
On the Complexity of Mining Temporal Trends

Jef Wijsen and Robert Meersman
Vrije Universiteit Brussel

May 6, 1997

TR-16

A TIMECENTER Technical Report

Title On the Complexity of Mining Temporal Trends

Copyright c
 1997 Jef Wijsen and Robert Meersman
Vrije Universiteit Brussel. All rights reserved.

Author(s) Jef Wijsen and Robert Meersman
Vrije Universiteit Brussel

Publication History May 1997. Paper at the SIGMOD’97 Workshop on Research Issues on Data Min-
ing and Knowledge Discovery (DMKD’97).
May 1997. A TIMECENTERTechnical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta
Sudha Ram

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors, The Rune
alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines because the primary
storage medium was wood. However, runes may also be found on jewelry, tools, and weapons. Runes were
perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

We investigate the computational complexity of mining certain trends in temporal databases. A simple ex-
ample of such trend might be“In general, salaries of employees do not decrease.”The trends considered are
formalized by the construct oftrend dependency(TD). TD’s can compare attributes over time by using opera-
tors off<;=;>;�;� 6=g. TD satisfaction is characterized by asupportandconfidence. As TD’s may express
meaningful trends, mining them is significant. The TD mining problem studied is the following task: Given a
temporal database, find the TD of a specified form that holds with the highest confidence and with support greater
than or equal to a specified minimum threshold. This problem is called TDMINE. Unlike most other work in
data mining, we primarily focus on the computational complexity of the TDMINE problem—rather than on the
performance of algorithms to solve it. Both the number of tuples (cardinality) and the number of attributes can
be taken as the “size” of TDMINE. TDMINE can be solved inO(C2

) time whereC is the cardinality. If the
time requirements are expressed in function of the number of attributes—rather than the cardinality—then the
problem turns outNP-complete. We discuss the practical implications of this result.

1 Introduction

Recently, there has been a growing interest in the mining of different types ofassociation rulesfrom large rela-
tional tables. These associations generally compare certain attribute values of a tuple with specified constants. An
example is“If degree is PhD then salary is large”[YC96]. In this paper, we introduce rules (or,dependencies)
that compare attributesbetweentwo tuples using operators off<;=; >;�;� 6=g. An example might be“The
higher the degree, the higher the salary.”This type of dependencies turns out very useful in temporal databases
as it allows capturing meaningful trends. Nearly all temporal dependencies that have so far been proposed in the
literature compare attributes for equality only [JSS96], which greatly limits their expressivity.

For example, consider the relational schemafSS#, Rank, Salg. A tuplefSS#:x, Rank:y, Sal:zg means that the
employee with the social security numberx has ranky and salaryz. Ranks are numbers between 1 and 5. Assume
thatI1 andI2 are two relations over this schema at two time pointst1 andt2 respectively, wheret1 is earlier than
t2. Consider the regularity:

“If an employee’s rank increases then his/her salary does not decrease.”

which may be denoted:
(SS#;=)(Rank;<) � (Sal;�)

and called atrend dependency(TD). The meaning is as follows: Lets1 ands2 be two tuples ofI1 andI2 respec-
tively with s1(SS#) = s2(SS#)—i.e., s1 ands2 represent the same employee—ands1(Rank) < s2(Rank).
Then our confidence in the reliability of the trend increases ifs1(Sal) � s2(Sal). On the other hand,s1(Sal) >
s2(Sal) would give evidence against the trend. So a specified TD can hold to a certain degree. The degree of TD
satisfaction will be characterized by the common notions ofsupportandconfidence.

As TD’s may express significant knowledge about the stored data, discovering them is interesting and impor-
tant. Until now, most research in temporal database mining has addressed the problem of searching for sequences
that are similar to a given target sequence [CHY96]. The aim of this study is to explore the complexity of dis-
covering (ormining) TD’s in temporal relations. The TD mining problem studied in this paper is the following
task: Given a temporal database, choose among the TD’s that obey a specified format, the TD with the highest
confidence and with support greater than a specified minimum threshold. This problem is called TDMINE. A
precise characterization will be given in the technical treatment later on.

