
A Comparative Study of Version Management
Schemes for XML Documents

Shu-Yao Chien , Vassilis J. Tsotras , Carlo Zaniolo

September 6, 2000

TR-51

A TIMECENTER Technical Report

Title A Comparative Study of Version Management Schemes for XML Docu-
ments

Copyright c
 2000 Shu-Yao Chien , Vassilis J. Tsotras , Carlo Zaniolo .
All rights reserved.

Author(s) Shu-Yao Chien , Vassilis J. Tsotras , Carlo Zaniolo

Publication History August 2000. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Heidi Gregersen, Dieter Pfoser,
SimonašSaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon

Individual participants
Curtis E. Dyreson, Bond University, Australia
Fabio Grandi, University of Bologna, Italy
Nick Kline, Microsoft, USA
Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
John F. Roddick, University of South Australia, Australia
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, amazon.com, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, University of Mons-Hainaut, Belgium
Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

The problem of managing multiple versions for XML documents and semistructured data is of sig-
nificant interest in many DB applications and web-related services. Traditional document version control
schemes, such as RCS, suffer from the following two problems. At the logical level, they conceal the
structure of the documents by modeling them as sequences of text lines, and storing a document’s evo-
lution as a line-edit script. At the physical level, they can incur in severe storage or processing costs
because of their inability to trade-off storage with computation. To solve these problems, we propose
version management strategies that preserve the structure of the original document, and apply and ex-
tend DB techniques to minimize storage and processing costs. Therefore, we propose and compare three
schemes for XML version management, namely, the Usefulness-Based Copy Control, the Multiversion
B-Tree, and the Partially Persistent List Method. A common characteristic of these schemes is that
they cluster data using the notion ofpage usefulness, which by selectively copying current information
from obsolete pages provides for fast version reconstruction with minimal storage overhead. The cost
and performance of these version management schemes are evaluated and compared through extensive
analysis and experimentation.

1 Introduction

XML is becoming a very popular standard for storing and disseminating semistructured information. Since
XML documents evolve (updates, new releases) the problem of efficiently versioning XML documents
has become of significant interest for content providers, cooperative work, and information systems in
general. XML groups have recognized the importance of version support and are working on proposing
new standards for the transport level [12]. In this paper, we instead concentrate on the storage level, and
propose techniques for (i) storing versioned documents efficiently, and (ii) retrieving any given version with
least processing. This is a classical database problem where the objectives are (i) to minimize the number
of secondary storage pages needed to store the multiversion document, and (ii) to minimize the number of
pages that must be accessed to reconstruct the particular version of the document requested by a user or an
application.

Traditional document version management schemes, such as RCS [10] and SCCS [8], areline-oriented
and have performance problems. For instance, RCS [10] stores the most current version intact while all other
revisions are stored as reverse editing scripts. These scripts describe how to go backward in the document’s
development history. For any version except the current one, extra processing is needed to apply the reverse
editing script to generate the old version. Instead of appending version differences at the end like RCS,
SCCS [8] interleaves editing operations among the original document/source code and associates a pair of
timestamps (version ids) with each document segment specifying the lifespan of that segment. Versions
are retrieved from an SCCS file via scanning through the file and retrieving valid segments based on their
timestamps.

Both RCS and SCCS may read segments which are no longer valid for the retrieved (target) version,
causing additional processing costs. For RCS, the total I/O cost is proportional to the size of the current
version plus the size of changes from the retrieved version to the current one. For SCCS, the situation is
even worse: the whole version file needs to be read for any version retrieval. To reduce version retrieval
cost RCS maintains an index on the valid segments of each version, but still these segments might be stored
sparsely among pages generated in different versions, and this lack of clustering can cost many additional
page I/Os.

Finally, RCS and SCCS do not preserve the logical structure of the original document; this makes
structure-related searches on the XML documents difficult and expensive to support—reconstruction of a
whole version might be needed before its component objects can be identified.

Following [2], we take a database-oriented view to the problem of storing, processing and querying
efficiently multiple versions of documents. Therefore, we draw on related work on temporal databases and

1

persistent object managers and model a document as an ordered sequence of objects (e.g., title, section,
paragraph, etc.), that can be inserted, deleted or updated as the document evolves through versions. Based
on this evolution, each object is assigned an interval that spans over all versions during which the object
was valid for the document.

To ensure that all versions can be reconstructed with I/O cost that is proportional to the version’s size,
we use a clustering scheme calledpage usefulness, which clusters valid objects of a given version in few
data pages. When the number of valid objects in a page falls below a threshold, all page objects that are
still valid are copied to another page. Therefore, each version can be reconstructed by only accessing useful
pages (i.e., filled mostly with objects that are valid for the version). Reconstructing a particular document
version is equivalent to finding the valid objects comprising the version and produce them in the correct
logical order.

This paper evaluates and compares three XML document versioning schemes starting with an improve-
ment of the method we proposed in [3], called Usefulness-Based Copy Control (UBCC). This method
clusters the document objects separately thus avoiding accessing unrelated objects at version reconstruc-
tion. The other two schemes, the Partially Persistent List (PPL) and the Multiversion B-Tree (MVBT) [1],
view the document evolution as a partially persistent problem. Traditional data structures areephemeral,
that is, a single state of the structure is maintained. A data structure ispersistent if it can store and ac-
cess its past states [4]. It is calledpartially persistent if the structure evolves by applying changes to its
”most current” state. In particular, PPL models the document as an ordered linked list of objects which is
then made partially persistent. The third scheme uses a partially persistent B+-tree to capture the document
evolution.

