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Abstract

Databases have been proposed as the chosen platform to develop automated control systems
for environments where the state of the system changes rapidly, and actions need to be taken
with timing constraints, such as stock trading, air traffic control, network management and
process control to name a few. The workload in such systems consist primarily of two types: (a)
updates, which report the state of the environment to the database and arrive very frequently,
and (b) transactions which arrive with deadlines. In this paper we develop algorithms to install
these updates rapidly enough to ensure “state recency” while allocating sufficient resources to
transactions to minimize tardiness. We also require that these transactions read temporally
consistent data. In summary, this paper contributes in the following three interrelated issues:

1. First and foremost, we look at some interesting problems regarding amalgamating temporal
and real-time databases

2. We look at simultaneous satisfaction of state recency and temporal consistency which are
central issues in the class of systems considered in this paper, i.e., rapidly changing systems

3. We design algorithms that attempt to achieve equilibrium with regard to the conjoint
processing of frequently arriving state updates and time constrained transactions

1 Introduction

Consider an environment where the state of the system changes rapidly, and actions need to be
taken with timing constraints. Examples of such systems, termed rapidly changing systems, are
abundant — stock trading, air traffic control, network management and process control to name a
few. Databases have been mandated as the chosen platform to develop automated control systems
for such environments due to their data intensive as well as “data driven” nature [12]. These
databases serve as the “window” to the environment for control applications and thus must reflect
the true state of the external environment as closely as possible. This is a non-trivial task by
definition, as the state of these environments change rapidly, and consequently, state updates arrive
frequently. While processing these updates, the system must also, simultaneously, ensure time
cognizant processing of transactions. This complicates the problem of allocating system resources
to both state updates and transactions. One must strive to strike a delicate balance in this allocation
process — processing updates at the expense of transactions will mean very few transactions will
finish on time, while sacrificing updates to minimize tardy transactions will mean the database will
not be representative of the state of the outside environment.

Transaction processing, in addition to being real-time in nature, is further complicated by the
need to read snapshot consistent or temporally consistent data. As an example consider a network
management database that serves as the basis of applications managing and controlling a telecom-
munications network [23, 4]. Such a database needs to process a large number of state updates —
a commercial telecommunications service provider handles around 30GB of data per day [9]. The
database also needs to provide real time transaction support, e.g., a sample transaction may be:
update routing profile in all routers in location XYZ within 60 seconds. This may
involve the running of procedure update_routing profile that requires the reading of a number of
attributes. The system must ensure that the values provided must have co-occurred, i.e., come from
the same snapshot. Otherwise the resultant action may not have the intended effect. Also, to en-
sure the best possible effect of transactions, the system is often required to make available the most
recent values of state variables. For example, consider the following transaction; read (Microsoft
stock price), read(IBM stock price), make trading decision. Clearly the trading deci-
sion depends on the relationship between Microsoft and IBM stocks. The quality of such a decision
would be enhanced if it were based on recent stock prices rather than old stock prices.



Based on the problem identified above, we consider in this paper strategies to provide the
following capabilities in databases used to model and control the aforementioned environments.

1. The database must provide as recent a picture of the outside world as possible. We call this
state recency. In addition to providing state recency, the database must also provide other,
previous states. This is essential as transactions may ask for values of data items at current
as well as previous moments in time. Thus, not only is it necessary to maintain current views
of the system, historical views are important as well.

2. The database must ensure transactions read temporally consistent data.

3. The database must ensure real-time transaction processing, i.e., transactions should be com-
pleted by their deadlines.

The three required capabilities enumerated above show that these databases must amalgamate
real-time as well as temporal characteristics. Thus, this paper may be considered as a study of
transaction processing in real-time, temporal databases.

The rest of the paper is organized as follows. In Section 2 we provide a brief review of relevant
prior work and summarize the contributions of this paper. In Section 3 we describe the model of data
and workload of the class of database systems we consider in this paper. In Section 4 we describe
our strategies to enforce recency and temporal consistency, while Section 5 explores scheduling
algorithms. Subsequently, we describe our simulation model in Section 6, discuss performance of
the proposed system in Section 7 and conclude in Section 8.

2 Related Work and Contribution of this Paper

While there has been much work done on Temporal Databases as well as Real-Time Database
Systems (RTDBSs) in isolation, very little has been reported on their synthesis.

Initiated by the pioneering work in [7, 48], temporal databases have been the focus of substan-
tial work by researchers attempting to enrich conventional database semantics with that of time
[5, 10, 11, 18, 19, 20, 28, 43, 44, 46, 49]. A large majority of these papers have explored either
extensions to conventional data models such as relational or object-oriented or have concerned
themselves with the enrichment of conventional languages such as relational algebra and SQL with
temporal augmentations. Note that none of this work has considered a real-time context along
with the temporal dimension. Also, while notions of temporal consistency have been recognized
[45], not much is reported on efficient means of enforcing such consistency requirements with re-
gard to transactions. In general there is not a whole lot reported on transaction processing in
temporal databases. A few notable exceptions are [34, 42], which are nice papers on temporal
query processing, and [15] which is one of the very few papers that we are aware of, on temporal
transaction processing.

RTDBSs have seen substantial research effort as well in recent years. Much of this effort has
been focussed towards developing high performance scheduling algorithms [1, 2, 14, 21, 25, 31, 37]
as well as concurrency control algorithms [6, 22, 24, 26, 27, 33]. Typically, performance has been
characterized as the ability to reduce transaction tardiness. None of this work has been performed
with temporal consistency in mind.

Even though not much is reported on the confluence of temporal and RTDBSs, the need for
such an amalgamation has been recognized by researchers (e.g., see [8, 39]). One very recent nice
work that deals with some issues related to those discussed in this paper is [3]. However, this paper



considers a different environment than we do. For example, this paper considers systems where
only current views (as opposed to historical views) are needed. Consequently, only one version
(the most recent one) need to be stored for each data item. Thus, temporal consistency is not an
issue in [3]. We, on the other hand, consider the satisfaction of temporal consistency by supporting
the existence of historical views (i.e., many versions need to be stored). Furthermore, [3] assumes
that exact execution times of transactions are known. We do not make any such assumption.
Additionally, [3] considers a memory resident database while we consider a disk resident one, which
gives rise to certain new issues as discussed later in this paper.

The final vindication of this work comes from some very recent work that identifies the need to
incorporate both capabilities, i.e., temporal and real-time [13, 40]. Note again that these papers
are mostly high level papers, talking broadly about the need for synthesis, rather than providing
detailed algorithms to achieve such synthesis.

In summary, this paper contributes in the following three interrelated issues:

1. First and foremost, we look at some interesting problems regarding amalgamating temporal
and real-time databases

2. We look at simultaneous satisfaction of state recency and temporal consistency which are
central issues in the class of systems considered in this paper, i.e., rapidly changing systems

3. We design algorithms that attempt to achieve equilibrium with regard to the conjoint pro-
cessing of frequently arriving state updates and time constrained transactions

3 Data and Workload Model

In this section we describe the data and workload characteristics in databases that model rapidly
changing environments.

3.1 Data Model

We recognize two primary classes of data: sensor data and non-sensor data.

Sensor Data are those which are reported by sensors distributed throughout the environment
being modeled, e.g., a telecommunications network. Sensor data, collectively, describe the state
of the system. Examples of sensor data include link utilization and node queue lengths from the
network management domain, stock and commodity prices from the financial trading domain and
temperatures and pressures from a chemical process control domain. Typically system state changes
very rapidly, leading to the generation of a large amount of sensor data. For instance, a typical
network control center receives more that 30 GB of sensor data per day [9].

Non-Sensor Data are control and structural parameters of the system, e.g., split ratios in com-
munication switches and network topology in network management, buying and selling volumes in
financial trading, and degree of valve closures in process control. Such information is updated on
explicit instruction to the system (by the user or automatically) and changes much less frequently
than sensor data. Typically, non-sensor data are updated in order to control unacceptable behavior
of the system by monitoring sensor data values.

Aside from the semantic classification of data, our data model assumes data is versioned. We
shall use the notation D; to refer to data item 7 and employ the notation D} to denote version v
of data item D;. Sensor data items are updated frequently, signifying that new versions of sensor
data items will be created often. New versions of non-sensor data items would be created far less



frequently than sensor data items. The frequency of version creation makes sensor data items
rapidly changing and consequently much harder to deal with than non-sensor data items. In fact,
conventional methods are quite suitable for handling non-sensor data processing. In this paper, our
primary concern is the handling of sensor data.