Most work in data mining concerns in the first place the performance of algorithms. Some examples are [AS94,
FL95, PCY95, SON95]. In this study, we proceed in a different way and start with analyzing the complexity of the
TDMINE problem itself—rather than algorithms to solve it. The rationale behind this approach is that complexity
analysis gives us important indications about the tractability of the problem in hand, which may complement
algorithm design techniques.

The outline of the paper is as follows. The next section discusses some related work. The notion of TD
is formalized in section 3. Section 4 gives a precise formulation of the data mining problems explored. The
complexity results are given in section 5. Perhaps the most important contribution of this paper is the theorem
that TDMINE is NP-complete if the input is characterized by the number of attributes involved in a TD. Some
practical implications of the results are discussed in section 6. Finally, section 7 contains concluding remarks and
open problems.

1

A final remark: In this paper, a temporal relation is limited to a pair(I1; I2) of classical relations. One may
wonder why we only consider two time points, rather than a (possibly infinite) sequence of time points. In fact,
the results presented can be extended to infinite time series of relations. However, we found out that the reduced
formalism with two time instances has in it the full complexity of the data mining problem we are going to explore,
while it considerably simplifies the technical treatment.

2 Related Work

Lately and independently of data mining, there has been a growing interest in dependencies for temporal databases [JSS96,
WBBJ97]. All temporal dependencies found in the extensive overview of Jensen et al. [JSS96] compare attributes
by using equality only. Our TD’s compare attributes by operators off<;=; >;�;� 6=g; they generalize the
dynamic functional dependenciesproposed by Wijsen [Wij95].

Association rules can take different forms [HF95, SA96]. Most work in association mining has concentrated
on discovering rules of the form

p1(A1) andp2(A2) and : : : pn(An)) pn+1(An+1)

whereA1; : : : ; An+1 are all distinct attributes. Eachpi(Ai) is an equation associating attributeAi with a single
value or a range of values of its domain. An example given by Srikant and Agrawal [SA96] is:

(Age : 30::49) and(Married : Y es)) (NumCars : 2)

expressing that married people between 30 and 49 years old have two cars. The supports of an association rule
is the percentage of tuples satisfying both the left-hand and the right-hand side of the rule.1 The confidence isc if
c% of the tuples satisfying the left-hand side of the rule also satisfy the right-hand side. Certain studies limit the
lengthn of the rule to enablevisualization. Fukuda et al. [FMMT96] deal with two-dimensional rules only (i.e.,
n = 2).

Note that the association rules just mentioned compare certain attribute values of a tuple with specified con-
stants. Each individual tuple can give evidence for or against the association. The TD’s proposed in this pa-
per compare attributes in one tuple with the corresponding attributes in another tuple. That is, TD satisfaction
is expressed in terms of tuple pairs—rather than individual tuples. Following the terminology of Baudinet et
al. [BCW95], TD’s are constraint-generating 2-dependencies, whereas classical association rules are constraint-
generating 1-dependencies.

Before we turn to the technical treatment, we mention that TD’s can be easily extended to capture data regu-
larities within a single state (called intrastate dependencies in [JSS96]) or among more than two states. However,
the restricted formalism is sufficiently powerful to show the full complexity of the data mining problem we are
interested in.

3 Formalizing Trends

In this section we formalize the notion oftrend dependency(TD) andTD class. To help understanding, we start
with a simple example.

3.1 Illustrative Example

Consider the relationsI1 andI2 shown in figure 1. Intuitively we think ofI1 as the tuples valid at some timet1,
andI2 as the tuples valid at some later timet2. The TD

� = (SS#;=)(Rank;<) � (Sal;�)

expresses that an employee’s salary does not decrease if his/her rank increases. Clearly, employeeD4 gives
evidence against the trend: The rank of employeeD4 increased while his/her salary decreased. On the other
hand, employeesA1 andB2 support the trend, as both their rank and salary increased. Finally, employeeC3

1By the left-hand side of the rule, we mean the rule part preceding). The right-hand side is what follows).