The remaining of the paper is organized as follows. Section 2 discusses the page usefulness clustering
approach. The UBCC scheme is described in section 3, while section 4 describes the partially persistent
approaches. Experimental comparisons of all methods as well as the traditional RCS are presented in section
5. Section 6 concludes the paper with open problems and further research.

2 Page Usefulness

For simplicity assume that the document’s evolution creates versions with a linear order:V1, V2, ..., where
versionVi is before versionVi+1. Hence a new version is established by applying a number of changes
(object insertions, deletions or updates) to the latest version. Each document object is represented in the
database by a record that contains the object id (oid), the object attributes (data, text) and alifetime interval
of the form: (insertionversion, deletionversion). The insertionversion is filled with the version when
the object was added in the document. An object deletion at versionVi is not physical but logical: the
deletionversion of the object’s record is updated with the version when the deletion took place. This
formulation concentrates on object insertions/deletions. An update of objectO at versionVj is represented
by an ”artificial” deletion of the object followed by an ”artificial” insertion of the updated objectO at the
same versionVj. The artificial insertion creates a new database record that shares the same oidO but has a
subsequent non-overlapping lifetime interval.

Initially we may assume that objects in the document’s very first version are physically stored in pages
according to their logical order. After a number of changes, objects of a specific version may be physically
scattered around different disk pages. Moreover, a page may store objects from different versions. Hence,
when retrieving a specific version, a page access (read) may not be completely “useful”. That is, some
objects in an accessed page may be invalid for the target version. For example, assume that at versionV1, a
document consists of five objectsO1, O2, O3, O4 andO5 whose records are stored in data pageP . Let the
size of these objects be 30%, 10%, 20% 25% and 15% of the page size, respectively. Consider the following
evolving history for this document: At versionV2, objectO2 is deleted; atV3, objectO3 is updated; atV4,

2

objectO5 is deleted, and at versionV5, objectO1 is deleted.
We define theusefulnessof a full pageP , for a given versionV , as the percentage of the page that

corresponds to valid objects forV . Hence pageP is 100% useful for versionV1. Its usefulness falls to 90%
for versionV2, since objectO2 is deleted atV2. Similarly, P is 70% useful during versionV3. The update
of O3 invalidates its corresponding record inP (a new record forO3 will be stored in another page sinceP
is full of records). Finally pageP falls to 25% usefulness afterV5.

Usefulness influences how well objects of a given version are clustered into pages. High usefulness
implies that the objects of a given version are stored in fewer pages, i.e., this version will be reconstructed
by accessing fewer pages. Clearly, a page maybe more useful for some versions and less for others. We
would like to maintain a minimum page usefulness over all versions (setting this minimum is a performance
parameter of our schemes). When a page’s usefulness falls below the minimum the currently valid records
in this page are copied to another page. This is similar to the ”time-split” operation in temporal indexing
[11] [7] [9]. Reconstructing a given version is then reduced to accessing only the useful pages for this
version; this is very fast since each useful page contains a good part of the requested version. The details of
the copying procedure defer for each scheme. However, it can be proved that the overall space used by the
database remains linear in the number of changes in the document’s version history.

The usefulness as defined above refers to full pages. If we assume that data records are written in pages
sequentially, there can be a single page (the last one) that may not be full of records. We can extend the
usefulness definition to include such non-full pages as useful by default. This will not affect performance
since for each version there will be at most one such page.

3 Usefulness-Based Copy Control

The RCS scheme performs the best when the changes from a version to the next are minimal. For instance,
consider a first case, where only0:1% of the document is changed between versions. Then, reconstructing
the 100th version only requires10% retrieval overhead. But RCS performs poorly when the changes grow
larger. For instance, consider a second case, where each new version changes70% of the document; re-
trieving the 100th version could cost70 times retrieving the first one. In this second case, storing complete
time-stamped versions is a much better strategy, costing zero overhead in retrieving each version and only a
limited (43%) storage overhead. Most real-life situations range between these two cases— with minor revi-
sions and major revisions often mixed in the history of a document. Thus, we need adaptable self-adjusting
methods that, in the first case, operate as RCS, while in the second case tend to store complete time-stamped
copies. The UBCC scheme described next achieves this desirable behavior by merging the old RCS scheme
with an usefulness-based copy control scheme.

Another RCS’ problem solved by UBCC is that RCS stores the editing script together with the new
value of the revised objects. This increases the size of the script and the reconstruction time. A better
approach is to separate the document objects from the editing script. A final improvement introduced in
this paper is that usefulness-based techniques are used to cluster both the document objects and the editing
script, thus reducing overhead for very long version histories. We will now summarize the UBCC scheme,
omitting details that were covered in [3].

Example. Figure 1 shows three versions of a document and how they are stored in UBCC scheme. The
first version is stored in pages P1, P2 and P3. We have assumed that the sizes of document objects, Root,
CH A, SEC D, SEC E, CH B, SEC F, SEC G, SEC H, CH C, SEC I, SEC J are 50%, 25%, 10%, 15%, 5%,
30%, 35%, 30%, 5%, 10%, and 5% of a data page size, respectively. Assume that we want to maintain a
minimum page usefulness of 70%. Then pages P1 and P2 are well above the threshold for versionV1 (P3 is
useful by default for versionV1).

