
-1

A Comparison of Access Methods for
Temporal Data

Betty Salzberg and Vassilis J. Tsotras

June 13, 1997

TR-18

A TimeCenter Technical Report

0

Title A Comparison of Access Methods for Temporal Data

Copyright c 1997 Betty Salzberg and Vassilis J. Tsotras. All rights

reserved.

Author(s) Betty Salzberg and Vassilis J. Tsotras

Publication History June 1997. A TimeCenter Technical Report.

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector)

Michael H. B�ohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA

Richard T. Snodgrass (codirector)

Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia

Kwang W. Nam, Chungbuk National University, Korea

Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA

Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TimeCenter is provided \as is" and without any express or im-

plied warranties, including, without limitation, the implied warranty of merchantability and �tness

for a particular purpose.

The TimeCenter icon on the cover combines two \arrows." These \arrows" are letters in the

so-called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors

and successors. The Rune alphabet (second phase) has 16 letters, all of which have angular shapes

and lack horizontal lines because the primary storage medium was wood. Runes may also be found

on jewelry, tools, and weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote \T" and \C," respectively.

1

Abstract:

This paper attempts a comparison of different indexing techniques which have been proposed for supporting

efficient access to temporal data. The comparison is based on a collection of important performance criteria

that include the consumed space, the update processing and the query time for representative queries. Since

it was not possible to compare actual method implementations against the same data sets, the comparison is

based on worst case analysis, hence no assumptions on data distribution or query frequencies are made. When

a number of methods have the same asymptotic worst case behavior, features in the methods which affect

average case behavior are discussed. Additional criteria examined are the pagination of an index, the ability

to cluster related data together and the ability to efficiently separate old from current data (so that larger

archival storage media such as write-once optical disks can be used). The purpose of the paper is to identify

the difficult problems in accessing temporal data and provide a good description of how the different methods

aim to solve them. A general lower bound for answering basic temporal queries is also introduced.

1. Introduction

Conventional databases work in terms of a single logical state. Using transactions the database

evolves from one consistent state to the next, while the previous state is discarded after a

transaction commits; as a result, there is no memory with respect to prior states of the data. Such

databases capture a single snapshot of reality (also calledsnapshot databases) and are insufficient

for those applications that require the support of past, current or even future data. What is needed

is atemporal database [SA86] since it fully supports the storage and querying of time varying data.

Research in temporal databases has shown an immense growth in recent years [TK96]. Various

aspects of temporal databases have been examined [OS95], including temporal data models, query

languages, access methods, etc. Prototype efforts appear in [B95]. In this paper we provide a

comparison of proposedtemporal access methods, i.e., indexing techniques for temporal data. We

attempt to identify the problems in the area together with the solutions given by each method.

A taxonomy of time in databases has been developed in [SA85]. Specifically,transaction time,

valid time and user-defined time have been proposed. Transaction and valid time are two

orthogonal time dimensions. Transaction time is the time when a fact is stored in the database. It

is consistent with the serialization order of transactions (i.e., it is monotonically increasing) and

can be implemented using the commit times of transactions [S94]. Valid time denotes the time

when a fact becomes effective (valid) in reality. User-defined time is an uninterpreted time domain

managed by the user and therefore we will not discuss it further.

The term “temporal database” refers in general to a database that supports some aspect of time,

not counting the user-defined time. Depending on the time dimension(s) supported, there are three

kinds of temporal databases:transaction-time, valid-time andbitemporal [J+94].

This research was partially supported by NSF grants IRI-9303403, IRI-9111271, IRI-9509527 and by the New York
State Science and Technology Foundation as part of its Center for Advanced Technology program

2

A transaction-time database records the history of a database activity rather than real world his-

tory. As such, it can “rollback” to one of its previous states. Since previous transaction times cannot

be changed (every change is stamped with a new transaction time), there is no way to change the

past. This is useful for applications in auditing, billing etc. A valid-time database maintains the en-

tire temporal behavior of an enterprise as best known now. It stores our current knowledge about

the enterprise’s past, current or even future behavior. If errors are discovered in this temporal be-

havior, they are corrected by modifying the database. When a correction is applied, previous values

are not retained. It is thus not possible to view the database as it was before the correction. A bitem-

poral database combines the features of the other two types. It more accurately represents reality

and allows for retroactive as well as postactive changes.

The tuple-versioning temporal model [LJ88, NA87] is used in this paper. Under this model the

database is a set of records (tuples) that store the versions of real-life objects. Each such record, has

a time-invariantkey (surrogate) and, in general, a number of time-variantattributes; for simplicity

we assume that each record has exactly one time varying attribute. In addition it has one or two

intervals, depending on which types of time are supported. Each interval is represented by two

attributes:start_time andend_time.

Critical in the design of any access method is the accurate specification of the problem that

needs to be solved. This is particularly important in temporal databases since the problem specifi-

cation depends dramatically on the time dimension(s) supported. Whether valid and/or transaction

time are supported, affects directly the way records are created or updated. This has resulted in

much confusion in the past regarding the design of temporal access methods. To exemplify the dis-

tinct characteristics of the transaction and valid time dimensions, a separateabstraction, describing

the central underlying problem for each kind of temporal database, is used.

The query performance of the examined methods is compared in the context of various

temporal queries. In order to distinguish among the various kinds of queries, we use a general

temporal query classification scheme [SJ96]. The paper also introduceslower bounds for

answering basic temporal queries. Each lower bound assumes a disk-oriented environment and

describes the minimal I/O needed for solving the query if the space consumption is kept minimal.

Access methods that achieve a matching upper bound for a temporal query are also indicated.

Among the discussed methods, the ones that support transaction time (either in a transaction-

time or in a bitemporal environment) assume alinear transaction-time evolution [OS95]. This

implies that a new database state is created by updatingonly the current database state. Another

3

option is the so-calledbranching transaction time [OS95]. Branching methods are not discussed

further except noting that related problems are investigated in [DSST89], [LM91], [SL95] and

[LST95]. In particular, in [DSST89] and [LM91] a new state can be created by updating any of the

past states; each new state gets a separate version identifier by which it can be directly accessed.

In [SL95] version identifiers are replaced by (branch identifier, timestamp) pairs. Both a tree access

method and a forest access method are proposed for these branched versions. [LST95] deals with

multiple lines of evolutions created by splitting the database state: at some time instant the state of

the database can be split into independently evolving sub-states etc. Instead of version identifiers

timestamps are used. The same timestamp can appear in many different evolution lines, thus

concurrent states at parallel evolutions can be related through queries.

Recently, other kinds of temporal, in particulartime-series, queries have appeared in literature

[AFS93, FRM94, JMM95]. Given are a pattern and a time-series (an evolution) and the typical

query asks for all those times that a similar pattern appeared in the series. The search involves some

distance criterion that qualifies when a pattern is similar to the given pattern. The distance criterion

guarantees no false dismissals (false alarms are eliminated afterwards). Whole pattern matching

[AFS93] and sub-matching [FRM94] queries have been examined. Such time-series queries are

reciprocal in nature to the temporal queries addressed here (which usually provide a time instant

and ask for the pattern at that time) and are not covered in this paper.

The rest of the paper is organized as follows: section 2 specifies the basic problem underlying

each of the three temporal databases. We categorize a method as transaction-time, valid-time and

bitemporal, depending on which time dimension(s) it most efficiently supports. Section 3 presents

the items on which our comparison was based including the lower bounds. Section 4 discusses in

more detail the basic characteristics that a good transaction or bitemporal access method should

have. The examined methods are presented in section 5. The majority of them falls in the

transaction-time category which comprises the bulk of this paper (subsection 5.1). Within the

transaction-time category we further classify methods according to what queries they more

efficiently support (key-only, time-only or time-key methods) A table summarizing the worst case

performance characteristics of the transaction-time methods is also included. For completeness we

also cover valid-time and bitemporal methods in subsections 5.2 and 5.3 respectively. We conclude

the paper with a discussion on remaining open problems.

4

2. Problem Specification

The following discussion is influenced by [SA86] where the differences between valid and trans-

action time were introduced and illustrated through various examples. Here we attempt to identify

the implications to the access method design from the support of each time dimension.

To visualize a transaction-time database consider first an initially empty set of objects that

evolves over time as follows. Time is assumed to be discrete and described by a succession of

consecutive nonnegative integers. Any change is assumed to occur at a time indicated by one of

these integers. A change is the addition or deletion of an object or the value change of the object’s

attribute. A real life example would be the evolution of the employees in a company. Each

employee has a surrogate (ssn) and asalary attribute. The changes include additions of new

employees (as they hired or re-hired), salary changes or employee deletions (as they retire or leave

the company). Since an attribute value change can be represented by the artificial deletion of the

object followed by the simultaneous rebirth of this object having the modified attribute, we may

concentrate on object additions or deletions. Such an evolution appears in Figure 1. An object is

alive from the time that it is added in the set and until (if ever) it is deleted from the set. The state

of the evolving set at timet, namelys(t), consists of all the alive objects att. Note that changes are

always applied to the most current states(t), i.e., past states cannot be changed.

Assume that the history of the above evolution is to be stored in a database. Since time is always

increasing and the past is unchanged, a transaction time database can be utilized with theimplicit

updating assumptionthat when an object is added or deleted from the evolving set at timet, a

transaction updates the database system about this change at the same time, i.e., this transaction has

commit timestampt.

When a new object is added on the evolving set at timet a record representing this object is

stored in the database accompanied by a transaction-time interval of the form [t, now). now is a

variable representing the current transaction time and is used because at the time the object is born

its deletion time is yet unknown. If this object is later deleted at time , the transaction-time

interval of the corresponding record is updated to [). An object deletion in the evolving set is

thus represented as a “logical” deletion in the database (the record of the deleted object is still

retained in the database but with a different transactionend_time).

Since a transaction-time database system keeps both current and past data, it is natural to

introduce the notion of a logical database state as a function of time. We should therefore

t'

t t',

5

distinguish between the database system and logical database state. (This is not required in

traditional database systems as there always exist exactly one logical database state---the current

one). The logical database state at timet consists of those records whose transaction time interval

containst. Under the implicit updating assumption, the logical database state is equivalent to the

states(t) of the observed evolving set. Since an object can be reborn there may be many records

(or versions) that are stored in the database system representing the history of the same object. But

all these records correspond to disjoint transaction-time intervals in the object’s history and each

such record can belong to a single logical database state.

To summarize, an access method for a transaction-time database needs to: (a) store its past

logical states, (b) support addition/deletion/modification changes on the objects of its current

logical state, and, (c) efficiently access and query the objects in any of its states.

In general, a fact can be entered in the database at a different time than when it happened in

reality. This implies that the transaction-time interval associated with a record is actually related to

the process of updating the database (the database activity) and may not accurately represent the

period the corresponding object was alive in reality.

A valid-time database has a different abstraction. To visualize it, consider a dynamic collection

of interval-objects. We use the term interval-object to emphasize that the object carries a valid-time

interval to represent the validity period of some object property. (In contrast, and to emphasize that

transaction-time represents the database activity rather than reality, we term the objects in the

transaction-time abstraction asplain-objects.) The allowable changes are the addition/deletion/

modification of an interval-object, but the collection’s evolution (past states) isnot kept. An

timet1 t2 t3 t9

a
h

b
f

c
g

t8

Figure 1: An example evolution where changes occur in increasing time order. The evolution is depicted as of time
t10. Lines ending to ‘>’ correspond to objects that have not yet been deleted. Att10 states(t9) = {a,f,g} is
updated by the addition of objecte to create states(t10) = {a,f,g,e}.

t4 t7

e

t10

6

example of a dynamic collection of object-intervals appears at Figure 2.

As a real-life example consider the collection of contracts in a company. Each contract has an

identity (contract_no), anamount attribute and an interval representing the contract’s duration or

validity. Assume that when a correction is applied only the corrected contract is kept.

A valid-time database is suitable for this environment. When an object is added to the

collection, it is stored in the database as a record that contains the object’s attributes (including its

valid-time interval). The time of the record’s insertion in the database is not kept. When an object

deletion occurs, the corresponding record is physically deleted from the database. If an object

attribute is modified, its corresponding record attribute is updated but the previous attribute value

is not retained. The valid-time database keeps only the latest “snapshot” of the collection of

interval-objects. Querying a valid-time database cannot give any information on the past states of

the database or how the collection evolved. Note that the database may store records with the same

surrogate but with non-intersecting valid-time intervals.

The notion of time is now related to the valid-time axis. Given a valid-time point, interval-

objects can be classified as past, future or current (alive) as related to this point, if their valid-time

interval is before, after or contains the given point. Valid-time databases are said to correct errors

anywhere in the valid-time domain (past, current or future) because the record of any interval-

object in the collection can be changed, independently of its position on the valid-time axis.

An access method for a valid-time database should therefore: (a) store the latest collection of

interval-objects, (b) support addition/deletion/modification changes to this collection, and, (c)

previous Collection

valid-time axis

new Collection

valid-time axis

I1

I2

(a) (b)

Figure 2: Two states of a dynamic collection of interval-objects. Only the valid-time intervals of the objects are
shown. The new collection (b) is created from the previous collection (a) after deleting objectI1 and add-
ing objectI2. Only the new (latest) collection is retained.

7

efficiently query the interval-objects contained in the collection when the query is asked.

Reality is more accurately represented if both time dimensions are supported. The abstraction

of a bitemporal database can be viewed as keeping the evolution (through the support of

transaction-time) of a dynamic collection of (valid-time) interval-objects. Figure 3 (taken from

[KTF95b]) offers a conceptual view of a bitemporal database. Instead of a single collection of

interval-objects there is a sequence of collections indexed by transaction time. If each interval-

object represents a company contract we can now represent how our knowledge about such

contracts evolved. When an interval-object is inserted in the database at transaction-timet a record

is created with the object’s surrogate (contract_no), attribute (contract amount) and valid-time

interval (contract duration) and an initial transaction-time interval [t, now). The transaction-time

interval endpoint will be changed to another transaction time if this object is later updated. For

example, the record for interval-objectI2 has transaction-time interval [t2, t4) since it was inserted

in the database at transaction-timet2 and was “deleted” att4. Such a scenario happens if at timet4

we realize that a contract was wrongly inserted at the database.

A bitemporal access method should: (a) store its past logical states, (b) support addition/

deletion/modification changes on the interval-objects of its current logical state, and, (c) efficiently

access and query the interval-objects on any of its states.

Figure 3 is helpful in summarizing the differences among the underlying problems of the

Figure 3: A conceptual view of a bitemporal database. Thet-axis (v-axis) corresponds to transaction (valid) times.
Only the valid-time interval is shown from each interval-object. At transaction timet1 the database
recorded that interval-objectI1 is added on collectionC(t1). At t5 the valid-time interval of objectI1 is
modified to a new length.

I1

t1

v

C(t1)

I1

t2

v

C(t2)

I2

I1

t3

v

C(t3)

I2
I3

I1

t4

v

C(t4)

I3

I1

t5

v

C(t5)

I3

t

8

various database types. A transaction-time database differs from a bitemporal database in that it

maintains the history of an evolving set ofplain-objects instead ofinterval-objects. A valid-time

database differs from a bitemporal since it keepsonly one collection of interval-objects (the latest).

Each collectionC(ti) can be thought on its own as a separate valid-time database. A transaction-

time database differs from a (traditional) snapshot database in that it also keeps itspast states

instead of only the latest state. Finally, the difference between a valid-time and a snapshot database

is that the former keepsinterval-objects (and these intervals can be queried).

Most of the presented methods directly support a single time-dimension. We categorize

methods that take advantage of the increasing time ordered changes as transaction-time access

methods, since these are main characteristics of transaction-time. The bulk of this paper deals with

transaction-time methods. Fewer approaches deal with valid-time access methods and even less

with the bitemporal methods category (methods which support both time dimensions on the same

index).