2

I1 :
SS# Rank Sal
A1 1 100
B2 2 80
C3 3 140
D4 1 120

I2 :
SS# Rank Sal
A1 2 110
B2 3 90
C3 2 130
D4 2 110

Figure 1: Example database.

provides no argument for or against the trend, as his/her rank did not increase. We are going to formalize the
above observations. The expression(SS#;=)(Rank;<) is called apattern, and is said to besatisfiedby a tuple
pair (s1; s2) of I1�I2 if and only if s1(SS#) = s2(SS#) ands1(Rank) < s2(Rank). Likewise, the right-hand
pattern(Sal;�) is satisfied by the tuple pair(s1; s2) of I1�I2 if and only if s1(Sal) � s2(Sal). So satisfaction is
expressed in terms of tuple pairs ofI1� I2. In figure 1, the cardinality ofI1� I2 is 16. Every tuple pair satisfying
the left-hand pattern(SS#;=)(Rank;<) gives evidence for or against the TD in hand, depending on whether or
not it satisfies the right-hand pattern(Sal;�). The confidencec is obtained by the number of tuple pairs satisfying
both patterns divided by the number of tuple pairs satisfying the left-hand pattern; in the examplec = 2=3. The
supports is the number of tuple pairs satisfying both patterns divided by the total number of tuple pairs; in the
examples = 2=16. So the TD� is satisfied with support2=16, and with confidence2=3.

3.2 Trend Dependency

We are now going to define the notion oftrend dependency(TD). Let i; j 2 N. We write [i::j] for the set
fi; i + 1; : : : ; jg and we write(0; 1) for the smallest set containing every real number between 0 and 1. The
number of elements in a setS is denotedjSj.

Definition. We assume the existence of a totally ordered set(dom;�). We define the setop = f<;=; >;�;� 6=g
of operators, with their natural meaning. We assume the existence of a setatt of attributes. LetU � att. A tuple
overU is a total function fromU to dom. A relation overU is a set of tuples overU . A tuple pairoverU is a
pair (s1; s2) of tuples overU . A relation pairoverU is a pair(I1; I2) of relations overU .

For simplicity, we assume that all attributes of a tuple take their values from the same “domain”dom. This
limitation does not affect the results presented in this study in any significant way.

A pattern over U is a setf(A1; �1); : : : ; (Am; �m)g whereA1; : : : ; Am are all distinct attributes ofU , and
�1; : : : �m are operators ofop. That is, a pattern overU is a (partial) function fromU to op. The domain of
a pattern� is denoted[[�]].

f(A1; �1); (A2; �2); : : : ; (Am; �m)g will be denoted(A1; �1)(A2; �2) : : : (Am; �m).

The tuple pair(s1; s2) overU is said tosatisfythe pattern(A1; �1) : : : (Am; �m) iff s1(Ai) �i s2(Ai) for every
i 2 [1::m].

A trend dependency(TD) overU is a statement� � � where� and� are patterns overU . � and� are called
the left-handand theright-handpattern of� � � respectively. The semantics of TD’s is now defined relative to a
relation pair(I1; I2):

Let � be a TD overU . Let (I1; I2) be a relation pair overU .
Let p be the number of tuple pairs ofI1 � I2. Let l be the number of tuple pairs ofI1 � I2 satisfying the left-hand
pattern of�. Let b be the number of tuple pairs ofI1 � I2 satisfying both the left-hand and the right-hand pattern

3

of �. Let

s =

�
b=p if p 6= 0
0 otherwise

andc =

�
b=l if l 6= 0
0 otherwise

Then� is said to besatisfiedby (I1; I2) with supports andconfidencec, denoted(I1; I2) j=s
c �. If (I1; I2) j=s

c �,
then we also say thats andc are the support and the confidence of� respectively (where(I1; I2) is implicitly
understood). Clearly0 � s � c � 1. 2

We now define the notion ofTD class. A TD classdetermines a set of TD’s by specifying the domain of the
left-hand and the right-hand pattern, and by limiting the operators that can be used.

Definition. Let� be a nonempty subset ofop. LetX andY be sets of attributes (i.e.,X;Y � att).
TheTD classdetermined byX;Y and� (in that order), denotedT DX�Y

� , is the smallest set containing the TD
� � � if the following is true:

� [[�]] = X and for everyA 2 X , �(A) 2 �, and

� [[�]] = Y and for everyA 2 Y , �(A) 2 �.