3

Version 1 Version 2 Version 3
---------------------------------- ----------------------------------- ----------------------------------

SNAPSHOT : SNAPSHOT : SNAPSHOT :

<Root> <Root> <Root>
<CH A> <CH A> <CH A>

<SEC D> ... </SEC> <SEC E> ... </SEC> <SEC E’> ... </SEC>
<SEC E> ... </SEC> </CH> </CH>

</CH> <CH B> <CH B>
<CH B> <SEC F> ... </SEC> <SEC G’> ... </SEC>

<SEC F> ... </SEC> <SEC G’> ... </SEC> <SEC N> ... </SEC>
<SEC G> ... </SEC> </CH> </CH>
<SEC H> ... </SEC> <CH K> <CH K>

</CH> <SEC L> ... </SEC> <SEC L> ...</SEC>
<CH C> </CH> <SEC P> ...</SEC>

<SEC I> ... </SEC> <CH C> </CH>
<SEC J> ... </SEC> <SEC I> ... </SEC> <CH C>

</CH> <SEC J> ... </SEC> <SEC J> ... </SEC>
</Root> <SEC M> ... </SEC> <SEC M’> ...</SEC>

</CH> <SEC Q> ...</SEC>
</Root> </CH>

</Root>

DATA PAGES : DATA PAGES : DATA PAGES :

+---------------------------+ +---------------------------+ +---------------------------+
P1 | Root, CH A, SEC D, SEC E | P4 | CH B, SEC F, SEC G’, CH K | P6 | SEC E’, SEC N, SEC P |

+---------------------------+ | SEC L | +---------------------------+
P2 | CH B, SEC F, SEC G, SEC H | +---------------------------+ P7 | CH C, SEC J, SEC M’, |

+---------------------------+ P5 | CH C, SEC I, SEC J, SEC M | | SEC Q |
P3 | CH C, SEC I, SEC J | +---------------------------+ +---------------------------+

+---------------------------+

UBCC SCRIPT E1 : UBCC SCRIPT E2 : UBCC SCRIPT E3 :

ins(Root,1,P1), ins(CH A,2,P1), del(SEC D,3), del(SEC E,3), ins(SEC E’,3,P6),
ins(SEC D,3,P1), ins(SEC E,4,P1), del(CH B,4), ins(CH B,4,P4), del(SEC F,5), ins(SEC N,6,P6),
ins(CH B,5,P2), ins(SEC F,6,P2), del(SEC F,5), ins(SEC F,5,P4), ins(SEC P,9,P6), del(CH C,10),
ins(SEC G,7,P2), ins(SEC H,8,P2), del(SEC G,6), ins(SEC G’,6,P4), ins(CH C,10,P7), del(SEC I,11),
ins(CH C,9,P3), ins(SEC I,10,P3), del(SEC H,7), ins(CH K,7,P4), del(SEC J,11), ins(SEC J,11,P7),
ins(SEC J,11,P3) ins(SEC L,8,P4), del(SEC M,12), ins(SEC M’,12,P7),

del(CH C,9), ins(CH C,9,P5), ins(SEC Q,13,P7)
del(SEC I,10), ins(SEC I,10,P5),
del(SEC J,11), ins(SEC J,11,P5),
ins(SEC M,12,P5)

Figure 1: Sample UBCC Versions.

VersionV2 is created by the following changes:((delete SEC D) , (update SEC G with SEC G’) , (delete SEC
H) , (insert CH K after CH B) , (insert SEC L after CH K) , (insert SEC M after SEC J)). The sizes of SEC G’, CH
K, SEC L and SEC M are 20%, 20%, 25% and 50% of a data page size, respectively. Hence, the logical
order of objects in version 2 are: Root, CH A, SEC E, CH B, SEC F, SEC G’, CH K, SEC L, CH C, SEC I,
SEC J, SEC M. After applying these changes, Page P1 becomes 90% useful (SEC D is not part of version
V2), page P2 becomes 35% useful (since the original SEC G and SEC H are not part ofV2) and page P3
remains 20% useful (no change affected it). Then, pages P2 and P3 areuselessfor the second version and,
thus, valid objects in P2 and P3 are copied into a new data page. Copied objects include CH B, SEC F , CH
C , SEC I, and SEC J.

After determining which objects need copying, the copied objects are inserted into new pages in their
logical order as shown in Figure 1. All new objects and copied objects are stored in page P4 and P5 based
on the linear order they appear in Version 2.

UBCC Edit Script. To be able to reconstruct any version, we need to record anUBCC edit scriptfor each
version. The script for versionV2, E2, is shown in Figure 1.E2 is derived from the original edit script as
follows:

� Each copied object is treated as a delete operation followed by an insert operation. For example, a
delete operation is added for CH B and followed by an insert operation.

4

� Attach to each operation the position of its target object in the new version. For example, the position
of SEC F in the new version is 5.

Notice that, the position for a deleted object is its position in the new version as if it was not deleted.
For example, the position of SEC D is 2 in the new version if it was not deleted, so, the delete operation
del(SEC D)has a position value of 2. These position values are useful for recovering the total order of these
objects. Their meaning will be discussed in more detail later.

VersionV3, is generated by the following changes:((update SEC E with SEC E’),(delete SEC F),(insert SEC
N after SEC G’), (insert SEC P after SEC L),(delete SEC I),(update SEC M with SEC M’), (insert SEC Q after SEC
M’)) . Here the sizes of SEC E’, SEC N, SEC P, SEC M’, and SEC Q are 35%,15%,45%, 30% and 29% of the
page size, respectively. As a result, pages P1, P4, and P5 become 75%, 70%, and 10% useful, respectively.
Thus, valid objects in P5,CH C, and SEC J, must be copied. New objects and copied objects are stored into
new data pages P6 and P7 in their logical order in Version 3. TheUBCC script, E3, for versionV3 is shown
in Figure 1. The insertion algorithm is illustrated in [3].

