
A Temporal Extension to a Generic
Object Data Model

Andreas Steiner and Moira C. Norrie

Institute for Information Systems
ETH Z�urich, CH-8092 Z�urich, Switzerland

May 7, 1997

TR-15

A TimeCenter Technical Report

Title A Temporal Extension to a Generic Object Data Model

Copyright c
 1997 Andreas Steiner and Moira C. Norrie

Institute for Information Systems

ETH Z�urich, CH-8092 Z�urich, Switzerland. All rights reserved.

Author(s) Andreas Steiner and Moira C. Norrie

Institute for Information Systems

ETH Z�urich, CH-8092 Z�urich, Switzerland

Publication History A shorter version appears in Proceedings of the 9th Conference on Advanced

Information Systems Engineering (CAiSE), 1997

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector)

Michael H. B�ohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA

Richard T. Snodgrass (codirector)

Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia

Kwang W. Nam, Chungbuk National University, Korea

Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TimeCenter is provided \as is" and without any express or implied

warranties, including, without limitation, the implied warranty of merchantability and �tness for a par-

ticular purpose.

The TimeCenter icon on the cover combines two \arrows." These \arrows" are letters in the so-called

Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors,

The Rune alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines

because the primary storage medium was wood. However, runes may also be found on jewelry, tools,

and weapons. Runes were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote \T" and \C," respectively.

Abstract

We present a temporal object model capable of representing the lifespan of objects and also the

history of the roles and associations in which they participate. We advocate an approach of temporal

generalisation rather than temporal extension in which a model in its entirety is given a temporal

semantics through an orthogonal generalisation of all concepts of the model. Our model allows

objects to participate in several roles simultaneously. Further, metadata may also have temporal

properties allowing the lifespan of the object roles themselves, and constraints over these roles, to be

modelled. The model is based on the generic object data model OM and the associated algebra has

been generalised into a full temporal algebra over object roles.

1 Introduction

Full support for temporal databases requires a complete generalisation of a data model with a temporal

dimension. This means that all aspects of the model { constructs, operations and constraints { must

have temporal generalisations. Further, the temporal dimension should apply not only to data, but also

to metadata.

Many existing proposals for temporal data models and systems { both relational and object-oriented

{ tend to focus on one particular aspect of a model and extend it with temporal properties. For example,

many proposals deal with extensions to database structures to enable entities or entity properties to

be timestamped { whether it be with valid or transaction times [LJ88, Wuu91, RS91, SC91, NA93,

Sar93, Sno93, EWK93, WD93, G�O93, BFG96]. Typically, the query language is then extended with

temporal properties in the sense of selections with temporal predicates or temporal joins [Wuu91, NA93,

EWK93, WD93, G�O93]. However, in many cases the underlying algebra is not fully generalised in the

sense of providing temporal semantics to all operations of the algebra. Temporal negation for example

is frequently neglected. Proposals for models and systems with temporal semantics for all operations

[Sno93, Sno95, SBJS96b] and for constraints [RS91, WD93, SBJS96b] do exist, but tend to be considered

separately from each other. The issue of timestamped metadata has received little consideration.

We advocate an approach of temporal generalisation rather than temporal extension in which a model

in its entirety is given a temporal semantics through an orthogonal generalisation of all concepts of the

model. Previously, we considered this approach to a limited extent in the context of relational database

systems and developed a prototype temporal database system TimeDB [Ste95] which supports both valid

and transaction times, has a full temporal query language and, in contrast to many other implemented

systems, also supports temporal updates, integrity constraints and views. The prototype system TimeDB

is based on the query language ATSQL2 [SBJS96b, SBJS96a].

More recently, we have fully exploited the generalisation approach in the context of object-oriented

systems and developed a temporal object model and system, TOM, capable of modelling object role and

association histories. TOM also supports a full temporal algebra and query language and constraints.

Additionally, metadata can have temporal properties allowing the modelling of role, association and

constraint lifespans.

There is an ongoing debate whether or not object-oriented data models should be extended or gen-

eralised since, after all, their inherent extensibility can be used to support temporal applications. We

have investigated this approach in [SN97a] where we show that it is possible to use an abstract data type

for time to model temporal databases and specify temporal queries. Temporal queries however turn out

to be rather complex in their form, the speci�cation of temporal constraints is left to the user, and the

database system cannot use the special semantics of time for query optimization. We argue that the

form of extensibility provided by current object-oriented database systems is not su�cient to support

temporal databases. What we would like to have additionally are, for example, extensible object iden-

ti�ers, extensible query languages and the possibility to overwrite algebra operations. These concepts

would help to implement temporal databases with non-temporal object-oriented database management

systems, but their usefulness would not be restricted to temporal databases. Applications using spatial

databases or versioning could also be supported. For this reason, we have developed a full temporal

object-oriented data model.

Our temporal object data model TOM is based on the generic object-oriented data model, OM

[Nor93]. The OM model strictly separates typing from classi�cation in such a way that classi�cation

1

structures model the roles of objects rather than their representation. The model is therefore independent

of any particular type system and programming language environment. Classi�cations are represented

by the bulk type constructor collection and classi�cation structures are built from collections linked

by means of subcollection, disjoint, cover and intersection constraints over these collections. Explicit

support for the representation of relationships between objects is given by association constructs based

on a special form of collection referred to as a binary collection. As a result, classi�cation structures may

be used to model relationship roles as well as entity roles.

Other key features of the OM model that impact on the temporal model are its collection algebra

which de�nes generic operations over collections, the model's support for object and relationship evolution

[NSWW96] and the orthogonality with which the constructs of the model may be applied. As an example

of its orthogonality, collections are themselves objects and this enables arbitrary nesting of structures.

Our temporal generalisation of OM is based upon the concept of generalising objects into temporal

objects rather than adding temporal properties to objects. Thus, in contrast to most other approaches

to temporal object models, we do not extend object types with temporal attributes, but rather extend

the fundamental notion of an object identi�er into a temporal object identi�er. Since collections are also

objects, this leads naturally to a representation of the lifespans of both objects and object roles. Further,

associations { including the membership associations between objects and the collections to which they

belong { are timestamped allowing both object role histories and association histories to be modelled.

Experiences in developing the model TOM, together with a prototype implementation, show that

the generalisation approach leads naturally to more general models and systems. The generality and

orthogonality of the underlying model, in this case OM, are major contributing factors and therefore

essential to fully exploit the generalisation approach.