3. Comparison Items

This section elaborates on the items used in comparing the various access methods. We start with

the various queries examined and proceed with the other criteria.

3.1 Queries

From a query perspective a valid-time and a transaction-time database are simply a collection of

intervals. Figures 1 and 2(a) or 2(b) differ on how these intervals were created (which is important

to the update and space performance of the access method) and what is their meaning (which is

important for the application). Hence, for single time databases (valid or transaction) queries are

of similar form. Since most methods assume transaction-time characteristics we discuss first

queries in this domain, i.e., intervalT below corresponds to a transaction-time interval and

“history” is meant on the transaction-time axis. The examined queries can be categorized in the

following classes:

(I) Given a contiguous intervalT, find all objects alive during this interval.

(II) Given a key range and a contiguous time intervalT, find the objects with keys in the given

range and which are alive during intervalT.

(III) Given a key range find the history of the objects in this range.

A special case of class (I) is when intervalT is reduced to a single transaction time instantt.

9

This query has been termed thetransaction pure-timeslice. In the company employee example this

query is “find all employees working at the company at timet”. It is usually the case that an access

method which efficiently solves the timeslice query is also efficient for the more general interval

query; we therefore consider the timeslice query as a good representative of class (I) queries.

Similarly for class (II), special cases include combinations where the key range and/or the

transaction time interval, contain a single key and a single time instant respectively. For simplicity,

we will consider the representative case when the time interval is reduced to a single transaction

time instant; this is thetransaction range-timeslice query (“find the employees working at the

company at timet and whose ssn belongs in rangeK”).

From class (III) we choose the special case that the key range is reduced to a single key as in:

“find the salary history of employee with ssnk”. This is the transaction pure-key query. If

employeek ever existed the answer would be the salaries of that employee, else the answer is

empty. In some methods, an instance of an employee object must be provided in the query and its

previous salary history is found (this is because these methods need to include a time predicate in

their search). This special pure-key query (termed the pure-key with time predicate) is of the form:

“find the salary history of employeek who existed at timet.”

Query class (I) can be thought as a special case of class (II) when no key range is specified and

class (III) a special case of (II) when no interval is specified (rather, all times in history are of

interest). As some of the proposed methods are better suited for answering queries from a particular

class we discuss all three classes separately. If an access method as originally presented does not

address queries from a given class but we feel that such queries could be addressed with a slight

modification which does not affect the method’s behavior we indicate so.

For valid-time databases we can similarly define the valid-time pure-timeslice (“find all

contracts valid at timev”), valid-time range-timeslice (“find all contracts with numbers in rangeK

and which are valid atv”) etc. A bitemporal database enables queries in both time dimensions:

“find all contracts that were valid onv = January 1, 1994, as recorded in the database at transaction

time t = May 1, 1993”. From all contracts in the collectionC(t) for t = May 1, 1993, the query

retrieves only the contracts that would be valid on Jan. 1, 1994.

The selection of the above query classes is definitely not complete, but contains basic, non-

trivial queries. In particular, classes (I) and (II) relate tointersection based queries, i.e., the answer

consists of objects whose interval contains some query time point or in general intersects a query

10

interval. Depending on the application, other queries may be of importance. For example, find all

objects with intervals before or after a query time point/interval, or all objects with intervals

contained in a given interval [BO95, NDK96], etc.

To distinguish among the various temporal queries a three-entry notation, namely:Key/Valid/

Transaction [SJ96], will be alternatively used. This notation specifies which object attributes are

involved in the query and in what way. Each entry is described as a “point”, “range”, “* ,” or “-”.

A “point” for theKey entry means that the user has specified a single value to match the object key;

“point” for theValid or Transaction entry implies a single time instant is specified for the valid or

transaction-time domain. “range” indicates a specified range of object key values for theKey entry,

or, an interval for theValid/Transaction entries. A“*” means that any value is accepted in this

entry, while “-” means that the entry is not applicable for this query. For example, “*/-/point”

denotes the transaction pure-timeslice query, “range/point/-” is the valid range timeslice query and

“point/-/*” is the transaction pure-key query. In a bitemporal environment the query “find all the

company contracts that were valid onv = January 1, 1994, as recorded in the database during

transaction time intervalT: May 1-May 20, 1993” is an example of a “*/point/range” query. As

presented, the three-entry notation deals with intersection queries but can be easily extended

through the addition of extra entry descriptions to accommodate before/after and other kinds of

temporal queries.

3.2 Access Method Costs

The performance of an access method is characterized by three costs: (1) the storage space used to

physically store the data records and the structures of the access method, (2) the update processing

(the time to update the method’s data structures about a change that took place), and, (3) the query

time for each of the basic queries.

An access method has two modes of operation: in the Update mode data is inserted, altered or

deleted while in the Query mode queries are specified and answered using the access method. For

a transaction-time access method the input for an update consists of atime instantt and all the

changes that occurred on the data on that instant. A change is further specified by the uniquekey

of the object it affects and the kind ofchange (addition, deletion or attribute modification). The

access method’s data structure(s) will then be updated to include the new change. Similar is the

input to a bitemporal access method where the time of the change is also specified together with

the changes and the interval-object(s) affected. The input to a valid-time access method simply

11

contains the changes and the interval-object(s) affected.

For a transaction or a bitemporal method the space is a function ofn, the total number of

changes in the evolution, i.e.,n is the summation of insertions, deletions and modification updates.

If there are 1,000 updates to a database with only one record,n is 1,000. If there are 1,000 insertions

to an empty database and no deletions or value modifications,n is also 1,000. Similarly, for 1,000

insertions followed by 1,000 deletions,n is 2,000. Note thatn corresponds to the minimal

information needed for storing the evolution’s past. We assume that the total number of transaction

instants is alsoO(n). This is a natural assumption since every real computer system can process a

possibly large but limited number of updates per transaction instant.

In a valid-time method, the space is a function ofl, the number of interval-objects currently

stored in the method, i.e., the size of the collection. For example, in both 2(a), 2(b)l is seven.

The query time of a method is a function of the answer sizea. We usea to denote the answer

size of a query in general.

Since temporal data can be large (especially in transaction and bitemporal databases), a good

solution should use space efficiently. A method with fast update processing can be utilized even

with a quickly changing real world application. In addition, fast query times will greatly facilitate

the use of temporal data.

The basic queries that we examine can be considered as special cases of classical problems in

computational geometry for which efficient in-core (main memory) solutions have been provided

[CT92]. It should be mentioned that the general computational geometry problems support

physical deletions of intervals. Hence they are more closely related to the valid-time database

environment. The valid pure-timeslice query (“*/point/-”) is a special case of the dynamic interval

management problem. The best in-core bounds for the dynamic interval management are provided

by using the Priority-Search tree data structure of [McC85], yieldingO(l) space,O(logl) update

processing per change andO(logl + a) query time (all logarithms are base-2). Herel is the number

of intervals in the structure when the query/update is performed. The range-timeslice query is a

special case of the orthogonal segment intersection problem for which a solution usingO(llogl)

space,O(logl loglogl) update processing andO(logl loglogl + a) query time has been provided in

[M84]; another solution [McC85] that uses a combination of the Priority-Search tree and the

Interval Tree [E83] yieldsO(l) space,O(logl) update processing andO(log2l + a) query time.

The problems addressed by transaction or bitemporal methods are related to work on persistent

12

data structures [DSST89]. In particular, [DSST89] shows how to take an in-core “ephemeral data

structure” (meaning that past states are erased when updates are made) and convert it to a

“persistent data structure” (where past states are maintained). A “fully persistent” data structure

allows updates to all past states. A “partially persistent” data structure allows updates only to the

most recent state. Because of the properties of transaction time evolution, transaction and

bitemporal access methods can be thought as disk extensions of partially persistent data structures.

3.3 Index Pagination and Data Clustering

In a database environment the cost of a computation is not based on how many main memory slots

are accessed or how many comparisons are made (as it is the case with in-core algorithms) but

instead on how many pages are transferred between main and secondary memory. In our

comparison this is very crucial as the bulk of data will be stored in secondary storage media. It is

therefore natural to use an I/O complexity cost ([KRVV93]) that measures the number of disk

accesses for updating and query answering. Two important considerations regarding the I/O

complexity of the query time are:index pagination anddata clustering.

Index pagination deals with the issue of how well index nodes of a method are paginated. Since

the index is used as a means to search for and update the data, its pagination greatly affects the

performance of the method. As an example, a B+-tree is a well-paginated index as it requires

O(logBr) page accesses for searching or updatingr objects, using pages of sizeB. The reader should

be careful with the notation: logBr is itself anO(log2r) function only ifB is considered a constant.

For an I/O environmentB is another problem variable. Thus logBr represents a log2B speedup over

log2r which for I/O complexity is a great improvement. Transferring a page takes about 10 msec

on the fastest disk drives; in contrast, comparing two integers in main memory takes about 5 nsec.

Accessing pages also uses CPU time. The CPU cost of reading a page from the disk is about 2000

instructions [GR93].

Data clustering can also substantially improve the performance of an access method. If data

records that are “logically” related for a given query can also be stored physically close, then the

query is optimized as fewer pages are accessed. Consider for example an access method that can

cluster the data in such a way that answering the transaction pure-timeslice query takesO(logBn +

a/B) page accesses. This method is more I/O efficient than another method which solves the same

query inO(logBn + a) page accesses. Both methods use a well-paginated index (which corresponds

to the logarithmic part of the query). However, in the second method each data record that belongs

13

to the answer set may be stored on a separate page, thus requiring a much larger number of page

accesses for solving the query.

Data can be clustered by the time dimension only, where data records that have been “alive”

for the same time periods are collocated, or by both time and key range, or by key range only. Note

that a clustering strategy that optimizes a given class of queries may not work for another query

class; for example, a good clustering strategy for pure-key queries would store all the versions of

a particular key in the same page; however this strategy would not work for pure-timeslice queries

as the clustering objective is different.

Clustering is in general more difficult to maintain in a valid-time access method because of its

dynamic behavior. The answer to a valid-time query depends on the collection of interval-objects

currently contained in the access method; this collection changes as valid-time updates are applied.

Even though some good clustering may have been achieved for some collection, it may not be as

efficient for the next collection that is produced after a number of valid-time updates. In contrast,

in transaction or bitemporal access methods the past is not changed, so an efficient clustering can

be retained more easily, despite updates.

Any method which clusters data (a primary index) and uses, say,O(logBn + a/B) pages for

queries can also be used (less efficiently) as a secondary index by replacing the data records with

pointers to pages containing data records, thus usingO(logBn+ a) pages for queries. The distinction

between methods used as primary indexes and methods used as secondary indexes is one of

efficiency, not of algorithmic properties.

We use the term “primary index” only to mean that the index controls the physical placement

of data. For example, a primary B+-tree has data in the leaves. A secondary B+-tree has only keys

and references to data pages (pointers) in the leaves. Primary indexes need not be on primary keys

of relations. Many of the methods do expect a unique non-time varying key for each record; we do

not attempt to discuss how these methods might be modified to cluster records by non-unique keys.

3.4 Migration of Past Data to Another Location

Methods that support transaction time maintain all their past states, a property that can easily result

in excessive amounts of data (even for methods that support transaction time in the most space-

efficient way). In comparing such methods it is natural to introduce two other comparison

considerations: (a) whether or not past data can be separated from the current data, so that the

14

smaller collection of current data can be accessed more efficiently, and, (b) whether data is

appended sequentially to the method and never changed so that Write-Once Read-Many (WORM)

devices might be used.

On WORMs, one must burn into the disk an entire page with a checksum (the error rate is high,

so a very long error-correcting code must be appended to each page.). Thus, once a page is written,

it cannot be updated. It should be noted that since the WORM devices are themselves random ac-

cess media,any access method which can use WORM devices can also be used with magnetic disks

only. There are no access methods which are restricted to the use of WORMs.

3.5 Lower Bounds on I/O Complexity

We first establish a lower bound on the I/O complexity of basic transaction-time queries. The lower

bound is obtained using a comparison based model in a paginated environment and applies to the

transaction pure-timeslice (“*/-/point”), range-timeslice (“range/-/point”) and pure-key (with time

predicate, or a “point/-/range”) query. Any method that solves such a query in linear (O(n/B)) space

needs at least I/Os to solve it.

Sincea corresponds to the query answer size, any method cannot do better thanO(a/B) I/O’s

to provide the answer;a/B is the minimal number of pages where this answer can be stored. We

proceed with the justification of the logarithmic part of the bound. Since the range-timeslice query

is more general than the pure-timeslice query, we first show that the pure-timeslice problem is re-

duced to the “predecessor” problem for which a lower bound is then established [TK95]. A similar

reduction can be proved for the pure-key query with time predicate.

The predecessor problem is defined as following: Given an ordered setP of N distinct items,

and an itemk, find the largest member of setP that is less than or equal tok. For the reduction of

the pure-timeslice problem assume that setP contains integers and consider the

following real-world evolution: at timet1 a single real-world object with name (oid) t1 is created,

and lives until just before timet2, i.e., the lifespan of objectt1 is [t1, t2). Then, real-world objectt2 is

born att2 and lives for the interval [t2, t3), and so on. Therefore, at any time instantti the state of the

real-world system is a single object with nameti. Hence theN integers correspond ton = 2N chang-

es in the above evolution. Consequently, finding the whole timeslice at timet reduces to finding

the largest element in setP that is less or equal tot, i.e., the predecessor oft insideP.

We will show that in the comparison based model, and in a paginated environment the prede-

Ω nBlog a B⁄+()

t1 t2< ... tN<<

15

cessor problem needs at least ’s. The assumption is that each page containsB items

and there is no charge for a comparison within a page. Our argument is based on a decision tree

proof. Let the first page be read and assume that the items read within that page are sorted (in any

case sorting inside one page is free of ’s). By exploring the entire page using comparisons, we

can only getB+1 different answers concerning itemk. These correspond to theB+1 intervals cre-

ated by theB items. No additional information can be retrieved. Then a new page is retrieved that

is based on the outcome of the previous comparisons of the first page, i.e., a different page is read

everyB+1 outcomes. In order to determine the predecessor ofk the decision tree must haveN

leaves (as there areN possible predecessors). As a result, the height of the tree must be . Thus

any algorithm solving the paginated version of the predecessor problem in the comparison model

needs at least ’s.

If there was a faster than method for the pure-timeslice problem using

 space, then we would have invented a method that solves the above predecessor problem

in less than ’s.

Observe that the lower bound was shown for the query time of methods using linear space, ir-

respectively of the update processing. If the elements of setP are given in order, one after the other,

O(1) time (amortized) per element is needed in order to create an index on the set that would solve

the predecessor problem in ’s (more accurately, since no deletions are needed, we

only need a fully paginated, multilevel index that increases on one direction). If these elements are

given out of order, then time is needed per insertion (B-tree index). In the transaction

pure timeslice problem (“*/-/point”) time is always increasing andO(1) time for update processing

per change is enough and clearly minimal. Thus we call a methodI/O optimal for the transaction

pure-timeslice query if it achieves space and query time using con-

stant updating.

Similarly, for the transaction range-timeslice problem (“range/-/point”), we call a methodI/O

optimal if it achieves query time, space and update pro-

cessing per change.m is the number of alive objects when the update takes place. The logarithmic

processing is needed because the range-timeslice problem requires ordering keys by their value.

Changes arrive in time order but out of key order and there arem alive keys on the latest state

among which an update has to choose.

Ω NBlog() I/O

I/O

NBlog

Ω NBlog() I/O

O nBlog a B⁄+()

O n B⁄()

O NBlog() I/O

O NBlog() I/O

O NBlog()

O n B⁄() O nBlog a B⁄+()

O nBlog a B⁄+() O n B⁄() O mBlog()

16

For the transaction pure-key with time predicate the lower bound for query time is

, since the logarithmic part is needed to locate the time predicate in the past and

a/B I/O’s are required to provide the answer in the output.

