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Abstract

We present a new approach for indexing animated objects and efficiently answering queries about
their position in time and space. In particular, we consider an animated moviepasgiatemporal
evolution. A movie is viewed as an ordered sequence of frames, where each frame is a 2-dimensional
space occupied by the objects that appear in that frame. The queries of interest are range queries of the
form: “find the objects that appear in arSabetween frameg; and f;”, as well as nearest neighbor
queries like: “find they nearest objects to a given positidnbetween frameg; and f;”. The straight-
forward approach to index such objects considers the frame sequence as another dimension and uses
a 3-dimensional access method (like an R-Tree or its variants). This however assigns long “lifetime”
intervals to objects that appear through many consecutive frames. Long intervals are difficult to cluster
efficiently in a 3-dimensional index. Instead, we propose to reduce the problem to a partial-persistence
problem. Namely, we use a 2-dimensional access method that is made partially persistent. We show
that this approach leads to faster query performance while still using storage proportional to the total
number of changes in the frame evolution. What differentiates this problem from traditional temporal
indexing approaches is that objects are allowed to move and/or change their extent continuously between
frames. We present novel methods to approximate such object evolutions. We formulate an optimization
problem for which we provide an optimal solution for the case where objects move linearly. Finally, we
present an extensive experimental study of the proposed methods. While we concentrate on animated
movies, our approach is general and can be applied to other spatiotemporal applications as well.

1 Introduction

We consider the problem of indexing objects in animated movies. In our setting, an animated movie corre-
sponds to an ordered sequence of frames. In this sequence, each frame (or screen) is a 2-dimensional space
that contains a collection of objects. As the movie proceeds, this collection of objects changes from one
frame to the next (new objects are added, objects move, change in size, disappear, etc.) A conceptual view
of a movie sequence appears in Figure 1. Tledy axes represent the 2-dimensional frame screen while
the f axis corresponds to the frame sequence. FrArnentains objects; (which is a point) and, (which
is a region). At framefy, objectos is inserted whileo; moves to a new position ang shrinks. Object
01 moves again at framg;; oo continues to shrink and disappears at frafgnd-or the purposes of editing
or assembling movie sequences, it is important to have efficient ways to access and replay all, or parts, of
such movies. In particular we are interested in topological range queries of the form: “find all objects that
appear in ared between frameg; and f;”, and nearest neighbor queries like: “find th@earest located
objects to positiod between frameg; and f;”. VariablesS and A take values inside the 2-dimensional
frame screen. An example query is illustrated in figure 1: “find all objects insideSare&rame £”; only
objecto, satisfies this query.

Objects in movie sequences can be referred at three different abstraction levels, mamefeature
andsemantidevels [32, 41, 19, 26]. At the raw abstraction level, an object is an aggregation of pixels from
a frame. In this level, the interest is mainly in object comparisons which are performed in a pixel by pixel
fashion. At the next level, frames are characterized by image features such as gray scale, luminance or
color histogram. Objects are identified through frame regions that consist of homogeneous feature vectors.
Queries in this level are similarity queries in a multidimensional feature space. At the third level, semantic
information about the objects and their relative positions in a frame has already been extracted and can thus
be used to index these objects. Such semantic information leads to content-based queries, i.e., queries about
the actual objects in a movie.

Most of the previous research on indexing images or movies has concentrated on the raw and feature
levels and examines similarity based queries [15, 17]. Our work is different in that: (i) it deals with the
semantic level, and, (ii) the queries are topological in nature (i.e., the relative position of objects in space



and frame is of importance). This is a novel problem. Recently, [48] examines similar topological queries
for multimedia applications but it addresses a special case (the “degenerate” case discussed below).
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Figure 1:A conceptual view of a movie sequence.

We propose to index an animated movie sequence as a spatiotemporal evolution. That is, frgme ids
with ¢ > 0, correspond to consecutive time instants. In the rest of the paper, we will use the terms time
instant and frame number interchangeably. By considering an animated movie as a spatiotemporal evolution
each object is assigned a record with a “lifetime” interiyalf;) created by the frames when the object was
added (insertion frame) and deleted (deletion frame) from the movie. We consider two types of evolutions,
namely thedegeneratecase and thgeneralcase. In the degenerate case (Figure 2), objects are simply
added or deleted from the movie. That is, during its lifetime, an object remains in the same position and
retains the same 2-dimensional extent (region). This type of evolution is rather static. The only changes in
the degenerate evolution are object insertions and deletions. A deletion is a "logical” operation that simply
updates the lifetime interval of the deleted object's record. Important for the design of the index is the
number of object insertiond’; this represents the total number of records ever created and is a measure for
the storage consumed by the index. More interesting (and realistic) is the general case where objects are
allowed to move, and grow/shrink among frames during their lifetime (Figure 1). However, in the general
case it is not obvious how position and extent changes can be quantified as object insertions. Consider an
object that moves from positioa in frame f; to a new positiorC' in the next framef; ;. The simplest way
to represent such movement is to delete the object from posttimnframe £, ; and reinsert it in position
C' at the same frame. This creates two records for this object, one record with posiaod lifetime
ending atf; ., and one record with positio@' and lifetime starting af ;. The object’s lifetime has been
“artificially” truncated into two records with consecutive and non-overlapping intervals. This approach is
not efficient if objects alter positions/extents continuously through frames. A large number of artificial
insertions is created and thus the index storage requirements increase.

A better solution is to store the functions describing how objects move or vary their extents. In animated
movies an object’s frame evolution is represented by some function [1]. Even though general functions can
be used, for simplicity we assume an object can move or grow/shrink thrdirgdaafunction of time. Then
a new record is inserted only when the parameters describing an object's (movement or extent) function
change. The new record will maintain the object’s lifetime under the new movement/extent function. Thus
the number of insertiond/ in the general evolution case corresponds to: (i) regular object insertions, and,
(i) insertions due to function parameter changes.

We distinguish between two different modes of operation. In the On-Line mode, when a new object is
inserted at framg;, its deletion frame is not yet known, so its lifetime is initiated gsow) wherenowis
a variable representing the (ever increasing) current frame number. If the object gets deleted at a later frame
[fj, its lifetime interval is updated t¥;, f;). In contrast, the Off-Line mode assumes advance knowledge
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of the insertion and deletion frames for each object as well as its positions and extents during its lifetime.
Clearly, in the Off-Line mode, the constructed index is expected to be more efficient since we have more
information about the data. This paper concentrates on the Off-Line mode, since this is the case in animated
movies. There are other spatiotemporal applications where the future of the evolution is unknown and the
On-Line mode is more appropriate (for example storing the evolution of a collection of cars moving in the
plane).

Using the spatiotemporal approach, one straightforward way to index animated objects is to consider
time as another index dimension. Each object is then stored as a 3-dimensional rectangle in a traditional
spatial index (e.g. an R-Tree [16] or its variations [25, 21, 38, 6]) where the “height” of the rectangle
corresponds to the object’s lifetime interval. The “base” of the rectangle corresponds to the largest 2-
dimensional minimum bounding rectangle (MBR) that the object obtained during its lifetime. While simple
to implement, this approach does not take advantage of the specific properties of the time (frame) dimension.
Objects that remain unchanged for many frames will have long lifetimes and thus, they will be stored as
long rectangles. A long-lived rectangle determines the length of the time range associated with the index
node in which it resides. This creates node overlapping and leads to decreased query performance [24].
Since all data is available in advance, one way to achieve better clustering is to use "packed” R-Trees, like
the Hilbert R-Tree [21] or the STR-Tree [25].

Another attempt to overcome the problems with clustering long lifetime intervals, is to fragment them in
smaller and easily manageable pieces. This approach has been proposed in the Segment R-Tree (SR-Tree)
[23] which combines properties of the R-Tree and the Segment Tree [37]. Interval fragmentation implies
storing fragments of the same interval in many places. This, in the worst case creates a logarithmic storage
overhead and requires more elaborate query processing.