In section 2, we present the main features of the OM model in terms of a simple example application

used throughout the paper. Section 3 then presents the basic constructs of the temporal object model

TOM in terms of temporal objects, roles and associations. Section 4 discusses the temporal generalisation

of classi�cation and association constraints. The temporal algebra and query language is presented in

section 5. Concluding remarks, discussion of further work and also comments on the impact of current

extensions to the OM model on its temporal generalisation are given in section 6.

2 Object Data Model OM

The OM data model is used to specify semantic groupings of objects and their interrelationships and thus

deals with issues of classi�cation and associations between objects at the same level of abstraction. The

characteristics of objects in terms of interface and implementation would be speci�ed by the type system

associated with a particular system in which the model is used to support object data management.

This separation of typing from classi�cation is bene�cial, not only in terms of the universality of the

model, but also in distinguishing issues of representation from those of data semantics. Further, it allows

an Entity-Relationship style of conceptual modelling to be combined with the power and
exibility of

object-oriented systems.

The basic construct of the OM model is the collection in that both objects and relationships are

classi�ed into collections of a given membertype. Unary collections are those which have atomic values

as elements and represent object roles. Binary collections are those which have pair values as elements

and represent relationships between entities. Relationships are actually represented by associations. An

association consists of a binary collection together with constraints that specify the roles of objects that

may participate in the relationship and the corresponding cardinalities. Note that a collection is itself

an object which provides the capability to have collections of collections and so on.

Collections are grouped into classi�cation structures each of which describes related object roles in

terms of a generalisation/specialisation graph. We illustrate this by means of the example schema for a

property leasing company shown in �gure 1.

Figure 1 includes four classi�cation structures. The classi�cation structure on the right represents

properties and consists of the collection Properties and its subcollections Residences, Offices, Rented,

Available and Renovating. Shaded boxes are used to denote collections with the name of the collection

in the unshaded region and the type of the member values speci�ed in the shaded region.

2

Clients

Tenants

Owners

client

tenant

owner

Rented

Properties

property

Available Renovating

Offices

Residences

Owns

Rents

disjoint

partition

property

property

propertypropertyproperty

[1:*]

[1:*]

[1:1]

[1:1]

Figure 1: An Example OM Schema Diagram

Subcollections Residences and Offices are constrained to be disjoint meaning that, at any point in

time, no property can be categorised for use as both a residence and an o�ce. Subcollections Rented,

Available and Renovating form a partition in that they are pairwise disjoint and form a cover of

Properties in that, at any point in time, every property must have exactly one of these three roles.

A second classi�cation structure represents clients and their roles. Clients has subcollections Owners

and Tenants. Note that the membertype tenant of Tenants is a subtype of the membertype client of

Clients. Likewise, owner is also a subtype of client. It is possible that a client may be both a tenant

and an owner and hence that a client object belongs to both Owners and Tenants.

The third and fourth classi�cation structures consist of the single associations Owns and Rents,

respectively. Associations are represented by oval-shaped boxes, together with links to the collections

related by the association and their respective cardinality constraints. In order that we can specify

operations over associations, it is necessary to specify a direction of such a relationship. For example,

Owns would actually be represented by a collection of pairs of object values such that the �rst elements

of the pairs belong to Owners and the second elements belong to Properties. We refer to Owners as the

source collection and to Properties as the target collection of Owns.

OM supports object evolution in that objects may change their roles over the course of time. Such

forms of evolution require changes in collection membership and this in turn may involve changes in

the type of an object which we call object metamorphosis. For example, if a tenant object becomes an

owner object, then the object must gain additional owner properties. OM supports object metamor-

phosis through dress and strip operations. Further, the model includes mechanisms to control object

evolution. For example, objects can only migrate within a classi�cation structure, thereby preventing

absurd evolutions such as an object in Tenants becoming an object in Properties. The issue of ob-

ject (and relationship) evolution and further forms of control over migration are discussed in detail in

[NSWW96].

The operational model of OM is based on an algebra of collections. The algebra includes select, map,

reduce,
atten, union, intersection and di�erence operations as well as special operations over binary

collections such as compose, inverse, domain and range. Descriptions of most of these operations are

given in section 5 where the temporal equivalents are described.

In a generalised form of the OM model, collections of di�erent behaviours are supported (as is typical

in many object-oriented data models). Collections (unary or binary) may exhibit set or bag properties

depending upon whether or not the collection may contain duplicate elements. In addition, they may

have an associated ordering. In this paper, we deal only with set collections but note that the concepts

generalise to other forms of collections. Further details of the OM model and its algebra are given in

[Nor93, Nor92].

As stated above, the OMmodel is generic and it has formed the basis for object data management on a

variety of platforms including C++-based persistent systems [CBHdP93] and the programming language

3

Oberon [SN97b]. Additionally, we have developed our own object-oriented database management system,

OMS, based on the OM model. An interesting aspect of the OMS system with respect to temporal

generalisation is its representation of all information { both data and metadata { as objects. Our

approach of generalising objects to temporal objects, therefore leads immediately to the possibility of

timestamping all information within the system.

3 Temporal Object Role Model

Our temporal model TOM is based on object-timestamping. We add timestamps to the names of in-

stances. In other words, we do not extend the types but rather extend the object identi�ers with a

timestamp to give temporal object identi�ers of the form

toid :=� oid; ls�

where oid is an object identi�er and ls is a timestamp referred to as the lifespan of an object. It

expresses, for example, when an object was valid (existent) in the real world. Thus, we do not timestamp

the values of an object, but the object itself with its overall time of existence and we keep track of

the history of its values separately. This means that it is not necessary to calculate the union of all

timestamps of values of an object in order to establish the time period during which the object existed.

Timestamps may also be associated with relationships between objects which are represented by

member pairs of binary collections. In this case, each pair of object identi�ers (oid1; oid2) is tagged

with a timestamp to give elements of the form

� (oid1; oid2); ls�

where ls is a timestamp as before.

