

Multiclass Transaction Scheduling and
Overload Management in Firm
Real-Time Database Systems

Anindya Datta, Sarit Mukherjee, Prabhudev Konana, Igor R. Viguier, Akhilesh
Bajaj

May 8, 1997

TR-11

A TimeCenter Technical Report

Title Multiclass Transaction Scheduling and Overload Management in

Firm Real-Time Database Systems

Copyright c
 1997 Anindya Datta, Sarit Mukherjee, Prabhudev Ko-

nana, Igor R. Viguier, Akhilesh Bajaj. All rights reserved.

Author(s) Anindya Datta, Sarit Mukherjee, Prabhudev Konana, Igor R. Vigu-

ier, Akhilesh Bajaj

Publication History March 1996, Information Systems 21(1)

A TimeCenter Technical Report

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector)

Michael H. B�ohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA

Richard T. Snodgrass (codirector)

Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia

Kwang W. Nam, Chungbuk National University, Korea

Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TimeCenter is provided \as is" and without any express or im-

plied warranties, including, without limitation, the implied warranty of merchantability and �tness

for a particular purpose.

The TimeCenter icon on the cover combines two \arrows." These \arrows" are letters in the

so-called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors

and successors, The Rune alphabet (second phase) has 16 letters. They all have angular shapes

and lack horizontal lines because the primary storage medium was wood. However, runes may also

be found on jewelry, tools, and weapons. Runes were perceived by many as having magic, hidden

powers.

The two Rune arrows in the icon denote \T" and \C," respectively.

Abstract

Real-Time Database Systems (RTDBSs), have attracted considerable amount of research at-
tention in the recent past and a number of important applications have been identi�ed for such
systems, such as telecommunications network management, automated air tra�c control, auto-
mated �nancial trading, process control and military command and control systems. Due to the
rapidity of change of the system state in such applications, as well as the inherent complexities
in controlling such systems (which result in frequent violation of consistency requirements and
consequent repeated �rings of control actions), it is likely that the transaction load in these
systems would be fairly high. Thus RTDBSs need to be equipped with overload management
mechanisms. Unfortunately overload management has been a fairly neglected area in real-time
systems research in general and real-time database research in particular. In this paper we
introduce Adaptive Access Parameter (AAP), a scheduling mechanism for multiclass transac-
tions in real-time database systems that employs an explicit admission control policy to manage
overload as well as system bias towards particular transaction classes. We show the theoretical
underpinnings behind AAP and then report a thorough performance study that demonstrates
AAP's substantial superiority over current algorithms with regard to performance metrics as
well as computational overhead.

1 Introduction

1.1 Research Context

The development of command and control systems, such as automated air tra�c control, net-

work management, automated stock trading, automated manufacturing etc., has emerged as an

important technological challenge in recent times. The common theme of these applications is that

they all involve monitoring and processing of environmental data and providing timely response.

An example of this from a network management domain may be to monitor link utilizations in

telecommunications networks and inform the network control center in a timely fashion, i.e., within

some speci�ed deadlines, if unacceptably high link utilizations were detected. An example from a

process control domain may be to decrease pressure in a chemical reactor within a certain time in

response to unacceptably high temperatures. Another important characteristic that de�nes these

applications is their data intensive nature, which arises from the immense amount of monitoring

data that needs to be processed { e.g., a network management application typically handles several

gigabytes of data per day [4]. Aside from their data intensive nature, these applications also tend

to be data driven, i.e., future decisions may depend upon data collected in the past. For instance,

large telephone companies typically store tra�c pro�les, e.g., South Florida receives a large number

of telephone calls on Mother's day. Depending upon this historical information, routing patterns

are changed depending on system state (e.g., occurrence of Mother's day). The above mentioned

data dependency of these applications mandate the use of database management systems (DBMSs)

for these applications. Since, timely processing is of critical importance, such DBMSs are called

Real-Time Database Systems (RTDBSs) [20].

Because of the time cognizant nature of RTDBSs, transaction processing assumes special impor-

tance. In particular, transaction scheduling strategies are a major determinant of the degree of time

cognizance of RTDBSs. A factor that signi�cantly complicates scheduling decisions is the presence

of overload, i.e., more transactions than the system can handle. It is also quite intuitive that in

most real-time, data intensive command and control applications, the transaction processing load

would, on occasions, be quite high, i.e., overload conditions would prevail. For example, in tele-

phone networks, there are times when system load increases dramatically. To schedule transactions

in RTDBSs therefore, not only does one need a time-cognizant scheduling policy, but one also needs

1

a mechanism that can detect and react to overload situation and keep the system performance from

dramatic degradation.

1.2 Current State of Knowledge

In addition to enforcing conventional database management system (DBMS) transaction correctness

criteria, RTDBSs attempt to ful�ll temporal constraints on transaction execution duration. Most

previous RTDBS studies have attempted to address the issue of scheduling transactions by assigning

priorities. Moreover, in the context of priority based transaction scheduling in RTDBSs, most

performance studies have adopted the Earliest Deadline (ED) principle for priority assignment

[15, 1, 8, 11]. The ED policy has been shown to minimize number of missed transactions in lightly

to moderately loaded systems (i.e., underloaded systems1) [2]. However, under overload conditions,

transactions gain high priority under ED policy only when they are close to their deadlines and

thus may not have enough time to complete. In fact, as commented upon in [22], executing

transactions very close to their deadlines can create a vicious cycle in such a way that transactions

relatively farther from their deadlines get delayed, and consequently, may also fail to satisfy their

time constraints. This issue has been researched extensively in [18] where the authors show that

ED acts in a discriminatory fashion (by discriminating against longer transactions) while trying to

maximize transactions that complete on time. The authors in [18] go on to propose an Adaptive

Earliest Virtual Deadline (AEVD) policy that performs signi�cantly better than ED. AEVD is also

shown in [18] to outperform the Adaptive Earliest Deadline (AED) policy postulated in [8]. In [8],

AED was shown to perform better than the ED policy as well.

While scheduling underloaded systems has been studied extensively (see [22] for a comprehensive

review) and several algorithms been suggested (e.g., ED, least-slack), it has been shown that these

algorithms perform quite poorly under overload conditions [16, 18]. There has been considerably less

work regarding overload management in the context of real-time systems in general and RTDBSs

in particular. [16, 21] propose some on line heuristics to handle system overloads in real-time

systems. However as far as RTDBSs are concerned, we are not aware of any published work on

explicit overload management. However, there are some papers that perform implicit load control,

i.e., they employ strategies that perform actions which have a secondary e�ect of limiting system

load. The most notable of these mechanisms are the AED and the AEVD algorithms mentioned

in the previous paragraph. Both of these algorithms assign incoming transactions to either a \hit"

or a \miss" group, such that transactions in the miss group only receive processing if the hit group

is empty. This has the e�ect of controlling system load. However, these assignments are somewhat

arbitrary, i.e., transactions are assigned randomly to either group without regard to system pro�les

(e.g., current load) or transaction pro�les (e.g., tightness of time constraint).

The results of a comparative performance study of AED and AEVD reported in [18] establish

AEVD as the better performer. Thus AEVD may be considered the predominant RTDBS schedul-

ing algorithm in the literature. We feel however, that AEVD su�ers from several drawbacks: (a)

the hit and miss group assignments is not a true overload management policy for reasons men-

tioned in the previous paragraph; (b) the authors make the assumption that transaction size is

correlated to its time constraint which may not be completely valid in certain circumstances (i.e.,

long transactions may have short deadlines and short transactions may have long deadlines). Also,

as we show in section 5, under overload, the performance of AEVD deteriorates rather sharply.

Though this deterioration is slower than the dramatic performance degradation of ED, it is still

1We ascribe similar meaning to system loading as in [13]: a system is underloaded if there exists a schedule that
will meet the deadline of every task and overloaded otherwise.

2

very signi�cant. Consequently, the area of overload management remains very much an open area

of research.

1.3 Contributions of This Paper

Given that overload management is important for RTDBSs and not much success has been achieved

on controlling overload situations, we felt it important to explore the area. This paper intro-

duces a dynamic admission control and priority based scheduling policy for disk resident RTDBSs,

called Adaptive Access Parameter (AAP), that considers the arrival times and time constraints of

transactions, makes no apriori assumptions about correlations between transaction sizes and time

constraints and does explicit admission control. The admission control policy of AAP serves dual

purposes { overload management as well as bias control. Bias control refers to reducing discrimina-

tory behavior towards particular transaction classes (like ED is biased against longer transactions).

AAP takes advantage of the \canned transaction" assumption in RTDBSs and is shown to have

substantially higher performance than AEVD under overload conditions, while having lower bias

and a signi�cantly lower time overhead than AEVD. To the best of our knowledge this paper is

one of the �rst to study admission control in RTDBSs in detail.

In summary, AAP has two major contributions to the real-time transaction literature:

1. First of all it introduces a whole new way of priority assignment. Until now, scheduling

algorithms have assigned priorities on the basis of deadlines, real (e.g., ED) or virtual (AEVD).

In this paper we introduce the notion of not only considering the deadline, but also factoring

in the work remaining.

2. Secondly, and more importantly, we introduce the notion of explicit admission control with

the intent of performing both overload management (i.e., shielding the system from the e�ects

of excessive load) as well as bias control (i.e., providing fair service to all transaction classes).

Our admission control policy leads to dramatic performance improvements both in terms of

reducing transaction misses as well as fairness.