Version Reconstruction. Now, let us discuss how to retrieve a version, sayVi. Since the objects ofVi
may be stored in data pages generated in versionsV1, V2, ...,Vi�1 andVi, these objects may not be stored in
their logical order. Therefore, the first step is to reconstruct the logical order ofVi objects. The logical order
is recovered in agap-filling fashion based on the UBCC script. Let’s take the sample version in Figure 1 as
an example. We will explain the algorithm by describing how to reconstruct Version 3.

The reconstruction starts by retrieving the first object of Version 3 from its UBCC script, E3. We try
to find the first object in the first edit operation. However, we get agap from the operation. The position
value of the first operation,del(SEC E,3), is 3. That means, we miss the first two objects and need tofill the
gapfrom the previous version, Version 2. Recursively, we start to retrieve the first two objects of Version 2.
This retrieval starts from the first operation,del(SEC D,3), of E2. We get a gap again and need to retrieve
two objects from the previous version, Version 1. From E1, we find the first two objects of Version 1 and
return them to Version 2. Recursively, these two objects are sent back to Version 3. When Version 3 receives
these two records, it reads the data page P1 which contains these two objects, Root and CH A, and output
them. Page P1 is kept in main memory because it still contains one valid object, SEC E, for Version 3. The
reconstruction of Version 3 continues from the previous stop point,del(SEC D,3)and the next object is the
third object. Since the current operation is a delete, that means its target object is deleted from the previous
version. Therefore, Version 3 requests the next object of Version 2 and it is expected to be SEC E. To
answer the request for next object, Version 2 needs to retrieve its third object, because its first two objects
have been retrieved in the previous run. In a similar manner, Version 2 needs to request one next object
from Version 1 because of itsdel(SEC D,3)operation. As expected, the returned record isins(SEC D,3,P1)
and it is nullified by the delete operation. However, at this point, the third object of Version 2 has not been
retrieved yet. So another next-object request is issued from Version 2 to Version 1 and Version 2 gets back
SEC E which is the third object of Version 2. Version 2 sends theins(SEC E,4,P1)record back to Version 3
to reply its next-object request as expected. And this insert record is nullified with thedel(SEC E,3)record
of E3. The search for the third object of Version 3 continues with checking the next edit operation in E3
which is ins(SEC E’,3,P6). Then we find the third object because its position value is 3. This gap-filling
procedure continues through the script E3 until all objects of Version 3 are retrieved.

Edit Script Snapshots. The above recursive gap-filling algorithm is used to reconstruct any version in
the UBCC version file. Reconstructing versionVi may need to involve UBCC scriptE1, E2, ...,Ei, but
only useful data pages for each version are read. As a result, the requested version is reconstructed with few
page I/Os. However, as the total number of versions grows, the size of total edit scripts will accumulate and,
sooner or later, will affect the version retrieval efficiency. To control the overhead of reading edit scripts,

5

whenever the size of the edit scripts needed for reconstructing a particular version gets over a threshold (e.g.
10% of the size of the version) anedit script snapshotis built for this version. Theedit script snapshot
contains one insert record for each object in this version. The edit scriptE1 in Figure 1 is an example
of an edit script snapshot. Generating an edit script snapshot will prevent the following versions from
back-tracking to edit scripts of earlier versions.

Complexity Analysis. To reconstruct a version, only data pages which are useful for that version need
to be read. Take Version 3 as an example. The total order of Version 3 objects is first recovered from edit
scripts E3, E2 and E1. The resultant edit operation list is :ins(Root , 1 , P1), ins(CH A , 2 , P1), ins(SEC
E’ , 3 , P6), ins(CH B , 4 , P4), ins(SEC G’ , 6 , P4), ins(SEC N , 6 , P6), ins(CH K , 7 , P4), ins(SEC L ,
8 , P4), ins(SEC P , 9 , P7), ins(CH C , 10 , P7), ins(SEC J , 11 , P7), ins(SEC M’ , 12 , P7), ins(SEC Q ,
13 , P7). Pages pointed by the pointers in these records are read sequentially and objects are retrieved from
those pages. Useless pages, such as pages P2, P3, and P5, need not be read because valid objects in those
pages have been copied into useful pages. However, consider the way in which the objects of Version 3 are
stored. These objects are stored in useful pages generated for Version 3 (page P6 and page P7), Version 2
(page P4) and Version 1 (page P1). Objects generated in the same version are stored in the order in which
they appear in the version. Therefore, the retrieving process is actually a merge of these 3 ordered object
lists. Merging 3 object lists will involve at most 3 pages at any instance during the process. That means that,
with enough memory to hold 3 pages, each useful page of Version 3 needs to be read only once through the
whole retrieval process.

The above discussion is applicable to retrieving any version. That is, the I/O cost of reconstructing
versionVi , with i pages in memory, is that of

1. reading edit scriptsEi � � �E1, plus

2. reading useful pages of versionVi.

Let Si be the size of versionVi (in number of objects) and letB denote the capacity of a page. Clearly, the
snapshot ofVi needsSi=B pages. The number of useful pages created for versionVi is bounded bySi=BU ,
whereU is the required usefulness.

Database Cost. Let us consider the size of the database first; this is determined by two parts: new objects
and copied objects. New objects include first-time inserted new objects and updated objects. Since deleted
objects are not removed from storage, deletions do not affect the size of database. LetSchg denote the
total number of changesin the document evolution (i.e., insertions, updates and deletions). Clearly, the new
object part is bounded byO(Schg). For the copied object part, the number of objects that got copied once is
bounded byU � Schg. Objects which got copied twice must be copied from those objects that have already
been copied once. Therefore, the total number of objects copied twice is bounded byU2 � Schg. Similarly,
the number of objects that got copiedi times is bounded byU i � Schg. Collectively, the total number of
copied objects is bounded by :

1X

i=1

U i � Schg = Schg=(1� U)

Hence the total number of copied objects isO(Schg). Combining these two parts, the whole size of the
database is linear (O(Schg)).

