

Adaptive Broadcast Protocols to

Support E�cient and Energy

Conserving Retrieval from Databases in

Mobile Computing Environments

Anindya Datta, Debra E. VanderMeer, Jeong Kim, Aslihan Celik, Vijay Kumar

May 8, 1997

TR-13

A TimeCenter Technical Report

Title Adaptive Broadcast Protocols to Support E�cient and Energy Con-

serving Retrieval from Databases in Mobile Computing Environ-

ments

Copyright c
 1997 Anindya Datta, Debra E. VanderMeer, Jeong

Kim, Aslihan Celik, Vijay Kumar. All rights reserved.

Author(s) Anindya Datta, Debra E. VanderMeer, Jeong Kim, Aslihan Celik,

Vijay Kumar

Publication History April 1997, ICDE (A short version of this paper)

A TimeCenter Technical Report

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector)

Michael H. B�ohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA

Richard T. Snodgrass (codirector)

Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia

Kwang W. Nam, Chungbuk National University, Korea

Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TimeCenter is provided \as is" and without any express or im-

plied warranties, including, without limitation, the implied warranty of merchantability and �tness

for a particular purpose.

The TimeCenter icon on the cover combines two \arrows." These \arrows" are letters in the

so-called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors

and successors, The Rune alphabet (second phase) has 16 letters. They all have angular shapes

and lack horizontal lines because the primary storage medium was wood. However, runes may also

be found on jewelry, tools, and weapons. Runes were perceived by many as having magic, hidden

powers.

The two Rune arrows in the icon denote \T" and \C," respectively.

Abstract

Mobile computing has the potential for managing information globally. Data management

issues in mobile computing have received some attention in recent times, and the design of adap-

tive broadcast protocols has been posed as an important problem. Such protocols are employed

by database servers to decide on the content of broadcasts dynamically, in response to client

mobility and demand patterns. In this paper we design such protocols and also propose e�cient

retrieval strategies that may be employed by clients to download information from broadcasts.

The goal is to design cooperative strategies between server and client to provide access to infor-

mation in such a way as to minimize energy expenditure by clients. We evaluate the performance

of our protocols analytically.

1 Introduction

One of the most important information dissemination strategies in the current fast paced corporate

and personal environments is to employ wireless networks. Furthermore, the data-hungry users

who access such networks are expected to be mobile. In fact, a widely accepted information access

model envisions millions of highly mobile users carrying small, battery powered palmtop terminals

equipped with wireless connectivity. The types of information that may potentially be accessed are

virtually boundless, e.g., �nancial, weather, tra�c, sports and airline schedules.

While the challenges of designing and implementing wireless networks are important ones for

the telecommunications research community, data management issues related to organizing and

retrieving information from wireless channels have posed challenges for the database community

as well. Recent advances in wireless technology have made data access possible for mobile users,

who are geographically dispersed. However, there are a number of hardware and software problems

which must be resolved before the capabilities of mobile computing can be fully utilized. Some

of the software problems, such as data management, transaction management, database recovery,

etc., have their origins in distributed database systems. In mobile computing, however, these

problems become more di�cult to solve, mainly because of the narrow bandwidth of the wireless

communication channels, the relatively short active life of the power supplies (battery) of mobile

units, and the changing locations of required information due to client mobility.

A widely accepted paradigm of disseminating information in a disconnected and mobile envi-

ronment, is by the use of broadcasts [19, 4, 17, 16]. In this model a \server" broadcasts information

and \clients" tune in to the broadcast to retrieve their data of interest. The widespread accep-

tance of the broadcast phenomenon is mainly due to the notion of broadcast asymmetry, where

the \downstream" (server to client) communication capacity is relatively much greater than the

\upstream" (client to server) communication capacity. The two major issues of interest in this

scenario are (a) how and what does the server broadcast, and (b) how does the client retrieve? Of

particular interest are solutions that enable clients to retrieve their data of interest e�ciently, as

well as with a minimum of energy expenditure. Of course, the two above questions is composed of

several di�erent sub-issues, as explained soon in this paper.

In this paper we deal with the problem of data retrieval by mobile units from wireless broadcasts.

The goal is to design and evaluate adaptive broadcast protocols to support e�cient information

retrieval while simultaneously attempting to minimize energy consumption by the mobile units. The

paper is organized as follows. In section 1.1, we di�erentiate the contribution of this paper from

other prior work on data retrieval in mobile contexts, followed by a brief review of existing work

1

in the mobile computing area in section 2 and a description of a mobile computing architecture

in section 3. We provide a concrete problem statement in section 4, discuss some preliminary

information in section 5 and describe our protocols in section 6. Subsequently, we analyze the

performance of our protocols in section 7 and evaluate and discuss the performance in section 8.

We conclude in section 9.

1.1 Contribution of this Paper

In recent times there has been some interesting work in investigating data issues in mobile environ-

ments (see section 2 for extended discussion). In particular, very interesting research in the area of

broadcasts in mobile environments is reported by Imilienski and Badrinath et al. in Rutgers (see

e.g., [15, 4, 10, 17, 16]) and Vaidya et al. in Texas A & M (see e.g., [19, 20]). Most of this work is

concerned with access methods, i.e., how to organize the broadcast data. In particular Imilienski,

Badrinath et al. have done extensive treatment of indexing in broadcasts, and how to organize

data and index in broadcasts. Vaidya et al. report nice results on broadcast scheduling, i.e., when

to broadcast particular items, such that response times (termed \access times" in these papers)

are minimized. In reporting this work, researchers have suggested various methods of indexing

information, or have designed algorithms to maintain cache consistency at clients. This work pre-

supposes that the composition of the broadcast is known. In other words, given the composition of

a broadcast, there has been lot of nice work in organizing data and index on air, as well as schedul-

ing broadcasts. Our concern is di�erent. In [15], while discussing relevant future work, the authors

mention that the most likely mode of retrieval in mobile environments is going to be mixed, i.e., the

most frequently accessed items are broadcast and other items are provided on demand. To support

such a mixed technique, the authors remark, adaptive broadcast protocols need to be designed. Such

protocols will dynamically alter the broadcast content depending upon client demand patterns. In

this paper we propose and analytically evaluate the performance of two such protocols. To the best

of our knowledge, there does not exist, in the published literature, other examinations of the same

topic.

Aside from the dynamic determination of broadcast content, which is concerned with the server

side, this paper also delves deeply into the client side of things. Speci�cally, we address the problem

of e�cient and power conservent retrieval by clients. To this end, this paper proposes a number

of retrieval protocols that a client might use to download data from broadcasts. Thus, this paper

o�ers an integrated treatment of broadcast content determination and retrieval. This is achieved

by designing cooperative protocols between the server and client sides. This is also a novel aspect

of this work. We would like to note however, that we draw heavily upon existing work. Actually,

this work, together with work cited above, forms a comprehensive theory of organizing, managing

and retrieving from broadcasts in a wireless, mobile environment.

2 Related Work

The primary reference area of this paper is data management in wireless networks in general and in

mobile computing in particular. There exists much work in the area of mobile computing, particu-

larly from a telecommunications perspective. This work is somewhat orthogonal for our purposes.

Therefore, rather than cite these papers, we prefer to refer the reader to the following excellent

web site: http://maui.ee.tu-berlin.de/bibl/. This site, at last count, contained over 200 papers on

2

mobile networking and is an excellent source of background material. Our primary interest how-

ever, is the area of data management in the context of mobile computing. This area has received

considerable research attention in the recent past. Nice discussions of several data management

issues in mobile computing scenarios may be found in [2, 7, 11, 8]. While the aforementioned papers

are somewhat high level, there are also papers that deal in detail with speci�c issues.

Architecture of database systems in mobile environments receives detailed treatment in [18, 1].

In [18], the authors propose a dynamic programming strategy to optimize the mapping of a database

hierarchy to the network con�guration. In [1], a complete architecture for wireless communication

is proposed, which includes a hierarchical database structure to implement the HLR/VLR users

location scheme.

Location Management is yet another important topic in this area, which is primarily concerned

with designing strategies to keep track of mobile users. In [12] a number of search strategies are

proposed to locate users. Another nice paper in location management is [5], which proposes a

framework for modeling and evaluating the performance of location management schemes for a

Personal Communication Services (PCS) network. In [14], user pro�le replication is proposed as

a mechanism for rapid location lookup. A recent paper [13] considers the \span of access" under

changing location conditions and o�ers a summary of research in this area.

Data Replication is considered in [3], which studies cache consistency for replicated data. In [21],

dynamic data replication algorithms are proposed for tree and star networks. Another interesting

paper in this area is [9] which considers the problem of data allocation in a large number of databases

accessed through a wireless network, and proposes strategies to optimize communication costs.

Finally data retrieval from broadcasts is the topic of this paper. A number of papers have

appeared on this subject, including [4, 17, 16, 15, 19, 20]. This set of papers forms the background

of our work reported in this document. The papers from Rutgers [4, 17, 16, 15] primarily deal with

data organization in a broadcast, e.g., index organization and structure and cache invalidation

strategies. We, on the other hand, are concerned with how to determine optimal broadcast content

and design \good' retrieval strategies for users. Note that these two (i.e., their and our work) are

complementary. Our strategies and their strategies put together form a comprehensive broadcasting

framework. The papers by Vaidya et al. deal with, among other issues, the notion of broadcast

scheduling, i.e., when to broadcast particular items. The metric optimized is access time, i.e.,

response times. Aside from a basic di�erence in the broad objectives (we are concerned with

broadcast content determination and client retrieval strategies), another point of departure of our

work is that we are concerned not only with access time, but also with \tuning time" (the duration

of time clients actively listen). Thus, both e�ciency as well as power conservation, are of interest

to us.

3 Architecture Issues

In this section we give a brief overview of the architectural assumptions made in this paper, both

with regard to the underlying networked mobile environment as well as to the database.

3.1 Mobile Environment

We have used a general architecture of a mobile platform, which is given in Figure 1 [7]. It is a

distributed architecture where a number of computers, �xed hosts and base stations, are intercon-

3

nected through a high speed wired network. Fixed hosts are general purpose computers which are

not equipped to manage mobile units, but can be con�gured to do so. Base stations are equipped

with wireless interfaces and communicate with mobile units to support data access.

High Speed Wired NetworkFixed
Host

Fixed
Host

Fixed
Host

Fixed
Host

Fixed
Host

Fixed
Host

Base
Station

Base
Station

Base
Station

Base
Station

Mobile
Units

Wireless
Links

Wireless Radio Cell

Wireless Radio Cell

Wireless Radio Cells

Wireless LAN Cell

disconnected

crossing

Figure 1: A General Architecture of a Mobile Platform

Mobile units are battery-powered portable computers, which move around freely in a restricted

area, referred to here as a geographic mobility domain. The size restriction on a unit's mobility is

mainly due to the limited bandwidth of wireless communication channels. To manage the mobility

of units the entire geographic mobility domain is divided into smaller domains called cells. The

mobile discipline requires that the movement of mobile units be unrestricted within the geographic

mobility domain (inter-cell movement).