Since object roles are represented by collections which are themselves objects, collections may also be

timestamped. As a result, we can model the fact that roles also exist for limited lifespans and, further,

that they may appear and disappear with respect to the current state of an application domain. For

example, we assume that the property leasing company initially only managed properties owned by its

parent company. Later, it decided to generalise and also lease properties owned by others. After a while,

it ceased to manage other owner's properties while the general leasing market declined. When the market

picked up a few years later, it resumed leasing of other people's properties. This can be modelled through

the lifespan of the Owners collection. Similarly, associations, which represent relationship roles between

objects, may also be timestamped.

The next stage to consider is how to model the times at which a particular entity has a particular

role, i.e. that an object is a member of a collection. An object may be in several collections at one time

and may migrate between collections. Looking at our example schema in �gure 1, a tenant is a member

of collection Tenants. This means that the property leasing company helped him to �nd a property to

rent. It is possible that over some interval, a tenant is also an owner of a property leased by the company.

For example, they may own a property in one city and lease another in a di�erent city. In this case, the

tenant would appear in both the Tenants and Owners collections of the company's database during this

time period.

An object's visibility in a time collection is determined by the overall lifespan of the object, the

collection's own lifespan and a membership time speci�ed by the user. Thus, if we look at a client

object through the Owners role, it is only visible during the time period he is actually an owner, even

though the object existed before its membership in Owners.

Adding timestamps to objects leads naturally to a more general model than the usual relational

temporal models in that, not only entities and their roles, but also the roles themselves can have temporal

properties. By timestamping objects (and object-pairs in binary collections), a direct comparison can be

made between lifespans of objects, relationships, object roles and associations. We now go on to consider

these various aspects of our model in more detail.

4

3.1 Temporal Object Identi�ers

Our notion of a lifespan is similar to that proposed in [CC87]. The smallest non-decomposable time unit

assumed in a temporal database, for example a second, is called a chronon [TCG+93]. Let T = ft0; t1; : : :g

be a set of chronons, at most countably in�nite. The linear order <T is de�ned over this set, where

ti <T tj means that ti occurs before tj.

A lifespan ls is any subset of the set T . [GV85] called this sort of timestamp temporal elements. We

assume that T is isomorphic to the natural numbers. Thus we can represent a lifespan also as a set of

non-overlapping intervals, closed at the lower bound and open at the upper bound. Lifespans are closed

under the usual set-theoretic operations union, intersect and di�erence. If ls1 and ls2 are lifespans, then

ls1 \ ls2, ls1 [ls2 and ls1 � ls2 are also lifespans.

This de�nition of lifespan re
ects the fact that an object may appear and disappear several times

during its overall time of existence. A lifespan contains all those time points at which an object existed.

For example, the timestamp of a property object may represent the various periods during which that

property was managed by the leasing company.

De�nition 1 (temporal object identi�er) Let O be the set of all possible non-temporal object iden-

ti�ers. A temporal object identi�er toid consists of an object identi�er oid 2 O and a lifespan ls :

toid := � oid; ls �

In the following, we use the notation lifespan(toid) to reference the (visible) lifespan contained in

the temporal object identi�er toid. Ov shall denote the set of all temporal object identi�ers, whereas O

is the set of non-temporal object identi�ers. Value ! represents the unde�ned object identi�er.

De�nition 2 (snapshot of a temporal object identi�er) Let toid 2 Ov be a temporal object

identi�er containing oid 2 O as object identi�er. Let t 2 T be a time instant. Then the snapshot of a

temporal object identi�er at a time instant t, � t(toid), is de�ned as

� t(toid) := IF t 2 lifespan(toid) THEN oid ELSE !

The snapshot of a temporal object identi�er at time instant t returns the object identi�er oid if the

object exists at t, otherwise the special value ! is returned. De�nition 2 is required for later de�nitions.

3.2 Valid-Time Objects

We use the term value to mean any form of data item that can be described by the underlying type

system, e.g. a base value such as an integer or a complex value such as an object value. For simplicity of

presentation, we assume here simply integers and strings as base values.

Let VI be the set of all integer values and VS the set of all string values. The values v 2 (VI [VS)

have an implicit lifespan [0�1). The snapshot operation � t evaluated on an integer or string value thus

always returns the integer or string value itself.

We de�ne the set of values available in our temporal data model as

V v := VI [VS [Ov

In this paper, we will focus only on temporal values although we suggest to have both non-temporal

and temporal values available in a system, along with adequate conversion operations.

With de�nition 2, we can express what the snapshot of values v 2 V v, � t(v), returns. If v is an integer

or a string value, then the integer or string value itself is returned. If v is a temporal object identi�er,

then an non-temporal object identi�er (or !) is returned.

Valid-time objects are objects having a temporal object identi�er. Depending on the role they play

(meaning the collection they are member of), they show corresponding property values. In the following,

we refer to the temporal object identi�er of a valid-time object obj by toid(obj), the (visible) lifespan of

this object by lifespan(obj) and the object identi�er by oid(obj).

5

Example 1 When creating a valid-time object in our system, a set of valid-time periods expressing the

object's lifespan has to be provided by the user:

create object andreas lifespan { [1964 - inf) };

create object antonia lifespan { [1969 - inf) };

create object moira lifespan { [1970 - inf) };

...

create object herbert lifespan { [1964 - inf) };

...

create object apart1 lifespan { [1980 - 1995) };

create object apart2 lifespan { [1970 - inf) };

...

As mentioned before, these objects will be dressed with a type when added to a collection. Note that for

example name andreas is just used as a reference to the corresponding object. Time instant inf denotes

that the object is valid until further notice. Non-temporal objects are created by leaving away the lifespan

speci�cation.

3.3 Valid-Time Collections

A collection contains objects which are of the same membertype. In fact, in its full generality, a collection

can contain values of any type { including object values { but, in our discussion here, we focus on the

case of collections of objects. Recall that a collection is itself an object.

In this section, we introduce valid-time collections as collections having a lifespan and containing

valid-time objects which have their own lifespan. We then de�ne the snapshot of the extension of a

valid-time collection and use this notion for further de�nitions.

De�nition 3 (valid-time collection) A valid-time collection C consists of

� a temporal object identi�er toid 2 Ov, toid(C) = toid, and

� an extension ext(C) � V v.

We write C = [toid; ext] to denote a valid-time collection. Since a valid-time collection is also a

valid-time object, we can reference the temporal object identi�er of a valid-time collection C by toid(C),

the object identi�er by oid(C) and its lifespan by lifespan(C).