6

Edit Script Cost. The second part of UBCC storage and retrieval costs is due to the edit script. A problem
with the original scheme proposed in [3] was that to reconstruct any version, the whole edit script between
the start and the current version had to be read. As the number of versions become large the overhead of
reading the script can become arbitrarily large; thus we can re-encountered the old RCS problem, albeit
scaled-down, because scripts normally require less storage space than the actual objects.

In this paper, we have improved the UBCC policy so that script snapshots are taken at regular intervals,
and only the last script snapshot and the changes occurred since then need to be read to reconstruct a new
version (this is similar to checkpoints in DB recovery).

Therefore, snapshots based on the current version are recorded in the edit script along with the changes
and copy operations. Clearly, too frequent snapshots might cause an excessive use of storage, while too
infrequent ones might incur in unacceptable retrieval overhead. Our improved UBCC scheme consists of
taking a new snapshot as soon as:

�E � K � size(V)

where,

�E is the increment of the edit script since the last snapshot,

size(V) is the current version size, and

K is a small constant—typically,K is in the order of0:1.

We can now state the following property:

Proposition The total size of edit script with snapshots generated by UBCC is linear in the size of the
database.

Proof: The linearity is proved based on two observations. First, the size of the edit script snapshots is
linear in the size of the edit scripts. Second, the size of the edit scripts is linear in the size of the database.
Now we prove the first observation.

Assume that the an edit script snapshot is generated for versionVm, and the next edit script snapshot is
generated for versionVn, wherem < n and there is no any edit script snapshot in between. LetTn denote
the snapshot ofVn taken when�E has just surpassedK � size(Vn).

But a new snapshot is taken whenever

K 0 � �E � K � size(Vn)

i.e. as soon as:
size(Vn) � K 0=K � �E

with K 0 denoting the average ratio between the sizes of the representation of changes and the document
objects. Therefore, the size of the new snapshotTn is:

size(Tn) = K 0 � size(Vn)

and, by the above inequality, :

size(Tn) � (K 02=K)� �E

7

Summing up the above inequality for all snapshots generated, then the left side is the size of all snapshots
and the right side is a constant,K 02=K, times the size of the whole edit script. Therefore, the size of all
snapshots combined is linear in the size of the total size of the edit script.

Next, we are going to prove the total size of the edit script is also linear in the size of the database.
Assume that the edit script, E, consists of I insertions, D deletions and U updates and the database is S.
Then,

size(S) = (I + U)� So

whereSo is the average size of objects and,

size(E) = (I + U +D)� Se

whereSe is the average size of edit operation representation, withSe=So = K 0 .
However, the number of deletes must be less than or equal to the number of insertions. That is,

D � I

Therefore, by the above inequality,

size(E) � (I + U + I)� Se < 2� (I + U)� Se = (2�K 0)� size(S)

So, the size of edit script is linear in the size of database.
Therefore, by the first observation, the total size of edit scripts and snapshots is linear in the size of edit

scripts, and by the second observation, is linear in the database size. Ergo, the size of the edit script with
snapshots isO(Schg). 2

Therefore, we conclude that the addition of snapshots adds a small linear overhead to the storage cost. In
addition, we can also conclude thatsize(Tm)+�E is linear in thesize(Vm) or size(Vn). Thus, taking script
snapshots ensures that the retrieval cost for the last snapshot and the edit script remains a small percentage
of the retrieval cost for the document.

4 The Partially Persistent Approaches

The logical order of a document relates to the positions of the document’s objects. For example, in Figure
1 the first document version has Root in position 1, CH A in position 2, SEC D in position 3, etc. In the
second version, SEC E moves up to position 3 and so on. Frequently, when a document is accessed it is
requested in its logical order. Hence to store a document, we can utilize a data structure that maintains such
an order (for example a B+-tree or an ordered list). Document versioning is then reduced to making this
data structure partially persistent.

4.1 Utilizing a Multiversion B-Tree

Assume that the object positions in the first version of a document are directly indexed by a B+-tree. That
is, the leaves of this B+-tree contain records with keys 1, 2, 3, etc. where recordk stores the object in the
k � th position of the document. However, since each object insertion/deletion affects the position number
of all the objects after it, updating this B+-tree becomes very inefficient. For example, adding/deleting one
object in the beginning of the document would update all the positions after this object. This problem can
be resolved if the object positions are encoded in a way not altered by document changes. One simplistic
and straightforward solution is to identify object positions by an ordered sequence of large non-consecutive
integers. Then a future insertion between positionsx andy can be indexed by a number that lies between
x andy. For example, assume that the first object in versionV1 is associated with integer 100, the second

8

object with 200, etc. If in versionV2 an object is added between the first two objects, it can be associated
with integer 150 and so on.

The choice of numbers as well as the scheme to associate new numbers for future insertions depends
on the document evolution. While at worst this scheme can run out of possible integers (if the number of
changes assigned between two positions are more than the difference between the two integers associated
with them), we do not expect this to happen in practice especially if large integers are chosen. The advantage
of this simple scheme is that the associated integers maintain the logical order of the document while at the
same time they can be efficiently indexed by a B+-tree.

Since document changes are provided by object oid (for example, add object with oidO after object
with oid Q), each object in the current version must know its associated integer. This is easy to maintain
through a hashing scheme. For an object insertion the hashing scheme finds the integer associated with the
position of this insertion and the B+-tree is updated. Deletions work similarly. Note that deleted integers
can be reused.

There have been various approaches to making a B+-tree partially persistent [1] [7] [13]. In our experi-
ments we used the MVBT since its code was readily available to us.