The mobile computing platform can be e�ectively described under the client/server paradigm.

Thus sometimes we refer to a mobile unit as a client and sometimes as a user. The base stations

are identi�ed as servers. Each cell is managed by a base station, which contains transmitters

and receivers for responding to the information processing needs of clients located in the cell. We

assume that the size of a cell is such that the average query response time is much smaller than

the time required by the client to traverse it. Therefore, it will seldom occur that a user submits a

query and exits the cell before receiving the response.

Clients and servers communicate through wireless channels. The communication link between a

client and a server may be modeled as multiple data channels, or a single channel [15]. We assume

a single channel for reasons outlined in [15]. We further assume that this channel consists of both

an uplink for moving data from client to server and a downlink for moving data from server to

client.

3.2 Database Architecture and its Characteristics

Data replication and partitioning are broad areas of research themselves; they are not the concern

of this paper. Here, we have assumed full database replication. The data is characterized as rapidly

4

changing [6]; users often query servers to remain up-to-date. More speci�cally, they will often want

to track every broadcast for their data item of interest. Typical examples of this type of data are

stock, weather, and airline information. We assume the following for fully characterizing our mobile

database.

1. The database is updated asynchronously, i.e., by an independent external process, which does

not a�ect the protocols designed in this paper. Also, such updates arrive with high frequency,

signifying that the database is rapidly changing. Examples of such information are stock, weather,

etc.

2. Users are highly mobile and randomly enter and exit from cells. There is a parameter called

Residence Latency (RL) which characterizes the average duration of a user's stay in the cell. We

provide a full explanation of RL in section 5.

3. User reference behavior is localized; e.g., some stocks are more popular than others.

4. Servers are stateless, i.e., they maintain neither client arrival and departure patterns nor client-

speci�c data request information [15]. We assume a stateless server because we believe that the

cost of maintaining a stateful server in a mobile environment would be prohibitively expensive. We

want to emphasize, however, that our scheme will work with stateful servers as well.

4 Problem Statement

Wireless networks di�er from wired networks in many ways. Database users over a wired network

remain connected not only to the network, but also to a continuous power source. Thus, response

time is the key performance metric. In a wireless network, however, both the response time and

the active life of the user's power source (battery) are important. While a mobile unit is listening

or transmitting on the line, it is considered to be in active mode. Assuming a power source of 10

AA batteries and a laptop equipped with CD-ROM and display, estimated battery life in active

mode is approximately 2.7 hours [15].

In order to conserve energy and extend battery life, a clients slips into doze (stand by) mode,

in which she is not actively listening on the channel. Clients expend signi�cantly less energy in

doze mode than in active mode. Therefore, one of the major goals of our scheme is to minimize

the amount of time a client must spend in active mode to retrieve the data items she requests.

The problem addressed in this paper may be captured by the following question: given that

users are highly mobile in their mobility domain, what are good strategies that the server can use to

decide on what to broadcast? The assumption is that such strategies need to adapt to user demand

patterns in the highly mobile environment. We are also interested in the question of retrieval

strategies: given that good broadcast strategies are found, what are good retrieval algorithms by

which users can retrieve/download data from broadcast, with a minimum of energy expenditure?

The basic idea, inspired by suggestions in [15], is one of \mixed broadcasting", i.e., automatic, as

well as on-demand broadcasting.

We follow a similar approach to that presented in [15] for characterizing the performance of our

algorithms. We de�ne the following terms:

Access Time (AT): Access time refers to the time elapsed between query submission and receipt

of the response.

Tuning Time (TT): Tuning time is the duration of time that the client spends actively listening

5

on the channel.

The meaning of these terms is illustrated in �gure 2. Consider a client who submits a request at

time T0 and receives the response at time T7.

T
0

T
1

T
2

T
3

T
4
T
5

T
6

T
7

Time
Access Time

Tuning Time

Figure 2: Access and Tuning Times

In this scenario, if the client listens continuously from the time a query is submitted until the

response is received, then AT = TT = (T7 � T0). On the other hand, if the client slips into doze

mode intermittently, then TT is noticeably less than AT, signi�cantly reducing battery usage. In

this case AT = (T7 � T0), and TT = (T7 � T6) + (T5 � T4) + (T3 � T2) + (T1 � T0). This results in

energy conservation, as the client is in active mode for only short periods of time. The question, of

course, is how to determine the smallest possible tuning intervals. An ideal approach appears to be

providing the client with precise knowledge of when her requested information will be broadcast.

Our aim is to �nd optimal points in the two dimensional space of AT and TT. This becomes

di�cult because there appears to be a trade-o� between AT and TT; attempts to reduce one tend

to increase the other. For example, access time is directly related to the size of the broadcast, i.e.,

AT is smaller for a smaller broadcast size. On the other hand, providing information for selective

auto-tuning, i.e., informing the user precisely where its required data is located in the broadcast,

reduces tuning time. However, inclusion of such tuning information would increase the overall size

of the broadcast by including overhead, which in turn could increase AT. Conversely, eliminating

this overhead will reduce AT at the expense of an increased TT, because the user will not know

precisely when to tune in.

5 Preliminaries

Before delving into details of our proposed strategies, we �rst describe certain notions that we will

use in developing those strategies.

Broadcast Set and Content: Broadcast set refers to the set of data items included in a broadcast.

Broadcast content refers to the composition of a broadcast, i.e., the data tuples along with access and

overhead information included in a broadcast. Note that while the broadcast set of two successive

broadcasts may be identical, the content may change due to changes in the actual data values that

may have occurred in the meantime. For example, while IBM stock prices at various markets may

be broadcast repeatedly, the actual data tuples corresponding to the IBM prices may change. A

major goal of this paper is the devise strategies to determine what the broadcast set should be,

given the high degree of mobility as well as particular demand patterns of clients. In particular the

server must make two decisions: (a) identify items to include in broadcast, and (b) determine the

temporal duration that a particular data item needs to be broadcast, once it is included.

Broadcast Periodicity: The periodicity of broadcast is important as it a�ects both the access

6

and tuning times. We consider both periodic and aperiodic broadcasts in our strategies.

Data Organization: Data organization refers to how the broadcast content is organized, e.g.,

how data and indices are interleaved. In [15], data organization has been addressed very nicely and

is not a research issue in our work. We make use of the results presented in [15]. In particular, for

our strategies, we assume a (1,m) indexing strategy as presented in [15]. This strategy posits that

a complete index for the broadcast is repeated every (1
m
)th of the broadcast. In other words, the

entire index occurs m times during a broadcast, where m is a parameter.

Residence Latency (RL) and Estimated Departure Time (EDT):When the server decides

to include an item in its broadcast, it also needs to decide the length of time this item will remain

in its broadcast set. In order to identify the residency duration of a data item in a broadcast, we

propose to associate a Residence Latency (RL) value with each cell. RL identi�es the duration

an item would remain in a broadcast for that cell. The RL value for a speci�c cell is the average

length of time a mobile user resides there. RL for a cell could be computed a priori based on

the advance knowledge of user movement patterns and cell geography. We believe this is feasible

based on information currently available. A data item's Expected Departure Time (EDT) from a

broadcast is computed by adding the item's entry time into the broadcast and the cell's RL.

Popularity Factor: The popularity factor of item X at time T , denoted by PFTX , identi�es the

number of clients in the cell at time T who are interested in X. Henceforth we shall drop the use

of the time superscript in the PF expression without any loss of generality. The PF of item X is

maintained in the system as follows. When a client requests X, PFX is increased by 1. However,

every time PFX is incremented, the system records the corresponding time. Let the timestamp of

the ith increment to PFX be denoted by T i
X . Then, a corresponding decrement of 1 is performed on

the value of PFX at time (T i
X + RL). This re
ects the (anticipated) departure of the client whose

request caused the ith increment.

Dynamism of the Underlying Database: It has been widely suggested (e.g., see [15]) that

certain information that people are likely to access in a mobile fashion would be dynamic, e.g.,

stock information, weather and tra�c. This rapidly changing nature makes these databases more

di�cult to manage. In this paper we are interested in these types of systems.

The rapidly changing nature of the database has some e�ects on the broadcasting strategy. In

particular, in this scenario, there is a reasonable likelihood that the database state will change

from one broadcast to another. Such changes often occur in bursts, e.g., a large fraction of stock

trades occur in the last hour of trading. At these times, clients are particularly interested in

retrieving current values for their data items of interest. Moreover, at these times, clients would

often download data items from every broadcast to keep themselves apprised of the rapidly changing

current state. It is easily seen that this can be quite expensive, as the client needs to tune into every

broadcast. We are particularly interested in minimizing a client's cost (i.e., energy expenditure)

in such scenarios. Our basic strategy may be explained through the following example. Assume

that a client is interested in a particular data item , corresponding to which, there exist B buckets

in a broadcast. Assume further that the client would like to download the same information in

the following broadcast. Now, if only Bdirty buckets have changed, where Bdirty < B, it is then

advantageous for the client to simply download the dirty (i.e., modi�ed since the previous broadcast)

buckets from the subsequent broadcast, rather than the full set of B buckets. One can easily see

that such savings quickly accumulate over a few successive broadcasts. In order to execute this

7

strategy, we shall maintain certain special metadata in buckets which will allow clients to selectively

tune in to dirty buckets. That, and our entire broadcast structure, is explained below.

5.1 Broadcast Structure

Broadcast structure refers to the speci�c broadcast organization that we assume in developing our

strategies. It is important to understand this structure in order to properly appreciate our protocols.

As mentioned before, we assume a (1,m) indexing strategy outlined in [15]. In this scheme, index

information is provided at regular intervals in the broadcast. More speci�cally, a complete index is

inserted m times in a broadcast at regular intervals.

Figure 3 illustrates our broadcast structure. A broadcast is a sequence of data blocks (containing

data) and index segments (containing access information) as shown in �gure 3A. Using the (1,m)

data organization methodology, an index segment appears every (1
m
)th of the broadcast, i.e., there

are m index segments. Clearly, each of the m data blocks is also of equal size. Each data block is

composed of one or more data clusters as shown in �gure 3B, where each data cluster consists of a

collection of tuples of a single data item of interest. For example, assume the broadcast consists of

stock information, and each tuple is a triple <stock id, price, market>. In such a scenario, the data

items of interest would be represented by stock ids. Consider a particular stock id, e.g., IBM. All

IBM records would comprise a data cluster. A data cluster may span more than one data block.

Data clusters are composed of data buckets (�gure 3C) which contain data records as well as

some tuning information (denoted by the 4-tuple < X;Y;Z;EB > in the �gure) explained below.

We assume that each client has her own item of interest (e.g., clients are not interested in all

stocks, but instead in speci�c ones). For the purposes of this study, we assume a client has a single

data item of interest. As explained above, all records pertaining to this item appear in a speci�c

data cluster which we refer to as the client's Data Cluster of Interest (DCI). Within the broadcast,

the data clusters are organized in order of decreasing popularity based on PF, such that the most

popular item will be broadcast �rst, and the least popular item will be broadcast last. This helps

to reduce the access times for popular items.