We writeT DX�Y as a shorthand forT DX�Y
op

. 2

For example,T DfA;Bg�fCg

f<;>g
contains all TD’s

(A; �1)(B; �2) � (C; �3) where each of�1; �2 and�3 is either\ < " or \ > ". An example element is(A;<)(B;>
) � (C;<).

4 TD Mining Problems

The data mining problem studied in this paper is the following task: Given a relation pair(I1; I2), select from a
specified TD class the TD that is satisfied with the highest confidence and with support greater than or equal to
some specified minimum threshold.

Definition. Let (I1; I2) be a relation pair over the setU of attributes. LetX;Y � U . Let� be a nonempty subset
of op. Given a minimum threshold� 2 (0; 1):
Determine TD� 2 T DX�Y

� for which the following is true (lets; c 2 (0; 1) such that(I1; I2) j=s
c �):

� s � � (threshold support), and

� For every�0 2 T DX�Y
� the following is true:

If (I1; I2) j=s0

c0 �
0 with s0 � � , thenc0 � c (maximal confidence).

This problem is called TDMINE�. TDMINE is a shorthand for TDMINEop. 2

TDMINE� is an optimization problem: Given a relation pair(I1; I2) and a TD classT DX�Y
� , the task is to

assign operators of� to attributes ofX [Y so as to maximize the confidence of the resulting TD. Moreover, the
support of the desired TD must exceed a specified minimum threshold. An alternative problem would be to fix the
confidence and maximize the support.

The first step in the analysis of algorithms and complexity is to find some parameter(s) characterizing the size
of the input. What is the size of TDMINE? Probably the most obvious answer is to characterize the input by
the number of tuples (cardinality). Alternatively, one could consider characterizing the input by the number of
attributes (degree, or dimension). In the remainder of this paper, we will adopt the following conventions:

� Given a relation pair(I1; I2), we useC to denote the average number of tuples in each state. That is,
C =

jI1j+jI2j

2
.

� Given a TD classT DX�Y
� , we useD to denote the number of attributes involved. That is,D = jX [Y j.

4

� Mostly a relation pair(I1; I2) and a TD classT DX�Y
� are implicitly understood.

Obviously, TDMINE� can be solved in a brute force manner by an exhaustive algorithm that tries all possible
combinations of operators, and computes the support and the confidence for each TD so obtained. The number of
possible combinations isO(j�jD). Obviously, computing the confidence and the support of a given TD can be
done inO(C2) time.

Time proportional toC2 andj�jD is quite expensive. First considerO(C2) time. Computing the confidence
and the support of a specified TD requires comparing every tuple ofI1 with every tuple ofI2, resulting injI1j�jI2j
or O(C2) comparisons. There seems to be no means to reduce the quadratic growth rate. Of course, practical
performance improvements can be made by reducing the average cardinalityC by “approximating”(I1; I2) by
relation pairs with fewer tuples. Techniques that may be applicable aregeneralization[HCC93] andsampling. We
will come back to this in section 6.

Next considerO(j�jD) time. The exponential growth rate is important if TD mining is done for relations
with a fairly high number of attributes. An intriguing question is to which extent the naive exponentialO(j�jD)
algorithm can be improved. Interestingly, we are going to show that TDMINE isNP-complete and can be solved
in polynomial time only ifP=NP. As we indicated before, TDMINE is an optimization problem. For studying its
complexity, we transform it into a roughly equivalent decision problem, called TDMINE(D):

Definition. Let (I1; I2) be a relation pair over the setU of attributes. LetX;Y � U . Let� be a nonempty subset
of op. Givens0; c0 2 (0; 1):

Determine whether for some� 2 T DX�Y
� holds:(I1; I2) j=s

c � with s � s0 andc � c0.

This problem is called TDMINE(D)�. TDMINE(D) is a shorthand for TDMINE(D)op. 2

Hence, TDMINE(D)� is the following problem: Determine whether there exists a TD in a specified TD class with
confidence and support above given thresholds. Obviously, TDMINE� is at least as hard as TDMINE(D)�: If we
have a polynomial-time algorithm for TDMINE�, then we certainly do for TDMINE(D)�. However, it turns out
that TDMINE(D)� is NP-complete for certain�, as we are going to show.