The remainder of the paper is organized as follows: Section 2 introduces the AAP algorithm.

Section 3 provides a brief overview of the AEVD model followed by a description of a simulator to

study AAP performance in section 4. Finally in section 5 we describe the results of our simulation

that compares AAP to AEVD and ED, and discuss the strengths and weaknesses of AAP.

2 Adaptive Access Parameter

The Adaptive Access Parameter (AAP) algorithm is designed for multiclass workloads, where classes

are di�erentiated by their mean sizes. In AAP we adopt the basic philosophy that a transaction

should be closely monitored as it progresses towards its deadline to prevent the situation where a

transaction is close to its deadline and a bulk of its processing remains to be done. In AAP we also

make the \canned transaction" assumption of real-time workloads, described below.

The canned transaction principle states that in typical real-time workloads, transactions tend

to recur, i.e., there is repetitiveness in transaction patterns [22, 19, 6]. This happens particularly

in command and control scenarios [6], which happens to be a classic application of RTDBSs. In

such scenarios, where real-time transactions are triggered in order to correct unacceptable system

behavior, similar transactions repetitively arrive due to the recurrence of similar problems. In other

words, users do not run arbitrary programs, but rather request the system to execute speci�c func-

tions out of a prede�ned set, where each function is an instance of a transaction type. For example,

3

in network management overutilization of links is a common problem. Thus the transactions that

respond to this problem arrive frequently to the system. Also, given any link in the network (say

link i), these transactions access the same data items (say i:X, i:Y). Thus, it makes sense to

assume, that when the transaction arrives in the system, its data requirements are known. In AAP

we assume that a transaction arrives with a read set and a write set, which denote the data items

that the transaction wants to read and write respectively. Validation for this assumption is also

o�ered in [5, 3]. Note however, that a bulk of the ideas presented in this paper do not depend on

this assumption. As will be seen soon, the canned transaction assumption is used to measure a

system parameter called access parameter (AP). There are other ways to measure this parameter,

without using the canned transaction assumption (e.g., through system feedback). If such means

were used then this paper would be independent of this assumption.

Throughout the remainder of this paper we use DT , AT , CT = DT �AT , PT , RST and WST to

denote the deadline, arrival time, time constraint, priority, read-set and write-set of transaction T ,

respectively. Priority assignments are such that smaller PT values re
ect higher priority. Table 1

summarizes these notations, together with certain additional terminology to be used later.

Notation Description

AT Arrival Time of transaction T

DT Deadline for Transaction T

CT Time Contraint of transaction T = DT �AT

PT Priority of transaction T

RST Read Set of transaction T

WST Write Set of transaction T

SizeT Size of transaction T (number of page accesses from disk)

SRT Slack Ratio of transaction T

APT Access parameter of transaction T

DAPRT Deadline Access Parameter Ratio for transaction T

Table 1: Notations used in this paper

The AAP algorithm introduced in this paper is a two-stage sequential algorithm, i.e., there are

two successive stages: (a) admission control; and (b) priority based scheduling. When a transaction

arrives, it �rst goes through the admission control stage, where a decision is made regarding the

admissibility of the transaction, based on current system state, as well as the transaction's pro�le.

If the transaction is admitted, it then goes through the priority based scheduling stage. Both

these stages use two critical notions called access parameter and deadline access parameter ratio.

To facilitate our description of AAP we adopt the following approach: we �rst describe the two

notions referred to above in detail and outline our basic priority based scheduling strategy (i.e.,

stage (b)). Subsequently we describe our admission control policy (i.e., stage (a)) in detail.

2.1 Important Parameters and Scheduling Policy in AAP

The basic principle of AAP is as follows: we estimate the size of a transaction using its read and

write sets. This is known as the access parameter (AP) of the transaction. Based on AP and

deadline of the transaction a value called Deadline Access Parameter Ratio (DAPR) is computed

which indicates how large the time constraint of a transaction is, in relation to its size. Thus,

a transaction with a lower DAPR has a tighter time constraint (in relation to its size) than a

transaction with a higher DAPR.

4

Based on this logic, transactions with lower DAPRs are awarded higher priority than transac-

tions with higher DAPRs. During execution time, each time a transaction fetches a page from disk

(i.e., has a page fault), its AP is reduced and DAPR recomputed. This adaptive nature of DAPR

achieves the goal of monitoring transaction progress and ensuring a time-cognizant progression

towards completion. The key notions in AAP are AP and DAPR. The remainder of this section is

devoted to a detailed exploration of these notions.

2.1.1 Access Parameter

The access parameter (AP) of a transaction denotes, at a speci�c instant, an estimate of its un-

processed content. Thus its initial AP is a measure of its size. On the arrival of a transaction

into the system, its AP is computed based on its read and write sets and is revised each time the

transaction accesses a page from disk. Thus, the key activity is the initial computation of AP. For

a transaction T the initial AP computation is done in the following fashion:

APT = ��BCET + (1� �)�WCET (1)

where

� � is a dynamic control variable, such that 0:0 � � � 1:0

� BCET is the best-case-estimate of the transaction size in terms of pages it needs to access

from disk

� WCET is the worst-case-estimate of the transaction size in terms of pages it needs to access

from disk

The notions of best and worst case estimates arise because we do not know how the data items are

located on pages on disk. Thus based on RST and WST , it is not possible to predict accurately

the number of pages the transaction needs to access from disk. In the worst case, each data item

request translates into a disk access, i.e., WCET = jRST j + jWST j. The best case estimate is a

little more complicated. We compute BCET as follows: we consider all the active transactions in

the system and the data items they need. Let this set of data items be denoted as CurrAccessed.

In other words, CurrAccessed is the union or the read and write sets of all active transactions in

the system. Let CurrAccessed \ (RST [WST) = �. Then, in the best case, � denotes the set of

data items required by T that are already in memory. Thus the most number of page accesses that

T would need to make is BCET = jRST j + jWST j � j�j. Thus truly, BCET denotes the \worst

given best" case. Also, it is clear from equation 1 that APT is a weighted average of the best and

worst cases.

The AAP algorithm uses a feedback mechanism to monitor the quality of our estimate and,

based on the results of this feedback, adjusts the value of � accordingly (we initialized � to 0:5 at

system startup). The feedback is in the form of a linear correlation between our initial size estimate

and the true size of a transaction, which we get by tracking how many pages the transaction actually

accessed during its execution. This is achieved by performing a linear regression between the APT
and the true size values. A slope less than 1 indicates underestimation on our part and a slope

greater than 1 indicates overestimation of the true size. Thus, if our feedback mechanism indicates

underestimation, we need to give more weight to WCET . This is achieved by decreasing � by 5%.

Conversely, an overestimation means the true size was closer to BCET , and � is increased by 5%.

The AAP algorithm recomputes AP each time a transaction does a page access from disk. More

speci�cally, in our implementation, each time T fetches a page from disk, APT is reduced by 1.

5

2.2 Deadline Access Parameter Ratio

The Deadline Access Parameter Ratio (DAPR) is how we assign priorities in AAP. DAPR is de�ned

as the time constraint per unit of unprocessed transaction size and is a measure of how much work a

transaction still needs to perform with respect to its deadline. We compute DAPR of a transaction

T as:

DAPRT =
DT � Clock

APT

The numerator in the expression denotes time left till the deadline expires and the denominator is

AP, i.e., the amount of unprocessed work. Therefore, transactions with lower DAPRs need to do

more work in less time than transactions with higher DAPRs. Thus priorities are assigned in inverse

order of DAPRs, i.e., transactions with lower DAPRs get higher priorities. Each time a resource

request is granted, AP is recomputed, resulting in re-evaluation of DAPRs. Correspondingly, the

active set of transactions are reprioritized.

As the transaction is granted resources, its AP is decreased to re
ect work done. For each

page access, we decrease APT by 1. One problem that we encountered with this is that in cases

of gross underestimation, APT becomes 0, which causes a problem in our DAPR calculation, as

the AP value appears in the denominator. We handle this case, by setting APTinit (the initial

AP estimate) to its worst case estimate i.e., WCET and recomputing APTcurr (the current AP

estimate), if APTcurr ever becomes 0 for transaction T . Note that with this recomputation, AP can

never reach 0 before completion of the transaction.

Along with recomputation of AP, we also check if it is likely that the transaction will successfully

complete. This is done as follows: for each page access by a transaction, we check if the condition,

given by equation 2 below, is true.

(DT � Clock) �

�
(BCET � (APTinit �APTcurr))� ProcT if BCET > APTinit �APTcurr
APTcurr � ProcT otherwise

(2)

where

� DT and Clock are the deadline of T and the current time respectively;

� APTinit and APTcurr are the initial and current AP values of T respectively;

� BCET is the best case size estimate of T , described in section 2.1.1; and

� ProcT = ProcCPU + ProcDisk, where ProcCPU and ProcDisk are the CPU and disk pro-

cessing time per data page respectively. These are simulation parameters described below in

section 4.1. Thus ProcT denotes the total processing time per data page.

Basically, this condition ascertains whether a transaction can complete within its deadline, even

if it were the only transaction in the system. The left hand side of equation 2 is the amount of

time left before the deadline of T expires, while the right hand side is the least amount of time T

needs to �nish execution, assuming it executes without interference. If this condition is satis�ed,

we allow T to continue, otherwise, it is aborted.