In contrast, we propose to use a different approach in indexing animated objects which combines a
spatial index (R-Tree) with the partially persistent methodology. A data structure is palisidten{14] if
an update applied to it creates a new version of the data structure while the previous version is still retained
and can be accessed. A data structure that does not keep its past issphkederal Partial persistence
implies that all versions can be accessed but only the newest version can be modified.

Partial persistence fits nicely with the degenerate evolution case since in that case an update corresponds
to either an object addition or a deletion. Methods to make a disk based structure (in particular a B-tree)
partially persistent have appeared in the area of temporal databases [20, 5, 27, 49, 24, 36]. [24] presents the
Bitemporal R-Tree which is a partially-persistent R-Tree used to index bitemporal objects. This partially-
persistent R-Tree can be easily extended to index the degenerate case of animated objects.

The general evolution case where objects change continuously is different. One approach is to represent
an object’s movement or extent change by the largest 2-dimensional MBR that the object obtained during
its evolution MmaxMBR. For example, in Figure 1 the largest MBR in the evolution of objgciccurs at
frame f;. Then the evolution ob, can be represented by the insertion of this MBR at frginand the
deletion of thesameMBR at framef;. While this representation creates only one record, it creates a large
empty space for the partially persistent methodology. Even though ahjestluces its extent as frames
advance, it is still represented by the larger MBR. Empty space in R-Trees is known to deteriorate query
response time.

To reduce the empty space we propose to introduce a limited number of artificial updates. An artificial
update deletes an existing object and reinserts it, thus adding an extra record. To maintain the index storage
linear to NV we limit the number of artificial updates to be a fractiondf To apply the partially persistent
methodology one must first decide: (i) which objects should be artificially updated and, (ii) on what frames
the artificial updates should be created. We first formulate these questions as an optimization problem. Then
we provide a greedy algorithm that optimally finds the artificial updates for the case when objects move with
linear functions. The algorithm is based on a spegiahotonicity property that holds for linear changes.

This property holds also when objects change one of their (two) extent dimensions linearly. If both extent
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dimensions change, the algorithm does not provide the optimal solution. Nevertheless, it serves as a good
heuristic that performs very well in practice.

To show the merits of our approach we compare the Partial Persistent R-Tree with: (i) the standard 3-
dimensional R-Tree [6], (ii) the packed STR-Tree [25] and (iii) the Segment R-Tree [23]. Both selection and
nearest neighbor queries are examined. Extensive experimental results indicate that the query performance
of the Partial Persistent R-Tree consistently outperforms its competitor approaches for a number of diverse
guery workloads. Moreover, the storage of the Partial Persistent R-Tree remains linear to the number of
insertions\V.

Section 2 provides background on the partially persistent R-Tree and the degenerate case. Section 3
discusses the general case of animated objects as well as the greedy algorithm. Section 4 contains exper-
imental results. Section 5 presents related work while 6 concludes the paper and presents future research
work.

2 Preiminaries

For the Off-Line problem we measure the performance of an index using two costs: query response time and
storage requirements. Given the large sizes of animated movies we assume the data is disk resident. Hence
the indexing scheme should be designed so as to minimize the number of page transfers (I/0O’s) between
the disk and main memory needed to answer a query while keeping the index storage requirements small.
There are two basic parameters that affect performance: (i) the number of insévtidiisthe number of

records that fit in a pag®. We assume that one 1/O transfers one page. Ideally, we would like our index
solutions to use linear storage, i.@.g%) disk pages [18]. Note that for the On-Line problem an additional

cost measure is the index update time (the time to process an update). This is not critical in the Off-Line
setting since the whole set of updates is known in advance and the index is built once.

To further exemplify the above costs, consider two obvious but inefficient ways to address topological
queries about animated movies. The first is to store in the database snapshots of all movie frames. This
"snapshot” approach provides fast access to the frames of interest, but extra work is needed to locate the
objects in the query are®. The main disadvantage however is the high storage redundé)r@)o. The
second approach is to store the changes between frames in a "log”. The storage requir@(%mibiﬂ
the query time becomes large. At worst the whole log must be read result'(n%tpquery time. A com-
bination of the above would be to store a number of frame snapshots and the sequences of changes between
successive snapshots (similar idea as in MPEG). However, this approach has the following disadvantages:
(i) it is not obvious how often to keep snapshots (frequent snapshots increase storage requirements, fewer
snapshots increase query time), (ii) locating the objects in the querySast&l requires extra effort that
affects the query response time.

We proceed with a discussion of the 3-dimensional R-Tree approaches, namely the R-Tree, the STR-
Tree and the SR-Tree. Then we summarize the properties of the Partially Persistent R-Tree. The degenerate
evolution case is used as an example in this section.

2.1 The 3-dimensional R-Tree approaches

The R-Tree [16] is a hierarchical, height-balanced index. It is a generalization of the B-tree for multidi-
mensional spaces. Multidimensional objects are represented by a conservative approximation, usually their
MBR. This approximation may introduce empty or dead space, which is the part of the MBR that is not
covered by the object. The R-Tree consists of directory and leaf (data) nodes, each node corresponding to
one disk page. Directory nodes contain index records of the fesmtainer, ptr) whereptr is a pointer to

a node in the next level of the tree anehtainer is the MBR of all the records in the descendent node. Leaf



nodes contain data records of the fofmntainer, oid) whereoid is the object-identifier of the real object
andcontainer is its MBR. All the nodes except the root must have at leasecords (usuallyn = B/2).

Thus the height of the tree is at maést,,,n wheren is the total number of objects. Searching in the R-Tree

is similar to the B-tree. At each directory node all records are tested against the query and then all child
nodes that satisfy the query are visited. However, a drastic difference from the B-tree is that the MBRs in a
R-Tree node are allowed to overlap. As a result, when answering a query, multiple paths may be followed,
although some of these paths may not contribute to the answer. At worst all leaf nodes may be visited,
however in practice R-Trees have been shown to work much faster.

For a degenerate evolution (figure 2), an object can be represented by a 3-dimensional MBR starting
from the frame the object appears in the screen until the frame when it disappears. The R-Tree will attempt
to store records with long lifetimes (like objeat in Figure 2) as long MBRs, causing a great deal of
overlapping between the nodes of the R-Tree. Large overlapping is known to decrease the R-Tree query
performance drastically ([24, 23]).

Another alternative for indexing the 3-dimensional MBRs is to use a packed R-Tree ([21, 25]). In our
experiments we consider the STR-Tree [25]. The basic idea in a packed tree is first to sort the indexed
objects and then fill the data pages by placi@onsecutive objects in each page. The same procedure is
repeated recursively for the upper levels of the tree until the root node. The advantage of packing is that the
storage utilization is almost 100%. Also for specific type of datasets and queries, a packed R-Tree has been
shown to be more efficient for answering queries than a traditional R-Tree (like point datasets and point
gueries [25]). However, there are cases where a packed R-Tree is worst than a traditional R-Tree, in terms
of query performance. This is because the packed R-Tree may place together in a page objects that are
consecutive in ordering but which are not close in space. This will create large empty space and possibly
some overlap which affect query performance.

y

f

last

frame sequence
Figure 2:A degenerate spatiotemporal evolution with four objects.

The SR-Tree [23] has been introduced as a remedy for storing objects with long intervals. Intervals can
be stored in both leaf and non-leaf SR-Tree nodes. An intdrismplaced to the highest level nodésuch
that I spans at least one of the intervals represented sychildren nodes. If does not spatX, spans at
least one of its children but is not fully containedXn thenI is fragmented. Using this idea, long intervals
will be placed in higher levels of the tree, which in turn decreases overlapping in the SR-Tree leaf nodes. In
contrast, a long interval stored in a leaf node of a regular R-Tree will "elongate” the area of this node thus
exacerbating the overlap problem.