5 Complexity Results

In this section we are going to explore the complexity of TDMINE(D). This leads to the following interesting
results:

� TDMINE(D) is NP-complete.

� TDMINE(D)f<;=;>g, on the other hand, is inP.

A polynomial time algorithm for the latter problem is given at the end of this section. Some practical implications
of these complexity results are discussed in the next section.

5.1 TDMINE(D) is NP-complete

Lemma 1 If (I1; I2) j=s
c � � (A; �) with � 2 op then for somes0 � s, for somec0 � c, (I1; I2) j=s0

c0 � � (A; �
0)

with �0 2 f�;�; 6=g.

Proof. Trivial. 2

Theorem 1 TDMINE(D) isNP-complete.

Proof. TDMINE(D) can be very easily solved by anondeterministicpolynomial algorithm, one that guesses a
TD of the specified TD class and computes the support and confidence in polynomial time; hence TDMINE(D) is
in NP. We are now going to prove that 3SAT can be reduced to TDMINE(D).

5

x1 x2 x3 : : : xv r

I1 : :5 :5 :5 : : : :5 :5
I21 : 0 :5 :5 : : : :5 :5

:5 0 :5 : : : :5 :5
:5 :5 0 : : : :5 :5

: : :

:5 :5 :5 : : : 0 :5
1 :5 :5 : : : :5 :5
:5 1 :5 : : : :5 :5
:5 :5 1 : : : :5 :5

: : :

:5 :5 :5 : : : 1 :5
I22 : 0 0 1 : : : :5 0 3 tuples

0 0 1 : : : :5 :5 corresponding to
0 0 1 : : : :5 1 :x1 _ :x2 _ x3

: : :

Figure 2: Construction example.

Consider the propositional formula�: ^
i=1::m

�i1 _ �i2 _ �i3

where�ij is either a variable or the negation of one. LetV be the smallest set containing each variable appearing
in �. Let v be the number of elements inV . v � 3 is assumed without loss of generality. LetU be a set of
attributes. For convenience, we assumeU = V [frg wherer 62 V . We describe the reductionR from 3SAT to
TDMINE(D) next. Letx 2 U . We writetx=a for the tuplet overU satisfying:t(x) = a, andt(y) = 0:5 if y 6= x.
For everyi 2 [1::m] we define three tuples, denotedti0; ti1 andti2, with for eachx 2 U , for eachj 2 f0; 1; 2g,

� tij(x) = 0 if �i1 _ �i2 _ �i3 contains the negation ofx,

� tij(x) = 1 if �i1 _ �i2 _ �i3 containsx—without negation,

� tij(r) = j=2, and

� tij(x) = 0:5 otherwise.

No term of� contains bothx and the negation ofx, is assumed without loss of generality. LetI21 be the smallest
relation overU containingtx=0 andtx=1 for everyx 2 V . Let I22 be the smallest relation overU containing
ti0; ti1 andti2 for everyi 2 [1::m]. Let I2 = I21 [I22. Let I1 be a singleton containingtr=0:5. The construction
is illustrated in figure 2. Letp be the number of tuple pairs ofI1 � I2. Let

s0 =
v

p
andc0 = 1

Note thats0 > 0. We claim thatR is a reduction from 3SAT to TDMINE(D). To prove our claim, we have to
establish two things: (1) that any formula� has a satisfying truth assignment iff for some� �� 2 T DV �frg holds,
(I1; I2) j=

s
c � � � with s � s0 andc � c0; and (2) thatR can be computed in spacelogn.

Assume for some��� 2 T DV �frg holds,(I1; I2) j=s
c ���with s � s0 andc � c0. By lemma 1,�(r) 2 f�; 6=;�g

is assumed without loss of generality. We are going to show that� has a satisfying truth assignment. Letk be the
number of tuple pairs ofI1 � I21 satisfying�. Obviously,k � v. Clearly, the number of tuple pairs ofI1 � I22
satisfying� is a multiple of three—let it be3n. Let� (Greek lowercase kappa) be a number such that

� =

�
0 if �(r) = \ 6= "
k otherwise

6

Symbol Interpretation
� left-hand pattern
� right-hand pattern
3n number of pairs ofI1 � I22 satisfying�
k number of pairs ofI1 � I21 satisfying�
� number of pairs ofI1 � I21 satisfying

both� and�
p cardinality ofI1 � I2
r single attribute in[[�]]
v number of variables

Figure 3: Symbol interpretation.

