
A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates

and Ordering

Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snodgrass

TR-49

A TIMECENTER Technical Report

Title A Foundation for Conventional and Temporal Query Optimization Addressing
Duplicates and Ordering

Copyright c
 2000 Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snod-
grass. All rights reserved.

Author(s) Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snodgrass

Publication History February 2000. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Heidi Gregersen, Dieter Pfoser,
SimonašSaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon

Individual participants
Curtis E. Dyreson, Bond University, Australia
Fabio Grandi, University of Bologna, Italy
Nick Kline, Microsoft, USA
Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
John F. Roddick, University of South Australia, Australia
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, amazon.com, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, University of Mons-Hainaut, Belgium
Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTERicon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRunealphabet
used one millennium ago by the Vikings, as well as by their precedessors and successors. The Rune alphabet (second
phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the primary storage medium
was wood. Runes may also be found on jewelry, tools, and weapons and were perceived by many as having magic,
hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

Most real-world databases contain substantial amounts of time-referenced, or temporal, data. Recent advances
in temporal query languages show that such database applications may benefit substantially from built-in temporal
support in the DBMS. To achieve this, temporal query representation, optimization, and processing mechanisms
must be provided. This paper presents a foundation for query optimization that integrates conventional and temporal
query optimization and is suitable for both conventional DBMS architectures and ones where the temporal support
is obtained via a layer on top of a conventional DBMS. This foundation captures duplicates and ordering for all
queries, as well as coalescing for temporal queries, thus generalizing all existing approaches known to the authors.
It includes a temporally extended relational algebra to which SQL and temporal SQL queries may be mapped, six
types of algebraic equivalences, concrete query transformation rules that obey different equivalences, a procedure for
determining which types of transformation rules are applicable for optimizing a query, and a query plan enumeration
algorithm.

The presented approach partitions the work required by the database implementor to develop a provably correct
query optimizer into four stages: the database implementor has to (1) specify operations formally; (2) design and
prove correct appropriate transformation rules that satisfy any of the six equivalence types; (3) augment the mecha-
nism that determines when the different types of rules are applicable to ensure that the enumeration algorithm applies
the rules correctly; and (4) ensure that the mapping generates a correct initial query plan.

1 Introduction

Most real-world database applications rely on time-referenced data. For example, this applies to financial, medical,
and travel applications; and being time-variant is one of Inmon’s defining properties of a data warehouse [Inm96]. Re-
cent advances in temporal query languages [EJS98, JS99] show that such applications may benefit substantially from
running on a DBMS with built-in temporal support. The potential benefits are several: application code is simplified
and more easily maintainable, thereby increasing programmer productivity [Sno99], and more data processing can be
left to the DBMS, potentially leading to better performance.

In contrast, the built-in temporal support offered by current database products is limited to predefined time-related
data types, e.g., the Informix TimeSeries DataBlade and the Oracle8 TimeSeries cartridge, and extensibility facilities
that enable the user to define new, e.g., temporal, data types [YYW00]. However, temporal support is needed that goes
beyond data types and extends the query language itself.

Developing a DBMS with built-in temporal support from scratch is a daunting task that may only be feasible
by DBMS vendors that already have a code base to modify and have large resources available. This has led to the
consideration of a layered, or stratum, approach where a layer that implements temporal support is interposed between
the user applications and a conventional DBMS [B¨oh95, TJS98]. The layer maps temporal SQL statements to regular
SQL statements and passes them to the DBMS, which remains unaltered.

This paper offers a foundation for conventional and temporal query optimization that is applicable to both the
integrated and the layered architecture, making it relevant for DBMS vendors planning to incorporate temporal features
into their products, as well as to third-party developers that want to implement temporal support. The foundation offers
comprehensive, precise, and integrated coverage of duplicates and ordering for all queries, as well as of coalescing
for temporal queries. (In coalescing, tuples with adjacent time periods and otherwise identical attribute values are
consolidated.)

The foundation is enabled by a temporally extended algebra that enhances existing relational algebras based on
sets or multisets by integrating the handling of order; the algebra also adds temporal support. In addition to conven-
tional relations, the algebra employs temporal relations timestamped with time periods, which are the most useful
for implementation because of their granularity independence and fixed-size format. Previously proposed user-level
temporal relations may be mapped to this format [JSS94]. More generally, the algebra is independent of the specific
user-level temporal relational query language and data model employed, and it provides support for the two main
classes of temporal statements found in the literature: (1) statements that use built-in temporal semantics and are eval-
uated conceptually at each point of time and (2) statements that explicitly manipulate values of (new) temporal abstract
data types with convenient operations and predicates defined on them. The temporal aspect considered is valid time
[JD98], which captures when data was, is, or will be true in the modeled reality; the approach can be extended to also
handle transaction time, alone as well as in combination with valid time.

In the algebra, relations are defined as lists, and six kinds of equivalences are defined on them. Specifically, two
relations can be equivalent as lists, multisets, and sets, and they can be snapshot-equivalent as lists, multisets, and

1

sets. For example, the last type of equivalence occurs when all corresponding pairs of snapshot relations that may be
derived from a pair of temporal relations are the same when considered as sets. (The snapshot of a temporal relation at
time t contains those tuples (without the time periods) from the temporal relation that have time periods containingt.)

These types of equivalences come into play because queries specify different types of results. For example, an
SQL query not includingORDER BYandDISTINCT at the outermost level specifies a result of type multiset, thus
opening the possibility of applying transformations that do not preserve list equivalence. The paper provides a set of
transformation rules that satisfy different equivalences. This set goes beyond all existing sets of rules known to the
authors. In addition, a practical procedure is offered for determining when a type of transformation rule is applicable
to a query. Finally, an algorithm is provided that generates equivalent query evaluation plans.

Some work has been reported on non-temporal relational algebras for multisets [Alb91, DGK82, GM00], with the
most recent of these, by Garcia-Molina et al., being also the most extensive. This book offers comprehensive coverage
of query transformations that preserve set as well as multiset equivalences. Formalizing relations as multisets, sorting
is permitted only at the outermost level. However, pushing down sorting in a query plan can improve performance.
Moreover, in some cases, the sortingmustbe performed early in the query evaluation. For example, DBMSs such as
Microsoft Access allow theORDER BYclause in combination with theTOPpredicate in subqueries, thus requiring
intermediate results to be sorted.

Because relations are formalized as lists, comprehensive support for sorting is achieved. In addition, a mechanism
is offered that determines when list, multiset, and set based equivalences, including their temporal counterparts, are
applicable during query optimization. Recent work by Leung et al. [Leu98] emphasizes the importance of considering
duplicates in DB2’s query rewrite rules. However, duplicates are addressed as special cases when defining rewrite
rules, and no formal foundation for reasoning about these is offered.

More than a dozen temporal relational algebras have been proposed [MS91, OS95], but all the algebras known
to the authors are set-based and hence do not adequately address issues related to duplicates, order, and coalescing.
Existing work on temporal query optimization [GS90, LM93] primarily considers the processing of joins and semijoins
in isolation, does not delve into general query optimization, and does not address duplicates, order, and coalescing.

The paper is structured as follows. Section 2 describes the layered architecture. Section 3 defines the underlying
database structures and presents the extended relational algebra operations. The different types of algebraic equiva-
lences are described in Section 4, and the concrete transformation rules that preserve the different equivalence types
are provided in Section 5. Sections 6 and 7 give a procedure for determining when transformation rules preserving
the different types of equivalence are applicable and provide a query plan enumeration algorithm. The extensibility of
the framework is briefly discussed in Section 8. Section 9 surveys related work, and Section 10 concludes and offers
research directions.

2 Architecture

In this section, we discuss the layered, or stratum, architecture. We describe the functionality of the query optimizer
and give the overall structure of the stratum.

Several papers discussing stratum architectures for a temporal DBMS have been published, e.g., [TJS98], and
several prototype temporal DBMSs have been implemented, e.g., [B¨oh95, Böh98]. Most of the proposed temporal
strata translate temporal query language statements to SQL and perform no systematic optimization or processing.
However, dividing processing between the stratum and the underlying DBMS may improve query performance since
complex temporal operations such as temporal aggregation, temporal duplicate elimination, and coalescing are often
not processed efficiently in conventional DBMSs, but might be supported by the stratum. We will use the term
“stratum” to mean anaugmentedstratum that, in addition to the mapping, performs some of the query optimization
and processing.

Figure 1 shows the processes involved in optimizing and evaluating a query. The stratum receives a temporal query
language statement as input. First, the query statement is mapped to an initial plan, which is expressed in a temporal
algebra suited for the internal representation. The stratum’s query optimizer, e.g., using transformation rules, generates
a number of possible query evaluation plans. The plans are costed, and one is selected for processing. The fourth step
is the only step that is specific to the stratum architecture; here the fragments of the plan to be performed by the DBMS
are translated into SQL. Finally, the resulting SQL and stratum expressions are evaluated to obtain the result. In our
paper, we focus on the second step: we develop a temporally extended algebra, transformation rules, and a query plan
enumeration algorithm.

2

Enumeration
PlanMapping Costing

Initial
Plan

Evaluation
Query Final Plan SQL Code +

Expressions
Stratum

ResultPossible
Plans

Translation

Figure 1: Query Optimization and Evaluation in a Temporal Stratum

Figure 2 depicts an example stratum architecture. The components here perform the tasks described in Figure 1.
The query processing controller passes relevant query fragments to the underlying DBMS and to the internal query
evaluator, collects the results, and outputs the result relation. Statistics such as the running time and characteristics of
result relations may be used by the cost estimator to update its cost models for the DBMS.

Query processing controller

Internal query
evaluator

Cost estimator

Translator to Algebra

Stratum expressions

Results

Results

SQL queries

Temporal query
language statement

Result

Results

Application

Non-Temporal DBMS

SQL queries

Temporal query
optimizer

Final plan

Initial plan

Figure 2: Architecture of a Temporal Stratum

3 An Extended Algebra

In this section, we present our extended algebra. First, we discuss requirements for the algebra and define its relation
structures. Then, we describe and define fundamental algebra operations. Finally, we briefly consider the mapping
from queries to the algebra and give an example query.

3.1 Requirements

It is a fundamental requirement that the algebra be formally defined. Equally fundamental, the algebra must be suitable
for implementation, which has several implications that will be clear as we get into the details. Next, the algebra must
incorporate duplicates, ordering, and coalescing. This implies that the relations must be lists. In addition, it is attractive
to use conventional fixed-size tuples, which implies the use of time periods (as opposed to temporal elements, which
are finite unions of time periods). To be independent of the granularity of time, the operations should be defined using
the start and end times of the argument tuples’ time periods only.

The algebra must extend the conventional relational algebra and must accommodate both classes of temporal
statements mentioned in the introduction, namely statements with built-in temporal semantics and statements that
explicitly manipulate values of time data types. To conveniently accommodate the former class, we introduce temporal
operations that are counterparts of existing relational algebra operations, in the sense that they are snapshot-reducible

3

EMPLOYEE
EmpName Dept T1 T2

John Sales 1 8
John Advertising 6 11
Anna Sales 2 6
Anna Advertising 2 6
Anna Sales 6 12

Figure 3: RelationEMPLOYEE

to these. A temporal operationop1 is snapshot-reducibleto operationop2 if for any point in time and for any temporal
relationr, the snapshot at timet of the result of applyingop1 to r is equal to the result ofop2 applied to the snapshot
of r at timet [Sno87]. For example, temporal duplicate elimination is snapshot reducible to duplicate elimination.

It is also desirable that the operations be minimal and orthogonal. Each operation should perform one single
function and should minimally affect its argument(s) in doing so. This way, replication of functionality is avoided, and
it is easier to combine operations in queries. For example, coalescing should not affect duplicates; a separate duplicate
elimination operation should be available. As another implication, the operations should retain as much as possible the
time periods and the order of the tuples in the argument relation(s). For example, coalescing should retain the ordering
of its argument. Combinations of operations, termed idioms, may be included for efficiency, but should be identified
as idioms.

3.2 Database Structures

We define relation schemas, tuples, and relation schema instances in turn. The definitions are the standard ones, but
adapted to address duplicates and order.

Definition 3.1 A relation schemais a three-tupleS = (
;�; dom), where
 is a finite set of attributes,� is a finite
set of domains, anddom :
! � is a function that associates a domain with each attribute. 2

Consider temporal relationEMPLOYEEin Figure 3. We assume a closed-open representation for time periods and
let the time values denote months during some year. For example, John is in Sales from January through July and
in Advertising from June through October. Relation schemaEMPLOYEEconsists of the attributesEmpName, Dept,
T1, andT2 and is formally a three-tuple(
;�; dom), where
 = fEmpName; Dept; T1; T2g, � = fstring;Tg, and
dom = f(EmpName; string); (Dept; string); (T1;T); (T2;T)g. We denote the time domain byT and use the definition
of this domain proposed by Bettini et al. [Bet98].

Definition 3.2 A tuple over schemaS = (
;�; dom) is a functiont :
! [Æ2�Æ, such that for every attributeA of

, t(A) 2 dom(A). A relation schema instance overS is a finite sequence of tuples overS. 2

Note that the definition of a relation schema instance (relation, for short) corresponds to the definition of a list. A
relation can thus contain duplicate tuples, and the ordering of the tuples is significant. TheEMPLOYEErelation
from Figure 3 contains tuplest1 = f(EmpName; John); (Dept; Sales); (T1; 1); (T2; 8)g, t2 = f(EmpName; John);
(Dept; Advertising); (T1; 6); (T2; 11)g, t3 = f(EmpName; Anna); (Dept; Sales); (T1; 2); (T2; 6)g, t4 =
f(EmpName; Anna); (Dept; Advertising); (T1; 2); (T2; 6)g, and t5 = f(EmpName; Anna); (Dept; Sales); (T1; 6);
(T2; 12)g. The listht1; t2; t3; t4; t5i then is theEMPLOYEErelation in our example.

We distinguish between snapshot (also termedconventional) and temporal relations. We reserve two specific
attribute names,T1 andT2, for denoting the time period start and end, respectively, of the period of validity for each
tuple in a temporal relation. The schema of a snapshot relation does not contain these two attributes; a schema of
a temporal relation does contain them. Alternatively, we could have chosen to have a single type of relation, but
then each temporal operation would have to take the names of the temporal attributes as extra arguments. Using our
approach, the operations implicitly know the time attributes.

4

3.3 Algebra Operations

We first describe briefly all the fundamental algebra operations, discussing how they preserve order, duplicates, and
coalescing. We define all operations in Sections 3.3.2–3.3.16.

3.3.1 Overview of Operations

Table 1 lists all operations. Selection (�), projection (�), union ALL (t), Cartesian product (�), difference (n),
duplicate elimination (rdup), and aggregation (�) derive from the conventional relational algebra. For the latter four
operations, we add temporal counterparts, denoted by superscriptT . The temporal operations conceptually evaluate
the result at each point of time (exemplified by the difference between regular duplicate elimination and temporal
duplicate elimination, to be discussed in Sections 3.3.9 and 3.3.10, respectively). We also add sorting and coalescing;
the latter merges value-equivalent tuples with adjacent time periods. Our definition of coalescing is different from that
given by Böhlen et al. [BSS96], due to the requirement of minimality (see Section 3.1) and our relations being defined
as lists. The coalescing of B¨ohlen et al. merges value-equivalent tuples with adjacent oroverlappingtime periods; in
our algebra, this result is achieved by combining temporal duplicate elimination and coalescing. Union ([) originates
from the union operation for multisets given in [Alb91]. This operation includes a tuple in the result as many times
as the tuple occurs in the argument relation that has the most occurrences of that tuple. Its temporal counterpart is
denoted by[T .

Operation Sorting Cardinality Duplicates Coalescing
Order (result) n(result)

�P (r) Order (r) � n(r) Retains Retains
�f1;:::;fn(r) Pre�x (Order (r);ProjPairs) = n(r) Generates Destroys
r1 t r2 unordered = n(r1) + n(r2) Generates Destroys
r1 � r2 Order (r1) = n(r1) � n(r2) Retains n.a.
r1 n r2 Order (r1) � (n(r1)� n(r2)) and Retains n.a.

� n(r1)

rdup(r) Order (r) � n(r) Eliminates n.a.
�G1;:::;Gn;F1;:::;Fm(r) Pre�x (Order (r);GroupPairs) � n(r) Eliminates n.a.

r1 �
T r2 Pre�x (Order(r1); � n(r1) � n(r2) Retains Destroys

Order(r1) n TimePairs)

r1 n
T r2 Pre�x (Order(r1); � 2 � n(r1) Retains Destroys

Order(r1) n TimePairs)

rdupT (r) Pre�x (Order(r); � 2 � n(r)� 1 Eliminates Destroys
Order (r) n TimePairs)

�TG1;:::;Gn;F1;:::;Fm
(r) Pre�x (Order (r);GroupPairs) � 2 � n(r)� 1 Eliminates Destroys

sortA(r) A = n(r) Retains Retains

coalT (r) Pre�x (Order(r); � n(r) Retains Enforces
Order (r) n TimePairs)

r1 [r2 unordered � n(r1) and Retains n.a.
� (n(r1) + n(r2))

r1 [
T r2 unordered � n(r1) and Retains Destroys

� (n(r1) + 2 � n(r2))

Table 1: Overview of Operations

Table 1 includes fundamental operations, as well as the temporal operations needed to conveniently accommodate
query statements with built-in temporal semantics [BJ97, EJS98]. We omit derived operations (idioms), except regular
and temporal unions, which can be expressed via union ALL and regular (temporal) difference. We include the latter
two idioms to illustrate how we can deal with the union operation provided in [Alb91]. The addition of other idioms,
e.g., join (Cartesian product followed by selection and projection) and regular SQL union (union ALL followed by
duplicate elimination), would not introduce any new issues in the framework. However, idioms should be included in
an implementation of the algebra.