Example 2 In order to create the collections depicted in �gure 1 as valid-time collections, we �rst have

to de�ne the corresponding membertypes:

create type client(name : string);

create type tenant(profession : string) subtype of client;

create type owner(bank_account : string) subtype of client;

create type property(price : integer; street : string; city : string);

Now we can create the main valid-time collections Clients and Properties. Assume that the property
leasing company started to exist in 1980.

create collection Clients type client lifespan { [1980 - inf) };

create collection Properties type property lifespan { [1980 - inf) };

6

We de�ne the snapshot of an extension ext(C) of a valid-time collection C at a time instant t to be

the set of those values in the extension of C, which exist at time instant t. Note that these snapshot

values have no time information attached.

De�nition 4 (snapshot of an extension) The snapshot of the extension ext(C) � V v at a time

instant, � t(ext(C)), is de�ned as

� t(ext(C)) := fvj9vv 2 ext(C) ^ v = � t(vv) ^ v 6= !g

De�nition 4 will be needed to de�ne the temporal subcollection relationship (de�nition 7) and the

temporal membership relation (de�nition 9). With de�nitions 2 and 4, we can also de�ne notions of

collection identity and equality at a time instant and extend these with temporal semantics. We can now

de�ne the snapshot of a valid-time collection at a particular time instant to be a non-temporal collection

which is valid at this time instant.

De�nition 5 (snapshot of a valid-time collection) Let C be a valid-time collection with a temporal

object identi�er toid and an extension ext(C). The snapshot of the valid-time collection C, � t(C), is

de�ned as

� t(C) = [� t(toid(C)); � t(ext(C))]

Note that if the temporal object identi�er toid of a valid-time collection C is unde�ned (!) at time

instant t, then the extension of this collection is also unde�ned at t. This means that the objects in the

extension are not visible at t.

3.4 Valid-Time Subcollection Relationship

Our generalisation approach makes it necessary to also rede�ne the subcollection relationship between

two collections. In this section, we introduce the valid-time subcollection relationship used in TOM. We

start with its time instant de�nition.

De�nition 6 (subcollection relation at a time instant) Let C1 and C2 be valid-time collections.

C1 is a subcollection of C2 at time instant t 2 T , C1 �
t C2, if and only if all of the following conditions

hold:

1. � t(toid(C1)) 6= !

2. � t(toid(C2)) 6= !

3. � t(ext(C1)) � � t(ext(C2))

Using de�nition 6, we can now de�ne the subcollection constraint for our temporal object data model. In

our system, this constraint is used to trigger actions such as update propagations to ensure that database

consistency is maintained [NSWW96].

De�nition 7 (valid-time subcollection relationship) Let C1 and C2 be valid-time collections. The

valid-time subcollection relationship C1 �
v C2 holds if and only if the following holds:

8t 2 lifespan(C1) : C1 �
t C2

Note that the valid-time subcollection relationship is de�ned over the lifespan of the subcollection. The

valid-time subcollection relationship demands that for each time instant subcollection C1 exists, super-

collection C2 also has to exist, but not vice versa. So, in our example, the lifespan of any subcollection

of valid-time collection Clients must be contained in the lifespan [1980�1).

7

Example 3 We show how the subcollections depicted in �gure 1 can be created. Assume that at �rst,

the property leasing company only dealt with renting properties owned by a parent company. In 1982,

the company decided to generalise their operations and also lease properties owned by others. During the

�rst �ve years, the company only dealt with residential properties. In 1985, they started to deal also with

properties used as o�ces.

create collection Tenants

subcollection of Clients type tenant lifespan{ [1980-inf) };

create collection Owners

subcollection of Clients type owner lifespan{ [1982-inf) };

create collection Residences

subcollection of Properties type property lifespan { [1980 - inf) };

create collection Offices

subcollection of Properties type property lifespan{ [1985-inf) };

create collection Rented

subcollection of Properties type property lifespan { [1980 - inf) };

create collection Available

subcollection of Properties type property lifespan { [1980 - inf) };

create collection Renovating

subcollection of Properties type property lifespan { [1980 - inf) };

3.5 Adding and Removing Valid-Time Objects to Valid-Time Collections

Adding an object to a valid-time collection restricts the object's visibility in the collection in several

ways. As stated previously, the object is visible only during a certain time period in the collection as

determined by the collection's lifespan, the object's own lifespan and a membership time speci�ed by the

user. An object's maximal visibility in a collection is the collection's lifespan.

Visibility contrasts, for example, with the approach proposed in [G�O93] where an object's lifespan

has to be contained in the lifespan of the collection to which it is added.

The resulting visible lifespan v of the added object is the intersection of the lifespan lsO of the object

with the lifespan of the collection lsC , intersected with the user speci�ed membership time tuser:

v := lsC \ lsO \ tuser

Example 4 We now want to add the valid-time objects of example 1 to valid-time collections created in

example 2:

insert object andreas into Tenants during { [1980 - inf) };

Give a value for name: Andreas

Give a value for profession: Assistant

insert object antonia into Tenants during { [1984 - 1996) };

...

insert object moira into Tenants during { [1992 - inf) };

...

insert object herbert into Owners during { [1982 - inf) };

...

insert object apart1 into Rented during { [1980 - 1995) };

...

insert object apart2 into Rented during { [1987 - inf) };

...

8

Andreas is a client of the company since 1980. He found a property with the help of this company and thus

is a member of collection Tenants in the company's database. When inserting objects into a collection,

the system dresses the object with the corresponding membertype (if it is not already dressed with it) and

asks for attribute values (e. g. name and profession). Additionally, objects are propagated automatically

to supercollections if needed.

3.6 Object Evolution

As stated in section 2, objects must be allowed to evolve and change roles during their lifespan. This

accounts for the fact that entities in the real world change their roles during their life. For example, a

tenant buys a property in another city which is then leased by the company. This client plays the role

of a tenant and then gains the role of an owner. Such changes and accumulation of roles is re
ected in

our model by the possibility that an object can migrate from one collection to another and may also be

a member of several collections at the same time.

Each collection has an associated membertype. This means that for a given collection C and a given

type Type, if member type(C) = Type, then for any value x in the extension of C, x must be an instance

of type Type. Thus, to change collection membership, an object must also be able to change its type

while retaining the same object identity. This is referred to as object metamorphosis. Object evolution

thus consists of the following steps: �rstly change an object's type (or let it gain a new type if necessary)

within the type hierarchy (object metamorphosis), possibly adding values for additional properties, and

then add the the object to a new collection in the classi�cation structure (object migration).