Then(I1; I2) j=s
c � � � with

s =
�+ 2n

p
andc =

�+ 2n

k + 3n

Note thatnot� = n = 0 sinces � s0 > 0. Thenc � c0 ands � s0 imply:

� = k andn = 0 andk � v:

Hence,�(r) is either\ � " or\ � ", andk = v. One can easily check thatk = v implies that��� is inT DV �frg

f�;�g
.

Let fxi1; xi2; xi3g be the set of variables occurring in theith term of�. Let

�ij =

�
\ � " if ti0(xij) = 0
\ � " if ti0(xij) = 1

(j = 1::3)

n = 0 implies that for eachi 2 [1::m] the following is true:

�(xi1) = �i1 or �(xi2) = �i2 or �(xi3) = �i3

Obviously, if we identify\ � " and\ � " with falseandtrue respectively, then� is a truth assignment satisfying
�. Conversely, from the foregoing it is easy to see that if� has a satisfying truth assignment, then for some
� � � 2 T DV �frg holds,(I1; I2) j=s

c � � � with s � s0 andc � c0. To see thatR can be computed inlogn space,
note thatR(�) can be written directly from�. This concludes the proof.2

Remark that the TD mined in theorem 1 only uses the operators\ � " and\ � ". This leads to the following
corollary.

Corollary 1 If � contains both\ � " and\ � " then TDMINE(D)� is NP-complete.

Proof. This follows immediately from the fact that in the proof of theorem 1, the TD� � � belongs toT DV �frg

f�;�g
.

2

5.2 TDMINE(D) f<;=;>g is in P

We first show that TDMINE(D)f<;=;>g is inP, and then we give a polynomial-time algorithm to solve TDMINEf<;=;>g.

Theorem 2 TDMINE(D)f<;=;>g is in P.

Proof. For each(s1; s2) in I1 � I2, one can construct inO(D) time theuniqueTD � � � of T DX�Y
f<;=;>g such

that(s1; s2) satisfies both� and�, whereD = jX [Y j. For each TD so constructed one can compute the support
and confidence in polynomial time. Finally, one can select the TD with the highest confidence among the TD’s of
which the support exceeds the specified minimum threshold.2

7

Theorem 2 suggests a naive way to solve TDMINEf<;=;>g. A better algorithm is presented in figure 4. The
algorithm proceeds in three steps. During thepattern phase, we store for every(s1; s2) of I1 � I2 theuniqueTD
� � � of T DX�Y

f<;=;>g such that both� and� are satisfied by(s1; s2). This step requiresO(C2) time. The resulting
list with O(C2) tuples is sorted during thesorting phase. This can be done inO(C2 logC) time. Finally, the
statistics phasecomputes the support and the confidence for each TD stored in the pattern phase, and returns the
“strongest” TD. This step requiresO(C2) time. So the algorithm isO(C2 logC). When we characterize the input
by the number of attributes, then the time requirements areO(D).

6 Discussion

It turns out that the proposed algorithms for solving TDMINE are at leastO(C2), whereC is the average cardi-
nality. This is no surprise, as computing the confidence of a specified TD requires comparing every tuple ofI1
with every tuple ofI2. Of course, practical performance improvements can be obtained by reducingC. Perhaps
the most obvious way to reduce the number of tuples is bysampling. Generalization[HCC93] has also been used
for reducing the cardinality of a relation. Another way to speed up the TD mining process might be to use visual-
ization techniques, which are generally considered a useful method for discovering patterns in data sets. This, of
course, relies on some user intervention. The problem here is that it is difficult to visualize data spaces with high
dimensionality. Every attribute appearing in a TD is a dimension. Moreover, the time dimension is inherent in
every TD. The practicality of visualization therefore depends on the possibility to solve a given TDMINE problem
by only dealing with “short” TD’s at a time.

