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Abstract

We investigate the computational complexity of mining certain trends in temporal databases. A simple ex-
ample of such trend might b&n general, salaries of employees do not decreaddie trends considered are
formalized by the construct dfend dependencg¢TD). TD’s can compare attributes over time by using opera-
tors of {<, =, >, <, > #}. TD satisfaction is characterized bysapportandconfidence As TD’s may express
meaningful trends, mining them is significant. The TD mining problem studied is the following task: Given a
temporal database, find the TD of a specified form that holds with the highest confidence and with support greater
than or equal to a specified minimum threshold. This problem is called TDMINE. Unlike most other work in
data mining, we primarily focus on the computational complexity of the TDMINE problem—rather than on the
performance of algorithms to solve it. Both the number of tuples (cardinality) and the number of attributes can
be taken as the “size” of TDMINE. TDMINE can be solvedd(C?) time whereC is the cardinality. If the
time requirements are expressed in function of the number of attributes—rather than the cardinality—then the
problem turns ouNP-complete. We discuss the practical implications of this result.

1 Introduction

Recently, there has been a growing interest in the mining of different typassotiation rulegrom large rela-

tional tables. These associations generally compare certain attribute values of a tuple with specified constants. An
example is'lf degree is PhD then salary is large[YC96]. In this paper, we introduce rules (ailependencigs

that compare attributdsetweerntwo tuples using operators ¢k, =, >, <, >#}. An example might béThe

higher the degree, the higher the salaryhis type of dependencies turns out very useful in temporal databases

as it allows capturing meaningful trends. Nearly all temporal dependencies that have so far been proposed in the
literature compare attributes for equality only [JSS96], which greatly limits their expressivity.

For example, consider the relational schef8&#, Rank, Shl A tuple {SS#:x, Rank:y, Saltaneans that the
employee with the social security numhehas ranky and salary. Ranks are numbers between 1 and 5. Assume
that; andl, are two relations over this schema at two time pointandt, respectively, wheré, is earlier than
to. Consider the regularity:

“If an employee’s rank increases then his/her salary does not decrease.”

which may be denoted:
(SS#,=)(Rank,<) o (Sal, <)

and called arend dependendyf D). The meaning is as follows: Let ands» be two tuples off; andI, respec-

tively with s;(SS#) = s2(SS#)—i.e., s; ands, represent the same employee—an@Rank) < sa(Rank).

Then our confidence in the reliability of the trend increases (fal) < s2(Sal). On the other hand; (Sal) >

s2(Sal) would give evidence against the trend. So a specified TD can hold to a certain degree. The degree of TD
satisfaction will be characterized by the common notionsugfportandconfidence

As TD’s may express significant knowledge about the stored data, discovering them is interesting and impor-
tant. Until now, most research in temporal database mining has addressed the problem of searching for sequences
that are similar to a given target sequence [CHY96]. The aim of this study is to explore the complexity of dis-
covering (ormining TD’s in temporal relations. The TD mining problem studied in this paper is the following
task: Given a temporal database, choose among the TD’s that obey a specified format, the TD with the highest
confidence and with support greater than a specified minimum threshold. This problem is called TDMINE. A
precise characterization will be given in the technical treatment later on.

Most work in data mining concerns in the first place the performance of algorithms. Some examples are [AS94,
FL95, PCY95, SON95]. In this study, we proceed in a different way and start with analyzing the complexity of the
TDMINE problem itself—rather than algorithms to solve it. The rationale behind this approach is that complexity
analysis gives us important indications about the tractability of the problem in hand, which may complement
algorithm design techniques.

The outline of the paper is as follows. The next section discusses some related work. The notion of TD
is formalized in section 3. Section 4 gives a precise formulation of the data mining problems explored. The
complexity results are given in section 5. Perhaps the most important contribution of this paper is the theorem
that TDMINE is NP-complete if the input is characterized by the number of attributes involved in a TD. Some
practical implications of the results are discussed in section 6. Finally, section 7 contains concluding remarks and
open problems.