Assume classi�cation structures as depicted in �gure 1. If an object in collection Clients is also added

to subcollection Owners, then we �rst have to dress the object with membertype owner of collection

Owners. Then a valid-time period tuser has to be speci�ed by the user which expresses the time the

object was a property owner in the real world. The visibility of this object in the valid-time collection

Owners then results in

v := lsOwners \ lsobject \ tuser,

where lsOwners represents the lifespan of collection Owners and lsobject corresponds to the lifespan of

the client object to be added to collection Owners.

Example 5 Assume Moira and Andreas both decided to buy properties, but remained in the properties

already rented and asked the leasing company to �nd tenants for their properties. Thus, they also became

owners in the company's database.

insert object andreas into Owners during { [1982 - 1995) };

Give a value for bank_account: SBG 123-456

insert object moira into Owners during { [1982 - 1987, 1991 - inf) };

...

Andreas bought a property in 1982 and in 1995 he decided to have another company manage his property.

Moira actually had her �rst property managed by the company in 1982. She sold the property in 1987

and bought another one in 1991. When inserting objects, the system again dresses the objects with the

corresponding membertype (if needed) and asks for property values.

3.7 Temporal Associations

As described previously, relationships between objects are represented by associations. Relationships

may also have valid-times associated with them and these are represented by temporal associations. A

temporal association is a valid-time binary collection together with constraints specifying the source and

target collections and their respective cardinality constraints as before.

9

De�nition 8 (valid-time binary collection) A valid-time binary collection C consists of

� a temporal object identi�er toid 2 Ov, toid(C) = toid, and

� an extension ext(C) � (V � V)v where V is the set of non-temporal values VI [VS [O.

The extension of a valid-time binary collection will be a set of object value pairs together with a

lifespan. As mentioned previously, given a valid-time binary collection C, then an element of ext(C) may

be of the form� (oid1; oid2); v� where oid1; oid2 2 O and v is the visible lifespan of the relationship,

v := lsC \ void1 \ void2 \ tuser,

where lsC is the lifespan of collection C, void1 and void2 are the visible lifespans of objects oid1 and oid2

in the source and target collections respectively, and tuser the user-speci�ed membership time.

Example 6 According to the database schema depicted in �gure 1, we have to create two valid-time

associations Rents and Owns. The association Rentsexists since 1980, when the company started. Since

the company decided in 1982 to extend their activity and �nd tenants for property owners, the association

Owns exists since 1982. Of course, both source and target valid-time collections have to exist during the

lifespan of an association. This is checked by the system.

create association Rents

source Tenants

target Rented

lifespan { [1980 - inf) };

create association Owns

source Owners

target Properties

lifespan { [1982 - inf) };

Now we can create associations between tenants and the properties they rent, and between owners and

the properties they own:

insert binary object (andreas, apart1) to Rents during { [1980 - 1993) };

insert binary object (herbert, apart2) to Owns during { [1987 - inf) };

...

In the case that a temporal association references an object which is not visible in the referenced

collection (source or target) during the speci�ed time period or does not exist at all, an error message is

produced. This means we check for temporal referential integrity on both collection and object level.

4 Temporal Constraints

In this section, we discuss the issue of the temporal generalisation of the classi�cation constraints in

detail. We consider the conditions imposed by the constraint with respect to a particular time instant

and then generalise it over time. As mentioned before, in this paper we only discuss collections which

exhibit set properties.

We present the temporal generalisations of the cover and disjoint constraints. Firstly, we have to

rede�ne the membership relation for a time instant. Then, we de�ne the valid-time cover and valid-time

disjoint constraints over valid-time collections.

The non-temporalmembership relation of a value x in a set S is denoted by x 2set S. The membership

relation at a time instant can be de�ned as:

10

De�nition 9 (membership relation at a time instant) Let C be a valid-time collection of elements

of type Type, member type(C) = Type, and let t 2 T be a time instant. Then for any value x : Type,

x 2 V v, x is a member of C at time instant t, x 2tset C, if and only if both of the following conditions

hold:

1. � t(toid(C)) 6= !

2. � t(x) 2set �
t(ext(C))

Note that according to de�nition 4, ! is never a member of a set of values � t(ext(C)). With de�nition

9, we can now de�ne the valid-time disjoint and cover constraints.

De�nition 10 (disjoint constraint at a time instant) Let t 2 T be a time instant. The disjoint

constraint at time instant t over a set of valid-time collections CS, disjointt(CS), is de�ned as

disjointt(CS) :, 8Ci; Cj 2 CS : oid(Ci) 6= oid(Cj)) :9x : x 2tset Ci ^ x 2tset Cj

Note that if at least one of the two collections Ci or Cj is unde�ned at time instant t, then Ci and

Cj are disjoint due to de�nition 9.

De�nition 11 (valid-time disjoint constraint)The valid-time disjoint constraint over a set of valid-

time collections CS, disjointv(CS), is de�ned as

disjointv(CS) :, 8t 2
S
Cj2CS

lifespan(Cj) : disjoint
t(CS)

A set of valid-time collections CS is temporally disjoint, if no pair of member collections has a common

member value at any time point in the time period during which any of the collections exist.

De�nition 12 (cover constraint at a time instant) Let t 2 T be a time instant, C a valid-time

collection, and CS a set of valid-time collections. The cover constraint at time instant t, covert(C;CS),

then is de�ned as

covert(C;CS) :, 8x 2tset C 9Cj 2 CS : x 2tset Cj

With de�nition 12, we can now de�ne the valid-time cover constraint:

De�nition 13 (valid-time cover constraint) Let C be a valid-time collection and CS a set of valid-

time collections. The valid-time cover constraint, coverv(C;CS), is de�ned as

coverv(C;CS) :, 8t 2 lifespan(C) : covert(C;CS)

A set of valid-time collections CS is a valid-time cover of a valid-time collection C, if each member

of CS is a subcollection of C and each element of C appears in at least one collection of CS during each

time instant of its existence.

The valid-time intersection constraint or the semantics of temporal cardinality constraints can be

de�ned accordingly. Temporal partition constraints can be expressed by a combination of a temporal

cover and a temporal disjoint constraint.