However, if large numbers of spanning records or fragments of spanning records are stored higher in
the SR-Tree, the fan-out of the index may decrease as there is less room for pointers to children nodes. [23]
suggests to vary the size of the nodes in the tree, making higher-up nodes larger. "Varying the size” of a



node means that several pages are used for one node. This scheme will "add” some page accesses to the
query performance cost.

If an interval is inserted at a leaf SR-Tree node (because it did not span any other node) it may cause the
boundaries of the MBR covered by this leaf node to be expanded. Similar expansions may also be needed
on the MBRs of all nodes on the path to this leaf node. This in turn can change the spanning relationships
since records may no longer span children which have been expanded. Such records are reinserted in the
tree, possibly being demoted to occupants of nodes they previously spanned. Splitting nodes may also
cause changes in spanning relationships as they make children smaller -former occupants of a node may be
promoted to spanning records in the parent. Because of fragmentation, the worst case storage requirement
for an SR-Tree i®)((N/B)logs(N/B)) [36]. However, this is a pathological scenario that rarely happens
in practice. To further improve query performance, [23] proposed the Skeleton SR-Tree, an SR-Tree that
pre-partitions the entire domain into a number of regions. This pre-partition is based on an initial estimate
about the data distribution and the number of intervals to be inserted. After partitioning, the Skeleton SR-
Tree is populated with data.

2.2 ThePartially-Persistent R-Tree

Consider the example in Figure 2 and assume that the objects in fiaane indexed by a 2-dimensional
R-Tree. As the frame number advances, this 2D R-Tree evolves, by applying the updates (object addi-
tions/deletions) as they occur in the appropriate frames. Storing this 2D R-Tree evolution corresponds to
making a 2D R-Tree patrtially persistent.

By “viewing” a degenerate evolution as a partial persistence problem, we obtain a double advantage.
First we dis-associate the indexing requirements within a frame from the frame sequence. More specifically,
indexing within a frame is provided from the properties of the ephemeral 2D R-Tree while the frame evolu-
tion support is achieved by making this tree partially persistent. Second, partial persistence avoids the long
3-dimensional rectangles and thus the extensive overlapping due to long lifetimes. Moreover, the partially
persistent R-Tree uses storage that is linear to the number of insertions in the degenerate frame evolution.
To illustrate the partial persistence methodology we present how a 2D R-Tree is made partially persistent.
Note that the methodology applies to other spatial indexes; we use a 2D R-Tree for simplicity.

While conceptually the partially-persistent R-Tree (PPR-Tree) [24] records the evolution of an ephemeral
R-Tree, it does not physically store snapshots of all the frames in the ephemeral R-Tree evolution. Instead
it records the evolution updates efficiently so that the storage remains linear, while still providing fast query
time.

The PPR-Tree is actually a directed acyclic graph of nodes (a node corresponds again to a disk page).
Moreover, it has a humber of root nodes, where each root is responsible for recording a subsequent part
of the ephemeral R-Tree evolution. The various roots can be easily accessed through a linear array called
the root*. Each entry in the root* contains a lifetime interval and a pointer to the root responsible for that
interval.

Data records in the leaf nodes of a PPR-Tree maintain the frame evolution of the ephemeral R-Tree
data objects. Each data record is thus extended to include the two lifetime fietdstion-frameand
deletion-frame Similarly, index records in the directory nodes of a PPR-Tree maintain the evolution of
the corresponding index records of the ephemeral R-Tree and are also augmented with insertion-frame and
deletion-frame fields.

An index or data record is calleglive for all frames during its lifetime interval. A leaf or a directory
node is calledhlive if it has not beersplit. With the exception of root nodes, for all frame numbers that a
node is alive it must have at leaBtalive records D < B). This requirement enables clustering the objects
that are alive at a given frame number in a small number of nodes (pages), which in turn will minimize
the query I/O. The PPR-Tree is created incrementally following the update sequence. Consider an update



(insertion or deletion) at framg. To process this update the PPR-Tree is searched to locate the target leaf
node where the update must be applied. This step is carried out by taking into account the lifetime intervals
of the index and the data records visited. This implies that the search follows records that are alive at frame
fi. After locating the target leaf node, an insertion update adds a data record with an ifjfenvat) to

the target leaf node. A deletion update will update the deletion-frame of a data record from fiow to

An update leads to atructural change if at least one new node is creatdbhn-structuralare those
updates which are handled within an existing node. An insertion update triggers a structural change if the
target leaf node already ha@srecords. A deletion update triggers a structural change if the resulting node
ends up having less thab alive records as a result of the deletion. The former structural change is a
node overflowthe latter is aveak version underfloyb]. Node overflow and weak version underflow need
special handling: aplitis performed on the target leaf node. This is reminiscent of the time-split operation
reported in [27] and the page copying concept proposed in [46]. Splitting amatlFamef is performed
by copying to a new nodg the records alive in node at f. Nodez is consideredleadafter framef.

(We can assume that the deletion-frame field of:allalive records is changed fbeven though this is not
needed in practice).

To avoid having a structural change on nadsoon, when a new node is created the number of alive
records must be in the range + ¢ and B — e (wheree is a predetermined constant). This allows at
leaste non-structural changes on this node before a new structural change. Thus before the new node is
incorporated in the structure it may have to be merged with another node (this happdrasitess than
D + e alive records and is calledsarong version underflowor, "key-split” into two nodes (ify has more
thanB — e alive nodes, i.e., atrong version overfloy For details we refer to [24, 49, 5].

An example of a PPR-Tree is shown in Figure 5 using the evolution presented in Figure 3 and Figure 4.
In particular, Figure 3 shows the MBRs of 20 objects (numbered from 1 to 20) that appeared in a small
animated video while Figure 4 depicts the lifetimes of these objects. Betes, D = 2 ande is set to 1.

The root* entries show the lifetimes associated with each pointer and the pointers to the root nodes of the
PPR-Tree. Similarly, index nodes depict the lifetime intervals and the corresponding pointers to the next
level of the tree. For simplicity, data nodes show only the stored object ids (and not their lifetimes). Note
that an object can be stored in more than one data page. For example object 14 is stored in 5 data pages
since it has a long lifetime.
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Figure 3:Various object MBRs.

Answering a range query about regiSmand framef has two parts. First, the root which is alive jat
is found. This part is conceptually equivalent to accessing the root of the ephemeral R-Tree which indexes
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Figure 4:Corresponding object lifespans.

frame f. Second, the objects intersectifgare found by searching this tree in a top-down fashion as in a
regular R-Tree. The lifetime interval of every record traversed should contain the fraamel at the same

time it's MBR should intersect regiofl. Answering a query that specifies a frame intefyalf) is similar.

First all roots with lifetime intervals intersecting the frame range are found and so on. Since the PPR-Tree

is a graph, some nodes are accessible by multiple roots. Re-accessing nodes can be avoided by keeping a
list of accessed nodes.

To answer nearest neighbor queries we use the algorithm proposed in [33] and later refined in [10]. The
query consists of a point or object and a frame sequence. The answer contaime#nest objects that are
closest to the query object during the specified frame sequence. The algorithm proposed in [33] can be used
directly; the only difference is in the way distances are computed. All objects that are not alive during the
guery frame sequence have infinite distance to the query object. On the other hand for the objects that have
lifetimes intersecting the query frame sequence, the distance is computed using their extent dimensions.
The algorithm first visits the root of the tree and then traverses the tree in a top-down fashion. At each node,
a list of the subtrees is kept, ordered by the minimum distance of each subtree to the query object. The
subtrees are then visited in sorted order. A subtree is pruned from the search if the minimum distance of
this subtree is larger than the distance ofg¢heth nearest object found so far. The same algorithm is used
with the PPR-Tree, after the root of the corresponding ephemeral R-Tree is found.