5

The algebra differs fundamentally from the algebra presented in [GM00], in that this latter algebra works on
multisets, not lists. However, some of our operations, specifically selection, projection, Cartesian product, difference,
union ALL, duplicate elimination, and aggregation operations, are not list-sensitive, i.e., if their argument relations
are identical as multisets (but different as lists), their result relations are also identical as multisets. When we treat
relations as multisets, our algebra is at least as expressive as the algebra presented in [GM00] because each operation
of the latter may be expressed by one of the seven operations just listed.

Table 1 also shows, for each operation, the order and cardinality of the result relation, and how the operation
handles regular duplicates and coalescing. This table makes use of several auxiliary functions. FunctionOrder(r)
returns a list of attributes paired with a sorting type (ascending or descending) for a relationr, for example,Order(r) =
h(A; ASC); (B; DESC)i. For an unordered relation, the function returns an empty list. Note that in the special case when
the sorting listA is a prefix ofOrder(r), the order ofsortA(r) is Order(r). The listsProjPairs , TimePairs , and
GroupPairs include, respectively, the projection attributes, the temporal attributes, and the grouping attributes paired
with ASC or DESC. TheTimePairs list is equal toh(T1; ASC); (T1; DESC); (T2; ASC); (T2; DESC)i.

FunctionPre�x returns the largest prefix of its first argument such that the prefix would contain only elements
included in the second argument. For example, if relationr is sorted onOrder(r) = h(A; ASC); (B; ASC); (C; DESC)i,
and we project it onA and C, theProjPairs list would beh(A; ASC); (A; DESC); (C; ASC); (C; DESC)i. ThePre�x
function on the two lists would returnh(A; ASC)i, i.e., the result of the projection would be sorted onA.

We denote the cardinality of relationr by n(r). The lower bound is 0 in all cases not specified in the table.
The last two columns reflect the behavior of the operation with respect to duplicates and coalescing. An operation

may (1) eliminate regular duplicates so that the result relation would only have distinct tuples, (2) retain regular
duplicates, i.e., the result relation would have distinct tuplesonly if the argument relation(s) contains only distinct
tuples, or (3) generate regular duplicates even if duplicates do not exist in the argument relation(s). In a similar
manner, an operation may (1) enforce coalescing, so that its result relation is coalesced, (2) retain coalescing, i.e., its
result relation is coalescedonly if its argument relation is coalesced, or (3) destroy coalescing. Note that coalescing is
undefined for snapshot relations (which are returned by nontemporal operations that have temporal counterparts).

The next sections define the algebra operations listed in Table 1. Overall, an attempt has been made to define
operations conducive to efficient implementation. For example, union ALL simply concatenates its arguments. In
these definitions, we useT to be the set of all tuples of any schema andR to be the set of all relations, and let
r 2 R; r = ht1; t2; : : : ; tni. Similarly, we letT T be the set of all tuples with temporal support, and letRT be the set
of all relations with such tuples. Also, we letRsn be a set of all relations with tuples not having any temporal support.

We use�-calculus for the definitions [Gor87]. The definitions do not imply actual implementation algorithms, but
doconstrain the implementation algorithms to produce the same results, taking order and duplicates into account.

3.3.2 Selection

Selection operation� : [R � P] ! R corresponds to the well-known selection operation in the relational algebra
[GM00]. The set of all possible selection predicates is denoted byP . The argument predicate is expressed as a
subscript, e.g.,�P (r). The schema of the result relation is the same as schema of the argument relation.

� , �r; P:(r =?)! r;
(tail(r) =?)! (P (head (r)) ! head (r);?);
(P (head (r))! head (r);?) @ �P (tail(r))

The arguments of an operation are given before the dot, and the definition is given after the dot. In this definition,
the first line says that if the argument relationr is empty (we denote an empty relation by?), the operation returns
it. Otherwise, the second line is processed, which says that if the relation contains only one tuple (the remaining part
of the relation,tail(r), is empty), we test the predicateP on the first tuple (head(r)). If the predicate holds, the
operation returns the tuple; otherwise, it returns an empty relation. If the second-line condition does not hold, the
operation returns the first tuple or an empty relation (depending on the predicate) appended (@) to the result of the
operation applied to the remaining part of the relation.

The auxiliary functionshead , tail , and@ are defined in Appendix A.

6

3.3.3 Projection

Projection operation� : [R � F � : : : � F] ! R corresponds to its relational counterpart.F is a set of arithmetic
expressionsfi : T ! T , which can include any possible attribute names and which return single-attribute tuples.
After fi is applied, the resulting schema contains one attribute name, one type, and one mapping from the attribute
name to the type. Functionsf1; : : : ; fn are expressed as a subscript, e.g.,�f1;:::;fn(r).

For example, with the schemaS = (
;�; dom), A; B 2
, (A; int); (B; int) 2 dom , one possible functionfi is
A+ 2 � B AS C.

� , �r; f1; : : : ; fn:(r =?)! r;
f1(head (L1)) Æ : : : Æ fn(head (L1)) @ �f1;:::;fn(tail (r))

The schema of the result relation follows from the definition of tuple concatenation (Æ); see Appendix A.
The projection operation can be used to add new attributes to the schema. If a new non-temporal attribute is added,

its value is set toNULL for each tuple of the argument relation. If a new temporal attribute is added, its value for each
tuple of the argument relation is set to the current time (if the attribute isT1) or the maximum timestamp value (if the
attribute isT2).

3.3.4 Union ALL

Operationt : [R�R]! R returns the union of two argument relations, retaining duplicates. The operation appends
the second relation to the first relation. The schemas of both argument relations and the result relation are the same.

t , �r1; r2:(r1 =?)! r2;
head (r1)@(tail(r1) t r2)

3.3.5 Cartesian Product

Operation� : [R � R] ! Rsn computes the Cartesian product of two argument relations. The definition uses the
auxiliary functionOneLoop : [T �R]! Rsn. The resulting schemas of� andOneLoop follow from the definition
of tuple concatenation. The only exception is that if the attribute domain of the resulting schema contains any of the
two special temporal attributes, those attributes are prefixed by “1”, because the result of this operation is to be a
snapshot relation, which cannot include attributes namedT1 or T2.

� , �r1; r2:((r1 =?) _ (r2 =?))!?;
OneLoop(head (r1); r2) t (tail (r1)� r2)

OneLoop , �t; r:(r =?)!?;
(t Æ head (r)) @OneLoop(t; tail(r))

The definition essentially performs a nested-loop Cartesian product.

3.3.6 Temporal Cartesian Product

Operation�T : [RT � RT] ! RT returns a temporal Cartesian product of two argument temporal relations. The
definition uses auxiliary the functionOneLoopT : [T T �RT] ! RT . The resulting schemas of�T andOneLoopT

follow from the definition of tuple concatenation. The attribute domain of the resulting schema retains the original
timestamps of both argument relations and, in addition, has two new timestamps.

�T , �r1; r2:((r1 =?) _ (r2 =?))!?;

OneLoopT (head (r1); r2) t (tail(r1)� r2)

OneLoopT , �t; r:(r =?)!?;

DoesOverlapT (t; head (r)) !

(t Æ head(r) ÆGetIntersectingTupleT (t; head (r))) @OneLoopT (t; tail(r));

OneLoopT (t; tail (r))

7

Function DoesOverlapT checks if the time periods of two argument tuples overlap. Function
GetIntersectingTupleT intersects the time periods of two argument tuples and, if they overlap, forms a new tuple
containing the intersection time period; otherwise, it returnsNULL. Both functions are defined in Appendix A.

The temporal Cartesian product retains the original timestamps of both its arguments, prefixed by “1” and “2”. This
make it possible to accommodate selection predicates involving time attributes from more than two relations [BJ97].
The prefixed timestamps can be removed by a subsequent projection if they are not needed.

With the chosen definition, the temporal Cartesian product is not snapshot reducible to the regular Cartesian prod-
uct. However, temporal Cartesian product followed by projection that removes the prefixed timestamps is snapshot
reducible to the regular Cartesian product.

3.3.7 Difference

Operationn : [R � R] ! Rsn returns all tuples of the first argument relation that are not in the second argument
relation. The schemas of both argument relations and the result relation are the same, with the exception that we prefix
all temporal attributes, if any, by “1” in the result schema.

n , �r1; r2:((r1 =?) _ (r2 =?))! r1;
isIn(head (r1); r2)! (tail(r1) n remove(head (r1); r2));
head (r1) @ (tail(r1) n r2)

FunctionisIn returns True if the argument tuple exists in the argument relation. Functionremove removes the first
occurrence of the argument tuple from the argument relation. Both functions are defined in Appendix A.

3.3.8 Temporal Difference

OperationnT : [RT �RT]! RT performs temporal difference. Both argument relations and the output relation have
the same schema, where non-temporal attribute values are denoted asa1; : : : ; an.

nT , �r1; r2:((r1 =?) _ (r2 =?))! r1;

(OverTplT (head (r1); r2) = undef)! head (r1)@(tail(r1) n
T r2);

(s1 t tail(r1)) n
T (s2 t remove(OverTplT (head (r1); r2); r2))

wheres1 ands2 are defined below.

For each tuple from the first argument relation, we look for tuples in the second argument relation that overlap
with it. If we find an overlapping tuple, we remove the overlapping temporal part from both tuples and perform the
difference again on the remaining parts of the relations, the contents of which depend on the type of the overlap.
Allen [All83] identified thirteen relationships between intervals, and Figure 4 shows the nine different cases of over-
lapping (the other four, nonoverlapping predicates are before, before�1, meets, and meets�1). We use the additional
relationss1 ands2—which contain from zero to two tuples—for adjusting the relations;s1 provides the remainder of
A, ands2 provides the remainder of B.

s1 =

8>>>><
>>>>:

hnontemporal ÆOverTplT (head (r1); r2):T2 Æ head (r1):T2)i if Case 1; 7
? if Case 2; 3; 8; 9

hnontemporal Æ head(r1):T1 ÆOverTpl
T (head (r1); r2):T1)it

hnontemporal ÆOverTplT (head (r1); r2):T2 Æ head (r1):T2)i if Case 4

hnontemporal Æ head(r1):T1 ÆOverTpl
T (head (r1); r2):T1)i if Case 5; 6

s2 =

8>>>><
>>>>:

? if Case 1; 2; 4; 5

hnontemporal Æ head(r1):T2 ÆOverTpl
T (head (r1); r2):T2)i if Case 3; 6

hnontemporal ÆOverTplT (head (r1); r2):T1 Æ head (r1):T1)i if Case 7; 8

hnontemporal ÆOverTplT (head (r1); r2):T1 Æ head (r1):T1)it

hnontemporal Æ head (r1):T2 ÆOverTpl
T (head (r1); r2):T2)i if Case 9

nontemporal = head (r1):a1 Æ : : : Æ head (r1):an

8

Case 7: A overlaps B

Case 4: A during B

Case 8: A finishes B

Case 5: A finishes B

Case 2: A equal B Case 3: A starts B

Case 6: A overlaps B

Case 9: A during B

A

B

A

B

A

B

-1Case 1: A starts B

-1 -1

-1

Figure 4: Nine Cases of Overlapping

The lower bound for the cardinality of the result relation is 0 because tuples with huge time periods in the second
argument relation may eliminate all tuples with short time periods from the first argument relation. The upper bound is
twice as big as the number of tuples in the first argument relation, because for each tuple of the first argument relation,
we may get two new tuples in the result (cf. Case 4 in Figure 4).

Consider the temporal difference among relationsEMPLOYEE(see Figure 3) andPROJECT(see Figure 5) pro-
jected onEmpName, T1, andT2, i.e.,�EmpName;T1;T2(EMPLOYEE) nT �EmpName;T1;T2(PROJECT). The result is given to
the right in Figure 5. Note that temporal difference is sensitive to duplicates. For example, the second tuple for Anna
with times 2 and 6 from theEMPLOYEErelation is directly transfered to the result because all value-equivalent (tuples
with the same non-temporal attribute values) overlapping tuples from thePROJECTrelation were eliminated by the
first such tuple for Anna.

3.3.9 Duplicate Elimination

Operationrdup : R ! Rsn removes regular duplicates from the argument relation. This operation retains the first
occurrence of each tuple and removes all subsequent occurrences, if any. The schemas of the argument and result
relations are the same, with the exception that the temporal attributes in the resulting schema, if any, are prefixed by
“1”.

rdup , �r:(r =?)! r;
isIn(head (r); tail (r)) ! rdup(head (r)@remove(head (r); tail (r)));
head (r)@rdup(tail (r))

If the first tuple of the argument relation can be found in the remaining part of the relation, the operation removes that
found tuple. Otherwise, the operation returns the first tuple concatenated with the result of the operation applied to the
remaining part of the relation.

3.3.10 Temporal Duplicate Elimination

OperationrdupT : RT ! RT removes duplicates from all snapshots of the argument temporal relation. The argument
and result relations have the same schema. Note that this operation also removes regular duplicates.

9

PROJECT Result
EmpName Prj T1 T2 EmpName T1 T2

John P1 2 3 John 1 2
John P2 5 6 John 3 5
John P1 7 8 John 6 7
John P3 9 10 John 6 9
Anna P2 3 4 John 10 11
Anna P2 5 6 Anna 2 3
Anna P3 7 8 Anna 4 5
Anna P3 9 10 Anna 2 6

Anna 6 7
Anna 8 9
Anna 10 12

Figure 5: RelationPROJECTand the Result Relation

Figure 6 shows theEMPLOYEErelation projected onL = fEmpName; T1; T2g and the results of regular and
temporal duplicate elimination applied to this relation. RelationR2 does not contain regular duplicates (there is only

R1 = �L(EMPLOYEE) R2 = rdup(R1) R3 = rdupT (R1)
EmpName T1 T2 EmpName 1.T1 1.T2 EmpName T1 T2

John 1 8 John 1 8 John 1 8
John 6 11 John 6 11 John 8 11
Anna 2 6 Anna 2 6 Anna 2 6
Anna 2 6 Anna 6 12 Anna 6 12
Anna 6 12

Figure 6: Results of Regular and Temporal Duplicate Elimination

one tuple for Anna with times 2 and 6), and relationR3 does not contain duplicates in snapshots (note the timestamps
of the second tuple). Temporal duplicate elimination preserves the order of the argument relation and is defined below.

rdupT , �r:(r =? _ tail(r) =?)! r;

(OverTplT (head (r); tail (r)) = undef)! head(r) @ rdupT (tail (r));

rdupT (head (r) @ ChangeTuple(OverTplT (head (r); tail (r)); tail (r); rnew))

wherernew = hOverTplT (head (r); tail (r))i nT hhead (r)i.

FunctionOverTplT , defined in Appendix A, scans the argument relation and finds the first tuple whose time period
overlaps with the argument tuple and is value-equivalent with it (e.g., the first two tuples ofR1 overlap and are value-
equivalent). If there is no such tuple, we retain the first tuple. Otherwise, the period of validity of the overlapping tuple
is changed to the result of subtracting the first tuple of the relation from the overlapping tuple.

The result can contain zero, one, or two tuples, depending on how the time periods of the tuples are related.
FunctionChangeTupleT : [T T � RT � RT] ! RT finds the argument tuple in the first argument relation, then
replaces the tuple with the second argument relation (since the temporal difference may return two tuples, we use
“relation” as the result type). For example, the time period of the second tuple ofR3 is obtained by subtracting the
time period of the first tuple ofR1 from that of the second tuple ofR1.

ChangeTuple , �t; r; rnew :(r =?)! r;
(t = head (r))! rnew t tail (r);
head (r)@ChangeTuple(t; tail(r); rnew)

The operation may return at most2 �n(r)� 1 tuples. If we havex value-equivalent tuples in the argument relation, we
cannot have more than2 �x different time values in those tuples, which means that the maximum number of valid time
periods involving those time values is2 �x� 1. In addition,x can at most ben(r), and ifx < n(r) then the maximum
cardinality is smaller.

10

3.3.11 Aggregation

Operation� : [R �
 � : : :
 � F � : : : � F] ! Rsn performs aggregation according to given grouping attributes
and aggregation functions. The set of attributes in the schema of the argument relations is denoted by
, and the set
of all aggregation functions is denoted byF; aggregate functionFi : R ! T takes a relation as argument and returns
a single-attribute tuple containing the aggregate value. AfterFi is applied, the schema of the result tuple contains
one attribute, one type, and one mapping from the attribute name to the type. An example of aggregate function is
AVG(C) AS D.

The operation returns one tuple for each unique sequence of grouping attributes. The schema of the result relation
follows from the definition of concatenation. The only exception is that, in the resulting schema, temporal attributes, if
any, are prefixed by “1.” Our definition corresponds to that provided by Klug [Klu82] and Garcia-Molina et al. [GM00].

� , �r;G1; : : : ; Gn; F1; : : : ; Fm:(r =?)! r;
(head (r):G1 Æ : : : Æ head (r):Gn

Æ F1(GetGroupG1;:::;Gn
(r; head (r))) Æ : : :

Æ Fm(GetGroupG1;:::;Gn
(r; head (r))))

@ �G1;:::;Gn;F1;:::;Fm(r nGetGroupG1;:::;Gn
(r; head (r)))

The definition uses auxiliary functionGetGroup : [R � T �
 � : : : �
] ! R, which returns all tuples from the
argument relation that have grouping-attribute values equal to those of the argument tuple.