3.2 Workload Model

Two distinct workload types can be identified in the class of database systems under consideration:
(a) transactions that update sensor data, termed updates [3], and (b) transactions that update
non-sensor data, having read both sensor and non-sensor data, termed transactions.

Updates are sent to the system by sensors and arrive very frequently, reflecting the rapidly
changing nature of the outside environment. Two types of updates have primarily been discussed
in the literature: periodic and aperiodic. Periodic updates involve sensors reporting values of sensor
data items at regular intervals, regardless of whether these values have changed or not. Aperiodic
updates usually involve sensors reporting values only when they have changed — these updates arrive
with unpredictable frequencies. Periodic updates are somewhat easier to deal with because of their
predictable frequency. In this paper however, we consider aperiodic updates, which represent a
harder and more general case. Thus, our model of update is as follows: an update is a singleton
write of the form write(D;) that is sent by a sensor to report the change in the value of data item
D;. To differentiate updates from transactions we denote an update on a data item D; by U(D;).
Note that updates exclusively write sensor data. In the class of systems that we consider, updates
arrive with very high frequency. If an update executes successfully (i.e., the corresponding data
item is written in the database), we say the update is installed, following the terminology of [3].
Installation of U(D;) results in the creation of a new version of D;.

Transactions are modeled in the usual fashion, i.e., a partial ordering of read and write oper-
ations. There are restrictions on the read and write sets of transactions. A transaction may read
both sensor as well as non-sensor data, but may only update non-sensor data. Essentially transac-
tions model control actions, i.e., actions undertaken in order to modify control parameters (which
are non-sensor data items) in the system. Figure 1 below shows the access sets of transactions and
updates.

Sensor Data Non-Sensor Data
Updates Transaction
Reads
+ +
Transaction Transaction
Reads Writes

Figure 1: Access Sets of Transactions and Updates

A unique feature of transactions in databases for rapidly changing systems is that instead
of simply requesting values of data items, such requests also need to retrieve data values that
were valid at particular instants in time. For example, a transaction may be of the following
form: read(D;), read(D;) at time = 100. The reader can easily understand the need for such
timestamp attachments to transactions by considering an example from the network management
domain: if an alarm was logged at time ¢;, and subsequently a transaction was submitted to respond
to that alarm, the transaction would very likely wish to view values at #;. Thus in our model,



transactions have two associated timestamps, a transaction timestamp and a request timestamp.
Similarly, updates are associated with update timestamps and data item versions are associated
with data timestamps.

Definition 1 The transaction timestamp of T;, denoted by TTS(T;), denotes the time at which
T; was generated.

Definition 2 The request timestamp of T;, denoted by RQTS(T;), denotes the time at which
T; requires the values of the items in its read set.

Definition 3 The update timestamp of U(D;), denoted by UTS(U(D;)), denotes the time at
which U(D;) was generated.

Definition 4 The data timestamp of version v of data item D;, i.e., D}, denoted by DTS(D} ),
denotes the time at which the state of D; in the outside environment corresponded to the value of
Dy

In our aperiodic update model, whenever the value of D; changes in the real world, an update
U(D;) is generated. When this update is installed and creates a new data version the timestamp
of the new version is set equal to the timestamp of the update, i.e., if U(D;) created D}, then,
DTS(DY) «+— UTS(U(D;)).

We recognize that transactions may want to read the most recent values or older values. There-
fore, the request timestamp may assume any value subject to the condition RQTS(T;) < TTS(T;).
Also note that an update will typically arrive at the system at a time later than its timestamp.
This phenomenon has been termed retroactive update [30]. This reflects the fact that an update
ages between the time it is generated by a sensor and the time when it is received by the system.
Such aging is often the result of network delays.

Three requirements must be satisfied with regard to the successful execution of transactions:

1. Recency: The values read by a transaction must be recent with respect to its request times-
tamp. This is required as the quality of the control decision the transaction will implement
is directly related to the age of the data items it reads.

2. Temporal Consistency: The values read by the transaction must be temporally consistent,
i.e., they must have co-occurred.

3. Timely Processing: Transactions arrive with deadlines and are assumed to have no value
if not processed within that deadline.

In the subsequent sections we go into details of satisfying these requirements. Table 1 below
summarizes the notation used in this paper. Note that some of the notation given in Table 1
appears later in the paper.

4 Recency and Temporal Consistency

As previously mentioned, the basic motivation in enforcing recency and temporal consistency is
that the system must report values close to the time at which such values are requested, and when
some decision needs several values as input, such values must be temporally consistent, i.e., they
must have co-occurred in the system. Ideally, we would like to provide perfect recency (i.e., if the



| Notation | Description
D; Data item 2
Dy Version v of data item 4
U(D;) Update transaction wishing to update D;
TTS(T) Transaction timestamp of 7', indicating when the transaction was gener-
ated
RS(T) Read set of T
WS(T) Write set of T'

RQTS(T) Request timestamp of T, i.e., the time at which T' wants to retrieve the
values of elements in RS(T)
UTS(U(D;))| Update timestamp of update U(D;), indicating when U(D;) was gener-

ated
DTS(D}) Timestamp of D}. If U(D;) created D7, then, DTS(D}) <+ TS(U(D;))
MTD Maximum tolerable delay
RI Recency interval
ATI Acceptable timestamp interval

Table 1: Notations used in this paper

value of D; is desired at time t¢;, we would like to provide the version that represents the value
which occurred precisely at ;) and perfect consistency (i.e., if values of D; and D; are desired
at tj, we would like to provide values that co-occurred precisely at ¢;). To satisfy these ideal
conditions it is necessary for our system to be able to record updates at nearly every instant of
time, while ensuring that transactions are processed in a timely fashion as well. Given the large
state spaces of our target control environments (e.g., a telecommunications database may contain
a million objects), and current processing capacities, such ideal requirements are unlikely to be
fulfilled any time in the near future. Thus, while recognizing that perfect recency and consistency
are unachievable, it is our goal to provide reasonable recency and temporal consistency. Simply
stated, reasonableness means: (a) if value of D; is desired at #;, and it is not possible to perfectly
satisfy this request, we would provide a value at a time to, such that ¢, was close to t1, and (b)
if values of D; and D; were desired at ¢, and perfect temporal consistency was unsatisfiable, we
provide a value of D; at 3 and a value of D; at t3, such that ¢ and ¢3 were reasonably close to
each other, while, at the same time, both ¢5 and ¢35 were reasonably close to ¢;. Note the preceding
discussion was deliberately left rather imprecise to communicate the basic theme of what we want
to do.

We use a measure called Mazimum Tolerable Delay (MTD) to quantify reasonable closeness
referred to in the previous paragraph. Using this parameter allows developers of different applica-
tions to set their own level of tolerance. Using this measure we define the notions of recency and
temporal consistency used in this paper.

Definition 5 Version v of data item D;, i.e., D} is considered to be recent with respect to time
tj if and only if [DTS(DY) — t;| < MTD.

Definition 6 D} and D}’ are considered to be temporally consistent if and only if |[DTS(D}) —
DTS(DY)| < MTD.

Note that we use absolute values in these definitions. The reason is that the retrieved data versions
could have timestamps which may be smaller or larger than the request timestamp. This is illus-



trated through the following example. Consider a transaction 7; that wishes to read D;. Further
assume that two versions of D;, D and D} exist such that DT'S(DY) < RQTS(T;) < DTS(DY).
Moreover, RQTS(T;) — DTS(D}) > MTD and DTS(D}) — RQTS(T;) < MTD. In such a situation,
we contend that the transaction should be provided the value of D}, even though this version
occurs after the request timestamp of 7;. Our rationale is that by virtue of being within MTD time
units, D} offers a truer view of D; with respect to RQTS(T;) than does DY. These assumptions
could be changed without affecting in any way the subsequent work presented in this paper !.

Another interesting fact to note is that definitions 5 and 6 mandate that data item values
be updated at least once every MTD units. Otherwise, recency and temporal consistency may
be unsatisfiable. In a periodic update arrival scenario, this is easily achieved by requiring that all
sensors have periods less than MTD. In this paper however, we examine an aperiodic update arrival
case, where it is not as simple as the periodic case. As mentioned previously, in the aperiodic case,
data values are typically reported when they change. However, if an object state remains constant
for a time period longer than MTD, the corresponding data value in the database will lose its
recency (even though it represents the “correct” state of the object). Clearly, some mechanism
is required to handle this anomaly. In this paper, we make the assumption that no value in the
system will go unreported for longer than MTD units of time. In other words, even if a value does
not change, it will still be reported at least once every MTD units of time. In the experiments
reported later on in the paper, this constraint is enforced for every data item. Thus, recency is
always satisfiable in our system.