2.3 Admission Control in AAP

In this section we introduce the admission control policy of AAP, which serves two primary purposes,

overload management and bias control. The overload management component attempts to regulate

6

transaction entry into the system such that active transactions have a chance of completing by their

deadlines. Basically our overload management policy attempts to avoid the following scenario: due

to the unrestricted entry of transactions, the system ends up servicing a large number of transactions

partially, but is able to �nish very few. This scenario, which is symptomatic of the ED policy [18],

results in a lot of wasted work. In other words, the overload management philosophy in AAP is

to reduce wasted work in the system. The bias control component attempts to ensure that AAP

treats all transaction classes fairly, i.e., it is not discriminatory towards transactions of any class.

2.3.1 Overload Management

The overload management policy in AAP attempts to optimize resource usage under highly loaded

conditions to protect the system from performing \wasted work". The basic mechanism that

implements this policy is quite simple: before admitting a transaction, we check if the existing load

in the system is such, that the system resources can successfully service this transaction. This is

achieved by using transaction DAPRs to compute resource requirement of current workload and

comparing that to existing resource availability. The logic and the exact mechanics behind this

policy is explained below through an example.

Example: Assume the following RTDBS resource con�guration: there are n di�erent types of

resources R1; R2; : : : ; Rn, with mi identical instances of resource type Ri. In other words, there

are m1 resources of type R1, m2 of type R2 and so on. Let the processing power of an instance

of resource type Ri be Proci seconds/page. Then, the maximum number of pages that may be

processed by all instances of Ri is
mi

Proci
pages/second. Since the resource types have di�erent

service capacities, the maximum number of pages that may be processed by the system, assuming

each page processed is routed through an instance of each resource, is:

min

�
m1

Proc1
;

m2

Proc2
; : : : ;

mn

Procn

�
(3)

The assumption that each page must be routed through an instance of every resource in the system

is actually a very restrictive assumption { a transaction may �nd several data pages in memory

and may not have to go to disk. Later on in the section we show how we relax this assumption.

Now let us turn our attention to computing the service requirements of the transactions in

the system. Let us assume that at a particular point in time, there exist active transactions

T1; T2; : : : ; Tk in the system with corresponding DAPRs, DAPR1;DAPR2; : : : ;DAPRk respectively.

Now the DAPR of a transaction indicates, as shown earlier, the average rate of progress (sec-

onds/page) a transaction should maintain, in order to �nish by its deadline. For example, if T had

a DAPR of d, it means on an average, the system needs to process each data page accessed by T in

d seconds. This means that the inverse of DAPR, i.e., 1

DAPR
, indicates number of pages of that

transactions that need to be processed per second. Referring back to example in the previous line,

it means that the system needs to process 1

d
pages in one second, on an average, for T to have a

chance of completing by its deadline. Therefore, in order to �nish all the k transactions existing in

the system, the processing speed of the system, in pages/second, is given by:

1

DAPR1

+
1

DAPR2

+ : : : +
1

DAPRk

=
kX
i=1

1

DAPRi

(4)

Now, for the system to successfully complete all k transactions, the service requirement of the

transactions, given by equation 4, must be less than or equal to the system capacity, given by equa-

7

tion 3. In other words, a necessary2 condition for the system to successfully serve all k transactions

is given by:
kX
i=1

1

DAPRi

� min

�
m1

Proc1
;
m2

Proc2
; : : : ;

mn

Procn

�

Based on the above example, we can now easily identify a necessary condition to test the eligibility

of a new transaction for entry into the system. Clearly, if a transaction, say Tnew, arrives in the

system, it can only be allowed in if there is excess capacity in the system to process this transactions,

i.e.,

1

DAPRnew

� min

�
m1

Proc1
;
m2

Proc2
; : : : ;

mn

Procn

�
�

kX
i=1

1

DAPRi

(5)

As mentioned before, equation 5 makes the assumption that each data page is routed through

an instance of each resource. The problem with employing this policy is that it is too restrictive,

as a transaction may �nd several of its data pages already in memory and not have to go to disk.

If such a restrictive policy were employed all the time, we run the risk of denying entry to jobs that

would actually have been completed. Now we explore how to ameliorate this restrictive e�ect of

the above condition.

Ideally, we would like a load sensitive overload management policy, i.e., under \low" overload

conditions the policy would be less restrictive than under \high" overload conditions. In AAP

we attempt to incorporate load dependency in our overload management mechanism by modifying

equation 5 to make it sensitive to system load. Note that equation 5 gives the load independent

version of admissibility criteria for Tnew. However, we recognize that the expression given by

equation 3 is too stringent, because of assumptions made while deriving that expression. We build

in load dependence by incorporating a load sensitivity factor � in the above expression as follows:

1

DAPRnew

� �

�
min

�
m1

Proc1
;
m2

Proc2
; : : : ;

mn

Procn

��
�

kX
i=1

1

DAPRi

(6)

� can assume any real value such that � � 1:0. It can be easily seen that increasing � has a

less restrictive e�ect on our overload management policy, as the right hand side increases, thereby

enlarging the admissible set of left hand side values. We start with a � value of 1.5 and monitor the

miss ratio of transactions that are allowed to enter the system. After the entry of every SampleBatch

transactions in the system, where SampleBatch is a system parameter, we re-evaluate miss ratio

of transactions that were allowed to enter the system. The goal is to keep this system miss ratio

as close to 5% as possible, i.e., of the transactions that are allowed into the system, the objective

is to allow no more that 5% to miss their deadlines. Thus after every re-evaluation, if the miss

ratio is greater than 5%, � is decreased, making the admission control policy more restrictive.

Conversely, if the miss ratio is lesser than 5%, � is increased making the admission control policy

less restrictive. Also, we would like to state at this point that we assumed that the system has two

types of resources: CPUs and disks. Thus equation 6 may be restated for our case as:

1

DAPRnew

� �

�
min

�
nCPU

ProcCPU
;

ndisk
ProcDisk

��
�

kX
i=1

1

DAPRi

(7)

2But not su�cient

8

where ncpu = number of CPUs in the system,

ndisk = number of disks in the system,

ProcCPU = CPU processing time per data page,

ProcDisk = disk processing time per data page

Equation 7 is the actual overload management condition employed in AAP.

2.3.2 Bias Control

The overload management policy by itself does not always su�ce to ensure that an unbiased miss

ratio distribution is achieved across all transaction classes, i.e., all classes have fairly similar miss

ratios. Also, it has been shown that an RTDBS can produce biased behaviors that do not conform

to the requirements of fairness in miss ratio distribution across di�erent classes [18]. To prohibit

such undesirable behavior, AAP is equipped with a bias control mechanism that helps transaction

classes that would otherwise su�er from high miss ratios relative to other classes. This is achieved

by regulating transaction entry into the system. Before we describe our mechanism we would

like to introduce two notions to facilitate the discussion { normalized miss ratio (NMR) and class

miss ratio (CMR). As we have mentioned before, transaction classi�cation is based on sizes, i.e.,

transactions of the same size belong to the same class. The class miss ratio of transaction class i,

denoted by CMRi is the fraction of transactions missed with regard to that class, i.e.,

CMRi (%) =
of missed transactions of class i

total # of transactions of class i that arrived into the ystem
� 100

Normalized Miss Ratio (NMR) is one of the two primary performance metrics used in this paper

and is explained in detail in section 5. Su�ce it to say here that NMR is the overall miss ratio in

the system. The goal of a fair scheduling algorithm is to ensure that the miss ratios of all classes

are around the NMR value for the system, i.e., 8i;CMRi � NMR. Thus, if CMRi >> NMR and

CMRj << NMR, this means that the system dynamics are such that transactions of class j are

better able to complete than transactions of class i. Our bias control policy utilizes this information

and admits more transactions of class j into the system and less of class i to take advantage of

the current system dynamics. However, we do not unilaterally reject all transactions of class i

until CMRi comes down to an acceptable level as this goes against the basic philosophy of trying

to complete as many transactions as possible. The bias control policy will only deny entry to a

transaction of class i if it is not likely to complete. The bias control algorithm may be stated as

follows:

on arrival of transaction T belonging to class i

if CMRi > NMR

if T likely to complete

admit T;

else reject T;

else admit T;

We now turn our attention to how we ascertain whether a transaction is likely to complete. This

analysis, as our overload analysis explained in section 2.3.1, uses DAPR values and is partly based

on a powerful statistical technique known as discriminant analysis [12]. Discriminant analysis is

a classi�cation mechanism, i.e., given past history, it can classify an observation as belonging to

9

a particular class. For instance, salmon come from both Alaska and Canada but have di�erent

characteristics. Given the characteristics of a particular salmon, discriminant analysis is used

in classifying that �sh as Alaskan or Canadian. Our situation (though de�nitely less �shy) is

analogous. We maintain the characteristics of the transactions that have failed and succeeded in

the past. Based on this history, we want to classify an incoming transaction as likely to fail, or

likely to succeed.

The classi�cation parameter used is the initial DAPR computed for the incoming transactions.

We maintain a history of the initial DAPR values of previously failed and succeeded transactions.

Although we could have considered the entire past history, our view is that this is not desirable, as

workload characteristics change in real-time databases. More speci�cally, we feel that immediate

past history is a truer indicator of current workload characteristics than older history. Based on the

DAPR values of the last SampleBatch transactions, we compute a threshold DAPR, DAPRthreshold

as follows:

DAPRthreshold =
f � �DAPRf

+ s� �DAPRs

s+ f

where f = number of failed transactions in last SampleBatch transactions; and

s = number of successful transactions in last SampleBatch transactions; and

�DAPRf
= mean of the initial DAPRs of the f failed transactions; and

�DAPRs
= mean of the initial DAPRs of the s successful transactions;

If the DAPR of the new transaction, DAPRnew > DAPRthreshold, we classify the transaction as

likely to complete, otherwise it is classi�ed as likely to fail. It is clear from the DAPRthreshold

expression that it is nothing but a weighted average of the average DAPRs of failed and successful

transactions.