GetGroup , �r; t; G1; : : : ; Gn:(r =?)! undef ;
(t:G1 = head (r):G1 ^ : : : ^ t:Gn = head (r):Gn)!

(head (r)@GetGroupG1;:::;Gn
(tail(r); t));

GetGroupG1;:::;Gn
(tail (r); t)

If there are no grouping attributes, the function returns a list with all tuples of the relation.

3.3.12 Temporal Aggregation

Operation�T : [RT �
nt� : : :
nt�F� : : :�F] ! RT performs temporal aggregation according to given grouping
attributes and pairs of aggregation functions with aggregation attributes. Set
nt includes all non-temporal attributes
of the schema of the argument relation—temporal attributes cannot be grouping or aggregation attributes.

The operation returns one tuple for each unique sequence of grouping attributes and for each “minimal” common
time period of tuples that have equal values for the grouping attributes. The tuples of each group are sorted on the
time attributes in ascending order. The schema of the result relation follows from the definition of concatenation. Our
definition corresponds to the definition given in [KS95].

Let us consider an example query that counts the number of employees working on each project (see relation
PROJECTin Figure 3). The query is expressed as�T

Prj;COUNT(EmpName)(PROJECT), and the result is shown in Figure 7.
Temporal aggregation is defined next.

Prj COUNT(EmpName) T1 T2

P1 1 2 3
P1 1 7 8
P2 1 3 4
P2 2 5 6
P3 1 7 8
P3 2 9 10

Figure 7: Result of Temporal Aggregation

�T , �r;G1; : : : ; Gn; F1; : : : ; Fm:(r =?)! r;

OneGroupLoopTG1;:::;Gn;F1;:::;Fm
(GetGroupG1;:::;Gn

(r; head (r));
minVal (GetGroupG1;:::;Gn

(r; head (r)));maxVal (GetGroupG1;:::;Gn
(r; head (r))))

t �G1;:::;Gn;F1;:::;Fm(r n
T GetGroupG1;:::;Gn

(r; head (r)))

11

FunctionOneGroupLoopT : [RT � T� T�
nt � : : :
nt � F � : : : � F] ! RT returns aggregate tuples for the
argument relation and the argument time period, which is composed by the minimum and maximum time values found
among the tuples in the group (as found by functionsminVal andmaxVal , defined in Appendix A). All tuples of
the argument relation have the same grouping-attribute values. The function finds all “minimal” common time periods
and outputs one tuple with aggregate values for each period.

OneGroupLoopT , �r; c1; c2; G1; : : : ; Gn; F1; : : : ; Fm:(MinTimeT (r; c1; c2) = undef)!?;
(head (r):G1 Æ : : : Æ head (r):Gn

Æ F1(GetOverlapping
T (r; c1;MinTimeT (r; c1; c2)))

Æ : : : Æ Fm(GetOverlappingT (r; c1;MinTimeT (r; c1; c2))))

@OneGroupLoopTG1;:::;Gn;F1;:::;Fm
(r;MinTimeT (r; c1; c2); c2)

Auxiliary functionMinTimeT : [RT � T�T]! T, defined in Appendix A, scans the argument relation and returns
the minimum timestamp value, which is bigger than the first argument timestamp value, but smaller than or equal to
the second argument timestamp value.

Auxiliary functionGetOverlappingT : [RT � T � T] ! RT returns all tuples from the argument relation that
overlap with the period defined by the two argument timestamp values.

GetOverlappingT , �r; c1; c2:(r =?)! perp;
(head (r):T1 < c2 ^ head (r):T2 > c1)!

head (r)@GetOverlappingT (tail(r); c1; c2);

GetOverlappingT (tail(r); c1; c2)

Temporal aggregation may return at most2 �n(r)�1 tuples, wheren(r) is the cardinality of the argument relation.
The reasoning is similar to the one given for temporal duplicate elimination.

3.3.13 Sorting

Functionsort : [R � O
] ! R sorts the argument relation. We denote the set of all possible orders for attributes
from
 byO
. The listh(A; ASC); (B; DESC)i is an example of an order.

First, we define auxiliary functionInsertTuple : [T �R�O
]! R, which inserts a tuple into a sorted argument
relation, maintaining its order. We denote the argument order bya.

InsertTuple , �t; r; a:(r =?)! hti;
MustPrecede(t; head (t); a)! t@ r;
head (r) @ InsertTuple(t; tail(t); a)

FunctionMustPrecede : [T � T � O
] ! Boolean returns True if the first argument tuple must precede the second
argument tuple according to the argument order.

Functionsort invokesInsertTuple for each of its tuples.

sort , �r; a:(r =?)!?;
InsertTuple(head (r); sort(tail (r)); a)

3.3.14 Coalescing

OperationcoalT : RT ! RT coalesces value-equivalent tuples of the argument relation, but retains duplicates in
snapshots. To effect this, all that is necessary is to coalesce those value-equivalent tuples that meet, i.e., if the time-
period end of one tuple is equal to the time-period start of the other tuple. The argument and result relations have the
same schema, where the non-temporal attribute values are denoted asa1; : : : ; an.

coalT , �r:(r =?)! r;

(MeetTplT (head (r); tail (r)) = undef)! head (r)@coalT (tail (r));

coalT ((head (r):a1 Æ : : : Æ head (r):an
Æmin (head (r):T1;MeetTplT (head (r); tail (r)):T1)

Æmax (head (r):T2;MeetTplT (head (r); tail (r)):T2))

@ remove(MeetTplT (head (r); tail (r)); tail (r)))

12

If a value-equivalent tuple that meets the first tuple exists, the operation combines into one the first tuple and the tuple
that meets with it. FunctionMeetTplT , defined in Appendix A, finds the first tuple in the argument relation that
meets and is value-equivalent with the argument tuple. Auxiliary functionsmax andmin take single-attribute tuples
as arguments, compare the values of those tuples, and return a new single-attribute tuple.

To perform coalescing with duplicate elimination, one has to perform temporal duplication elimination first and
then coalesce as defined above. Alternatively, a combined operation may be defined.

Figure 8 shows relationR1 (from Figure 6) coalesced. The third and fifth tuples ofR1 were merged into the third
tuple of the result relation. The fourth tuple remains the same in the argument and result relations.

R4 = coalT (R1)
EmpName T1 T2

John 1 8
John 6 11
Anna 2 12
Anna 2 6

Figure 8: Coalescing of RelationR1

3.3.15 Union

Operation[: [R�R]! Rsn returns the union of two argument relations while restricting the number of duplicates
for each tuple to the maximum number of duplicates of that tuple in an argument relation. This operation is an
extension of the union operation for multisets described in [Alb91]. The schemas of both argument relations and the
result relation are the same, but, as in the Cartesian product all temporal attributes, if any, in the result are prefixed by
“1.” Union is defined via union ALL and difference.

[, �r1; r2:r1 t (r2 n r1)

3.3.16 Temporal Union

Operation[T : [RT �RT] ! RT returns the temporal counterpart of the above-described operation,[. The upper
bound for the cardinality of the result derives from the cardinalities of union ALL and temporal difference.

[T , �r1; r2:r1 t (r2 n
T r1)

3.4 Mapping to the Algebra

The mapping of a user-level query to an algebra expression depends on the specific user-level language adopted, but
our operations are sufficient for SQL and a wide range of temporal query languages [BJ97, Sno95, EJS98]. Tempo-
ral duplicate elimination, temporal difference, temporal aggregation, and temporal Cartesian product (followed by an
appropriate projection; recall Section 3.3.6) are snapshot-reducible to their regular counterparts, simplying the map-
ping from languages that have built-in temporal semantics. Selection, projection, union ALL, and sorting do not have
temporal counterparts, as they are snapshot-reducible to themselves when their parameters do not involve the time
attributes.

3.5 Example Query

Having defined all operations, we exemplify their use in query plans for the stratum architecture, as well as indicate
what kinds of transformations may be applied during optimization.

Consider temporal relationsEMPLOYEEandPROJECTfrom Figures 3 and 5 and the query “What employees
worked in a department, but not on any project, and when?” In particular, the user requires the result relation to be
sorted, coalesced, and without duplicates in its snapshots.

The desired result of the query is given in Figure 9. Anna worked in Sales from February through May, but she
was on project P2 during March and May, and so the result includes just two months during this time, February and

13

Result
EmpName T1 T2

Anna 2 3
Anna 4 5
Anna 6 7
Anna 8 9
Anna 10 12
John 1 2
John 3 5
John 6 7
John 8 9
John 10 11

Figure 9: The Result Relation

April. Anna also worked in Advertising during this period, but the user requested that duplicates in the snapshots be
eliminated. Finally, notice that no value-equivalent tuples have adjacent time periods, and that the result is sorted on
EmpName.

To compute this result, the stratum initially uses a straightforward mapping of the user-level query to an initial
algebra expression, shown in Figure 10(a). The last operation applied,TS, transfers its argument from the DBMS to
the stratum; it is initially assumed that the query is entirely computed in the DBMS. Allowing also a reverse transfer
operation,TD, permits query plans to flexibly partition computation between the stratum and the DBMS.

The next operations, sorting (sort), coalescing (coalT), and temporal duplicate elimination (rdupT), are performed
to obtain the user-required format. The last operation ensures that no snapshots have duplicates, and the first operation
ensures that value-equivalent tuples with adjacent time periods are merged.

The temporal difference (nT) returns the employees inEMPLOYEE, but not inPROJECT, along with the time
periods when this occurred. To obtain the correct result, the left argument is not allowed to contain duplicates in its
snapshots; this is ensured by therdupT operation. Duplicate elimination is necessary because temporal difference
is sensitive to duplicates. For example, Anna worked in two departments, but on only one project in March; thus,
temporal difference would include one tuple for Anna for March in the result. However, this would be wrong because
the query requires only those times when employees worked in some department, but did not work onany project.
(Difference and temporal difference are analogous to SQL’sEXCEPT ALLin their handling of duplicates; the stated
query is more similar to SQL’sEXCEPT, which requires the left-handrdupT to yield the correct result.)

Transformation rules that preserve different types of equivalences are applicable to different parts of a query. This
is illustrated by the regions in Figure 10(a). First, transformations below thesort need not preserve order; this is
indicated by the lighter shading. The operations belowsort are not sensitive to order, and thesort ensures that
whatever result is produced by the operations below, this is correctly ordered at the end.

Second, temporal difference is sensitive to duplicates in its left argument, so the lower leftrdupT may affect the
result of the difference. However, the presence or absence of duplicates is not relevant for the operations below this
rdupT , as well as for the operations that are on the right branch of the temporal difference; this is indicated by the
darker shading. Also, it does not matter if the relation produced by the temporal difference contains duplicates or not,
due to the subsequentrdupT operation. As a result, transformation rules applied to the darkly shaded region need not
preserve duplicates.

Third, transformations applied below the coalescing operation need not preserve the periods (indicated by the
dashed line); coalescing returns a unique relation for all snapshot-equivalent argument relations whose snapshots do
not contain duplicates. The toprdupT ensures that the argument to the coalescing operation does not contain duplicates
in snapshots. Sections 6 and 7 formalize these concepts and give a procedure for determining these regions in a query.

By systematically exploiting transformation rules preserving different types of equivalences, we are able to achieve
an “optimized” query tree such as the one shown in Figure 10(b). In this tree, the transfer operation has been moved
below the temporal difference operation, indicating that the stratum performs temporal duplicate elimination, coalesc-
ing, and temporal difference. Thesort operation was pushed down because the DBMS sorts faster than the stratum.
The parts of a query relegated to the DBMS (here, those belowTS operations) are not optimized by the stratum; in-
stead these are expressed in the language supported by the DBMS, e.g., SQL, and are then passed to the DBMS, which

14

Periods need not be preserved Duplicates are not relevantOrder needs not be preserved

EMPLOYEE

π EmpName,T1,T2 EMPLOYEE

π EmpName,T1,T2

π EmpName,T1,T2

PROJECT

\ EmpName ASC

\

sort

rdup

rdup π EmpName,T1,T2

PROJECT

coal

rdup

T

T

T

T

T

T

T S

T S

ST

(a) (b)

coal T

sortEmpName ASC

Figure 10: Algebraic Expressions for the Query “Which employees worked in a department, but not on any project,
and when?”

will perform its own optimization. In the stratum, coalescing is performed before difference because the left argument
to the temporal difference is expected to be smaller than the result of the temporal difference, due to the splitting of
timestamp periods, as observed in Figure 9.

We use this example throughout the paper.

4 Relation Equivalences

The query optimizer does not always need to consider relations as lists. For example, ifORDER BYis not specified
in a query, it is enough to consider relations as multisets. To enable this type of treatment of relations, six types of
equivalences between relations are introduced: list equivalence (�L), multiset equivalence (�M), set equivalence
(�S), snapshot list equivalence (�S

L
), snapshot multiset equivalence (�S

M
), and snapshot set equivalence (�S

S
).

Two relations are list equivalent if they are identical; multiset equivalent if they are identical as multisets, taking
into account duplicates, but not order; and set equivalent if they are identical as sets, ignoring duplicates and order.
Snapshot list equivalence holds between two temporal relations when snapshots of those relations at each point of
time are equivalent as lists. Similar conditions imply snapshot multiset equivalence (at each point in time, the relations
should be equivalent as multisets) and snapshot set equivalence (at each point in time, the relations should be equivalent
as sets).

Definition 4.1 Relationsr1 andr2 arelist equivalent, r1 �L r2, if and only if function �L : [R � R] ! Boolean
returns True.

�L , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
(head (r1) = head (r2))! tail (r1)�L tail (r2);

False 2

Definition 4.2 Relationsr1 andr2 aremultiset equivalent, r1 �M r2, if and only if function �M : [R � R] !
Boolean returns True.

15

�M , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
isIn(head (r1); r2)! tail(r1)�M remove(head (r1); r2);

False 2

Definition 4.3 Relationsr1 andr2 areset equivalent, r1 �S r2, if and only if function �S : [R � R] ! Boolean
returns True.

�S , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
isIn(head (r1); r2)! RemoveAll(head (r1); r1)�S RemoveAll(head (r1); r2);

False 2

Auxiliary functionRemoveAll : [T � R] ! R removes all occurences of the argument tuple from the argument
relation. The schema of the argument relation is retained for the result relation.

RemoveAll , �t; r:(r =?)!?;
(t = head (r)) ! RemoveAll(t; tail(r));
head (r)@RemoveAll (t; tail (r))

Definition 4.4 Temporal relationsr1 and r2 are snapshot list equivalent, r1 �S

L
r2, if and only if function �S

L
:

[RT �RT]! Boolean returns True.

�S

L
, �r1; r2:SnapshotListEquiv (r1; r2; 0; MAX TIMESTAMP) 2

Auxiliary functionSnapshotListEquiv : [RT � RT � T � T] ! Boolean computes if two argument relations are
snapshot equivalent during the argument time interval.

SnapshotListEquiv , �r1; r2; c1; c2:(c1 = c2)! True;
(�Tc1(r1)�L �

T
c1
(r2))! SnapshotListEquiv (r1; r2; c1 + 1; c2);

False

The timeslice operation�T : [T�RT] ! Rsn returns all tuples of the argument relation that overlap with the given
time chronon, and removes the temporal attributes. Let the schema of the argument relation beS = (
;�; dom),
where the non-temporal attributes from
 area1; : : : ; an. The schema of the result relation isSsn = (
sn;�sn;
domsn), where
sn = fa1; : : : ; ang, �sn = � n T, anddomsn is asdom , but without the mappings to typeT.

�T , �c; r:(head (r):T1 � c < head (r):T2)! �a1;:::;an(hhead (r)i) @ �Tc (tail (r));
�Tc (tail (r))

The timeslice operation may introduce duplicates because, like the projection operation, it removes attributes.
We omit the definitions of snapshot multiset and snapshot set equivalence because they are similar to the definition

of snapshot list equivalence.
We can exemplify different types of equivalences using different variations of theEMPLOYEErelation (Figure 3)

projected onEmpName and the temporal attributes. Figure 6 gives three different instances of this schema (relation
R1: without duplicate elimination, relationR2: with duplicate elimination, and relationR3: with temporal duplicate
elimination, respectively). Figure 8 gives the coalesced version (relationR4) of the projected relation. Figure 11 gives
the result of the projection, followed by sorting (relationS1; A = h(EmpName; ASC); (T1; ASC); (T2; ASC)i) and sorting
and coalescing (relationS2).

RelationS1 is multiset and set equivalent to relationR1 because both contain the same tuples, which occur the
same number of times. Their snapshots at any point in time are also equivalent as multisets and sets. Neither the
relations nor their snapshots are equivalent as lists because the orderings of the tuples are different.

RelationsS1 andR2 are not equivalent as lists or as multisets: the orderings of the tuples are different, and the
tuple for Anna with times 2 and 6 occurs twice inS1, but once inR2. However, the�S equivalence holds because the
two relations contain the same tuples. Snapshot equivalences betweenS1 andR2 are undefined because relationR2 is
non-temporal.

