Schema Versioning in 7XSchema-Based
Multitemporal XML Repositories

Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Barbara Oliboni

December 7, 2010

TR-93

A TIMECENTER Technical Report

Title Schema Versioning in 7XSchema-Based Multitemporal XML Repositories

Copyright © 2010 Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Bar-
bara Oliboni. All rights reserved.

Author(s) Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Barbara Oliboni

Publication History December 2010. A TIMECENTER Technical Report.

TIMECENTER Participants

Michael H. Bohlen, University of Zurich, Switzerland; Curtis E. Dyreson, Utah State University, USA;
Fabio Grandi, University of Bologna, Italy; Christian S. Jensen (codirector), Aarhus University, Denmark;
Vijay Khatri, Indiana University, USA; Gerhard Knolmayer, University of Berne, Switzerland; Carme
Martin, Technical University of Catalonia, Spain; Thomas Myrach, University of Berne, Switzerland; Mario
A. Nascimento, University of Alberta, Canada; Sudha Ram, University of Arizona, USA; John F. Roddick,
Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Simonas Saltenis,
Aalborg University, Denmark; Dennis Shasha, New York University, USA; Richard T. Snodgrass (codirec-
tor), University of Arizona, USA; Paolo Terenziani, University of Piemonte Orientale “Amedeo Avogadro,”
Alessandria, Italy; Stephen W. Thomas, Queen’s University, Canada; Kristian Torp, Aalborg University,
Denmark; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Emory University,
USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los
Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Schema Versioning in TXSchema-Based
Multitemporal XML Repositories

Zouhaier Brahmia, Rafik Bouaziz
University of Sfax, Tunisia — email: {zouhaier.brahmialraf.bouaziz}@fsegs.rnu.tn

Fabio Grandi
University of Bologna, Italy — email: fabio.grandi@unibo.it

Barbara Oliboni
University of Verona, Italy — email: barbara.oliboni@univr.it

Abstract

tXSchema [7] is a framework (a language and a suite of tools) for the creation and validation of time-
varying XML documents. A tXSchema schema is composed of a conventional XML Schema document
annotated with physical and logical annotations. All components of a tXSchema schema (i.e.,
conventional schema, logical annotations, and physical annotations) can change over time to reflect
changes in user requirements or in reference world of the database. Since many applications need to keep
track of both data and schema evolution, schema versioning has been long advocated to be the best
solution to do this. In this paper, we deal with schema versioning in the tXSchema framework. More
precisely, we propose a set of schema change primitives for the maintenance of logical and physical
annotations and define their operational semantics.

Keywords: tXSchema, Schema versioning, XML, XML Schema, Temporal database

1. Introduction

Nowadays, XML [1] is becoming a standard for web documents. In database context, it is also used for
representing (semi-)structured data. As for generic temporal databases [2], XML provides an excellent
support for temporally grouped data models [3], which have long been advocated as the most natural and
effective representations of temporal information [4].

Both XML data and schemata tend to change over time for a multitude of reasons: changes in the real
world or in the user’s requirements, correction of mistakes in the initial design, etc.. Many applications
(like banking, flight reservation, geographical information systems, e-business, e-government, etc.)
require a complete maintenance of data and schema history for several reasons: avoiding loss of data after
schema changes, maintenance of legacy data formatted according to past schemata, reuse of legacy
applications, and auditing purposes. In order to keep track of both XML data and XML schema evolution
over time, a temporal XML data model that supports schema versioning technique is required. Notice that
schema versioning has long been advocated to be the more appropriate solution to support a complete
data and schema history in databases [5,6].

When we started thinking about an approach for schema versioning in multitemporal XML repositories,
our choices were as follows: (i) to have different levels of schema specifications, that is a level for the
data structure and one or more levels for temporal dimensions, and (ii) to push the possible
multitemporality on level higher. We have seen that "Which is the right way to consider XML documents
sharing the same data structure and having different time dimensions" could be a good question. Hence,
we had the problem to define the different levels we need, and to define the mappings between such
levels.

After surveying the state of the art of (multi-)temporal XML data models supporting schema versioning,
we conclude that the resulting overall framework could be not very dissimilar from the one introduced by
Snodgrass and colleagues in [7,8,9], named tXSchema. This latter is an infrastructure, composed of an
XML schema language and a suite of tools, for constructing and validating temporal XML documents
under schema versioning. The tXSchema language extends the XML Schema language [10] to explicitly
support time-varying XML documents. tXSchema has a three-level architecture for specifying a schema
for time-varying data. The first level is for the conventional schema which is a standard XML Schema
document that describes the structure of a standard XML document, without any temporal aspect. The
second level is for the logical annotations of the conventional schema, which identify which elements
can vary over time. The third level is for the physical annotations of the conventional schema, which
describe where timestamps should be placed and how the time-varying aspects should be represented.

Finally, we were in front of two options:
- to extend the tXSchema approach;
- to propose a completely different approach.

We have chosen the first one, for the reasons which follow.

1) We came up with a similar requirement for having different levels for schema specification, so any
alternative approach we could propose would not be so far from the tXSchema principles.

2) In case we decide to move away from tXSchema, we must then be very convincing in justifying our
choice (e.g. by highlighting strong limitations of the tXSchema approach which we need to overcome).

3) The tXSchema approach is well known in the research community and thus it could be better to use it
as a starting point, instead of putting forward a brand new proposal.

4) In the tXSchema approach, there is room enough for extensions and, thus, we could define a set of
schema changes and solve the semantics of change and change propagation problems for such operations
on top of it.

In [7], the authors introduce tXSchema but did not discuss schema versioning. [8] and [9] deal with
schema versioning in tXSchema: [8] focuses on cross-schema change validation and [9] extends it by
discussing how to accommodate gaps in the existence time of an item, transaction semantics, and non-
sequenced integrity constraints. All previous works on tXSchema focus on capturing a time-varying
schema and validating documents against such a schema. They do not deal with how the schema changes
are made, or what kinds of schema change operations are supported. In this paper, we investigate these
issues by proposing a set of schema change primitives that allow designers to change logical and physical
annotations of a tXSchema schema. This set of primitives is complete, that is each annotation document
can be generated starting from the empty document by applying a sequence of primitives, and for each
annotation document a sequence of primitives exists for transforming it in the empty document. Moreover,
this set is sound: i.e., each primitive applied to a consistent annotation document produces a consistent
annotation document.

The remainder of this paper is organized as follows. Section 2 briefly describes the tXSchema framework.
Section 3 presents our approach for versioning of tXSchema logical and physical annotations. Section 4
introduces the schema change primitives that we propose for changing logical and physical annotations in
the tXSchema framework. Section 5 surveys related works. Section 6 concludes the paper.

2. The TXSchema framework

In this section, first we briefly present the 1XSchema architecture (more details can be found in [11]), and
then we provide a motivating example that illustrates the usage of tXSchema.