An index segment is a series of buckets containing index tuples and some other special tun-

ing information. We �rst describe the index tuples. Each index tuple consists of a 4-tuple,

< K;B;C;EC >, that not only informs the client precisely where the DCI appears in the broad-

cast, but also provides information about updates to the cluster since the previous broadcast. The

structure of the index segment is shown in �gure 3D. K, B, C and EC are de�ned below.

K: the cluster's key value (e.g., for an IBM cluster, the key value is IBM).

B: the id of the �rst bucket of the data cluster.

C: the o�set from B to the �rst dirty bucket (bucket where changes have occurred since the last

broadcast) of the data cluster. If all buckets in the data cluster are clean, C takes a default value

of -1.

EC : the EDT of the cluster key, i.e., when the cluster is scheduled to be dropped from the broad-

cast.

The dirty/clean information (i.e., B and C) are included to handle the rapidly changing data sce-

nario explained earlier in this section. We assume a B-tree structure for the index. Thus, clients

must begin reading the index at the root in order to �nd the pointers to their DCIs.

As mentioned above and shown in �gures 3C and D, all buckets, whether index or data, have a

special tuple displayed as a 4-tuple < X;Y;Z;EB >. This information is provided to orient clients

8

X
,Y

,Z
,E

B

X
,Y

,Z
,E

B

X
,Y

,Z
,E

B

 Index
Segment

 Index
Segment

 Index
Segment

 Data
 Block

 Data
 Block

 Data
 Block

 Data
Cluster

 Data
Cluster

 Data
Cluster

 Data
Cluster

 Data
Bucket

 Data
Bucket

 Data
Bucket

 Data
Bucket

. . .

. . .

.

Index
Bucket

Index
Bucket

Index
Bucket

 Overview of Broadcast Structure
Sequence of Index Segments and Data Blocks
 [A]

 Data Block
Sequence of Data Clusters
 [B]

 Data Cluster
Sequence of Buckets Containing Data
 Tuples with the Same Key Value
 [C]

 Index Segment
Sequence of Buckets Containing Index Data
 [D]

X
,Y

,Z
,E

B

X
,Y

,Z
,E

B

X
,Y

,Z
,E

B

X
,Y

,Z
,E

B

K
 B

 C
 E

1
1

1
C

1 2
K

 B
 C

 E
C

2
2

2 i
K

 B
 C

 E
C

i
i

i j
K

 B
 C

 E
C

j
j

j

Figure 3: Broadcast Structure

as they initially tune in to a broadcast. The X, Y, Z and EB terms are de�ned as follows.

X: An o�set to the �rst bucket of the next nearest index segment.

Y : An o�set to the end of the broadcast, i.e., the start of the next broadcast.

Z: Shows the bucket's type (data or index) and contains tuning information for items updated

since the previous broadcast. It can hold one of four possible values:

Z = -2 indicates an index bucket.

Z = 0 indicates a data bucket, and that the bucket is clean; i.e., unmodi�ed since the previous

9

broadcast.

Z = i, where i is a positive integer, indicates a data bucket, and that the bucket is dirty; i.e.,

modi�ed since the previous broadcast. Moreover, the actual i value, i.e., the positive integer, is an

o�set to the the next dirty bucket in the same data cluster.

Z = -1 indicates a data bucket, and that it is the last dirty bucket of the data cluster.

EB : The EDT of the data item in the bucket. Obviously, the EB value of every bucket in the same

data cluster is going to be identical and equal to the EDT of the of the cluster key (e.g., in an IBM

cluster, all EB values will be equal to the EDT of the IBM data item.

While the reasons for including X, Y and EB are obvious, the utility of Z is not. The Z values

are used to facilitate e�cient retrieval in rapidly changing data scenarios explained earlier in this

section. This will be illustrated in section 6.2.

We �x the unit of retrieval as a bucket, following the lead of [15], where a bucket is de�ned as

the smallest logical unit of broadcast. All buckets (regardless of data or index) are of equal size.

This allows for a direct mapping between time and buckets. In fact, time is measured in terms of

buckets in this paper. This means that all the o�sets referred to in the preceding description are

in terms of buckets.

Finally we add a note regarding the notion of data clusters. A data cluster consists of a sequence

of buckets containing data tuples pertaining to a speci�c key, such as a speci�c stock id. Moreover,

we assume that selectivity, i.e., the number of buckets required to broadcast a speci�c data item,

is �xed. This is a reasonable assumption. Consider, for example, stock information expressed as

a 3-tuple <stock id, market, price>. Clearly for a particular key value (say IBM), the number

of tuples is equal to the number of markets (e.g., New York Stock Exchange) where the stock is

traded. This number is fairly constant, making the number of buckets for a particular cluster fairly

stable. We also assume that speci�c buckets within a cluster have identical semantic content from

one broadcast to another. For instance, the �rst bucket within the IBM cluster will always contain

the tuples related to the IBM prices in New York and Frankfurt (assuming there are 2 tuples per

bucket). Thus while the individual prices may change, the semantic content of each bucket within

a cluster is invariant.

6 Server and Client Protocols to Support Adaptive Broadcast

Content and E�cient Retrieval

This section proposes adaptive broadcast protocols which seek an optimal balance of access time

(quality of service or average query response time) and tuning time (energy consumption). We aim

to develop cooperative strategies between clients and servers for achieving such a balance.

As mentioned earlier, periodicity is an important parameter in designing broadcast strategies.

A periodic broadcast signi�es that the broadcast \size" (i.e., number of buckets) is �xed. One can

ascribe both advantages (e.g., predictability) as well as disadvantages (e.g., loss of
exibility) to

periodicity. To study such e�ects, we describe two sets of protocols below for the periodic and the

aperiodic cases. We refer to the periodic protocol as the constant broadcast size (CBS) strategy,

whereas the aperiodic broadcast protocol is termed a variable broadcast size (VBS) strategy.

Finally, note that we support a mixed mode (this term is borrowed from [15]) retrieval policy,

i.e., when a client arrives in a cell, she �rst tunes in to the broadcast to see if her DCI is already

10

there. If not, the client explicitly sends a request to the server through the uplink for that item.

Thus items may be found readily in the broadcast, or may have to be placed \on demand". This

policy has been deemed the most \general" policy in the literature.

6.1 Constant Broadcast Size Strategy

We �rst present the server protocol, i.e., the strategy used by the server in deciding upon the

broadcast content. We then present the client protocol, i.e., how the client retrieves data from the

broadcast.

6.1.1 CBS Server Protocol

In this strategy, broadcast size is limited, and the broadcast is periodic. Periodicity mandates an

equal size for every broadcast (recall that we consider both size and time in terms of buckets).

If there are too few requested items to �ll the broadcast period, the broadcast will contain dead

air. On the other hand, if there are more requested items than space in the broadcast, the server

must prioritize requested items to decide which to include in the broadcast set. We propose that

this prioritization mechanism simultaneously satisfy two properties: popularity consciousness and

avoidance of chronic starvation. Popularity consciousness means that items that are requested

more often should have a greater chance of being included in the broadcast than less popular items.

Avoidance of chronic starvation means that if a client requests a \less popular" item, he should

not be chronically starved, i.e., the item should appear in the broadcast at some point during that

client's residence in the cell. At a minimum, our protocol attempts (but does not guarantee) to

provide access to a requested data item at least once during a client's probable stay in the cell;

that is, within RL time of the request.

We propose a system of priority ranking of items based on two factors: a Popularity Factor

(PF) and an Ignore Factor (IF). PF is computed as described in section 5. We describe the purpose

and de�nition of IF below.

Ignore Factor

Consider a strategy where the inclusion priority of items is based purely on popularity, i.e., items

are included in the broadcast based on a Highest-PF-First (HPF) strategy. Under such a strategy,

assuming a large number of clients in a cell and a data set in which a small subset of items are very

popular, clients requesting less popular items may be chronically starved. That is, items with a

very low PF may be overwhelmed by the large number of requests for very popular items, and will

not be broadcast while the requesting client is still in the cell. Recall that in our operating scenario,

clients are highly mobile; thus, if a request is ignored for a long time, it is likely that the client will

leave the cell without receiving service for that item throughout its entire residence in that cell.

From a Quality Of Service standpoint, this is highly undesirable. At the very minimum, our goal is

to attempt to service a client's requests at least once during his stay in the cell where the request

was made. The purpose of Ignore Factor (IF) is to ensure that less-popular but long-neglected

items get an opportunity to be included in the broadcast.

We �rst explain the notion of IF. Assume a data item, say X, was last reported in the broadcast

ending at time T0, after which it was dropped. At this point, the Ignore Factor of X, denoted

by IFX , is de�ned to be 1, the base value for any item's Ignore Factor (the reason for choosing

11

a minimum IF of 1, and not 0, will be explained later). Further assume that the �rst request

for X after time T0 arrived at time Treq. Subsequent to this point, whenever X is not reported

in a broadcast, we say that X has been ignored. More speci�cally, the ignore factor of X at

any time Ti (assuming X has not been reported until Ti), Ti > Treq, denoted by IFTiX , is given by:

IF
Ti
X = NumBroadcast(Ti; Treq)+1, whereNumBroadcast(Ti; Treq) denotes the number of broadcasts

between Treq and Ti. Since we are considering a periodic broadcast scenario, this number is easy to

compute. In particular, assuming a broadcast period of PB , NumBroadcast(Ti; Treq) =
j
Ti�Treq

PB

k
.

In other words,

IF Ti
X =

�
Ti � Treq

PB

�
+ 1 (1)

When talking about the IF of a particular data item from hereon, we will often drop the temporal

superscript, i.e., Ti, unless the context warrants its explicit inclusion.

Note that equation 1 is only valid under the constraint (Ti � Treq) � RL. To see this, consider

a client C, who requested data item X at time Treq. Assume no other requests arrive for this data

item. Then, at any time Ti following Treq, IFX is given by equation 1 above. However, following

the de�nition of RL, client C would be expected to depart at Tdep = Treq + RL. Thus after Tdep,

there is no point in reporting X any longer, as its requester may have left. Thus, after Tdep, unless

other requests for X have arrived in the meantime, IFX should be reduced to 1 (the base value for

any item's IF is 1; this is explained below. A corollary of this is that the following inequality holds,

for any data item Xi,

1 � IFXi
�

�
RL

PB

�
+ 1

While the above discussion lays the foundation for the fundamental ideas behind the notion of

ignore factor, we still have to describe a general procedure for computing ignore factor. To this

end, let us consider a data item X, for which a stream of requests arrive. In this case, computation

of IFX assumes greater complexity than discussed before. To see this, consider the case where two

requests arrive for X, at times Treq1 and Treq2 respectively, where Treq2 > Treq1. Assume X is not

included in any broadcast until time Tdep1 = Treq1 + RL. At Tdep1, according to the discussion in

the two preceding paragraphs, IFX =
j
RL
PB

k
+1. However, as soon as the clock ticks past Tdep1, i.e.,

after Tdep1, the request that came in at Treq1 is considered void. Thus it should no longer determine

IFX . Rather, after Tdep1, IFX should be computed based on Treq2. More speci�cally, at all times

during the interval [Tdep1, Tdep2] (excluding the initial temporal instant), where Tdep2 = Treq2+RL,

IFX is given by

�
current time�Treq2

PB

�
+ 1.