When a transaction wishes to read a number of data items, the values returned must be both
recent and temporally consistent. Satisfying both properties simultaneously requires the concurrent
satisfaction of the conditions specified in definitions 5 and 6 above.

Definition 7 A set of data item versions D, is considered to be recent with respect to a time t;
and temporally consistent if and only if the following two conditions are simultaneously satisfied:

1. VDY € D, |DTS(D?) — t;| < MTD;
2. ¥DY € D,YDY € D,|DTS(DY) — DTS(D¥)| < MTD.

Next, we turn our attention to designing mechanisms to attempt the satisfaction of the above
rules. The key factor that will influence the degree to which we satisfy recency and temporal
consistency is how well we are able to install updates. If we can install updates well, transactions
will read “good” values. We consider the “goodness” of the update installation procedure to be
dependent on two interrelated factors.

1. How efficiently are updates installed? Efficient update installation would mean that data
items are updated nearly as rapidly as updates arrive at the system. If the update installa-
tion process is inefficient (i.e., the system is not able to install a large number of updates),
transactions will read non-recent values.

2. How fairly are updates installed? Given that a large number of updates are arriving rapidly
and unpredictably, the system must ensure that it installs values of all data items and not some
data items. If the update installation process is unfair, transactions will retrieve temporally
inconsistent values.

'Readers familiar with [38] will note similarities between the above notions and those presented in [38]. While we
encourage interested parties to consult [38], we emphasize that our definitions are semantically richer. Also, our use of
a single validity interval, MT D, yields a much simpler model which matches actual application domain requirements

(e-g., [9))-



In systems such as those being considered in this paper, update patterns could be highly random
and completely unpredictable. The notion of fairness (item (2) above) is an important one in such
scenarios. To see this, consider a database with two data items D; and D;. An efficient but unfair
installation procedure may update D; very frequently but D; very seldom. A fair installation policy
on the other hand, would ensure that both data items are updated on a regular basis. Clearly,
transactions that read updates of the second installation procedure would be expected to perform
better control actions than those that read the output of the first policy. Below we describe an
efficient and fair update installation policy that we have designed.

4.1 Update Installation: Efficiency and Fairness

Before stating the installation algorithms we describe a structure called TS_ARRAY (Timestamp
Array) that is utilized by the algorithms. TS_ARRAY is a memory resident array of dimension
NumSDItems which denotes the number of sensor data items in the database. The TS_ARRAY
stores the largest timestamp of each sensor data item, i.e., the data timestamp of the most recently
created version of each data item. More precisely,

TS_ARRAY[i] = DTS(DY)

where D} is the most recent version of D;, i.e., the version with the largest timestamp.

As mentioned before, the goal of our update installation policy is to offer efficiency as well as
fairness. Let us first consider efficiency, i.e., ways to maximize the number of installed updates while
ensuring that system resources remain available for transaction processing. We recognize that in
any real system, given that large number of updates as well as transactions arrive within short time
intervals, it is going to be very difficult to install every update. Thus at high update arrival rates, it
may be beneficial to discard some updates while ensuring that recency is preserved. We attempt to
achieve this using the following basic philosophy: we attempt to install updates such that recency
is only preserved beyond some small interval RI (Recency Interval), 0 < RI < MTD. In other
words, we only attempt to install updates such that data items are updated (i.e., newer versions
are created) at most once every RI time units but at least once every MTD time units. Were this
goal to be achieved, then the system could guarantee that it can fulfill any data request within at
least RI time units and at most MTD time units of the request timestamp. To ensure a high level of
recency in the system while allowing for transaction processing, the system increases RI such that
the update processing load decreases when the miss ratio (MR) of transactions reaches unacceptably
high levels. If, on the other hand, MR is very low, then RI is decreased, thereby attempting to
maintain higher levels of recency in the system by giving updates a greater share of system resources.
These adjustments of RI are achieved through a procedure that adapts dynamically based on system
feedback. Details are provided below.

To properly appreciate our procedure for installing updates, it would be helpful to first under-
stand our update application model. As mentioned before, we assume an aperiodic update arrival
scenario, i.e., updates arrive when the state of real-world entities changes. Fach update changes
exactly one data item. More precisely, the result of each installed update is the creation of a new
version of the relevant data item. However, in order to enforce our recency rule (given in definition
5), we impose the condition that even if the value of a data item does not change, two consecutive
updates to any data item can be at most MTD units of time apart. This condition, although
admittedly artificial, allows us to evaluate how good our algorithms are in maintaining recency. It
is easily seen that a perfectly efficient update installation procedure (i.e., one that installs every
update) will never allow the system to become non-recent. This is so because the abovementioned



condition guarantees that each data item will receive at least one update every MTD time units.
The conceptual basis of this condition is very closely related to the notion of update patterns identi-
fied in [29]. When an update arrives, it is handled in one of two ways, depending upon our update
process model, discussed below.

The authors argued convincingly in [3] that updates are best handled by a single process (as in
CICS), as opposed to each update being handled as a separate transaction. It must be kept in mind
however, that in [3], the authors were dealing with a main-memory database system. In a disk-
resident database, as is our case, it is not clear that a single update process is the best way to go.
This is because, in the disk-resident case, delays at disk may be large enough to make concurrency
among updates attractive. To examine this issue, we consider two different process models: Uni-
Process Update Model (UPUM) and Multi- Transaction Update Model (MTUM). In UPUM, updates
are applied as a single update installation process, whereas in MTUM, each update is considered
as a separate transaction. Whereas MTUM is easily understood, UPUM requires a little more
explanation.

Under UPUM, the update process installs updates from an update queue. The essence of the
process is as follows: when an update arrives at the system, it is enqueued within the database
system. This queue is maintained not in the order of arrival but according to the level of recency
of the target data item. More precisely, an update U(D;) (i.e., update to data item i) would be
enqueued by checking the value of TS_ARRAY[i]. Lower the value of TS_ARRAY (i), the older
D; is, and the more urgent it is to install that particular update in order to make D; recent, and
consequently raise the position of the corresponding update in the update queue. This queueing
order is very significant as it enforces fairness in our system. As a data item loses its recency,
updates to it gain better and better position in the update queue, ensuring that all data objects
get equal chance of being recent. Finally, the update process installs updates from this queue.

Modeling updates as UPUM or MTUM raises some interesting issues which have performance
implications. These issues concern the overhead and efficiency tradeoffs in the models, e.g., in
MTUM, because of the large number of updates that arrive, potentially a substantial overhead
(e.g., context switching) may be associated with scheduling these. In UPUM, such overheads
are not present. However MTUM has the potential of deriving performance gains, by exploiting
concurrency (in UPUM, only one update may be active at any one time). Thus, our goal in studying
these two models was to examine the effects of the above issues on system performance.

Now we describe the procedures that implement the update installation mechanism. Note that
these procedures apply to both UPUM and MTUM.

Procedure RECINT
Adaptive Feedback Procedure To adjust Recency Interval (R/). This procedure assumes the existence
of a dynamic control variable « (explained later) and a parameter called SampleBatch.

After every SampleBatch transactions leave the system
if MR > ThresholdMR
then « < min(1.0, a x 1.10);
else a + a x 0.90;
RI+ ax MTD;

Procedure UINSTALL
The actual update installation procedure.

On arrival of update U(D;) meant for data item D;
if TS(U(D;)) — TS-ARRAY][i]> RI  /* D; has not been updated recently */
then install U(D;);



else abort U(D;);

The essence of the update installation process is as follows: when an individual update comes
up for processing (in either of the two models, i.e., UPUM or MTUM), the UINSTALL procedure
is performed to decide whether to actually commit resources to install the update or discard the
update (thereby enabling the system to allocate resources to other processes). However, the decision
to discard should not lead to recency violation of the concerned data item. This decision is made
using the recency interval (RI), which is adaptively updated using the RECINT procedure.