The MVBT [1] is a directed acyclic graph that ”embeds” many B+-trees. It has a number of root
nodes, where each root provides access to subsequent versions of the ephemeral B+-tree’s evolution. Like
all temporal access methods, it appends data records with lifetime intervals of the form (insertion-version,
deletion-version). Records are clustered together in pages based on their indexing attribute values (key
space) and their lifetime interval (version space). Index records are appended with lifetime intervals as
well.

With the exception of root pages, a page is ”useful” as long as it has at leastD valid records (D is less
thanB, the page capacity). Inserting or deleting an object at versionVi is performed by first searching the
MVBT for the target leaf page where this change is to be applied. This search is similar as in an ephemeral
B+-tree but it also takes into account the lifetime intervals of index records (so that the page that is valid
for Vi is reached). A change is callednon-structuralif it is handled within an existing page. Astructural
change creates at least one new page.

For an object insertion, if the target leaf page is not full a new record is inserted in that page and the
insertion is completed. Since the deletion-version of the inserted object is yet unknown, its record’s lifetime
interval is initialized as (Vi, now) wherenow is a variable representing the ever increasing current version
number. If the target leaf page already hasB records apage overflowis detected. For an object deletion,
the data record for the deleted object is identified in the target leaf page. If the number of valid records in
this page is greater thanD then the record’s deletion-version is updated fromnow to Vi and the deletion is
completed. However, if the deletion causes the leaf page to have less thanD valid objects aweak version
underflowis detected [1].

Page overflow and weak version underflow are structural changes and need special handling. More
specifically, a version-split is performed on the target leaf-page. This is similar to the time-split of [7] or the
page copying of [11]. The version-split on a pageP at versionVi, is performed by copying to a new page
R the records valid in pageP atVi. PageP is considered non-useful after versionVi.

The resulting new page has to be incorporated in the structure. Briefly, there are three cases for handling
the new pageR. First, if the number of records inR is betweenD+e andB�e (wheree is a predetermined
constant), pageR is directly inserted in the MVBT. Constante works as a buffer that guarantees that a
structural change to the new pageR can happen only after at leaste new changes. The page insertion is
carried out by accessing the parent page of pageP , marking the index record pointing to pageP as deleted
at versionVi, and then inserting a new index record pointing to the new pageR. Even though these changes
occur in an index page, they are similar to insertion and deletion of data records in a leaf-page and are
handled identically. Thus a change can propagate upwards until a root is reached. The second case is when
the resulting pageR has more records than the specified range; this is called astrong version overflowand

9

c p

c p f

c p d f

c

c p f e

c p e

c p

c p d f e

i2

i3

i4

i1

i6

i7

i8

i5

Version-id List L(i)

i1 i1

i2

i7

i2

i3

i4

i6

i7

i8

i4

i3

i5

i5

array A SA(c)

SA(p)

SA(d)

SA(f)

SA(e)SA(p’)

(a) (b)

"artificial"
entry

Figure 2: A Partially Persistent List example.

is handled by splittingR into two pages using a key-split. A key-split simply divides the records ofR using
their key attribute value (this is similar to the traditional page split in a B-tree). The third case is if page
R has less records than the specified range. This is called astrong version underflowand is handled by
mergingR with another ”sibling” page.

The space used by the above splitting/merging policies is still linear to the total number of changesSchg
in the document’s evolution. If versionVi of the B+-tree hadSi objects, then the MVBT reconstructs it with
O(log(Schg=B) + Si=B) I/O’s.

4.2 The Partially Persistent List

Various notions of partially persistent lists have appeared in the temporal database literature. Our discussion
follows the approach outlined in [6] on how to make an ordered list partially persistent. In [5] a scheme to
support non-ordered partially persistent lists is presented. [13] presents the C-list, which is a list structure
made up of a collection of pages that contain versions of data records clustered by oid. However, a C-
list solves a different query: ”given an oid and a version interval, find all versions of this oid during this
interval”.

Let L be an ephemeral list of elements. We assume that there is a pointer to the top element of the list
and that each element has a next pointer to its right sibling in the list. We are interested in maintaining the
relative positions of the elements in the list starting from the top of the list. Inserting or deleting an element
from L corresponds to finding the position of this element inL and performing the update. LetL(i) be the
sequence of elements the list had at versionVi.

Our aim is to reconstructL(i) by accessing only pages that were ”useful” during versionVi. This can be
achieved if we maintain the list of useful pages. Assume that the very first version ofL is stored sequentially
into pages. As deletions arrive, some of these pages will become non-useful and thus have to be copied.
However, this copying needs to maintain the list logical order, i.e., the relative positions of the list elements.
Moreover, since insertions can happen anywhere in the list, some space is needed inside each page for future
insertions. Both problems are solved if we use the splitting/merging policies of the MVBT [1]. As before,
a hashing scheme can be used to identify the position of a given oid in the current version of the list.

Since list reconstruction starts from the top element in the list, the first page ofL must be identified for
any given version. This is easily achieved by an arrayA, which keeps pointers to the first pages that listL

10

ever had, indexed by the version id. If the first page in the list changes at versionVj (for example this page
became non-useful), this array is updated by a record of the form:< Vj ; pointer >, wherepointer points
to the new first page. After the first list page at a given version is found, the second page must be found
and so on. This is performed by keeping a similar arraySA(P) for each list pageP . Array SA(P) keeps
records of the form< version; pointer > whenever the next page ofP changed. However, if the next
page in front of pageP changes very frequently, arraySA(P) can become very large. This affects the list
reconstruction, since at worst a logarithmic search would be needed for eachSA array in the list. To solve
this problem, we allow anSA array to have up toC entries (C is a constant greater than 1). If the next page
after a pageP changes more thanC times whileP is a useful page, thenP becomes ”artificially” useless
(even if it still has enough valid records). A new pageP 0 is created that copies all valid records ofP , but
accompanied with an emptySA(P 0) array. PageP 0 replacesP in the list of useful pages. An example
appears in Figure 2.