From the simple two-request example above, one important fact emerges: in order to maintain

an accurate record of an item's IF, one must track every request that arrives for that item. With a

large number of items and clients, such maintenance could be prohibitively expensive. In particular,

the complexity of this process for a speci�c data item is of order O(N), where N is the number of

requests for that item. However, we have devised a mechanism by which the IFs of items can be

maintained accurately at minimal cost. In particular, as will be clear later, our strategy records IF

for a data item in constant time.

We �rst provide the intuition for this process and then describe it in detail. To see the basic

idea behind our mechanism, consider �gure 4, in which we show a timeline with particular points of

interest. The points marked with the darker lines, i.e., B1; B2; B3; B4, denote broadcast initiation

epochs, i.e., instants at which successive broadcasts start. The ith request for data item X arrives at

12

Treq1 Treq2 Treq4
T

req3 Tdep1 Tdep2B 1 B 2 B 4B3

Time

Figure 4: Computation of Ignore Factor

Treqi. In �gure 4, we show four requests. In this example, we assume RL = 2�PB . Corresponding

to the request points, the departure points are shown as Tdepi. According to the discussion above,

we need to keep track of all four requests in order to accurately compute IFX at any point. However,

note that IF values will only be used at the time the server decides on the next broadcast set, i.e.,

immediately preceding the broadcast epochs. Consider, as a speci�c example, the broadcast epoch

B4. At B4, in �gure 4, the request at Treq1 has expired. Note that the request at Treq2 has also

expired. Moreover, we can safely say that at B4, all requests that arrived prior to B2 would have

expired. In general, at all decision points where the next broadcast set has to be decided, i.e., at

successive broadcast epochs, all requests that arrived prior to the
�j

RL
PB

k�th
broadcast preceding

the next immediate broadcast are guaranteed to have expired. Thus, IFX needs to be computed

based on the �rst request that arrived after the
�j

RL
PB

k�
th broadcast preceding the next immediate

broadcast. This is the key intuition. For example, at B4, IFX needs to be computed based on Treq3.

The signi�cance of this intuition is that the system need only keep track of the �rst request after

broadcast epochs and can ignore all successive requests until the next broadcast epoch. Moreover,

only the last
j
RL
PB

k
epochs need to be considered. In other words, the system need only maintain a

list of
j
RL
PB

k
requests.

This may be achieved by maintaining an ordered list in memory. Elements in this list will

contain both the tid and timestamp of the request. The list has
j
RL
PB

k
+1 elements, with tids 1

through
j
RL
PB

k
+1, where the timestamp corresponding to the ith element yields the timestamp of

the �rst request for X after the ith previous broadcast epoch with respect to the next immediate

broadcast. The list is updated upon the arrival of the �rst request for a data item after each

broadcast epoch. Such a list can be implemented as a circular queue. Using such a structure, an

item can be accurately tracked in constant (�
j
RL
PB

k
) time.

Priority computation using IF and PF: Having explained IF we now turn our attention to

computing the inclusion priority for data items. We propose that an item's priority be computed

based on the following expression

Priority = IFN � PF (2)

where N is an adaptive scaling factor described below. Equation 2 also explains why we set the

base value of IF at 1 and not 0. It is easily seen that, at an IF of 0, the priority value (i.e., for

popular items) is reduced to 0, which guarantees the item's exclusion from the broadcast.

Equation 2 exploits the counteracting trend of IF and PF. Using the above expression, an item

which has been requested by a large number of clients will have a large PF. It is thus likely to

appear in many broadcasts, and will have a relatively low IF. On the other hand, an item with

few requests will have a low PF. Based on its low PF, it is likely to be omitted from broadcasts,

13

increasing its IF and therefore its chances of being included in a future broadcast set.

N is an adaptive exponential weighting factor based on a nearest neighbor approach. Its purpose

is to increase the likelihood that items which have been ignored for a long time will appear in the

broadcast. PF and IF di�er largely in scale; if N is relatively low, PF dominates the priority

expression (limited by the number of clients in a cell). If, however, an item has been ignored for a

long time, we would like IF to dominate. A larger N value will achieve this.

In order to precisely de�ne N, let Wij denote the number of broadcasts client i waited for item

j after requesting item j. Let Cj denote the set of clients who are waiting for j. Then, the average

wait count (AWC) for j is given by,

AWCj =
�i2CjWij

jCj j

Let the desired wait count (DWC) denote a quality of service measure de�ned for the system. DWC

denotes, on an average, the maximum number of broadcasts a client can reasonably be expected

to wait before receiving service for her desired item. When computing the priority of an item, we

compare AWC and DWC. If AWC > DWC, N is incremented by unity. If AWC = DWC, N

remains unchanged. If AWC < DWC, N is decremented by unity. N is initialized to a base value

for 1 for all data items.

Having explained the underlying concepts, we are now prepared to describe the server protocol

for constructing a broadcast. Prior to a broadcast epoch (the time at which a new broadcast is

scheduled to begin), i.e., in its broadcast preparation stage, the server prioritizes all items which

have been requested, i.e., items with a PF > 0, and sorts the items in order of descending priority.

It then adds items to the broadcast set until the broadcast is full. For all requested but excluded

items, IF is adjusted.

6.1.2 CBS Client Protocols

We now describe client protocols designed to smartly retrieve data from the broadcast in cooperation

with the server protocol de�ned above. When a client senses the need for a particular data item,

he begins the retrieval process by tuning in to the broadcast at an arbitrary time and reading a

bucket. We remind the reader that the data cluster in the broadcast that holds the item of a client's

interest is referred to as the Data Cluster of Interest (DCI).

The random initial probe in a continuous
ow of broadcasts creates a large number of tuning

possibilities. We identify seven mutually exclusive initial tuning possibilities. Note that because we

assume a B-tree index structure, the client must start reading from the top of the index segment

(i.e., the root). If she does not �nd a pointer to her DCI (i.e., DCI is not in the current broadcast

set), then she requests the item and tunes to the initial index of every succeeding broadcast until

either the DCI is found in broadcast, or the client departs from the cell. We discuss the cases below.

We assume, for simplicity, that any probe into a broadcast always puts the client at the top of a

bucket, i.e., we ignore the fact that the client may tune in at any point in a bucket. The error

introduced by this, as easily seen, is very small (0:5 bucket on average).

Case 1: Client initially tunes in to an index bucket, DCI exists in current broadcast,

and the client has tuned in before DCI in the broadcast

In this case the client tunes in to an index segment. If he has missed the root, he must tune out

until the top of the next nearest index segment. This is e�ciently achieved by noting the X value

14

(described in section 3) from the 3-tuple of tuning information provided with every bucket. Upon

reading the index, the client �nds that his DCI has not yet been broadcast, and tunes out until

the beginning of his data cluster of interest. At the beginning of his DCI, he tunes back in and

downloads it. Thus the retrieval protocol in this case is given in Protocol 1.

Protocol 1 CASE 1

access top of next nearest index segment

read index;

wait until beginning of DCI;

download DCI;

Case 2: Client initially tunes in to an index bucket, DCI exists in current broadcast,

and the client has tuned in after DCI in the broadcast

As in the previous case, the client tunes in to the top of the next nearest index segment, and

becomes aware that her DCI has already passed by comparing the current bucket id with the B

value (explained in section 3) in the index tuple corresponding to her data item of interest. She

also reads the E value in that index tuple to determine if her DCI is scheduled for removal from the

broadcast set following the current broadcast. This is easily achieved by comparing the EDT (i.e.,

the E value) of the data item with the start time of the next broadcast, which is easily derivable

from the Y value of any tuning tuple. If her DCI will appear in the next broadcast, she tunes out

until the top of the next broadcast, reads index information and downloads her DCI as outlined in

the previous case. If her DCI is scheduled to be dropped, she submits a request for it, and keeps

tuning in to the top of every subsequent broadcast until a pointer to it appears in the index, or she

leaves the cell. The pseudocode for Case 2, combined with that of Case 3, is shown below.

Case 3: Client initially tunes in to an index bucket, DCI does not exist in current

broadcast This case is very similar to the second subcase in case 2. After becoming aware of

the non-existence of his DCI in current broadcast, by appropriate access into an index segment,

the client submits a request for the data item, and keeps tuning in to the top of every subsequent

broadcast until his DCI appears, or he leaves the cell. The protocol is as given in Protocol 2.

Protocol 2 CASE 2 & 3

access top of an index segment;

read index;

if DCI missed or excluded from current broadcast then

wait until beginning of next broadcast;

if DCI not in index then

submit request for DCI;

while DCI not in index

wait until beginning of next broadcast;

read index;

wait until beginning of DCI;

download DCI;

Case 4: Client initially tunes in to a data bucket, DCI exists in current broadcast, and

15

the client has tuned in before DCI in the broadcast

The procedure is exactly the same as in case 1.

Case 5: Client initially tunes in to a data bucket, DCI exists in current broadcast, and

the client has tuned in after DCI in the broadcast

Same as case 2.

Case 6: Client initially tunes in to a data bucket, DCI does not exist in current

broadcast

Same as case 3.

Case 7: Client tunes in to a data bucket in the middle of the DCI in the current

broadcast

This is the most complex of all cases, and also the most important, as the same protocol would be

used by clients who are interested in downloading their DCIs continually from successive broadcasts.

In this case the client tunes in and becomes aware that her DCI is currently being broadcast. She

immediately begins to download the data. Since she missed a portion of her data cluster of interest

in the current broadcast, the remainder must be obtained from the next broadcast. At the end of

the data cluster, having already determined whether her DCI is scheduled to be dropped from the

next broadcast (through methods outlined earlier), she tunes out and waits for the beginning of

the next broadcast. If her DCI is going to be dropped, she sends a request on the uplink and keeps

tuning in to successive broadcasts until her DCI is found in the index. The more interesting case

occurs when she determines that her DCI is not going to be dropped, i.e., it is going to appear in the

next broadcast. In this case, as discussed in the \rapidly changing" data description in section 5,

she would like to download not only the portion of her DCI missed in the previous broadcast,

but also the buckets that have been modi�ed between the broadcast epochs. This is achieved as

follows: The client downloads the portion of data missed in the earlier broadcast until the point

at which she began downloading data in the previous broadcast. She then selectively tunes in and

out to retrieve any updates (following the linked list of dirty buckets) to the data downloaded in

the previous broadcast until the last dirty bucket in her data cluster of interest. Protocol 3 and

Procedure 1 provide details regarding how the selective tuning is achieved.

