternative a) would maintain the join ofTDiagGroup�Code with the
Has table. Alternative b) would give two combinations,fg andf�� �� �� g, which would be the bottom
values in the extension of theTDiagGroup�Code table. The fact table would then point to these combinations,
instead of the diagnoses directly. Alternative c) would just keep theTDiagGroup�Code and Has tables.

Each alternative has its own advantages. Alternative a) provides direct access to the facts, with no
problems of double-counting, but the tables can become very big, as we have several rows for each fact-
dimension pair, thus rendering the solution impractical. Alternative b) is attractive if the number of combi-
nations is small, as we avoid the problems of double-counting, but if the number of combinations is large,
we have the same size problems as in a). Alternative c) keeps the size of the tables to the minimum, but
accidental double-counting is possible, thus SELECT DISTINCT clauses must be used in SQL statements.

When extending the representations to capture valid/transaction time, the basic dimension-encoding
mechanism still works. The encoding table is extended with columns capturing the time when the tuple is
true. We take the intersection of the time periods when tables are joined, thus capturing the time period
when the combined tuples are valid. TheTDiagGroup�Code table extended with time is seen in Table 3.
Alternative a) and c) can be extended with time columns without any problems. For alternative b) we need
to enumerate all combinations of dimension valuesandthe associated time periods. This will probably lead
to a number of combinations that is close to the number of facts, thus rendering the solution impractical.

When extending the representations to capture uncertainty, we just extend the tables with columns
for the probabilities. When joining tables, the product of the probabilities is used for the resulting tuple.
Alternatives a) and c) for representing the fact-dimension relations can be extended with probability columns
without any problems. For alternative b) we need to enumerate all combinations of both the dimension
valuesand the associated probabilities, perhaps yielding a considerably larger number of combinations.
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