The same lower bound holds for bitemporal queries since they are at least as complex as trans-

action queries. For example, consider the “*/point/point” query which is specified by a valid time

v and a transaction timet. If the valid-time interval of each interval object extends from to

in the valid-time domain, finding all interval objects that att where intersectingv reduces to finding

all interval-objects in collectionC(t) (since all of them would contain the valid instantv). However

this is the “*/-/point” query.

Since from a query perspective a valid and a transaction-time database are both collections of

intervals, a similar lower bound applies for the corresponding valid-time queries (by replacingn

by l, the number of interval-objects in the collection). For example, any algorithm solving the “*/

point/-” query inO(l/B) space needs at least I/O’s query time.

4. Issues in Efficient Method Design for Transaction/Bitemporal Data

A common problem to all methods that support the transaction time axis is how to efficiently store

large amounts of data. We first consider the transaction pure-timeslice query and show why

obvious solutions are not efficient. Similarly, we discuss the transaction pure-key and range-

timeslice queries. Bitemporal queries follow. The problem of separating past from current data

(and the use of WORM disks) is also examined.

4.1 The Transaction Pure-Timeslice Query

There are two straightforward solutions to the transaction pure-timeslice query (“*/-/point”) that

will serve as two extreme cases in our comparison; we denote them as the “copy” and “log”

approaches.

The “copy” approach stores a copy of the transaction database states(t) (timeslice) for each

transaction time that at least one change occurred. These copies are indexed by timet. Access to a

states(t) is performed by searching for timet on a multilevel index on the time dimension. Since

changes arrive in order, this multilevel index is clearly paginated. The closest time that is less or

equal tot is found withO(logBn) page accesses. An additionalO(a/B) I/O time is needed to output

the copy of the state, wherea denotes the number of “alive” objects in the accessed database state.

Ω nBlog a B⁄+()

∞− ∞

Ω lBlog a B⁄+()

17

The major disadvantage of the “copy” approach is with the space and update processing

requirements. The space used can in the worst case be proportional toO(n2/B). This happens if the

evolution is mainly composed of “births” of new objects. The database state is thus enlarged

continuously. If the size of the database remains relatively constant due to deletions and insertions

balancing out, and if there arep records on average, the space used isO(np/B).

The update processing isO(n/B) per change instant in a growing database andO(p/B) per

change instant in a non-growing database, as a new copy of the database has to be stored at each

change instant. The “copy” approach provides a minimal query time. However, since the

information stored is much more than the actual changes, the space and update requirements suffer.

A variation on the copy approach stores a list of ADDRESSES of records which are “alive” at

each time when at least one change occurred. The total amount of space used is smaller than if the

records themselves are stored in each copy. However, the asymptotic space used is stillO(n2/B) for

growing databases andO(np/B)for databases whose size does not increase significantly over time.

This will mean most records haveO(n) references in the index.“n” does not have to be very large

before the index is several times the size of the record collection. In addition, by thus changing

from a primary to a secondary unclustered structure,O(a) not O(a/B)pages must be accessed to

output the copy of the a alive records (after the usualO(logBn) accesses to find the correct list).

In the remainder of this paper, we will not be considering any secondary indexes. Indexes which

are described as secondary by their authors will be treated as if they were primary indexes in order

to make a fair comparison. Secondary indexes never cluster data in disk pages and thus always lose

out in query time. Recall that by “primary” index we mean only an index which dictates the

physical location of records, not an index on “primary key.” Secondary indexes can only cluster

references to records, not the records themselves.

In an attempt to reduce the quadratic space and linear updating of the “copy” approach, the

“log” approach stores only the changes that occur in the database timestamped by the time instant

on which they occurred. The update processing is clearly reduced toO(1) per change, as this

history management scheme appends the sequence of inputs in a “log” without any other

processing. The space is similarly reduced to the minimalO(n/B). Nevertheless, this

straightforward approach will increase the query time to O(n/B), since in order to reconstruct a past

state the whole “log” may have to be searched.

Combinations of the two straightforward approaches are possible; for example a method could

18

keep repeated timeslices of the database state and “logs” of the changes between the stored

timeslices. If repeated timeslices are stored after some bounded number of changes, this solution

is equivalent to the “copy” approach, since it is equivalent to using different time units (and

therefore changing only the constant in the space complexity measure). If the number of changes

between repeated timeslices is not bounded, the method is equivalent to the “log” approach, as it

corresponds to a series of logs. We will use the two extreme cases to characterize the performance

of the examined transaction-time methods. Some of the proposed methods are equivalent to one of

the two extremes. However, it is possible to combine the fast query time of the first approach with

the space and update requirements of the second.

In order for a method to answer the transaction pure-timeslice (“*/-/point”) query efficiently,

data must at least be clustered according to its transaction time behavior. Since this query asks for

all records “alive” at a given time, this clustering can be based only on the transaction time axis,

i.e., records that are existing on the same time should be clustered together, independently of their

key values. We call access methods that cluster by time only, as (transaction)time-only methods.

There are methods that cluster by both time and key; we call them (transaction)time-key methods.

They optimize queries that involve both time and key predicates, like the transaction range-

timeslice query (“range/-/point”). Clustering by time only can lead to constant update processing

per change; thus a good time-only method can “follow” its input changes “on-line”. In contrast,

clustering by time and key would need some logarithmic update as changes arrive in time order but

not in key order; some appropriate placing of a change is needed based on the key it is applied on.

4.2 The Transaction Pure-Key Query

The “copy” and the “log” solutions could be used for the pure-key query (“point/-/*”). However

they are both very inefficient. The “copy” method will use too much space, no matter what query

it is used for. In addition, finding a key in a timeslice implies either that one uses linear search or

that there is some organization on each timeslice (such as an index on the key). The “log” approach

will require running from the beginning of the log to the time of the query, keeping the most recent

version of the record with that key. This is stillO(n/B) time.

A better solution to this query is to store the history of each key separately, i.e. cluster data by

key only. This creates a (transaction)key-only method. Since at each transaction time instant there

exists at most one “alive” version of a given key, the versions of the same key can be linked

together. Access to a key’s (transaction-time) history can be implemented by a hashing function

19

(which must be dynamic hashing as it has to support additions of new keys) or a balanced multiway

search tree (B-tree). The hashing provides constant access (in the expected amortized sense) while

the B-tree logarithmic access. Note that hashing does not guarantee against pathological worst

cases while the B-tree does. Hashing cannot be used to obtain the history for a range of keys (as in

the general class (III) query). After the queried key is identified, its whole history can be retrieved

(forward or backward reconstruction using the list of versions).

To answer a pure-key query with time predicate (“point/-/range”), the list of versions of each

key can be further organized in a separate array indexed by transaction time. Since updates are

appended at the end of such an array, a simple paginated multilevel index can be implemented on

each array to expedite searching. Then a query of the form: “provide the history of keyk after

(before) timet”, is addressed by first findingk (using the hashing or the B-tree) and then locating

the version ofk that is closest to transaction timet using the multilevel index onk’s versions. This

takesO(logBn) time (each array can beO(n/B) large).

The above straightforward data clustering by key only is efficient for class III queries but is not

efficient for any of the other two classes. For example, to answer a “*/-/point” query, each key ever

created in the evolution must be searched for being “alive” at the query transaction time and it takes

logarithmic time for searching in each key’s version history.

4.3 The Transaction Range-Timeslice Query

If records that are “logically” related for a given query can also be stored physically close, then the

query is optimized as fewer pages are accessed. Therefore, to answer a “range/-/point” query

efficiently, it is best to cluster by transaction timeand key within pages. This is very similar to

spatial indexing. But it has some special properties.

If the time-key space is partitioned into disjoint rectangles, one for each disk page and only one

copy of each record is kept, long-lived records (records with long transaction-time intervals) would

have to be collocated with many short-lived ones that cannot all fit on the same page. We cannot

thus partition the space without allowing duplicate records. One therefore is reduced to either

making copies (data duplication), allowing overlap of time-key rectangles (data bounding) or

mapping records represented by key, (transaction) start_time and end_time, to points in 3-

dimensional space (data mapping) and using a multidimensional search method.

Time-key spaces do not have the “density” problem of spatial indexes. Density is defined as the

20

largest overlap of spatial objects at a point. There is only one version of each key at a given time

so the time-key objects (line segments in time-key space) never overlap. This makes data

duplication a more attractive option than in spatial indexing, especially if the amount of duplication

can be limited as in [E86, LS90a, LM91, BGO+93, VV95].

Data bounding may force single-point queries to use backtracking as there is not a unique path

to a given time-key point. In general, for the data-bounding approach, temporal indexing has worse

problems than spatial indexing because long-lived records are likely to be common. In a data-

bounding structure, such a record will be stored in a page with a long time-span and some key

range. Every timeslice query in that timespan must access that page even though the long-lived

record may be the only one alive at the search time (the other records in the page are alive at another

part of the timespan). The R-tree based-methods [S87, KS89, KS91] use data bounding.

The third possibility, data mapping, will map a record to three (or more) coordinates: its

transaction start_time, end_time, and key(s) and then use a multiattribute point index. Here records

with long transaction-time intervals would be clustered with other records with long intervals as

their start and end times would be close. Records with short transaction-time intervals would be

clustered with other records with short intervals if they were alive at nearby times. This would be

efficient for most queries as the long-lived records would be the answers to many queries. The

pages with short-lived records would effectively partition the answers to different queries; most

such pages would not be touched for a given timeslice query. However, there are special problems

because many records may still be current and have growing lifetimes (i.e., transaction-time

intervals extending tonow). This approach is further discussed in the end of section 5.1.3.

Naturally, the most efficient methods for the transaction range-timeslice query are the ones that

combine the time and key dimensions. In contrast, by using a (transaction) time-only method, the

whole timeslice for the given transaction time is first reconstructed and then the records with keys

outside the given range are eliminated. This is clearly inefficient, especially if the requested range

is a small part of the whole timeslice.

4.5 Bitemporal Queries

An obvious approach would be to index bitemporal objects on a single time axis (transaction or

valid time) and use a single time access method. For example, if a transaction access method is

utilized, a bitemporal “*/point/point” query is answered in two steps. First all bitemporal objects

existing at transaction timet are found. Then the valid time interval of each such object is checked

21

whether it includes valid timev. This approach is inefficient because very few of the accessed

objects may actually satisfy the valid-time predicate.

If both axes are utilized, an obvious approach is an extended combination of the “copy” and

“log” solutions. This approach stores copies of the collectionsC(t) (Fig. 3) at given transaction-

time instants and a log of changes between copies. Together with each collectionC(t), an access

method (for example an R-tree [G84]) that indexes the objects of thisC(t) is also stored.

Conceptually it is like storing snapshots of R-trees and changes between them. While each R-tree

enables efficient searching on a stored collectionC(t), the approach is clearly inefficient because

the space or query time increases dramatically depending on the frequency of snapshots.

Thedata boundinganddata mappingapproaches can also be used in a bitemporal environment.

However, the added (valid-time) dimension provides an extra reason for inefficiency. For example,

the bounding rectangle of a bitemporal object consists of two intervals (Figure 4; taken from

[KTF95a]). A “*/point/point” query is translated into finding all rectangles that include the query

point (ti, vj). An R-tree [G84] could be used to manage these rectangles. However, the special

characteristics of transaction time (many rectangles may extend up tonow) and the inclusion of the

valid-time dimension, increase the possibility of extensive overlapping which in turn reduces the

R-tree query efficiency [KTF95b].

4.6 Separating Past from Current Data and the use of WORM disks

In transaction or bitemporal databases, it is usually the case that access to current data is more

frequent than to past data (in the transaction-time sense). In addition, since the bulk of data in these

t

v

t1 t2 t3 t4 t5
Figure 4: The bounding-rectangle approach for bitemporal queries (the key dimension is not shown). The evolution

of Fig.3 is depicted, as of (transaction) timet > t5. The modification of intervalI1 at t5 ends the initial rect-

angle forI1 and inserts a new rectangle fromt5 to now.

now

I2

I1

I3

.(ti,vj)

22

databases is due to the historical part, it would be advantageous to use a higher capacity, but slower

access medium for the past data, such as optical disks. First, the method should provide for natural

separation between current and past data. There are two ways to achieve this separation: (a) With

the “manual” approach, a process will vacuum all records that are “dead” (in the transaction-time

sense) when the process is invoked; this vacuuming process can be invoked at any time. (b) With

the “automated” approach, where such “dead” records are migrated to the optical disk due to a

direct cause from the evolution process (for example during an update). The total I/O involved is

likely to be smaller than in a manual method, since it is piggybacked on I/O which is necessary for

index maintenance in any case (such as the splitting of a full node).

Even though Write-Many Read-Many optical disks are available, the WORM optical disks are

still the main choice for storing large amounts of archival data; they are less expensive, have larger

capacities and usually have faster write transfer times. Since the contents of WORM disk blocks

cannot be changed after their initial writing (due to an added error-correcting code) data that is to

be appended on a WORM disk should not be allowed to change in the future. Since on the

transaction axis the past is not changed, past data can be written on the WORM disk.

We emphasize again that methods which can be used on WORM disks are not “WORM

methods”-- they can also be used on magnetic disks. Thus the question of separation of past and

current records can be considered regardless of the availability of WORM disks.

5. Method Classification and Comparison

This section provides a concise description of the methods we examine. Since it was practically

impossible to run simulations for all methods on the same collections of data and queries, our

analysis is based on worst case performance. Various access method proposals provide a

performance analysis that may have strong assumptions about the input data (uniform distribution

of data points, etc.) and may very well be that under those constraints the proposed method works

quite well. Our purpose however was to categorize the methods without any assumption on the

input data or the frequency of queries asked. Obviously the worst case analysis may penalize a

method for some very unlikely scenarios; to distinguish against likely worst cases we call such

scenariospathological worst cases. We shall also point out some features which may affect average

case behavior without necessarily affecting worst-case behavior.

We first describe transaction-time access methods. These methods are further classified to key-

only, time-only and time-key, based on the way data is clustered. In the key-only methods we study

23

theReverse Chaining, Accession Lists, Time Sequence Arrays andC-lists. Among the time-only

we examine: theAppend-only Tree, theTime-Index and its variations (Monotonic B-Tree, Time-

Index+), the Differential File approach, theCheckpoint Index, the Arhivable Time Index, the

Snapshot Index and theWindows Method. In the time-key category we present: the POSTGRES

Storage System and the use ofComposite Indexes, theSegment-R Tree, theWrite-Once B-Tree, the

Time-Split B-Tree, the Persistent B-Tree, the Multiversion B-Tree, the Multiversion Access

Structure and theOverlapping B-Tree. A comparison table (Table B) is included in the end of the

section with a summary of each method’s worst case performance. We then proceed with the valid-

time access methods where we discuss theMetablock Tree, the External Segment Tree, the

External Interval Tree and theMAP21 methods. The bitemporal category describes theM-IVTT,

theBitemporal Interval Treeand theBitemporal R-Tree.

5.1 Transaction-time Methods

In this category we have included methods which assume that changes arrive in increasing time

order, a characteristic of transaction time. This property greatly affects the update processing of the

method. If “out of order” changes (a characteristic of valid-time) were to be supported, the

updating cost becomes much higher (practically prohibitive).

5.1.1 Key-only Methods

The basic characteristic of transaction key-only approaches is the organization of evolving data by

key (surrogate), i.e., all versions that a given key assumes are “clustered” together logically or

physically. Such organization makes these methods more efficient for transaction pure-key

queries. In addition, the approaches considered here correspond to the earliest solutions proposed

for time evolving data.

Reverse chainingwas introduced in [B82] and further developed in [LDE+84]. Under this

approach, previous versions of a given key are linked together in reverse chronological order. The

idea of keeping separate stores for current and past data was also introduced. Current data is

assumed to be queried more often, so by separating it from past data, the size of the search structure

is decreased and queries for current data become faster.