A final remark: In this paper, a temporal relation is limited to a péit I,) of classical relations. One may
wonder why we only consider two time points, rather than a (possibly infinite) sequence of time points. In fact,
the results presented can be extended to infinite time series of relations. However, we found out that the reduced
formalism with two time instances has in it the full complexity of the data mining problem we are going to explore,
while it considerably simplifies the technical treatment.

2 Related Work

Lately and independently of data mining, there has been a growing interest in dependencies for temporal databases [JSS96,
WBBJ97]. All temporal dependencies found in the extensive overview of Jensen et al. [JSS96] compare attributes
by using equality only. Our TD’s compare attributes by operator§<of=, >, <, > #}; they generalize the
dynamic functional dependencigposed by Wijsen [Wij95].
Association rules can take different forms [HF95, SA96]. Most work in association mining has concentrated
on discovering rules of the form

1 (Al) andp2 (Az) and.. pn(An) = pn+1(An+1)

whereA,, ..., A, are all distinct attributes. Eagh(A;) is an equation associating attribute with a single
value or a range of values of its domain. An example given by Srikant and Agrawal [SA96] is:

(Age : 30..49) and(Married : Yes) = (NumCars : 2)

expressing that married people between 30 and 49 years old have two cars. The sopporassociation rule

is the percentage of tuples satisfying both the left-hand and the right-hand side of th@ heleonfidence is if

c% of the tuples satisfying the left-hand side of the rule also satisfy the right-hand side. Certain studies limit the
lengthn of the rule to enablgisualization Fukuda et al. [FMMT96] deal with two-dimensional rules only (i.e.,

n = 2).

Note that the association rules just mentioned compare certain attribute values of a tuple with specified con-
stants. Each individual tuple can give evidence for or against the association. The TD’s proposed in this pa-
per compare attributes in one tuple with the corresponding attributes in another tuple. That is, TD satisfaction
is expressed in terms of tuple pairs—rather than individual tuples. Following the terminology of Baudinet et
al. [BCW95], TD’s are constraint-generating 2-dependencies, whereas classical association rules are constraint-
generating 1-dependencies.

Before we turn to the technical treatment, we mention that TD’s can be easily extended to capture data regu-
larities within a single state (called intrastate dependencies in [JSS96]) or among more than two states. However,
the restricted formalism is sufficiently powerful to show the full complexity of the data mining problem we are
interested in.

3 Formalizing Trends

In this section we formalize the notion tend dependendc§f D) andTD class To help understanding, we start
with a simple example.
3.1 lllustrative Example

Consider the relationd andl; shown in figure 1. Intuitively we think of; as the tuples valid at some timg
andI as the tuples valid at some later time The TD

o = (8S#,=)(Rank, <) o (Sal, <)

expresses that an employee’s salary does not decrease if his/her rank increases. Clearly, dpptpyes
evidence against the trend: The rank of employkkincreased while his/her salary decreased. On the other
hand, employees1 and B2 support the trend, as both their rank and salary increased. Finally, empldyee

1By the left-hand side of the rule, we mean the rule part preceding he right-hand side is what follows-.



[1: [23

SS# Rank Sal SS# Rank Sal
Al 1 100 Al 2 110
B2 2 80 B2 3 90
C3 3 140 C3 2 130
D4 1 120 D4 2 110

Figure 1: Example database.

provides no argument for or against the trend, as his/her rank did not increase. We are going to formalize the
above observations. The express{Si#, =)(Rank, <) is called gpattern and is said to beatisfiedby atuple

pair (s1,s2) of I; x I ifand only if s (SS#) = s2(SS#) ands; (Rank) < s2(Rank). Likewise, the right-hand
pattern(Sal, <) is satisfied by the tuple pais;, s2) of I x I if and only if s; (Sal) < s2(Sal). So satisfaction is
expressed in terms of tuple pairsifx I,. In figure 1, the cardinality of, x I is 16. Every tuple pair satisfying

the left-hand patteriSS#, =)(Rank, <) gives evidence for or against the TD in hand, depending on whether or
not it satisfies the right-hand pattei$ial, <). The confidence is obtained by the number of tuple pairs satisfying

both patterns divided by the number of tuple pairs satisfying the left-hand pattern; in the exampl&. The
supports is the number of tuple pairs satisfying both patterns divided by the total number of tuple pairs; in the
examples = 2/16. So the TDo is satisfied with suppof/16, and with confidence/3.