2.1. Architecture

The 1XSchema framework [7,8,9] allows a designer to create a temporal XML schema for temporal XML
documents from a conventional schema (written in standard XML Schema language), logical annotations,
and physical annotations. Figure 1 illustrates the architecture of TXSchema [11]. We note that only the
components which are shaded in the figure are specific to an individual time-varying document and need
to be supplied by a designer.

The designer starts with the conventional schema (box 3) which is a standard XML Schema document
that describes the structure of the conventional document(s). A conventional document is a standard XML
document that has no temporal aspects [11].

Then, the designer augments the conventional schema with logical annotations (box 5), which specify
whether an element or attribute varies over valid time or transaction time, whether its lifetime is described
as a continuous state or a single event, whether the item itself may appear at certain times (and not at
others), and whether its content changes [11]. If no logical annotations are provided, the default logical
annotation is that anything can change. However, once the designer has annotated the conventional
schema, elements that are not described as time-varying are static and, thus, they must have the same
content across every XML document in box 7.

0. XML Schema

1. TSSchema 2. ASchema

A x A
3. Conventional Schema

4. Temporal Schema

SCHEMA
MAPPER

Error Messages

7. Non-Temporal Data

| 8. Temporal Data 9. Representational
Schema

Legend of arrows:
—> : Input/Output
________ » : References
.......................... > - Namespace

TXMTIT.INT

Error Messages

Figure 1. Architecture of tXSchema

After that, the designer augments the conventional schema with physical annotations (box 6), which
specify the timestamp representation options chosen by the designer, such as where the timestamps are
placed and their kind (e.g., valid time or transaction time) and the kind of representation adopted [11].
The location of timestamps is largely independent of which components vary over time. Timestamps can

3

be located either on time-varying components (as specified by the logical annotations) or somewhere
above such components. Two documents with the same logical information will look very different if we
change the location of their physical timestamps. Changing an aspect of even one timestamp can make a
big difference in the representation. tXSchema supplies a default set of physical annotations, which is to
timestamp the root element with valid and transaction times. However, adding them can lead to more
compact representations.

Logical and physical annotations are orthogonal and are independently maintained, although they are
stored together in a single document related to the conventional schema, which is a standard XML
document named the annotation document. The schema for the logical and physical annotations is given
by ASchema (box 2).

By separating the conventional schema, logical annotations, and physical annotations, the three-level
architecture of tXSchema guarantees data independence and allows each component to be changed
independently.

Finally, the designer creates the temporal schema document (box 4) in order to provide the linking
information between the conventional schema, logical annotations, and physical annotations. The
temporal schema is a standard XML document that ties the conventional schema, logical annotations, and
physical annotations together [11]. The temporal schema in the TXSchema environment is the logical
equivalent of the conventional XML Schema in the non-temporal XML environment. This document
contains sub-elements that associate a series of conventional schema definitions with logical and physical
annotations, along with the time span during which the association was in effect. The schema for the
temporal schema document is 7SSchema (box 1).

Notice that, whereas the introduction of TSSchema (box 1) and ASchema (box 2) is due to Snodgrass and
colleagues, XML Schema (box 0) is the standard endorsed by the W3C.

The temporal schema document (box 4) is processed by the temporal validator TXMLLINT in order to
ensure that the logical and physical annotations are (i) valid with respect to ASchema, and (ii) consistent
with the conventional schema. TXMLLINT reports whether the temporal schema document is valid or
invalid.

Once the annotations are found to be consistent, the Schema Mapper generates the representational
schema (box 9) from the temporal schema (i.e., from the conventional schema and the logical and
physical annotations). The representational schema becomes the schema for temporal data (box 8).
Temporal data can be automatically created from the non-temporal data (box 7) and the temporal schema
(box 4), using the Squash tool. Moreover, temporal data are validated against the representational schema
through tXMLLINT which reports whether the temporal data document is valid or invalid.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="Bank">
<complexType>
<sequence>
<element ref="Account"/>
</sequence>
</complexType>
</element>
<element name="Account"s>
<complexType>
<sequence>
<element name="OwnerName" type="string"/>
<element name="OpeningDate" type="date"/>
<element name="Type" type="string"/>
<element name="Balance" type="float"/>
</sequence>
<attribute name="Number" type="nonNegativeInteger" use="required”/>
</complexType>
</element>
</schema>

Figure 2. First version of the conventional schema (Bank V1.xsd), on February 1, 2010

4

2.2. Motivating example

Assume that a new bank requires an XML repository for storing data and schema of customer accounts.
On February 1, 2010, the designer creates the first version of the conventional schema shown in Figure 2.
Each account in this bank is described by its number, the name of its owner, its opening date, its type, and
its balance. Then, the designer annotates this first version of the conventional schema with some logical
and physical annotations. As to logical annotations, suppose that he/she decides to make the content of
the <Balance> element varying in transaction-time (in order to keep the history of the balance of each
account along transaction time). As to physical annotations, suppose that he/she chooses to add a
transaction-time physical timestamp to the element <Accounts> (i.e., whenever any element below
<Account > changes, the entire <Account> element is repeated). The first version of the annotation
document related to the conventional schema of the bank is shown in Figure 3. Finally, the designer
creates the temporal schema to define the links between the conventional schema and the annotation
document, as shown in Figure 4.

<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema">
<logicals>
<item target="/Bank/Account/Balance">
<transactionTime kind="state" content="varying" existence="constant"/>
<itemIdentifier name="balanceID" timeDimension="transactionTime">
<field path="."/>
</itemIdentifier>
</item>
</logicals>
<physical>
<stamp target="/Bank/Account" datalnclusion="expandedVersion” >
<stampKind timeDimension="transactionTime" stampBounds="extent"/>
</stamp>
</physical>
</annotationSet>

Figure 3. First version of the annotation document (BankAnnotations V1.xml), on February 1, 2010

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
<conventionalSchema>
<sliceSequence>
<slice location="Bank V1.xsd" begin="2010-02-01" />
</sliceSequence>
</conventionalSchema>
<annotationSet>
<sliceSequence>
<slice location="BankAnnotations V1.xml" begin="2010-02-01" />
</sliceSequence>
</annotationSet>
</temporalSchema>

Figure 4. Temporal schema (BankTemporalSchema.xml) on February 1, 2010

3. Versioning of tXSchema logical and physical annotations

In this section, we briefly describe how tXSchema logical and physical annotations are versioned in our
approach.

The first step of a schema versioning sequence is the creation of the first schema version: the designer
creates a conventional XML-Schema document (i.e., an XSD file) annotated with some logical and
physical annotations in an independent document (which is stored as an XML file), through a graphical
interface. Moreover, he/she creates the temporal schema (also stored as an XML file) that ties together the
conventional schema and the annotations.

In further steps of the versioning sequence, when necessary, the designer can independently change the
conventional schema, the logical annotations or the physical annotations.

Changing the conventional schema leads to a new version of it. Similarly, changing a logical or a physical

annotation leads to a new version of the whole annotation document. Therefore, the temporal schema is
updated after each change of the conventional schema or of the annotation document. In this paper, we do
not deal with changes of the conventional schema.