We first define the recency interval (RI) as a fraction of MTD. More precisely, we define RI as:
RI = a x MTD where « is a dynamic control variable in the range 0 < @ < 1 (« is initialized to
.20 at startup). When « is very small, so is RI, and when « is 1, RI = MTD. The value of RI
directly impacts our processing strategy for updates as can be seen from procedure UINSTALL. This
procedure outlines a strategy by which we choose to discard some updates based on the recency
of the target data item. As explained above, the logic behind this is that by discarding certain
updates, we free up resources for use by transactions. Our goal is to install at most one update per
data item every RI time units. This means that if RIis small, we will attempt to install updates at
a very rapid rate (i.e., discard fewer updates). On the other hand, if R is large, we will attempt to
install updates at a slower rate and succeed in discarding a larger number. We compute a system
characteristic Deadline based Miss Ratio (DMR) as:

DMR — Number of transactions missed because of deadline misses

Total number of transactions entering the system

The notion of DMR is introduced because in these systems, transactions misses occur due to
two reasons, (a) deadline misses (quantified by DMR); and (b) reading of temporally inconsistent
values (quantified by a characteristic TCMR introduced later in section 4.2). As will be explained
later, TCMR is not strongly related to the system load, and thus should not be factored into load
dependent decisions. On the other hand, DMR is the true indicator of the load on the system.
We have formulated the maximum allowable DMR of transactions as an application-dependent
parameter Threshold DMR. When DMR exceeds ThresholdDMR, we need to devote more resources
to transaction processing and consequently increase «, thereby expanding RI, which enables the
system to discard more updates. This frees up system resources for transaction processing. In
other words we sacrifice recency to achieve lower miss ratios. The adaptive recomputation of
« is performed every SampleBatch (another parameter) transaction completions to capture the
recent behavior of the system. Below we provide an illustrative example of the update installation
procedure. Example: Consider two updates U(D;) and U(D;) that arrive at the system with
identical timestamps? of 50. Assume current time CT = 55. Further assume that D; and D; were
last updated by updates with timestamps 40 and 30 respectively, i.e., TS_ARRAY[i] = 40 and
TS_ARRAY][j] = 30 respectively. Assume MTD = 35 and o = .5.

Case 1 (UPUM): In the UPUM case, the two updates are first enqueued in the update queue. As,
mentioned before, the queueing order is age of the target data items. In this example D; is older
that D;, as TS_ARRAY[j] < TS_ARRAYYi]. Thus, U(D;) would be queued before U(D;). Now,
the current recency interval (RI) of the system is given by, RI = a x MTD = 0.5 x 35 = 17.5. This
means that at this time the system’s goal is to install at most one update per data item every 17.5
time units. Thus when the update process chooses U(D;) for service from the update queue (U(D;)

2This can happen as we are modeling a system where distributed sensors are sending updates which travel over a
network and arrive at the database. We assume that the sensor clocks are synchronized.
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comes up for service earlier than U(D;) owing to its higher position in the queue), it first checks
whether to commit resources to install this update at all by performing the test in UINSTALL. This
test computes, TS(U(D;)) — TS_LARRAY[j] = 50 — 30 = 20 > RI. Thus, the update process would
actually install U(D;). However, when U(D;) reaches the head of the update queue, it would be
discarded (i.e., not installed) as it would not satisfy the test in UINSTALL.

Case 2 (MTUM): In this model, the two updates are modeled as different transactions and
thus compete for resources unlike the UPUM case. Here they are treated as transactions and are
awarded priorities. Priority assignments are treated in Section 5. Suffice it to say here that by
virtue of the fact that TS_ARRAY[j] < TS_ARRAYYi], U(D;) would be awarded a higher priority
than U(D;). This would ensure fairness. When the updates actually came up for service the
UINSTALL procedure test would be performed to determine which should be installed. Note that
the install/discard decision is identical to the one in the UPUM case.

4.2 Retrieval: Ensuring Temporal Consistency

Having described how updates are installed, we now turn our attention to how transactions actually
retrieve data. We hasten to add that update installation and retrieval are highly interrelated
processes. Basically, transactions can only retrieve what has been installed. However, the reader
can very well imagine that from the several data item versions that are potentially available, only
certain particular versions need to be retrieved. In this section we elaborate on the retrieval
mechanism to fetch versions that best satisfy transaction requirements. Note that our discussion
concentrates on sensor data. Non-sensor data, by virtue of being updated slowly, pose little retrieval
problems. Thus, in the future discussion whenever we refer to “data items”, we are alluding to
“sensor data items”.

We will illustrate the retrieval procedure with an example: Consider a transaction T' that wants
to retrieve data items D;, D; and Dy in that order. Further assume RQTS(T) = t,. The first
operation to be executed would be read(D; ). This operation would select version v of data item D;,
i.e., D}, such that there exists no other version of D; with a timestamp value closer to ¢,. In other
words, D} is the most recent value of D; with respect to ¢,. Having selected D}, we then select the
appropriate versions of D; and Dy, such that temporal consistency conditions are satisfied between
D;,D; and Dy. There are two subtle points to note here:

1. Assume that the final result of retrieval for the above transaction is Dy, DY, Di. D} was
chosen by virtue of being the version of D; most recent to ¢,. Now, when DY and Dj are
chosen, the overriding criterion is that they should be temporally consistent with D} and
with each other. Thus, these versions may not be the closest versions of data items D; and
Dy, to t,. Note that if temporally consistent data items are not found, the transaction must
abort, as temporal consistency is a mandatory condition in our transaction processing model.

2. In order to satisfy recency the following condition needs to be satisfied as well: (a) |D} —t,| <
MTD, (b) |D} —t,| < MTD, and (c) |Dj, — t,| < MTD, i.e., all the retrieved versions should
satisfy recency with respect to ¢,.. However, if, for some reason, no updates were installed in
that period, this condition may be unsatisfiable. In this case what to do with the transaction is
really up to the application designer as some applications may tolerate few recency violations
while other applications may tolerate none. In the performance study reported in Section 7 we
study two cases: (a) transactions reading non-recent data are aborted, and (b) transactions
reading non-recent data are allowed to continue.
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The above high level discussion outlines the basic requirements of a retrieval policy that seeks
to ensure temporal consistency among retrieved data items. A straightforward implementation
of such a policy (pairwise comparison between data items) is highly inefficient, requiring O(N?)
time, where N is the number of data items. In real-time scenarios such an implementation will
be unacceptable. Below we describe a procedure called Interval Adjustment Technique (IAT) that
implements our retrieval requirements efficiently.

The intuitive basis of IAT is as follows. In processing the retrieval requirements of a transaction
T, we first define an acceptable timestamp interval based on RQTS(T). Subsequently, based on
each read access by T', we modify this timestamp interval by factoring in the data timestamp of the
data item that was just read. Also, each data access is performed such that the data timestamp
of the accessed data item is within the current acceptable timestamp interval. If such data items
can be found for the entire read set of T', then temporal consistency is ensured and 7' completes
successfully. Otherwise T is aborted. A procedural description of IAT follows. We denote the
Acceptable Timestamp Interval of T by the notation ATIr.

Procedure IAT
This procedure attempts to ensure temporal consistency across the read set of a transaction. The
following pseudo-code is written with respect to a transaction T with request timestamp RQTS(T).

ATIp <+ [RQTS(T) — ATIFactor x MTD, RQTS(T)+ ATIFactor x MTD],
/* Initialize ATIp */
foreach read access request for data item D; do
if no version of D; exists with timestamp in the range given by ATIr
then abort T} /* Temporal Consistency Violation */
else
retrieve the version of D;, Dy, with timestamp closest to the
midpoint of ATIp;
ATIp < ATIr N [DTS(D})—-MTD, DTS(D} )+MTD]; /* Adjust ATIp */

The IAT procedure is simple: it first initializes the ATT of T to a large interval (characterized by
the parameter ATIFactor) centered on the request timestamp of 7. Then, with each data access
request, if it is not possible to find a version of the data item in the ATIp interval, then T must
abort as temporal consistency cannot be preserved. If such versions are found, an appropriate
version is retrieved and ATIr is adjusted to factor in the data timestamp of the recently accessed
version. The version closest to the midpoint of ATIr is retrieved to ensure that the largest possible
ATIy results after the adjustment. Other retrieval rules (such as version closest to RQTS(T)) will
work as well, at the cost of perhaps overly restricting the acceptable interval to a point where
feasible versions may exist, but will not be found. The following example illustrates how the above
procedure works. Example: Consider a transaction 7" with a request timestamp of 100 which
wants to read data items D;, D; and Dy, in that order. Table 2 shows different versions of the data
items that exist and their associated data timestamps. Assume MTD = 15 and ATIFactor = 5.
ATIp will be initialized to [25, 175]. When T requests access to D;, procedure IAT will fetch D]
by virtue of its timestamp being closest to 100. Following this access, ATl will be adjusted as
follows:

ATIp + ATI; N [DTS(DY) — MTD, DTS(D?) + MTD) = [25,175] N [75, 105] = [75, 105]

Then access to D; will be requested and D§ will be retrieved as its timestamp is closest to the
midpoint of the interval [75,105]. Following this access ATIr will be adjusted as follows:

ATIy + [75,105] N [70, 100] = [75, 100]
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| Data Item | Existing Versions | Data Timestamps

D7 60

D; DY 85
D! 90

D} 65

D; D! 85
D" 108

f 57

Dy DY 89
v 98

Table 2: Existing Versions and Associated Data Timestamps

Subsequently, access to Dy, will be requested and D}’ will be retrieved. The final result is significant
— the versions that were fetched satisfy temporal consistency (and coincidentally, recency as well).
However, as can be easily observed, the most recent versions of D; and Dy, with respect to RQTS(T)
were not fetched.