Each version of a key is represented by a tuple (which includes the key, attribute value and a

lifespan interval) augmented with a pointer field that points to the previous version (if any) of this

key. When a key is first inserted into a relation, its corresponding tuple is put into thecurrent store

24

with its previous-version pointer beingnull. When the attribute value of this key is changed, the

version existing in the current store is moved to the past store with the new tuple replacing it in the

current store. The previous-version pointer of the new tuple points to the location of the previous

version in the past store. Hence a chain of past versions is created out of each current key. Tuples

are stored in the past store without necessarily being clustered by key.

Current keys are indexed by a regular B+-tree (“front” B+-tree). The chain of past versions of a

current key is accessed by following previous-version pointers starting from the current key. If a

current key is deleted, it is removed from the B+-tree and is inserted in a second B+-tree (“back”

B+-tree) which indexes the latest version of keys that are not current. The past version chain of the

deleted key is still accessed from its latest version stored in the “back” B+-tree. If a key is “reborn”

it is reinserted in the “front” B+-tree. Subsequent modifications of this current key create a new

chain of past versions. It is thus possible to have two chains of past versions, one starting from its

current version and one from a past version, for the same key. Hence queries about the past are

directed to both B+-trees. If the key is later deleted again, its new chain of past versions is attached

to its previous chain by appropriately updating the latest version stored in the “back” B+-tree.

Clearly this approach usesO(n/B) space, wheren denotes the number of changes andB is the

page size. The number of changes corresponds to the number of versions for all keys ever created.

When a change occurs (such as a new version ofkey or the deletion ofkey) the “front” B+-tree

(current store) has first to be searched to locate the current version ofkey. If it is a deletion, the

“back” B+-tree is also searched to locate the latest version ofkey, if any. Hence the update

processing of this method isO(logBn) since the number of different keys can be similar to the

number of changes.

To find all previous versions of a givenkey, the “front” B+-tree is first searched for the latest

version ofkey; if key is in the current store, its pointer will provide access to recent past versions

of key. Since version lists are in reverse chronological order, one has to follow such a list until a

version number (transaction timestamp) that is less or equal to the query timestamp is found. The

“back” B+-tree is then searched for older past versions. Ifa denotes all past versions ofkey the

query time isO(logBn+a) since versions of a given key could in the worst case be stored in different

pages. This can be improved ifcellular chaining, clustering or stacking is used [AS88]. If each

collection of versions for a given key is clustered in a set of pages, but versions of distinct keys are

never on the same page, query time would beO(logBn+a/B) but space utilization would beO(n)

pages (notO(n/B)) as the versions of a key may not be enough to justify the use of a full page.

25

Reverse chaining can be further improved by the introduction ofaccession lists [AS88]. An

accession list clusters together all version numbers (timestamps) of a given key. Each timestamp

is associated with a pointer to the accompanying tuple which is stored in the past store (or to a

cluster of tuples). Thus instead of searching a reverse chain until a given timestamp, one can search

an index of the chain’s timestamps. As timestamps are stored in chronological order on an

accession list, finding the appropriate version of a given key would takeO(logBn+logBa). The

space and update processing remain as before.

While the above structure can be efficient for a transaction pure-key query, answering pure- or

range-timeslice queries is problematic. For example to answer a “*/-/point” query that is satisfied

only by some keys, one has to search the accession lists of all keys ever created.

Another early approach proposed the use ofTime Sequence Arrays (TSA) [SK86].

Conceptually, a TSA is a two dimensional array with a row for each key ever created; each column

represents a time instant. The(x,y)entry stores the value of keyx at timey. Static (the data set has

been fully collected) and dynamic (the data set is continuously growing--as in a transaction-time

environment) are examined. If this structure is implemented as a two-dimensional array the query

time is minimal (just access the appropriate array entry), but the update processing and space are

prohibitive (O(n) and respectively). One could implement each row as an array keeping

only values when there was a change; this is conceptually the same solution as the reverse chaining

with accession lists. A solution based on a multidimensional partitioning scheme is proposed in

[RS87], but the underlying assumption is that the whole temporal evolution is known in advance

before the partitioning scheme is implemented.

The theoretically optimal solution to the transaction pure-key query with time predicate is

provided by theC-lists of [VV95]. C-lists are similar to accession lists in that they cluster together

the versions of a given key. There are two main differences. First, access to each C-list is provided

through another method, the Multiversion Access Structure [VV95] (in short “MVAS”; the MVAS

is discussed later with the time-key methods). Second, C-list maintenance is more complicated:

splitting/ merging of C-list pages is guided by the page splitting/merging of the MVAS (for details

we refer to [VV95]). If there arem “alive” keys in the structure, updating takesO(logBm). The

history of keyk before timet, is found inO(logBn+a/B) I/Os, which is optimal. An advantage of

C-lists is that they can be combined with the MVAS structure to create a method that answers

optimally both the range-timeslice and pure-key with time predicate queries. However, the

additional complexity (an extra B+-tree is needed together with double pointers between the C-lists

O n2()

26

and the MVAS) limits its practicality.

5.1.2 Time-only Methods

Most time-only methods timestamp changes (additions, deletions etc.) by the transaction time they

occurred and append them in some form of a “history log”. Since no clustering of data according

to keys is made, such methods optimize “*/-/point” or “*/-/range” queries. Because changes arrive

in chronological order, ideally a time-only method can provide constant update processing (as the

change is simply appended at the end of the “history log”); this advantage is important in applica-

tions where changes are frequent and the database has to “follow” these changes in anon-line

fashion. For efficient query time, most methods use some index on the top of the “history log” that

indexes the (transaction) timestamps of the changes. Because of the time-ordered changes, the cost

of maintaining this (paginated) index on the transaction time-axis is minimal, amortizedO(1) per

change.

While organizing data only by its time behavior provides for very fast updating, it is not

efficient for answering transaction range-timeslice queries. In order to use time-only methods for

such queries, one suggestion [EWK93, GS93] is to employ a separatekey index, whose leaves point

to predefined key “regions”. A key region could be a single key or a collection of keys (either a

sub-range of the key space or a relation). The history of each “region” is organized separately,

using an individual time-only access method (such as the Time Index or the Append-Only Tree).

Thekey index will direct a change of a given key to update the method that keeps the history of the

key’s region. However, after the region is found, the placement of this key in the region’s access

method, is based only on the key’s time behavior (and not any more on the key itself).

To answer transaction range-timeslice queries one has to search the history of each region that

belongs to the query range. The range-timeslice is thus constructed by creating the individual

timeslices for every region in the query range. IfR is the number of regions, the key index would

addO(R/B)space and update processing to the performance of the individual historical

access methods. The query time for the combination of the key index and the time-only access

methods would be , whereM is the number of regions that fall in the given query

range, and is the time needed in each individual region (i = 1,...,m) to perform a

timeslice query for timet (and correspond to the total number of changes in and the number

of “alive” objects from at timet, respectively). For example, if the Time-Index [EWK90] is used

as the access method in each individual region, then: .

O RBlog()

O Mf ni t ai, ,()()

f ni t ai, ,() r i

ni ai r i

r i

f ni t ai, ,() O nB ilog ai B⁄+()=

27

There are three drawbacks with this approach: (1) if the query key range is a small subset of a

given region, the whole region’s timeslice is reconstructed, even if most of its objects may not be-

long to the query range and thus do not contribute to the answer, (2) if the query key range contains

many regions, all these regions have to be searched, even if they may contribute no “alive” objects

at the transaction time of interestt, and, (3) for every region examined, at best, a logarithmic search

is performed in order to locatet among the changes recorded in the region. To put this in perspec-

tive, imagine replacing a multi-attribute spatial search structure with a number of collections of

records from predefined key ranges in one attribute and then organizing each key range by some

other attribute.

To answer general pure-key queries of the form: “find the salary history of employee named

k”, an index on the key space can be utilized. This index keeps the latest version of a key while key

versions are linked together. Since the key space is separate from the time space, such an index is

easily updated. In some methods this index has the form of a B+-Tree and is also facilitated for the

transaction range-timeslice queries (like the Surrogate Superindex used in the AP-Tree [GS93] and

the Archivable Time Index [VV94]) or it has the form of a hashing function as in the Snapshot In-

dex [TK95]. A general method is to link records to any one copy of the most recent distinct past

version of the record. We continue with the presentation of various time-only methods.

5.1.2.1 The Append-Only Tree

The Append-Only Tree (AP-Tree) is a multi-way search tree that is a hybrid of anISAM Index and

a B+-Tree. It was proposed as a method to optimize event-joins [SG89, GS93]. Here we examine

it as an access method for the query classes of section 3.1. Each tuple is associated with a

(start_time, end_time) interval. The basic method indexes the start_times of tuples. Each leaf node

has entries of the form: (t, b) wheret is a time instant andb is a pointer to a bucket that contains all

tuples with start_time greater than the time recorded in the previous entry (if any) and less than or

equal tot. Each non-leaf node indexes nodes at the next level (Figure 5).

In the AP-Tree insertions of new tuples arrive in increasing start_time order. Based on this, we

consider it as a transaction-time method. It is also assumed that the end_times of tuples are known

when a tuple is inserted in the access method. In that case the update processing isO(1) since the

tuple is inserted (“appended”) on the rightmost leaf of the tree. (This is somewhat similar to the

procedure used in most commercial systems for loading a sorted file to a multilevel index [S88],

except that insertions are now successive instead of batched). If end_times are not known at

28

insertion but are updated later (as in a transaction-time environment), the index has to be searched

for the record that is updated. If the start_time of the updated record is given in the input then this

search isO(logBn). Otherwise, one could use a hashing function that stores only the alive objects

and for each such object it points in its position in the AP-Tree (this however is not discussed in

the original paper).

To answer a transaction pure-timeslice query for timet, the AP-Tree is first searched for the

leaf that containst. All intervals on the “right” of this leaf have start_times that are larger thant

and thus should not be searched further. However, all intervals on the left of this leaf (i.e. the data

file from the beginning untilt) have to be checked for “containing”t. Such a search can be as large

asO(n/B) since the number of intervals in the tree is proportional to the number of changes in the

evolution. Of course, if we assume that the queries are randomly distributed over the entire

transaction-time range, on the average half of the leaf nodes must be searched. The space isO(n/B).

For answering transaction pure-key and range-timeslice queries the nestedST-Tree has been

proposed [GS93]. This method facilitates a separate B+-Tree index (calledSurrogate Superindex)

on the keys (surrogates) ever inserted in the database. A leaf node of such a tree contains entries of

the form: (key, p1, p2) wherep1 is a pointer to an AP-Tree (called theTime Subindex) that organizes

the evolution of the particular key andp2 is a pointer to the latest version of a key. This approach

solves the problem of updating intervals by key (just search the Surrogate Superindex for the key

of the interval; then this key’s Time Subindex will provide the latest version of this interval, i.e.,

the version to be updated). TheST-Tree approach is conceptually equivalent toreverse chaining

Figure 5: The Append-Only Tree. Leaves include only thestart_time fields of intervals. Each leaf points to file
pages, with records ordered according to thestart_time field. New records are added only at the rightmost
leaf of the tree. It is assumed that both endpoints are known for the intervals in this figure.

4 8 15 20 38 45

15 45

51

key, start_time, end_time

k, 1, 10
h, 2, 8
m, 3, 20
r, 4, 5

key, start_time, end_time

p, 5, 30
e, 5, 9
g, 7, 40
s, 8, 45

. . . key, start_time, end_time

f, 50, 60
x, 51, 59

29

with an index on eachaccession list (however due to its relation to the AP-Tree we included it in

the time-only methods).

The update processing is nowO(logBS) whereS denotes the total number of keys (surrogates)

ever created (S is itselfO(n)). Note that there may be key histories with just one record. For the

space to remainO(n/B) unused page portions should be shared by other key histories. This implies

that the versions of a given key may reside in separate pages. Answering a pure key query then

takesO(logBS+ a) I/Os. The given key can be found with a logarithmic search on the Surrogate

Superindex and then itsa versions are accessed but at worst each version may reside in a distinct

page. For a transaction range-timeslice query whose range containsK keys (alive or not att) the

query time isO(KlogBn) as each key in the range has to be searched. When the range is the whole

key space, that is, to answer a transaction pure-timeslice query for timet, one has to perform a

logarithmic search on the Time Subindex of each key ever created. This takesO(SlogBn) time.

The basic AP-Tree does not separate past from current data so transferring to a write-once

optical disk may be problematic. One could start transferring data to the write-once medium in

start_time order, but this could also transfer long-lived tuples that are still current (alive) and may

be later updated. The ST-Tree does not have this problem as data are clustered by key; the history

of each key represents past data that can be transferred to an optical medium.

If the AP-Tree is used in a valid-time environment, interval insertions, deletions or updates may

happen anywhere in the valid-time domain. This implies that the index would not be as compact

as in the transaction domain where changes arrive in order, but it would behave as a B-Tree. If for

each update, only the key associated with the updated interval is provided, the whole index may

have to be searched. If the start_time of the updated interval is given, a logarithmic search is

needed. Since thel valid intervals are sorted by start_time a “*/point/-” query takesO(l/B) I/O’s.

For “range/point/-” queries, the ST-Tree must be combined with a B-Tree as its Time Subindex.

Updates are logarithmic (by traversing the Surrogate Superindex and the Time Subindex). A valid

range timeslice query whose range containsK keys takesO(KlogBl) I/O’s since every key in the

query range must be searched for being alive at the valid query time.

5.1.2.2 The Time Index

The Time Index, proposed in [EWK90, EKW91], is a B+-Tree based access method on the time

axis. In the original paper the method was proposed for storing valid-times. It makes however the

assumption that changes arrive in increasing time order and that physical deletions rarely occur.

30

Since these are basic characteristics of the transaction-time dimension we consider the Time-Index

in the transaction-time category. There is a B+-Tree that indexes a linearly ordered set of time

points, where a time point (referred also asindexing point in [EWK90]) is either the time instant

where a new version is created or the next time instant after a version is deleted. Thus a time point

corresponds to the time instant of a change (for deletions it is the next time instant after the

deletion). Each entry of a leaf node of the Time Index is of the form:(t, b) wheret is a time point

andb is a pointer to a bucket. The pointer of a leaf’s first entry points to a bucket that holds all

records that are “alive” (i.e., a snapshot) at this time point; the rest of the leaf entries point to

buckets that hold incremental changes (Figure 6). As a result, the Time Index does not need to

know in advance the end_time of an object (which is an advantage over the AP-Tree).

The Time Index was originally proposed as a secondary index. We shall treat it as a primary

Figure 6: The Time Index. Each first leaf entry holds a full timeslice while the next entries keep incremental
changes.

324221 675 987

221 243 265 302 312 324 369 464 499 598

insert
233388

delete
347865

delete
987456

insert
222333

insert
789999

delete
654783

update
119875

insert
332244

time
instants

alive
records
112387
306735
196534
723875
286548
565483
276549
687654
119875
239765
987456
892365
762341
654783
324987
654389
345234
.........
.........
........
........
347865
879654
876888
127658

alive
records
112387
306735
196534
723875
286548
565483
276549
687654
119875
239765
892365
762341
654783
324987
654389
345234
233388
.........
.........
........
........
222333
879654
876888
127658

31

index here in order to make a fair comparison to other methods, as explained in section 4.1. This

makes the search estimates competitive with the other methods without changing the worst case

asymptotic space and update formulas.

Since in a transaction environment changes occur in increasing time order, new nodes are

always added on the rightmost leaf of the index. This can produce a more compact index than the

B+ tree used in the original paper, called theMonotonic B+-Tree [EWK93]. (The Monotonic B+-

Tree insertion algorithm is similar to that of the AP-tree).