3 Adaptive Earliest Virtual Deadline (AEVD)

3.1 Basics

As mentioned in section 1.2, AEVD is the predominant RTDBS scheduling algorithm. Thus it

forms the primary basis of performance comparison with AAP, reported in subsequent sections.

For completeness, this section summarizes the AEVD mechanism presented in [18]. In AEVD, all

transactions that are currently active are divided into a \hit" group and a \miss" group. The

capacity of the \hit" group is HITCapacity. Upon arrival, each transaction is randomly assigned a

unique key IT and is then inserted into a key-ordered list of transactions where its position, POST ,

is noted. If POST < HITCapacity, the new transaction is assigned to the \hit" group; otherwise

it is assigned to the \miss" group. There is an algorithm parameter HITbatch. After HITbatch

transactions leave the \hit" group, the miss ratio is noted and HITCapacity is dynamically adjusted

such that the miss ratio of the \hit" group is less than 5%. Inside the \hit" group an earliest virtual

deadline (EVD) policy (described below) is used to assign priorities while inside the \miss" group

a random priority policy is used. All transactions in the \hit" group have higher priority than any

transaction in the \miss" group.

The AEVD policy uses a sequence of virtual deadlines to control the pace at which a transaction

progresses towards its deadline. Each time a transaction requests one of the system resources, its

current virtual deadline is tested, and, if it has expired, a new virtual deadline is assigned in the

following fashion:

VT = (DT � Clock)� PFT + Clock (8)

10

where

� Clock is the current clock value;

� VT is the virtual deadline for transaction T ;

� DT is the actual deadline for transaction T ; and

� PFT is the pace factor such that 0:0 < PFT < 1:0

The pace factor notion is key to AEVD and controls the way a transaction proceeds towards its

deadline. AEVD assigns a pace factor to each transaction as soon as it arrives at the system and it

remains �xed throughout its lifetime. It is dependent upon the initial time constraint (i.e., DT�AT ,

where AT is the transaction arrival time) of the transaction and is computed as

PFT = �+ (1� �)�

�
Cmax � CT

Cmax � Cmin

�2
(9)

where

� � is a control variable;

� Cmax and Cmin are the maximum and minimum time constraints respectively, of the last

2 � HITbatch transactions.

3.2 Discussion

The key idea in AEVD is the notion of pace factor (PFT). The pace factor underscores the adaptive

nature of the algorithm by controlling the pace at which transactions progress towards completion.

This is achieved by monitoring system performance and dynamically adjusting the value of �.

However, if one looks carefully at the expression for PFT given in equation 9, it is clear that the

authors assume that a transaction's time constraint is an indicator of its size3. This is clear from

the subexpression Cmax�CT
Cmax�Cmin

, which is nothing but an interpolation of the current transaction's

time constraint based on the largest and smallest transactions so far. Below we show with an

example how this might lead to problems:

Example: Consider two transactions T1 and T2. Let ST1 and ST2 denote the sizes of transactions

T1 and T2 respectively. Let CT1 and CT2 denote the initial time constraints of transactions T1 and

T2 respectively. Further assume that ST1 > ST2 and CT2 > CT1 . Basically this says that T1 is a

longer transaction than T2, but with an earlier deadline. Intuitively, we can see that T1 should

advance faster than T2 as it is longer, and moreover, needs to �nish earlier. However, substituting

the values in equation 9, it turns out that AEVD would award T1 a pace factor larger than that of

T2, i.e., PFT1 > PFT2 . Substituting these pace factors in equation 8, it is seen that T1 would be

assigned a larger virtual deadline than T2. This would actually accelerate T2's progress in relation

to T1's, which should not be the case.

It can be easily seen that the example scenario is not esoteric, and may very well occur in

practice. For example, in a RTDBS used for network management, certain problems may need

quicker restorative actions (e.g., in case of a link failure reroute tra�c) than others (e.g., if utilization

on a particular link exceeds 60%, then reduce retransmission rates on transmitting nodes). Clearly,

setting tra�c parameters is a longer job than setting few node attributes.

3Transaction size is the number of pages accessed by the transaction from disk

11

Source

CC Request

CC Reply
Concurrency
Controller

Resource
Manager

CPU
ManagerDisk

Manager

R
e
so

u
rc

e
R

e
q
u
e
st

R
e
so

u
rc

e
R

e
p
ly

R
e
so

u
rc

e
R

e
q
u
e
st

R
e
so

u
rc

e
R

e
p
ly

CPU
Request

CPU
Reply

External Transactions
Transaction
Manager

P
ro

c
e
ss

e
d

T
ra

n
sa

c
ti

o
n
s

Figure 1: The RTDBS Model

4 Real-Time Database System Model

In this section we present a synopsis of our simulation model to aid the reader in better under-

standing of the performance analysis results.

The RTDBS consists of a shared-memory multiprocessor that operates on disk-resident data.

We model the database as a collection of pages. A transaction is nothing but a sequence of read

and write page accesses. A read request submits a data access request to the concurrency control

(CC) manager, on the approval of which, a disk I/O is performed to fetch the page into memory

followed by CPU usage to process the page. Similar treatment is accorded to write requests with

the exception that write I/Os are deferred until commit time.

As far as the CC scheme is concerned, we adopt the broadcast commit variant of the optimistic

concurrency control approach (OPT-BC) [17] for our simulation experiments. This choice was based

on previous performance studies that have shown that OPT-BC produces low miss ratios under

overload conditions [9]. In OPT-BC, a transaction is allowed to commit when it wants to, but all

con
icting transactions are aborted and restarted. All restarted transactions follow the same access

patterns as the original transactions.

Our RTDBS model is shown in �gure 1. There are four major components:

1. An arrival generator, that generates the real time workload with deadlines

2. A transaction manager that models transaction execution and implements the AAP algorithm

3. A concurrency controller, that implements the CC algorithm, in our case OPT-BC

4. A resource manager that models system resources, i.e., CPUs and disks and the associated

queues

12

4.1 Resource Model

Our resource model considers multiple CPUs and disks as the physical resources. For our sim-

ulations we assumed the data items are uniformly distributed across all disks. The NumCPU

and NumDisk parameters specify the system composition, i.e., the number of each type of sys-

tem resource. There is a single queue for the CPUs and the service discipline is assumed to be

preemptive-resume based on the transaction priorities. Each individual disk has its own queue

with a non-preemptive, transaction priority based service discipline. The parameters ProcCPU and

ProcDisk denote the CPU and disk processing time per page respectively. The total processing

time per page is denoted as ProcT = ProcCPU + ProcDisk. These parameters are summarized

in table 2.

4.2 Workload Model

Our workload model consists of modeling the characteristics of transactions that arrive and are

processed in the system as well as their arrival rate. We consider two broad classes of transaction

characteristics: (a.) SizeT , which denotes the number of pages accessed by T ; and (b.) DT , the

deadline of T . The service demand of T is denoted as SDT = SizeT � ProcT (recall that ProcT
is the time required to process a page). The arrival generator module assigns a deadline to each

transaction using the following expression: DT = SDT �SRT+AT , where DT , SRT and AT denote

the deadline, slack ratio and arrival time of transaction T respectively. Thus, the time constraint

of transaction T , CT = DT � AT = SRT � SDT . In other words, SRT determines the tightness

of the deadline of T . Our workload parameters are summarized in table 2. Table 2 contains some

Parameter Type Notation Description

Resource Parameter NumCPU Number of CPUs

NumDisk Number of disks

ProcCPU CPU time /data page

ProcDisk Disk time/data page

Workload Parameter ArrivalRate Transaction Arrival Rate

DBSize Number of pages in the database

WriteProb Write probability/accessed page

SizeInterval Range of the number of pages

accessed per transaction

SRInterval Range of slack ratio

Table 2: Input Parameters to our RTDBS Model

parameters not discussed so far. The ArrivalRate and DBSize parameters are self explanatory. The

value of the WriteProb parameter denotes the probability with which each page that is read will be

updated. SizeInterval denotes the range within which transaction sizes will uniformly belong. In

other words, the arrival generator module generates transaction sizes by drawing from a uniform

distribution whose range is speci�ed by SizeInterval. Similarly, transaction slacks are generated by

drawing from the uniform distribution whose range is speci�ed by SRInterval.

13

5 Performance Analysis

5.1 Performance Metrics

We use the same performance metrics as [18]. There are two primary performance measures that

are used to compare AAP and AEVD: Normalized Miss Ratio (NMR) and Bias Factor (BF). NMR

captures the fraction of o�ered load that is not completed on time, weighted by transaction sizes.

It is computed as:

NMR =

P
s2SizeInterval(s)�MissRatiosP

s2SizeInterval(s)

where MissRatios denotes the miss ratio of transactions of size s and SizeInterval denotes the

range of transaction sizes in the workload. NMR has been shown to be an unbiased performance

metric for multiclass systems (see [18] for discussion).

The Bias Factor, or BF, is simply the slope of the regression line correlating miss ratio and

transaction size. A negative BF denotes a bias in favor of long transactions, while a positive BF

indicates favoring shorter transactions (see [18] for discussion).