3 The General Evolution Case

The problem in the general case, is how to represent objects that continuously change positions and/or extent
over time. Objects are still represented by MBRs but an efficient solution should minimize the empty space
introduced by the MBR representation. To achieve this goal we introduce artificial deletions and reinsertions
of objects. We proceed with some definitions.

Definition 1 Aspatiotemporal objectO” is defined as the 3-dimensional volume created by a 2-dimensional
spatial objecto that moves and/or changes its extent during its lifetime intefval
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Figure 5:The PPR-Tree created from the above object evolution.
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In the rest of the paper we use capital letters to represent spatiotemporal objects; we sometimes drop the
lifetime exponent to simplify the notation.

Definition 2 LetG be a set of spatiotemporal objecEEmpty: G — R defines a function that takes as input
a spatiotemporal object and returns the empty space that is introduced by approximating the spatiotemporal
object by a 3-dimensional MBR.

Figure 6 shows the movement of objecfrom framef; to framefs. The corresponding spatiotemporal
object is the shaded volume; the empty space is the volume that is contained inside the 3-dimensional MBR
and is not shaded.

fy fa

Figure 6:A spatiotemporal object.

Next we define the (artificial) split operation. Consider the spatiotemporal object created by the evolu-
tion of objecto from frame f; to framef;. A split operation at fram¢,, wheref; < f, < f;, artificially
deletes object at framef; and reinserts it at the same frame with the same extent at the same position. As
a result, the original spatiotemporal objef:-/i) is replaced by two new spatiotemporal objects, namely
Ol:fs) and Olf+/i), By adding two new spatiotemporal objects instead of the original one, the overall



MBR empty space is expected to decrease since the original evolution is represented using more detail. A
similar idea has been used in [30, 31] for indexing spatial objects with the help of Z-codes.

Figure 7 shows the result of a split operation performed at fr§rma the object evolution of Figure 6.
The view from thex — axis is depicted. That is, the spatial object is shown as an interval that moved along
they — axis from frame f; to frame f,. The gain in empty space is equal#p + F,. For the partially
persistence approach, the above split is seen as having an gbijéti lifetime [f1, fs) and an objeciy
with lifetime [fs, f2). Without the artificial split, we had an objegt, with lifetime [f1, f2). The rationale
in splitting is to decrease the empty space, and consequently the overlapping of nodes in the ephemeral
R-Tree. Thus, the query performance of the index is improved at the expense of using more storage. Every
split increases the number of the indexed objects by one.

Eq

ytot

E2

frame sequence
Figure 7:Split operation of an 1-dimensional object that moved continuously from frane fo.

A more general split operation allows a spatiotemporal object to be divided multiple times.

Definition 3 LetOl/i:/i) be a spatiotemporal objec8plit-k(O) is defined as an operation that partitions
Olf4i) into k + 1 objects usingp, splitting points, wheref; < sp; < fj,1 = 1,..., k.

For objects that move with a linear motion over time, the best choick mlitting points over a given
spatiotemporal object (so as to minimize the empty space) is to take equidistant splits during the lifetime of
the spatiotemporal object.

Lemmal LetOUs/<] be a spatiotemporal object created by a linear movement,rarisl the number of
splits. The sef fs + 7 * %,z = 1,...,m} is the set of splitting points that maximizes the gain in empty
space.

Proof. We first consider a point object that moved with a linear motion between frgnzesl f.. Let «
and g be the speed of the object dh andY directions respectively. ifn = 1, then we need to find one
splitting point that maximizes the gain in empty space. Assume that we split at pogido[f, f.]. Then
the gain in empty space is given from the following formula:

G(f) =V = (fPaf + (F — f)’ap)

whereF = f. — fs;, andV = F x Fa x F5. The value off that minimizes the above gain function is
f=1Ffs+ % (by solving the equatioﬁji% = 0.) Consider now the case where = 2 and we want to
find the positions of the splitting pointé and f>. Let assume that we decided the optimal position of the
first split f1. Then, we need to find the position of the second split, that is, a position betfvaad f..
This problem is equivalent to the problem with = 1, but for the spatiotemporal object/":/e]. Using

the result form = 1, the best splitting position is the middle point betwegemand f.. Similarly, the best
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splitting position forf; is the middle point betweefi and f,. Therefore, the best values firand f, are
fs+ % andfs +2x % respectively. Using the same argumentifoe= k we get that the best splitting
points are{f, + i+ L=l i =1, k}.

If the object is a rectangle, letandy be the size of the th& andY side respectively (as in figure 9(c)).
Then if we split the spatiotemporal object using one splitting pginthe function that gives the gain in

empty space is:

G(f) =V —{aB((F = £)° + £°) + (ay + o) ((f = £)” + f?) + ayF}

whereF = f. — fs,andV = F « (Fa + z) * (F + vy).

The value off that minimizes the above function is agdin= f; + % Form > 1, we can use the
same argument as above to prove that the same splitting points are optimal here, too.

Note that equidistant splits are optimal for objects that (i) move linearly (while retaining the same extent)
or (i) change one of their extent dimensions linearly. However, it is not the optimal choice for objects that
change both their extent dimensions. Although, there are ways to compute the best splitting points even in
that scenario, these methods are computationally expensive. Therefore, we concentrate on linearly moving
objects (i.e., no extent change) for which we will provide an optimal solution. Our solution can then be
used as a good heuristic for the optimal choice of splits even for objects that change both extent dimensions
linearly.

Consider now the problem of choosing the best splits that decrease the empty space over a set of (linearly
moving) spatiotemporal objects. Clearly, as the number of splits increases, a more accurate representation
of the spatiotemporal objects is achieved and thus the empty space is reduced. On the one extreme is the
case when splitting occurs for every spatiotemporal object. However, this creates high storage overhead.
A more realistic assumption is to put an upper limit on the number of splits. Then the challenge is to find
which spatiotemporal objects to split and where to split them. More formally we consider the following
problem, also termed the Minimization of Empty Space (MES) problem:

Problem Statement. Given a set of spatiotemporal objec¥sand an upper limit on the number of
splits &, find the optimal way to apply these splits so as to minimize the empty space.

The gain function below measures the gain in empty space/afiplits.

Definition 4 Let G be a set of spatiotemporal objects. Functigain: G x N' — R, takes as input a
spatiotemporal objead and an integetk and returns the following real value:

gain(0, k) = Empty(0) — >~ Empty(0;)
1<i<k+1

whereQ; are all the objects generated after applying the operation spltjk(

For example, in the 1-dimensional case that is shown in Figure 7, wegaan€0, 1) = F + Ej.
We show that a speciahonotonicity property holds when objects move linearly over time. This
property is used to prove the correctness of our splitting algorithm.

Lemma2 Let O be a spatiotemporal object created by a linear movement. Th@n, = gain(O, k) —
gain(O, k — 1) for eachO andk > 1 is a monotonically decreasing function /af

Proof. The position alteration is described by an equation of the fofff): = «f + 3. First we provide
formulas for the gain function and then show that the monotonicity property holds. Consider first the
case where objects move or change their extent linearly on a 1-dimensional environment. An example is an
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interval that moves linearly over time on a line. The gain obtained by spliktimges such a spatiotemporal
objectO is given by the equation:

k
gain(0O, k) = k—HEmpty(O)
where Empty(O) is the empty space introduced by approximating the original spatiotemporal object with
an MBR.