16

S1 = sortA(R1) S2 = coalT (S1)
EmpName T1 T2 EmpName T1 T2

Anna 2 6 Anna 2 12
Anna 2 6 Anna 2 6
Anna 6 12 John 1 8
John 1 8 John 6 11
John 6 11

Figure 11: Variations of RelationEMPLOYEEProjected onEmpName and the Temporal Attributes

RelationsS1 andR3 have different tuples, e.g., the tuple for John with times 6 and 11 is present inS1, but not in
R3; thus, they are not equivalent as lists, multisets, or sets. Their snapshots are also not equivalent as lists because
of different orderings, and they are not equivalent as multisets because the snapshot ofS1 at times between 2 and
6 contains two tuples for Anna, while snapshots of relationR3 never contain more than one tuple for Anna. Only
equivalence�S

S
holds between relationsS1 andR3, meaning that their snapshots are equivalent as sets. For example,

S1 andR3 both have the snapshot (as a set)f(Anna); (John)g at time 3.
RelationsS1 andS2 also contain different tuples and are not equivalent as lists, multisets, or sets. However, at

each point in time, their snapshots are equivalent as lists, multisets, and sets. Since relationR4, which contains the
same tuples asS2, is not sorted the same way asS1 andS2, only equivalences�S

M
and �S

S
hold betweenS1 andR4

The examples illustrate that we have an ordering between the types of equivalences. For example, two temporal re-
lations being equivalent as multisets implies that they are also equivalent as sets and that their snapshots are equivalent
as multisets and sets. We list all implications in the following theorem.

Theorem 4.1 Let r1 andr2 be relations. Then the following implications hold. (Implications pointing downward
apply only to temporal relations.)

r1 �L r2) r1 �M r2) r1 �S r2

+ + +

r1 �
S

L
r2) r1 �

S

M
r2) r1 �

S

S
r2

Proof: Appendix B. 2

The different types of equivalences can be exploited in heuristics-based query optimization. Transformation rules
(to be discussed in detail shortly) can be divided into six categories, one for each type of equivalence. For example,
we may have a ruleexpr1 !L expr2, which says that after the replacement of expressionexpr1 in the original query
plan by expressionexpr2, the result relation produced by the new plan will be list equivalent to the result relation
produced by the original plan, when evaluated on the same argument relation(s). That said, the result relations will
also be multiset and set equivalent, as well as equivalent according to all three types of snapshot equivalences.

Another ruleexpr1 !M expr3 says that if we replaceexpr1 by expr3, the new plan will yield a result relation
that may only be multiset equivalent to the result relation produced by the original plan, because the application of
this rule does not preserve the order. This may be acceptable though, if the result needs to be a multiset. (It is also
acceptable if the result needs to be snapshot multiset equivalent to the result relation produced by the original plan.)
For example, query�L(EMPLOYEE) (resulting in relationR1) can return tuples in any order. In general, the type of the
result specified by a query determines which transformation rules can be exploited. Section 5 lists all transformation
rules, and Sections 6 and 7 describe a mechanism for determining when a transformation rule is applicable.

5 Transformation Rules

In this section, we provide a set of transformation rules for the algebra, which goes beyond all existing rule sets
known to the authors. First, we describe transformation rules that derive from the conventional relational algebra. We
consider when the existing rules for sets and multisets apply for lists, and we add rules for temporal operations. Then,

17

we discuss duplicate elimination, coalescing, sorting, and transfer rules. (The latter type is specific to the stratum
architecture.)

The transformation rules are given as equivalences that express that two algebraic expressions are equivalent ac-
cording to one of the six equivalence types from Section 4; we always give the strongest equivalence type that holds.
An algebraic equivalence represents both a left-to-right and a right-to-left transformation rule. If necessary, we mark
pre-conditions that apply only for the left-to-right transformation by[lr] and pre-conditions that apply only for the
right-to-left transformation by[rl] . Pre-conditions with no such marks apply to both directions. All transformation
rules can be verified formally, as the operations and equivalence types have formal definitions. Unlike rules expressed
informally, which sometimes later have been found to be in error [Kie85], our rules are theorems amenable to formal
proof. Appendix B provides an example proof of one transformation rule. While we believe the other transformations
are correct, we have not written out all 90-odd proofs. An automatic theorem prover would be useful in constructing
these proofs, which can be quite repetitive.

In transformation rules,r can be a base relation or an operation tree. We denote the attribute domain of the schema
of relationr by
r. Functionattr returns the set of attributes present in a selection predicate, projection functions, or
a sorting list.

5.1 Conventional Transformation Rules

The conventional transformation rules derive from the rules for multisets given by [GM00]. Figure 12 shows the
conventional transformation rules that do not involve temporal operations. The rules are ordered based on the operation
they concern, e.g., rules G1–G5 concern selection. We can distinguish between rules depending on what kind of
equivalence they support. First, most rules are valid for lists, e.g., pushing selection down before a Cartesian product
or a difference (rules G10, G15) guarantees the list equivalence between the result relations.

Commutativity rules, e.g., for Cartesian product and union ALL, satisfy only the�M equivalence because the
result relations produced by the left- and right-side expressions have differently ordered tuples (see rules G9 and G17).
Note that unlike in the set- or multiset-based algebras, the order of the arguments to these operations cannot be changed
freely because this affects the ordering of the result.

A few rules involving union ALL and regular and temporal union (e.g., rule G2), have equivalence types weaker
than �M . Rule G2 only satisfies�S equivalence because if both predicatesP1 andP2 are satisfied for a tuple ofr,
the right-hand side of the transformation would return two instances of the same tuple. If we use the union operation,
the �M equivalence type can be achieved (rule G3).

All of these transformations apply equally to nontemporal and temporal relations; and those transformations de-
fined over more than one argument relation also apply to combinations of nontemporal and temporal relations. Rule G5
is an exception and holds only for nontemporal relations. The reason is that regular difference prefixes temporal at-
tributes, and so we need a slightly modified rule for such relations.

Figure 13 shows conventional transformation rules that involve temporal operations. Most rules are counterparts of
the rules given in Figure 12; in some cases, pre-conditions involving the temporal attributes apply (e.g., in rule G27).
Rule G25 corresponds to rule G5, but has the condition thatr should be temporal and involves a projection introducing
temporal attributes in the result of regular difference. Since the temporal Cartesian product retains the original temporal
attributes, they have to be removed from the result of the two subsequent products (rule G30).

5.2 Duplicate Elimination Transformation Rules

Duplicate elimination rules are given in Figure 14. Rules D1–D4 indicate when duplicate elimination is not nec-
essary. Note that if we perform a temporal duplicate elimination on a temporal relation, the result relation is only
�S

S
equivalent to the argument relation (recall relationsR1 andR3 from Figure 6).
Contrary to the commonly considered union ALL and the regular SQL union (which removes duplicates from

the result relation of union ALL), our regular and temporal union operations do not generate new duplicates if their
argument relations do not contain any duplicates, which means that we can push duplicate elimination below regular
or temporal union (rules D12 and D13).

Rules D14 and D15 follow because aggregations involving only functionsMIN andMAX are insensitive to duplicates.
Duplicate elimination cannot be pushed before union ALL because this operation may generate duplicates even if

its argument relations do not contain any. Also, duplicate elimination cannot be pushed down before regular (temporal)

18

(G1) �P1^P2(r)�L �P1(�P2 (r))
(G2) �P1_P2(r)�S �P1(r) t �P2(r)
(G3) �P1_P2(r)�M �P1(r) [�P2(r)
(G4) �P1(�P2(r))�L �P2(�P1(r))
(G5) �:P (r)�L r n �P (r) [lr] T1 =2
r ^ T2 =2
r

(G6) �f1;:::;fn(�h1;:::;hm(r))�L �f1;:::;fn(r) [lr] attr (f1; : : : ; fn) �
r
[rl] attr (h1; : : : ; hm) �
r

(G7) �f1;:::;fn(�P (r))�L �P (�f1;:::;fn(r)) [lr] attr (P) � attr (f1; : : : ; fn)
(G8) �f1;:::;fn(�P (r))�L �f1;:::;fn(�P (�h1;:::;hm(r))), [rl] attr (P) �
r

wherehi = fa j i 2 f1; : : : ;mg ^ (hi 2 ff1; : : : ; fng _ hi 2 attr (P))g

(G9) r1 � r2 �M r2 � r1
(G10) �P (r1 � r2)�L �P (r1)� r2 [lr] attr (P) �
r1
(G11) �P (r1 � r2)�L r1 � �P (r2) [lr] attr (P) �
r2
(G12) �f1;:::;fn(r1 � r2)�L �A1(r1)� �A2(r2), where [lr] 8i 2 f1; : : : ; ng attr (fi) �
r1 _ attr (fi) �
r2

A1 = ffi j i 2 f1; : : : ; ng ^ attr (fi) �
r1g, [rl] attr (A1) \ attr(A2) = ;
A2 = ffi j i 2 f1; : : : ; ng ^ attr (fi) �
r2g

(G13) �f1;:::;fn(r1 � r2)�L �f1;:::;fn(�A1(r1)� �A2(r2)), [rl] attr (f1; : : : ; fn) �
r1�r2
whereA1 = fa j a 2
r1 ^ a 2 attr (f1; : : : ; fn)g,
A2 = fa j a 2
r2 ^ a 2 attr (f1; : : : ; fn)g

(G14) (r1 � r2)� r3 �L r1 � (r2 � r3)

(G15) �P (r1 n r2)�L �P (r1) n r2
(G16) �P (r1 n r2)�L �P (r1) n �P (r2)
(G17) r1 t r2 �M r2 t r1
(G18) �P (r1 t r2)�L �P (r1) t �P (r2)
(G19) �f1;:::;fn(r1 t r2)�L �f1;:::;fn(r1) t �f1;:::;fn(r2)

(G20) r1 [r2 �M r2 [r1
(G21) �P (r1 [r2)�L �P (r1) [�P (r2)
(G22) �f1;:::;fn(r1 [r2)�S �f1;:::;fn(r1) [�f1;:::;fn(r2)

(G23) �P (�G1;:::;Gn;F1;:::;Fm(r))�L �G1;:::;Gn;F1;:::;Fm(�P (r)) attr (P) � fG1; : : : ; Gng
(G24) �G1;:::;Gn;F1;:::;Fm(r)�L �G1;:::;Gn;F1;:::;Fm(�L(r)) attr(G1; : : : ; Gn; F1; : : : ; Fm) � L

Figure 12: Conventional Transformation Rules

19

(G25) �:P (r)�L �
rnfT1;T2g;1:T1 AS T1;2:T2 AS T2(r n �P (r)) [lr] T1 2
r ^ T2 2
r

(G26) r1 �
T r2 �M r2 �

T r1
(G27) �P (r1 �

T r2)�L �P (r1)�
T r2 [lr] attr (P) �
r1 ^ T1 =2 attr (P) ^ T2 =2 attr (P)

[rl] T1 =2 attr (P) ^ T2 =2 attr (P)
(G28) �P (r1 �

T r2)�L r1 �
T �P (r2) [lr] attr (P) �
r2 ^ T1 =2 attr (P) ^ T2 =2 attr (P)

[rl] T1 =2 attr (P) ^ T2 =2 attr (P)
(G29) �f1;:::;fn(r1 �

T r2)�L �f1;:::;fn(�Ai(r1)�
T �A2(r2)), [rl] attr (f1; : : : ; fn) �
r1�T r2

whereA1 = ffi j i 2 f1; : : : ; ng ^ attr(fi) �
r1g [fT1; T2g,
A2 = ffi j i 2 f1; : : : ; ng ^ attr(fi) �
r2g [fT1; T2g

(G30) �A1((r1 �
T r2)�

T r3)�L �A2(r1 �
T (r2 �

T r3)), where
A1 =
(r1�T r2)�T r3

nOrigTimestamps ;

A2 =
r1�T (r2�T r3) nOrigTimestamps ;

OrigTimestamps , fx1: : : : xn:T j x1 2 f1; 2g ^ : : : ^ xn 2 f1; 2g ^ T 2 fT1; T2g ^ n 2 Ng

(G31) �P (r1 n
T r2)�L �P (r1) n

T r2 T1 =2 attr (P) ^ T2 =2 attr (P)
(G32) �P (r1 n

T r2)�L �P (r1) n
T �P (r2) T1 =2 attr (P) ^ T2 =2 attr (P)

(G33) r1 [
T r2 �

S
M r2 [

T r1
(G34) �P (r1 [

T r2)�L �P (r1) [
T �P (r2) T1 =2 attr (P) ^ T2 =2 attr (P)

(G35) �f1;:::;fn;T1;T2(r1 [
T r2)�

S
S �f1;:::;fn;T1;T2(r1) [

T �f1;:::;fn;T1;T2(r2)

(G36) �P (�
T
G1;:::;Gn;F1;:::;Fm

(r))�L �
T
G1;:::;Gn;F1;:::;Fm

(�P (r)) attr (P) � fG1; : : : ; Gng
(G37) �TG1;:::;Gn;F1;:::;Fm

(r)�L �
T
G1;:::;Gn;F1;:::;Fm

(�L;T1;T2(r)) attr(G1; : : : ; Gn; F1; : : : ; Fm) � L

Figure 13: Conventional Transformation Rules Involving Temporal Operations

difference, because both difference operations are sensitive to the number of duplicates in both arguments. If tuplet
occursx times in the first argument relation andy times in the second argument relation (y < x), it occursx� y times
in the result of regular difference. However, if we were to remove duplicates first, tuplet would occur only once in
each argument to the regular difference, and it would be absent from the result.

If duplication elimination is applied after an operation that does not manufacture duplicates, we can remove the
duplicate elimination using rules D1 and D2. Regular duplicate elimination can be removed if it is performed on top of
regular (or temporal) duplicate elimination or regular (or temporal) aggregation. Temporal duplicate elimination can be
removed, if it is performed on top of temporal duplicate elimination or temporal aggregation. Hence, rules D1 and D2
imply the following rules.

rdup(rdup(r)) �L rdup(r)

rdupT (rdupT (r)) �L rdup(r)

rdup(rdupT (r)) �L rdup(r)
rdup(�G1;:::;Gn;F1;:::;Fm(r)) �L �G1;:::;Gn;F1;:::;Fm(r)
rdup(�TG1;:::;Gn;F1;:::;Fm

(r)) �L �
T
G1;:::;Gn;F1;:::;Fm

(r)

rdupT (�TG1;:::;Gn;F1;:::;Fm
(r)) �L �

T
G1;:::;Gn;F1;:::;Fm

(r)

5.3 Coalescing Transformation Rules

Rules C1 and C2 in Figure 15 show when we can eliminate coalescing; rule C1 can be used to derive other trans-
formation rules that eliminate superfluous coalescing. Rule C3 says that coalescing and selection commute only if
the selection predicate does not involve the temporal attributes. If we project a coalesced relation on non-temporal
attributes, coalescing is not necessary if we consider the relations as sets (rule C4). For a number of operations,
coalescing their arguments and results is equivalent to coalescing their results only (rules C5–C8).

Our list of coalescing transformations extends those provided by B¨ohlen et al. [BSS96]. Due to the differences
in coalescing definitions (see Section 3.3) and because [BSS96] allows duplicates in snapshots of temporal relations,
but not regular duplicates, the following three transformation rules (given in [BSS96]) have only type�S

M
and are

derivable from rule C2.

20

(D1) rdup(r)�L r r does not have duplicates
(D2) rdupT (r)�L r r does not have duplicates in snapshots
(D3) rdup(r)�S r

(D4) rdupT (r)�S
S r

(D5) rdup(�P (r))�L �P (rdup(r))
(D6) rdupT (�P (r))�L �P (rdup

T (r)) T1 =2 attr (P) ^ T2 =2 attr (P)
(D7) rdup(�f1;:::;fn(rdup(r)))�L rdup(�f1;:::;fn(r))

(D8) rdupT (�f1;:::;fn;T1;T2(rdup
T (r)))�L rdupT (�f1;:::;fn;T1;T2(r))

(D9) rdup(r1 � r2)�L rdup(r1)� rdup(r2)
(D10) rdup(r1 �

T r2)�L rdup(r1)�
T rdup(r2)

(D11) rdupT (�A(r1 �
T r2))�L �A(rdup

T (r1)�
T rdupT (r2)),

whereA =
r1�T r2 n f1:T1; 1:T2; 2:T1; 2:T2g
(D12) rdup(r1 [r2)�L rdup(r1) [rdup(r2)
(D13) rdupT (r1 [

T r2)�L rdupT (r1) [
T rdupT (r2)

(D14) �G1;:::;Gn;F1;:::;Fm(rdup(r))�L �G1;:::;Gn;F1;:::;Fm(r) AggrFunctions(F1; : : : ; Fm) � fMIN; MAXg
(D15) �TG1;:::;Gn;F1;:::;Fm

(rdupT (r))�L �
T
G1;:::;Gn;F1;:::;Fm

(r) AggrFunctions(F1; : : : ; Fm) � fMIN; MAXg

Figure 14: Duplicate Elimination Transformation Rules

(C1) coalT (r)�L r r is coalesced
(C2) coalT (r)�S

M r
(C3) coalT (�P (r))�L �P (coal

T (r)) T1 =2 attr (P) ^ T2 =2 attr (P)
(C4) �f1;:::;fn(coal

T (r))�S �f1;:::;fn(r) T1 =2 attr (f1; : : : ; fn) ^ T2 =2 attr (f1; : : : ; fn)
(C5) coalT (coalT (r1) t coalT (r2))�L coalT (r1 t r2)

(C6) coalT (coalT (r1) [
T coalT (r2))�L coalT (r1 [

T r2)
(C7) coalT (�TG1;:::;Gn;F1;:::;Fm

(coalT (r)))�L coalT (�TG1;:::;Gn;F1;:::;Fm
(r))

(C8) coalT (�TG1;:::;Gn;F1;:::;Fm
(�f1;:::;fn;T1;T2(coal

T (r)))))�L coalT (�TG1;:::;Gn;F1;:::;Fm
(�f1;:::;fn;T1;T2(r))))

(C9) coalT (�A(r1 �
T r2))�L �A(coal

T (r1)�
T coalT (r2)), r1 andr2 do not have duplicates in snapshots

whereA =
r1�T r2 n f1:T1; 1:T2; 2:T1; 2:T2g
(C10) coalT (r1 n

T r2)�M coalT (r1) n
T coalT (r2) r1 does not have duplicates in snapshots

(C11) coalT (rdupT (�f1;:::;fn;T1;T2(coal
T (r))))�L coalT (rdupT (�f1;:::;fn;T1;T2(r)))

r does not have duplicates in snapshots

Figure 15: Coalescing Transformation Rules

coalT (�A(r1 �
T r2))�

S
M �A(coal

T (r1)�
T coalT (r2)), whereA =
r1�T r2 n f1:T1; 1:T2; 2:T1; 2:T2g

coalT (r1 n
T r2)�

S
M coalT (r1) n

T coalT (r2)
coalT (�f1;:::;fn;T1;T2(coal

T (r)))�S
M coalT (�f1;:::;fn;T1;T2(r))

The transformation rules have�S

M
type because Cartesian product, temporal difference, and projection destroy coa-

lescing. The projection in the first rule is necessary because the temporal Cartesian product retains the timestamps
of its arguments. The first transformation can be modified to have type�L if we require that the arguments do not
have duplicates in snapshots (rule C9). Adding the same requirement, the second rule can be modified to have type
�M (rule C10). Equivalence type�L cannot be achieved because temporal difference is sensitive to the distribu-
tion of value-equivalent tuples in the left argument, and this distribution may be different forr1 andcoal(r1). Note
that since periods need not be preserved in the right argument to temporal difference, the second coalescing on the
right-hand side of the rule is not necessary. However, in cases when coalescing significantly reduces the cardinality
of its argument, it might be useful to retain it. For the third rule, we not only have to add the same requirement as
for rules C9 and C10 but also to eliminate duplicates before the top coalescing—otherwise projection would have
potentially introduced duplicates in snapshots, leading to different tuples in the result.