Note that our retrieval mechanism requires fast and efficient lookup and access of data versions.
We assume the existence of an underlying versioning and version indexing scheme. A large number
of versioning and access schemes for temporal data have been discussed in the literature (see [41] for
an excellent survey and a near-exhaustive list of references). As far as efficient version lookup and
access is concerned we are interested in efficient indexing mechanisms geared towards supporting
retrievals such as ‘ ‘find the version of D; closest to time = 100’’. A very nice scheme
for such indexing has recently appeared in [47]. This paper presents a practical and asymptotically
optimal time indexing structure for a versioned, timestamped, temporal databases. This structure
is shown to optimally solve both snapshot as well as time range queries, with respect to current
as well as historical versions. In the simulation experiments described in Section 7 we assume the
presence of such a structure.

Finally, in this section we talk about an issue that we alluded to in section 4.1, namely that
of transaction misses due to temporal consistency violations. This is something that renders sys-
tems such as those considered in this paper not directly amenable to analysis by considering the
traditional Miss Ratio (MR) metric. In traditional real-time systems, transaction misses are due
to resource contention and eventual deadline violations. Thus the pure deadline based MR, metric
is a very useful one to characterize such systems. In this paper however, we have to consider two
types of miss ratios:

1. Deadline based Miss Ratio (DMR), defined and described in section 4.1; and

2. Temporal Consistency based Miss Ratio (TCMR), defined as the fraction of transactions
missed because of temporal consistency violations.

The reader can easily see that while DMR is an indicator of system load, TCMR is an indicator
of the level of efficiency and fairness in the system with respect to updates, i.e., a fair update
installation policy will reduce the likelihood of temporally inconsistent retrievals as compared to
an unfair installation policy.

So far, in this section, we have described how recency and temporal consistency are maintained
through judicious update installation and retrieval methods. In the class of database systems under
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consideration in this paper, there is another, very important component: real-time processing. We
now turn our attention to that.

5 Real-Time Scheduling

In this section we look at a number of algorithms that attempt to schedule transactions and
updates by allocating system resources to ensure transactions finish within their deadlines and
updates are installed rapidly enough to maintain recency. Note that even though our update
installation procedure was described in the previous section, the system still has to decide when to
schedule transactions and when to schedule updates. We describe three algorithms to make this
decision: (a) Virtual Deadline of Updates (VDU), (b) Updates First (UF), and (¢) Transactions
First (TF). Whereas VDU is the algorithm that we have developed, UF and TF are baseline
algorithms suggested in [3].

5.1 Virtual Deadline of Updates (VDU)

VDU is a priority based scheduling policy, where priority assignments are based on the earliest
deadline (ED) principle [35]. Under ED, priority assignment to transactions is simple, as trans-
actions arrive with explicit deadlines. The update process (in UPUM) or update transactions (in
MTUM) have no explicit deadlines. Thus, we have to devise a priority assignment mechanism for
updates that will let the scheduler deal with both workload types (i.e., transactions and updates)
uniformly. In VDU a sequence of wvirtual deadlines are assigned to the update process in UPUM,
and unique virtual deadlines are assigned to update transactions in MTUM.

5.1.1 UPUM

In UPUM, updates are installed by a single update installation process according to when the
target data item was last updated. This order is determined by using values in the TS_ARRAY.
The problem is as follows: what should the priority of the update process be with respect to the
transactions which have clear cut priorities based on their deadlines. We first provide an intuitive
answer to this question and then delve into specifics.

The basic idea behind priority assignment to the update process is as follows: a relatively high
priority should be assigned to the update process when data values are old, i.e., there is a lack
of recency in the database. When there is no perceived problem with recency, the priority of the
update process should be relatively small, such that the system can process transactions at a rapid
rate. The major issue then is to recognize that there is a problem regarding recency in the database.
When values in the database are old, transactions retrieve non recent data. We call such reads
stale reads. More precisely, an operation read(D;) with a request timestamp of ¢, is considered
a stale read if the version of D; returned, Dy, fails to satisfy: |DTS(D}) — t,| < MTD. Thus,
if a large fraction of reads (note that by reads we allude to “sensor data reads”) are stale, then
one may conclude that there is a problem with recency in the database. In that case the update
process needs to be upwardly prioritized to make the database more recent. On the other hand,
if the priority of the update process is too high, then the system would be processing updates
at the expense of transactions, thereby lowering the capability of the system to meet transaction
deadlines. This would be manifested by a high deadline based miss ratio (DMR) in the system.
Thus, assigning priority to the update process, is balancing the conflicting objectives of having a
low number of stale reads (i.e., having good database recency), while achieving low miss ratios.
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Now we describe how the above goals are achieved in the VDU algorithm. As mentioned before,
the basic priority assignment philosophy used is ED. However, the update process does not have
an explicit deadline. The VDU policy awards a sequence of virtual deadlines (VD) to the update
process to control its priority with respect to the transaction processes. More precisely, the update
process is awarded a virtual deadline of VD = Current_-Time + 8 x MTD. (3 is a dynamic control
variable defined in the range, 0 < # < 1.0. Thus, the maximum value of VD is Current_Time +
MTD (when 8 = 1.0). This deadline is assigned with the goal of scheduling at least one update
within the next MTD time units, as the system is sure to lose recency if not even one single update
is scheduled in that period.

The above discussion points out that the update process has a sliding priority, i.e., the update
process is assigned virtual deadlines that slide between Current_Time and Current_Time + MTD.
Now we address the issue of how this deadline assignment is actually achieved. At system startup
(i.e., time = 0), VD = MTD. The intention of this initial assignment is to have the update process
serviced within MTD time units. Each time the update process experiences a CPU service, the
virtual deadline is reset as follows: VD < Current_Time + 3 x MTD, thereby varying the priority
of this process.

The dynamic variable 8 adapts based on system feedback, and represents how the VDU algo-
rithms achieves the balance identified above, i.e., the balance between ensuring few stale reads and
low miss ratios. To understand how this happens, we first define a system characteristic fraction
stale reads (FSR), which is computed as:

number of stale reads

FSR =
total number of sensor data reads
After every SampleBatch transactions leave the system we perform two tests and correspondingly
adjust B (0 is set to 0.25 at system startup). The tests and corresponding adjustments may be
expressed through the following decision rules R1 and R2:

Decision Rule R1
Adaptation of 3 based on stale reads.

if FSR > ThresholdFSR
then 6 < 0 x 0.95
else 0+ (x1.05

Decision Rule R2
Adaptation of 3 based on miss ratio.

if DMR > ThresholdDMR
then 8+ 0 x 1.05
else B+ [ x0.95

The two decision rules are easy to understand. R1 says that if FSR is greater than a threshold FSR
(denoted by the parameter ThresholdFSR which is set to 0.30 in all our experiments) that indicates
recency is low. In that case 3 is decreased, which lowers the VD, thereby increasing, comparatively,
the priority of the update process. On the other hand if system recency is acceptable, the reverse
actions are performed. Similarly, R2 adapts § based on DMR.

5.1.2 MTUM

Next we turn our attention to how the VDU algorithm works in the multitransaction update
model. Here the algorithm is relatively straightforward compared to the UPUM case. In MTUM,
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each update is considered a separate transaction and is assigned individual virtual deadlines. The
deadline assignment policy is as follows: consider an update U(D;). Let us use the notation VD; to
refer to the virtual deadline of U(D;). The deadline assignment is done according to the following
procedure.