3.2 Trend Dependency

We are now going to define the notion wénd dependenc¢TD). Leti,j € IN. We write [i..j] for the set
{i,i+1,...,7} and we write(0, 1) for the smallest set containing every real number between 0 and 1. The
number of elements in a s8tis denotedS]|.

Definition. We assume the existence of a totally ordereddein, <). We definethe setp = {<,=,>, <, > #}
of operators with their natural meaning. We assume the existence of aseaif attributes LetU C att. A tuple
overU is a total function fronl/ to dom. A relation overU is a set of tuples ovdy. A tuple pairoverU is a
pair (s, s2) of tuples ovelU. A relation pairoverU is a pair(I;, I2) of relations ovelJ.

For simplicity, we assume that all attributes of a tuple take their values from the same “dadwain” This
limitation does not affect the results presented in this study in any significant way.

A patternover U is a set{(41,61),...,(Am,0n)} Where A,,... A, are all distinct attributes ot/, and
0,...6,, are operators obp. That is, a pattern ovdy is a (partial) function fronU to op. The domain of
a patternr is denotedr].

{(A1,01), (A2,02), Ceey (Am,t‘)m)} will be denOtEdAl,el)(AZ,GZ) . (Am,gm)

The tuple pair(s1, s2) overU is said tosatisfythe pattern(A;,0;) ... (A, 0.m) Iff s1(A;) 0; s2(A;) for every
i €[1l..m].

A trend dependenc{TD) overU is a statement o p wherer andp are patterns ovel/. 7 andp are called
theleft-handand theright-handpattern ofr o p respectively. The semantics of TD’s is now defined relative to a
relation pair([y, I»):

Leto be a TD ovellU. Let (I, I2) be a relation pair ovey .
Let p be the number of tuple pairs &f x I,. Letl be the number of tuple pairs &f x I, satisfying the left-hand
pattern ofs. Letb be the number of tuple pairs 6f x I satisfying both the left-hand and the right-hand pattern



of 0. Let _ .
S:{b/p if p#0 andc:{b/l ifl#0

0 otherwise 0 otherwise

Theno is said to besatisfiedby (11, I2) with supports andconfidence, denoted Iy, I) 5 0. If (I1, I5) =5 o,
then we also say thatandc are the support and the confidencesofespectively (wherély, I>) is implicitly
understood). Clearl§ < s < e < 1.0

We now define the notion of D class A TD classdetermines a set of TD’s by specifying the domain of the
left-hand and the right-hand pattern, and by limiting the operators that can be used.

Definition. Let © be a nonempty subset op. Let X andY be sets of attributes (i.eX, Y C att).
TheTD classdetermined byX, Y and© (in that order), denoteﬁl’Dg"Y, is the smallest set containing the TD
m o p if the following is true:

e [r] = X and for everyd € X, n(A) € ©, and
e [p] =Y andforeveryd € Y, p(A) € ©.

We write 7D*°Y as a shorthand fof D5Y . O

For exampleTD}ﬁ’f%"{C} contains all TD’s

(A,01)(B,65) 0 (C,03) where each of, 6> andfs is either < ” or “ > ”. An example element i4, <)(B, >
) e (C, <).

4 TD Mining Problems

The data mining problem studied in this paper is the following task: Given a relatiopalr), select from a
specified TD class the TD that is satisfied with the highest confidence and with support greater than or equal to
some specified minimum threshold.