In practice, arraySA(P) can be implemented as part of pageP . This limits the number of data records
that a page can hold, but it allows for fast reconstruction since the next page can be found without further
I/O’s. It can be shown that this technique still maintains linear space. Moreover, versionVi is reconstructed
with O(log(Schg=B) + Si=B) I/O’s.

5 Performance Analysis

We compare the performance of the three usefulness-based XML document version management schemes
(namely UBCC, Partially Persistent List, and Multiversion B-Tree) as well as the basic RCS approach. As
a baseline case we also report the performance of a ”Snapshot” scheme, that simply keeps a copy of each
document version. For each method we observed the version retrieval cost and the space consumption. The
page size is set to 4K bytes.

We first compare the behavior of all schemes under the same usefulness requirement. For this experi-
ment we used a document evolution with the following characteristics:

� the size of each version is approximately 100 pages;

� each version changes about 20% from the previous version (half of the changes are insertions and the
other half are deletions);

� changes are uniformly and randomly distributed among data pages;

� the usefulness requirement is 50%;

� the document evolution had a total of 100 versions.

Figure 3 shows the version retrieval cost measured as the number of page I/O’s needed to reconstruct a
version. The ”Snapshot” scheme clearly has the minimal version retrieval cost, since each version is already
stored in its entirety on disk. As expected, all usefulness-based schemes have version retrieval cost that is
proportional to the size of the reconstructed version. (In this experiment, the average version size remains
the same –about 100 pages–, so the retrieval cost of the three usefulness-based schemes and the Snapshot
scheme are approximately parallel to the horizontal axis). The retrieval overhead against the Snapshot
scheme is because a useful page includes some non-valid objects. Thus UBCC, MVBT and PPL have to
access more pages than the Snapshot scheme. However, this overhead is constant. In particular, the UBCC
has the best retrieval performance among the three usefulness-based schemes. The MVBT is slightly better
than the PPL because PPL uses some page capacity for theSA arrays. Hence, the answer is distributed
among more pages, increasing the retrieval cost. The RCS strategy needs to read the whole database prior

11

50

100

150

200

250

300

350

400

20 40 60 80 100

V
er

si
on

 R
et

rie
va

l C
os

t (
pa

ge
s)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

0

1000

2000

3000

4000

5000

6000

7000

20 40 60 80 100

V
er

si
on

 fi
le

 s
iz

e
(p

ag
es

)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

Figure 3: Version retrieval and storage cost with 50% usefulness requirement.

0

50

100

150

200

250

300

350

0 20 40 60 80 100

V
er

si
on

 R
et

rie
va

l C
os

t (
%

 o
f a

ns
w

er
 s

iz
e)

Usefulness Requirement (%)

UBCC
Partially Persistent List

MVBT

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

S
to

ra
ge

 C
os

t (
%

 o
f R

C
S

 s
to

ra
ge

)

Usefulness Requirement(%)

UBCC
Partially Persistent List

MVBT

Figure 4: Version retrieval and storage cost v.s. Usefulness

to the target version. Therefore, retrieving later versions gets more expensive than earlier versions. For
example, the I/O cost of retrieving the 20th version is 320% of this version’s size.

While the Snapshot provided the minimal retrieval cost, its storage cost is too expensive. (at worst
it’s quadratic). RCS has now the minimal storage cost since it stores only the changes. The space of all
usefulness-based schemes grows linearly with the number of changes (which increases with the number of
versions). However, each scheme increases at a different rate. In particular, the partially persistent schemes
(PPL, MVBT) use more space than UBCC. This is because in the partially persistent schemes copies are
triggered either by insertions or by deletions. In contrast, in the UBCC scheme, copies are triggered by
deletion operations only. Thus the copying in UBCC is less. Moreover, the MVBT and PPL schemes
”reserve” some empty space in a new page for future insertions. This space may remain unused, resulting
in higher storage cost.

The effect of usefulness. To study the effect of the usefulness parameter we run the same experiment as
above, but for differentU ’s. The experimental results are illustrated in Figure 4. The performance of the
PPL and MVBT schemes is depicted untilU = 50% since this is the highest usefulness they can achieve. In
contrast, the UBCC scheme can achieve higherU ’s. The version retrieval cost is depicted as the percentage
of the answer size. For example, retrieval cost of 140% means that the scheme accessed 40% more pages
than the size of the reconstructed version. Clearly, as the usefulness increases, a given version is stored
in smaller number of pages (since a page can hold more valid records) and the retrieval cost decreases.

12

0

200

400

600

800

1000

1200

1400

20 40 60 80 100

V
er

si
on

 R
et

rie
va

l C
os

t (
pa

ge
s)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100

V
er

si
on

 fi
le

 s
iz

e
(p

ag
es

)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

Figure 5: Version retrieval and storage cost with increasing document size.

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20

V
er

si
on

 R
et

rie
va

l C
os

t (
pa

ge
s)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18 20

V
er

si
on

 fi
le

 s
iz

e
(p

ag
es

)

Total number of versions

Snapshot
MVBT, 50% Useful

Partially Persistent List, 50% Useful
UBCC, 50% Useful

RCS

Figure 6: Version retrieval and storage cost with decreasing document size.