Procedure ASSIGN_VD
Procedure to assign VD; to update U(D;) in MTUM.

if (TS_ARRAY[i]+ 8 x MTD) > Current_Time
then VD; « TS_ARRAY[i] + f x MTD;
else if (TS_ARRAY[i]+ MTD) > Current_Time
then VD; « TS_.ARRAY[i] + MTD;
else VD; < Current_Time + A;

Basically, the above procedure assigns a virtual deadline to updates U(D;) based on how long it
has been since the last update of D;. (8 is a dynamic control variable, which changes in precisely
the same way as in the UPUM case, i.e., based on the decision rules R1 and R2. Thus, depending
upon FSR and DMR, updates are given higher or lower priorities with respect to transactions. Note
however, that 8 has no effect on the relative priority of updates with respect to other updates. A
is a system parameter.

5.2 Other Scheduling Mechanisms

We compare the performance of VDU with two other algorithms discussed in [3], Updates First
(UF) and Transactions First (TF). For these two algorithms we consider both the UPUM as well
as the MTUM case.

UF: In UF, all updates are awarded higher priorities than all transactions. A running transaction
is preempted upon arrival of an update. In the UPUM case, updates are queued in FIFO order,
whereas in MTUM, updates are processed in earliest-arrival-first order.

TF': In this method all transactions have higher priority than all updates. Updates only get installed
when there are no transactions in the system. Since updates are small duration jobs, transactions
do not preempt updates. Again, as in UF, in the UPUM case, updates are queued in FIFO order,
whereas in MTUM, updates are processed in earliest-arrival-first order.

For both the above algorithms we apply the temporal consistency enforcing retrieval mechanism
described in section 4.2. This makes the “playing field” even for all three algorithms (i.e., VDU,
UF and TF).

In all three algorithms described so far (i.e., VDU, UF and TF) a transactions reads data items
existing in the database. In [3] the authors describe and evaluate another smart algorithm called
On Demand (OD). In OD, if a transaction wishes to read the most recent values and encounters
a stale value in the database, an attempt will be made to get and install a fresh update from the
update queue in the UPUM case. OD is an extension of TF — transactions still have higher priority
over updates. OD requires significantly more knowledge than the other algorithms. It assumes that
queued updates can be searched and the right update identified. We wanted to consider OD as well
in our experiments. However, OD is impractical in our case, as it is not possible to adapt OD to
the requirement of maintaining temporal consistency. In OD a transaction extracts and installs the
most fresh (i.e., recent) update from the update queue. However, what happens if this update is not
temporally consistent with previously read values? In fact as shown in the example in section 4.2,
the most recent update need not correspond to temporal consistency. Thus a transaction will not
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only have to look for a recent update it will have to look for a simultaneously temporally consistent
one. This of course will be prohibitively expensive. Also, as can be easily seen, this gets even more
complicated in the MTUM case.

6 Simulation Model and Performance Metrics

6.1 Simulation Model

To evaluate the performance of the update installation and scheduling algorithms outlined be-
fore, we conducted extensive simulation experiments. Our simulation programs were written in
SIMPACK, a C/C++ based simulation toolkit [16, 17].

The real-time, temporal database system consists of a shared-memory multiprocessor that op-
erates on disk-resident data. We model the database as a collection of pages. A transaction is
modeled as a sequence of read and write page accesses, while an update is a singleton write, i.e., it
is a write request to a page. A read request submits a data access request to the concurrency control
(CC) manager, on the approval of which a disk I/O is performed to fetch the page into memory
followed by CPU usage to process the page. Similar treatment is accorded to write requests with
the exception that write I/Os are deferred until commit time. Thus, processing an update involves
first reading the appropriate page and then writing the modified page back.

Our RTDBS model is shown in figure 2. There are four major components:
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Figure 2: The RTDBS Model

1. An arrival generator, that generates the real time workload with deadlines

2. A transaction manager that models transaction and update execution and implements the
scheduling algorithm

3. A concurrency controller, that implements the CC algorithm, in our case OPT-BC [36]
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4. A resource manager that models system resources, i.e., CPUs and disks and the associated
queues

6.2 Database Model

Our database model consists of a number of pages denoted by the parameter DBSize and a pa-
rameter ItemsPerPage that denotes the number of data items per page. We assume a dichotomy
of storage between sensor and non-sensor data items, i.e., no database page stores both sensor and
non-sensor data items. A parameter SensorFrac denotes the fraction of the DBSize pages that store
sensor data items. Thus the number of sensor data items is given by:

NumSDItems = DBSize x SensorFrac x ItemsPerPage

The purpose of defining the NumSDItems parameter will be clear from section 6.4.1 below.

6.3 Resource Model

Our resource model considers multiple CPUs and disks as the physical resources. For our simu-
lations we assumed the data items are uniformly distributed across all disks. The NumCPU and
NumDisk parameters specify the system composition, i.e., the number of each type of system re-
source. The parameter DBSize denotes the number of data pages, while a parameter SensorFrac
is used to denote the fraction of data pages that correspond to sensor data. The sensor data
items themselves are assumed to be uniformly distributed across disks. There is a single queue for
the CPUs and the service discipline is assumed to be preemptive-resume based on the task (i.e.,
transactions or updates) priorities. Each individual disk has its own queue with a non-preemptive,
transaction priority based service discipline. The parameters ProcCPU and ProcDisk denote the
CPU and disk processing time per page respectively. To accurately model the UPUM-MTUM
tradeoff we model the context switch cost through a parameter ContertSwitch. Whenever there is
a context switch, ContextSwitch amount of time is charged to the process that is switched in. These
parameters are summarized in table 3.

6.4 Workload Model

Our workload model consists of modeling the characteristics of updates and transactions that arrive
and are processed in the system as well as their arrival rate.

6.4.1 Updates

As mentioned before in Section 3, our system assumes aperiodic updates with the guarantee that
two consecutive updates to the same data item are never more than MTD time units apart. This
condition was imposed to make recency always satisfiable — thus, based on the level of recency
violations, it would be possible to test the effectiveness of algorithms. Each sensor data item is
modeled as a generator of updates i.e., each sensor data item D; generates a stream of write(D;)
updates that arrive immediately at the system. In other words, for a given data item, the generation
pattern of updates is equivalent to the arrival pattern of those updates at the database. The actual
arrival pattern of all updates at the database, thus, is the convolution of the generation patterns of
each D;. All clocks are assumed to be synchronized. Each sensor data item generates updates with
inter-generation times distributed in a triangular fashion. More specifically, the inter-generation
times of updates from a given sensor data item D; are generated from a triangular distribution with
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left bound 0, right bound MTD, and mode M; (the reason for choosing a triangular distribution is

elaborated below). For each D;, the mode of inter-generation times M; is chosen from a truncated
MTD

normal distribution with mean TUpdaicRate:

always in the range [0, MTD).
From the above description, it is easy to estimate the approximate update arrival rate into the
system. Clearly, the expected frequency of update arrivals, U, is given by,

The truncation is such that the generated mode is

1.0
U = Number of sensor data items x - — - (1)
Average inter-generation time of updates for a sensor data item

Since we know that inter-generation times are distributed triangularly, the average inter-generation
time for a data item is simply the mean of the triangular distribution with left bound 0, right bound

MTD, and mode MTD 1 other words, equation 1 may be re-specified as

UpdateRate®
U = NumSDItems x L0 @)
= Num ems
MTD
0+MTD+ UpdateRate
3

Substituing the values of the parameters used in our experiments from table 4, &/ works out to
approximately 33.75 updates/second. This number represents a reasonably loaded system with
regard to updates. The reader, however, is reminded that each update constitutes a singleton write
(i.e., read a page, update, write it back). Thus, while 33.75 arrivals per second may appear to be
rather substantial, this is somewhat mitigated by the fact that update transaction sizes are small.

Finally, we comment upon our choice of the triangular distribution for the inter-generation
times. It would appear, superficially, that the exponential distribution, which is almost universally
used to generate inter-arrival times, would have been a better choice. There are three reasons for
our choice:

1. We required that no two updates from the same data item be more than MTD units apart,
i.e., inter-generation times are strictly restricted to the range [0, MTD]. The triangular distribution
offered a very natural way of achieving this by declaring a left bound of 0 and right bound of MTD,
and thereby defining a range the [0, MTD]. An exponential distribution (without truncation) cannot
offer this guarantee.

2. The second, and more subtle reason, has to do with the memoryless property of distributions.
One of the nice things about the exponential distribution is that it is the only continuous distribution
with the memoryless property. In our model however, this is undesirable, as we require each data
item to “remember” when it generated its most recent update such that the next update may be
generated within MTD time units.