Definition. Let (I, I>) be a relation pair over the sEtof attributes. LetX, Y C U. Let © be a nonempty subset
of op. Given a minimum threshold € (0,1):
Determine TDw € 7Dg°Y for which the following is true (let, ¢ € (0, 1) such tha(l, I,) |=: o):

e s > 1 (threshold support)and

e Foreveryo' € TDE°Y the following is true:
If (I, 5) E5 o' with s’ > 7, thenc’ < ¢ (maximal confidence)

C

This problem is called TDMINE. TDMINE is a shorthand for TDMINE,. O

TDMINEg is an optimization problem: Given a relation péli, [>) and a TD cIaSSTDg"Y, the task is to
assign operators @ to attributes ofX U Y so as to maximize the confidence of the resulting TD. Moreover, the
support of the desired TD must exceed a specified minimum threshold. An alternative problem would be to fix the
confidence and maximize the support.

The first step in the analysis of algorithms and complexity is to find some parameter(s) characterizing the size
of the input. What is the size of TDMINE? Probably the most obvious answer is to characterize the input by
the number of tuples (cardinality). Alternatively, one could consider characterizing the input by the number of
attributes (degree, or dimension). In the remainder of this paper, we will adopt the following conventions:

e Given a relation paifI;, I-), we useC to denote the average number of tuples in each state. That is,
¢ = Mtz
2

e Givena TD clas§ Da°Y, we useD to denote the number of attributes involved. Thafiss | X U Y.



e Mostly a relation paifI;, I) and a TD clas§ Dg°* are implicitly understood.

Obviously, TDMINEy can be solved in a brute force manner by an exhaustive algorithm that tries all possible
combinations of operators, and computes the support and the confidence for each TD so obtained. The number of
possible combinations i©(|©|P). Obviously, computing the confidence and the support of a given TD can be
done inO(C?) time.

Time proportional taC? and|©|? is quite expensive. First considéXC?) time. Computing the confidence
and the support of a specified TD requires comparing every tudlievaith every tuple ofl», resulting in|I; | x | I5]
or O(C?) comparisons. There seems to be no means to reduce the quadratic growth rate. Of course, practical
performance improvements can be made by reducing the average cardihalityapproximating”(Z,, I>) by
relation pairs with fewer tuples. Techniques that may be applicablgeseralizatiofHCC93] andsampling We
will come back to this in section 6.

Next considerO(|©|P) time. The exponential growth rate is important if TD mining is done for relations
with a fairly high number of attributes. An intriguing question is to which extent the naive expon@ta}”)
algorithm can be improved. Interestingly, we are going to show that TDMINMPi£omplete and can be solved
in polynomial time only ifP=NP. As we indicated before, TDMINE is an optimization problem. For studying its
complexity, we transform it into a roughly equivalent decision problem, called TDMINE(D):

Definition. Let (I, I5) be a relation pair over the sEtof attributes. LetX, Y C U. Let © be a nonempty subset
of op. Givens’, ¢ € (0,1):

Determine whether for somec 7D3°Y holds: (I, I,) =2 o with s > s’ ande > ¢,

This problem is called TDMINE(R). TDMINE(D) is a shorthand for TDMINE(Q),. O

Hence, TDMINE(D), is the following problem: Determine whether there exists a TD in a specified TD class with
confidence and support above given thresholds. Obviously, TDMINELt least as hard as TDMINE(BD) If we

have a polynomial-time algorithm for TDMINg then we certainly do for TDMINE(R). However, it turns out

that TDMINE(D)e is NP-complete for certail®, as we are going to show.

5 Complexity Results

In this section we are going to explore the complexity of TDMINE(D). This leads to the following interesting
results:

e TDMINE(D) is NP-complete.
e TDMINE(D){< — >}, onthe other hand, is iR.

A polynomial time algorithm for the latter problem is given at the end of this section. Some practical implications
of these complexity results are discussed in the next section.

5.1 TDMINE(D) is NP-complete

Lemma 1 If (I, I,) =5 7o (A, ) with § € op then for some’ > s, for somer’ > ¢, (I, ) =5 o (4,6")
with " € {<, >, #}.

Proof. Trivial. O
Theorem 1 TDMINE(D) isNP-complete.

Proof. TDMINE(D) can be very easily solved byreondeterministigpolynomial algorithm, one that guesses a
TD of the specified TD class and computes the support and confidence in polynomial time; hence TDMINE(D) is
in NP. We are now going to prove that 3SAT can be reduced to TDMINE(D).