To answer a transaction pure-timeslice query for some timet, one has to search the Time Index

for t; this will lead to a leaf node that “contains”t. The past state is reconstructed by accessing all

the buckets of entries of this leaf node that contain timestamps that are less or equal tot. If we

assume that the number of changes that can occur at each time instant is bounded (by some

constant) the query time of the Time Index isO(logBn + a/B). After the appropriate leaf node is

found in logarithmic time, the answera is reconstructed by reading leaf buckets. The update

processing and space can be as large asO(n/B)and respectively. Therefore, this method

is conceptually equivalent to the “copy” approach of section 4.1 (the only difference is that copies

are now made after a constant number of changes).

Answering a transaction range-timeslice query with the Time-Index requires reconstructing the

whole timeslice for the time of interest and then selecting only the tuples in the given range. To

answer range-timeslice queries more efficiently, the Two-Level Attribute/Time Index (using

predefined key regions) has been proposed [EWK90]. Assuming that there areR predefined key

regions (andR is smaller thann), the update processing and space remainO(n/B) and

respectively, since most of the changes can happen to a single region. Answering a “*/-/point”

query would mean creating the timeslices for allR ranges, even if a range does not contribute to

the answer. Thus the pure-timeslice query time is proportional to , where and

 correspond to the total number of changes in individual region and the number of “alive”

objects from at timet, respectively. This can be as high asO(RlogBn + a), since each region can

contribute a single tuple to the answer. Similarly, for “range/-/point” queries the query time

becomesO(MlogBn + a) whereM is the number of regions that fall in the given query range

(assuming that the query range contains a number of regions, otherwise a whole region timeslice

has to be created).

O n2 B⁄()

O n2 B⁄()

nB ilog ai B⁄+
i 1=

R

∑ ni

ai r i

r i

32

Pure-key queries are not supported as record versions of the same object are not linked (for

example, to answer a query of the form: find all past versions of a given key, one may have to

search the whole history of the range where this key belongs).

In [EWK93], it is suggested to move record versions to optical disk when their end times

change to a time beforenow. This is under the assumption that the Time Index is being used as a

secondary index and that each record version is only located in one place. The leaf buckets

therefore contain lists of addresses of record versions.

In order to move full pages of data to the optical disk, a buffer is used in the magnetic disk to

collect records as their end times are changed. An optical disk page is reserved for the contents of

each buffer page. When a record version is placed in a buffer page, all pointers to it in the Time

Index must be changed to refer to its new page in the optical disk. This can require update

processing as a record version pointer can be contained in leaves of the Time Index. A

method for finding pointers for particular record versions within the lists of addresses in the leaf's

first entry, in order to update them, is not given.

Index leaf pages can be migrated to the optical disk only when all their pointers are references

to record versions which are on the optical disk or in the magnetic disk buffer used to transfer

record versions to optical disk. Since each index leaf page contains the pointers to all record

versions which were alive at the time the index page was created, it is likely that many index pages

may not qualify for moving to optical disk, because they contain long-lived records.

It is suggested in [EWK93] that long-lived records which are inhibiting movement of index

pages also be kept in a magnetic buffer and assigned an optical address so that the index leaf page

can be moved. When all the children of an internal index page have been moved to the optical disk,

an internal index page can also be moved. However, the number of long-lived record versions can

also beO(n). Thus the number of empty optical pages waiting for long-lived object versions to die

and having mirror buffers on magnetic disk isO(n/B).

In an attempt to overcome the high storage and update requirements, the Time Index+

[KKEW94] has been proposed. There are two new structures in the Time Index+: theSCS and the

SCI buckets. In the original Time Index, a timeslice is stored for the first timestamp entry of each

leaf node. Since sibling leaf nodes may share much of this timeslice, in the Time Index+ odd-even

pairs of sibling nodes store their common parts of the timeslice in a sharedSCS bucket. Even

though theSCS technique would in practice save considerable space (about half of what was used

O n B⁄()

O n B⁄()

33

before), the asymptotic behavior remains the same as of the original Time Index.

Common intervals that span a number of leaf nodes are stored together on some parent index

node (similarly to the Segment Tree data structure [B77]). Each index node in the Time Index+ is

associated with a range, i.e., the range of time instants covered by its subtree. A time intervalI is

stored in the highest internal nodev such thatI coversv’s range and does not cover the range ofv’s

parent. All such intervals are kept in theSCI bucket of an index node.

By keeping the intervals in this way the quadratic space is dramatically reduced. Observe that

now an interval may be stored in at most logarithmic many internal nodes (this is due to the

segment tree property [M84]). This implies that the space consumption of the Time Index+ is

reduced toO((n/B) logBn) space. The authors mention in the paper that in practice there is no need

to associateSCI buckets to more than two-levels of index nodes. However, if noSCI buckets are

used in higher levels, the asymptotic behavior would remain similar to the original Time Index.

In addition, it is not clear how the updates are performed whenSCI buckets are used. In order

to find the actualSCIs where a given interval will be stored, both endpoints of the interval should

be known. Otherwise, if an interval is initially inserted as(t, now) it has to be found and updated

when at a later time the right endpoint becomes known. This implies that some search structure is

needed in eachSCI which would of course affect the update behavior of the whole structure.

Finally, the query time bound remains the same for the Time Index+ as for the original Time Index.

If the original Time-Index (using the regular B+ tree) is used in a valid-time environment,

physical object deletions anywhere in the (valid) time domain should be supported. However, a

deleted object should removed from all the stored (valid) snapshots. If the deleted object has a long

valid-time interval, the whole structure may have to be updated, making such deletions very costly.

Similarly, objects can be added anywhere in the valid domain; this implies that all affected stored

snapshots have to be updated.

5.1.2.3 The Differential File Approach

While the Differential File Approach [JMR91, JMRS92] does not propose the creation of a new

index, we discuss it since it involves an interesting implementation of a database system based on

transaction time. In practice, an index can be implemented on top of the differential file approach,

however here we assume no such index exists. Changes that occur for a base relationr are stored

incrementally and timestamped on the relation’s log; this log is itself considered a special relation,

called abacklog. In addition to the attributes of the base relation, each entry of the backlog contains

34

a triplet: (time, key, op). Heretime corresponds to the (commit) time of the transaction that updated

the database about a change that was applied on the base relation tuple withkey surrogate;op

corresponds to the kind of change that was applied on this tuple (addition, deletion, or modification

operation).

As a consequence of the use of timestamps a base relation is a function of time; thusr(t) is a

timeslice of the base relation at timet. A timeslice of a base relation can be stored or computed.

Storing a timeslice can be implemented either as acache (where pointers to the appropriate backlog

entries are used) or as materialized data (where the actual tuples of the timeslice are kept). Using

the cache avoids storing probably long attributes, however some time is needed to reconstruct the

full timeslice (Figure 7).

A timeslice can befixed (for example:r(t1)) or time-dependent (r(now-t1)). Time-dependent

Figure 7: The Differential File approach.

insert
233388

insert
222333

insert
332244

delete delete
347865 987456

insert delete update
789999 654783 119875

the backlog

current
database

answer to
previous query;
may be deleted
in future.

update
196534

update
565483

update
879654

alive
records
112387
306735
196534
723875
286548
565483
276549
687654
119875
239765
892365
762341
789999
332244
324987
654389
345234
233388
.........
.........
........
........
222333
879654
876888
127658

alive
records
112387
306735
196534
723875
286548
565483
276549
687654
119875
239765
987456
892365
762341
654783
324987
654389
345234
.........
.........
........
........
347865
879654
876888
127658

35

stored base relations have to be updated; this is done eagerly (changes are directly updating such

relations) or lazy (when the relation is requested, the backlog is used to bring it up in the current

state). An eager current (r(now)) timeslice is like a snapshot relation, that is, a collection of all

records that are current.

A time-dependent base relation can also be computed from a previous stored timeslice and the

set of changes that occurred in between. These changes correspond to adifferential file (instead of

searching the whole backlog). Differential files are also stored as relations.

For answering “*/-/point” queries, this approach can be conceptually equivalent to the “log” or

the “copy” methods, depending on how often timeslices are stored. Consider for example a single

base relationr with backlogbr: if timeslices are infrequent or the distance (number of changes)

between timeslices is not fixed, the method is equivalent to the “log” approach wherebr is the

history log. The space isO(n/B) and the update processing is constant (amortized) per change, but

the reconstruction can also beO(n/B). Conversely, if timeslices are kept with fixed distance, the

method would behave similarly to the “copy” approach.

In order to address “range/-/point” queries one has to produce the timeslice of the base relation

and then check all of the tuples of this timeslice for being in the query range. Similarly, if the value

of a given key is requested as of some time, the whole relation must first be reconstructed as of that

time. The history (previous versions) of a key is not kept explicitly as versions of a given key are

not connected together.

5.1.2.4 The Checkpoint Index

The Checkpoint Index was originally proposed for the implementation of various temporal

operators (temporal joins, parallel temporal joins, snapshot/interval operators, etc.) [LM92a,

LM92b, LM93]. Here we take the liberty to consider its behavior if it was used as an access method

for transaction-time queries. Timeslices (calledcheckpoints) are periodically taken from the state

of an evolving relation. If the query operator is a join, checkpoints from two relations are taken.

Partial relation checkpoints based on some key predicate have also been proposed. For simplicity

we concentrate on checkpointing a single relation.

The Checkpoint Index assumes that the object intervals are ordered by their start_time. This is

a property of the transaction-time environment (Fig. 1). Astream processor follows the evolution

as time proceeds. When a checkpoint is made at some (checkpoint) instantt, the objects alive att

are stored in the checkpoint. A separate structure, called thedata stream pointer(DSP), points to

36

the first object born aftert. Conceptually the DSP provides access to an ordered (by interval

start_time) list of objects born between checkpoints. The DSP is needed since some of these objects

may end before the next checkpoint so they would not be recorded otherwise. The checkpoint time

instants are indexed through a B+-Tree like structure (Figure 8).

The performance of the Checkpoint Index for pure-timeslice queries depends on how often

checkpoints are taken. On the one extreme, if very few checkpoints are taken the space remains

linearO(n/B). Conversely, if checkpoints are kept within fixed distance, the method would behave

similarly to the “copy” approach. In general, the DSP pointer may be “reset” backwards in time to

reduce the size of a checkpoint (which is an optimization issue).

When an object is deleted, its record has to be found so as to update the end_time. The original

presentation of the Checkpoint Index implicitly assumes that the object end_times are known

(since the whole evolution orstream is known). However a hashing function on the alive objects

can be used to solve this problem (as with the AP-Tree). The Checkpoint Index resembles the

Differential File and the Time Index in that all keep various timeslices. However instead of simply

storing the changes between timeslices, the Checkpoint Index keeps the DSP pointers to actual

object records. Hence in the Checkpoint Index, an update to an interval end_time cannot simply be

added at the end of a log but it has to update the corresponding object’s record.

To address range-timeslice queries with the Checkpoint Index, the timeslice of the base relation

is first produced and then all of the tuples of this timeslice are checked for being in the query range.

The history (previous versions) of a given key is not kept explicitly as versions of the same key are

not connected together.

t1 t4 t7 t9

Checkpoint(t1) Checkpoint(t4)

DSP(t1)

Figure 8: The Checkpoint Index. The evolution at Fig. 1 is assumed.

{a}

{h}

{a,h,b,f}

DSP(t4)

{c}

Checkpoint(t7)

{a,f,c}

DSP(t7)

{g}

Checkpoint(t9)

{a,f,g}

DSP(t9)

{e}

t4

37

The Checkpoint Index could use a transfer policy to an optical medium similar to the one of the

Time Index.

5.1.2.5 The Archivable Time Index

The Archivable Time Index [VV94] does not directly index actual transaction time instants but

version numbers. The transaction time instant of the first change takes version number 0 and

successive changes are mapped to consecutive version numbers. An interval is represented by the

version numbers corresponding to its start and end times. A special structure is needed to transform

versions to timestamps and vice versa. For the rest we use the terms time instant and version

number synonymously.

Let T denote the current time. The method partitions records tocurrent andpast. For the current

records (those with unknown end_time) a conventional B+-tree structure is used to index the

start_time of their transaction intervals. For the past (records whose end_time is less or equal toT),

a more complex structure, the PVAS, is used. Conceptually, the PVAS can be viewed as a logical

binary tree of size (). Each node in the tree represents a segment of the transaction time

space. AtT only some of the nodes of the tree would have been created; new nodes are dynamically

added on the right path of the tree, as time increases. A node denoted by segment [i,j] wherei < j,

hasspan (j-i). The root is denoted as [0,]. The left child of node [i,j] is node [i,(i+j)/2] and its

right child is node [(i+j)/2, j]. Hence the span of a node is the sum of the span of its two children.

The span of a leaf node is two. Figure 9 (taken from [VV94]) shows an example of the PVAS tree

atT = 55 witha = 6. Node segments appear inside the nodes.

Past records are stored in the nodes of this tree. Each record is stored in exactly one node, the

lowest node whose span contains the record’s interval. For example, a record with interval [3,16]

is assigned to node [0,16]. The nodes of the binary tree are partitioned into three disjoint sets:

passive, active and future nodes. A node is passive if no more records can ever be stored in that

node. It is an active node if it is possible for a record with interval ending inT to be stored there. It

is a future node if it can only store records whose intervals end afterT, i.e., in the future. Initially

all nodes begin as future nodes atT=0 then become active and finally they end up as passive nodes,

as time proceeds. Node [i,j] becomes active atT= (i+j)/2 if it is a leaf, or atT= (i+j)/2 +1 otherwise.

For example, in Figure 9, forT=55, node [48,64] belongs to the future nodes. This is because any

record with interval contained in [48,55] will be stored somewhere in its left subtree. The only

records that can be stored in [48,64] have intervals ending after time 55, so they are future records.

2a T 2a≤

2a

38

Future nodes need not be kept in the tree before becoming active.

Each interval assigned to a PVAS node is stored in two lists, one that stores the intervals in

increasing start_time order and one that stores them in increasing end_time order. This is similar

to the Interval Tree [E83]. In [VV94] a different structure is used to implement these lists for the

active and passive nodes, by exploiting the fact that passive nodes do not get any new intervals after

they become passive. In particular, all passive node lists can be stored in two sequential files (the

IFILE and the JFILE) a property that provides for good pagination and record clustering. Two

dynamic structures, the ITREE (a B-tree structure) and JLISTS (a collection of lists) are used for

the active node lists.

The PVAS logical binary tree and its accompanied structures can be placed efficiently into

pages (details appear in [VV94]) occupyingO(n/B) space. Since the structure does not index record

keys, the update assumes that the start_time of the updated record is known; then updating is

O(logBn). As with most of the other time-only methods, if updates are provided only by the record

key, a hashing function can be used to find the start_time of the record before the update proceeds

on the PVAS.

To answer a transaction pure-timeslice query both the CVAS and the PVAS are searched. Since

the CVAS is ordered on the start_times a logarithmic search will provide which of the current

records is born before the query timet. Searching the PVAS structure is more complicated. The

search follows a single path down the logical binary tree and the lists of nodes whose span contains

t are searched sequentially. Searching each list provides clustered answer, but there maybe

Figure 9: The PVAS binary tree. The current logical time is 55.

[0,64]

[0,32]
[32,64]

[16,32][0,16] [32,48] [48,64]

[48,56]

[54,56]

[52,56]

.

Passive

Passive

active

active

active

active

active

future

future
[3,16]

Interval stored
at this node

39

O(log2n) binary nodes whose lists are searched. Since every list access may be a separate I/O, the

query time becomesO(log2n + a/B).

Since no record keys are indexed, the method as presented above cannot answer efficiently

pure-key queries. For transaction range-timeslice queries the whole timeslice should first be

computed. To answer pure-key and range-timeslice queries, [VV94] assumes the existence of

another index for various key regions, in a similar way as for the Time-Index.