6.2 Variable Broadcast Size Strategy

Having discussed a periodic broadcasting strategy, we now turn our attention to an aperiodic

broadcasting scenario. We call this strategy the variable broadcast size (VBS) strategy, for obvious

reasons. Note that while the broadcast size varies across broadcasts, at the start of each individual

broadcast the size is known; therefore, the start of the subsequent broadcast is known as well.

However, the server has no knowledge beyond that, as it does not know what requests may arrive

during the current broadcast.

6.2.1 VBS Server Protocol

The server protocol for VBS is much simpler than that for the constant size strategy. All requested

items are included, i.e., all items with a PF greater than 0 are added to the broadcast set. The

broadcast length changes as items are added and deleted. Items remain in the broadcast for RL

units of time from their latest request, and are subsequently dropped from the broadcast set.

16

Protocol 3 CASE 7

access middle of DCI;

download remaining buckets of DCI;

wait until beginning of next broadcast;

read index;

if DCI in index;

wait until beginning of DCI;

execute procedure DYNAMIC READ;

else

submit request for DCI;

while DCI not in index

wait until beginning of next broadcast;

read index;

wait until beginning of DCI;

download DCI;

Procedure 1 DYNAMIC READ

if DCI index.C > 0 then index tuple C value of the DCI*/

next dirty current bucket.id + DCI index.C; /* find 1st dirty bucket in cluster */

else

next dirty �1;

while not at point in DCI where began reading in previous broadcast

download bucket;

if current bucket.Z = �1 then entire data cluster is clean*/

next dirty �1;

else

if current bucket.Z > 0 then

next dirty (next dirty + current bucket.Z);

advance to next bucket;

if next dirty = �1 then /*the rest of DCI is clean*/

exit;

wait until next dirty;

while (true) /*read all remaining dirty buckets in DCI*/

if current bucket.Z = �1 then

fdownload bucket;

exit;g

else

next dirty (next dirty + current bucket.Z)

download bucket;

wait until next dirty;

Within the broadcast, items (i.e., DCIs) are ordered based on descending popularity. Since no item

is ignored, there is no notion of ignore factor in VBS.

17

6.2.2 VBS Client Protocols

The client protocols in this strategy are similar to those of the CBS strategy. The main di�erence

between these strategies is in the client's response to �nding that his DCI is not in the broadcast.

Here, if his DCI is not in the broadcast, or if he has missed his DCI and the item will be dropped

when the next broadcast is composed, the client requests the item and exits from the protocol.

Since his DCI is guaranteed to be in the succeeding broadcast, he begins the retrieval process at

the beginning of the next broadcast and �nds his DCI in that broadcast.

7 An Approximate Analysis for the Constant and Variable Broad-

cast Size strategies

In this section, we are primarily interested in obtaining expressions for the expected access time

(AT) and tuning time (TT) for both the constant broadcast size (CBS) and the variable broadcast

size (VBS) strategies.

Both strategies, as the reader may recall from section 6, are presented as a set of mutually

exclusive tuning scenarios. For each scenario, we compute AT and TT. We also compute the

probability of encountering each case. Then, using elementary probability theory, expected access

time (E[AT]) and expected tuning time (E[TT]) may be stated as:

E[TT] =
X
8i

PfScenario igTTi; E[AT] =
X
8i

PfScenario igATi (3)

In order to achieve analytical tractability, we make several assumptions in performing our analysis.

Thus our results are approximate. Our assumptions are as follows: (a) clients read from the

broadcast in units of buckets; (b) clients always tune in to the start (i.e. the top) of a bucket; (c)

if the client tunes in to the middle of an index; segment, it has missed the root of the B-tree, and

must wait for the beginning of the next nearest index segment; (d) a cell contains N clients, and

each client can request at most one DCI during a single broadcast period; and (e) there are two

classes of data items. A hot item has a higher probability of being requested by the clients than a

cold item. h percent of DCIs are hot and 1� h percent are cold items.

In addition, certain special assumptions are made for the CBS and VBS strategies. These

assumptions are stated preceding each respective analysis section. The next two subsections list

our results. Table 1 lists the notations used in our analysis.

Our analysis is probabilistic, i.e., we compute the probabilities of certain events. The events

are summarized in Table 2.

7.1 Derivation of Event Probabilities

We start out by deriving probabilities for events that we consider in our analysis, outlined above

in Table 2. Note that all of the aforementioned events are valid for both CBS as well as VBS

strategies.

18

Notation Meaning

d size of data to broadcast (in items)

S selectivity of a data item (in buckets)

n capacity of a bucket (tuples per bucket)

m number of index segments or data blocks per broadcast

B size of data block (buckets per block) = d
nm

I size of index segment (in buckets) = 2d
Sn

TB size of the broadcast in CBS = m(I +B)

b number of DCI = d
Sn

CCBS capacity of broadcast in CBS (in DCI)

l size of an index segment (in buckets) = logn+1 I ,

L1 expected distance to DCI from the end of index segment (buckets)

L2 expected distance to next broadcast from end of index segment (buckets)

ph probability that a client requests a hot item

pc probability that a client requests a cold item

ph;in probability that a hot item is in broadcast

pc;in probability that a cold item is in broadcast

Pin probability that an item is in broadcast

h fraction of hot items in the d

c fraction of cold items in the d

p0 probability that a client does not request any DCI

k total number of DCIs in the database

Table 1: Notations used in the Analysis

Event Meaning

M DCI is missed completely

�M DCI is downloaded completely (i.e., not missed at all)

PM DCI is missed partially

Di DCI is in the ith data block

TIi tune in to ith index segment �rst

TD tune in to a data block �rst

TI tune in to an index segment �rst

PH client requests a hot item

PC client requests a cold item

Table 2: Probabilistic Events

Derivation of Pf �M;TIg Given that a client tunes in to an index segment, the probability that

the client does not miss DCI at all is denoted by Pf �M j TIg.

Pf �M j TIg =
Pm

i=1 PfTIi \ fDi+1 [Di+2 � � � [Dmgg

=
Pm�1

i=1 PfTIigPfDi+1 [Di+2 � � � [Dmg

=
Pm�1

i=1
1
m

m�i
m

= m�1
2m

(4)

The probability that the client tunes in to an index segment is denoted by PfTIg (the ratio of the

total size of index segments over the total broadcast size). That is,

PfTIg = mI
m(I+B)

= I
I+B

=
2Data
Sn

2Data
Sn

+Data
nm

= 2m
2m+S

(5)

19

Pf �M;TIg = Pf �M j TIgPfTIg =
m� 1

2m+ S
(6)

Derivation of Pf �M;TDg

Pf �M j TDg = 1� PfM j TDg � PfPM j TDg

= 1�
m� 1

2m
�
B � S

mB
�

S

mB

=
m� 1

2m

Pf �M;TDg = Pf �M j TDgPfTDg=
m� 1

2m

S

2m+ S
(7)

Derivation of PfM;TIg

PfM j TIg = 1� Pf �M j TIg = 1�
m� 1

2m
=
m+ 1

2m

PfM;TIg = PfM j TIgPfTIg=
m+ 1

2m

2m

2m+ S
(8)

Derivation of PfM;TDg Given that a client tunes in to a data block, the probability that the
client misses the DCI completely is denoted by PfM j TDg. As in equation (4),

PfM j TDg =

mX
i=1

PfM j TD;DigPfDi j TDg

PfM j TD;Dig = PfM j j > i; TD;DigPfj > i j TD;Dig+

PfM j j = i; TD;DigPfj = i j TD;Dig+

PfM j j < i; TD;DigPfj < i j TD;Dig

where j is the index of the data block to which a client tunes in. Thus,

Pfj > i j TD;Dig =
m� 1

2m

Pfj = i j TD;Dig =
1

m

Pfj < i j TD;Dig =
m� 1

2m

De�nitely,

PfM j j > i; TD;Dig = 1

PfM j j = i; TD;Dig =
B � S

B

PfPM j j = i; TD;Dig =
S

B

20

PfM j TD;Dig =
m� 1

2m
+
B � S

B

1

m

PfM j TDg =

mX
i=1

PfM j TD;DigPfDig

=

mX
i=1

(
m� 1

2m
+
B � S

B

1

m
)
1

m

=
m� 1

2m
+
B � S

mB

PfM;TDg = PfM j TDgPfTDg=
mB + B � 2S

2mB

S

2m+ S
(9)

Derivation of PfPM;TDg

PfPM j TD;Dig = PfPM j j = i; TD;DigPfj = i j TD;Dig

= S
B

1
m
= S

mB

where j is the index of the data block to which a client tunes in.

PfPM j TDg =

mX
i=1

S

mB

1

m
=

S

mB

PfPM;TDg = PfPM j TDgPfTDg =
S

mB

S

2m+ S
(10)

Table 3 summarizes the probabilities derived above. Note that in the subsequent proofs, we shall

repeatedly use the probabilities from table 3.

Events Probabilities

Pf �M;TIg m�1
2m+S

Pf �M;TDg m�1
2m

S
2m+S

PfM;TIg m+1
2m+S

PfM;TDg (m�1
2m

+ B�S
mB

) S
2m+S

PfPMg S
mB

S
2m+S

Table 3: Probabilities of Events

7.2 Analysis of Constant Broadcast Size Strategy

We �rst present the results of our analysis of the CBS strategy. For each Scenario i, we present the

probability of encountering it (PfScenario ig) and expressions for Tuning Time and Access Time

for that scenario, i.e., TTi and ATi. Our results are presented as a series of lemmas.

21

While there are seven cases presented in section 6, there exists a substantial amount of com-

monality between the cases and they may be aggregated. In the ensuing analysis, we have treated

the seven cases through six scenarios, termed Scenario 1, Scenario 2, : : :, Scenario 6 respectively.

Each of these scenarios map to particular cases described in section 6. Speci�cally, Scenario 1

(presented in Lemma 3) map to Cases 1 and 4. Scenario 2 (presented in Lemma 4) and Scenario 3

(presented in Lemma 5) map to Cases 2 and 5 respectively, while Scenario 4 (presented in Lemma

6) and Scenario 5 (presented in Lemma 7) map to subcases of Case 7. Scenario 6 (presented in

Lemma 8) maps to Cases 3 and 6.

We make two special assumptions in our analysis of the CBS strategy. (a) We assume that

items are priority ranked based purely on popularity, i.e. the notion of Ignore Factor (IF) is not

considered. This was done because it was very di�cult to include IF in a mathematically meaningful

way in a single analysis. We do include IF in the simulation experiments currently underway. (b)

We assume that when a request is made, the requesting client will receive its DCI before exiting the

cell. Further, for simplicity, we assume that PfDCI 2 BRig, i.e. the probability of a requested

DCI is in the ith broadcast, is independent from PfDCI 2 BRi+1g, thus for a DCI, pin remains the

same throughout all broadcasts.