Schema change operations performed by the designer are high-level, since they are usually conceived
having in mind high-level real-world object properties. Each of these high-level schema change
operations is then mapped onto a sequence of low-level schema change operations (or primitive changes)
by the schema change processor to be implemented.

In this paper, we investigate primitive changes of logical and physical annotations and not high level
changes. In fact, each high level change can be expressed as a sequence of primitive changes. Thus, the
consistency of the resulting annotation document is always guaranteed.

Primitive changes are applied to the annotation document which contains all logical and physical
annotations related to the conventional schema. The structure of an annotation document, named
ASchema, was described in detail by Currim et al. in [11].

4. Primitive changes for TXSchema logical and physical annotations

In this section, we first present our design choices, then we describe primitive changes acting on logical
and physical annotations in tXSchema, and finally we give an illustrative example. We have individuated
primitive operations (i.e., non-further decomposable in terms of the other ones) which make up a
complete set of changes (i.e., such that any possible complex change can be defined via a
combination/sequence of them). For each primitive change, we describe its arguments and its operational
semantics.

4.1. Design choices

(1) All primitives must work on a valid Annotation Document (AD), that is have a valid AD as input
and produce a valid AD as output.

(2) All primitives need to work on an XML file storing the AD, whose name must be supplied as
argument.

3) Stamp and Item elements are identified by their “target” attribute; a “stamp path” (“item path”)
argument does not seem to be necessary; also because the order of stamp (item) elements within the
physical (logical) container is irrelevant.

4) Primitives adding elements with possibly optional attributes have the values for all the attributes
as arguments; empty places in the argument list stand for unspecified optional attributes.

(5) We use Add.../Change... primitives for all elements which have multiple occurrences (e.g.
“include”); a single Set... primitive is used for adding/changing elements/attributes with occurrences <=1
(e.g. “datalnclusion”).

(6) Elements without attributes which are just containers for sets of sub-elements (e.g. <logical/>
and <physical/>, <orderBy/>) can be managed by primitives concerning the sub-elements,
without specific primitives acting on them (i.e., the container is created when the first sub-element is
created and is deleted when the last sub-element is deleted).

(7 For all primitives, arguments which are used to identify the object on which the primitive works
are in the first place of the argument list.

(8) The definition of include/defaultTimeFormat are exactly the same both for <physical/> and
for <logical/>. In case, the same primitives acting on include/defaultTimeFormat can be used either
for <physical/> or <logical/> elements (with an argument toWhat to choose between them).

The list of primitives which follows are the applications of the design choices presented above. We have

6

organized them into four categories: (i) primitives acting on the whole AD (in the sub-section 4.2), (ii)
primitives that are common to the logical and to the physical annotations (in the sub-section 4.3), (iii)
primitives that are specific to the physical annotations (in the sub-section 4.4), and (iv) primitives that are
specific to the logical annotations (in the sub-section 4.5).

4.2. Primitive changes acting on the whole annotation document
We have only two primitive changes:

CreateAnnotationDocument (AD.xml)

It produces a valid empty AD. According to the design choice (2), the argument is the name of the
XML file where the new AD is stored. The effect of such a primitive, that is the contents of the
AD.xml file after its application, is as follows:

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns=http://www.cs.arizona.edu/tau/tauXSchema/ASchema />

DropAnnotationDocument (AD.xml)

It removes the AD.xm1 file from disk, with the constraint that the argument represents an empty AD
(i.e., like the one above initially created by CreateAnnotationDocument). Any other contents must
have been removed before.

4.3. Primitive changes common to the logical and to the physical annotations

These primitive changes can be applied either to the <1logical/> or to the <physical/> container.
We have defined six primitive changes:

AddInclude (AD.xml, toWhat, annotationLocation)

Adds the <include/> element with specified annotationLocation to the fromWhat (i.e.
<physical/> or <logical/>) container.

If toWhat = physical

AD.xml:
<?xml version="1.0" encoding="UTF-8"7?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<include annotationLocation="annotationLocation”/>
</physicals>
</annotationSet>

Else:

AD.xml:
<?xml version="1.0"” encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<logicals>
<include annotationLocation="annotationLocation”/>
</logical>
</annotationSet>

Notice that any number of <include/> elements can be added, hence then annotationLocation is
generally needed to distinguish between them.

DeleteInclude (AD.xml, fromWhat, annotationLocation)

Removes the <include/> element with specified annotationLocation from the fromWhat (i.e.
<physical/>or <logical/>) container.

ChangeInclude (AD.xml, inWhat, oldannotationLocation,
newannotationLocation)

Changes the value of the attribute annotationLocation of the <include/> element with the
specified oldannotationLocation in the inWhat (i.e. <physical/> or <logical/>) container.

AddDefaultTimeFormat (AD.xml, toWhat, plugin, granularity, calendar,
properties, valueSchema)

Augments the <defaultTimeFormat /> element with the specified plugin, granularity, calendar,
properties, and valueSchema of the fromWhat (i.e. <physical/> or <logical/>) container.

If toWhat = physical

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<defaultTimeFormat>
<format plugin="plugin” granularity ="granularity” calendar="calendar”
properties="properties” valueSchema="valueSchema”/>
</defaultTimeFormat>
</physicals>
</annotationSets>

Else:

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<logicals>
<defaultTimeFormat>
<format plugin="plugin” granularity ="”granularity” calendar="calendar”
properties="properties” valueSchema="valueSchema” />
</defaultTimeFormat>
</logicals>
</annotationSets>

DeleteDefaultTimeFormat (AD.xml, fromWhat)

Removes the <defaultTimeFormat/> element from the fromWhat (i.e. <physical/> or
<logical/>) container.

SetDefaultTimeFormat (AD.xml, inWhat, plugin, granularity, calendar,
properties, valueSchema)

Changes plugin, granularity, calendar, properties, or valueSchema attributes of the
<defaultTimeFormat/> element in the inWhat (i.e. <physical/> or <logical/>)
container.

e.g.: SetDefaultTimeFormat(AD.xml, logical, “tauZaman”, , “Julian”, unchanged,)

Plugin and calendar attributes are changed as specified, granularity and valueSchema are removed
(notice that all attributes are optional), properties retains the previous value.

4.4. Primitive changes related to the physical annotations

These primitive changes can be applied only to the <physical/> container. We have defined nine
primitive changes:

AddStamp (AD.xml, stampTarget, stampDataInclusion,
stampKindTimeDimension, stampKindStampBounds)

Adds the <stamp/> element with specified stampTarget, stampDatalnclusion,
stampKindTimeDimension, and stampKindStampBounds to the <physical/> container, where the
three last arguments are optional.

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” dataInclusion="stampDataInclusion”>
<stampKind timeDimension="stampKindTimeDimension” stampBounds="stampKindStampBounds” />
</stamp>
</physicals>
</annotationSets>

Possible values of some arguments:

¢ stampDatalnclusion: one of expandedEntity, referencedEntity, expandedVersion, or
referencedVersion.

stampKindTimeDimension: one of validTime, transactionTime, or bitemporal.

stampKindStampBounds: either step or extent.