21

5.4 Sorting Transformation Rules

Sorting can be eliminated if performed on a relation that already satisfies the sorting, if we can treat the relation as
multiset, or if there is a subsequent sorting operation. PredicateIsPre�xOf takes two lists as argument and returns
True is the first is a prefix of the second.

(S1) sortA(r)�L r IsPre�xOf (A;Order(r))
(S2) sortA(r)�M r
(S3) sortA(sortB(r))�L sortA(r) IsPre�xOf (B;A)
(S4) sortA(�P (r))�L �P (sortA(r))
(S5) sortA(�f1;:::;fn(r))�L �f1;:::;fn(sortA(r)) [lr] attr (A) �
r

[rl] attr (A) � attr (f1; : : : ; fn)
(S6) sortA(r1 � r2)�L sortA(r1)� r2 [lr] attr (A) �
r1
(S7) sortA(r1 �

T r2)�L sortA(r1)�
T r2 [lr] attr (A) �
r1 ^ T1 =2 attr (A) ^ T2 =2 attr (A)

[rl] T1 =2 attr (A) ^ T2 =2 attr (A)
(S8) sortA(r1 n r2)�L sortA(r1) n r2
(S9) sortA(r1 n

T r2)�L sortA(r1) n
T r2 T1 =2 attr (A) ^ T2 =2 attr (A)

(S10) sortA(�G1;:::;Gn;F1;:::;Fm(r))�L �G1;:::;Gn;F1;:::;Fm(sortA(r)) attr (A) � fG1; : : : ; Gng
(S11) sortA(�

T
G1;:::;Gn;F1;:::;Fm

(r))�L �
T
G1;:::;Gn;F1;:::;Fm

(sortA(r)) attr (A) � fG1; : : : ; Gng
(S12) sortA(coal

T (r))�L coalT (sortA(r)) T1 =2 attr (A) ^ T2 =2 attr (A)
(S13) sortA(rdup(r))�L rdup(sortA(r))

(S14) sortA(rdup
T (r))�L rdupT (sortA(r)) T1 =2 attr (A) ^ T2 =2 attr (A)

Figure 16: Sorting Transformation Rules

Rule S3 requiresB to be a prefix ofA. If A is a prefix ofB, we can eliminatesortA from the left-hand side of
rule S3 using rule S1.

If we wish to sort the result of some operation, the sorting can be performed on the argument relation(s) for that
operation if the operation preserves the ordering. All operations, exceptt, [, and[T , fully or partially preserve the
ordering of their first argument.

5.5 Transfer Transformation Rules

The transfer transformation rules are essential in the stratum architecture. If we have an implementation of the same
operation in both the stratum and the DBMS, we have a choice of where to execute the operation. We can transfer a
relation from the DBMS to the stratum using operationTS, and the other way using operationTD (these operations
were not listed in Table 1 because they are specific to the stratum architecture).

Transfer operations can be applied only to relations that are in the appropriate location, e.g.,TS can only be applied
to a relation in the DBMS. This implies that any path from a leaf to the root of a valid expression must encounter a
non-empty alternation ofTS andTD, starting and ending withTS (since the data starts in the database and end up in
the stratum, to be subsequently sent to the application).

Figure 17 gives general transformation rules on generic operations, denoted byop. A rule transferring operationop
to the stratum can be applied only if this operation has an implementation in the stratum, and a rule transferring opera-
tion op to the DBMS can be applied only ifop can be translated into SQL. For example, one instance of transformation
rule T1 is�TG1;:::;Gn;F1;:::;Fm

(r)�M TD(�TG1;:::;Gn;F1;:::;Fm
(TS(r))).

Several rules, e.g., T5 and T6, are of equivalence type�L;A , whereA is the order list specified by thesort opera-
tion. Two relations are�L;A equivalent if they are�M equivalent and their projections onA are �L equivalent. The
�L;A equivalence is a slightly less restrictive equivalence than�L ; the �L equivalence implies�L;A equivalence.

If a rule transfers an operation from the stratum to the DBMS, or vice versa, the relations produced by the left-hand
and right-hand sides of the rule are only�M equivalent because we cannot be sure how the DBMS implementation
of the operation will sort its result, operationsort being the only exception. For this reason, the�L transformation
rules given in Sections 5.1–5.4 are only applicable in the stratum, and they have corresponding�M transformation
rules for the DBMS. For brevity, the latter rules are omitted from Figures 12–16.

22

(T1) op (r)�M TD(op (TS(r))
(T2) r1 op r2 �M TD(TS(r1) op T

S(r2))
(T3) op (r)�M TS(op (TD(r))
(T4) r1 op r2 �M TS(TD(r1) op T

D(r2))
(T5) sortA(r)�L;A TD(sortA(T

S(r))

(T6) sortA(r)�L;A TS(sortA(T
D(r))

(T7) TS(TD(r))�M r
(T8) TD(TS(r))�M r
(T9) TS(TD(sortA(r)))�L;A sortA(r)
(T10) TD(TS(sortA(r)))�L;A sortA(r)

Figure 17: Transfer Transformation Rules

6 Applicability of Transformation Rules

Queries expressed in some user-level query language are mapped to an initial algebraic expression, to which the
optimizer then applies transformation rules according to some given strategy. The resulting, new algebraic expressions
must, when evaluated, return a relation that is equivalent to the relation returned by the original expression, which we
assume correctly computes the user’s query. The type of equivalence required between result relations depends on the
query language used and on the actual query statement.

Having a query plan, we name the required equivalence between results thetop equivalenceand assign it to the
root of the query tree. We then propagate the required equivalences to the operations below in the query tree. Due to
the different characteristics of operations, an operation somewhere in the query tree may require an equivalence that
is not the same as the top equivalence. For example, if operationrdup is placed at the root and the top equivalence is
�M , an operation belowrdup requires only�S equivalence because arbitrarily introducing or removing duplicates
does not affect the top equivalence.

The required equivalences constrain the types of transformation rules that can be applied during query plan enu-
meration. There are no restrictions on when rules with equivalence type�L can be applied—these can always be
applied safely because a transformed expression evaluates to a result identical as a list to that obtained from evaluating
the original expression. Although this does not hold for any of the other five types of rules, such rules may still be
applicable. In the example above, an�S rule may be applied to the query part belowrdup.

Using some temporal variants of SQL, e.g., [BJ97], as the user-level language, the top equivalence is�M or
�L;A , depending on whether the query given includesORDER BY A. The presence ofORDER BYspecifies a result
relation that is a list, but ifORDER BYdoes not occur, the query specifies a multiset, and the order of the result tuples
is immaterial. Intuitively, we can apply transformation rules to a query evaluation plan if the result relations produced
by the new plan and the original plan are equivalent as multisets or lists, depending on whether or notORDER BY
was specified in the user-level query. The top equivalence cannot be one of the snapshot-equivalence types, for queries
that must faithfully preserve the time periods from the base relations cannot arbitrarily return any of the snapshot-
equivalent result relations. However, snapshot-equivalence type rules can be applied when they satisfy the equivalence
type between the results of the original plan and the new plan; we describe those cases below. Other temporal variants
of SQL [EJS98] may have statements that call for only snapshot-list or snapshot-multiset equivalence. The mapping
from the user-level language to the algebra should indicate the top equivalence required, as required by that language’s
semantics.

First, we consider an operation tree for an example query and describe which types of transformation rules can be
applied to which locations. To enable the formal procedure of determining when a transformation rule is applicable to
a query plan, we then introduce properties for the operations in an operation tree. Section 6.2 defines the properties,
and Section 6.3 describes how to update them during query optimization. Finally, Section 7 describes how to use those
properties to determine the applicability of transformation rules.

6.1 Example

Consider again the operation tree given in Figure 10(a). The result of evaluating the tree is a list. The shaded regions
determine which types of transformation rules are applicable.

23

In the area where order needs not to be preserved (the lighter shaded region), we can apply�M transformation
rules. Specifically, in the subtree below thesort operation, relations may be treated as multisets because thesort

operation ensures that the result is ordered appropriately.
Rules of type�S can be applied to those query fragments where duplicates are not relevant, which are indicated by

the darker shaded region. In this example, these fragments are the subtree below the top temporal duplicate elimination
operation, except the bottom temporal duplicate elimination operation, which ensures that the left argument of the
temporal difference does not contain duplicates in snapshots (see Section 3.5). (This illustrates that fragments need
not always be whole subtrees; in fact, there exist operation trees for which a particular shading is absent for an entire
subtree.)

Rules of the snapshot-equivalence types can be applied to those query fragments that need not preserve time pe-
riods, indicated by the dashed region. This is true for all operations below coalescing because coalescing returns
the same result relation for all snapshot equivalent argument relations, if they do not contain duplicates in snapshots
(which, in this case, is ensured by temporal duplicate elimination below coalescing). Consequently, below the coa-
lescing operation,�S

M
rules can be applied;�S

S
rules can be applied where duplicates are not relevant.

The next section describes how the shaded regions are determined.

6.2 Definitions of Properties

Table 2 introduces three Boolean properties of operations, which correspond to the shaded regions in Figure 10.
Each operation in a tree has values for these properties. For each combination of the property values, Table 3 gives
an equivalence type that should hold for results of that operation. Two relations are�S

L;A
equivalent if they are

�S

M
equivalent and their projections onA and the time attributes are�S

L
equivalent. The time attributes are needed

for the latter equivalence to be defined.

Property Name Description
OrderRequired Trueif the result of the operation must preserve some ordering
DuplicatesRelevant Trueif the operation cannot arbitrarily add or remove regular duplicates
PeriodPreserving Trueif the operation cannot replace its result with a snapshot-equivalent one

Table 2: Properties of an Operation in an Operation Tree

OrderRequired(op) DuplicatesRelevant(op) PeriodPreserving (op) Equivalence type

True True True �L;A

True True False �S

L;A

True False True �L;A

True False False �S

L;A

False True True �M

False True False �S

M

False False True �S

False False False �S

S

Table 3: Combinations of Property Values and Corresponding Equivalence Types

The three properties can be used to determine whether a type of transformation rule is applicable. A type of
transformation rule can be applied if the result produced by the right-hand side is equivalent to the result produced by
the left-hand side according to the required equivalence type, as specified by the properties for the top operation.

The three properties are propagated from the root and down the tree (in the terminology of attributed syntax trees,
these areinherited attributes[Knu68]). For the root, the properties are set in accordance with the specific user-level
query language and query statement. For example, some variant of SQL may require (1) the result to be sorted if the
ORDER BYclause is specified at the outer-most level, (2) the result always either to contain duplicates (DISTINCT is
not specified) or not (DISTINCT is specified), and (3) the result always to contain the same time periods independently
of which query plan is chosen. Consequently, for the root, theOrderRequired property is set to True only if the

24

ORDER BYclause is specified at the outer-most level, and theDuplicatesRelevant andPeriodPreserving properties
are always set to True.

The definitions of the three properties use two auxiliary Boolean propertiesMayHaveDups and
MayHaveDupsInSn , which are propagated from the leaf operations to the root (and thus are termedderivedor syn-
thesized attributes[Knu68]). These properties indicate whether a relation may contain duplicates and duplicates in
snapshots, respectively. Moreover, theDuplicatesRelevant property is used in the definition of thePeriodPreserving
property, and the latter property is used in the definition of theOrderRequired property.

During query optimization, the properties are first set for the initial query evaluation plan that is passed to the
query optimizer. First, propertiesMayHaveDups andMayHaveDupInSn are propagated bottom-up. Then, properties
DuplicatesRelevant , PeriodPreserving , andOrderRequired are propagated top-down in the given sequence.

We define all properties in turn. Table 4 defines theMayHaveDups property for a non-leaf operationop according
to the property values of its argument(s). The property holds forop if the result relation may contain duplicates.
Argument operations are indicated aschild1op and, in caseop is a binary operation,child2op . This property can be
propagated from the bottom of the tree to the root according to how operations preserve duplicates (recall Table 1);
the property is always True for leaf operations which correspond to base relations.

op MayHaveDups(op)

�G1;:::;Gn;F1;:::;Fm , False
�TG1;:::;Gn;F1;:::;Fm

,
rdup, rdupT

t True
�f1 ;:::;fn False if keyattr (result(child1op)) 2 attr(f1; : : : ; fn)

True otherwise

�P , sortA, coalT MayHaveDups(child1op)
n, nT

�,�T , [, [T MayHaveDups(child1op)
_MayHaveDups(child2op)

Table 4: TheMayHaveDups Property Values of an Operation According to its Child(ren)

Operations�, �T , rdup, andrdupT remove duplicates, while operations� andt may manufacture duplicates.
Projection� does not introduce duplicates if the key of its argument (which exists if the argument may not have
duplicates) is included in the projection list. For other operations, the property is set according to the property of their
arguments.

Table 5 defines theMayHaveDupsInSn property, which holds for a non-leaf operation in a query plan if snapshots
of the result relation may contain duplicates. The property is always True for leaf operations if they correspond to
temporal relations.

The operations that have temporal counterparts, i.e.,[, �, n, �, andrdup, produce nontemporal relations and
cannot have duplicates in snapshots. The same applies to projections that remove temporal attributes. The other cases
are similar to those of theMayHaveDups property definition.

Table 6 defines theDuplicatesRelevant property values for a non-root operationop. This property depends almost
entirely on the parent of the operation, denotedopp . In particular, the property is independent of the specificop. The
parent of the operation is listed in the first column of the table. For binary operations, keywordsleft andright denote
the location ofop relative to its parent. If this property holds at the parent, it also holds at a child, except: (1) when the
parent operation is regular (temporal) duplicate elimination, because then the child operation may deal with duplicates
in any way, since they will later be removed; (2) when the parent operation is regular (temporal) difference, the
operation in question is located at the right child, and the relation produced by the left child does not contain regular
duplicates (duplicates in snapshots); and (3) when the parent operation is regular (temporal) aggregation and the
duplicate-sensitive aggregation functionsAVG, SUM, orCOUNT are not used. For example, functionCOUNT is duplicate-
sensitive because the result of an aggregation operation that counts the number of tuples in a relation would be affected
by the presence of duplicates.

The next case to consider is when the property does not hold at the parent. Then, the property holds at a child when
the parent operation is regular (or temporal) aggregation and the aggregation functions used areAVG, SUM, or COUNT.