3. From the two above reasons it appears that the exponential distribution offers certain problems
in our scenario. Thus the question was what inter-generation time distribution should we use?
It is generally accepted (see, e.g., [32]) that in the absence of definite knowledge, a triangular
distribution is recommended as a “rough” distribution.

6.4.2 Transactions

Transactions arrive at the system as a poisson stream with a mean rate of ArrivalRate. We consider
three broad classes of transaction characteristics: (a.) Sizer, which denotes the number of pages
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accessed by T; (b.) Dr, the deadline of T; and (c.) RQTS;, the request timestamp of T', i.e.,
the time at which T' desires its observed values to have been valid. The service demand of T is
denoted as SDp = Sizer x Procy (recall that Procr is the time required to process a page).
The arrival generator module assigns a deadline to each transaction using the following expression:
Dy = SDyp x SRy + Ay, where Dp, SRy and Ay denote the deadline, slack ratio and arrival
time of transaction T respectively. Thus, the time constraint of transaction T, Cp = Dy — Ap =
SRy x SDp. In other words, SRy determines the tightness of the deadline of T. Note that
transactions were generated such that their working sets corresponded to figure 1. Each transaction
also has an associated request timestamp, RQTSy. Note that the request timestamp characterizes
the temporal nature of the simulated system. Our workload parameters are summarized in table 3.
Table 3 contains some parameters not discussed so far. The value of the WriteProb parameter

Parameter Notation Description

Type

Resource NumCPU Number of CPUs
NumDisk Number of disks
ProcCPU CPU time /data page
ProcDisk Disk time/data page

ContextSwitch| Context switch time, charged to the process
switched in

Workload ArrivalRate Transaction Arrival Rate
DBSize Number of pages in the database
ItemsPerPage | Number of data items per page
DBSize Number of pages in the database
NumSDItems | Number of sensor data items
SensorFrac Fraction of sensor data pages
ArrivalRate mean arrival rate of transactions

UpdateRate Constant arrival rate of updates

WriteProb Write probability /accessed page

Sizelnterval Range of the number of pages

accessed per transaction

SRInterval Range of slack ratio

RQTSInterval | Range from which request timestamps are drawn

Table 3: Input Parameters to our RTDBS Model

denotes the probability with which each page that is read will be updated. Sizelnterval denotes the
range within which transaction sizes will uniformly lie. In other words, the arrival generator module
generates transaction sizes by drawing from a uniform distribution whose range is specified by
Sizelnterval. Similarly, transaction slacks are generated by drawing from the uniform distribution
whose range is specified by SRInterval. Request timestamps are generated by drawing from a
uniform distribution whose range is specified by RQTSInterval.

6.5 Performance Metrics

We are primarily interested in the following measures of performance:

1. How well does our algorithm do with respect to time cognizance? This is measured by the usual
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Overall Miss Ratio metric (OMR). In our case however, transactions are missed due to two reasons,
temporal consistency violations as well as deadline misses. We are therefore also interested in the
DMR and TCMR metrics defined in sections 4.1 and 4.2 respectively.

2. How far were we able to make sure that transactions read recent values? This is measured using
the Fraction of Stale Reads (FSR) metric, which was presented in section 5.1.1.

3. Finally, we are interested in what fraction of transactions went through successfully without
reading a single stale data item. This is especially important for applications that are highly
intolerant to recency violations. This is measured using the Successful Without Stale Values (SSV)
metric, which is computed as:

number of transactions completing within deadline without reading any stale values

SSV =

total number of transactions

7 Performance Results

We studied the performance of the competing algorithms under various conditions of process models
(i.e., UPUM or MTUM) and system resource configurations (number of CPUs and disks). The basic
parameter settings for our experiments are shown in Table 4 below.

| Parameter | Value |
MTD 60 sec
ProcCPU 10ms
ProcDisk 20ms
ConteztSwitch | 1ms
DBSize 10000 pages
SensorFrac 0.9

ItemsPerPage | 1
NumSDItems | 900
UpdateRate 3

WriteProb 0.25

SizelInterval 1,15]

SRInterval 2,6]

RQTSInterval | [Current_time — 5 x MTD, Current_time]
ATIFactor 5

ThresholdMR | 0.2
ThresholdFF'SR | 0.3
A 1

SampleBatch | 100

Table 4: Parameters Settings for Our Experiments

7.1 UPUM

We first discuss the results of the experiments under the UPUM model, i.e., updates are handled
as a single process.
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7.1.1 High Resource Contention

We first explored a highly resource constrained scenario, by considering a uniprocessor machine.
In this set of experiments NumCPU was set to 1 and NumDisk was set to 2. Figures 3 A, B, C,
D and E show the results of these experiments. We first check the OMRs of the algorithms by
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Figure 3: Experiments under UPUM, high resource contention

examining figure 3A, which shows that VDU exhibits the lowest overall miss ratio of the three
algorithms. One noteworthy feature of figure 3A is the particular shape of the miss ratio curves.
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MR curves typically are S-shaped. The OMR curves in figure 3A however, are somewhat different
— they rise at the beginning and then exhibit a shallow dip or trough (a small dip for UF and VDU
but a long one for TF). Following this dip, the curves rise again. The reason for this apparently
strange shape is the fact that transaction misses in these systems happen because of two reasons:
deadline expiries and temporal consistency. The precise effect of these two factors is shown in
figures 3B and C. Figure 3B plots DMR (i.e., the miss ratio due to deadline expiries) against the
transaction arrival rate. TF, by virtue of unilaterally awarding higher priority to transactions,
shows the lowest DMR while UF, by discriminating against transactions, shows the highest. The
VDU curve is in between the UF and TF curves as it attempts to balance the priorities of updates
and transactions. It is noteworthy that the VDU curve is closer to the TF curve than the UF
curve, indicating that VDU adapts well to the changing processing needs of the environment. Note
that the DMR curves are semantically identical to traditional MR curves and exhibit the same S-
shape. Figure 3C plots the TCMR curves, i.e., it shows the miss ratios due to temporal consistency
violations. A remarkable feature of this figure is the bell-shaped nature of these curves, which is
related to the level of resource contention in the system. At low transaction arrival rates, resource
contention is relatively less, allowing a large number of transactions to access data items, leading to
the increasing trend of the TCMR curves. Note that at very low arrival rates, especially for UF and
TF, TCMR dominates DMR. As arrival rates get higher and higher, resource contention increases,
which means transactions increasingly spend more time waiting at resource queues, and less time
accessing and processing data. Thus, TCMR decreases, while DMR increases. This is manifested
by the dominance of DMR over TCMR at higher arrival rates. Regarding the TCMR curves, as
expected, TF exhibits worst behavior by virtue of its discriminating against updates, as a result
of which it is able to install fewer updates than the other two algorithms, leading to difficulty in
satisfying temporal consistency. Also, UF exhibits the best overall behavior for exactly the opposite
reasons. The VDU curve is in the middle. One interesting fact to note is that at very low arrival
rates (< 10 transactions/sec) VDU has lower TCMR than UF. This may seem counterintuitive at
first glance — how can UF, which is predisposed towards favoring updates, do worse than VDU,
which attempts to balance updates and transactions? The answer to this apparent anomaly lies in
the notion of fairness discussed in section 4.1. Recall, that the update installation process in VDU
is fair as the updates are queued in order of age of target data item. The update installation policy
in UF, on the other hand is FIFO and thus not fair. At very low arrival rates, when contention in
the system is quite low, VDU and UF perform more or less similarly with respect to the fraction
of total updates installed (this was measured by our experiments but not reported in this paper for
the sake of brevity). However, VDU, by virtue of its inherently fair installation policy, is better
able to satisfy temporal consistency. At higher arrival rates however, UF is able to install a larger
fraction of arriving updates than VDU and this counterbalances the effect of increased fairness.
Finally we are in a position to explain the (suspicious !!) trough in the OMR curves of figure 3A.
Clearly, OMR = DMR + TCMR. The trough represents the point where TCMR just starts to
fall off steeply but DMR has not established its dominance yet. Soon afterwards, however, DMR
increases rapidly, causing OMR to rise again.