Ir1 X2 T3 Ty r
L: 5 b5 .5 5 .5
I 0 5 5 5 .5
b5 0 5 5 .5
S5 5 0 5 .5
b5 5 5 0 .5
1 5 5 5 .5
S 1 5 5 b
S5 5 1 5 .5
B T T 1 .5
I5, 0 0 1 5 0 3tuples
0 0 1 .5 .5 corresponding to
0 0 1 ) 1 -z V xe Vs

Figure 2: Construction example.

Consider the propositional formuls:
/\ Ti1 V Ti2g V T3
i=1l..m

wherer;; is either a variable or the negation of one. liebe the smallest set containing each variable appearing
in A. Letwv be the number of elements In. v > 3 is assumed without loss of generality. Liétbe a set of
attributes. For convenience, we assuthe= V U {r} wherer ¢ V. We describe the reductiaR from 3SAT to
TDMINE(D) next. Letz € U. We writet,.—, for the tuplet overU satisfying:t(z) = a, andt(y) = 0.5if y # z.

For everyi € [1..m] we define three tuples, denotgg, ¢;; andt;», with for eachz € U, for eachj € {0, 1, 2},

o t;;(z) = 0if 741 V 732 V 733 contains the negation af,
o t;;(z) = 1if 741 V 132 V 733 containse—without negation,
® 1i(r)

e t;;(z) = 0.5 otherwise.

=j/2,and

No term of A contains both: and the negation af, is assumed without loss of generality. Liet be the smallest
relation overU containingt,—o andt,—; for everyxz € V. Let Is; be the smallest relation ovéfr containing

tio, ti1 @andt;, for everyi € [1..m]. LetI, = I U I»». LetI; be a singleton containing—o 5. The construction
is illustrated in figure 2. Lep be the number of tuple pairs &f x I,. Let

s =Zandd =1
p
Note thats’ > 0. We claim thatR is a reduction from 3SAT to TDMINE(D). To prove our claim, we have to
establish two things: (1) that any formublahas a satisfying truth assignment iff for somep € 7D} holds,
(I, ) E: mopwith s > s" ande > ¢/; and (2) thatR can be computed in spateg n.

Assume for someop € 7D} holds,(I1, I) =5 mopwith s > s’ ande > ¢’. By lemmalp(r) € {<, #,>}

is assumed without loss of generality. We are going to showAhads a satisfying truth assignment. lkebe the
number of tuple pairs of; x I»; satisfyingm. Obviously,k < v. Clearly, the number of tuple pairs &f x I»s

satisfyingr is a multiple of three—let it b8n. Let x (Greek lowercase kappa) be a number such that

n:{ 0 ifp(?“):“;é”

k otherwise



Symbol | Interpretation

T left-hand pattern

p right-hand pattern

3n number of pairs of; x Iy, satisfyingr

k number of pairs of; x Iy, satisfyingr

K number of pairs of; x I»; satisfying
both7 andp

p cardinality ofI; x I

T single attribute ifp]

v number of variables

Figure 3: Symbol interpretation.

Then(Iy, Iz) =5 7 o p with

/<;+2nand K+ 2n
CcC =
k+3n

Note thatnotx = n = 0 sinces > s’ > 0. Thenc > ¢’ ands > s’ imply:

k = kandn = 0 andk > v.

Henceyp(r) is either* <” or “ > 7, andk = v. One can easily check thiat= v implies thatro p is in TD}/;{Q

Let {x;1,z2,7;3} be the set of variables occurring in tHé term of A. Let

o “S” If tio(mij):0 .
01] - { « Z 2 If tzO(sz) — 1 (.] - 13)

n = 0 implies that for each € [1..m] the following is true:
W(l‘il) = 92’1 Orﬂ(l'ig) = 92’2 Or’]T(.Z‘Zg) = 92’3

Obviously, if we identify“ <” and“ > ” with falseandtrue respectively, them is a truth assignment satisfying
A. Conversely, from the foregoing it is easy to see thak ihas a satisfying truth assignment, then for some
rope TDVI"} holds,(I1, I,) =2 w o pwith s > s’ ande > ¢'. To see thaRk can be computed itog n space,
note thatR(A) can be written directly fromd\. This concludes the proof]

Remark that the TD mined in theorem 1 only uses the operétets’ and“ > ”. This leads to the following
corollary.