25

op MayHaveDupsInSn(op)

�G1;:::;Gn;F1;:::;Fm , False
�TG1;:::;Gn;F1;:::;Fm

,
rdup, rdupT

�, [, n
t True
�f1;:::;fn False if hT1; T2i =2 attr(f1; : : : ; fn)

MayHaveDupsInSn(child1op) else, if keyattr(result(child1op))
2 attr(f1; : : : ; fn)

True otherwise

�P , sortA, coalT MayHaveDupsInSn(child1op)
nT

�T , [T MayHaveDupsInSn(child1op)
_MayHaveDupsInSn(child2op)

Table 5: TheMayHaveDupsInSn Property Values of an Operation According to its Child(ren)

opp DuplicatesRelevant(op)

�P DuplicatesRelevant(opp)
�f1;:::;fn DuplicatesRelevant(opp)
�G1;:::;Gn;F1;:::;Fm False if AggrFunctions(F1; : : : ; Fm) � fMIN; MAXg

True otherwise

�TG1;:::;Gn;F1;:::;Fm
False if AggrFunctions(F1; : : : ; Fm) � fMIN; MAXg

True otherwise

rdup False
rdupT False
coalT True
sortA DuplicatesRelevant(op)
�, left DuplicatesRelevant(op)
�, right DuplicatesRelevant(op)
�T , left DuplicatesRelevant(op)
�T , right DuplicatesRelevant(op)
n, left True
n, right True if MayHaveDups(opleft)

False otherwise

nT , left True
nT , right True if MayHaveDupsInSn(opleft)

False otherwise

t, left DuplicatesRelevant(opp)
t, right DuplicatesRelevant(opp)
[, left DuplicatesRelevant(opp)
[, right DuplicatesRelevant(opp)
[T , left True if MayHaveDupsInSn(opright)

False otherwise

[T , right True

Table 6: TheDuplicatesRelevant Property Values of an Operation According to its Parent

26

In addition, the property holds at a child when the parent operation is regular (or temporal) difference, the operation
in question is located at the left child, or it is located at the right child, and the relation produced at the left child does
not contain regular duplicates (duplicates in snapshots). Similar conditions apply to regular (temporal) union. The
property always holds if the parent operation is coalescing because different numbers of duplicates in the argument
might lead to result relations that are not even equivalent as sets.

Table 7 defines thePeriodPreserving property. If this property holds at a parent node, it also holds at a child,
except in the following cases: (1) when the parent operation is a projection not involving the time attributes and whose
DuplicatesRelevant property does not hold; (2) when the parent operation is regular aggregation, where the time
attributes are not among the grouping attributes and the aggregation functions used are not amongAVG, SUM, orCOUNT;
(3) when the parent operation is temporal aggregation; (4) when the parent operation is coalescing and the argument
does not have duplicates in snapshots; and (5) when the parent operation is temporal difference and the right argument
is the child in question.

opp PeriodPreserving (op)

�P PeriodPreserving (opp) if T1 andT2 =2 attr(P)
True otherwise

�f1;:::;fn PeriodPreserving (opp) if T1 andT2 2 attr(f1; : : : ; fn)
True else, if DuplicatesRelevant(opp)

_ T1 xor T2 2 attr(f1; : : : ; fn)
False otherwise

�G1;:::;Gn;F1;:::;Fm False if AggrFunctions(F1; : : : ; Fm) � fMIN; MAXg
^ T1, T2 =2 attr(G1; : : : ; Gn)

True otherwise

�TG1;:::;Gn;F1;:::;Fm
False

rdup True
rdupT PeriodPreserving (opp)

coalT False if :MayHaveDupsInSn(op)
PeriodPreserving (opp) otherwise

sortA PeriodPreserving (opp)
�, left True
�, right True
�T , left PeriodPreserving (opp) if followed by projection removing original timestamps
�T , right True otherwise

n, left True
n, right True
nT , left PeriodPreserving (opp)
nT , right False
t, left PeriodPreserving (opp)
t, right PeriodPreserving (opp)
[, left True
[, right True
[T , left PeriodPreserving (opp)
[T , right PeriodPreserving (opp)

Table 7: ThePeriodPreserving Property Values of an Operation According to its Parent

If the property does not hold at the parent operation, the property also does not hold at a child, except in eight
cases, namely for the following parent operations: (1) selection with a predicate involving a temporal attribute; (2)
projection, if it involves one time attribute or if itsDuplicatesRelevant property holds; (3) regular aggregation, where
the time attributes are among the grouping attributes or the aggregation functions are amongAVG, SUM, or COUNT; (4)
regular duplicate elimination; (5) regular Cartesian product; (6) temporal Cartesian product if it is not followed by a
projection removing the original time attributes; (7) regular difference; and (8) regular union.

27

Table 8 defines theOrderRequiredproperty. This property also depends almost entirely on the parent of the
operation, listed in the first column of the table, and is independent of the specificop. Most often, theOrderRequired
property holds for an operation at a child node when it holds for the operation at the parent node and the parent node
operation preserves the order of its argument. For example, if order is required for a select operation (�), then order
will be required of the immediate child of that operation. However, if the parent operation issort , the property does
not hold for its immediate child because the order of the argument is immaterial.

opp OrderRequired(op)

�P OrderRequired(opp)
�f1;:::;fn OrderRequired(opp)
�G1;:::;Gn;F1;:::;Fm OrderRequired(opp)
�TG1;:::;Gn;F1;:::;Fm

OrderRequired(opp)

rdup OrderRequired(opp)

rdupT True if MayHaveDupsInSn(op) ^ PeriodPreserving (opp)
OrderRequired(opp) otherwise

coalT True if MayHaveDupsInSn(op) ^ PeriodPreserving (opp)
OrderRequired(opp) otherwise

sortA False
�, left OrderRequired(opp)
�, right True if SequenceRequired(op)

False otherwise

�T , left OrderRequired(opp)
�T , right True if SequenceRequired(op)

False otherwise

n, left OrderRequired(opp)
n, right True if SequenceRequired(op)
nT , right False otherwise

nT , left True if MayHaveDupsInSn(op) ^ PeriodPreserving (opp)
OrderRequired(opp) otherwise

t, left True if SequenceRequired(op)
t, right False otherwise

[, left True if SequenceRequired(op)
[, right False otherwise

[T , left True if SequenceRequired(op)
False otherwise

[T , right True if ((MayHaveDupsInSn(op) ^ PeriodPreserving (opp))
_ SequenceRequired(op))

False otherwise

Table 8: TheOrderRequired Property Values of an Operation According to its Parent

For theOrderRequired property to hold at an immediate child ofrdupT , either that property must hold forrdupT ,
or the child can produce duplicates in its snapshots and therdupT is required to preserve the periods of its argument.
This entry shows how a requirement being computed top-down relies on properties that are propagated bottom-up.

The operationsrdupT , coalT , nT , and[T are sequence sensitive when their arguments have duplicates in snap-
shots (the left argument fornT and the right argument for[T count), i.e., if they take arguments that are equivalent
as multisets, their results may not be equivalent as multisets (however, their snapshots will be equivalent as multisets).
Therefore, when one of these four operations occurs in the parent node, it requires that the sequence of tuples in its
argument(s) is not changed when periods have to be preserved by the operation and the argument may have duplicates
in snapshots.

Note that this is a stronger requirement than that for theOrderRequired property: we cannot change the sequence
of tuples even if the change would still preserve some order on the result. This requirement is captured by the auxiliary

28

propertySequenceRequired , which is True for operationop if we cannot change the sequence of tuples in the result
of that operation. Table 9 defines theSequenceRequired property (the property is always False for the root).

The SequenceRequired property needs to be checked when setting theOrderRequired property for a number
of operations. For example, if theSequenceRequired property is True for a Cartesian product, the orders ofboth
arguments of the product matter (theOrderRequired property has to be set to True for both arguments). However, if
theOrderRequired holds and theSequenceRequired property does not hold, theOrderRequired property has to be
set to True only for the left argument because the right argument cannot contribute to any sensible sorting of the result.

opp SequenceRequired(op)

coalT , rdupT True if MayHaveDupsInSn(op) ^ PeriodPreserving(opp)
nT , left SequenceRequired(opp) otherwise

[T , right
nT , right True if MayHaveDupsInSn(leftsibling)

^ PeriodPreserving (opp)
SequenceRequired(opp) otherwise

[T , left True if MayHaveDupsInSn(rightsibling)
^PeriodPreserving (opp)

SequenceRequired(opp) otherwise

sortA False if A includes all attributes of the argument
SequenceRequired(opp) otherwise

other operations SequenceRequired(opp)

Table 9: TheSequenceRequired Property Values of an Operation According to its Child(ren)

With the property propagation as outlined, it might be that the required equivalence type for a leaf-level relation
in the query tree is�L;A . This may happen if coalescing, temporal duplicate elimination, temporal difference, or
temporal union are used and their arguments may have duplicates in their snapshots (as above, the left argument ofnT

and the right argument of[T count). In the stratum architecture, this equivalence cannot be satisfied if the underlying
relations come from the DBMS in unknown order. Such is the case if the underlying DBMS supports SQL, and the
expression below theTS operation does not include asort operation, sorting on all attributes. Then the results of the
mentioned operations present in the stratum would possibly contain different tuples (even though their snapshots at
each point of time would contain the same tuples). For example, the querycoalT (TS(r)), if run several times, may
return results that are only snapshot-multiset equivalent because relationr is retrieved from a conventional DBMS.
Such queries can be answered only if the top equivalence is�S

M
or �S

L;A
. The mapping stage should determine if the

required top equivalence can be satisfied for the given query, and if not, it should reject the query. An alternative for
the stratum implementor would be to modify the mapping stage so that it introduces asort operation (sorting on all
attributes) before the sequence-sensitive operation used in the query, ensuring that the initial query plan satisfies the
required equivalence.

Coalescing combined with temporal duplicate elimination, and temporal difference combined with temporal du-
plicate elimination (if the result is later coalesced) are insensitive to the order of their arguments, and such queries
would always return�M or �L;A equivalent results in the stratum architecture. The query used in Section 3.5 is one
such example.

6.3 Adjustment of Properties

When a transformation rule is applied during query optimization, the properties must be adjusted. Since transforma-
tion rules may be applied frequently, it is preferable to avoid scanning the whole operation tree both bottom-up and
top-down each time a rule is applied, but rather to do incremental, local adjustments. The tables and definitions of
the previous section indicate how to accomplish this, by expressing property values in terms of the property values
immediately above (or below) them in the operation tree. For example, to adjust the values of theDuplicatesRelevant

property for some operation after a transformation, it is enough to know the property value for the operation immedi-
ately above the resulting query part.

29

If a property’s value depends on the values in the tree above it (such asDuplicatesRelevant), we determine if
the application of a transformation rule changes the property values at the bottom node(s). If so, adjustments in the
subtree(s) below are necessary.

Similarly, if the value of a property depends on the values below it in the tree, we must determine if the application
of a transformation rule changes the property value of the top operation. If it does, we must reconsider the properties
of the operations in the part of the tree above the resulting query part.

The adjustment of one property may trigger the adjustment of other properties. For example, the adjustment of the
MayHaveDupInSn property triggers the adjustment of thePeriodPreserving property because the value of the latter
for coalescing depends on theMayHaveDupInSn property value. Table 10 summarizes the triggered adjustments.

Adjustment Triggered top-down adjustment from the top-most adjusted node
MayHaveDupInSn OrderRequired in all subtrees below the first-met coalescing.

DuplicatesRelevant in all subtrees below the first-met temporal difference or temporal
union.
PeriodPreserving for the first coalescing and below.

MayHaveDupIn DuplicatesRelevant in all subtrees below the first-met regular difference.
PeriodPreserving OrderRequired in all subtrees below the first-met temporal duplicate elimination, coa-

lescing, temporal difference, or temporal union.
DuplicatesRelevant PeriodPreserving in all subtrees below the first-met projection.
SequenceRequired OrderRequired in all subtrees below.

Table 10: Triggered Property Adjustment

In general, non-local property adjustments will be rare because applications of most of the transformation rules
will not lead to the change of the properties of the top (bottom) operation(s). Table 11 describes the adjustments for
all transformation rules that require non-local adjustments (excluding triggered adjustments). All these rules either
introduce or remove an operation. (Each equivalence in the table represents two transformation rules.)

Equivalence Adjustment actions (according to the transformed expression)
G3, G24, D14 Adjust thePeriodPreserving property in all subtrees below.
G5, G25, C1, C4 Adjust theOrderRequired , DuplicatesRelevant , andPeriodPreserving properties in all

subtrees below.
D2 Adjust theDuplicatesRelevant property in all subtrees below.
D3, D4 Adjust theMayHaveDupsandMayHaveDupsInSnproperties above, up to the root.

Adjust theOrderRequired property in all subtrees below the top-most temporal duplicate
elimination, coalescing, temporal difference, or temporal union.
Adjust theDuplicatesRelevant property in all subtrees below the top-most regular differ-
ence, temporal difference, or temporal union.
Adjust thePeriodPreserving property in all subtrees below the top-most coalescing.

C2, C8, C11, D1 Adjust theDuplicatesRelevant andPeriodPreserving properties in all subtrees below.
S1 Adjust theSequenceRequired andOrderRequired properties in all subtrees below.

Table 11: Adjustment of the Properties

The use of the properties in an operation tree enables us to formalize when a transformation rule is applicable to a
query plan. The next section show how the properties are used during query plan enumeration.

7 Query Plan Enumeration

We give a straightforward enumeration algorithm whose purpose is to generate correct query evaluation plans; we
do not consider the subsequent heuristic or cost-based selection of a final query plan. We also do not consider the

30

performance of the enumeration algorithm, except to note that incremental maintenance of property values improves
over full recomputation.

The arguments to the query plan enumeration algorithm are a set of plansP (initially, P contains only one plan),
and a set of transformation rulesT R. The output is all query evaluation plans that are possible to obtain using the
given set of transformation rules. The algorithm is given in Figure 18.

For the algorithm to terminate, the set of transformation rules cannot include all rules given in Section 5. The
rules that introduce additional operations, such asr !S rdup(r), would be applicable an infinite number of times.
Hence, heuristics have to be used to restrict the rule set. For example, one possible heuristic is to not use rules that
introduce additional operations, such asr !S rdup(r). Another heuristic performs selections as early as possible.
Thus, we would allow the transformation rule�P (coal

T (r)) !L coalT (�P (r)), but would not use transformation
rulecoalT (�P (r))!L �P (coal

T (r)). We assume that a heuristic is in place that ensures termination.

for eachplanP 2 P do
for eachT 2 T R do

for each locationl within P that matches the left side ofT do
if local conditions are satisfied and

((T is a �L rule)
_ (T is a �M rule^ optop 2 l (:OrderRequired(op)))
_ (T is a �S rule ^ optop 2 l (:DuplicatesRelevant(op) ^ :OrderRequired(op)))
_ (T is a �S

L
rule ^ optop 2 l (:PeriodPreserving (op)))

_ (T is a �S

M
rule^ optop 2 l (:OrderRequired(op) ^ :PeriodPreserving (op)))

_ (T is a �S

S
rule ^ optop 2 l (:DuplicatesRelevant(op) ^ :OrderRequired(op)

^ :PeriodPreserving (op)))
then applyT to l yieldingP 0;

adjust properties ofP 0;
addP 0 toP

return P

Figure 18: Query Plan Enumeration Algorithm

The algorithm provides an operational means of determining when a transformation rule is applicable. It has a
syntactic component (the left-side expression must match in some location) and a semantic component (the precon-
ditions must hold and the properties must have appropriate settings). In the algorithm, when testing the applicability
of a transformation rule at some location, the properties of the operation at the top of that location is employed. For
example, when testing the applicability of transformation rulecoalT (r1 n

T r2) !M coalT (r1) n
T coalT (r2), the

properties of thecoalT operation are used.
The algorithm is deterministic, i.e., it generates the same set of query plans independently of the order of trans-

formation rules and locations. This can be seen easily by noting that the algorithm applies all the transformations
to each candidate plan at each possible location in all orders. In many cases, the planP 0 generated by applying a
transformation will already be present inP .

The presence of the stratum imposes additional correctness requirements, specifically that (a) portions evaluated
by the underlying DBMS utilize only operations provided by that DBMS, (b) the required equivalence of theTS

operation is satisfied by the DBMS, and (c) portions evaluated by the stratum utilize only operations provided by the
stratum. All three requirements must be ensured by the mapping to the initial algebraic expression, which needs to
be cognizant of the capabilities of the DBMS and the stratum. Requirements (a) and (c) are ensured in the initial
query plan by the presence or absence of transformations that move the transfer operations across operations (see
Section 5.5); requirement (b) is satisfied via the appropriate use of properties.

Theorem 7.1 The algorithm given in Figure 18 generates correct query plans.

Proof: To prove the theorem, we need to prove that the algorithm applies a transformation rule of some type only
when the result produced by the new query plan is equivalent to the result produced by the original plan according
to the top equivalence, which depends on the query language and the actual query statement. The proof is divided

31

π EmpName,T1,T2

PROJECT

T S

Tcoal Tcoal

EmpName ASCsort

EMPLOYEE

π EmpName,T1,T2

\

rdup

T

T

ST

[- - -]

[T T T]

[- - -]

[- - -]

[- - -]

[- - -]

[T - -]

[T T T]

(b)(a)

[- - -]

[T - -]

[T T -]

EMPLOYEE

π EmpName,T1,T2

π EmpName,T1,T2

PROJECT

EmpName ASC

\

sort

coal

rdup

T

T

T

T S

ST

[T T T]

[- - -]

[- - -]

[- - -]

[- T -]

[- T T]
[- - -]

[- - -]

[- - -]

[- T T]

Figure 19: Operation Trees with Properties and Transformation-Rule Applicability Regions

into six parts, one for each type of transformation rule. Appendix B provides a proof that�M type rules are applied
correctly if the top equivalence is�L;A or �M . 2

While the algorithm generates correct plans, it does not generate all possible plans—although we exploit transfor-
mation rules of “weak” equivalence types, e.g.,�S , all the possible, correct query plans that may be generated using
the different types of transformation rules are not found.

To illustrate how the enumeration algorithm works, we use the example query from Section 3. The initial query
plan is given in Figure 10(a). Since the result of the temporal difference does not contain duplicates in snapshots
(because its left argument does not contain duplicates in snapshots), we apply rule D2 and remove the top temporal
duplicate elimination. Also, we push the transfer operation down by using transfer rules T1, T2, T5, and T8; the rules
of type �M can be applied below thesort operation.