DeleteStamp (AD.xml, stampTarget)

Removes the <stamp/ > element with specified stampTarget from the <physical/> container.

SetDataInclusionInStamp (AD.xml, stampTarget, stampDatalInclusion)

Introduces or changes datalnclusion attribute of the <stamp/ > element with specified stampTarget
in the <physical/> container.

SetStampKindInStamp (AD.xml, stampTarget, stampKindTimeDimension,
stampKindStampBounds)

Introduces or changes timeDimension and/or stampBounds attributes of the <stampKind/>
element of the <stamp/ > element with specified stampTarget in the <physical/> container.

SetFormatInStampKind (AD.xml, stampTarget, stampPlugin,
stampGranularity, stampCalendar, stampProperties, stampValueSchema)

Augments (or changes) the <format /> element with the specified stampPlugin, stampGranularity,
stampCalendar, stampProperties, and stampValueSchema attribute values in the <stampKind/>
element of the <stamp/ > element with specified stampTarget in the <physical/> container.

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” dataInclusion="stampDataInclusion”>
<stampKind timeDimension="stampKindTimeDimension” stampBounds="stampKindStampBounds” >
<format plugin="stampPlugin” granularity="stampGranularity”
calendar="stampCalendar” properties="stampProperties”
valueSchema="stampValueSchema” />
</stampKind>
</stamp>
</physicals>
</annotationSet>

DeleteFormatFromStampKind (AD.xml, stampTarget)

Removes the <format/> element from the <stampKind/> element of the <stamp/> eclement
with specified stampTarget in the <physical/> container.

AddOrderByFieldToStamp (AD.xml, stampTarget, newOrderByField)

Adds a <field/> element having the value newOrderByField in the <orderBy/ > element of the
<stamp/ > element with specified stampTarget in the <physical/> container.

If newOrderByField in {validTime, transactionTime}

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” datalnclusion="stampDatalInclusion”s>
<stampKind timeDimension="stampKindTimeDimension”
stampBounds="stampKindStampBounds” />
<format plugin="stampPlugin” granularity="stampGranularity”
calendar="stampCalendar” properties="stampProperties”
valueSchema="stampValueSchema” />
<orderBy>
<field>
<time dimension="newOrderByField” />
</field>
</orderBy>
</stamp>
</physicals>
</annotationSet>

Else:

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” datalnclusion="stampDatalInclusion”s>
<stampKind timeDimension="stampKindTimeDimension”
stampBounds="stampKindStampBounds” />
<format plugin="stampPlugin” granularity="stampGranularity”
calendar="stampCalendar” properties="stampProperties”
valueSchema="stampValueSchema” />
<orderBy>
<fields>
<target>newOrderByField</target>
</field>
</orderBy>
</stamp>
</physicals>
</annotationSet>

DeleteOrderByFieldFromStamp (AD.xml, stampTarget, OrderByField)

Removes the <field/> element having the value OrderByField from the <orderBy/> element of
the <stamp/> element with specified stampTarget in the <physical/> container. When the last
<field/> is removed, also the <orderBy/ > container is removed.

Here, OrderByField is the value of the attribute dimension of a <time/> element or the value of a
<target/> eclementina <field/> element of the <orderBy/ > element.

ChangeOrderByFieldInStamp (AD.xml, stampTarget, oldOrderByField,
newOrderByField)

Changes the <field/> element having the value oldOrderByField to the value newOrderByField,
in the <orderBy/> element of the <stamp/> element with specified stampTarget in the
<physical/> container.

If newOrderByField in {validTime, transactionTime}

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” datalnclusion="stampDatalInclusion”s>
<stampKind timeDimension="stampKindTimeDimension”
stampBounds="stampKindStampBounds” />
<format plugin="stampPlugin” granularity="stampGranularity”
calendar="stampCalendar” properties="stampProperties”
valueSchema=" stampValueSchema” />
<orderBy>

<field>
<time dimension="newOrderByField” />
</fields>

10

</orderBy>
</stamp>
</physicals>
</annotationSets>

Else:

AD.xml:
<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>
<stamp target="stampTarget” dataInclusion="stampDataInclusion”>
<stampKind timeDimension="stampKindTimeDimension”
stampBounds="stampKindStampBounds” />
<format plugin="stampPlugin” granularity="stampGranularity”
calendar="stampCalendar” properties="stampProperties”
valueSchema=" stampValueSchema” />
<orderBy>
<field>
<target>newOrderByField</target>
</field>
</orderBy>
</stamp>
</physicals>
</annotationSet>

4.5. Primitive changes related to the logical annotations

These primitive changes can be applied only to the <logical/> container. We have identified forty
one primitive changes:

AddItem(AD.xml, itemTarget)

Adds the <item/> element with specified itemTarget target value to the <logical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals
<item target="itemTarget”/>
</logical>
</annotationSet>

DeleteItem(AD.xml, itemTarget)

Removes the <item/ > element with specified itemTarget from the <1logical/> container.

AddvalidTimeToItem(AD.xml, itemTarget, validTimeKind,
validTimeContent, validTimeExistence)

Adds the <validTime/> element with specified validTimeKind, validTimeContent, and
validTimeExistence to the <item/> element with specified itemTarget in the <logical/>
container, where the three last arguments are optional.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<validTime kind="validTimeKind” content="validTimeContent”
existence="validTimeExistence” />
</item>
</logicals>
</annotationSets>

11

Possible values of some arguments:
¢ validTimeKind: either state or event.
¢ validTimeContent: either constant or varying.

¢ validTimeExistence: one of constant, varyingWithGaps, varyingWithoutGaps.

DeleteValidTimeFromItem (AD.xml, itemTarget)

Removes the <validTime/> element from the <item/> element with specified itemTarget in the
<logical/ > container.

SetValidTimeInItem(AD.xml, itemTarget, validTimeKind,
validTimeContent, validTimeExistence)

Changes the value of the kind attribute and/or the value of the content attribute and/or the value of the
existence attribute of the <validTime/> element of the <item/> element with specified
itemTarget in the <1ogical/> container.

AddContentVaryingApplicabilityToValidTimeInItem (AD.xml, itemTarget,
contentVaryingApplicabilityBegin, contentVaryingApplicabilityEnd)

Adds the <contentVaryingApplicability/> element with specified
contentVaryingApplicabilityBegin and contentVaryingApplicabilityEnd to the <validTime/>
element of the <item/> element with specified itemTarget in the <logical/> container. This
primitive is not applicable to a <validTime/> element with an attribute content having the value
constant.