De�nition 1 Expected Waiting Time, denoted by E[Tw], is the average amount of time (in number

of buckets) that elapses between the submission of a request for a DCI by a client and the start of

downloading of that DCI from a subsequent broadcast by the client.

Lemma 1 Expected Waiting Time (E[Tw]) is expressed as,

E[Tw] =
1X
j=0

(
1

2
+ j)m(I +B)(ph(1� ph;in)

jph;in + pc(1� pc;in)
jpc;in) (11)

Proof: Let TB = m(I + B) be the size of the broadcast in the Constant Broadcast Size strategy.
For an arbitrary j,

PfTw =
1

2
TB + jTBg = ph(1� ph;in)

jph;in + pc(1� pc;in)
jpc;in

Therefore,

E[Tw] =

1X
j=0

(
1

2
+ j)m(I +B)(ph(1� ph;in)

jph;in + pc(1� pc;in)
jpc;in)

De�nition 2 Pos(i) is a function that returns the ordinal position of an element i in an ordered

list A, given that i is an element of A.

Lemma 2 Under the Constant Broadcast Size strategy, the probability that a DCI exists in the

broadcast that the client initially tunes in to, denoted by Pin, is,

Pin =
X
fBhg

(�1 + � � � + �b)!Qb
i=1 �i!

bY
i=1

p
�i
i ph +

X
fBcg

(�1 + � � �+ �b)!Qb
i=1 �i!

bY
i=1

p
�i
i pc (12)

where Bh = f(�1; �2; � � � ; �b) j �i 2 H; (Pos(�i) 2 [1; CCBS])g, Bc = f(�1; �2; � � � ; �b) j �i 2

C; (Pos(�i) 2 [1; CCBS])g, �i is the number of requests to item i. H and C are hot and cold

itemsets, respectively.

22

Proof:

Pin = ph;inph + pc;inpcph;in =
X
fBhg

(�1 + � � �+ �b)!Qb

i=1 �i!

bY
i=1

p
�i
i pc;in +

X
fBcg

(�1 + � � �+ �b)!Qb

i=1 �i!

bY
i=1

p
�i
i (13)

All subsequent lemmas in this section deal individual scenarios. Proving these lemmas essentially

amounts to deriving the probabilities for the occurrence of the scenarios as well as deriving ex-

pressions for AT and TT under these scenarios. However, in the other scenarios, the AT and TT

derivation strategies, are very similar to the previous scenario. Therefore, we state but do not

explicitly derive AT and TT expressions in the subsequent lemmas.

Lemma 3 Let Scenario 1 denote the scenario where DCI is in the current broadcast and the client
didn't miss it. Under Scenario 1, the following expressions hold.

PfScenario 1g = Pin(
m� 1

2m+ S
+
m� 1

2m

S

2m+ S
) (14)

TT1 = 1 + l+ S (15)

E[AT1jScenario1] = Pin
m� 1

2m+ S
(
I

2
+B + I + L1 + S + (

B

2
+ I + L1 + S)

S

2m
) (16)

Proof: Lemma 3 is based on the scenario where the DCI is in the current broadcast and the client
doesn't miss it at all. Scenario 1 is subdivided into sub-scenarios: Scenario 1a where client initially
tunes in to an index segment (�M;TI), and Scenario 1b where the client initially tunes in to a data
segment (�M;TD).

PfScenario 1ag = PinPf �M;TIg = Pin
m� 1

2m+ S

PfScenario 1bg = Pf �M;TDg = Pin
m� 1

2m

S

2m+ S

Since Scenario 1a and Scenario 1b are mutually exclusive events,

PfScenario 1g = PfScenario 1ag+ PfScenario 1bg

= Pin
m� 1

2m+ S
+ Pin

m� 1

2m

S

2m+ S

= Pin(
m� 1

2m+ S
+
m� 1

2m

S

2m+ S
)

TT1 = 1 + l + S

The TT and AT are derived as follows,

TT1 = (Client reads the current bucket, gets the address of the next nearest

index segment, tunes out) + (Client reads the index tree, tuning

in and out along the B-tree, tunes out) + (Client downloads the DCI)

= 1 + l + S

Under Scenario 1a

AT1a = (Access time if a client tunes in to an index segment)

= (Client tunes in to middle of index segment, waits until next index, reads

index, waits until the DCI, downloads it)

23

=
I

2
+B + I + L1 + S

Under Scenario 1b

AT1b = (Access time if a client tunes in to a data block)

(Client tunes in to a data block, waits until the next index, reads

index, waits until the DCI, downloads it)

=
B

2
+ I + L1 + S

Therefore,

E[AT1jScenario1] = PfScenario 1agAT1a + PfScenario 1bgAT1b

= Pin
m� 1

2m+ S
(
I

2
+B + I + L1 + S) + Pin

m� 1

2m

S

2m+ S
(
B

2
+ I + L1 + S)

= Pin
m� 1

2m+ S
(
I

2
+B + I + L1 + S + (

B

2
+ I + L1 + S)

S

2m
)

All subsequent lemmas will have a similar format to Lemma 3, i.e. they will be concerned with

deriving expressions for probabilities of scenarios as well as AT and TT expressions for these

scenarios. In the previous lemma we derived expressions for AT and TT . In the subsequent

lemmas we omit these derivations.

Lemma 4 Let Scenario 2 denote the scenario where the DCI is in the current broadcast but the
client completely missed it. Further, the DCI appears in the next broadcast. Under Scenario 2, the
following expressions hold.

PfScenario 2g = P 2

in(
m� 1

2m+ S
+ (

m� 1

2m
+
B � S

mB
)

S

2m+ S
) (17)

TT2 = 1 + 2l+ S (18)

E[AT2jScenario2] = P 2

in

1

2m+ S
((m� 1)(

3I

2
+B + L2 +

m(I +B)

2
+ S) + (19)

(
m� 1

2m
+
B � S

mB
)S(

B

2
+ I + L2 +

m(I +B)

2
+ S)) (20)

Proof:Scenario 2 is subdivided into two sub-scenarios: Scenario 2a where client initially tunes
in to an index segment (M;TI),and Scenario 2b where client initially tunes in to a data seg-
ment (M;TD).

PfScenario 2ag = PinPfM;TIgPin = P 2

in

m� 1

2m+ S

PfScenario 2bg = PinPfM;TDgPin = P 2

in(
m� 1

2m
+
B � S

mB
)

S

2m+ S

Since Scenario 2a and Scenario 2b are mutually exclusive events,

PfScenario 2g = PfScenario 2ag+ PfScenario 2bg

= P 2

in

m� 1

2m+ S
+ P 2

in(
m� 1

2m
+
B � S

mB
)

S

2m+ S

= P 2

in(
m� 1

2m+ S
+ (

m� 1

2m
+
B � S

mB
)

S

2m+ S
)

24

Further,

AT2a =
3I

2
+B + L2 +

m(I +B)

2
+ S

AT2b =
B

2
+ I + L2 +

m(I +B)

2
+ S

E[AT2jScenario2] = PfScenario 2agAT2a + PfScenario 2bgAT2b

= P 2

in

m� 1

2m+ S
(
3I

2
+B + L2 +

m(I +B)

2
+ S) +

P 2

in(
m� 1

2m
+
B � S

mB
)

S

2m+ S
(
B

2
+ I + L2 +

m(I +B)

2
+ S)

= P 2

in

1

2m+ S
((m� 1)(

3I

2
+B + L2 +

m(I +B)

2
+ S) +

(
m� 1

2m
+
B � S

mB
)S(

B

2
+ I + L2 +

m(I +B)

2
+ S))

Lemma 5 Let Scenario 3 denote the scenario where the DCI is in the current broadcast but the

client completely missed it. Furthermore, the DCI will not appear in the next broadcast, and thus

the client must submit a request to the server. Under Scenario 3 the following expressions hold,

assuming that the DCI will appear in a broadcast before the client exits the cell.

PfScenario 3g = Pin(1� Pin)(
m� 1

2m+ S
+ (

m� 1

2m
+
B � S

mB
)

S

2m+ S
) (21)

TT3 = 1 +
E[Wt]

m(I +B)
l + S (22)

AT3 = m(I +B)(
E[Wt]

m(I +B)
+ 1) + S (23)

Proof:

PfScenario 3g = PinPfMg(1� Pin) = Pin(1� Pin)(
m� 1

2m+ S
+ (

m� 1

2m
+
B � S

mB
)

S

2m+ S
)

Lemma 6 Let Scenario 4 denote the scenario where the client partially missed the DCI in the

current broadcast, and the DCI reappears in the next broadcast. Under Scenario 4, the following

expressions hold.

PfScenario 4g = P 2
in

S

mB

S

2m+ S
(24)

TT4 =
S

2
+ l +

S

2
(25)

AT4 = m(I +B) (26)

Proof:

PfScenario 4g = PinPfPMgPin = P 2

in

S

mB

S

2m+ S

25

Lemma 7 Let Scenario 5 denote the scenario where the client partially missed the DCI in the

current broadcast, but the DCI does not appear in the next broadcast (it appears before the client

exits the cell). Under Scenario 5, the following expressions hold.

PfScenario 5g = Pin
S

mB

S

2m+ S
(1� Pin) (27)

TT5 =
S

2
+ l +

E[Wt]

m(I +B)
l + S (28)

AT5 = m(I +B)(
E[Wt]

m(I +B)
+ 1) + S (29)

Proof:

PfScenario 5g = PinPfPMg(1� Pin) = Pin
S

mB

S

2m+ S
(1� Pin)

Lemma 8 Let Scenario 6 denote the scenario where the DCI is not in the current broadcast but

appears before the client exits the cell. Under Scenario 6, the following expressions hold.

PfScenario 6g = (1� Pin) (30)

TT6 = 1 + l +
E[Wt]

m(I +B)
l + S (31)

AT6 = m(I +B)(
E[Wt]

m(I +B)
+ 1) + S (32)

7.3 Analysis of Variable Broadcast Size Strategy

In this section, we present our analysis of the variable broadcast size strategy in a series of scenarios.

As in the CBS analysis presented in the previous section, these scenarios, described through a

series of lemmas, are aggregations of the cases presented in section 6. Speci�cally, Scenario 7

(Lemma 13) refers to Case 1, Scenario 8 (Lemma 14) to Case 4, Scenario 9 (Lemma 15) to Case

2, Scenario 10 (Lemma 16) to Case 5, Scenario 11 (Lemma 17) to Case 7. Case 3 and Case 6

are aggregated in Scenario 12 (Lemma 18). Note that the E[TT] and E[AT] are calculated by

multiplying the probability terms in Scenarios 7 through 11 by PfDCI 2 BRg. Further note that

in the abovementioned lemmas we do not derive the AT and TT expressions, as in the CBS case.

Recall that we provided a sample derivation of AT and TT in Lemma 3.

We remind the reader at this point that the VBS strategy server protocol will always place

requested DCIs in the subsequent broadcast. Therefore, if a client's DCI is not in the current

broadcast, she is guaranteed to �nd it in the next broadcast.