Figure 8 depicts an 1-dimensional objétthat is first split once and then twice. With one split, the best
split position is at the middle of the horizontal side of the original spatiotemporal object. The gain in empty
space igjain(0,1) = %El + %Eg = %Empty(O). With two splits, the best split positions are in the first
third and the second third of the horizontal side. Newin(O,2) = 2Empty(O). (Note that the above
equation holds also for 1-dimensional objects that linearly change extent, or move and change extent.)

E;

E;

T
Figure 8:A 1-dimensional moving object after one and two splits.

The gain formula for a 2-dimensional moving object depends on whether the object has extent. For the
case of a point moving linearly, the gain obtained afteplits is:

2 _
%Empty(())

Assume that the moving point has initial positios, y1, t1) and final position(zz, y2, t2), wherez, # o,

y1 # yo andt; # te. Then the MBR has volum¥ = abc = (z9 — z1)(y2 — y1)(t2 — t1) which is equal

to the empty space, since the moving point does not have extent (see Figure 9k gxities, we gek + 1
spatiotemporal objects, approximated with- 1 MBRs. Since we split in equidistant points, each rectangle

(MBR) has sides;%;, 727 and%;. The total volume for these rectangles is:

gain(0, k) =

a b c
k+1k+1k+1

and finally the gain in empty space from the&plits is:

‘/splz'ts = (k + 1)

(k+1)2-1
(k+1)2

abc

gain(O, k) =V - Vsplits =
and this is equal to the previous equation.

An object with extent is represented by its 2-dimensional MBR. Hence consider a rectangle object that
moved from some initial position to a final one. The position of this rectangle is defined by the position of
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Figure 9:Three cases for 2-dimensional moving objects, (a) point, (b) moving rectangle with the same starting and
ending x-coordinates and (c) moving rectangle with different starting and ending x and y coordinates.

its center. If the initial and final positions have one common coordinate (x or y), the gain is described by
a similar formula as in the 1-dimensional space. Note however that the empty space in the 1-dimensional
case refers to an area while in two dimensions it refers to a volume.

If the initial and final positions have different x and y coordinates (see Figure 9), the gain formula
involves also the spatial extent of the object. Using the same arguments as for point objects it can be shown

that: (b +1)° . 2
+1)° -1
2 Cabe— ———— (ab R
G abe 0T 1)2(a y + acr) 0t 1)2a:1:y
Using the above gain functions it is easy to prove th@t) = gain(O, k) — gain(O, k — 1) for eachO and
k > 1is a monotonically decreasing function fofi.e.,
df (k)

—— <0.
dk  —

gain(0, k) =

O

To indicate that the above property does not hold for spatiotemporal objects created by non-linear move-
ment functions, consider the example in Figure 10. Here two splits on a 1-dimensional moving object pro-
vide a gain (shown as a shaded area) that is larger than the gain with one split. Similar examples exist for
2-dimensional objects.

The monotonicity property simply states that after some point, the more we split a spatiotemporal object
the less gain we get, in terms of empty space. So the first few splits will give higher gain in empty space.

The MES problem minimizes the empty space in the 3-dimensional space. However by minimizing this
empty space, we also minimize the total empty space for the PPR-Tree. Empty space in the PPR-Tree is
introduced due to approximating a moving object with the 2-dimensional rectangle that encloses the object
for all time instants during its lifetime (maxMBR). Introducing the artificial splits enables the PPR-Tree to
better approximate an object’s evolution. Hence its query performance is expected to improve.

On the other hand, the 3D R-Tree will not be significantly affected by the splits. To justify this, we use
the results presented in [43]. In this paper, the authors give an analytical model to approximate the number
of pages accessed in an R-Tree, given a range query. This number is proportional to the number of indexed
objects and also proportional to the density of the dataset. In particular, they give the following equation for
the number of data pages accessed for a 3-dimensional datasdtygfer-rectangles.

m

DA(q) = 7

W g (P15 4 ) (PLyss 4
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MBR MBR MBR

Figure 10: The spatiotemporal object created by a 1-dimensional moving point and the gain after performing one
and two splits.

and
DY3 1.,
f1/3

wheref is the capacity of each node in the tree, gnd (¢, gy, ¢.) iS a range query. Als® is the density

of the data objects and is defined as the average number of objects that contain a given point in the data
space. These equations show that split operations will not necessarily decrease the query overhead. While
a split operation decreases the density of the datéd¥etaf the same time increases the number of indexed
objects (n).

D=1+

3.1 An Optimal Greedy Algorithm

Here we introduce an optimal greedy algorithm for the MES problem with linearly moving objects. We also
discuss possible implementation methods of the algorithm.

Figure 11 depicts the algorithm. We use the notatiprio denote a vector of siz& (the number of
spatiotemporal objects created by the linear movements). Each position in this vector corresponds to an
object and stores the number of splits for the associated object in the optimal solution. We initiate this
vector with theN dimensional zero vectdr = (0, ...,0). We define vectoe; to have zero values in all
positions excepj, where the value is equal to one (1). Now, we find the optimal solution for one, two, ...,
up to K splits. The basic idea is that the optimal solution f@plits can be derived from the solution for
1 — 1 splits, if we choose to split some object one more time. Thus we choose from all possible objects, the
one that gives the higher gain in empty space.

A naive implementation of this algorithm will have complexity K N) operations in main memory.

Note that to find the object that gives the optimal solution with one more split, one needs to check only
the objects that give the maximum gain. Hence, the objects can be stored in a priority queue, sorted by
the gain obtained if each object is split once more. Then at each step the object that gives the highest gain
is chosen. Suppose that at some point objed chosen to be split and assume this object has already
splits. Then the algorithm computes the difference between the gain obtained by splitting the object using
[ + 1 splits (gain(oj,! + 1)) and its current gain. That is, the object is inserted in the queue with value
gain(oj,l + 1) — gain(oj,1).

Next we state and prove the following theorem:

Theorem 1 There is an algorithm that solves the MES problem for linearly moving objects optimally. This
algorithm can be implemented in main memory with compleXity + KlogN) and in external memory
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Given a set7 of N (linear) spatiotemporal objects and a value for the input parané&i@n uppe
limit to the number of splits),

—

1. SetQ, = 0. Compute for each object the gain obtained with one split and insert it to a priority
queue.

2. Repeat foi = 1to K

(a) Getthe top element of the queue, delete this object and let this be gbject
(b) SetQ; = Qi1 +e;

(c) Compute the difference in gain obtained if objgds split one more time and insert the
object into the queue using this value.

Figure 11:The Optimal GREEDY algorithm

with O(%logu %) 1/0’s, where M is the size of main memory in records.
B

Proof.

First we prove that indeed the GREEDY algorithm finds the optimal solution.(}.die the vector
that stores the optimal solution for the MES problemN\obbjects withk splits. That is, the solution that
minimizes the empty space by usihAgplits. We then derive the solution fér+ 1 splits.

Let Qr = {ki1,ko,...,kn}, Wwherek;,i = 1,.., N are the number of splits for each object. Thus the
first object has to be spli times, the second obje&s times and so on. We also know thafY | k; = k.
We claim that the optimal solution fdr + 1 splits has the fornt),,1 = {k1,...,k; + 1,..., kx } for some
ie{l,..,N}.

Lets assume that this is not true and that the optimal solutio& ferl splits has the form(), 1/ =
{k1,....,ki +2,...,k; — 1...,kn } for somei andj.

SinceQ), is the optimal solution fok splits, we have that:

gain(o;, ki + 1) + gain(oj, k; — 1) < gain(o;, k;) + gain(o;, k)
= gain(o;, ki + 1) — gain(o;, k;) < gain(oj, k;) — gain(oj, k;j — 1)
Also by Lemma 2 it holds that:
gain(o;, ki + 2) — gain(o;, k; + 1) < gain(o;, k; + 1) — gain(o;, k;)
Therefore,
gain(o;, ki + 2) — gain(o;, k; + 1) < gain(o;, kj) — gain(o;,k;j — 1)

= gain(o;, k; + 2) + gain(oj, k;j — 1) < gain(o;, k; + 1) + gain(oj, k)

The last inequality implies tha&@, , is an optimal solution since we can split objeck + 1 times and
objecto; k; times and have a better solution (or at least the same) with a solution of th&Xqrm The
same can be shown for any other solution with 1 splits.