So a question of practical importance is: Can a given TDMINE problem involvingD attributes be solved
by (a) firstdecomposingit in polynomial time into a number of TDMINE subproblems of a specified visualizable
dimension (usually 2 or 3), (b) then solving the smaller subproblems using visualization techniques, and (c) finally
merging the solutions in polynomial time so as to obtain a solution for the original TDMINE problem? It is of
interest to note immediately that “shortening” the left-hand pattern of a TD can result in an increase as well as
a decrease of the confidence. Recall that the confidencec of a TD � � � is equal tob=l whereb is the number
of tuple pairs satisfying both� and�, andl is the number of tuple pairs satisfying�. Replacing� by a proper
subset of� will result in bothb and l increasing. Soc can increase as well as decrease. More fundamentally,
we showed that the TDMINE problem isNP-complete if the input is characterized by the number of attributes.
In the suggested decomposition strategy, all subproblems are of the same specified, visualizable dimension and
hence the time required to solve any one subproblem is irrespective ofD. But then the decomposition strategy
corresponds to a polynomial-time algorithm, which exists only ifP=NP. This is a strong indication that there is no
such decomposition strategy. As a consequence, visualization does not seem applicable to the discovery of TD’s
among a “large” (i.e., non-visualizable) number of attributes.

We showed that TDMINE isNP-complete if expressed as a function of the number of attributesD. Time
proportional toj�jD is expensive ifD is large, i.e., if we are mining TD’s involving a fairly large number of at-
tributes. Hu and Cercone [HC96] describeattribute reductiontechniques to eliminate attributes that are redundant
and/or irrelevant to the knowledge discovery process they are studying. Although their approach is not directly
applicable to our TD’s, the idea is interesting and needs further attention.

TDMINE� requires that the operators appearing in the outcome TD belong to�. One could consider specify-
ing the set of allowed operators on an attribute by attribute basis—rather than for the TD as a whole. In particular,
for certain attributes, such asSS#, equality and inequality are often the only meaningful operators. We found
that many meaningful TD’s compare primary key attributes by “=”. This can be explained as follows. Often
tuples represent entities (for example, employees); and primary keys represent identifiers of entities (for example,
social security number). In many cases, one is interested to see how certain properties (for example, salary) of
an entity evolve in time. In these cases, one will typically look for TD’s of which the left-hand pattern includes
(K1;=); : : : ; (Kn;=) wherefK1; : : : ;Kng is the primary key of the relational schema under consideration. This
gives rise to a variant of TDMINE� where certain operators are fixed. A possible instance of this new mining
problem might be: Choose�1 and�2 so as to optimize the confidence of(SS#;=)(Rank; �1) � (Sal; �2). Major
performance improvements can be made for mining such TD’s: Let� be a TD of which the left-hand pattern
contains(K1;=); : : : ; (Kn;=) wherefK1; : : : ;Kng is the primary key. One can easily check that if the relations
I1 andI2 are kept ordered by the primary key then the support and confidence of� can be computed inO(C)
time.

8

Algorithm 1 Algorithm to solve TDMINEf<;=;>g.

Input: A relation pair(I1; I2) overU ,
i = jI1j � jI2j � 1,
two setsX;Y � U ,
a minimum threshold support� 2 (0; 1).

Output:An answer to TDMINEf<;=;>g.

�PATTERN PHASE�
makeanArray empty
FORs in I1 LOOP

FOR t in I2 LOOP
FORA in X [Y LOOP

IF s(A) < t(A) THENq(A) := \ < "
ELSIFs(A) = t(A) THENq(A) := \ = "
ELSEq(A) := \ > "
END-IF

END-LOOP
addq to anArray

END-LOOP
END-LOOP
�SORTING PHASE�
sortanArray byX;Y

add “sentinel” at the end ofanArray
�STATISTICS PHASE�
maxc:=0; maxTD:=a dummy pattern
l1 :=1; l2 :=1; r1 :=1; r2 :=1
WHILEl1 � i LOOP

x :=anArray(l1)[X]
WHILE anArray(l2)[X] =x LOOP

l2 :=l2 +1
END-LOOP
l := l2� l1

WHILEr1 < l2 LOOP
y :=anArray(r1)[Y]
WHILEanArray(r2)[Y] =y andr2 < l2 LOOP

r2 :=r2 +1
END-LOOP
r := r2� r1

s := r=i; c := r=l

IF s � � andc > maxc THEN
maxc:=c ; maxTD:=anArray(r1)[X [Y]