Lemma 9 Let L1 denote the expected distance from end of index to the DCI, given that the DCI

is not missed. L1 is expressed as,

L1 = EfDistance to DCIj �Mg =
B(m� 1)

4m
+

(I +B)(m� 1)(m� 2)

6m
(33)

26

Proof: Expected distance from end of index to the DCI, given that the DCI has not been missed
is,

L1 = EfDistance to DCIj �Mg =

mX
i=2

mX
j=i

EfDistance to DCIjTIi; DjgPfTIigPfDjg

=

mX
i=2

mX
j=i

(
B

2
+ (j � i)(I +B))

1

m2

=
1

m2

mX
i=2

(
(m� i+ 1)B

2
+

(m� i+ 1)(m� i)(I +B)

2
)

=
B(m� 1)

4m
+

(I +B)(m� 1)(m� 2)

6m

Lemma 10 Let L2 denote the expected distance from end of index to the next broadcast, given that

the DCI is missed. L2 is expressed as,

L2 = EfDistance to next broadcastjMg =
1

2m
((m� 1)B + (I +B)

2m2 � 6m+ 3

6
) (34)

Proof: The expected distance from end of index to the next broadcast, given that the DCI has
been missed is,

L2 = EfDistance to next broadcastjMg

=

m�1X
i=1

mX
j=i+1

EfDistance to next broadcastjTIj ; DigPfTIjgPfDig

=
1

m2

m�1X
i=1

mX
j=i+1

(B + (I +B)(m� j))

=
1

m2

m�1X
i=1

((m� i)B + (I +B)
(m� i)(m� i� 1)

2
)

=
1

2m
((m� 1)B + (I +B)

2m2 � 6m+ 3

6
)

Lemma 11 Let PfDCI 2 BRg denote the probability that the DCI is in the current broadcast

under VBS. PfDCI 2 BRg is given by,

PfDCI 2 BRg = (1� (1�
(1�p0)ph

bh
)N)ph + (1� (1�

(1�p0)pc
b(1�h)

)N)pc (35)

Proof:

PfDCI 2 BRg = ph;inph + pc;inpc = (1� (1�
(1� p0)ph

bh
)N)ph + (1� (1�

(1� p0)pc

b(1� h)
)N)pc

27

Lemma 12 Let BS denote the size of the broadcast under VBS. The expectation of BS is de�ned

as

EfBLg =
dX

j=0

jS � PfBL = jSg (36)

where,

PfBL = jSg = Pfj di�erent DCI from N clientg

=

jX
i=0

bh

i

!
b(1� h)

j � i

!X
A

N !Q
�q!

(
(1� p0)ph

bh
)
l+
Pi

q=1
�q (

(1� p0)pc

b(1� h)
)
j�i+

Pj

q=i+1
�q

!

and, A = (�1; � � � ; �j);8�q � 0; q 2 [1; j];

jX
q=1

�q = N � j; �i = number of requests to item i

Lemma 13 Let Scenario 7 denote the scenario where the client tunes in to an index bucket but

does not miss the DCI in the current broadcast. Under Scenario 7, the following expressions hold.

PfScenario 7g =
m� 1

2m+ S
(37)

TT7 = 1 + l + S; (38)

AT7 =
I

2
+B + I + L1 + S (39)

Proof:

PfScenario 7g = Pf �M;TI = Pf �M j TIgPfTIg =
m� 1

2m+ S

Lemma 14 Let Scenario 8 denote the scenario where the client tunes in to a data bucket before the

data block containing the DCI in the current broadcast. Under Scenario 8, the following expressions

hold.

PfScenario 8g =
m� 1

2m

S

2m+ S
(40)

TT8 = 1 + l + S; (41)

AT8 =
B

2
+ I + L1 + S (42)

Proof:

PfScenario 8g = Pf �M;TDg = Pf �M j TDg =
m� 1

2m

S

2m+ S
PfTDg

Lemma 15 Let Scenario 9 denote the scenario where the client tunes in to an index bucket but

missed the DCI in the current broadcast. Under Scenario 9 the following expressions hold.

PfScenario 9g =
m+ 1

2m+ S
(43)

TT9 = 1 + 2l + S (44)

AT9 =
I

2
+B + I + L2 +

m(I +B)

2
+ S (45)

28

Proof:

PfScenario 9g = PfM;TIg = PfM j TIgPfTIg=
m+ 1

2m+ S

Lemma 16 Let Scenario 10 denote the scenario where the client tunes in to a data bucket, but

missed the DCI in the current broadcast. Under Scenario 10, the following expressions hold.

PfScenario 10g =
mB +B � 2S

2mB

S

2m+ S
(46)

TT10 = 1 + 2l + S (47)

AT10 =
B

2
+ I + L2 +

m(I +B)

2
+ S (48)

Proof:

PfScenario 10g = PfM;TDg = PfM j TDgPfTDg=
mB +B � 2S

2mB

S

2m+ S

Lemma 17 Let Scenario 11 denote the scenario where the client tunes in to a data bucket in the

middle of the DCI in the current broadcast. Under Scenario 11, the following expressions hold.

PfScenario 11g =
S

mB

S

2m+ S
(49)

TT11 =
S

2
+ l +

S

2
(50)

AT11 = m(I +B) +
S

4
(51)

Proof:

PfScenario 11g = PfPM;TDg = PfPM j TDgPfTDg =
S

mB

S

2m+ S

Lemma 18 Let Scenario 12 denote the scenario where the client tunes in to either a data bucket

or an index bucket. Given that DCI does not exist in the current broadcast, under Scenario 12 the

following expressions hold.

PfScenario 12g = 1� ((1 � (1�
(1� p0)ph

bh
)N)ph + (1� (1�

(1� p0)pc

b(1� h)
)N)pc) (52)

TT12 = 1 + 2l + S (53)

AT12 = m(I +B) + S (54)

Proof:

PfScenario 12g = 1� PfDCI 2 BRg and substitute the result of Lemma 11

29

8 Discussion

Based on our analyses of both the constant broadcast size and the variable broadcast size strategies,

we plotted the tuning time (TT) and access time (AT) curves for various parameters. In this

section, we illustrate our strategies in a small scale example, primarily due to the computational

costs involved. Although the database used in the examples consists of 200 buckets, we believe it is

large enough to capture the essence of the strategies. Our parameters are: b = 10, S = 20, n = 1,

ph = 0:8, h = 0:2, c = 0:8, m = 4 for VBS, and CCBS = 4 for CBS, initially.

8.1 Discussion on AT and TT curves

Here, in �gures 5A and B, we illustrate the changes in the tuning and access times of the two

strategies that we proposed. In both �gures, we vary the number of clients in the cell, keeping

other parameters constant.

10

12

14

16

18

20

22

24

26

10 12 14 16 18 20

T
un

in
g

T
im

e
(b

uc
ke

ts
)

Number of Clients

CBS
VBS

20

30

40

50

60

70

80

10 12 14 16 18 20

A
cc

es
s

T
im

e
(b

uc
ke

ts
)

Number of Clients

CBS
VBS

Figure 5: Experimental Results: [A] TT for VBS and CBS; [B] AT for VBS and CBS

Tuning Time (TT) curves: We �rst turn our attention to the variable broadcast size (VBS)

strategy. VBS strategy includes every requested item in the broadcast. As number of clients

increases, the set of requested items grows as well. As a result, the size of the index segments in

VBS goes up. Clearly, TT is proportional to the size of the index. Thus in VBS, TT increases

as the number of clients increases. This explains the upward trend of the TT curve for VBS in

�gure 5A.

Another interesting feature of the TT curve for VBS is that the slope decreases along the curve.

It is easily seen that the slope of this curve is proportional to the rate of growth of the requested

item set, i.e., the faster the growth of the demand set, the faster the growth of the tuning time.

When the cell is sparsely populated, each additional user has a high probability of asking for new

items. However, under heavier population loads, new arrivals tend to ask for items already in the

request set (e.g. hot items) which slows down the growth of this curve. We call such requests

redundant requests.

30

We now turn our attention to the second curve in �gure 5A; the curve for the constant broadcast

size strategy (CBS). In the CBS strategy, index size is limited because the broadcast size is limited.

As the number of clients increases, the number of redundant requests, particularly for hot items,

increases. Therefore, the probability that a requested item is in the broadcast (pb) increases,

lowering TT for larger client sets. For example, for N = 10, pb is 0:830155 whereas for N = 12,

it increases to 0:840821. Here, in the case where N = 12, clients have a higher probability of

downloading the DCI in the current broadcast than in the case where N = 10. Clients who

download the DCI in the current broadcast need not submit a request and tune to the index of

successive broadcasts, thus saving tuning time. As the number of clients increases, the number of

non-redundant requests also increases, which slows the decrease in TT as illustrated in �gure 5A.

Having discussed the individualTT curves, we now focus on explaining the relative performance

of the two strategies. With the current set of parameters,VBS performs slightly better than CBS

for low to moderate loads in the system. However, as the load, i.e., the number of clients, increases,

CBS performs better. Intuitively, this makes sense. When the number of clients grows very large,

VBS will include all their requests, which will include many cold items as well as hot items. This

causes indices to grow to a point where TT becomes very large. By virtue of limiting the size of

the index, CBS does not su�er from this problem.

Access Time (AT) curves: In the variable broadcast size strategy, AT responds to an increasing

number of clients in the same way as TT. It increases as the number of clients increases, but the

increase slows as redundancy in the request set increases. This can be seen readily in �gure 5B.

Initially in the constant broadcast size strategy, the server does not receive enough requests to

�ll the broadcast, causing dead air in the broadcast. Clients are forced to submit requests for their

DCIs and wait for the next broadcast. This contributes to the relatively high initial AT. As the

broadcast starts to �ll up, the e�ect of the increasing number of clients on AT decreases. Hot items

are likely to be requested by many clients, and are therefore likely to be in the current broadcast

when a client tunes in. �gure 5B shows the curve for the CBS.

The two curves in �gure 5B behave di�erently at di�erent load levels. The VBS curve performs

better than the VBS when the system load is low. For moderate to high loads in the system, VBS

AT increases sharply while CBS AT remains fairly constant. In this scenario, CBS provides a lower

access times for clients than VBS.

Overall, it can be deduced that when the system load is low, VBS outperforms CBS for both TT

and AT. For moderate loads, there is a trade-o� between the two strategies: VBS performs better

for TT and CBS performs better in terms of AT. For high loads in the system, CBS dominates

VBS, providing lower TT and AT.

8.2 Changes in TT and AT for VBS as the number of indices in broadcast

varies

The number of index segments in the broadcast (m) is the most important parameter for the VBS

because the broadcast size is not limited. Increasing m provides a larger number of opportunities

for clients to read the index, which tends to lower tuning times, but increases the overall size of

the broadcast, which increases access times. Therefore, we plotted the TT and AT curves for

comparing the e�ect of various m values. Figures 6A and B illustrate the changes in TT and AT

curves, respectively, as m changes.