Thus, the optimal solution fat + 1 splits can be derived by the optimal solution withsplits. The
algorithm in Figure 11 does exactly that.

To implement the greedy algorithm efficiently we need to implement a priority queue. For this queue
we use a heap. The creation time of this heaP (%7) for N objects [11]. Then each insertion or deletion
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takesO(logN) operations and the running time of the algorithn®igV + KlogN'). Under the assumption
that K = o(NV), the running time of the algorithm becom@$NlogN).

Since for the applications we have in mind the number of spatiotemporal objects is large and cannot be
kept in main memory, an external memory priority queue is needed. We propose using an implementation
of an external memory priority queue that is based on the buffer tree [3]. The basic idea is to perform op-
erations (insertions and deletions) off-line in such a way that the amortized complexity of each operation is
O(%log% X) [4]. As aresult the running time of the algorithm in external memory becofﬁ(%s{og% )

I/0’s.0

Note that the above proof works similarly for the case where objects do not move but change only one

of their extent dimensions linearly.

4 Performance Evaluation

In section 4.1 we describe the datasets and outline the workloads used in our experimental evaluation. A
discussion regarding how to choose the number of artificial splits for the GREEDY algorithm is presented
in section 4.2. Section 4.3 discusses various optimization methods for tuning the performance of the PPR-
Tree. Finally, we present experimental results for both types of object evolutions, namely the degenerate
case (section 4.4) and the general case (section 4.5.)

4.1 Experimental Setup

For all the methods used the page size was set to 1 kbytes and the maximum number of records per page
was equal to 50 (B=50). For the insertion and query operations a buffer of 10 pages was used with an LRU
replacement policy. For all methods, during the query phase the buffer is invalidated before a new query
gets executed (so that strengths and weaknesses of the particular implementations are revealed). For the 3D
R-Tree method, we used an implementation of the R*-tree [6]. We also implemented a Skeleton SR-Tree
based on the description in [23]. Our implementation of the Skeleton SR-Tree allows index nodes to have
varying page sizes (starting from the leaf nodes the page size doubles as the level reaches the root). For a
given index page, one third of the page is allocated for storing spanning segments, while the rest is used
to store index records. Overflow segments still appeared in higher level nodes; such segments were stored
in additional pages. However, the reported query times for the Skeleton SR-Tree do not include accessing
these pages (i.e., the reported SR-Tree query times are underestimates of the actual ones). Finally, we also
experimented with the packed STR-Tree [25]. Our method is Off-Line and since all data are available at
index creation, we would expect that clustering the data first and building the index bottom-up would yield
better results.

We generated various spatiotemporal datasets to compare the performance of the different methods.
The datasets for the degenerate case are similar to the spatiotemporal datasets described in [48]. Objects
in a given frame are approximated by their 2-dimensional MBRs and the size of the franfiexsl.0
(unit square). Moreover, 70% of the objects are small rectangles with small lifetimes. The length of each
rectangle in the: andy axes is uniformly chosen from the interval (0, 0.04] and the centers of the rectangles
are uniformly distributed in the unit square. The lifetime of each object follows a Poisson distribution with
mean value equal to 50. Another 15% of the objects are large rectangles with small lifetimes. Here the
length of each rectangle in spatial dimensions is uniformly chosen from (0, 0.6] and the lifetimes are the
same as above. The remaining 15% of the objects are small rectangles with large lifetimes. The lifetimes
for these objects are uniformly chosen between 250 and 500 frames. Each object may appear and disappear
a number of times, which is randomly chosen between 1 and 10000. The number of intermediate frames
between subsequent lifetimes is once more uniformly chosen between 250 and 500. We generated five

16



different datasets with objects per frame ranging from 250 to 2500. We call this type of datasets DG
(degenerate).

For the general case, we created a collection of datasets containing only moving rectangles (the MV
dataset). Each rectangle starts at a specific position and moves with a linear motion to its final destination.
Each set has one-third of “slowly” moving rectangles whose sides are uniformly chose(ofr@62], and
speeds between 0 and 0.001. One-third has sidé& (h01] and speeds between 0 and 0.006 and finally
“fast” objects with the same side lengths and speeds between 0 and 0.01. The rectangles retain their size as
they move and only their center position changes. The lifetime of each object has mean value 50. Again,
the average number of objects per frame ranges from 500 to 2500.

We also generated a collection of datasets that is a mixture of the previous ones (the GN or generic
collection), and consists of static objects, moving objects and objects that change extent over their lifetime.
In particular, one-third of the objects are static objects with the characteristics of the DG datasets. One-third
are moving objects and the rest are objects that change position and extent, always linearly over the frame
sequence. To generate some of the above datasets we used the GSTD generator [45]. In Table 1, we give
the main characteristics of the datasets.

Table 1:The datasets used for testing the index structures.
Dataset| Avg Number of Objects per FrameTotal Number of Spatiotemporal Objects
DG 500, 1000, 1500, 2000, 2500 86807, 173925, 260933, 348006, 435056
MV 500, 1000, 1500, 2000, 2500 74017, 147996, 222096, 296012, 369858
GN 500, 1000, 1500, 2000, 2500 74346, 148597, 222970, 297272, 371%98

Finally, query workloads were generated for range and nearest neighbor queries. A query workload
consists of 1,000 queries. A query is spatiotemporal in nature, i.e., it has a spatial and a temporal predicate.
For the range queries, the spatial part contained 2D rectangles with three different sizes, Small, Medium
and Large. The Small rectangles had lengths between 0 and 0.1, Medium between 0.1 and 0.3 and Large
between 0.2 and 0.6. For the temporal predicate, we distinguished between “snapshot” queries, where the
temporal part was a single frame, and, “period” queries where each query specified a frame interval of length
between 0 and 100. For the nearest neighbor queries, the spatial part was either a query point or a small
rectangle uniformly chosen inside the data space. The temporal part was a “period” selected randomly, with
length between 0 and 100.

It should be noted that before inserting the data in the PPR-Tree, we sorted them over the object inser-
tion and deletion frames. For the 3D R-Tree the dataset is first sorted on the object insertion frames and
objects are inserted in that order. For the Skeleton SR-Tree inserting the spatiotemporal objects according
to insertion frame order tend to affect overlapping (since the ordering implies that an interval will probably
overlap the next inserted interval). We got better performance when the spatiotemporal objects were inserted
randomly. Finally, the STR-Tree clusters the data in a specific way before building the tree bottom-up, thus
pre-sorting the dataset has no effect on the resulting structure.

4.2 Deciding on the number of splits

Before inserting objects into the PPR-Tree we use the GREEDY algorithm to split the dataset with a given
number of artificial splits. A good number of splits depends not only on the type of the dataset at hand but
also on the available storage space. More splits minimize empty space, but linearly increase the number of
objects. We performed a number of experiments with varying number of splits for the MV and GN datasets
with 1000 objects per frame. We evaluated the query performance using snapshot queries. Figures 12 and
13 depict the results in terms of I/O per query.
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In general, we expect query performance to increase as we increase the number of splits. This continues
up to a point after which it stabilizes and ultimately deteriorates. The reason for the latter is that the size of
the index structure will become very large, but the gain in empty space by introducing more splits, will not
be comparable. A good choice for the number of artificial splits would be the point where the curve begins
to stabilize. Obviously, there is a trade-off between storage and query performance, so the final choice of
the number of artificial splits depends on the cost of extra storage per split. Judging from the results of our
experiments we decided to use a number of splits equal to 50% of the total nivriifesbjects contained
in each dataset, meaning that the final number of objects produced was etjgé&¥ to

We tested the above datasets with the varying number of splits against the 3D R-Tree, the STR and the
SR-Tree, too. As expected, splitting did not improve the query performance of the non persistent indices.
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Figure 12: Query performance of the Greedy-PPR- Figure 13: Query performance of the Greedy-PPR-
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splits and MV datasets. splits and GN datasets.
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Figure 14: Query performance for snapshot queries Figure 15: Storage consumption for different merg-
and different merging/splitting policies. ing/splitting policies.