5.1.2.6 The Snapshot Index

The Snapshot Index [TK95] achieves the I/O-optimal solution to the transaction pure-timeslice

problem. It conceptually consists of three data structures: a multilevel index that provides access

to the past by timet, a multi-linked structure among the leaf pages of the multilevel index that

facilitates the creation of the query answer att, and, a hashing function that provides access to

records by key, used for update purposes. A real-world object is represented by a record with a time

invariant id (object id), a time-variant (temporal) attribute and a semi-closed transaction-time

interval of the form: [start_time, end_time). When a new object is added at timet, a new record is

created with interval [t, now] and is stored sequentially in a data page. At any given instant there

is only one data page that stores (accepts) records and it is called theacceptor page. When an

acceptor page becomes full, a new acceptor page is created. Acceptor pages are added at the end

of a linked list (listL) as they are created. Up to now, the Snapshot Index resembles a linked “log”

of pages that keeps the object records.

There are three main differences from a regular log: the use of the hashing function, the in-place

deletion updates and the notion ofpage usefulness. The hashing function is used for updating

records about their “deletion”. When a new record is created, the hashing function will store the id

of this record together with the address of the acceptor page that stores it. Object deletions are not

added at the and of the log. Rather they are represented by changing the end_time of the corre-

sponding deleted record. This access is facilitated by the hashing function. All records with

end_time equal tonow are termed “alive” else they are called “deleted”.

As pointed out in section 4.1 time-only methods need to order their data by time only and not

by time and key. Since data arrives ordered by time, a dynamic hashing function is enough for ac-

cessing a record by key (membership test) when updating it. Of course hashing cannot guarantee

against pathological worst cases (i.e., when a bad hashing function is chosen). In those cases a B+

tree on the keys can be used instead of hashing, leading to logarithmic worst case update.

40

A data page is defined to beuseful for: (i) all time instants, for which it was the acceptor page,

or, (ii) after it ceased being the acceptor page, for all time instants, for which the page contains at

least “alive” records. For all other instants, the page is callednon-useful. The useful period

[u.start_time, u.end_time) of a page forms a “usefulness” interval for this page. Theu.start_time is

the time instant the page became an acceptor page. Theusefulness parameteru is a

constant that tunes the behavior of the Snapshot Index. To answer a pure-timeslice about timet the

Snapshot Index will only access the pages useful att (or equivalently, those pages that have at least

 records alive att) plus at most one additional page that was the acceptor page att. This single

page may contain less than records from the answer.

When a useful data page becomes non-useful, its “alive” records are copied to the current ac-

ceptor page (this is like a time-split [E86, LS89]). In addition, based on its position in the linked

list L, a non-useful data page is removed fromL and is logically placed under the previous data

page in the list. This creates a multi-linked structure that resembles a forest of trees of data pages

and is called theaccess forest (Figure 10). The root of each tree in the access forest lies in listL.

The access forest has the following properties: (a) Theu.start_time fields of the data pages in a tree

are organized in apreorder fashion. (b) The usefulness interval of a page, includes all the corre-

sponding intervals of the pages in its subtree. (c) The usefulness intervals [di, ei) and [di+1, ei+1) of

two consecutive children under the same parent page may have one of two orderings:di<ei<di+1<ei+1

or di<di+1<ei<ei+1.

Finding the timeslice as of a given timet is reduced to finding the data pages that were useful

at timet. This is equivalent to the set-history problem of [TG90, TGH95]. The acceptor page as of

t is found through the multilevel index which indexes theu.start_time fields of all the data pages.

That is, all data pages are at the leaves of the multilevel index (the link list and the access forest are

implemented among these leaf pages). Since time is increasing, the multilevel index is “packed”

and increases only through its right side. After the acceptor data page att is located, the remaining

useful data pages att are found by traversing the access forest. This traversing can be done very

efficiently using the access forest properties [TK95].

As a result, the Snapshot Index solves the “*/-/point” query optimally: I/Os

for query time, space andO(1) update processing per change (in the expected amortized

sense, assuming the use of a dynamic hashing function [DKM+88] instead of a B-tree). The num-

ber of useful pages depends on the choice of parameteru. Largeru means faster query time (less

u B⋅

0 u 1≤<()

u B⋅

u B⋅

O nBlog a B⁄+()

O n B⁄()

41

number of accessed pages) in the expense of additional space (which remains linear ton/B). Since

more space is available, the answer would be contained in a smaller number of useful pages.

Migration to a WORM disk is possible for each data page that becomes non-useful. Since the

parent of a non-useful page in the access forest may still be a useful page, an optical disk page must

be reserved for the parent. Observe however, that the Snapshot Index uses a “batched” migration

policy which guarantees that the “reserved” space in the optical disk is limited to a controlled small

Figure 10: A schematic view of the access forest for a given collection of usefulness intervals. (a)The usefulness
interval of each data page as of time 80 is depicted. An open interval at timet = 80 represents a data page
that is still useful at that time. (b)The access forest as it is at timet = 79 (now in this figure corresponds to
time 79). Each page is represented by a tuple <page-id, page-usefuleness.period>. PageSdenotes the top
of list L, while the current acceptor page is always at the end ofL. (c)The access forest at timet = 80. At
that time pageE became non-useful (because some record deletion reduced the number of “alive”
records inE below theuB threshold). As a result it is removed fromL and placed (together with its sub-
tree) under the previous page in the list, pageD. The multilevel index is not shown.

 1 15 30 45 51 60 65 70 80

A
C

D
E

F

S

<D, [30,now]> <H, [70,now]><E, [45,now]>List L <S, [0,now]>

<A, [1,53)>

<C, [15,51)>

G

<F, [60,65)>

H

<G, [65,70)>

<D, [30,now]> <H, [70,now]>

<E, [45,80)>

List L <S, [0,now]>

<A, [1,53)>

<C, [15,51)> <F, [60,65)> <G, [65,70)>

(a)

(b)

(c)

42

fraction of the number of pages already transferred to the WORM.

Different versions of a given key can be linked together so that pure-key queries of the form:

“find all versions of a given key” are addressed in ’s, wherea represents now the num-

ber of such versions. Since the key space is separate from the transaction time space, the hashing

function used to access records by key can keep the latest version of a key, if any. Each key version

when updated can be linked to its previous version; thus each record representing a key contains

an extra pointer to the record’s previous version. If instead of a hashing function a B-tree is used

to access the key space, the bound becomesO(logBS+ a) whereS is the number of different keys

ever created.

For answering “range/-/point” queries the Snapshot Index has the same problem as the other

time-only methods: the whole timeslice must first be computed. This is in general the trade-off for

the fast update processing provided.

5.1.2.7 The Windows Method

Very recently, [R97] provided yet another solution to the “*/-/point” query, theWindows Method.

This approach has the same performance as the Snapshot Index. It is a paginated version of a data-

structure presented in [C86] and which optimally solved the pure timeslice query in main-memory.

[R97] partitions the time space in contiguous “windows” and associates with each window a list of

all intervals that intersect the window’s interval. Windows are indexed by a B-tree structure

(similar to the multilevel index of the Snapshot Index).

To answer a pure timeslice query, the appropriate window that contains this timeslice is first

found and then the window’s list of intervals is accessed. Note that the “windows” of [R97] would

correspond to one or more consecutive pages in the access-forest of [TK95].

As with the Snapshot Index some objects will appear in many windows (when a new window

is created, it gets copies of the “alive” objects from the previous) but the space remainsO(n/B). The

Windows Method uses the B-tree to also access the objects by key, hence updating is amortized

. If all copies of a given object are linked as proposed in the previous section, all ver-

sions of a given key can be found in I/Os.

5.1.3 Time-Key Methods

To answer a transaction range-timeslice query efficiently, it is best to cluster data by both

O a() I/O

O nBlog()

O nBlog a+()

43

transaction time and key within pages; then “logically” related data for this query are co-located

thus minimizing the number of pages accessed. Methods in this category are based on some form

of a balanced tree whose leaf pages dynamically correspond to regions of the two dimensional

transaction time-key space. While changes still occur in increasing time order, the corresponding

keys on which the changes are applied are not in order. Thus there is a logarithmic update

processing per change so that data is placed according to key values in the above time-key space.

An example of a page containing a time-key range is shown in Figure 11. Here, at transaction

time instant 5, a new version of the record with keyb is created. At time 6, a record with keyg is

inserted. At time 7, a new version of the record with keyc is created. At time 8, bothc andf have

new versions and recordh is deleted. Each line segment, whose start and end time are represented

by ticks, represents one record version. Each record version takes up space in the disk page.

There have been two major approaches: methods based on variants of R-Trees [S87, KS89,

KS91] and methods based on variants of B+-trees [E86, LS89, LM91, MK90, BGO+93, VV95]. A

strong advantage of using R-Tree based methods is that R-trees [G84, SRF87, BKKS90, KF94]

can represent additional dimensions on the same index (in principal such a method could support

both time dimensions on the same index). A disadvantage of the R-tree based methods is that they

cannot guarantee good worst case update and query time performance. However, such worst cases

are usuallypathological (do not happen often). In practice R-trees have shown good average case

performance. Another characteristic of R-tree based methods, is that the end_time of a record’s

interval is assumed known when the record is inserted in the method, which is not a property of

transaction time.

Figure 11: Each page is storing data from a time-key range.

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10

44

5.1.3.1 R-Tree based methods

The POSTGRES database management system [S87] proposed a novel storage system in which no

data is ever overwritten. Rather updates are turned into insertions. POSTGRES timestamps are

timestamps of committed transactions. Thus the POSTGRES storage system is a transaction-time

access method.

The storage manager accommodates past states of the database on a WORM optical disk

(archival system) in addition to the current state that is kept on an ordinary magnetic disk. The

assumption is that users will access current data more often than past data, thus the faster magnetic

disk is more appropriate for recent data. As past data keeps increasing the magnetic disk will

eventually be filled.

As data becomes “old” it migrates to the archival system by means of an asynchronous process,

called thevacuum cleaner. Each data record has a corresponding interval (Tmin, Tmax), where

Tmin andTmax are the commit times of the transactions that inserted and (logically) deleted this

record from the database, respectively. When the vacuum cleaner operates, it transfers data whose

end time is before some fixed time to the optical disk. The versions of data which reside on an

optical disk page have similar end times (Tmax), but may have widely varying start times (Tmin).

Thus pages on the optical disk are as in Figure 12. If such a page is accessed for a query about some

“early” time t, it may contribute only a single version to the answer, i.e., the answer would not be

well clustered among pages.

Since data records can be accessed by queries that may involve both time and key predicates,

a 2-dimensional R-Tree [G84] access method has been proposed for archival data. POSTGRES

assumes that this R-tree is a secondary access method. Pointers to data records are organized

according to their key value in one dimension and to their intervals (life-spans) in the other

Figure 12: A page storing data with similar end times.

key

time nowt

45

dimension.

The data are written sequentially to the WORM device by the vacuuming process. It is not

possible to insert new records in a data page on a WORM device which already contains data. Thus

it is not possible to have a primary R-tree with leaves on the optical disk, without changing the R-

tree insertion algorithm. However, we will make estimates based on a primary R-tree in keeping

with our policy of section 4.1.

For current data, POSTGRES does not specify the indexing used. Whatever this is, queries as

of any past time before the most recent vacuum time must access both the current and the historical

components of the storage structure. Current records are stored only in the current database and

their start times can be arbitrarily far back in the past.

For archival data, (secondary) indexes spanning the magnetic and optical disk are proposed

(combined media orcomposite indexes). There are two advantages in allowing indexes to span both

media: (a) improved search and insert performance as compared to indexes that are completely on

the optical medium (such as theWrite-Once Balanced Tree [E86] and theAllocation Tree [V85]),

and, (b) reduced cost per bit of disk storage as compared to indexes entirely contained on magnetic

disk. Two combined media R-Tree indexes were proposed in [KS89]; they differ on the way index

blocks are vacuumed from the magnetic to the archival medium.

In the first approach, the R-Tree is rooted on the magnetic disk and whenever its size on the

magnetic disk exceeds some pre-allocated threshold, the vacuuming process starts moving some

of the leaf pages to the archival medium. These pages refer to records which have already been

moved to the optical disk. Each such record hasTmax less than some time value. For each leaf

page, the maximumTmax is recorded. The pages with smallest maximumTmax refer to data which

was transferred longest ago. These are the pages which are transferred. Following the vacuuming

of the leaf nodes the process recursively vacuums all parent nodes that point entirely to children

nodes which have already been stored on the archive. The root node however is never a candidate

for vacuuming.

The second approach (Dual R-Tree) maintains two R-Trees, both rooted on the magnetic disk.

The first is entirely stored on the magnetic disk while the second is stored on the archival disk

except for its root (in general except from the upper levels). When the first tree gains the height of

the second tree, the vacuuming process will vacuum all the nodes of the first tree, except its root,

to the optical disk. References to the blocks below the root of the first tree are inserted in the root

46

of the second tree. Over time, there would continue to be two R-Trees, the first completely on the

magnetic disk and periodically archived. Searches are performed by descending both R-Trees.

In analyzing the use of the R-tree as a temporal index, we will speak of records rather than

pointers to records. In both approaches a given record is kept only once, therefore the space is

clearly linear to the number of changes (the number of data records in the tree is proportional ton).

Since the height of the trees isO(logBn) each record insertion needs logarithmic time. While on the

average searching an R-tree is also logarithmic, in (pathological) worst case this searching can be

O(n/B) since the whole tree may have to be traversed due to the overlapping regions. Figure 13

shows the general R-tree method, using overlapping rectangles of time-key space.

R-Trees are best suited for indexing data that exhibits a high degree of natural clustering in

multiple dimensions; then the index can partition data into rectangles so as to minimize both the

coverage and the overlap of the entire set of rectangles (i.e., rectangles corresponding to leaf pages

and internal nodes). Transaction time databases however, may consist of data whose attribute

values vary independently of their transaction time intervals, thus exhibiting only one-dimensional

clustering. In addition, in an R-Tree that stores temporal data, page splits cause a good deal of

overlap in the search regions of the non-leaf nodes. It was observed that for data records with non-

uniform interval lengths (i.e., a large proportion of “short” intervals and a small proportion of

“long” intervals), the overlapping is clearly increased, affecting the query and update performance

of the index.

Figure 14 shows how long-lived records inhibit the performance of structures which keep only

one copy of each record and which keep time-key rectangles. The problem is that a long-lived

record determines the length of the time range associated with the page in which it resides. Then

even if only one other key value is present, and there are many changes to the record with the other

key value in that time range, overlap is required. For example, in Figure 14, the eleventh record

version (shown with a dotted line) belongs to the time-key range of this page but it cannot fit since

the page has already ten record versions. It will instead be placed in a different page whose

rectangle has to overlap this one. The same example also illustrates that the number of leaf pages

to be retrieved for a timeslice can be large (O(a)) since only a few records may be “alive” (contain

the given time value in their interval) for any one page.

In an attempt to overcome the above problems, theSegment R-Tree (SR-Tree) was proposed

[KS91, K93]. The SR-Tree combines properties of the R-Tree and theSegment Tree, a binary tree

47

Figure 13: An example of data bounding as used in R-tree based methods.

time

key

5 6 7 8 9 10 20

a
b

c
d
e
f

h

g

time

key

5 6 7 8 9 10

a
b

c
d
e
f

h

g

20

time

key

5 6 7 8 9 10

a
b

c
d
e
f

h

g

20

These are possible data page boundaries at the time record version d dies.

Suppose a maximum capacity of 5 record versions in each page
Record versions are entered as they die. At time instant 9, the
records must be split into two pages as illustrated here because
at instant 9 there are six dead record versions.

A B

C

D

E

12

14

14

14

12

12

This is a possible allocation to R−tree data pages of all versions shown,
given that at most 5 and and least 3 record versions must be in each
page. The parent node will contain the border coordinates for each
of the five children. For example, data node C has borders with time
running between 0 and 14 and keys b and c only. The version of record
c between 8 and 12 belongs to E. A time slice query at time instant
8 visits A, B, C, and E and obtains one record version from each page.