AD.xml:

<?xml version="1.0"” encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<validTime kind="validTimeKind” content="validTimeContent”
existence="validTimeExistence” >
<contentVaryingApplicability begin="contentVaryingApplicabilityBegin”
end="contentVaryingApplicabilityEnd” />
</validTime>
</item>
</logicals>
</annotationSet>

DeleteContentVaryingApplicabilityFromValidTimeInItem (AD.xml,
itemTarget, contentVaryingApplicabilityBegin,
contentVaryingApplicabilityEnd)

Removes the <contentVaryingApplicability/> element with specified
oldcontentVaryingApplicabilityBegin ~ and oldcontentVaryingApplicabilityEnd from the
<validTime/> element of the <item/> element with specified itemTarget in the <logical/>
container.

ChangeContentVaryingApplicabilityInValidTimeInItem (AD.xml,
itemTarget, oldcontentVaryingApplicabilityBegin,
oldcontentVaryingApplicabilityEnd,
newcontentVaryingApplicabilityBegin,
newcontentVaryingApplicabilityEnd)

Changes the value of the begin attribute and/or the value of the end attribute of the
<contentVaryingApplicability/> element with specified
oldcontentVaryingApplicabilityBegin and oldcontentVaryingApplicabilityEnd in the

12

<validTime/ > element of the <item/> element with specified itemTarget in the <logical/>
container.

SetMaximalExistenceInValidTimeInItem(AD.xml, itemTarget,
MaximalExistenceBegin, MaximalExistenceEnd)

Adds or changes the <maximalExistence/> element with specified maximalExistenceBegin and
maximalExistenceEnd to the <validTime/> element of the <item/> element with specified
itemTarget in the <1ogical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logical>
<item target="itemTarget”>
<validTime kind="validTimeKind” content="validTimeContent”
existence="validTimeExistence” >
<maximalExistence begin="MaximalExistenceBegin” end="MaximalExistenceEnd”/>
</validTime>
</item>
</logicals>
</annotationSet>

DeleteMaximalExistenceFromValidTimeInItem (AD.xml, itemTarget,
MaximalExistenceBegin, MaximalExistenceEnd)

Removes the <maximalExistence/> element from the <validTime/> element of the
<item/> element with specified itemTarget in the <1logical/> container.

SetFrequencyInValidTimeInItem (AD.xml, itemTarget,
validTimeFrequency)

Adds or changes the <frequency/> element with specified validTimeFrequency to the
<validTime/ > element of the <item/> element with specified itemTarget in the <logical/>
container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"7?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logical>
<item target="itemTarget”>
<validTime kind="validTimeKind” content="validTimeContent”
existence="validTimeExistence” >
<frequency/>validTimeFrequency<frequency/>
</validTimes>
</item>
</logicals>
</annotationSet>

DeleteFrequencyFromValidTimeInItem(AD.xml, itemTarget)

Removes the <frequency/> element from the <validTime/> element of the <item/>
element with specified itemTarget in the <1logical/> container.

AddTransactionTimeToItem (AD.xml, itemTarget, transactionTimeKind,
transactionTimeContent, transactionTimeExistence)

Adds the <transactionTime/> element with specified transactionTimeKind,
transactionTimeContent, and transactionTimeExistence to the <item/> element with specified
itemTarget in the <1logical/> container, where the three last arguments are optional.

13

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>

<item target="itemTarget”>

<transactionTime kind="transactionTimeKind” content="transactionTimeContent”
existence="transactionTimeExistence” />

</item>
</logicals>
</annotationSet>

DeleteTransactionTimeFromItem (AD.xml, itemTarget)

Removes the <transactionTime/> element from the <item/> element with specified
itemTarget in the <1logical/> container.

SetTransactionTimeInItem(AD.xml, itemTarget, transactionTimeKind,
transactionTimeContent, transactionTimeExistence)

Changes the value of the kind attribute and/or the value of the content attribute and/or the value of the
existence attribute of the <transactionTime/ > element of the <item/> element with specified
itemTarget in the <1logical/> container.

SetFrequencyInTransactionTimeInItem (AD.xml, itemTarget,
transactionTimeFrequency)

Adds or changes the <frequency/> element with specified transactionTimeFrequency to the
<transactionTime/> element of the <item/> element with specified itemTarget in the
<logical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"7?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<transactionTime kind="transactionTimeKind” content="transactionTimeContent”
existence="transactionTimeExistence” >
<frequency/>transactionTimeFrequency<frequency/>
</transactionTime>
</item>
</logicals>
</annotationSet>

DeleteFrequencyFromTransactionTimeInItem (AD.xml, itemTarget)

Removes the <frequency/> element from the <transactionTime/> eclement of the
<item/> element with specified itemTarget in the <1logical/> container.

AddItemIdentifierToItem(AD.xml, itemTarget, itemIdentifierName,
itemIdentifierTimeDimension)

Adds the <itemIdentifier/> eclement with specified itemldentifierName and
itemldentifierTimeDimension to the <item/> element with specified itemTarget in the
<logical/> container.

14

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<itemIdentifier name="itemIdentifierName” timeDimension="itemIdentifierTimeDimension”/>
</item>
</logicals>
</annotationSets>

Possible values of some arguments:

¢ itemldentifierTimeDimension: one of validTime, transactionTime, or bitemporal; default is
validTime.

DeleteItemIdentifierFromItem(AD.xml, jitemTarget)

Removes the <itemIdentifier/> element from the <item/> element with specified
itemTarget in the <1ogical/> container.

SetItemIdentifierInItem(AD.xml, itemTarget, itemIdentifierName,
itemIdentifierTimeDimension)

Changes the value of the name attribute and/or the value of the timeDimension attribute of the
<item/> element with specified itemTarget in the <1logical/> container.

AddKeyrefToItemIdentifier (AD.xml, itemTarget, keyrefName,
keyrefType)

Adds the <keyref/> element with specified keyrefName and keyrefType to the
<itemIdentifier/> element of the <item/> element with specified itemTarget in the
<logical/ > container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logical>
<item target="itemTarget”>
<itemIdentifier name="itemIdentifierName” timeDimension="itemIdentifierTimeDimension”>
<keyref refName="keyrefName” refType="keyrefType”/>
</itemIdentifiers>
</item>
</logicals>
</annotationSets>

DeleteKeyrefFromItemIdentifier (AD.xml, itemTarget, keyrefName)

Removes the <keyref/> element with specified keyrefName from the <itemIdentifier/>
element of the <item/ > element with specified itemTarget in the <logical/> container.

ChangeKeyrefInItemIdentifier (AD.xml, itemTarget, oldkeyrefName,
newkeyrefName, oldkeyrefType, newkeyrefType)

Changes the value of the refName attribute and/or the value of the refType attribute of the
<keyref /> element with specified oldkeyrefName in the <itemIdentifier/> element of the
<item/ > element with specified itemTarget in the <logical /> container.
AddFieldToItemIdentifier (AD.xml, itemTarget, fieldPath)

Adds the <field/> element with specified fieldPath to the <itemIdentifier/> element of the
<item/> element with specified itemTarget in the <1logical/> container.