31

10

12

14

16

18

20

22

24

26

10 12 14 16 18 20

T
un

in
g

T
im

e
(b

uc
ke

ts
)

Number of Clients
[A]

VBS with m = 2.0
VBS with m = 3.0
VBS with m = 4.0

20

30

40

50

60

70

80

10 12 14 16 18 20

A
cc

es
s

T
im

e
(b

uc
ke

ts
)

Number of Clients

[B]

VBS with m = 2.0
VBS with m = 3.0
VBS with m = 4.0

Figure 6: Experimental Results: [A] TT for VBS with various m values; [B] AT for VBS with

various m values

TT curves: Figure 6A shows that the change m does not have a signi�cant e�ect on the TT.

Since the data in the broadcast remains constant at a given client size, the index size remains

constant as well. Slight di�erences in the curves are mainly due to round-up errors, and TT curves

converge to a single curve.

AT curves: At a given number of clients, even if the m value is di�erent, the amount of data in

the broadcast is the same. However, for di�erent values of m, the broadcast overall size changes

since we change the number of index segments. Therefore, ifm is increased, the size of the broadcast

grows, thus increasing the AT.

8.3 Changes in TT and AT for CBS as broadcast capacity varies

The crucial parameter in the Constant Broadcast Size strategy is the capacity of the broadcast

denoted by CCBS . Limiting the capacity of the broadcast and favoring more popular items for

inclusion reduces the access and tuning times for hot items, at the expense of colder items. The

basic premise of the strategy is that with a \good" value of CCBS , both access and tuning times

may be reduced. In �gures 7A and B, we illustrate the e�ects of changing the broadcast capacity

(CCBS) on TT and AT for the constant broadcast size strategy. Note that in the curves the

parameter Capacity represents CCBS .

TT curves: Here, we turn our attention to �gure 7A, and observe the e�ects of changing the

broadcast capacity on TT.

For CCBS = 2, pb increases as the number of clients in the cell increases. However, a broadcast

capacity of 2 DCIs is extremely small. In this scenario, hot items are continually included in the

broadcast, causing the exclusion of cold items. Clients requesting cold items are forced to tune in

to each successive broadcast until they exit the cell or the request becomes invalid. This results in

a considerable increase in TT.

32

0

10

20

30

40

50

10 12 14 16 18 20

T
un

in
g

T
im

e
(b

uc
ke

ts
)

Number of Clients

[A]

CBS with Capacity = 2
CBS with Capacity = 4
CBS with Capacity = 6
CBS with Capacity = 8

0

50

100

150

200

10 12 14 16 18 20

A
cc

es
s

T
im

e
(b

uc
ke

ts
)

Number of Clients

[B]

CBS with Capacity = 2
CBS with Capacity = 4
CBS with Capacity = 6
CBS with Capacity = 8

Figure 7: Experimental Results: [A] TT for CBS with various CCBS values; [B] AT for CBS with

various CCBS values

For CCBS = 4, pb is higher than in the case where CCBS = 2. Both hot and cold items have a

higher chance to be included in the broadcast as the capacity of the broadcast grows. Therefore,

clients are less starved, and the Expected Waiting Time is lower than in the case where CCBS = 2.

The number of redundant requests, particularly for hotitems, increases as the number of clients

increases, causing a slight decrease in the TT curve.

The curve for CCBS = 8 is similar to the curve for CCBS = 4. Its location above the CCBS = 4

curve may seem counterintuitive at �rst; we would expect the tuning time to decrease even more

by increasing the size of the broadcast. However, this is an excellent example of unnecessarily high

broadcast size. The server does not receive enough requests to �ll the broadcast capacity, and

broadcasts dead air.

AT curves: Expected Waiting Time is the most signi�cant part of the AT because clients who

have missed their DCIs, or whose DCIs are not included in the current broadcast, must wait, at a

minimum, until the next broadcast to retrieve their DCIs. This waiting time is not considered part

of TT. The curves for AT in �gure 7B are similar to those shown for TT in �gure 7A.

It can be concluded that, in order for CBS to perform at its best, the broadcast size parameter

should be adjusted to the load in the system. This result emphasizes the importance of adaptive

capability of broadcasting strategies.

9 Conclusion

In this paper, we looked at the problem of data retrieval by mobile units from wireless broadcasts.

While the problem if data organization in broadcasts has been looked at before, the speci�c content

of the broadcast has been unexplored. Speci�cally, in the presence of mobile clients with di�ering

demands, the determination of the broadcast content is an important problem. This paper presented

a number of protocols to achieve such a determination. In conjunction, we also stipulated a number

of client retrieval algorithms to aid e�cient retrieval from broadcasts.

33

We have used a general architecture of a mobile platform with a number of mobile units,

�xed hosts and base stations. Mobile units (clients) move around freely in a cell served by base

stations (servers). Clients and servers communicate through wireless channels. We assumed that

the wireless channel consists of both an uplink for moving data from client to server and a downlink

for moving data from server to client.

Since in wireless networks, the active life of a mobile unit's power source (battery) is an impor-

tant constraint on applications, we have considered, in addition to the conventional response time

metric, a metric called tuning time. This latter metric captures the actual duration of time clients

must be active, thereby providing a measure of energy expenditure.

The problem addressed in this paper may be captured by the following question: given that

users are highly mobile in their mobility domain, what are good strategies that the server can use

to decide on what to broadcast? We also looked at the question of retrieval strategies: given

that good broadcast strategies are found, what are good retrieval algorithms by which users can

retrieve/download data from broadcast, with a minimum of energy expenditure?

Most of the earlier work in this area is concerned with access methods, i.e., how to organize the

broadcast data. Given the composition of a broadcast, there has been lot of nice work in organizing

data and index on air. Our concern is to organize the broadcast data as well as determine and

dynamically alter its content based on the demand pattern of the clients in the cell.

In this paper, we presented adaptive protocols for broadcast content determination and informa-

tion retrieval. Periodicity has been regarded as an important parameter in broadcast-and-retrieve

environments. We thus considered both periodic (constant broadcast size (CBS) strategy) and

aperiodic (variable broadcast (VBS) size) broadcast strategies.

In the constant broadcast size strategy, we �xed the length of a broadcast and added or dropped

items from the broadcast based on their popularity. We also introduced a metric called Ignore

Factor to weigh items on how long requests for them have been ignored so that even if they are not

popular enough to be included in the broadcast, the clients requesting it are not starved.

In the variable broadcast size strategy, the broadcast size changes according to the number of

items requested during the previous broadcast period. Clients are guaranteed to receive items

that they requested. Since this strategy can potentially include all the items in the database, we

introduced the concept Residence Latency which will drop items from the broadcast based on the

expected time that a client requesting an item will stay in the cell.

We have performed an approximate yet thorough performance analysis by analytical methods.

Our analysis of these strategies suggests that the aperiodic (VBS) strategy outperforms the periodic

(CBS) strategy at low system loads. For moderate loads, VBS provides lower tuning times, while

CBS provides lower access times. At high loads, CBS outperforms VBS overall, providing lower

tuning and access times.

Also, we have seen that the number of index segments in the broadcast is the most important

parameter for the VBS. This parameter has the greatest e�ect on the access time since broadcast

size in this strategy is not limited.

We have also varied broadcast capacity in the constant broadcast size strategy, and observed

that limiting the capacity of the broadcast and favoring more popular items for inclusion reduces

the access and tuning times for hot items, at the expense of colder items.

34

References

[1] V. C. Leung A. D. Malyan, L. J. Ng and R. W. Donaldson. Network architecture and signaling

for wireless personal communications. IEEE Journal on Selected Areas in Communications,

pages 830{841, August 1993.

[2] R. Alonso and H. Korth. Database issues in nomadic computing. In Proceedings of the 1993

ACM-SIGMOD, 1993.

[3] B. R. Badrinath and T. Imielinski. Replication and mobility. In Second Workshop on the

Management of Replicated Data, pages 9{12, November 1992.

[4] D. Barbara and T. Imielinski. Sleepers and workaholics: Caching strategies in mobile envi-

ronments. In R. Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM SIGMOD,

pages 1{12, May 1994.

[5] D. Cox D. Lam, J. Jannink and J. Wisdom. Modeling location management in personal

communication services. Technical report, Stanford University, October 1995.

[6] A. Datta. Research Issues in Databases for Active Rapidly Changing data Systems (ARCS).

ACM SIGMOD RECORD, 23(3):8{13, September 1994.

[7] M. H. Dunham and A. Helal. Mobile computing and databases: Anything new? In SIGMOD

Record. Association for Computing Machinery, December 1995.

[8] H. G. Forman and J. Zahorjan. The challenges of mobile computing. IEEE Computers, 27(4),

April 1994.

[9] Y. Huang, P. Sistla, and O. Wolfson. Data replication for mobile computers. SIGMOD Record,

23(2):13{24, 1994.

[10] T. Imielinski and B. R. Badrinath. Querying in highly mobile distributed environments. In

Proceedings of the 18th International Conference on Very Large Databases, pages 41{52, Au-

gust 1992.

[11] T. Imielinski and B. R. Badrinath. Mobile wireless computing. Communications of the ACM,

pages 19{28, October 1994.

[12] N. H. Vaidya P. Krishna and D. K. Pradhan. Location management in distributed mobile en-

vironments. In Proceedings of the Conference on Parallel and Distrbuted Information Systems,

pages 81{88, September 1994.

[13] M. Satyanarayanan. Accessing information on demand at any location. mobile information

access. IEEE Personal Communications, 3(1):26{33, 1996.

[14] N. Shivakumar and J. Wisdom. User pro�le replication for faster location lookup in mobile

environments. Technical report, Stanford University, 1994.

[15] S. Vishwanath T. Imielinski and B. R. Badrinath. Data on air: Organization and access.

submitted for publication, available at http://athos.rutgers.edu/ badri/dataman/bcast.html.

35

[16] S. Viswanathan T. Imielinski and B. R. Badrinath. Indexing on air. In Proceedings of the 1994

ACM SIGMOD, 1994.

[17] S. Viswanathan T. Imielinski and B. R. Badrinath. Power e�cient �ltering of data on air. In

Proceedings of the 4th International Conference on Data Management, March 1994.

[18] U. Madhow V. Anantharam, M. L. Hong and V. K. Wei. Optimization of a database hierarchy

for mobility tracking in a personal communications network. Performance Evaluation, pages

287{300, May 1994.

[19] Nitin H. Vaidya and Sohail Hameed. Data broadcast in asymmetric environments. In First

International Workshop on Satellite-based Information Services (WOSBIS), nov 1996.

[20] Nitin H. Vaidya and Sohail Hameed. Scheduling data broadcast in asymmetric communi-

cation environments. Technical Report 96-022, Computer Science Department, Texas A&M

University, College Station, November 1996.

[21] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication of data. In Pro-

ceedings of the Symposium on Principles of Database Systems, pages 149{163, 1992.

36