Example 7 The temporal disjoint constraint used in �gure 1, demands that at each time point the

subcollections Residences and Offices exist, they must be disjoint. The valid-time partition constraint

demands that the three valid-time collections Rented, Available and Renovating are partition valid-time

collection at each time point valid-time collection Properties exists.

11

create constraint disjointOR disjoint([Offices, Residences]);

create constraint coverRAR cover(Properties, [Rented, Available, Renovating]);

create constraint disjointRAR disjoint([Rented, Available, Renovating]);

Previously, we stated that all information is represented as objects, including constraints. This means

that with our object-timestamping approach, constraint objects may also be extended to temporal objects

having a lifespan. At the moment, we are still investigating this idea of timestamping constraints and

the impact of this. Currently, our system treats constraint objects as non-temporal objects, meaning,

that they are checked over a lifespan [0�1) as long as they are present in the system.

The above de�nitions of temporal constraints do not lead directly to a good implementation. It

is not feasible to implement a constraint checking algorithm which is based on time instants. We use

an e�cient implementation based on calculations of time on an interval level, using the set-theoretic

operations union, intersect and di�erence of time intervals. Additionally, we exploit the fact that if

a database is consistent at the beginning of a transaction, only the changes made during the current

transactions need to be checked.

5 Temporal Collection Algebra

So far, we have introduced the temporal constructs of TOM. The other aspect of the model is the

generalisation of the collection algebra of OM to give equivalent temporal operations. In OM, all algebra

operations work on collections of objects and return a result collection of objects. The model has an

extensive set of generic operations, including convenience forms for operating over binary collections. A

full description of the algebra is given in [Nor93, Nor92].

Proposed temporal algebras and query languages tend to neglect the fact that, besides di�erent kinds

of temporal selections (e. g. DURING, WHEN, MOVING WINDOW as introduced in [Wuu91, SC91, RS93]) or a

temporal join, operations such as temporal set di�erence (temporal negation) or intersection should also

be supported. The TOM model speci�es temporal equivalents for all of the algebra operations in OM.

Additionally, temporal comparison operators as introduced in [All83] are supported.

There exist two categories of operations in our temporal algebra. The �rst category contains those

operations which calculate new lifespans for both the result collection and the objects contained in it.

For example, this category includes the temporal composition operation, the temporal cross product or

temporal set operations. The second category of temporal operations only work on object identi�ers while

retaining lifespans. Examples are the temporal inversion or the temporal domain operations.

Since collections contain values of a speci�c type in their extensions, we have to specify the membertype

of a resulting collection for a given collection operation. [Nor93, Nor92] use the notion of least common

supertype and greatest common subtype to determine the membertype of the result collection.

The common supertype (upper bound) of two types ti and tj is any type tk such that ti �t tk and

tj �t tk, where �t denotes a subtype relationship. If tk is a common supertype of ti and tj, such that

for any other common supertype tl of ti and tj , tk �t tl, then tk is the least common supertype (least

upper bound) of ti and tj which is written as tk = ti t tj .

Similarly, the greatest common subtype (greatest lower bound) of ti and tj is de�ned as a type tk such

that for any other common subtype tl, tl �t tk, which is written as tk = ti u tj. It can be easily shown

that both ti t tj and tk = ti u tj are unique.

We will now discuss the temporal algebra operations in more detail by considering some example

queries, explaining how they are evaluated and giving de�nitions for the temporal operations. In our

system, it is possible to either use algebra expressions or an SQL-like syntax for querying.

Example 8 We would like to know the history of tenants renting one of Herbert's properties. The

temporal algebra expression calculating the corresponding result looks like

rangev(�v
left:name=0Herbert0

(Owns) �v invv(Rents))

This expression can be run in the system as a query using either the algebra expression

12

valid range(compose(select (left.name = 'Herbert') Owns, inv(Rents)));

or an SQL-like statement

valid

range((select o in Owns where left(o).name = 'Herbert') compose (inv Rents));

The extent of a resulting collection, having its own lifespan [1982�1), contains objects with the following

visible lifespans and property values:

VALID Profession Name

------------- ----------- --------

{[1995-inf)} Assistant Andreas

{[1992-inf)} Professor Moira

Operations in an algebra expression having a superscript v denote that they are evaluated using

temporal semantics with respect to valid-time. In example 8, all of the operations use temporal semantics.

According to the approach proposed in [SBJS96b, SBJS96a], we use the keyword valid to denote that

temporal evaluation semantics should be applied. In the above example, the scope of keyword valid is

the whole query.

In example 8, we �rst select those binary objects in the temporal association Owns which have the

object denoting owner Herbert on the left side. The valid-time selection is de�ned the following way:

De�nition 14 (valid-time selection in a valid-time collection) Let C1 be a valid-time collection

of type t and P be a function that maps each element of C1 to one of the Boolean values true or false.

The valid-time selection of C1 using function P , C = �vP (C1), mapping collection C1 to a collection C

of type t and valid-time lifespan(C) = lifespan(C1), is then de�ned as

8t 2 lifespan(C1); 8x 2 C1 : P (�
t(x)) = true, x 2tset C

We then combine the temporal result collection of the selection operation with binary collection

Rents. The valid-time composition operation (�v) composes out of two binary collections a new binary

collection by taking the objects in the domain of the �rst and the objects in the range of the second and

combining them if they have equal range and domain objects respectively. This operation belongs to

the �rst category of operations where lifespan calculation is done. The formal de�nition of the temporal

composition operation is

De�nition 15 (composition of two valid-time binary collections) Let B1 and B2 be two valid-

time binary collections of types (t1; t2) and (t3; t4) respectively. The valid-time composition of B1 and

B2, B1�
v
setB2, is of type (t1; t4) and has a lifespan equal to lifespan(B1)\lifespan(B2) and an extension

ext(B1 �
v
set B2) = f� (x; z); v� j9y :� (x; y); v1 �2set ext(B1)^ � (y; z); v2 �2set ext(B2) ^ v :=

v1 \ v2 ^ v 6= fgg

where v1 and v2 denote the visible lifespans of the objects in the corresponding collections.

Since our collections also have lifespans, we have to de�ne what the lifespan of a resulting valid-

time collection shall be. A non-temporal database management system returns an error if one of the

arguments of an operation does not exist. In our case, we de�ne that a resulting temporal collection

should only cover those time instants when all of the argument collections exist. Thus the result of a

valid-time composition operation is valid only during the intersection of the two lifespans of the valid-time

collections involved. Note that this also holds for other temporal operations of the �rst category.