Another noteworthy point emerges from figure 3A with respect to the relative positioning of
the UF and TF curves. It seems counterintuitive at first glance that UF and TF should have such
similar performances at high loads (the curves are very close together), while following drastically
different philosophies. More specifically, one would expect UF to perform much worse than TF
with regard to OMR — one would almost expect UF to exhibit overall miss ratios at or around
1.0. The reader, however, is reminded that we are dealing with the UPUM case, where there is
only one update process, i.e., a single update is active at any given time. Thus, when the update

23



process goes to disk, the transaction processes are free to access the CPU. This explains why the
UF process can process transactions even while giving the update process high priority. In the
highly resource constrained MTUM case, discussed later in section 7.2.1, UF shows, as expected,
OMRs of 1.0, as each update is regarded as a different process.

Having explored the real-time response of our system (i.e., miss ratios), we next turn our
attention to how well our algorithms maintain state recency. This is measured through the FSR
statistic, which measures what fraction of the reads inside the system accessed stale values. This
metric is plotted at various system loads in figure 3D. The UF curve for FSR remains fairly constant,
as would be expected by UF’s policy of awarding higher priority to updates. The flatness of the
curve indicates that UF is successful at retaining a moderate level of recency at all system loads.
However, even at low transaction loads, FSR is not zero because of the unfairness of the FIFO
queueing policy of updates. While UF would clearly install a large fraction of updates (i.e., missing
very few), due to the unpredictability of update arrival patterns, it so happens that it may ignore
some small set of data items for extended periods of time. This leads to the fairly high FSR
even at low arrival rates. VDU, on the other hand, fueled by its fair update installation policy,
has zero FSR at very low arrival rates and does substantially better than the other two at low
transaction loads. However, its performance degrades at higher loads and stabilizes around loads of
30 transactions/sec. However, even at highly loaded conditions, it exhibits the lowest FSR values.

So far we were considering cases where stale reads were undesirable, but were not considered
fatal. Now we turn our attention to a scenario where recency violations are not permissible, i.e.,
stale reads result in transaction aborts. Such requirements are typical of environments that require
a high degree of precision, e.g., military command and control scenarios, where reading of stale data
may result in missiles missing targets. To analyze this scenario, we are interested in seeing how
many transactions make it without reading any stale values. This is expressed through the metric
SSV, which is plotted in figure 3E. This figure is a strong testimonial to VDU’s effectiveness. While
UF and TF can hardly complete any transactions without stale reads, VDU completes a majority
of transactions without stale reads at low loads and while its performance degrades at high loads,
it still remains much superior to the performance of the other two. Basically, the reason for VDU’s
good performance is the combination of efficiency and fairness in update installation and judicious
priority assignment in time cognizant scheduling.

7.1.2 Reduced Resource Contention

So far we were dealing with a uniprocessor system, where both updates and transactions were
competing for very restricted resources. Now we explore the effect of reducing resource contention
by setting NumCPU to 2 and NumDisk to 4. We plot the same metrics as before in figure 4.
The trends of these curves are basically the same as those in the previous section. Two items
of importance emerge: (a) Because of decreased resource contention, overall system performance
improves across the board in the multiprocessor case; and (b) Most importantly, the performance of
VDU improves more than the other two, indicating VDU is able to take advantage of the increased
resources better than UF and TF. The second point is particularly manifest in figure 4E, where
UF and TF show significantly worse performance than VDU compared to the uniprocessor case.
In fact at low arrival rates, VDU is able to complete almost all transactions without stale reads.
We take this to be an indication of the degree of fairness we are able to maintain in our update
installation.
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Figure 4: Experiments under UPUM, reduced resource contention

7.2 MTUM
Next we consider the MTUM update model.
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7.2.1 High Resource Contention

Again, as in the UPUM case, we consider a uniprocessor system with
resource contention levels. Figure 5 plots the metrics.
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Figure 5 displays certain differences between the UPUM and the MTUM cases. First
UF shows a very high OMR (1.0) consistently. This is because of the fact that now, transactions
have to compete with many updates, rather than a single update process as in UPUM. This results
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in nearly every transaction missing its deadline, leading to the inordinately high DMR and OMR.
Another noteworthy feature of these experiments is that VDU is no longer the clear cut winner in
terms of OMR. At high arrival rates, TF performs better in terms of the overall miss ratio than
VDU. The reason for high OMRs at heavy loads is the same as that for UF. Because of the large
number of update transactions, and also because individual update transactions now incur costs
that they did not in the UPUM case (context switch), lesser numbers of transactions are able to
complete. TF however, by assigning unilaterally high priorities to transactions, is immune from the
effect of many update transactions. However, TF pays for its better OMRs by having substantially
higher FSRs than VDU, as a result of discriminating against updates. Remarkably enough, while
VDU does exhibit higher miss ratios than TF at heavy system loads, it is able to maintain a very
low FSR, practically at zero. As a result, VDU outperforms TF substantially in terms of SSV.

7.2.2 Reduced Resource Contention

Results are reported in figure 6. In this case, the curves are as expected. VDU again regains its
superiority, by virtue of being able to allocate resources more easily to transactions. By the same
token the performance of UF also improves in comparison to the uniprocessor case. One remarkable
feature of the OMR curves in figure 6 is the absence of the trough that was so noticeable in OMR
curves so far. Recall that this trough was a result of the TCMR curve starting its downward trend,
while still dominating the DMR curve. In this case however, the TCMR values are much lower
compared to the other cases (e.g., the highest TCMR value is 0.58, while values over 0.8 were
observed before). As a result TCMRs never really dominate DMRs. Thus the OMR curves are
heavily influenced by the DMR curves and consequently do not display the dip.

7.3 Discussion

In this section we briefly attempt to generalize our findings:

1. VDU appears to be the best performer, chiefly because of its efficient and fair update installation
policy and judicious priority assignment mechanism. More than efficiency (which is undoubtedly
important), fairness seems to be a very important component in designing transaction processing
systems for rapidly changing environments. In fact, for systems that cannot tolerate recency viola-
tions, fairness assumes an even greater importance. This is evidenced by VDU’s clear superiority
with regard to the SSV metric by virtue of its fair update installation procedure. In systems that
can withstand some recency violations, a case may be made to award transactions higher priority
than updates at high system loads and very tight resource contention levels. This is evidenced by
TF exhibiting better OMR values than VDU in the uniprocessor MTUM case. Also, UF appears
to be the worst performer overall, leading us to believe that it is probably a valid rule of thumb to
bias the priority assignment process somewhat favorably towards transactions. This bias could take
many forms, such as having more stringent tests to prioritize updates over transactions or reacting
more strongly to violations of threshold MRs rather than threshold FSRs. We plan to study these
and other changes to VDU in an extension to this paper.

2. There does not seem to be a significant difference in overall performance with regard to modeling
updates as UPUM or MTUM. This is especially true at high system loads, where all the metrics
seem to correspond fairly well under the two process models. This is a significant observation. In
[3], the authors convincingly argue that UPUM is better. However, this does not seem to hold for
disk resident systems, where disk fetches introduce delays. At these times, the added power of con-
currency seems to negate the advantages reaped by having a single update process. Surprisingly, at
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Figure 6: Experiments under MTUM, reduced resource contention

low system loads, MTUM seems to provide better performance particularly with regard to UF and
TF. We are somewhat unwilling to axiomatize this finding, as we did not experiment how sensitive
these findings are to changes in costs, such as context switch costs. In fact we plan to study this
in an extension to this paper.

3. Finally a note on overhead. VDU'’s superiority does come at a price. There are two primary
components to this overhead: (a) the cost of queueing updates in order of age of target data item,
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and (b) adjusting feedback parameters o and 3. Component (b) is not substantial, as the ad-
justment procedure is simple (trivial arithmetical operations) and it happens every SampleBatch
commits, i.e, not very frequently. Component (a) is the major cost. It basically has two parts — a
lookup of the TS_ARRAY and a prioritized queue insertion. The lookup can be done, with appro-
priate structures, in minimal constant time, while the insertion in the prioritized update queue is an
O(log(N)) operation. This does not appear to be too prohibitive a price to pay for the performance
improvements the VDU policy provides.

8 Conclusion

In this paper we described our preliminary ideas on designing transaction processing systems for
rapidly changing systems, an emerging class of systems. these applications require the amalgamation
of temporal and real-time characteristics and consequently require transaction processing strategies
that are able to balance both these facets. In this paper we described an integrated set of strategies
to achieve the above — these consisted of an update installation as well as a scheduling policy. In
the process of describing these algorithms, it was our intent to touch upon major issues that need
to be considered. Such issues are efficiency and fairness of update installation and the need to
balance update and transaction loads.
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