5.2 Overview of Experiments

We wrote a simulator based on the RTDBS model described in section 4 to comparatively analyze

the performance of ED4, AEVD and AAP. The simulator was written in SIMPACK [7], a C based

simulation toolkit. The mean CPU time to process a page was set to 10ms and the mean disk

access time per page was assigned a mean value of 20ms. Our simulation considered 8 CPUs and

16 disks. The transaction sizes (for assigning deadlines) was drawn from a uniform distribution

with a minimum value of 1 and a maximum value of 30. For AEVD, HITbatch was set to 60, which

is also the same value used for presenting the results in [18].

5.3 Baseline Model

5.3.1 A Comparative Performance Study

We embark on our performance analysis with a baseline model. Subsequently, further investigations

are reported by changing a few parameters at a time. In this model we explore the e�ects of resource

contention on the performance of ED, AAP and AEVD while ignoring data contention. Thus

WriteProb is set to zero. Results of data contention are reported in section 5.7 where WriteProb is

set to a non-zero value. Within the context of this section, we also explore the e�ects of admission

control in section 5.3.2. A comparison of the computational overheads of AAP and AEVD is

presented in section 5.4. Table 3 shows the parameter settings used for the baseline model. In

Workload Parameter Value Resource Parameter Value

DBSize 1000 pages NumCPUs 8

WriteProb 0 NumDisks 16

SizeInterval [1,30] ProcCPU 10ms

SRInterval [2.0,6.0] ProcDisk 20ms

Table 3: Parameter Settings for the Baseline Model

4We also simulated the performance of ED to add perspective to our experiments. All our baseline model results
include ED performance

14

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (Transactions per second)

[A]

ED
AEVD
AAP

0

10

20

30

40

50

60

70

25 30 35 40 45 50 55 60 65 70 75

W
a
s
t
e
d

W
o
r
k

(
%
)

Arrival Rate (Transactions per second)

[B]

ED
AEVD
AAP

Figure 2: Normalized Miss Ratios and Wasted Work in the Baseline Model

addition to the above parameters, the load sensitivity factor � is initially set to 1.5 and the re-

evaluation frequency for �, i.e., the parameter SampleBatch, is set to 100.

We �rst highlight the performance of the algorithms under di�erent load conditions. Informally,

when the system is able to �nish all its jobs, it is underloaded. When it is not able to �nish all

its jobs it is overloaded. Figure 2A shows the NMRs of AAP, AEVD and ED under di�erent

transaction arrival rates.

Load conditions are varied in our simulation by changing the transaction arrival rates. To

illustrate an underloaded system, let us take an arrival rate of 50 transactions/second. ED has been

shown to be close to optimal in underloaded conditions, and at 50 transactions/per second it has a

NMR of 0. Both AEVD and AAP on the other hand perform worse than ED under these conditions,

having NMRs of 8% and 12% respectively at an arrival rate of 50 transactions/second. However, it is

noteworthy that even under such moderately loaded conditions AAP performs better than AEVD.

However, as the system load is increased, there is a remarkable di�erence in behavior between AAP

and the other two algorithms. Speci�cally the performance of ED and AEVD deteriorate much

more rapidly than AAP. For example, for an arrival rate of 67 transactions/second, ED's NMR is

70%, AEVD's NMR is 50% while AAP's NMR is only 32%. This illustrates AAPs clear superiority

under overload as far as miss ratios are concerned.

The reason why AAP is so remarkably superior to the other protocols is its explicit overload

management policy which makes sure that transactions are only admitted to the system when

there is enough resource capacity to process these transactions. ED and AEVD, on the other hand,

do not have adequate mechanisms to react under overload. ED has no admission control policy

whatsoever, while AEVD attempts to limit entry through assigning transactions to hit and miss

groups. However, AEVD's mechanism is ad hoc, e.g., it is not sensitive to system load, resource

capacities or incoming transaction pro�les. As a result, both ED and AEVD su�er from poor

overload management, resulting in signi�cant amount of wasted processing. This is any processing

done on transactions that eventually had to miss their deadlines and abort. A comparative study

of wasted work is shown in �gure 2B. In �gure 2B, we plot percentage wasted work at various

15

transaction arrival rates. Wasted work is de�ned as the ratio between wasted processing and total

processing in the system and is expressed as:

wasted work (%) =
of disk accesses on aborted transactions

total # disk accesses
� 100

It should be noted that since there is no data contention in the baseline model, aborts happen

only because of deadline misses. Thus the numerator of the above expression is a true indicator

of the wasted work done in the system. The curves in �gure 2B, as expected, exhibit the same

general trend as the curves in �gure 2A. What is worth noting however, is that at high overload

conditions, while ED and AEVD expend a large fraction of their processing in working on jobs

that are destined to fail, AAP expends a vast majority of its processing in doing useful work. For

example, at an arrival rate of 70 transactions/second, ED wastes about 70% of its total processing,

AEVD about 40%, while AAP wastes a remarkably low 16% of its processing doing unuseful work.

This translates into the low NMRs of AAP and the relatively higher NMRs of ED and AEVD.

Producing low NMRs is just one indication of a protocol's goodness. For example, if the

algorithm under investigation is highly discriminatory towards certain transaction classes, its ef-

fectiveness is lost to a large degree. A measure of a protocol's discriminatory behavior is its bias

factor (BF). Thus, after looking at NMRs, we turn our attention to BFs of the various algorithms,

presented in �gure 3A.

Under underloaded conditions, the BFs of all three algorithms are around 0. Under overload

conditions, ED's BF assumes a markedly sharp positive trend. For instance at an arrival rate of 52

transactions/second, ED and AEVD have a BF of :5, while AAP has BF around �:5. Under greater
overloads ED's bias accelerates fast reaching a BF of 3:0 around 60 transactions/second. This

denotes ED is highly biased against long transactions, recon�rming ED's discriminatory behavior

reported variously elsewhere, e.g., [18]. Under more overloaded conditions, AEVDs BF curve has a

trend towards higher positive BF values denoting mild increasing bias against larger transactions.

On the other hand AAP's BF exhibits a trend towards lower negative values of BF indicating a

mild bias against shorter transactions. What is noteworthy however, is that the magnitude of the

BF values are lower in AAP than in AEVD. For example, at 65 transactions/second AEVD has a

BF of 1:2, which is nearly twice the magnitude of the BF of AAP at �:66.
To explore the very di�erent behavior of the algorithms at high load conditions, we examined

the miss ratios of various transaction classes at overload conditions. Figures 3B and 3C plot miss

ratios as a function of transaction size under overload conditions by setting the transaction arrival

rate to 60 and 75 transactions/second respectively.

Figures 3B and 3C show that under overload conditions, ED discriminates heavily against

longer transactions. In fact, in our simulations, on an average, ED missed almost 18 times as many

transactions of size 30 than it did for size 5. This accounts for its high positive BF. Also, the high

degree of misses (more than 55% for transaction sizes 20 and higher in �gure 3A) accounts for its

high overall NMR under overload. AEVD shows a low positive bias, explained by the comparatively

milder (as compared to ED) upward trend of the AEVD curve in �gures 3A and 3B. AAP shows

a corresponding downward trend. However, on close observation of the AAP and AEVD curves,

certain important di�erences emerge. Firstly, in both �gures the AAP curve has a smoother shape

than the AEVD curve, which shows a large number of \kinks". This is an indication that the degree

of di�erence in handling di�erent transaction classes is higher in AEVD than in AAP. Secondly,

the AAP curves are
atter than the AEVD curves, explaining the lower magnitude of bias.

16

-1

0

1

2

3

4

5

25 30 35 40 45 50 55 60 65 70 75

B
i
a
s

F
a
c
t
o
r

(
%
)

Arrival Rate (Transactions per second)

[A]

ED
AEVD
AAP

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

C
l
a
s
s

M
i
s
s

R
a
t
i
o

(
%
)

Transaction Size

[B]

ED
AEVD
AAP

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

C
l
a
s
s

M
i
s
s

R
a
t
i
o

(
%
)

Transaction Size

[C]

ED
AEVD
AAP

Figure 3: Bias Factors and Class Miss Ratios in the Baseline Model

5.3.2 E�ect of Admission Control

One aspect of AAP that sets it apart from other scheduling algorithms is an admission control policy

geared for explicit overload management and bias control. Therefore, we think it is important to

show the e�ect of our admission control policy on AAP. A very natural way of studying this is

to compare the performance of AAP with a version of AAP that has had the admission control

component stripped, i.e., just the basic scheduling mechanism. We call this second, stripped down

version of AAP, AAP�. The � signi�es its stripped down status.

First we turn our attention to the overload management part and examine how AAP and AAP�

react to high loads. This is shown in �gure 4A, which plots the NMRs of AAP and AAP�.