13

As we can see in de�nition 15, we combine those pairs of objects where the right object of the �rst

pair is the same as the left object of the second object during their common time period. In example

8, we want to �nd tenants of properties owned by Herbert. We combine owner objects in Owns with

tenant objects in Rents through their common property objects. To be able to do that with a temporal

composition operation, we �rst have to invert collection Rents. The valid-time inversion operation (invv)

just switches source and target objects of a binary collection, leaving the timestamp the same. This

operation belongs to what we earlier called the second category of operations in our temporal algebra.

The formal de�nition of this operation is

De�nition 16 (inverse of a valid-time binary collection) Let B be a valid-time binary collection

of type (t1; t2). The valid-time inverse of B, invvset(B), is of type (t2; t1), has a lifespan equal to

lifespan(B) and an extension

ext(invvset(B)) = f� (y; x); v � j � (x; y); v �2set ext(B)g

The result of the composition operation �vleft:name=0Herbert0(Owns) �
v invv(Rents) is a binary col-

lection containing pairs having an owner object on its left and a tenant object on its right side together

with their common time periods. Since we are interested in tenant objects of this binary collection,

only the range of the binary collection is of interest. The corresponding operation is the temporal range

operation (rangev), which can be de�ned similarly to the temporal inversion and also belongs to the

second category of temporal operations.

De�nition 17 (range of a valid-time binary collection) Let B be a valid-time binary collection

of type (t1; t2). The valid-time range of B, rangevset(B), is of type t2 and has a lifespan equal to

lifespan(B) and an extension

ext(rangevset(B)) = f� y; v � j9x :� (x; y); v �2set ext(B)g

The next example uses a temporal set di�erence and a temporal cross product operation. The tem-

poral cross product operation is similar to the temporal composition in that it calculates the common

lifespan of both collections and objects involved and it returns a valid-time binary collection. Its argu-

ments, however, are unary valid-time collections.

Example 9 We would like to �nd those residences and the corresponding time period during which no

higher priced o�ces exist. The corresponding algebra expression looks like

Residences �v domainv(�v
left:price<right:price

(Residences �v Offices))

We can query the system either with the algebra expression

valid Residences -

domain(select (left.price < right.price) Residences * Offices);

where the asterisk stands for the cross product operation, or the SQL-like statement

valid

select r in Residences

where not exists (select o in offices where r.price < o.price);

All of the operations in the algebra expression have temporal semantics. This is denoted by the

keyword valid at the beginning of the query whose scope again is the whole query. The valid-time cross

product Residences �v Offices generates pairs of object identi�ers together with their common visible

lifespan. It returns a collection of valid-time binary objects containing pairs of non-temporal object

identi�ers together with a lifespan which is calculated by the intersection of the visible lifespans of the

objects involved. Formally, the temporal cross product is de�ned as

14

De�nition 18 (valid-time cross product of collections) Let C1, C2 be valid-time collections of types

t1 and t2 respectively. The valid-time cross product of C1 and C2, C1�
v
setC2, returns a binary valid-time

collection of type (t1; t2) having a lifespan equal to lifespan(C1) \ lifespan(C2) and an extension

ext(C1 �
v
set C2) = f� (oid(x); oid(y)); v � jx 2set ext(C1) ^ y 2set ext(C2)^

v = lifespanC1
(x) \ lifespanC2

(y) ^ v 6= fgg

The lifespans lifespanC1
(x) and lifespanC2

(y) denote the visible lifespans of the objects in the corre-

sponding collections.

In the result of Residences �v Offices, we then select those pairs of residence and o�ce objects

where the residence's price was lower than the o�ce's price (together with the time period during which

this is true). Last, the valid-time di�erence of the domain of the resulting valid-time binary collection

and collection Residences is calculated returning those residences with time periods for which no higher

priced o�ce can be found. The temporal domain operation can be de�ned similarly to the temporal range

operation (de�nition 17). The di�erence is that the temporal domain returns the objects on the left side

in a binary collection.

De�nition 19 (domain of a valid-time binary collection) Let B be a valid-time binary collection of

type (t1; t2). The valid-time domain of B, domainvset(B), is of type t1, has a lifespan equal to lifespan(B)

and an extension

ext(domainvset(B)) = f� x; v� j9x :� (x; y); v �2set ext(B)g

The valid-time di�erence, union and intersection operations belong to the �rst category of operations.

Temporal set di�erence in our model is de�ned as

De�nition 20 (valid-time di�erence of collections) Let C1 and C2 be valid-time collections of

membertypes t1 and t2 respectively. The valid-time di�erence of C1 and C2, C = C1 �
v
set C2, mapping

the two collections to a collection C of membertype t1 and lifespan(C) = lifespan(C1)\ lifespan(C2),

is de�ned as

8t 2 lifespan(C) : � t(ext(C)) = fxjx 2tset C1 ^ x 62tset C2g

Valid-time union and intersection can be de�ned in a similar style to de�nition 20. The type of

the result collections of valid-time union and intersection operations are described using the notions of

greatest common subtype and least common supertype.

De�nition 21 (valid-time union of collections) Let C1 and C2 be valid-time collections of member-

types t1 and t2. The valid-time union of C1 and C2, C = C1 [
v
set C2, mapping the two collections to a

collection C of type t = t1 t t2 and lifespan(C) = lifespan(C1) \ lifespan(C2), is de�ned as

8c 2 lifespan(C); 8x : � t(ext(C)) = fxjx 2tset C1 _ x 2tset C2g

De�nition 22 (valid-time intersection of collections) Let C1 and C2 be valid-time collections of

membertypes t1 and t2. The valid-time intersection of C1 and C2, C = C1 \
v
set C2, mapping the two

collections to a collection C of type t = t1ut2 and a lifespan lifespan(C) = lifespan(C1)\lifespan(C2),

is de�ned as

8c 2 lifespan(C); 8x : � t(ext(C)) = fxjx 2tset C1 ^ x 2tset C2g

Our de�nitions of valid-time union, intersection and di�erence ensure that the operations are orthog-

onal to each other in the sense that for example the valid-time intersect operation can be expressed using

the valid-time di�erence operation:

C1 \
v C2 = C1 �

v (C1 �
v C2)

15

6 Conclusions

We propose a temporal object-oriented data model which not only generalises data model structures

to support time, but considers all parts of a data model by temporally generalising data structures,

constraints and collection algebra.