15

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<itemIdentifier name="itemIdentifierName” timeDimension="itemIdentifierTimeDimension”>
<field path="fieldPath”/>
</itemIdentifiers>
</item>
</logicals>
</annotationSet>

DeleteFieldFromItemIdentifier (AD.xml, itemTarget, fieldPath)

Removes the <field/> element with specified fieldPath from the <itemIdentifier/s>
element of the <item/ > element with specified itemTarget in the <1logical/> container.

ChangeFieldInItemIdentifier (AD.xml, itemTarget, oldfieldPath,
newfieldPath)

Changes the <field/ > element with specified oldfieldPath in the <itemIdentifier/> element
of the <item/> element with specified itemTarget in the <logical/> container.

AddAttributeToItem (AD.xml, itemTarget, attributeName)

Adds the <attribute/> element with specified attributeName to the <item/> element with
specified itemTarget in the <1logical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"7?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<attribute name="attributeName” />
</item>
</logicals>
</annotationSets>

DeleteAttributeFromItem (AD.xml, itemTarget, attributeName)

Removes the <attribute/> element with specified attributeName from the <item/> element
with specified itemTarget in the <1logical/> container.

ChangeAttributeNameInItem (AD.xml, itemTarget, attributeName)

Changes the name attribute of the <attribute/> element in the <item/> element with specified
itemTarget in the <1ogical/> container.

AddvalidTimeToAttribute (AD.xml, itemTarget, attributeName,
validTimeKind, validTimeContent)

Adds the <validTime/> element with specified validTimeKind and validTimeContent to the
<attribute/> element with specified attributeName of the <item/> element with specified
itemTarget in the <logical/> container, where validTimeKind is required and validTimeContent
is optional.

16

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals>
<item target="itemTarget”>
<attribute name="attributeName” >
<validTime kind="validTimeKind” content="validTimeContent”/>
</attributes>
</item>
</logicals>
</annotationSet>

Possible values of some arguments:
¢ validTimeKind: either state or event.

¢ validTimeContent: either constant or varying.

DeleteValidTimeFromAttribute (AD.xml, itemTarget, attributeName)

Removes the <validTime/> element from the <attribute/> element with specified
attributeName of the <item/> element with specified itemTarget in the <logical/> container.

SetValidTimeInAttribute (AD.xml, itemTarget, attributeName,
validTimeKind, wvalidTimeContent)

Changes the value of the kind attribute and/or the value of the content attribute of the
<validTime/> element of the <attribute/> element with specified attributeName of the
<item/ > element with specified itemTarget in the <logical /> container.

AddContentVaryingApplicabilityToValidTimeInAttribute (AD.xml,
itemTarget, attributeName, contentVaryingApplicabilityBegin,
contentVaryingApplicabilityEnd)

Adds the <contentVaryingApplicability/> element with specified
contentVaryingApplicabilityBegin and contentVaryingApplicabilityEnd to the <validTime/>
element of the <attribute/> element with specified attributeName in the <item/> element with
specified itemTarget in the <1logical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"7?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logical>
<item target="itemTarget”>
<attribute name="attributeName” >
<validTime kind="validTimeKind” content="validTimeContent”>
<contentVaryingApplicability begin="contentVaryingApplicabilityBegin”
end="contentVaryingApplicabilityEnd” />
</validTime>
</attribute>
</item>
</logicals>
</annotationSets>

DeleteContentVaryingApplicabilityFromValidTimeInAttribute (AD.xml,
itemTarget, attributeName, contentVaryingApplicabilityBegin,
contentVaryingApplicabilityEnd)

Removes the <contentVaryingApplicability/> element with specified
oldcontentVaryingApplicabilityBegin ~ and oldcontentVaryingApplicabilityEnd from the
<validTime/> element of the <attribute/> element with specified attributeName in the
<item/> element with specified itemTarget in the <1logical/> container.

17

ChangeContentVaryingApplicabilityInvValidTimeInAttribute (AD.xml,
itemTarget, attributeName, oldcontentVaryingApplicabilityBegin,
oldcontentVaryingApplicabilityEnd,
newcontentVaryingApplicabilityBegin,
newcontentVaryingApplicabilityEnd)

Changes the value of the begin attribute and/or the value of the end attribute of the
<contentVaryingApplicability/> element with specified
oldcontentVaryingApplicabilityBegin and oldcontentVaryingApplicabilityEnd in the
<validTime/> element of the <attribute/> element with specified attributeName in the
<item/> element with specified itemTarget in the <1logical/> container.

SetFrequencyInValidTimeInAttribute (AD.xml, itemTarget, attributeName,
validTimeFrequency)

Adds or changes the <frequency/> element with specified validTimeFrequency to the
<validTime/> element of the <attribute/> element with specified attributeName in the
<item/> element with specified itemTarget in the <1logical/> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals
<item target="itemTarget”>
<attribute name="attributeName” >
<validTime kind="validTimeKind” content="validTimeContent”>
<frequency>validTimeFrequency</frequency>
</validTime>
</attribute>
</item>
</logicals>
</annotationSets>

DeleteFrequencyFromValidTimeInAttribute (AD.xml, itemTarget,
attributeName)

Removes the <frequency/ > element from the <validTime/> element of the <attribute/>
element with specified attributeName in the <item/> element with specified itemTarget in the
<logical/> container.

AddTransactionTimeToAttribute (AD.xml, itemTarget, attributeName)

Adds the <transactionTime/> element to the <attribute/> element with specified
attributeName in the <item/ > element with specified itemTarget in the <logical /> container.

AD.xml:

<?xml version="1.0" encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physical>
<logicals>
<item target="itemTarget”>
<attribute name="attributeName” >
<transactionTime/>
</attributes>
</item>
</logicals>
</annotationSet>

DeleteTransactionTimeFromAttribute (AD.xml, itemTarget,
attributeName)

Removes the <transactionTime/> element from the <attribute/> element with specified

18

attributeName in the <item/ > element with specified itemTarget in the <logical/> container.

e SetFrequencyToTransactionTimeInAttribute (AD.xml, itemTarget,
attributeName, transactionTimeFrequency)

Adds or changes the <frequency/> element with specified transactionTimeFrequency to the
<transactionTime/> element of the <attribute/> element with specified attributeName in
the <item/ > element with specified itemTarget in the <1logical/> container.

AD.xml:

<?xml version="1.0"” encoding="UTF-8"?>

<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema” >
<physicals>

</physicals>
<logicals
<item target="itemTarget”>
<attribute name="attributeName” >
<transactionTime>
<frequency>transactionTimeFrequency</frequency>
</transactionTime>
</attribute>
</item>
</logicals>
</annotationSets>

e DeleteFrequencyFromTransactionTimeInAttribute (AD.xml, itemTarget,
attributeName)

Removes the <frequency/> element from the <transactionTime/> eclement of the
<attribute/> element with specified attributeName in the <item/> element with specified
itemTarget in the <1logical/> container.

Notice that it is possible to reduce the number of primitives if we consider some sub-elements which are
common to the <item/ > element and the <attribute/> element: the <validTime/> sub-element
and its sub-clements (<contentVaryingApplicability/>, <maximalExistence/> and
<frequency/>) and the <transactionTime/> sub-element and its sub-element
(<frequency/>).