48

data structure proposed in [B77] for storing line segments. A Segment Tree stores the interval

endpoints on the leaf nodes; each internal node is associated with a “range” that contains all the

endpoints in its subtree. An intervalI is stored in the highest internal nodev such thatI coversv’s

range and does not cover the range ofv’s parent. Observe that an interval may be stored in at most

logarithmic many internal nodes; thus the space is no longer linear [M84].

The SR-Tree (Figure 15) is an R-Tree where intervals can be stored in both leaf and non-leaf

nodes. An intervalI is placed to the highest level nodeX of the tree such thatI spans at least one

of the intervals represented byX’s child nodes. IfI does not spanX, spans at least one of its children

but is not fully contained inX, thenI is fragmented.

Using this idea, long intervals will be placed in higher levels of the R-Tree, thus the SR-Tree

tends to decrease the overlapping in leaf nodes (in the regular R-Tree, a long interval stored in a

leaf node will “elongate” the area of this node thus exacerbating the overlap problem). One risks

having large numbers of spanning records or fragments of spanning records stored high up in the

tree. This decreases the fan-out of the index as there is less room for pointers to children. It is

suggested to vary the size of the nodes in the tree, making higher-up nodes larger. “Varying the

size” of a node means that several pages are used for one node. This adds some page accesses to

the search cost.

As with the R-tree, if the record is inserted at a leaf (because it did not span anything) the

Figure 14: The effect of long-lived records on overlapping.

time

key

time

key

a) The first record version is very long−lived. Its time span is the
minimum time span this time−key rectangle can have. Here we add
one other record, with another key. Now we have minimum boundaries
in both time and key.

b) The second record gets many new versions over the time span
of the first (long−lived) record. If the page capacity is ten record
versions, the eleventh version in this time−key rectangle does not fit.
This implies that there will be overlapping with another time−key
rectangle, which holds the next version of the second record. This
shows where one long−lived record and one record with a different key
and many short versions forces time−key rectangles to overlap.

49

boundaries of the space covered by the leaf node in which it is placed may be expanded.

Expansions may be needed on all nodes on the path to the leaf which contains the new record. This

may change the spanning relationships since records may no longer span children which have been

expanded. In this case, such records are reinserted in the tree, possibly being demoted to occupants

of nodes they previously spanned. Splitting nodes may also cause changes in spanning

relationships as they make children smaller -former occupants of a node may be promoted to

spanning records in the parent.

Similarly with the Segment Tree, the space used by the SR-Tree is no longer linear. An interval

may be stored in more than one non-leaf nodes (in thespanning and remnant portions of this

interval). Due to the use of the segment-tree property, the space can be as much asO(nlogBn).

Figure 15: The SR-Tree.

B

A

C

D

E

E

D

C
A

B

spans A
spans D

root

root

spans Espans B

Remnant portion of L

Spanning
 portion of L

Line L spans C but is
not contained in A

50

Inserting an interval still takes logarithmic time. However, due to possible promotions, demotions

and fragmentation, insertion is slower than in the R-tree. Even though the segment property tends

to reduce the overlapping problem, the (pathological) worst case performance for the deletion and

query time remains the same as for the R-Tree organization. The average case behavior is again

logarithmic.

To improve the performance of their structure, the authors have also proposed the use of a

Skeleton SR-Tree, which is an SR-Tree which pre-partitions the entire domain into some number

of regions. This pre-partition is based on some initial assumption on the distribution of data and the

number of intervals to be inserted. Then the Skeleton SR-Tree is populated with data; if the data

distribution is changed the structure of the Skeleton SR-Tree can be changed, too.

An implicit assumption made by all R-Tree based methods is that when an interval is inserted

both itsTmin andTmax values are known. In practice however this is not true for “current” data.

One solution would be to enter all such intervals as (Tmin, now), wherenow is a variable

representing the current time. A problem with this approach is that a “deletion” update that changes

thenow value of an interval toTmax, is implemented by a search for the interval, a deletion of the

(Tmin, now) interval and a re-insertion as (Tmin, Tmax) interval. Since searches are not guaranteed

for worst case performance this approach could be problematic. The deletion of(Tmin, now)is a

physical deletion which implies the physical deletion of all remnant portions of this interval. A

better solution would be to keep the current records in a separate index (probably a basic R-tree).

This will avoid the above deletion problem but the worst case performance remains as before.

The pure-key query is addressed as a special case of a range time-interval query, where the

range is limited to a key and the time-interval is the whole time axis. Hence all pages that contain

the key in their range will be accessed. However, if this key never existed, the search may go

throughO(n/B) pages in (pathological) worst case. If this key has existed, the search will definitely

find its appearances but it may also access pages that do not contain any appearances of this key.

If the SR-Tree is used as a valid-time method, then physical deletions of any stored interval

should be supported efficiently. As above, the problem with physical deletions emanates from

keeping an interval in many remnant segments that all have to be found and physically deleted.

Actually, the original SR-Tree paper [KS91] assumes that physical deletions do not happen often.

5.1.3.2 The Write-Once B-Tree

The Write-Once B-tree or WOBT, proposed in [E86], was originally intended for a database which

51

resided entirely on WORMs. However, many variations of this method, the Time-Split B-tree

[LS89], the Persistent B-tree [LM91], the Multiversion B-tree [BGO+93] and the Multiversion

Access Structure [VV95] have been proposed which may use both a WORM and a magnetic disk,

or only a magnetic disk. The WOBT itself can be used either on a WORM or on a magnetic disk.

The WOBT is a modification of the B+-tree given the constraints of a WORM.

The WORM characteristics imply that once a page is written no new data can be entered or

updated in the page (since a checksum is burned into the disk). As a result, each new index entry

occupies an entire page; for example, if a new index entry takes 12 bytes and a page is 1024 bytes,

99% of the page is empty. Similarly, each new record version is an entire page. Tree nodes are

collections of pages, for example a track on a disk. Record versions contain their transaction start

time only. A new version with the same key is placed in the same node. Its start time is the end time

of the previous version. Nodes represent a rectangle in the transaction time-key space. The nodes

partition that space-- each time-key point is in exactly one node.

When a node fills up, it can be split by (current) transaction time or split first by current

transaction time and then by key. The choice depends on how many records in the node are current

versions at the time of the split. The old node is left in place. (There is no other choice.) The record

versions “alive” at the current transaction time are copied to a new node or two new nodes if it is

also split by key. There is space for new versions in the new nodes. Deletions of records are

handled in the only possible way: a node deletion record is written in a current node and it contains

the end time. When the current node is split, the deleted record is not copied. This design enables

some clustering of the records in nodes by time and key (after a node split, “alive” records are

stored together in a page) but most of the space of most of the optical disk pages is empty (because

most new entries occupy whole pages).

When a root node splits, a new root is created. Addresses of consecutive roots and their creation

times are held in a “root log” that has the form of a variable-length append-only array. This array

will provide access to the appropriate root of the WOBT by time.

If the WOBT is implemented on a magnetic disk, space utilization is immediately improved as

it is not necessary to use an entire page for one entry. Pages can be updated, so they can be used

for nodes. Space utilization isO(n/B) and range queries areO(logBn+a/B), if one disregards record

deletion. These bounds are for using the method exactly as described in the paper, except that each

node of the tree will be a page on a magnetic disk. In particular, the old node in a split is not moved.

52

Current records are copied to a new node or to two new nodes. Since deletions are simply handled

with a deletion record (which is “seen” by the method as another updated value) the search

algorithm is not able to avoid searching pages that may be full of “deleted” records. Therefore, if

deletions are frequent, pages that do not contribute in the answer may be accessed.

Since all the B+-tree based transaction-time methods search data records by both transaction

time and key, or, by transaction time only, answering a pure-key query with the WOBT (and the

Time-Split B-tree, Persistent B-tree and Multiversion B-tree) requires that a given version

(instance) of the key whose previous versions are requested should be also provided by the query.

That is, a transaction time predicate should be provided in the pure-key query as for example in:

“find the previous salary history of employeeA who was alive att.”

Different versions of a given key can be linked together so that the pure-key query (with time

predicate) is addressed by the WOBT in ’s. The logarithmic part is spent for

finding the instance of employeeA in versiont and then its previousa versions are accessed using

a linked structure. Basically, the WOBT (and the Time-Split B-tree, Persistent B-tree and the

Multiversion B-tree) can have backwards links in each node to the previous historical version. This

does not use much space, but for records which do not change over many copies, one needs to go

back many pages before getting more information. To achieve the above bound, each record needs

to keep the address of the last different version of that record.

If such addresses are kept in records, the address of the last different version for each record is

available at the time the data node does a time split. Then these addresses can be copied to the new

node with their respective records. A record whose most recent previous version is in the node

which is split must add that address. A record which is the first version with that key must have a

special symbol to indicate this fact. This simple algorithm can be applied to any method which does

time splits.

To answer the general pure-key query “find the previous salary history of employeeA” requires

finding if A was ever an employee. The WOBT would need to copy “deleted” records when a time

split occurs, which implies that the WOBT state carries the latest record for all keys ever created.

However this will increase the space consumption. Otherwise, if “deleted” records are not copied,

all pages including this key in their key space may have to be searched.

The WOBT used on a magnetic disk still makes copies of records where it does not seem

necessary. The WOBT always makes a time split before making a key split. This creates one

O nBlog a+() I/O

53

historical page and two current pages where previously there was only one current page. A B-tree

split creates two current pages where there was only one. No historical pages are created. It seems

like a good idea to be able to make pure key splits as well as time splits or time-and-key splits. This

would make the space utilization better.

5.1.3.3 The Time Split B-Tree

The Time-Split B-tree (or “TSB-tree”) [LS89, LS90a, LS93a] is a modification of the WOBT

which allows pure key splits and which keeps the current data in an erasable medium such as a

magnetic disk and migrates the data to another disk (which could be magnetic or optical) when a

time split is made. This partitions the data in nodes by transaction time and key like the WOBT,

but is more space efficient. It also separates the current records from most of the historical records.

In addition, the TSB-tree does not keep a “root log”. Instead it creates new roots as B+-trees do, by

increasing the height of the tree when the root splits.

When a data page is full and there are less than some threshold value of alive distinct keys, the

TSB-tree will split the page by transaction time only. This is the same as what the WOBT did,

except now times other than the current time can be chosen. For example, the split time for a data

page could be the “time of last update”, after which there were only insertions of records with new

keys and no updates creating new versions of already existing records. The new insertions, after

the time chosen for the split, need not have copies in the historical node. Time splits in the WOBT

and in the TSB-tree are illustrated in Figure 16.

Time splitting, whether by current time or by time of last update, enables an automatic

migration of older versions of records to a separate historical database. This is to be contrasted with

POSTGRES’ vacuuming which is “manual” and is invoked as a separate background process

which searches through the database for dead records.

It is also to be contrasted with methods which reserve optical pages for pages which cannot yet

be moved and maintain two addresses (a magnetic page address and an optical page address) for

search for the contents. TSB-tree migration takes place when a time split is made. The current page

retains the current contents and the historical records are written sequentially to the optical disk.

The new optical disk address and the time of the split are posted to the parent in the TSB-tree. As

with B+-tree node splitting, only the node to be split, the newly allocated node and the parent are

affected (also, rarely, a full parent requires further splitting). Since the node is full and is obtaining

new data, a split must be made anyway, whether or not the new node is on an optical disk. (This

54

migration to an archive can also be used for media recovery as illustrated in [LS93b].)

Time splitting by other than the current transaction time has another advantage. It can be used

in distributed databases where the commit time of a transaction is not known until the commit

message is sent from the coordinator. In such a database, an updated record of a PREPARED cohort

may or may not have a commit time before the time when an overflowing page containing it must

be split. Such a page can only be split by a time before the time voted by the cohort as the earliest

time it might commit (see [S94,L93] for details).

Full data pages with a large number of distinct keys currently “alive” are split by key only in

the TSB-tree. The WOBT splits first by time and then by key. Similarly with the WOBT, the space

usage for the TSB-tree isO(n/B). The constant factor in the asymptotic bound will be smaller for

Figure 16: Time splitting in the WOBT and TSB-tree.

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10

a
b

c
d
e
f

g

h

(a) The WOBT splits at current time, copying current records into a new node.

new node

new node

(b) The TSB tree can choose other times to split.

old node

old node
after split

a
b

c
d
e
f

g

h

55

the TSB-tree since it makes less copies of records. Key splitting for the WOBT and the TSB-tree

is illustrated in Figure 17.

An extensive average case analysis using Markov chains and considering various rates of

update versus insertions of records with new keys can be found in [LS90a]. This shows at worst

two copies of each record even under large update rates. The split threshold was kept at 2B/3. (If

more than 2B/3 distinct keys were in the page, a pure key split was made.)

There is however a problem with pure key splits. The decision on the key splits is made based

on the alive keys at the time the key split is made. For example in Figure 17 (b), the key split is

taken at timet=18, when there are six keys alive, that are separated three per new page. However,

this key range division does not guarantee that the two pages will have enough alive keys for all

Figure 17: Key splitting in the WOBT and TSB-tree.

e
f

g

h

time

key

a
b

c
d

5 6 7 8 9 10

new nodes

a
b

c
d

(a) The WOBT splits data nodes first by time then sometimes also by key.

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10old node

e
f

g

h

new nodes

(b) The TSB−tree can split by key alone.

12 14

15

18

12 14

15

18

56

previous times; at timet=15 the bottom page has only one key alive.

Suppose you have a database where most of the changes are insertions of records with a new

key. As time goes by, in the TSB-tree, only key splits are made. After a while, queries as of a past

time will become inefficient. Every timeslice query will have to visit every node of the TSB-tree

since they are all current nodes. Queries as of now, or recent time, will be efficient since every node

will have many alive records. But queries as of the distant past will be inefficient since many of the

current nodes will not contain records which were “alive” at that distant past time.

In addition, as in the WOBT, the TSB-tree merely posts deletion markers and does not merge

sparse nodes. If no merging of current nodes is done, and there are many record deletions, a current

node may contain few current records. This could make current search slower than it should be.

Thus the worst case search time for the TSB-tree can be O(n/B)for a transaction (pure or range)

timeslice. Pages may be accessed which have no answers to the query. Other modifications of

[E86] discussed in the next section combined with the TSB-tree modifications of [E86] should

solve this problem. Basically, when there are too few distinct keys at any time covered by the time-

key rectangle of a node to be split, it must be split by time and then possibly by key. Node

consolidation should also be supported (to deal with pages that become sparse of alive keys due to

deletions).

Index nodes in the TSB-tree are treated differently from data nodes. The children of index

nodes are rectangles in time-key space. So making a time split or key split of an index node may

cause a lower level node to be referred to by two parents.

Index node splits in the TSB-tree are restricted in ways which guarantee that current nodes (the

only ones where insertions and updates occur) have only one parent. This parent is a current index

node. Updates need never be made in historical index nodes, which like historical data nodes can

be placed on WORM devices.

A time split can be done on any time before the start time of the oldest current child. If time

splits were allowed at current transaction time for index nodes, lower level current nodes would

have more than one parent.

A key split can be done at any current key boundary. This also assures that lower level current

nodes have only one parent. Index node splitting is illustrated in Figure 18.

Unlike the WOBT (or [LM91] or [BGO+93]), the TSB-tree can move the contents of the

57

historical node to another location in a separate historical database without updating more than one

parent. No node which might be split in the future has more than one parent. If a node does a time

split, the new address of the historical data from the old node can be placed in its unique parent and

the old address can be used for the new current data. If it does a key split, the new key range for

the old page can be posted along with the new key range and address.

As with the WOBT, pure-key queries with time predicate are addressed in

’s, wherea represents the size of the answer.