Another interesting observation has to do with the behavior at very smallU ’s. Note that the UBCC scheme
fills up a new page with records without reserving space for future insertions in this page. As a result, the
usefulness of a UBCC page can only decrease due to record deletions. A smallU implies that a page will
be considered useful even if it has very few valid records. For UBCC this means that many pages may have
low usefulness because of deletions. Since these pages are still useful, they are not copied. As a result the
answer will be clustered in many UBCC pages, thus increasing the retrieval cost. In contrast, fewer pages
in the PPL and MVBT schemes will reach small usefulness since new insertions in the reserved space will
increase usefulness.

As expected, when the usefulness increases, the space of all methods increases, too. Figure 4 depicts the
storage cost as a percentage over the (minimal) RCS storage. HigherU ’s imply that the copying threshold
will be reached faster and thus more copies are made.

Limited Resources. Setting the usefulness parameter serves as an optimization tool for each of the three
schemes. For example, consider the case of limited system resources (storage). That is, a version man-
agement system wants to improve its version retrieval performance, but it has only 200% extra free space.
According to Figure 4, for that space requirement, the MVBT scheme can guarantee 35% usefulness, PPL
45% usefulness, while the UBCC 75% usefulness. Choosing higher usefulness (UBCC) is definitely prefer-
able since the retrieval time will be better.

13

Increasing and Decreasing Document Sizes.Our next experiments examine the cases when a document
follows an increasing or decreasing size evolution. We first examine an evolution where the document
increases by 5% at each version. At each version there are 10% insertions and 5% deletions. The usefulness
requirement is again 50%. The results are shown in Figure 5. All usefulness-based schemes have very close
version retrieval performance that is proportional to the version size. The UBCC storage cost is very close
to the minimal storage of RCS, because the small deletion percentage rarely causes UBCC to copy useless
pages. The MVBT and PPL both use more space than UBCC because insertions trigger more copies. The
quadratic space of the Snapshot scheme is also observed.

Figure 6 depicts the performance for a document that decreases in size as it evolves. Here the document
size decreases by 5% per version. The version retrieval cost of all three schemes decreases as the version
size decreases. However, the RCS scheme retrieval grows linearly with the number of changes. Regarding
storage cost, the UBCC is again the closest to the minimal storage (RCS).

From the above experimental results, we observe that the usefulness based schemes provide version
retrieval cost that is proportional to the the size of target version at the expense of some extra space. The
extra space is linear to the total number of changes. The UBCC scheme consumes much less extra space
than MVBT and PPL at all levels of usefulness requirement. In particular, the performance of the UBCC
can be easily tuned through the usefulness parameter to the appropriate level of performance (depending on
the characteristics of the document evolution).

6 Conclusions

In this paper, we investigated several techniques to manage evolving structured documents, while preserving
intact its logical structure. We investigate theUBCC scheme that combines RCS version control with the
usefulness-based page management, and two other schemes, the multiversion B-trees and partially persistent
lists, that are extensions of techniques used in temporal databases and persistent object stores.

We found that theUBCC technique, originally presented in [3] and here improved with respect to script
management, is more efficient than the other two, in terms of I/O, and requires minimal storage overhead.

We are currently investigating related issues, including querying and restructuring of versioned docu-
ments, and the use of our versioning techniques in supporting cooperative document authoring.

7 Acknowledgments

We would like to thank Bernhard Seeger for kindly providing us the MVBT code.

References

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer,”On Optimal Multiversion Access Struc-
tures”, Proceedings of Symposium on Large Spatial Databases, Vol 692, 1993, pp. 123-141.

[2] Panel Discussion, M.J. Carey (moderator)Of XML and Databases: Where’s the Beef?, ACM SIGMOD
Conference, 2000.

[3] S-Y. Chien, V.J. Tsotras, and C. Zaniolo,Version Management of XML Documents, WebDB 2000
Workshop, Dallas, TX, 2000.

14

[4] J.R. Driscoll, N. Sarnak, D. Sleator and R.E. Tarjan,Making Data Structures Persistent, Journal of
Comp. and Syst. Sciences, Vol 38, pp 86-124, 1989.

[5] G. Kollios and V.J. Tsotras,Hashing Methods for Temporal Data, under revision, IEEE Trans. on
Knowledge and Data Engineering, 1999.

[6] A. Kumar, V. J. Tsotras, C. Faloutsos,Access Methods for Bi-Temporal Databases, IEEE Transactions
on Knowledge and Data Engineering, Vol. 10, No. 1, 1998, pp 1-20.

[7] D. Lomet and B. Salzberg,Access Methods for Multiversion Data, ACM SIGMOD Conference, pp:
315-324, 1989.

[8] Marc J. Rochkind,The Source Code Control System, IEEE Transactions on Software Engineering,
SE-1, 4, Dec. 1975, pp. 364-370.

[9] B. Salzberg and V.J. Tsotras,A Comparison of Access Methods for Time-Evolving Data, ACM Com-
puting Surveys, Vol. 31, No. 2, pp: 158-221, 1999.

[10] Walter F. Tichy,RCS–A System for Version Control, Software–Practice & Experience 15, 7, July 1985,
pp. 637-654.

[11] V.J. Tsotras, N. Kangelaris,”The Snapshot Index, an I/O-Optimal Access Method for Timeslice
Queries”, Information Systems, An International Journal, Vol. 20, No. 3, 1995.

[12] WWW Distributed Authoring and Versioning (webdav).http://www.ietf.org/html.charters/webdav-
charter.html

[13] P.J. Varman and R.M. Verma,An Efficient Multiversion Access Structure, IEEE Trans. on Knowledge
and Data Engineering, Vol.9, No. 3, pp: 391-409, 1997.

15