END-IF
r1 :=r2

END-LOOP
l1 :=l2

END-LOOP
RETURNmaxc, maxTD2

Figure 4: Algorithm to solve TDMINEf<;=;>g.

9

7 Summary and Open Problems

We introducedtrend dependencies(TD’s), which allow capturing significant temporal trends. We studied the
problem TDMINE: Given a temporal databases, mine the TD of a specified TD class with the highest confidence
and with support greater than or equal to a specified minimum threshold. Time requirements were expressed in
terms of the average cardinalityC and the number of attributesD. We showed that TDMINE isNP-complete:
If time requirements are expressed as a function ofD then TDMINE can be solved in polynomial time only if
P=NP. We argued that TDMINE cannot be “scaled down” to lower dimensions, which limits the practicality of
visualization techniques for discovering TD’s among many attributes. Although solving TDMINE is generally
expensive, we indicated some special cases with reduced time requirements. Further research is required to study
and apply techniques for tuple and attribute reduction.

References
[AS94] A. Agrawal and R. Srikant. Fast algorithms for mining association rules. InProc. Int. Conf. Very Large Data

Bases, pages 487–499, Santiago, Chile, 1994.

[BCW95] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating dependencies. InProc. 5th Int. Conf. on Database
Theory, LNCS 893, pages 322–337. Springer-Verlag, 1995.

[CHY96] M.-S. Chen, J. Han, and P.S. Yu. Data mining: An overview from a database perspective.IEEE Trans. on
Knowledge and Data Engineering, 8(6):866–883, 1996.

[FL95] C. Faloutsos and K.I. Lin. Fastmap: A fast algorithm for indexing, data mining and visualization of traditional
and multimedia datasets. InProc. ACM SIGMOD Int. Conf. Management of Data, pages 163–174, San Jose, CA,
1995.

[FMMT96] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized associa-
tion rules: Scheme, algorithms, and visualization. InProc. ACM SIGMOD Int. Conf. Management of Data, pages
13–23, Montreal, Canada, 1996.

[HC96] X. Hu and N. Cercone. Mining knowledge rules from databases: A rough set approach. InInt. Conf. Data
Engineering, pages 96–105, New Orleans, Louisiana, 1996.

[HCC93] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases.IEEE Trans.
on Knowledge and Data Engineering, 5(1):29–40, 1993.

[HF95] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. InProc. Int. Conf. Very
Large Data Bases, pages 420–431, Z¨urich, Switzerland, 1995.

[JSS96] C.S. Jensen, R.T. Snodgrass, and M.D. Soo. Extending existing dependency theory to temporal databases.IEEE
Trans. on Knowledge and Data Engineering, 8(4):563–582, 1996.

[PCY95] J.S. Park, M.-S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. InProc. ACM
SIGMOD Int. Conf. Management of Data, pages 175–186, San Jose, CA, 1995.

[SA96] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. InProc. ACM SIGMOD
Int. Conf. Management of Data, pages 1–12, Montreal, Canada, 1996.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases.
In Proc. Int. Conf. Very Large Data Bases, pages 432–443, Z¨urich, Switzerland, 1995.

[WBBJ97] X.S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical design for temporal databases with multiple granular-
ities. to appear in ACM Trans. on Database Systems, 22(2), 1997.

[Wij95] J. Wijsen. Design of temporal relational databases based on dynamic and temporal functional dependencies. In
S. Clifford and A. Tuzhilin, editors,Recent Advances in Temporal Databases, Workshops in Computing, pages
61–76. Springer, 1995.

[YC96] S.J. Yen and A.L.P. Chen. The analysis of relationships in databases for rule derivation.Journal of Intelligent
Information Systems, 7(3):235–259, 1996.

10