4.6. Illustrative example

Let us resume the example of the section 2.2. Suppose that on June 1, 2010, the designer decides to keep
the history of the balance of each account along both transaction and valid times. Then, he/she changes
the first version of the annotation document by modifying the item related to the Balance element: he/she
adds an empty <validTime> element and changed the value of the timeDimension attribute of the
<itemIdentifiers> element from transactionTime to bitemporal. Suppose that he/she also decides to
add another physical timestamp (having a bitemporal kind) to the element <Balances>. The second
version of the annotation document is shown in Figure 5. Thus, the temporal schema is also updated by
adding a new slice related to this new version of the annotation document, as shown in Figure 6.

The sequence of primitives that have been performed on the first version of the annotation document
(BankAnnotations V1.xml) to produce the second one (BankAnnotations V2.xml) is as follows:

(i) AddValidTimeToltem(“BankAnnotations V1.xml”, “/Bank/Account/Balance”, state, varying,
constant)

(i1) SetltemlIdentifierInltem(“BankAnnotations V1.xml”, “/Bank/Account/Balance”, “balancelD”,
bitemporal)

(ii1) AddStamp(“BankAnnotations_V1.xml”, “/Bank/Account/Balance”, expandedVersion, bitemporal,
extent)

19

<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema">
<logicals>
<item target="/Bank/Account/Balance">
<transactionTime kind="state" content="varying" existence="constant"/>
<validTime kind="state" content="varying" existence="constant"/>
<itemIdentifier name="balanceID" timeDimension="bitemporal"s
<field path="."/>
</itemIdentifier>
</item>
</logical>
<physical>
<stamp target="/Bank/Account" dataInclusion="expandedVersion”>
<stampKind timeDimension="transactionTime" stampBounds="extent"/>
</stamp>
<stamp target="/Bank/Account/Balance" datalnclusion="expandedVersion” >
<stampKind timeDimension="bitemporal" stampBounds="extent"/>
</stamp>
</physicals>
</annotationSet>

Figure 5. Second version of the annotation document (BankAnnotations V2.xml), on June 1, 2010

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
<conventionalSchema>
<sliceSequence>
<slice location="Bank V1.xsd" begin="2010-02-01" />
</sliceSequence>
</conventionalSchema>
<annotationSet>
<sliceSequence>
<slice location="BankAnnotations V1.xml" begin="2010-02-01" />
<slice location="BankAnnotations_V2.xml" begin="2010-06-01" />
</sliceSequence>
</annotationSet>
</temporalSchema>

Figure 6. Temporal schema (BankTemporalSchema.xml) on June 1, 2010

On August 1, 2010, suppose that the designer decides to make the <Type> element varying in valid-time
and to add a physical valid-time timestamp to this element. The third version of the annotation document
is shown in Figure 7 and the updated temporal schema document is shown in Figure 8.

The sequence of primitives that have been performed on the second version of the annotation document
(BankAnnotations_V2.xml) to produce the third one (BankAnnotations V3.xml) is as follows:

(1) AddItem(“BankAnnotations_ V2.xml”, “/Bank/Account/Type”)

(i1) AddValidTimeToltem(“BankAnnotations_ V2.xml”, “/Bank/Account/Type”,
state, varying, constant)

(iii) AddItemlIdentifierToltem(“BankAnnotations V2.xml”, “/Bank/Account/Type”,
“typelD”, validTime)

(iv) AddFieldToltemldentifier(“BankAnnotations_ V2.xml”, “/Bank/Account/Type”, “.”")

(v) AddStamp(“BankAnnotations V2.xml”, “/Bank/Account/Type”,
expandedVersion, validTime, extent)

20

<?xml version="1.0" encoding="UTF-8"?>
<annotationSet xmlns="http://www.cs.arizona.edu/tau/tauXSchema/ASchema">
<logicals>
<item target="/Bank/Account/Balance">
<transactionTime kind="state" content="varying" existence="constant"/>
<validTime kind="state" content="varying" existence="constant"/>
<itemIdentifier name="balanceID" timeDimension="bitemporal"s
<field path="."/>
</itemIdentifier>
</item>
<item target="/Bank/Account/Type">
<validTime kind="state" content="varying" existence="constant"/>
<itemIdentifier name="typeID" timeDimension="validTime">
<field path="."/>
</itemIdentifier>
</item>
</logical>
<physical>
<stamp target="/Bank/Account" dataInclusion="expandedVersion”>
<stampKind timeDimension="transactionTime" stampBounds="extent"/>
</stamp>
<stamp target="/Bank/Account/Balance" dataInclusion="expandedVersion” >
<stampKind timeDimension="bitemporal" stampBounds="extent"/>
</stamp>
<stamp target="/Bank/Account/Type" dataInclusion="expandedVersion” >
<stampKind timeDimension="validTime" stampBounds="extent"/>
</stamp>
</physicals>
</annotationSet>

Figure 7. Third version of the annotation document (BankAnnotations V3.xml), on August 1, 2010

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">
<conventionalSchema>
<sliceSequence>
<slice location="Bank V1.xsd" begin="2010-02-01" />
</sliceSequence>
</conventionalSchemas>
<annotationSets>
<sliceSequence>
<slice location="BankAnnotations V1.xml" begin="2010-02-01" />
<slice location="BankAnnotations V2.xml" begin="2010-06-01" />
<slice location="BankAnnotations V3.xml" begin="2010-08-01" />
</sliceSequence>
</annotationSet>
</temporalSchema>

Figure 8. Temporal schema (BankTemporalSchema.xml) on August 1, 2010

5. Related work

Schema versioning has been widely and deeply studied in the context of temporal relational databases
(e.g. [5,12,13]) and temporal object-oriented databases (e.g. [14,15,16]).

In the XML setting, a bibliography of work about temporal representation and evolution of documents
and data on the web has been presented in [17].

In [18,19], the authors propose a generic approach for the management of schema versioning in
multitemporal XML databases and for the manipulation of multitemporal data under schema versioning.
This approach is based on the XML Schema language and is database-consistency preserving. However,
this approach is low-lever since operations are defined as modifications of XML elements/attributes.

In [20,21,22], the authors deal with the management of schema evolution and versioning in web
information systems. However, in these proposals the authors do not consider native XML databases (or
repositories). They work always on a temporal relational database supporting schema evolution (or
versioning) and they use XML to publish and to query data and schema. In particular, in [20], the authors
propose SMO, a set of schema modification operators, to change the schema of relational databases. In
[21], the authors address the issue of automatic SQL query rewriting after schema changes. In [22], the
authors (i) propose ICOM, a set of integrity constraint modification operators, that completes SMO and

21

allows designers to change some integrity constraints (as a part of the schema) in relational databases, and
(i1) study rewriting of SQL updates after schema changes.