Then we push the coalescing below the temporal difference by using rule C10 (we can apply this rule because
OrderRequired does not hold for the coalescing). The resulting plan is shown in Figure 19(a). For each operation, we
list its properties in square brackets in the orderOrderRequired , DuplicatesRelevant , PeriodPreserving .

Next, we remove the unnecessary coalescing appearing in the second argument to the temporal difference, using
rule C2; order and time periods need not be preserved in the right branch of a temporal difference. Finally, we push
thesort operation down by using rules S9, S12, and S14; and we change the location of thesort operation from the
stratum to the DBMS by using rules T6 and T8. Figure 19(b) shows the final plan.

8 Extensibility of the Framework

The optimizer implementor can extend the foundation presented here by tailoring it to a specific query language or by
adding a new operation.

The former requires the implementor to define the mapping from the query language to the algebra and to determine
how the top equivalences should be set for the initial query plans.

When adding a new operation, it must be defined in�-calculus, related transformation rules must be introduced,
and property values for the operation must be determined. In addition, the implementor should consider if the new
transformation rules may require non-local property adjustments and should ensure that queries involving the new
operation are processed only if they can satisfy the top equivalence when applied repeatedly. The proof of correctness
of the enumeration algorithm must be extended to accommodate the new operation. For the stratum architecture, a
translation of the new operation to SQL should be developed.

32

9 Related Research

In this section, we survey how the previous work on relational and temporal algebras addressed duplicates and order.
Past work in in conventional and temporal query optimization, as well as in temporal layers, is also covered.

Dayal et al. [DGK82] extend the relational model to include multiset (also called bag) relations. They define
selection, join, projection, duplicate elimination, union, intersection, and difference operations for multisets, and
provide several algebraic equivalences. In a similar manner, Albert [Alb91] extends union, intersection, difference,
and Boolean selection to multisets, giving them semantics that agree with the usual set-theoretic semantics when the
arguments are sets. For example, the union defined in [Alb91], unlike concatenation, corresponds to disjunction for
Boolean selection. In our algebra, we have both union and concatenation; their difference in relation to disjunction for
Boolean selection is exemplified by transformation rules G2 and G3. The recent book by Garcia-Molina et al. [GM00]
offers comprehensive coverage of query transformations that preserve set as well as multiset equivalences. Formalizing
relations as multisets, sorting is permitted only at the outermost level. We define relations as lists, and our set of
transformation rules extends their rules to lists, precisely specifying the equivalence type that holds for each rule, and
also adds rules for temporal operations.

Leung et al. [Leu98] present query rewrite rules for decorrelating complex queries, as implemented in IBM’s DB2.
Queries are represented in a query graph model, which is a graph of nodes, each representing a table operation whose
inputs and outputs are tables. Duplicates are addressed in a query graph model and in query rewrite rules; in this
graph model, each operation can eliminate, preserve, or permit duplicates. Duplicates should be preserved when,
for example, theDISTINCT clause is not specified, and duplicates are permitted when the operation produces an
argument for a universal quantifier, e.g.,ALL. Consequently, duplicates are addressed as special cases in query rewrite
rules. Our algebra and transformation rules incorporate the handling of duplicates and order. We consider operations
that eliminate or preserve duplicates. The�S equivalence type corresponds to “permitting” duplicates, e.g., it allows
replacing a query expression with a set-equivalent one.

Mumick et al. [MPR90, Mum90] study the extension of the Magic-Sets technique for programs containing multi-
sets and aggregates. They note that the implementation of multisets is efficient, since duplicate checks are not needed.
They provide a formal basis for reasoning about optimization techniques when multisets are generated as intermediate
relations, independently of whether the user desires multiset semantics. Our framework integrates the treatment of
relations as lists, multisets, and sets.

Grumbach and Milo [GM93] study the expressive power of algebras for manipulating bags. In particular, they
study how bag nesting affects expressive power. Libkin and Wong [LW94] provide new techniques for studying the
expressive powers of set languages and bag languages that have aggregate functions. We do not focus on studying the
expressive power of our proposed algebra other than showing that it extends the conventional relational algebra.

More than a dozen temporal relational algebras have been proposed over the last two decades [MS91, OS95], but
all the algebras known to the authors are set-based and hence do not adequately address issues related to duplicates,
order, and coalescing.

Existing work on temporal query optimization [GS90, LM93] primarily considers the processing of joins and
semijoins. For example, Gunadhi and Segev [GS90] define several temporal joins and discuss their optimization,
focusing on temporal selectivity estimation and strategies for optimizing temporal equijoins. That work does not delve
into general query optimization and does not address duplicates, order, and coalescing.

Böhlen et al. [BSS96] define coalescing and argue that this operation is not implemented efficiently in conventional
DBMSs. The paper uses set-based semantics, and coalescing is defined as merging of value-equivalent tuples.

The recent work of Gadia and Nair [GN98] considers query optimization for a parametric model for temporal
databases, presents algebraic identities, and gives a heuristic optimization algorithm. They define a relation as a set of
tuples, but they also considerweaklyequivalent relations, i.e., relations that have the same snapshots. We refine this
equivalence into our snapshot-based set equivalences.

Several papers discussing stratum architectures for a temporal DBMS have appeared, e.g., [TJS98], and several
prototype temporal DBMSs have been implemented, e.g., [B¨oh95, Böh98]. Most of the proposed temporal strata
translate temporal query language statements to SQL, but do not perform any systematic optimization or processing.
Meanwhile, we provide a framework for the division of processing between the stratum and the underlying DBMS.

33

10 Conclusions and Research Directions

Temporal query representation, optimization, and processing mechanisms are needed to achieve built-in temporal
support in DBMSs. However, previously proposed conventional and temporal algebras have to varying degrees over-
looked such aspects as duplicates, ordering, and coalescing. In addition, past work on temporal query optimization
primarily considered the efficient processing of only some operations, e.g., joins, and did not delve into general query
optimization.

This paper offers a general foundation for optimizing conventional and temporal queries, which is suitable for
providing temporal support via a stand-alone temporal DBMS or via a layer on top of a conventional DBMS. This
foundation offers comprehensive and precise handling of duplicates and order for conventional and temporal queries,
as well as coalescing for temporal queries. The foundation is enabled by a temporally extended, list-based alge-
bra, which enhances existing relational algebras. The algebra is independent of the specific user-level variant of the
relational data model and is also independent of the user-level relational query language.

Six types of equivalences among algebraic query expressions are identified, leading to six types of transformation
rules that can be exploited during query optimization. These sets of rules go beyond all such existing sets known to
the authors. Depending on whether order, duplicate removal, and coalescing are required for the result of a query, the
query optimizer may apply different types of transformation rules. A practical mechanism is provided for determining
when the type of a transformation rule is applicable to a query. Finally, an algorithm that generates equivalent query
plans is presented.

This approach partitions the work required by the database implementor to develop a provably correct query op-
timizer into four tasks: the database implementor has to (1) specify operations formally in�-calculus; (2) design
appropriate transformation rules, determine for each which of the six equivalences apply, and prove that the trans-
formation rules are correct; (3) augment the setting and adjusting of the properties so that the enumeration algorithm
applies the transformation rules correctly; and (4) ensure that the mapping generates a correct initial query plan.

To complete the framework for query optimization and evaluation (recall Figure 1), a number of steps remain. A
mapping step, not covered in this paper, converts the query into an initial plan. Once a specific query language is
chosen, checks should be included that, for a query plan, ensure that the tasks assigned to the DBMS are expressible in
the language the DBMS supports, and that the operations assigned to the stratum have corresponding implementation
algorithms.

The algorithm given in Section 7 generates from this plan a number of query plans according to the heuristics pro-
vided. The next step is to select the plan with the expected lowest cost. In the stratum architecture, the challenge is to
come up with a unified cost model for stratum and DBMS operations, and with cost functions. Cost functions for oper-
ations performed in the DBMS are in general not known, but the statistics are possible to obtain. The issues regarding
costing are interesting research challenges. Another challenge is to develop strategies for dividing the processing
between the stratum and the DBMS, integrating transformation rules with heuristics and cost estimation techniques.
In addition, multiple implementations of operations, e.g., several join implementations that return differently ordered
relations, should be considered.

Once a query plan is chosen, the query parts to be performed in the DBMS should be translated into SQL. Results
should be returned to the stratum for possible further processing. If the result of the stratum is needed for subsequent
operations in the DBMS, a temporary table should be created. The translation from the algebra to SQL is also left for
future research. Finally, the operations located in the stratum should be evaluated in an efficient manner. There has
been significant work by others on this problem, cf. [ZCF97].

This paper has provided a mechanism for representing queries and for query transformation, which is at the core of
query optimization. Intended as a foundation for the efficient processing of SQL-like queries, the algebra includes the
standard operations called for by this type of queries. The operations were specified in recursive-style definitions that
used operations such ashead , tail , and concatenation. The inclusion of these and other list operations in the algebra
may be explored. In addition, the algebra may be extended to support modifications, NOW-relative values [Cli97],
and transaction time [JD98]. It might be appropriate to use an automatic theorem prover to ensure the correctness of
the transformations, the property definitions, and the plan enumeration algorithm for all cases.

34

References

[Alb91] J. Albert. Algebraic Properties of Bag Data Types. InProceedings of VLDB,Barcelona, Spain, pp. 211–219
(1991).

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals.Communications of the ACM, 26(11): 832–843
(1983).

[Böh98] M. H. Böhlen. The Tiger Temporal Database System.<www.cs.auc.dk/ ˜tigeradm/ > current as of
25 Feb 2000.

[BBJ98] M. H. Böhlen, R. Busatto, and C. S. Jensen. Point versus Interval-Based Temporal Data Models. InPro-
ceedings of the IEEE ICDE,Orlando, Florida, pp. 192–200 (1998).

[Bet98] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang. A Glossary of Time Granularity
Concepts. In [EJS98], pp. 406–413 (1998).

[BJ97] M. H. Böhlen and C. S. Jensen. Temporal Statement Modifiers. Unpublished manuscript, submitted for
publication, December 1997.

[Böh95] M. H. Böhlen. Temporal Database System Implementations.ACM SIGMOD Record, 24(4): 53–60 (1995).

[BSS96] M. H. Böhlen, R T. Snodgrass, and M. D. Soo. Coalescing in Temporal Databases. InProceedings of VLDB,
Bombay, India, pp. 180–191 (1996).

[Cli97] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of “Now” in
Databases.ACM TODS, 22(2): 171–214 (1997).

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An Extended Relational Algebra with Control over Duplicate
Elimination. InProceedings of the ACM PODS, pp. 117–123 (1982).

[EJS98] O. Etzion, S. Jajodia, and S. Sripada (eds.)Temporal Databases: Research and Practice. LNCS 1399,
Springer-Verlag (1998).

[GM00] H. Garcia-Molina, J. D. Ullman, and J. Widom.Database System Implementation. Prentice Hall (2000).

[GN98] S. K. Gadia and S. S. Nair. Algebraic Identities and Query Optimization in a Parametric Model for Relational
Temporal Databases.IEEE Transactions on Knowledge and Data Engineering, 10(5): 793–807 (1998).

[Gor87] M. J. C. Gordon.The Denotational Description of Programming Languages. Springer-Verlag (1987).

[GM93] S. Grumbach and T. Milo. Towards Tractable Algebras for Bags. InProceedings of PODS,Washington, DC,
pp. 49–58 (1993).

[GS90] H. Gunadhi and A. Segev. A Framework for Query Optimization in Temporal Databases. InProceedings of
SSDBM,Charlotte, NC, pp. 131–147 (1990).

[Inm96] W. H. Inmon.Building the Data Warehouse. Second Edition. John Wiley and Sons (1996).

[JD98] C. S. Jensen and C. E. Dyreson, editors. A Consensus Glossary of Temporal Database Concepts. In [EJS98],
pp. 367–405 (1998).

[JS99] C. S. Jensen and R. T. Snodgrass. Temporal Data Management.IEEE Transactions on Knowledge and Data
Engineering, 11(1): 36–45 (1999).

[JSS94] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Models via a Conceptual Model.
Information Systems, 19(7): 513–547 (1994).

[Kie85] W. Kiessling. On Semantic Reefs and Efficient Processing of Correlation Queries with Aggregates. In
Proceedings of VLDB,Stockholm, Sweden, pp. 241–249 (1985).

[Klu82] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Languages Having Aggregate
Functions.Journal of the ACM, 29(3): 699-717 (1982).

[Knu68] D. E. Knuth. Semantics of Context-Free Languages. InMathematical Systems Theory, Volume 2, Springer
Verlag, pp. 127–145, June, 1968.

[KS95] N. Kline and R. T. Snodgrass. Computing Temporal Aggregates. InProceedings of IEEE ICDE, Taipei,
Taiwan, pp. 222–231 (1995).

[LW94] L. Libkin and L. Wong. New Techniques for Studying Set Languages, Bag Languages and Aggregate
Functions. InProceedings of ACM PODS, Minneapolis, Minnesota, pp. 155–166 (1994).

35

[Leu98] T. Y. C. Leung, H. Pirahesh, P. Seshadri, and J. M. Hellerstein. Query Rewrite Optimization Rules in IBM
DB/2 Universal Database. InReadings in Database Systems,Third Edition, M. Stonebraker and J. Hellerstein
(eds.), Morgan Kaufmann, pp. 153-168 (1998).

[LM93] T. Y. C. Leung and R. R. Muntz. Stream Processing: Temporal Query Processing and Optimization. In
Temporal Databases: Theory, Design, and Implementation, A. U. Tansel et al. (eds.), Benjamin/Cummings, pp.
329–355 (1993).

[MS91] L. E. McKenzie, Jr. and R. T. Snodgrass. Evaluation of Relational Algebras Incorporating the Time Dimen-
sion in Databases.ACM Computing Surveys, 23(4): 501–543 (1991).

[MPR90] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The Magic of Duplicates and Aggregates. InProceedings
of VLDB,Brisbane, Queensland, Australia, pp. 264-277 (1990).

[Mum90] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is Relevant. InProceedings of
ACM SIGMOD,Atlantic City, NJ, pp. 247-258 (1990).

[OS95] G.Özsoyoǧlu and R. T. Snodgrass Temporal and Real-Time Databases: A Survey.IEEE Transactions on
Knowledge and Data Engineering, 7(4): 513–532 (1995).

[Sno87] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transactions on Database Systems, 12(2):
247–298 (1987).

[Sno95] R. T. Snodgrass, editor.The TSQL2 Temporal Query Language. Kluwer Academic Publishers (1995).

[Sno99] R. T. Snodgrass.Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann (1999).

[TJS98] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Approaches to Temporal DBMS Implementation. In
Proceedings of IDEAS,Cardiff, Wales, UK, pp. 4–13 (1998).

[YYW00] J. Yang, H. C. Ying, and J. Widom. TIP: A Temporal Extension to Informix. InProceedings of EDBT,
Konstanz, Germany (2000) (to appear).

[ZCF97] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zicari.Advanced Database
Systems. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997

36

A Auxiliary Operations

First, we define auxiliary operations on tuples. Then, we define auxiliary operations on relations, including fundamen-
tal operations such ashead andtail . For operationshead , tail , and@, the schema of the argument relation is the same
as the schema of the result relation.

A.1 Auxiliary Operations on Tuples

Concatenation FunctionÆ : [T � T] ! T concatenates two tuples. Let two tuples bet1 andt2 and their corre-
sponding schemas beS1 = (
1;�1; dom1) andS2 = (
2;�2; dom2). We define the result tupletr and its schema
Sr = (
r;�r; domr) as follows. An attribute name of the schema of the result tuple is prefixed by 1 and 2 only if the
attribute appears in the schemas of both argument tuples.

tr , f(attr; value) j ((attr; value) 2 t1 ^ attr =2
2) _ ((attr; value) 2 t2 ^ attr =2
1)g [
f(1:attr; value) j (attr; value) 2 t1 ^ attr 2
2g [
f(2:attr; value) j (attr; value) 2 t2 ^ attr 2
1g

r , fa j (a 2
1 ^ a =2
2) _ (a 2
2 ^ a =2
1)g [
f1:a j a 2
1 ^ a 2
2)g [f2:a j a 2
2 ^ a 2
1)g

�r , �1 [�2

domr, f(attr; type) j ((attr; type) 2 dom1 ^ attr =2
2) _
((attr; type) 2 dom2 ^ attr =2
1)g [

f(1:attr; type) j (attr; type) 2 dom1 ^ attr 2
2g [
f(2:attr; type) j (attr; type) 2 dom2 ^ attr 2
1g

For example, the concatenation of tuplest1 = f(Name; Bill); (Salary; 20); (T1; 10); (T2; 20)g andt2 = f(Name;
Bill); (Department; Sales)g leads to tupletr = f(1:Name; Bill); (Salary; 20); (T1; 10); (T2; 20); (2:Name; Bill);
(Department; Sales)g.

We chose not to prefix all attributes of the resulting relation, because we want to retain its type and, in our case,
a relation type is solely defined by existence of attributesT1 andT2. In addition, if we would prefix all attributes,
several concatenations of different tuples would lead to too many prefixes.

DoesOverlap FunctionDoesOverlapT : [T T � T T] ! Boolean returns True if the time periods of the argument
tuples overlap and False, otherwise.