4.3 Tuning the PPR-Tree

A number of optimization issues have to be addressed when implementing the PPR-Tree. The most impor-
tant of them are the merging and splitting policies. When an underutilized page in the PPR-Tree needs to be
merged there may be many possible sibling pages for merging. We used three merging policies. The first
one, calledOverlapchooses as a sibling the currently alive page that has the same parent and shares the
most overlap with the underutilized page. The second dvie. Ared), selects as sibling the page whose
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bounding rectangle area needs the least geometric expansion to incorporate the objects of the underutilized
page. Finally, the third policyMargin), finds the page that when merged with the underutilized page, has
the least margin. The latter is defined as the sum of the lengths of all sides of the bounding rectangle.

For splitting, we use two methods. The first is cali@dadraticand it has been proposed in the original
R-Tree paper [16]. The secong-stai) is the policy used by the R*-tree [6]. The first policy assigns objects
in two groups, initializing these groups by picking the pair of objects that would waste the most area if
inserted in the same group. The R-star policy is based on determining various distributions of objects in
a page, after ordering all objects in each dimension. The best distribution is selected, based on a set of
criteria, such as minimizing the sum of margin values and also minimizing the overlap-area between the
two generated pages.

Figure 14 plots the query performance (in average number of pages read per query) for all combinations
of splitting and merging methods. We used the DG datasets and a snapshot query workload. As the figure
shows, the query performance is mainly affected by the splitting policy (with the R-star policy providing
better results than Quadratic). The merging policy has small effect. The storage consumption of the PPR-
Tree is depicted on Figure 15. Here the important factor is the merging policy and the Margin policy gives
the best results. For the rest of our experiments, we implemented the PPR-Tree using the R-star splitting
policy and the Margin policy for merging nodes.

4.4 Degenerate Case
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Figure 16: Query performance for small/ snapshot Figure 17:Query performance for medium/ snapshot
gueries and DG datasets. queries and DG datasets.

We proceed with experimental results about the degenerate case. Since it contains objects with no
position/extent changes it serves as a reference point for our later experiments. Figures 16-18 report the
results for snapshot queries with Small, Medium and Large size (in spatial extent) respectively. The average
lifetime of the objects is about 50 frames. In all cases the partially persistence methodology outperforms the
Skeleton SR-Tree, the 3D R-Tree and the STR-Tree. The difference is higher for smaller queries. The SR-
Tree behaves better than both 3D R-Tree and STR-Tree since by placing spatiotemporal objects with long
lifetimes higher in the hierarchy reduces overlapping. It should be noted that in our SR-Tree implementation,
the experiments with average number of objects/frame equal to 2,000 and 2,500, produced comparatively
very large number of overflow pages. Since these pages were not counted for the query 1/O’s, the depicted
performance corresponds to interpolation from the behavior of the method for the 500, 1,000 and 1,500
experiments. The performance of the STR-Tree deteriorates with the increase in size of the dataset.

Figure 19 shows the results for Small/period queries with query frame period ranging from 0 to 100,
and a dataset with 1,000 objects/frame. Interestingly, the R-Tree behaves better than the SR-Tree for period
gueries. This is due to object fragmentation, since the larger the query period, the more object copies this
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Figure 20:Storage consumption for DG datasets.

period will overlap with. The PPR-Tree’s performance is also affected by the query period size. Since
partial persistence is optimized towards frame queries, a query involving a large period (many subsequent
frames) will overlap with many object copies thus decreasing query performance.

Figure 20 depicts the storage consumption of all methods, for DG datasets. As expected storage for the
PPR-Tree is higher than that of the SR-Tree, 3D R-Tree and STR-Tree (but it remains linear to the number
of objects). The STR-Tree has the smallest storage requirements, since packing eliminates empty records in
data and index pages. However, the query performance of the STR-Tree was clearly worse than that of the
other methods. The reason is that packing may cluster together objects that are consecutive in order even
though they may correspond to small and large intervals. This leads to more overlapping and empty space.
We observed similar behavior with all experiments (in the degenerate as well as the general case), hence for
brevity we omit the STR-Tree from the latter figures.

45 General Case

First we present our results for the moving rectangles datasets (MV) and then for the general datasets (GN).
Given a dataset, the GREEDY algorithm derives first all spatiotemporal objects that yield the best gain

in terms of empty space when split. Then these objects are split and the MBRs of the newly generated
spatiotemporal objects are computed. Subsequently these MBRs are indexed by the PPR-Tree (marked as
Greedy-PPR-Tree in the figures). To validate the expectation that a 3D R-Tree will not gain much by the
artificial splits of the GREEDY algorithm, we indexed the resulting MBRs with a 3D R-Tree too (Greedy-

3D R-Tree). We compare the two GREEDY approaches against the approach where no artificial split is
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considered. That is, we used a 3-dimensional MBR around each spatiotemporal object and indexed them
using (i) a plain 3D R-Tree and (ii) a Skeleton SR-Tree. Finally, we useditheM B R approach for the
PPR-Tree (maxMBR-PPR-Tree.)
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Figure 21: Query performance for small/ snapshot Figure 22:Query performance for medium/ snapshot

gueries and MV datasets. queries and MV datasets.
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Figure 23: Query performance for large/ snapshot Figure 24: Query performance for frame period
gueries and MV datasets. queries and MV datasets.

Figures 21-23 depict the results for snapshot queries and MV datasets. The greedy algorithm combined
with the PPR-Tree provides the best query performance. The second best is the PPR-Tree that follows the
maxMBR approach. It is interesting to note that the 3D R-Tree performs similarly with splits or no splits
(i.e., as expected, the greedy splits do not provide a large advantage). A split may decrease the empty
space but it increases the number of objects, affecting the 3D R-Tree query performance. The Skeleton
SR-Tree behaves worse that the 3D R-Tree for the MV datasets. Since objects move, the corresponding
MBR is rather large, not only on the frame dimension, but on the X and Y dimensions as well. The SR-
Tree clustering based on the lifetimes is not so efficient anymore, and the method tends to perform like a
regular R-Tree. Frame period queries appear in Figure 24 using a dataset with 1000 objects per frame. The
Greedy-PPR-Tree method remains better than the other methods even for the larger periods we tried. It is
also clear that as the query period increases, the performance of the greedy 3D R-Tree deteriorates against
the conventional 3D R-Tree. This is because the splits from the greedy approach introduce copies that
the R-Tree considers as separate objects. Again, the SR-Tree behaves very similar to the 3D R-Tree. The
storage for a method that uses the greedy approach is about 1.5 times the storage of the same non-greedy
method (Figure 25). Since the behavior of the SR-Tree is very close to that of the 3D R-Tree (in both query
and storage performance) for brevity we omit the SR-Tree from the following figures.
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Figure 26: Query performance for small/ snapshot Figure 27:Query performance for medium/ snapshot
gueries and GN datasets. queries and GN datasets.

The performance comparisons for the general datasets (that include mixtures of moving/static/extending
objects) appear in Figures 26 to 29. All methods behave very similar to the results for the moving objects
datasets. Despite using the greedy algorithm as an approximation for the extending objects, the Greedy-
PPR-Tree still provides the best performance.