Rather than extending the data structures with additional properties, we adopt the approach of

extending the notion of object identi�ers by adding timestamps to them. The underlying model OM is

general in the sense that entities, collections, associations and even databases are considered as objects.

Further, it is generic in the sense that it is not based on a speci�c type system but can be used in a

variety of programming language environments and implementation platforms. These advantages carry

over to the temporal model TOM. By generalising the notion of an object identi�er to a temporal

object identi�er, everything considered as an object can automatically be timestamped. Additionally,

the possibility that objects may have several roles at the same time and evolve by changing roles makes

both OM and TOM very powerful models.

OM also supports rich sets of both constraints and operations which have been temporally generalised.

We claim that it is important to consider not only model-inherent, but also user-de�ned constraints, when

de�ning a temporal model. Also, whereas most other proposals choose to generalise only a few of the

operations, or add new temporal operations, we advocate that the algebra should be fully generalised.

The TOM system was implemented in Prolog and our experiences show that the generality and

orthogonality of both the OM model and, consequently, the temporal model TOM, turned out to be very

bene�cial also for the implementation.

References

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, 16(11), 1983.

[BFG96] E. Bertino, E. Ferrari, and G. Guerrini. A Formal Temporal Object-Oriented Data Model.

In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Advances in Database Technology,

pages 342{356. Springer, 1996.

[CBHdP93] V. J. Cahill, R. Balter, N. Harris, and X. Rousset de Pina, editors. The Comandos Distributed

Application Platform. Springer-Verlag, 1993.

[CC87] J. Cli�ord and A. Croker. The Historical Relational Data Model (HRDM) and Algebra

Based on Lifespans. In Proceedings of the International Conference on Data Engineering,

pages 528{537. IEEE Computer Society Press, 1987.

[EWK93] R. Elmasri, G.T.J. Wuu, and V. Kouramajian. A Temporal Model and Query Language for

EER Databases. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,

editors, Temporal Databases: Theory, Design, and Implementation, chapter 9, pages 212{

229. Benjamin/Cummings Publishing Company, 1993.

[G�O93] I. A. Goralwalla and M. T. �Ozsu. Temporal Extensions to a Uniform Behavioral Object

Model. In Proceedings of the 10th International Conference on the ER Approach, pages

110{121, 1993.

[GV85] S. K. Gadia and J. H. Vaishnav. A Query Language for a Homogeneous Temporal Database.

In Proceedings of the International Conference on Principles of Database Systems, 1985.

[LJ88] N. Lorentzos and R. G. Johnson. TRA: A Model for a Temporal Relational Algebra. In

Proceedings of the Conference on Temporal Aspects in Information Systems, pages 99{112,

1988.

[NA93] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL . In

A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tempo-

ral Databases: Theory, Design, and Implementation, pages 92{109. Benjamin/Cummings

Publishing Company, 1993.

16

[Nor92] M. C. Norrie. A Collection Model for Data Management in Object-Oriented Systems. PhD

thesis, University of Glasgow, Dept. of Computing Science, Glasgow G12 8QQ, Scotland,

December 1992.

[Nor93] M. C. Norrie. An Extended Entity-Relationship Approach to Data Management in Object-

Oriented Systems. In Proceedings of the 12th International Conference on the ER Approach,

1993.

[NSWW96] M. C. Norrie, A. Steiner, A.W�urgler, and M.Wunderli. A Model for Classi�cation Structures

with Evolution Control. In Proceedings of the 15th International Conference on Conceptual

Modelling, 1996.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal

Constraints. In Proceedings of the 10th International Conference on the ER Approach, 1991.

[RS93] E. Rose and A. Segev. TOOSQL - A Temporal Object-Oriented Query Language. In

Proceedings of the 10th International Conference on the ER Approach, pages 122{136, Dallas,

TX, 1993.

[Sar93] N. Sarda. HSQL: A Historical Query Language. In A. Tansel, J. Cli�ord, S. Gadia, S. Ja-

jodia, A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design, and Im-

plementation, pages 110{138. Benjamin/Cummings Publishing Company, 1993.

[SBJS96a] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Transaction

Time to SQL/Temporal. SQL/Temporal Change Proposal, ANSI X3H2-96-502r2, ISO/IEC

JTC1/SC21/WG3 DBL MAD-147r2, November 1996.

[SBJS96b] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Valid Time

to SQL/Temporal. SQL/Temporal Change Proposal, ANSI X3H2-96-501r2, ISO/IEC

JTC1/SC21/WG3 DBL MAD-146r2, November 1996.

[SC91] S. Y. W. Su and H. M. Chen. A Temporal Knowledge Representation Model OSAM*/T

and Its Query Language OQL/T. In Proceedings of the International Conference on Very

Large Databases, pages 431{442, 1991.

[SN97a] A. Steiner andM. C. Norrie. ImplementingTemporal Databases in Object-Oriented Systems.

In Database Systems for Advanced Applications (DASFAA), 1997.

[SN97b] J. Supcik and M. C. Norrie. An Object-Oriented Database Programming Environment for

Oberon. In Proc. of the Joint Modular Languages Conference (JMLC'97), Linz, Austria,

March 1997.

[Sno93] R. Snodgrass. An Overview of TQuel. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia,

A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implemen-

tation, pages 141{182. Benjamin/Cummings Publishing Company, 1993.

[Sno95] R. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Academic Publishers,

101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061, USA, 1995.

[Ste95] A. Steiner. The TimeDB Temporal Database Prototype. Institute for Information Systems,

ETH Z�urich. Available at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz,

September 1995.

[TCG+93] A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal Databases:

Theory, Design, and Implementation. Benjamin/Cummings Publishing Company, 1993.

[WD93] G.T.J. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-Oriented

Databases. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,

editors, Temporal Databases: Theory, Design, and Implementation, chapter 10, pages 230{

247. Benjamin/Cummings Publishing Company, 1993.

17

[Wuu91] G.T.J. Wuu. SERQL: An ER Query Language Supporting Temporal Data Retrieval. In Pro-

ceedings of the 10th International Phoenix Conference on Computers and Communications,

pages 272{279, 1991.

18