Corollary 1 If © contains both* <” and “ > ” then TDMINE(D}, is NP-complete.

Proof. This follows immediately from the fact that in the proof of theorem 1, theaT®p belongs thD}/;’{;]i.

O

5.2 TDMINE(D) (< -y isinP
We first show that TDMINE(D). — - is inP, and then we give a polynomial-time algorithm to solve TDMINE_ ;.

Theorem 2 TDMINE(D){<,— ~} isinP.

Proof. For each(sy,s») in I; x I, one can construct i)(D) time theuniqueTD 7 o p of TDFSL ., such
that(sy, s2) satisfies bothr andp, whereD = | X UY'|. For each TD so constructed one can compute the support
and confidence in polynomial time. Finally, one can select the TD with the highest confidence among the TD’s of
which the support exceeds the specified minimum threshold.



Theorem 2 suggests a naive way to solve TDMINE -,. A better algorithm is presented in figure 4. The
algorithm proceeds in three steps. During pla¢tern phasewe store for everysy, s2) of I; x I, theuniqueTD

mopof TDF2L -, such that botlr andp are satisfied bys, s»). This step require®(C?) time. The resulting

list with O(C?) tuples is sorted during theorting phase This can be done i®(C? log C) time. Finally, the
statistics phaseomputes the support and the confidence for each TD stored in the pattern phase, and returns the
“strongest” TD. This step requiré3(C?) time. So the algorithm i€®(C? log C'). When we characterize the input

by the number of attributes, then the time requirementg&X4e).

6 Discussion

It turns out that the proposed algorithms for solving TDMINE are at |€4&t?), whereC is the average cardi-

nality. This is no surprise, as computing the confidence of a specified TD requires comparing every fuple of
with every tuple ofl,. Of course, practical performance improvements can be obtained by rediicirgrhaps

the most obvious way to reduce the number of tuples isdmpling GeneralizatiofHCC93] has also been used

for reducing the cardinality of a relation. Another way to speed up the TD mining process might be to use visual-
ization techniques, which are generally considered a useful method for discovering patterns in data sets. This, of
course, relies on some user intervention. The problem here is that it is difficult to visualize data spaces with high
dimensionality. Every attribute appearing in a TD is a dimension. Moreover, the time dimension is inherent in
every TD. The practicality of visualization therefore depends on the possibility to solve a given TDMINE problem
by only dealing with “short” TD’s at a time.

So a question of practical importance is: Can a given TDMINE problem involéingttributes be solved
by (a) firstdecomposing in polynomial time into a number of TDMINE subproblems of a specified visualizable
dimension (usually 2 or 3), (b) then solving the smaller subproblems using visualization techniques, and (c) finally
merging the solutions in polynomial time so as to obtain a solution for the original TDMINE problem? It is of
interest to note immediately that “shortening” the left-hand pattern of a TD can result in an increase as well as
a decrease of the confidence. Recall that the confidente TD 7 o p is equal tob/l whereb is the number
of tuple pairs satisfying both andp, andl is the number of tuple pairs satisfying Replacingr by a proper
subset ofr will result in bothb and! increasing. Sa@ can increase as well as decrease. More fundamentally,
we showed that the TDMINE problem iP-complete if the input is characterized by the number of attributes.

In the suggested decomposition strategy, all subproblems are of the same specified, visualizable dimension and
hence the time required to solve any one subproblem is irrespectitde &ut then the decomposition strategy
corresponds to a polynomial-time algorithm, which exists onBANP. This is a strong indication that there is no

such decomposition strategy. As a consequence, visualization does not seem applicable to the discovery of TD’s
among a “large” (i.e., non-visualizable) number of attributes.