17

0

10

20

30

40

50

60

25 30 35 40 45 50 55 60 65 70 75

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (Transactions per second)

[A]

AAP-
AAP

0

5

10

15

20

25

30

35

40

45

50

25 30 35 40 45 50 55 60 65 70 75

W
a
s
t
e
d

W
o
r
k

(
%
)

Arrival Rate (Transactions per second)

[B]

AAP-
AAP

Figure 4: E�ect of Admission Control on Normalized Miss Ratio and Wasted Work

As expected, AAP and AAP� behave virtually identically until true overload conditions kick

in around an arrival rate of 50 transactions/second. This is so, as the admission control policy

does not really work until overload is detected. Under overload conditions however, AAP performs

signi�cantly better, showing an NMR of 41% at 75 transactions/second against AAP�'s 56%. This

phenomenon, as explained earlier, occurs due to AAP's ability to regulate wasted work in the

system by virtue of its admission control policy. To properly understand this, consider �gure 4B,

that plots the percentage wasted work in AAP and AAP� at various system loads. Again, from

this �gure it is apparent that both algorithms perform identically until overload conditions set

in the system. Following this point, AAP� shows a steep curve signifying wasted work increases

dramatically with system load. In AAP however, the curve is fairly
at, rising from about 8% at 50

transactions/second to 13% at 75 transactions/second. Figure 4B also validates the load sensitivity

of AAP. Recall in section 2.3 we argued that any true overload management policy should be load

sensitive, i.e., it should shield the system from the e�ects of changes in environment load. In AAP

we attempted to do this by making the admission control criteria dependent on the system load,

i.e., as load increases the stringency of the admission criteria increases. Figure 4B clearly shows

that we have been quite successful by virtue of the fact that the wasted work curve remains virtually

at. This shows that the system resources were protected well from the e�ects of overload.

Now we revert our attention to the bias control component of our admission policy. We explore

the e�ectiveness of our bias control mechanism in a manner similar to the one used to test the

overload management component, i.e., through AAP and AAP�. Consider �gure 5, which plots

bias factors of AAP and AAP� at various system loads. It may be easily observed from this �gure

that the bias control policy lowers the BF. Overall it may be said that the admission control policy

has a marked e�ect on AAP with respect to both overload management as well as bias control.

18

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

25 30 35 40 45 50 55 60 65 70 75

B
i
a
s

F
a
c
t
o
r

(
%
)

Arrival Rate (Transactions per second)

AAP-
AAP

Figure 5: E�ect of Admission Control on Bias Factors

5.3.3 Estimation of AP

One of the most critical components of the AAP algorithm is the estimation of AP. Its importance

is rooted in the notion that our priority assignment parameter, DAPR, relies on AP to prioritize

the transactions. Clearly, if our initial AP estimation is good, AAP would be expected to perform

well and not otherwise. For this reason, we felt it was important to analyze how well our initial

AP computation corresponded to the true transaction size value5.

We evaluated this correspondence by an analysis of the errors that resulted as a consequence of

our initial AP estimation, i.e., we noted the estimation error (") values for a particular simulation

run, where " for a transaction T is given as "T = SizeT � APTinit , where SizeT denotes the size,

or actual number of page accesses from disk done by T and APTinit is the initial AP value of T .

Figures 6A and 6B shows some of our results.

We start out by a simple plot of percentage error values against time, shown in �gure 6A. Each

time unit on the X-axis represents approximately 1000 simulated time units, and the data re
ects

43000 error values, i.e., we analyze the prediction for 43000 transactions. Even though a few of our

estimates are way o� (e.g., 2500% error), the dark band around the 0% line re
ects the fact that

an overwhelming majority of our predictions had low error values. Figure 6A also re
ects the fact

that we overestimate more than we underestimate. This is demonstrated by the complete lack of

large negative percentage values. This is also desirable, as gross underestimation would result in

transactions being awarded lower priorities than they should, thereby increasing the likelihood of

their premature demise. On the other hand overestimation translates into a conservative strategy.

Figure 6A, also says something about �, the adaptive parameter that is used as a weight in the

AP calculation. It can be seen, that whenever we have a large error value (except in the case when

time = 1000), our model quickly adapts to reduce the error, shown by the cluster of points on the

zero error line.

We now turn our attention to more rigorous analysis of our error results. Our goal is to provide

5Recall from section 1, that the initial AP value is the true transaction size prediction

19

-500

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

E
r
r
o
r
(
%
)

Time

(A)

Time Variance of Percentage Error

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-20 -15 -10 -5 0 5 10 15 20 25 30

P
r
o
b
(
E
r
r
o
r
)

Errors

(B)

probability distribution of errors

Figure 6: Goodness of AP Estimation

certain statistical bounds of estimation errors. First, we obtained certain summary statistics re-

garding estimation error of which we report the mean (�̂), standard deviation (s) and the median

(M) respectively: �̂" = 1:83, s" = 4:2 and M" = 0. Since our transaction sizes were drawn from

a uniform distribution with range [1,30], the error range is [-30,30]. Thus, �̂ = 1:83, indicates, on

average, we were very close to the true value. Also, M = 0, indicates we overestimated as many

times as we underestimated, con�rming the lack of any inherent bias in our AP estimation mecha-

nism. Recall, from the discussion in the previous paragraph, that our magnitude of overestimation

was greater than the magnitude of underestimation.

Next we consider �gure 6B, which is the most convincing proof of validity of our estimation

mechanism. We introduce this discussion with the following statement: if our estimation is good

and unbiased, it would make sense to expect the estimation errors to be distributed symmetrically

with a mean of zero. In order to test the above, we extracted the probability distribution of the

errors. This is presented in �gure 6B. This plot almost perfectly �ts a normal curve6 with the mean

very close to zero (more speci�cally, as reported before, �̂ = 1:83). This analysis also allows us to

extract con�dence intervals on the error value. At a 90% con�dence level, we can assert that the

true mean � is going to lie in the interval �̂� 1:645 � sp
n
. In our case, �̂ = 1.83, s = 4.2 and the

sample size n = 43000. Thus the 90% con�dence interval on �" turns out to be [1.79,1.86], which

promises to yield very low error values.

5.4 Computational Overhead

In this section we discuss the time and space overheads for AAP and AEVD.

6Although our error distribution is slightly skewed to the right owing to the larger magnitude of overestimation

20

5.4.1 Time Overhead

This is the computation time devoted to activities that are not directly related to scheduling7,

but are done by the algorithms to compute and update control variables, values and miscella-

neous housekeeping activities (such as updating data structures). Examples include computing

the pace-factor and virtual deadline in AEVD, and the DAPR and AP in AAP. Instead of simply

enumerating the overhead tasks and attempting an analytical examination of these tasks, we un-

dertook a thorough investigation of time overhead by actually measuring what AAP and AEVD

does in performing these overhead activities. Speci�cally, we did the following: (a) We �rst enu-

merated the exact overhead computational activities; (b) We decomposed these activities into the

basic arithmetic operations of addition, subtraction, multiplication and division; and �nally (c) We

measured precisely how many of these basic operations were performed by AAP and AEVD by

augmenting our simulation program with appropriate counters. The result was that we obtained

precise measurements of time overhead. Below we describe in detail the three speci�c activities

enumerated above.

Overhead Activities: A careful examination of the two algorithms reveals that the overhead

activities may be classi�ed into three broad categories: (a) Dealing with a new transaction, i.e.,

setting up a new arrival for subsequent treatment by the scheduling algorithm; (b) progressing a

transaction through its lifetime in the system; and (c) housekeeping activities, i.e., keeping track

of and recomputing control variables and parameters needed for the above two categories. Below

we enumerate, in tabular form, the speci�c computations inside these broad classes in table 4.

Subsequent to the above analysis, we decided to express time overhead in terms of the the num-

ber of basic arithmetic operations performed in completing the aforementioned overhead activities.

To make things a little more manageable, instead of counting the four basic arithmetic operators,

we classi�ed operators into two basic units: (a) additive operators, i.e., addition and subtraction;

and (b) multiplicative operators, i.e., multiplication and division. Then we obtained four di�erent

operation classes by combining these two operator classes with data types: integer additions, inte-

ger multiplications,
oat additions,
oat multiplications. Then we proceeded to map the numerical

manipulations involved in AAP and AEVD into combinations of these four operation classes. These

proved to be quite simple as a large majority of the actual computations were simple arithmetic

operations. We just made the following two explicit mappings: (a) we counted a comparison opera-

tor as an addition (integer or
oat depending upon the operands); (b) we counted random number

generation (in AEVD) as an integer multiplication, assuming a multiplicative, linear congruential

generator [14].

Before presenting our results, we now brie
y turn our attention to a intuitive comparison of the

overhead activities in AAP and AEVD outlined above. Note that whenever possible, we assume

the computationally best implementation for AEVD.

� In the new transaction phase, AAP's work involves computing AP and DAPR which are

simple algebraic expressions and are thus performed in constant time. Validating admission

control criteria also involves the computation of certain values and a few comparisons which

are also performed in constant time. Likewise, for AEVD, computing the pace factor is

simply performing certain arithmetic computations and is thus performed in small constant

time. In addition to computing the pace factor, AEVD also has to assign transactions to the

\hit" or \miss" group. This involves three steps: (a) generating a unique id, (b) insertion

7Such as maintaining priority queues at system resources

21

AEVD AAP

New Transac-

tions

1. Assigning a new transaction to the

\hit" or the \miss" group. This in-

volves assigning a unique key value to

the transaction, inserting it in a key

ordered list of currently active trans-

actions and comparing its position in

that list to parameter HITcapacity.

1. Computing initial AP and DAPR

2. Computing the pace factor for new

transactions

2. Validating admission control crite-

ria

Transaction

Progress

Repeated computation of virtual dead-

lines for each transaction as it pro-

ceeds towards its deadline.

Decrementing AP by 1 for each disk

access and recomputing DAPR for

each resource access.

Housekeeping 1. Keeping track of the greatest and

least time constraints (CTmax
and

CTmin
) of the last 2�HITbatch trans-

actions.

1. Adjusting adaptive control vari-

able � every SampleBatch transac-

tions that arrive.