The papers, which are more strictly related with our work, are [7], [8] and [9]. In [7], the authors
introduce tXSchema but did not discuss schema versioning. In [8] and [9], the authors deal with schema
versioning in tXSchema but they focus only on capturing a time-varying schema and validating
documents against such a schema. [8] describes how the validator can be extended to validate temporal
XML documents when their content (i.e., data) and also their schema are changing over time. [9] extends
[8] by discussing how to accommodate gaps in the lifetime of an item, transaction semantics, and how to
accommodate non-sequenced constraints across schema changes. All previous works on 1XSchema do
not study how the schema changes are performed, or what schema change operations are provided. The
present work extends previous work about tXSchema by proposing a complete and sound set of change
primitives for physical and logical annotations and by defining their operational semantics.

6. Conclusion

This paper proposes a set of operations for the management of schema versioning in the tXSchema
framework. In particular, a sound and complete set of schema change primitives for the maintenance of
logical and physical annotations is introduced, and the syntax and operational semantics of each primitive
are defined.

Currently, we are extending the present work by defining a set of schema change primitives for the
conventional schema (i.e., change primitives acting on a standard XSD file). To this purpose, a
completion in the TXSchema framework of the work started in [18] will be done.

In the future, we plan to address temporal data querying in the presence of multiple schema versions in
the TXSchema framework. The starting point for this extension will be the tXQuery language [23], which
allows querying of tXSchema temporal documents under a single schema version.

References

[1] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation, 26 November 2008.
<http://www.w3.0rg/TR/2008/REC-xml-20081126/>.

[2] Dyreson C. E., Grandi F., “Temporal XML”, in L. Liu and M. T. Ozsu (Eds.), Encyclopedia of Database
Systems. Heidelberg, Germany: Springer-Verlag, 2009, pp. 3032-3035.

[3] Zaniolo C., Wang F., “Temporal queries and version management in XML-based document archives”, Data
and Knowledge Engineering, 65(2), 2008, pp. 304-324.

[4] Clifford J., Croker A., Grandi F., Tuzhilin A., “On Temporal Grouping”, Proceedings of the International
Workshop on Temporal Databases, Ziirich, Switzerland, 17-18 September 1995, pp. 194-213.

[5] De Castro C., Grandi F., Scalas M. R., “Schema versioning for multitemporal relational databases”,
Information Systems, 22 (5), 1997, pp. 249-290.

[6] Roddick, J. F., “Schema Versioning”, in L. Liu and M. T. Ozsu (Eds.), Encyclopedia of Database Systems.
Heidelberg, Germany: Springer-Verlag, 2009, pp. 2499-2502.

[71 Currim F., Currim S., Dyreson C. E., Snodgrass R. T., “A Tale of Two Schemas: Creating a Temporal XML
Schema from a Snapshot Schema with tXSchema”, Proceedings of the 9" International Conference on
Extending Database Technology (EDBT 2004), Crete, Greece, 14-18 March 2004, pp. 348-365.

[8] Dyreson C. E., Snodgrass R. T., Currim F., Currim S., Joshi S., “Validating Quicksand: Schema Versioning in
tXSchema”, Proceedings of the 22" International Conference on Data Engineering Workshops (ICDE
Workshops 2006), Atlanta, GA, USA, 3-7 April 2006, pp. 82.

[9] Dyreson C. E., Snodgrass R. T., Currim F., Currim S., Joshi S., “Validating Quicksand: Schema Versioning in
tXSchema”, Data Knowledge and Engineering, 65 (2), 2008, pp. 223-242.

[10] XML Schema Part 0: Primer Second Edition, W3C Recommendation, 28 October 2004.
<http://www.w3.0rg/TR/2004/REC-xmlschema-0-20041028/>

22

[11] Currim F., Currim S., Dyreson C. E., Joshi S., Snodgrass R. T., Thomas S. W., Roeder E., “tXSchema:
Support for Data- and Schema-Versioned XML Documents”, TimeCenter TR-91, September 2009.

<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-91.pdf>

[12] Wei H.-C., Elmasri R., “Schema versioning and database conversion techniques for bi-temporal databases”,
Annals of Mathematics and Artificial Intelligence, 30 (1-4), 2000, pp. 23-52.

[13] Grandi F., “A relational multi-schema data model and query language for full support of schema versioning”,
Proceedings of SEBD 2002 — National Conference on Advanced Database Systems, Isola d’Elba, Italy, 19-21
June 2002, pp. 323-336.

[14] Rodriguez L., Ogata H., Yano Y., “A temporal versioned object-oriented data schema model”, Computers and
Mathematics with Applications, 41 (1-2), 2001, pp. 177-192.

[15] Grandi F., Mandreoli F., “A formal model for temporal schema versioning in object-oriented databases”, Data
and Knowledge Engineering, 46 (2), 2003, pp. 123-167.

[16] Galante R. M., Dos Santos C. S., Edelweiss N., Moreira A. F., “Temporal and versioning model for schema
evolution in object-oriented databases”, Data and Knowledge Engineering, 53 (2), 2005, pp. 99-128.

[17] Grandi F., “Introducing an Annotated Bibliography on Temporal and Evolution Aspects in the World Wide
Web”, ACM SIGMOD Record, 33 (2), 2004, pp. 84-86.

[18] Brahmia Z., Bouaziz R., “An approach for schema versioning in multi-temporal XML databases”, Proceedings
of the 1 0™ International Conference on Enterprise Information Systems (ICEIS 2008), Barcelona, Spain, 13-16
June 2008, Volume DISI, pp. 290-297.

[19] Brahmia Z., Bouaziz R., “Data Manipulation in Multi-Temporal XML Databases Supporting Schema
Versioning”, Proceedings of the 4" International EDBT Workshop on Database Technologies for Handling
XML Information on the Web (DaTaX’09), Saint-Petersburg, Russia, 22 March 2009.
<http://www.edbt.org/Proceedings/2009-StPetersburg/workshops/DataX09/papers/paper14.html>

[20] Curino C. A., Moon H. J., Tanca L., Zaniolo C., “Schema Evolution in Wikipedia: toward a Web Information
System Benchmark”, Proceedings of the 10" International Conference on Enterprise Information Systems
(ICEIS 2008), Barcelona, Spain, 13-16 June 2008, Volume DISI, pp. 323-332.

[21] Curino C. A., Moon H. J., Zaniolo C., “Graceful database schema evolution: the prism workbench”,
Proceedings of the 34" International Conference on Very Large Data Bases (VLDB 2008), Auckland, New
Zealand, 24-30 August 2008, pp. 761-772.

[22] Curino C. A., Moon H. J., Deutsch A., Zaniolo C., “Update Rewriting and Integrity Constraint Maintenance in
a Schema Evolution Support System: PRISM++”, Proceedings of the VLDB Endowment (PVLDB), 4 (2), 2010,
pp. 117-128.

[23] Gao D., Snodgrass R. T., “Temporal slicing in the evaluation of XML documents”, Proceedings of the 29"
International Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany, 9-12 September 2003, pp.
632-643.

23