We showed that TDMINE isNP-complete if expressed as a function of the number of attribiteSime
proportional to|©|” is expensive ifD is large, i.e., if we are mining TD'’s involving a fairly large number of at-
tributes. Hu and Cercone [HC96] descrittribute reductiortechniques to eliminate attributes that are redundant
and/or irrelevant to the knowledge discovery process they are studying. Although their approach is not directly
applicable to our TD’s, the idea is interesting and needs further attention.

TDMINE g requires that the operators appearing in the outcome TD belddg@ne could consider specify-
ing the set of allowed operators on an attribute by attribute basis—rather than for the TD as a whole. In particular,
for certain attributes, such &5S+#, equality and inequality are often the only meaningful operators. We found
that many meaningful TD’s compare primary key attributes by “=". This can be explained as follows. Often
tuples represent entities (for example, employees); and primary keys represent identifiers of entities (for example,
social security number). In many cases, one is interested to see how certain properties (for example, salary) of
an entity evolve in time. In these cases, one will typically look for TD’s of which the left-hand pattern includes
(Ky,=),...,(K,,=)where{K,..., K,} is the primary key of the relational schema under consideration. This
gives rise to a variant of TDMINE where certain operators are fixed. A possible instance of this new mining
problem might be: Choog andf- so as to optimize the confidence(®S#, =)(Rank, 61) o (Sal,2). Major
performance improvements can be made for mining such TD's:.cLle¢ a TD of which the left-hand pattern
containg Ky,=),...,(K,,=) where{K}, ..., K,} is the primary key. One can easily check that if the relations
I, and I, are kept ordered by the primary key then the support and confidenceaf be computed i@ (C)
time.



Algorithm 1 Algorithm to solve TDMINE. _ ;.

Input: A relation pair(I;, I,) overU,

1= |Il| X |I2| Z 1,

two setsX,Y C U,

a minimum threshold supporte (0,1).
Output: An answer to TDMINE . _ ;.

*PATTERN PHASE
makeanArray empty
FORs in I; LOOP
FORt in I, LOOP
FORAIN X UY LOOP
IF s(A) < t(A) THENg(A) := “ < ”
ELSIFs(A) = t(A) THENq(A) :=
ELSEq(a) := “>"”
END-IF
END-LOOP
addq to anArray
END-LOOP
END-LOOP
*SORTING PHASE
sortanArray by X,Y
add “sentinel” at the end @nArray
xSTATISTICS PHASE
maxc:=0; maxTD=a dummy pattern
11:=1;12 :=1;r1 :=1;r2 =1
WHILE11 < i LOOP
x:=anArray(I11)[ X]
WHILE anArray(12)[ X]=x LOOP
2 =12 +1
END-LOOP
1:=12-11
WHILEr1 < 12 LOOP
y:=anArray(rl)[ Y]
WHILEanArray(r2)] Y] =y andr2 < 12 LOOP
r2 :=r2 +1
END-LOOP
ri=r2-ri
s:=r/ijc:=r/1
IF s > 7 andc > maxc THEN
maxc:=c; maxTD=anArray(rl)[ XUY]
END-IF
rl :=r2
END-LOOP
11 :=I2
END-LOOP
RETURNmaxc, maxTDO

“ »”

Figure 4: Algorithm to solve TDMINE. _ .



7 Summary and Open Problems

We introducedrend dependencigd D’s), which allow capturing significant temporal trends. We studied the
problem TDMINE: Given a temporal databases, mine the TD of a specified TD class with the highest confidence

and with support greater than or equal to a specified minimum threshold. Time requirements were expressed in

terms of the average cardinalify and the number of attributd3. We showed that TDMINE i&NP-complete:

If time requirements are expressed as a functio@dhen TDMINE can be solved in polynomial time only if
P=NP. We argued that TDMINE cannot be “scaled down” to lower dimensions, which limits the practicality of
visualization techniques for discovering TD’s among many attributes. Although solving TDMINE is generally

expensive, we indicated some special cases with reduced time requirements. Further research is required to study

and apply techniques for tuple and attribute reduction.
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