2. Adjusting adaptive control variable

�, which needs recomputation of the

bias factor every HITbatch transac-

tions.

2. Adjusting adaptive control vari-

able � every SampleBatch transactions

that are actually allowed into the sys-

tem.

3. Recomputing HITcapacity after ev-

ery HITbatch transactions.

Table 4: Description of Overhead Computational Activities

in a ordered list of ids, and (c) a comparison with the HITCapacity parameter to perform

the �nal assignment. Operation (c) is a small constant time operation. Operation (a), by

choosing a random number generator with a long period may also be performed in constant

time. Operation (b) however requires log n time. At high arrival rates n could get large.

However, assuming the best possible implementation, it may be said that for this phase the

time overheads for AAP and AEVD are fairly identical8.

� The admission control work performed in the new transaction phase by AAP, more than pays

o� in the second phase (i.e., the transaction progress phase). From the descriptions above it

may be easily seen that the work in re-computing the virtual deadline (presented in section 3)

and the work in recomputing AP and DAPR (presented in section 2) are very comparable

in computational intensity. In other words, on a per transaction basis, AAP and AEVD

would perform about the same amount of work. However, as shown in section 5.3.2, AEVD

has a much greater magnitude of wasted work than AAP. This means that AEVD performs

computation on a lot of transactions that will eventually fail to make their deadlines. This

leads to vastly reduced total overhead in this phase in AAP than in AEVD (more on this

below).

8Note that we give AEVD substantial advantage here

22

� In the housekeeping phase, the recomputation of � in both AAP as well as AEVD is very

comparable in computational intensity as well as re-evaluation frequency, as they both need

to perform a linear regression. Similarly, recomputation of � and HITcapacity are nearly iden-

tically computationally intensive. However, the computation of the maximum and minimum

time constraints of the last 2 � HITbatch transactions is a very computationally intensive

operation. This is so as we have to keep track of the time constraints of the last 2�HITbatch

transactions, and perform frequent re-evaluations of the max and the min values. Thus even

in the housekeeping phase we expect AEVD to have substantially higher overhead than AAP.

Putting the above three points together we conclude that on the whole AEVD should have sig-

ni�cantly higher overhead than AAP. Note that the above analysis attributes the best possible

implementations to AEVD. In fact, AEVD's relative high overhead does not arise due to imple-

mentation reasons at all, but rather due to AAP's e�ciency in general and its ability to reduce

wasted processing in particular. For example, in the transaction progress phase, both AAP and

AEVD have comparable (constant time) overhead on a per transaction basis. However, AAP's

e�cient overload management drastically reduces the number of transactions that start but even-

tually miss deadlines (see �gure 4B for a comparative estimate of wasted work). As a result, AEVD

wastes a lot more computation in this phase than AAP, leading to a substantial cost advantage for

the latter.

We now present the results of our overhead study. We counted the number of times the four

operation classes outlined above were performed in the context of overhead activities. In addition,

for comparative results, the operation classes were then benchmarked as follows:

1. Each integer addition was assigned a weight of 1,

2. each integer multiplication was assigned a weight of 10,

3. each
oating-point addition was assigned a weight of 3, and

4. each
oating-point multiplication was assigned a weight of 20.

The results are presented in tables 5 and 6.

Arrival Integer Integer Floating-point Floating-point Total

Rate Additions Multiplications Additions Multiplications Overhead

25 2032 4 113 84 4091

31 2035 4 115 84 4100

35 2035 4 116 83 4083

41 2034 4 117 85 4125

46 2041 4 119 86 4158

50 2147 4.2 150 86 4359

55 2510 5.2 188 96 5046

59 2526 5.4 191 97 5093

64 2837 7 234 116 5929

70 3540 9 301 146 7453

75 4194 10 361 165 8827

Table 5: Overhead per Successfully Completed Transaction - AEVD

Finally �gure 7 presents the overall overhead comparison of AEVD and AAP with the basic

operations being weighted as shown above.

23

Arrival Integer Integer Floating-point Floating-point Total

Rate Additions Multiplications Additions Multiplications Overhead

25 17 0.2 29 8 271

35 18 0.2 28 8 266

40 19 0.2 28 8 264

45 22 0.2 28 8 268

50 27 0.2 29 8 281

52 30 0.2 29 8 287

55 30 0.3 29 9 289

60 37 0.3 31 9 312

65 40 0.3 31 9 321

70 60 0.4 32 8 345

75 128 0.4 28 8 384

Table 6: Overhead per Successfully Completed Transaction - AAP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

25 30 35 40 45 50 55 60 65 70 75I
n
t
e
g
e
r
-
A
d
d
i
t
i
o
n

E
q
u
i
v
a
l
e
n
t
s

p
e
r

C
o
m
p
l
e
t
e
d

T
r
a
n
s
a
c
t
i
o
n

Arrival Rate (Transactions per second)

AEVD
AAP

Figure 7: Computational Overhead

5.5 Space Overhead

The space overhead is the amount of memory consumed by the data structures essential to the

algorithms. Examples include the transaction structures in the algorithms (including information

each transaction must carry with it, such as it's virtual deadline and pace actor in AEVD, the

DAPR and AP in AAP, etc). In AEVD, these data structures include the following:

1. A transaction structure consisting of �elds: virtual deadline, pace factor, and member hit/miss

group.

2. An integer array of the last 2�HITBATCH transactions' time constraints.

The AAP algorithm, on the other hand, required only the following data structures:

24

0

20

40

60

80

100

25 30 35 40 45 50 55 60 65 70

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (Transactions per second)
[A]

AAP
AEVD

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

25 30 35 40 45 50 55 60 65 70

B
i
a
s

F
a
c
t
o
r

(
%
)

Arrival Rate (Transactions per second)

[B]

AAP
AEVD

Figure 8: NMR and BF under increased resource contention

1. A �eld containing the current and initial values of the AP parameter in each transaction,

2. A set of counters used in computing the adaptive factors � and �.

We now turn our attention to exploring the performance of AAP by varying certain parameter

values in the baseline model. Speci�cally, we look at the e�ects of varying levels of resource and

data contention. In the following sections however we do not report ED performance9 for the sake

of brevity, as well as the fact that we conclusively proved in the baseline section that AAP and

AEVD substantially outperform ED. Other experiments simply recon�rm the baseline results and

thus reporting these results amounts to repeating ourselves.

5.6 E�ect of Resource Contention

We now turn our attention to exploring the sensitivity of the algorithms to the level of physical re-

source contention in the system. In the baseline experiment, we purposely kept resource contention

low to study the e�ects of overloading. Now we report the results of an experiment that seeks

to increase resource contention levels by decreasing the numbers of CPUs and disks. Speci�cally,

for the curves shown below, NumCPU and NumDisk were set to 4 and 8 respectively. The NMR

and BF for this experiment are shown below in �gures 8A and B respectively. The trends shown

in these �gures are identical to the ones in the baseline experiments (see �gures 2A and 3A) and

similar reasoning may be applied to explain them. Basically, under tighter resource contention,

both AAP and AEVD miss more transactions. One noteworthy aspect of the NMR curves is that

the performance of AEVD, in percentage terms, is worse than AAP with respect to the baseline

experiments. In other words, there is a larger separation of the curves. This is because AAP adapts

better to resource restriction than does AEVD.

9Though we have conducted extensive experiments

25

0

10

20

30

40

50

60

70

25 30 35 40 45 50 55 60 65 70 75

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (Transactions per second)

[A]

AEVD
AAP

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

25 30 35 40 45 50 55 60 65 70 75

B
i
a
s

F
a
c
t
o
r

(
%
)

Arrival Rate (Transactions per second)

[B]

AEVD
AAP

Figure 9: E�ect of Data Contention

5.7 E�ect of Data Contention

Our next experiment investigates situations where both resource as well data contention causes the

system to miss deadlines. Data contention is achieved by setting the value of the system parameter

WriteProb (write probability) to .25, which signi�es that 25% of the data items accessed are going

to be written as well. For the concurrency control algorithm we used the Broadcast Commit variant

of the classical optimistic concurrency protocol (OPT-BC). This choice was made as OPT-BC has

been shown to produce low miss ratios under heavy loads [9].

The optimistic protocol allows transactions to execute without interference until they are ready

to commit, at which time a validation phase is done. If a transaction fails its validation check, it is

restarted. In the broadcast commit variant, a committing transaction noti�es other concurrently

executing transactions with which it has con
icts, when it is ready to commit. This allows these

other transactions to restart right away. For an extended discussion of OPT-BC, see [17].

Our results for this experiment are presented in �gures 9A and B. In the presence of data

contention, both AAP and AEVD miss more transactions as is easily seen by comparing �gure 9A

to the baseline results shown in �gure 2. However, what is remarkable about these results is what

they reveal regarding the behavior of AAP under varying load conditions. To properly understand

this, consider �gures 10A and B below, that compare the performance of AAP and AEVD with

and without data contention. It can be easily seen that �gures 10A and B do not contain any new

information, but are realignments of the curves from �gures 2A and 9A.