DoesOverlapT , �t1; t2:(t1:T1 < t2:T2) ^ (t1:T2 > t2:T1)

DoesMeet FunctionDoesMeetT : [T T � T T] ! Boolean returns True if the time periods of the argument tuples
meet and False, otherwise.

DoesMeetT , �t1; t2:(t1:T2 = t2:T1) _ (t1:T1 = t2:T2)

GetIntersectingTuple FunctionGetIntersectingTupleT : [T T � T T] ! T T intersects time periods of two ar-
gument tuples and, if the periods overlap, forms a new tuple containing intersecting time periods, otherwise returns
NULL.

GetIntersectingTupleT , �t1; t2:DoesOverlap
vt(t1; t2)! max (t1:T1; t2:T1) Æmin (t1:T2; t2:T2);

undef

Auxiliary functionsmax andmin take one-attribute tuples as arguments, compare the values of those tuples, and
return a new one-attribute tuple.

The schema of a result tuple ofGetIntersectingTupleT is Sr = (
r;�r; domr), where
r, �r, anddomr are
defined as follows.

r , fT1; T2g

�r , fTg

domr , f(T1;T); (T2;T)g

37

IsValueEquiv FunctionIsValueEquiv : T � T ! Boolean returns True if all non-temporal attributes of both
argument tuples are equal. The argument tuples have the same schema, where non-temporal attribute-domain values
are denoted asa1; : : : ; an.

IsValueEquiv , �t1; t2:(t1:a1 = t2:a1 ^ : : : ^ t1:an = t2:an)

A.2 Auxiliary Operations on Relations

Head Functionhead : R ! T returns the first tuple of the argument relation.

head , �r:(r =?)! undef ; t1

Tail Functiontail : R ! R returns the argument relation without its first tuple.

tail , �r:(r =?)! undef ; ht2; : : : ; tni

According to the definition,tail applied to a relation with one tuple returns an empty relation.

Append Function@ : [T �R]! R prepends the argument tuple to the argument relation.

@ , �t; r:(r =?)! hti;
ht; t1; : : : ; tni

IsIn FunctionisIn : [T �R]! Boolean returns True if the argument tuple exists in the argument relation and False
otherwise.

isIn , �t; r:(r =?)! False;
(t = head (r))! True;
isIn(t; tail (r))

Remove Functionremove : [T � R] ! R removes the first occurence of the argument tuple from the argument
relation. The schema of the argument relation is retained for the result relation.

remove , �t; r:(r =?)!?;
(t = head (r)) ! tail(r);
head (r)@remove(t; tail(r))

OverlappingTuple FunctionOverTplT : [T T � RT] ! T T scans the argument relation and finds the first tuple
that overlaps with the argument tuple and is value-equivalent with it.

OverTplT , �t; r:(r =?)! undef ;

(IsValueEquiv (t; head (r)) ^ DoesOverlapT (t; head (r))) ! head (r);

OverTplT (t; tail (r))

MeetingTuple FunctionMeetTplT : [T T � RT] ! T T scans the argument relation and finds the first tuple that
meets with the argument tuple and is value-equivalent with it. The argument tuple, argument relation, and result
relation have the same schema.

MeetTplT , �t; r:(r =?)! undef ;
(IsValueEquiv (t; head (r)) ^ DoesMeet(t; head (r))) ! head (r);

MeetTplT (t; tail (r))

38

minVal FunctionminVal : RT ! T scans the argument temporal relation and returns the minimum timestamp
value. It uses auxiliary function�ndMin : [RT � T] ! T, which scans the argument temporal relation and returns
the smallest timestamp value among the argument timestamp value and all argument relation timestamp values. Both
functions exploit the fact that, in a temporal relation,T1 is always smaller thanT2.

minVal , �r:(r =?)! undef ;
�ndMin(tail (r); head (r):T1)

�ndMin , �r; c:(r =?)! c;
(head (r):T1 < c)! �ndMin(tail (r); head (r):T1);
�ndMin(tail(r); c)

maxVal FunctionmaxVal : RT ! T scans the argument temporal relation and returns the maximum timestamp
value. The function is analogous to theminVal function, and it uses auxiliary function�ndMax : [RT � T] ! T,
which scans the argument temporal relation and returns the biggest timestamp value among the argument timestamp
value and all argument relation timestamp values.

maxVal , �r:(r =?)! undef ;
�ndMax (tail (r); head (r):T2)

�ndMax , �r; c:(r =?)! c;
(head (r):T2 > c)! �ndMax (tail (r); head (r):T2);
�ndMax (tail(r); c)

MinTime FunctionMinTime : [RT � T� T] ! T scans the argument temporal relation and returns the smallest
timestamp value that is bigger than the first argument timestamp value, but smaller than or equal to the second argument
timestamp value. It uses auxiliary functionActualMinTime : [RT � T � T] ! T which does the same, but returns
the second argument timestamp value in case a suitable timestamp value is not found in the argument relation (while
theMinTime function is undefined in this case).

MinTime , �r; c1; c2:(r =?)! undef ;
(head (r):T1 > c1 ^ head (r):T1 � c2)!

ActualMinTime(tail (r); c1; head (r):T1);
(head (r):T2 > c1 ^ head (r):T2 � c2)!

ActualMinTime(tail (r); c1; head (r):T2);
MinTime(tail (r); c1; c2)

ActualMinTime , �r; c1; c2:(r =?)! c2;
(head (r):T1 > c1 ^ head(r):T1 < c2)!

ActualMinTime(tail (r); c1; head (r):T1);
(head (r):T2 > c1 ^ head(r):T2 < c2)!

ActualMinTime(tail (r); c1; head (r):T2);
ActualMinTime(tail (r); c1; c2)

B Proofs

Theorem B.1 Let r1 andr2 be relations. Then the following implications hold. (Implications pointing downward
apply only to temporal relations.)

r1 �L r2) r1 �M r2) r1 �S r2

+ + +

r1 �
S

L
r2) r1 �

S

M
r2) r1 �

S

S
r2

39

Proof: First, we prove thatr1 �L r2) r1 �M r2. According to the (�-calculus) definition of multiset equivalence
given in Section 4, the equivalencer1 �M r2 does not hold if, at some step during the iteration, the condition of the
second line is True (one of the argument relations is empty while the other one is not) or the condition of the third line
is False (the first tuple of the first argument relation is not in the second argument relation). Given thatr1 �L r2, the
condition of the second line must always be False, because bothr1 andr2 have the same number of tuples (otherwiser1
andr2 would have not been list equivalent, because the second-line condition of the list-equivalence definition would
evaluate to True) and functionstail andremove used in the recursive call remove exactly one tuple each. Having that
(head (r1) = head (r2))) isIn(head (r1); r2), the condition of the third line is always True because the third-line
condition of the list-equivalence definition must always be True for the relations to be list equivalent, and, during all
iteration steps, the list-equivalence and multiset-equivalence definitions operate on the same arguments; the latter is
ensured because the call of theremove function in the third line of multiset-equivalence definition is equivalent to the
call of thetail function in the third line of list-equivalence definition (since the first tuple of the first argument relation
is always equal to the first tuple of the second argument relation).

Similarly, to prove thatr1 �M r2) r1 �S r2, we need to show that the condition of the second line of the set
equivalence definition is always False and the condition of the third line is always True. The second-line condition is
always False becauser1 andr2 have the same number of tuples andRemoveAll functions remove the same number
of tuples from each of the argument relations. Relationsr1 andr2 must have the same number of tuples, because
otherwise they would not be multiset equivalent (the second-line condition of the multiset-equivalence definition would
evaluate to True), andRemoveAll functions must remove the same number of tuples from each relation, because
otherwise we would be able to find a tuplet in r1 for which there will be no equivalent tuple inr2, and the third-line
condition of the multiset-equivalence definition would evaluate to False. Note that theRemoveAll functions remove
all the tuples from both argument relations that are equivalent tohead (r1). Therefore, the third-line condition is
always True because if, during some iteration step, the first tuple of the argument relation cannot be found in the
second argument relation, it means that its equivalent does not exist inr2 (it could not have been removed in previous
iterations, because it exists in the first argument relation), and relationsr1 andr2 cannot be equivalent as multisets
(again, the third-line condition of the multiset-equivalence definition would evaluate to False).

Finally, we prove the implicationr1 �L r2) r1 �
S

L
r2. According to the definition of snapshot-list equivalence,

two relations are snapshot-list equivalent if, at each point of time, their snapshots are equivalent as lists. If relations
r1 andr2 are equivalent as lists, then, at each point of timec, two equivalent tuples that are in the same positions in
those relations either both overlap with timec or neither of them overlap with timec, and, consequently, either both
or neither non-temporal counterparts of the tuples are included in�Tc (r1) and�Tc (r2). Since the tuples are equal, their
non-temporal counterparts are also equal. As the timeslice operation does not change the order of the argument tuples,
all equivalent non-temporal counterparts are produced in the same order for both argument relations.

Proofs for the other four implications are similar. 2

Theorem B.2 Transformation rule�P1^P2(r) �L �P1(�P2(r)) is correct.

Proof: We must prove that the relations produced by the left-hand side (rlhs) and the right-hand side (rrhs) of the
transformation rule are list equivalent. Specifically, we prove that each tuple in positioni in rlhs exists in positioni in
rrhs. The reverse implication may be proven analogously.

Assume that tuplet is in positioni in rlhs. It then follows thatt is in r and satisfiesP1 ^ P2. Sincet then also
satisfiesP2 andP1 independently, it follows thatt is in rrhs.

Next, let the number of tuples inr that satisfy:(P1 ^ P2) and occur beforet bek. Similarly, let the number of
tuples inr that satisfy:P2 and occur beforet bek1 and the number of tuples inr that satisfy:P1 ^ P2 and occur
beforet be k2. Because the selection operator in Section 3.3.2 effects a linear scan over its input relation, it then
follows thatt occurs at positioni+ k in r, at positioni+ k � k1 in �P2(r), and at positioni+ k � k1 � k2 in rrhs.
The implication then follows ifk = k1 + k2. This holds because any tuple that satisfies:(P1 ^ P2) � :P1 _ :P2
satisfies exactly one of:P2 or:P1 ^P2, which are exclusive, and because any tuple that satisfies one of the latter two
also satisfies the former. 2

Theorem B.3 The algorithm given in Figure 18 generates correct query plans.

Proof: To prove the theorem, we need to prove that the algorithm applies a transformation rule of some type only
when the result produced by the new query plan is equivalent to the result produced by the original plan according to
the top equivalence, which depends on the query language and the actual query statement. The proof is divided into

40

six parts, one for each type of transformation rule. We provide a proof that�M type rules are applied correctly if the
top equivalence can be�M or �L;A . The remaining parts of the proof can be worked out in similar fashion.

Consider the application of an�M ruleT . We denote the relation resulting from the left-side ofT by rT and the
relation resulting from the right-side ofT by r0

T
. Consequently, we denote the result relation produced by the original

query plan byresult(rT) and the result relation produced by the new query plan byresult(r0
T
). To prove thatT is

applied correctly, we have to prove that it does not violate any of the two possible top equivalences.

Case One First, we consider the case when the top equivalence is�M . From the definitions of the operations, we
can derive the following implications. (We include all possible operations in this analysis.)

8opu 2 f�; �; �; �
T ; rdup; sortg r1 �M r2) opu(r1)�M opu(r2)

8opb 2 ft;�;�
T ; n;[g;8r r1 �M r2) opb(r; r1)�M opb(r; r2) ^ opb(r1; r)�M opb(r2; r)

8opu 2 frdup
T ; coalT g r1 �M r2) opu(r1)�M opu(r2) if :MayHaveDupsInSn(r1)

r1 �M r2) r1 n
T r �M r2 n

T r if :MayHaveDupsInSn(r1)
r1 �M r2) r [T r1 �M r [T r2 if :MayHaveDupsInSn(r1)

8opu 2 frdup
T ; coalT g r1 �M r2) opu(r1)�

S

M
opu(r2) if MayHaveDupsInSn(r1)

r1 �M r2) r1 n
T r �S

M
r1 n

T r if MayHaveDupsInSn(r1)
r1 �M r2) r [T r1 �

S

M
r [T r2 if MayHaveDupsInSn(r1)

Informally, this says that all operations preserve multiset equivalence, except coalescing, temporal duplicate elimina-
tion, temporal difference, and temporal union if their arguments may have duplicates in snapshots (the left argument
for temporal difference and the right argument for temporal union count). In these offending cases, multiset snap-
shot equivalence is preserved. From the implications, it follows that each subsequent operation applied onrT andr0

T

produce relations that are�S

M
or �M equivalent.

If each subsequent operation produces�M equivalent relations, it follows thatresult(rT)�M result(r0
T
). Let us

consider the cases if there is an operation producing only�S

M
equivalent relations. If such an operation exists in

the original query plan aboverT and its relevant argument may have duplicate in snapshots, from the definition of
theOrderRequired property we can derive that one of the three cases is true: (1) theOrderRequired property holds
for the argument of the operation down to the bottom of the query plan, (2) theOrderRequired property holds for
the argument down to the firstsort operation that sorts on all attributes, or (3) theOrderRequired property does not
hold for the argument because thePeriodPreserving property does not hold for the operation. The first alternative is
not possible because theOrderRequired does not hold forrT (otherwise we would not have appliedT at all). The
second alternative implies that thesort should be aboverT (otherwise theOrderRequired property would have to
hold forrT) and its produced relations in both query plans will be equivalent as lists. All operations for list-equivalent
arguments produce list-equivalent results, therefore the results of the original and new query plans will be equivalent
as lists. The third alternative implies that there is another operationop0 above the operation in question such that its
PeriodPreserving property holds, but the property of its parent does not hold (we know that the property holds for the
root). According to the definition of how to propagate thePeriodPreserving property, five cases are possible when the
property holds for the parent operation but does not hold for the child operation. It can be proved using the definitions
of operations thatop0 would return�M equivalent results for�S

M
equivalent arguments.

Case Two The second case is when the top equivalence is�L;A . Then, we know that theOrderRequired holds for
the root operation and that there was asort operation at the top of the initial query plan. Let us consider the highest
operationop on the path fromrT to the root in the original plan for which theOrderRequired does not hold. Due to
the definition of the property (recall Table 8) and the sorting transformation rules (the sort operation cannot be pushed
down below union ALL or regular and temporal union), only three instances ofop are possible. From the first part of
the present theorem, we know that arguments to such operation in both query plans will be�S

M
or �M equivalent.

First,op can be thesort operation. From its definition, we can derive the following implications.

r1 �M r2) sortB(r1)�L;B sortB(r2)
r1 �

S

M
r2) sortB(r1)�

S

L;B
sortB(r2)

Second,op can be a Cartesian product or a difference, whererT contributes to the right argument and the left
argument has some order. From the definitions of� andn, we derive the following implications.

41

r1 �M r2) op(r; r1) �L;Order(r) op(r; r2), whereOrder(r) 6=? andop 2 f�; ng
r1 �

S

M
r2) op(r; r1) �

S

L;Order(r) op(r; r2), whereOrder(r) 6=? andop 2 f�; ng

Third,op can be a temporal Cartesian product or a temporal difference, whererT contributes to the right argument
and the left argument has some order. The following implications hold.

r1 �M r2) op(r; r1) �L;Order(r)nTimePairs op(r; r2), whereOrder(r) 6=? andop 2 f�T ; nT g
r1 �

S

M
r2) op(r; r1) �

S

L;Order(r)nTimePairs
op(r; r2), whereOrder(r) 6=? andop 2 f�T ; nT g

Thus,op can either produce�L;B or �S

L;B
equivalent relations in both query plans, whereB is some non-empty

order.
First, we consider the case when the two relations in both query plans are�L;B equivalent. Most operations

preserve partial list equivalence, i.e., from the definitions of those operations, we can derive that results of any such
operation applied toresultop andresult0op are �L;C equivalent, where both results are sorted onC, which is the
value of the Order column in Table 1 for the operation applied. Consequently, if only such operations are used, since
the original query plan produces the final relation sorted onA, the new query plan also produces such relation, i.e.,
result(rT)�L;A result(r

0

T
). The only operations not preserving partial list equivalence (yet preserving partial list

snapshot equivalence) are the four operations outlined in the first part of the proof, if their relevant arguments may
have duplicates in snapshots. If such operations exist aboveop, we considerop0 which is the highest among them,
and, according to the definition of theOrderRequired property, either (1)PeriodPreserving (op0) is False or (2) the
OrderRequired holds for the arguments ofop0 and other operations down until to the firstsort operation that sorts
on all attributes (we know that suchsort operation exists because theOrderRequired would have been True for all
operations down to the bottom of the tree and we could not have appliedT).

If we have the first case, since thePeriodPreserving property holds for the root, we know that there is an operation,
with this property set, aboveop0 (which returns partial snapshot list-equivalent results in both plans). As shown
in the first part of the proof, such an operation would return partial list-equivalent results for partial snapshot list-
equivalent arguments. If we have the second case, we know that thesort operation should be aboverT (otherwise the
OrderRequired property would have to hold forrT), and above of or equal toop (which is the highest operation which
changes the value of theOrderRequired property from True to False). Its produced relations in both query plans will
be equivalent as lists. Since all operations for list-equivalent arguments produce list-equivalent results, the results of
both query plans will be equivalent as lists.

If the two relations in both query plans are�S

L;B
equivalent, then operationop 0, which returns�S

M
equivalent

results when having�M equivalent arguments, exists betweenrT andop. Similarly as in the first part of the proof,
there must exist an operation aboveop andop 0 that would return partial list-equivalent results for partial snapshot
list-equivalent argument. 2

42