The performance for nearest neighbor queries is similar to the range queries. For brevity, we report
results for the general datasets (GN), but the same trend was observed for the other datasets as well. In
Figure 31 the average query performance is shown for a set of 50-Nearest Neighbor queries (that is, find
the 50 nearest objects to the query object). The frame period was 20 frames. Figure 32 reports results
for nearest neighbor queries with different frame periods. The Greedy-PPR-Tree has again the best query
performance.

Finally, in Figures 33 and 34 we present the total number of I/O’s needed to create each of the index
structures. Here, we assume a cache of only 10 pages. Using a larger cache the construction time can be
decreased considerably. The 3D R-Trees have lower construction time than the PPR-Trees. This is not
surprising. Clearly, for the partially persistent methods the index is accessed twice for each spatiotemporal
object: once at the insertion frame and again at the deletion frame. On the other hand for the 3D R-Trees, the
index is accessed only when the MBR of the spatiotemporal object is inserted. However, for the Off-Line
problem the index is created only once and then is used for querying only.Thus, the update cost is not that
critical.
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GN datasets.

5 Reated Work

Although recently there has been extensive work on multimedia and video databases, the approach discussed
in this paper is novel. The work in [48] considers only static objects (degenerate case) and uses a 3D R-Tree
approach to index the objects. Another work that proposes indexing video objects in order to answer mostly
temporal queries appears in [1]. In this paper, video movies are pre-processed and all entities of interest
such as objects, activities, and events, are identified. Subsequently, these entities are associated with specific
frames in which they appear. Therefore, every entity is coupled with a set of frames which can be viewed
as a set of line segments (if consecutive frames are put in one line segment). A main-memory Segment Tree
[37] is used to store the resulting line segments. Queries that this structure can answer are of the type: "find
the objects that appear when a specific event happened” or "find the objects that appear in all frames where
a specific object appears”. Also the authors discuss how to store higher level information for each object in
order to answer more complex queries. However, most of the complex queries have query time linear to the
total number of video objects.

Another interesting approach to index video data has been proposed in [8, 9]. With their approach,
video data is indexed using not only information about the color or texture (as in image databases) but also
motion and spatiotemporal information. First a video movie is partitioned into shots or scenes. Then all
objects that appear inside each shot (called video objects) are found. For each object information about
its features (color, texture and shape), but also about its motion is stored. In particular, the motion of an
object is stored as a trail of the object position from one frame to another. The user can ask queries using
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a visual interface, and can give different weights for each feature. In [42], algorithms to index these video
objects are presented. Each object is mapped to a high dimensional space which is then split into a few
low dimensional feature vectors. Querying is performed for each vector separately. Yet another work that
represents the motion of an object by using its trail is [12]. Our approach is complementary to these works
and can thus be used to enhance the query capabilities of the aforementioned systems.

Content-based retrieval has also been an active research area in the past few years and several systems
have been developed. These systems allow image indexing by using low-level image features such as color
histograms, texture and shape. The user specifies a target image (QBE) or a sketch and the system retrieves
the most similar images to the target image. Some examples of very successful systems in this area include
QBIC [15], Virage [17] and VisualSEEK [39]. However, all these systems support retrieval of still images.
Some of these ideas have been used to index movie databases by using low level features combined with
some semantic information [40, 8].

Research in the area of spatiotemporal database indexing is also quite related to our work. In particular,
[44] summarizes the issues that a spatiotemporal index needs to address. In an early paper [50], the RT-
tree is presented, an R-Tree that incorporates time into its nodes. Each object has a spatial and a temporal
extent. For an object that is entered at timéhe temporal extent is initialized t@;,#;). This temporal
extent is updated (increased) every time instant that the spatial extent remains unchanged. If the spatial
extent changes at timg, a new record is created for this object with a new temporal extetit). Clearly,
this method is inefficient due to its large update overhead. In [28, 47, 50, 29] the idea of overlapping trees
is used to make an index partially persistent. Different indices are created for each time instant, but to save
storage, common paths are maintained only once since they are shared among the structure. However, the
overlapping method has a logarithmic storage overhead, since every time an update is made, the whole path
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from the root to the updated leaf node has to be copied. Indeed, in an experimental evaluation presented
in [29] the overlapping R-Tree (HR-Tree) has an order of magnitude higher storage overhead than the 3D
R-Tree. It should be noted that the GREEDY algorithm presented in this paper is general and can be
used to enhance the performance of any partially persistent method (including the overlapping approach).
In another recent work [34], an R-Tree is extended to support transaction and valid time. However, this
work concentrates on the combination of degenerate evolutions and bitemporal datasets. Spatiotemporal
indexing as examined here deals with historical queries about the spatiotemporal evolutions. Work dealing
with future queries about the position of moving objects (assuming knowledge of movement functions)
appears in [35, 22, 2].

6 Conclusionsand Further Research

We have examined the problem of indexing objects in animated movies. We proposed to represent a movie
as a spatiotemporal evolution and reduce the original problem to a problem of partial persistence. However,
the partial persistence approach considers only objects that remain unchanged during their evolution (i.e.,
between the frames they appear). This is not realistic in animated movies where objects can change their
extent/position among frames. We presented an efficient way to represent such complex objects. In partic-
ular, we formulated this problem as an optimization problem and provided an optimal greedy algorithm for
the case of linearly moving objects. Our solution is also optimal for objects that change linearly only one
of their extent dimensions. However, it is suboptimal for objects that change both their extent dimensions.
The presented approach provides very fast query time at the expense of some extra storage, which however
is linear to the number of changes in the frame evolution. We have shown the merit of our method by com-
paring it with an approach that sees the frame sequence as simply another dimension and uses (i) a regular
3D R-Tree, (ii) a Skeleton Segment R-Tree, (iii) an STR-Tree.

An interesting future direction is to consider objects that change position and/or extent with non-linear
functions. Clearly, for this case the monotonicity property does not hold. We are examining the existence
of efficient algorithms that approximate the optimal solution with a good approximation ratio.

Another problem that we plan to investigate is the case of On-Line indexing. This paper considered
only the Off-Line case, where all objects and their evolution is known beforehand. However, in many real
life applications, objects are inserted in an on-line fashion in the dataset. We expect that an on-line version
of the optimal greedy algorithm will give a good approximation of the optimal solution.

Yet another interesting avenue of research is to extend the techniques presented here to different query
scenarios. This includes queries where the view point changes in time. One application we can consider
is the following: assume that the original two-dimensional model that we use to build an animated movie
extends further than the screen, and that the actual animated movie that we see is in fact a specific cut. The
cut (that is, the visible part of the movie) depends on where we position the screen window. Assuming
that this position remains constant, we can find all visible objects by answering a three-dimensional range
query. That is, a two-dimensional range query in the visible screen is translated into a three-dimensional
spatiotemporal query. If however the position of the screen does not remain constant, the shape of the
spatiotemporal query becomes more complicated. Consider for example answering range queries while the
screen zooms in or out. Assuming that the size of the range query on the screen remains constant relative to
the size of the screen, if we are zooming-in objects will appear larger and fewer objects will be in the query
area. This query can be mapped to a spatiotemporal query that looks like a pyramid. We can approximate
this query by a number of spatiotemporal range queries using the same technique that we use to optimally
bound a moving object with minimum bounding rectangles. When zooming, the viewpoint changes location
along an axis perpendicular to the frame plane. A more involved problem is answering such range queries
when the viewpoint is translated as well as moving closer or further from the frame, or, if we consider
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three-dimensional objects, when the view point moves and rotates in space.
Finally, we note that our approach is general and can be applied to other spatiotemporal applications as
well (for example indexing forest extends or city boundaries over time, etc.).
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