Figure 10A reveals that under low to moderate transaction loads there is a clear di�erence in

performance of AAP depending on the presence or absence of data contention. For example, at

a transaction load of 45 arrivals/second, in the absence of data contention, AAP shows a NMR

of 2%. For the same arrival rate with data contention the NMR is 11%, i.e., more than 5 times

as much. With increasing transaction load, this di�erence gradually decreases. At 60 transac-

tions/second, the NMR is 22% in the baseline model while it is 32% with data contention. At

75 transactions/second, which constitutes high overload, the NMR values are practically similar:

26

0

5

10

15

20

25

30

35

40

45

50

25 30 35 40 45 50 55 60 65 70 75

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (%)

[A]

AAP with Write Prob. = 0.25
AAP with Write Prob. = 0.0

0

10

20

30

40

50

60

70

25 30 35 40 45 50 55 60 65 70 75

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

(
%
)

Arrival Rate (Transactions per second)

[B]

AEVD with Write Prob. = 0.25
AEVD with Write Prob. = 0.0

Figure 10: Comparison of Normalized Miss Ratios with and without Data Contention

43% without data contention and 48% with data contention. To summarize the above discussion,

it may be said that as transaction load increases, the system performance with data contention

almost becomes the same as that without data contention. The explanation of this phenomenon

is the following: at low transaction loads, the e�ects of data contention dominates the e�ects of

resource contention. Consequently, AAP performance degrades substantially from that of the base-

line model. However, increasing transaction load has the impact of increasing the e�ect of resource

contention, compared to that of data contention. With increasing loads, therefore, our admis-

sion control policy kicks in, which is equipped to handle resource contention. Thus, as resource

contention starts to have an impact on the system, AAP performs better and better. Finally at

high loads, when resource contention clearly dominates data contention, AAP's admission control

mechanism makes sure that there is practically no di�erence in performance relative to the baseline

model. On the other hand, �gure 10A reveals the substantial di�erence in AEVD's behavior in

the presence of data contention. For example, at 50 transactions/second AEVD's NMR is a mere

10% without data contention but a signi�cant 50% with data contention. The above description

may be easily visualized simple by looking at the separation of the curves in �gures 10A and 10B.

In 10A, the curves are fairly close, signifying AAP does not lose much of its edge given data con-

tention. In 10B on the other hand, the curves are much farther apart signifying a substantial loss

of e�ectiveness of AEVD in the presence of data contention.

Figure 9B again illustrates AAP's bias against longer transactions by having a negative bias

factor. Interestingly, at low arrival rates, when data contention dominates resource contention,

AAPs bias towards long transactions is o�set somewhat by OPT-BC, which has been shown to

favor short transactions [10]. However, under overload conditions, resource contention dominates,

accounting for the higher negative bias values. In other words, at high loads AAP's inherent bias

towards longer transactions more than compensates for OPT-BC's bias towards short transactions,

by giving longer transactions higher priority at CPUs and disks.

27

6 Conclusions

In this paper we presented Adaptive Access Parameter (AAP), a protocol for scheduling transactions

in real-time database systems (RTDBSs) under overload conditions. The workload was assumed

to be multiclass, where the classes are categorized by their sizes. In addition to meeting time

constraints, a second goal of AAP was to exhibit non-discriminatory behavior towards transactions

of all classes. Overload management and bias control are two issues that have been subjected

to comparatively little examination in the RTDBS transaction scheduling context, as opposed to

the intense investigation of di�erent methods of priority assignments for transaction scheduling.

Basically, AAP is a two stage algorithm: the �rst stage constitutes admission control, which does

overload management as well as bias control; and the second stage is a prioritized scheduling policy

where we propose a new priority assignment policy based on the tightness of a transaction's time

constraint.

This paper contributes to the RTDBS literature in two ways. Firstly, it proposes, as far as we

know, the �rst explicit overload management mechanism reported in the literature, with respect to

RTDBSs. Our policy is load sensitive, i.e., it attempts to shield the system from the e�ect of the

environment load. Thus as, transaction load waxes and wanes, our admission control policy reacts

by becoming more or less restrictive, respectively. AAP also performs explicit bias control, with

a goal of inducing non-discriminatory behavior towards di�erent transaction classes. Last but not

the least, our admission control policy is based on a simple idea: it is counterproductive to load the

system beyond its processing capacity. Our second contribution is in the priority assignment policy

of AAP. Unlike static priority assignment heuristics, AAP is dynamic { it attempts to control the

rate at which transactions progress towards their deadlines. The fundamental principle of AAP is

that transactions are prioritized based on the amount of unprocessed work per unit time remaining

till deadline expiry. This principle is quanti�ed using the notion of Deadline Access Parameter Ratio

(DAPR). The essence of AAP is that the algorithm monitors transactions as they progress to their

completion, and awards resources based on DAPR values. A feedback mechanism is implemented

that ensures DAPR is properly updated to re
ect the rapidity of a transaction's progress. AAP

does not assume any a priori knowledge of transaction sizes or time constraints (which are assumed

to be positively correlated in AEVD), but uses the \canned transaction" assumption.

Finally, a few words regarding our results. The outcome of our simulation experiments unequiv-

ocally demonstrate AAP's e�ectiveness. As a comparative platform we chose Adaptive Earliest Vir-

tual Deadline (AEVD), which is recognized as the state of the art as far as overload management

is concerned even though AEVD controls system load implicitly [22]. We conclusively showed that

AAP has substantially lower transaction misses than AEVD, while enjoying a lower bias. In other

words, AAP misses fewer transactions, while exhibiting lesser discriminatory behavior than AEVD.

What makes AAP even more attractive is its signi�cantly lower overhead than AEVD, which shows

that we obtained our performance improvements at a substantially lower cost.

In the process of our experiments it turned out that AAP does favor long transactions somewhat

over short transactions. This is a weakness of our algorithm and we hope to rectify this in an

extension to this paper. In the future, we plan on making AAP more e�cient by forcing the system

to be even more conscious of the load. Another idea to make AAP more e�cient is to have it

perform better at lightly loaded conditions, when our studies showed that ED performed slightly

better. This may be achieved by augmenting AAP such that it behaves like ED at low loads, but

switches modes under overload conditions.

28

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk resident data.

In Proceedings of the 15th VLDB, 1989.

[2] R. Abbott and H. Garcia-Molina. Scheduling Real-Time Transactions: Performance Evalua-

tion. ACM Transactions on Database Systems, 1992.

[3] P. Bernstein, V. Hadzilakos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[4] Sprint Network Management Center. Site Visit, April 1992.

[5] S. Chakravarthy, D. Hong, and T. Johnson. Real-time transaction scheduling: A framework

for synthesizing static and dynamic factors. Technical Report UF-CIS-TR-94-008, Dept. of

CIS, University of Florida, 1994.

[6] A. Datta. Research Issues in Databases for Active Rapidly Changing data Systems (ARCS).

ACM SIGMOD RECORD, 23(3):8{13, September 1994.

[7] P.A. Fishwick. Simpack: Getting started with simulation programming in C and C++. Techni-

cal Report TR92-022, Computer and Information Sciences, University Of Florida, Gainesville,

Florida, 1992.

[8] J. Haritsa, M. Livny, and M. Carey. Earliest Deadline Scheduling for Real-Time Database

Systems. In Proc. IEEE Real-Time Systems Symposium, December 1991.

[9] J.R. Haritsa, M.J. Carey, and M. Livny. Dynamic Real-Time Optimistic Concurrency Control.

In Proceedings of the IEEE Real-Time Systems Symposium, 1990.

[10] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley. Experimental Evaluation of Real-

Time Optimistic Concurrency Control Schemes. In Proceedings of the 17th Intl. Conf. on Very

Large Data Bases, 1991.

[11] J. Huang, J. Stankovic, D. Towsley, and K. Ramamrithnam. Experimental Evaluation of

Realtime transaction processing. In Proceedings of the IEEE Real-Time Systems Symposium,

1989.

[12] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall,

1992.

[13] G. Koren and D. Shasha. Dover: An optimal On-Line Scheduling Algorithm for Overloaded

Real-Time Systems. In Proceedings of the IEEE Real-Time Systems Symposium, pages 290{

299, August 1992.

[14] A.M. Law and C.S. Larmey. An Introduction to Simulation Using Simscript II.5. CACI

Products Company, 1984.

[15] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment. Journal of the ACM, January 1973.

[16] C.D. Locke. Best-E�ort Decision Making for Real-Time Scheduling. PhD thesis, Computer

Science Department, Carnegie-Mellon University, 1986.

29

[17] D. Menasce and T. Nakanishi. Optimistic versus Pessimistic Concurrency Control Mechanisms

in Database Management. Information Systems, 7(1), 1982.

[18] H. Pang, M. Livny, and M.J. Carey. Transaction scheduling in multiclass real-time database

systems. In Proceedings of the IEEE Real-Time Systems Symposium, 1992.

[19] B. Purimetla, R.M. Sivasankaran, J.A. Stankovic, K. Ramamritham, and D. Towsley. Priority

Assignment in Real-Time Active Databases. Technical report, Computer Sciences Department,

University of Massachusetts, 1994.

[20] K. Ramamritham. Real-Time Databases. Distributed and Parallel Databases: An International

Journal, 1(2):199{226, 1993.

[21] Lui Sha, J.P. Lehoczky, and Ragunathan Rajkumar. Solutions for some Practical Problems in

prioritized pre-emptive scheduling. In Proceedings of the IEEE Real-Time Systems Symposium,

1986.

[22] P.S. Yu, K-L. Wu, K-J. Lin, and S.H. Son. On Real-Time Databases: Concurrency Control

and Scheduling. Proceedings of the IEEE, Special Issue on Real-Time Systems, 82(1):140{157,

1994.

Recommended by Ozgur Ulusoy and Patrick O'Neil, Co-Editors

30