5.1.3.4 The Persistent B-tree

Several methods [LM91, BGO+93, VV95] were derived from a method [DSST89] for general

main-memory resident linked data structures. [DSST89] shows how to take an “ephemeral data

Figure 18: Index node splitting in the TSB-tree.

b) split by begin time of oldest current child

c) split by a current key boundary

now

now

now

key

key

key

time

time

time

a) original index page: rectangles represent
key−time space of children

g

e

b

18 25 40

O nBlog a+()

I/O

58

structure” (meaning that past states are erased when updates are made) and convert it to a

“persistent data structure” (where past states are maintained). A “fully persistent” data structure

allows updates to all past states. A “partially persistent” data structure allows updates only to the

most recent state.

Consider the abstraction of a transaction time database as the “history of an evolving set of

plain objects” (Fig. 1). Assume that a B+-tree is used to index the initial state of this evolving set.

If this B+-tree is made partially persistent we have constructed an access method that supports

transaction range-timeslice queries (“range/-/point”). Conceptually, a range-timeslice query for

transaction timet is answered by traversing the B+-tree as it was att. Partial persistence suits nicely

to transaction time since only the most recent state is updated. Note that the method used to index

the evolving set state affects what queries are addressed. For example, to construct a pure-timeslice

method, the evolving set state is represented by a hashing function that is made partially persistent.

This is another way to “visualize” the approach taken by the Snapshot Index.

Note that a fully persistent access structure can be restricted to the partially persistent case. That

is the reason for discussing [DSST89] and [LM91] in this survey.

[LM91] provides a fully persistent B+-tree. For our purposes we are only interested in the

methods presented in [LM91] when reduced to partial persistence. We thus term thepartially

persistent method of [LM91] as the Persistent B-Tree. The Multiversion B-Tree (or “MVBT”) of

[BGO+93] and the MVAS of [VV95] are also partially persistent B+-trees. The Persistent B-Tree

and the MVBT, MVAS support node consolidation (that is, a page is consolidated with another

page if it becomes sparse of alive keys due to frequent deletions). In comparison, the WOBT and

the TSB-tree are partially persistent B+-trees which do not do node consolidation (since they aim

for applications were data is mainly updated and infrequently deleted). Node consolidation may

result in thrashing (consolidating and splitting the same page continually) which results in more

space. The MVBT, MVAS disallow thrashing while the Persistent B-Tree does not.

[DSST89], [LM91], [BGO+93] and [VV95] speak of version numbers rather than of

timestamps. One important difference between version numbers for partially persistent data and

timestamps is that timestamps as we have defined them are transaction time instants when events

(changes) are stored. So timestamps are not consecutive integers. But version numbers can be

consecutive integers. This has an effect on search operations since [DSST89], [LM91], [BGO+93]

and [VV95] maintain an auxiliary structure calledroot* which serves the same purpose as the “root

59

log” of the WOBT.

In [DSST89], root* is an array indexed on version numbers. Each array entry has a pointer to

the root of the version in question. If the version numbers are consecutive integers, search for the

root isO(1). If timestamps are used, search isO(logBn). In [LM91], [BGO+93] and [VV95], root*

only obtains entries when a root splits. Although root* is thus smaller than it would be if it had an

entry for each timestamp, search within root* for the correct root isO(logBn).

The use of the root* structure (array) in [LM91, BGO+93, VV95] facilitates faster update

processing as the most current version of the B+-tree is thus separated from most of the previous

versions. The most current root can have a separate pointer yieldingO(1) access to that root. (Each

root corresponds to a consecutive set of versions). If the current version has sizem updating is

O(logBm). Methods that do not use the root* structure haveO(logBn) update processing.

[DSST89] explains how to make any ephemeral main-memory linked structure persistent. Two

main methods are proposed: thefat node method and thenode copyingmethod. The fat node

method keeps all the variations of a node in a variable-sized “fat node.” When an ephemeral

structure would update the contents of a node, the fat node method would simply append the new

values to the old node, with a notation of the version number (timestamp) which does the update.

When an ephemeral structure would create a new node, a new fat node is created.

[LM91] applies the fat node method of [DSST89] to the B+-tree. The fat nodes are collections

of B+-tree pages, each corresponding to a set of versions. Versions can share B+-tree pages if the

records in them are identical for each member of the sharing set. But versions with only one

different data record have distinct B+-tree pages.

Pointers to lower levels of the structure are pointers to fat nodes, not to individual pages within

fat nodes. When a record is updated or inserted or deleted, a new leaf page is created. The new leaf

is added to the old fat node. If the new leaf contents overflows, the new leaf is split, with the lower-

value keys in the old fat node and the higher value keys in a new fat node. When a leaf splits, the

parent node must be updated to direct search correctly for part of the new version that is in the new

fat node. When a new page is added to a fat node, the parent need not be updated.

Similarly, when index nodes obtain new values because a fat node child has a split, new pages

are allocated to the fat index node. When an index node would split, the parent of the index node

obtains a new value. When roots split, a new pointer is put in the array root*, which allows access

to the correct (fat) root nodes.

60

Since search within a fat node would mean fetching all the pages in the fat node until the correct

one was found (with the correct version number), [LM91] suggests an auxiliary structure in each

fat node of the Persistent B-tree: aversion block. The version block indicates which page or block

in the fat node corresponds to which version number. Figure 19 shows the incremental creation of

a version block with its fat node pages. In Figure 20, an update causes this version block to split.

The version block is envisioned as one disk page, but there is no reason that it might not become

much larger. It may itself have to take the form of a multiway access tree (since new entries are

always added at the end of a version block). Search in one version block for one data page could

itself beO(logBn). For example, if all changes to the database were updates of one B+-tree page,

the fat node would haven B+-tree pages in it.

Although search is no longer linear within the fat node, the path from the root to a leaf is at least

twice as many blocks as it would be for an ephemeral structure. The height of the tree in blocks is

at least twice what it would be for an ephemeral B+-tree containing the same data as in one of the

versions. Update processing is amortizedO(logBm) wherem is the size of the current B+-tree being

updated. Range timeslice search is . After the correct root is found, the

tree that was current at the time of interest is searched. This tree has heightO(logBm) and searching

each version block in the path isO(logBn). A similar bound holds for the pure-timeslice query.

Space isO(n) (notO(n/B)) since new leaf blocks are created for each update.

To avoid creating new leaf blocks for each update, the “fat field method” is also proposed in

[LM91]. Here updates can fit in space of non-full pages. In the general full persistence case, each

update must be marked with the version number which created it and with the version numbers of

all later versions which delete it. Since we are interested only on partial persistence, this

corresponds to the start time and the end time of the update. Fat fields for the Persistent B-tree are

illustrated in Figure 21.

When a page becomes full, the version creating the overflow copies all information which is

relevant to that version to a new node. The Persistent B-tree then creates a fat node and a version

block. If the new copied node is still overflowing, a key split can be made and then information

must be posted to the parent node regarding the key split and the new version. Thus the Persistent

B-tree of [LM91] does time splits and time-and-key splits just as in the WOBT. In this variation,

space usage is , update processing is amortizedO(logBm) and query time (for both the

range and pure-timeslice queries) is . The update and query time

characteristics remain asymptotically the same as in the fat-node method since the fat-field method

O nBlog mBlog a B⁄+()()

O n B⁄()

O nBlog mBlog a B⁄+()()

61

Figure 19: Incremental creation of a fat node in the Persistent B-Tree.

key

time

a
b

c
d
e
f

g

h

5 6 7 8 9 10

i
j

b,c,f,h b,c2, f,h

version block

fat node

b,c,f,h b,c2, f,h b,c2,f,g,h b2,c2,f,g,h

version block

fat node

0 5

b,c,f,h b,c2, f,h b,c2,f,g,h

version block

fat node

0 5 6 b) At time 6, a new record, with key
"g", is inserted. A new data page is
allocated. The version block is updated
to direct search at and after 6 to the
third data page.

b,c,f,h b,c2, f,h b,c2,f,g,h b2,c2,f,g,h b2,c3,f2,g

version block

fat node

0 5 6 7 8

c) This shows the fat
node after an update is made
on record "b" at time 7.

d) This shows the
fat node after an update
is made on records with
keys "c" and "f" at time 8.

At time 0, the database contains records with keys h, f, c and b. At time 5,
a new version is created which has an update to record c. At time 6,
record g is inserted. Each time instant when a change occurs corresponds to
a new version of the database. We assume a capacity of 5 records per page.

a) Every time a new version of the database
is created by a transaction, a new data page
is allocated to hold only those records alive after
the change. A version block (another disk page)
directs search to the correct data page. Here,
for times before 5, search goes to the first
data page. At and after 5, it goes to the
second data page. The record "c2" is the
updated version of the record "c". A set of data
pages with their version block is called a
"fat node."

0 5 6 7

62

still uses version blocks.

If a page becomes sparse, from too many deletions, a node consolidation algorithm is presented.

Figure 20: An example of a split on a fat node in the Persistent B-Tree.

key

time

a
b

c
d
e
f

g

h

5 6 7 8 9 10

i
j

b,c,f,h b,c2, f,h b,c2,f,g,h b2,c2,f,g,h b2,c3,f2,g

version block

fat node

...................... root*

b,c,f,h b,c2, f,h b,c2,f,g,h b2,c2,f,g,h b2,c3,f2,g

version block

fat node

version block

version block

g

b2,c3,f2

g2,i,j

fat node

fat node

b) A split.

0 5 6 7 8

9

9

0 9

 90 5 6 7 8

0 9

a) This fat node shows all the states of the database up to instant 8 from the last Figure.
We assume a capacity of 5 records for each B+−tree page. At instant 9
records i and j are inserted, requiring a split. The old version block splits also.

63

Figure 21: The fat-field method of the Persistent B-Tree.

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10

i
j

root*0

f<0,8> f<8,#> g<6,#>

f<8,#> g<13,#>g<9,13>

i<9,#> j<9,#>

11 13

i<9,#>

b<0,7> b<7,#> c<5,8> c<8,#> e<10,#>

c<11,#>b<7,13> e<10,#>

b<0,#> c<0,5> c<5,#> f <0,#> h<0,#>

0 6 11

6 9

a<6,#>

version block

version block

f<6,#>

A copy is made when a page overflows. Page capacity is five records. If there are four or more records
in the new node, a key split is made after the copy. The root* structure points to the root for a given timestamp.
Fat fields contain a key, a begin time, an end time and data. We shall not show the data. The "now" end time
is represented with a # sign.

The fat field method stores records from several versions as long as they fit in a page. At time 5, a new
version of record c is placed in the page. The old version gets 5 as its new end time. At time 6, overflow occurs.
There are four distinct keys in the new node, so a key split takes place. At time 9, when i and j are inserted
and g is updated, another copy and key split occur. This causes the new root to obtain a new index entry.
At time 11, a new version of record c causes an overflow with only a copy, not a key split. Fat nodes are created
when the first copy operation is made. Search for a given time follows pointers which begin before or at the
search time and do not end before the search time. Search in a version block (or in root*) follows the largest time
before or equal the search time.

h<0,8>

6

64

The version making the last deletion copies all information relative to that version to a new node.

Then a sibling node also has its information relative to that version copied to the new node. If it is

necessary, the new node is then key-split.

Technically speaking, the possibility of thrashing by continually consolidating and splitting the

same node could cause the space usage to becomeO(n) notO(n/B). This could happen by inserting

a record in a node, causing it to time-and-key split, then deleting a record from one of the new

current nodes and causing a node consolidation, which creates a new full current node, and so forth.

A solution for thrashing appears in [MS81]. Basically, the threshold for node consolidation is made

lower than half the threshold for node splitting. Since this is a rather pathological scenario, we will

continue to assume that the space usage for the fat-fields variation of the Persistent B-tree is

.

For moving historical data to another medium, observe that time splitting by current transaction

time as performed in the Persistent B-Tree means that nodes cannot be moved once they are created

unless all the parents (not just the current one) are updated with the new address of the historical

data. Only the TSB-tree solves this problem by splitting index nodes before the time of the earliest

start time of their current children. Thus in the TSB-tree when a current node is time-split, the

historical data can be moved to another disk. In the TSB-tree, current nodes have only one parent.

Fat nodes are not necessary for partial persistence. This is observed in [DSST89], where “node-

copying” for partially persistent structures is discussed.

The reason fat nodes are not needed is that although alive (current) nodes have many parents,

only one of them is current. So when a current node is copied or split, only its current parent has

to be updated. The other parents will correctly refer to its contents as of a previous version. The

fact that new items may have been added does not affect correctness of search. Since nodes are

always time split (most recent versions of items copied) by current transaction time, no information

is erased when a time split is made.

Both approaches of the Persistent B-Tree use a version block inside each fat-node. If the node

in question is never key-split (that is, all changes are applied to the same ephemeral B+-tree node),

new version block pages may be created for this node without updating the parent’s version block.

Thus when answering a query, all encountered version blocks have to be searched for timet. In

comparison, the MVBT and MVAS we discuss next use “node-copying” and thus have better

asymptotic query time (O(logBn+a/B)).

O n B⁄()

65

5.1.3.5 The Multiversion B-Tree and the Multiversion Access Structure

The Multiversion B-Tree of [BGO+93] and the Multiversion Access Structure of [VV95] provide

another approach to partially persistent B+-trees. Both structures have the same asymptotic

behavior but the MVAS improves the constant of MVBT’s space complexity. We first discuss the

MVBT and then present its main differences with the MVAS.

The MVBT is similar to the WOBT, however it efficiently supports deletions (as in [DSST89]

and [LM91]). Supporting deletions efficiently implies use of node consolidation. In addition, the

MVBT uses a form of node-copying [DSST89] and disallows thrashing.

As with the WOBT and the Persistent B-tree, it uses a root* structure. When the root does a

time-split, the sibling becomes a new root. Then a new entry is placed in the variable length array

root*, pointing to the new root. If the root does a time-and-key split, the new tree has one more

level. If a child of the root becomes sparse and merges with its only sibling, the newly merged node

becomes a root of a new tree.

Figures 21 and 22 illustrate some of the similarities and differences between Persistent B-tree,

the MVBT and the WOBT. To better illustrate the similarities, we picture the WOBT in Figure 22

with end times and start times in each record version. In the original WOBT, end times of records

were calculated from the begin times of the next version of the record with the same key. If no such

version was in the node, the end time of the record was known to be after the end time of the node.

In all three methods, if we have no node consolidations, the data nodes are exactly the same. In

all three methods, when a node becomes full, a copy is made of all the records “alive” as of the

time of the version making the update which causes the overflow. If the number of distinct records

in the copy is above some threshold, the copy is split into two nodes by key.

The Persistent B-tree creates a fat node when a data node is copied. The WOBT and the MVBT

do not create fat nodes. Instead, as illustrated in Figure 22, information is posted to the parent of

the overflowing data node. A new index entry or two new index entries which describe the split are

created. If there is only one new data node, the key used as the lower limit for the overflowing child

is copied to the new index entry. The old child pointer gets the time of the copy as its end time and

the new child pointer gets the split time as its start time. If there are two new children, they both

have the same start time, but one has the key of the overflowing child and the other has the key

used for the key split.

A difference between the Persistent B-tree, the WOBT, the MVBT on one hand and the TSB

66

Figure 22: The Multiversion B-Tree and the Write-Once B-Tree. (For simplicity of comparison, both the end and
start times appear in each record, which is not needed in the original WOBT).

time

key

a
b

c
d
e
f

g

h

5 6 7 8 9 10

i
j

root*

0

b<0,7> b<7,#> c<5,8>

f<0,8> f<8,#> g<6,#>

f<6,9> f<9,#>

f<8,#> g<13,#>g<9,13>

i<9,#>

i<9,#> j<9,#>

11 13

c<8,#>

c<11,#>b<7,13>

a<11,#>a<6,11>

e<10,#>

e<10,#>

b<0,#> c<0,5> c<5,#> f <0,#> h<0,#>

At time 5, a new version of record c is placed in the page. The old version gets 5 as its new end time. At time 6,
overflow occurs. There are four distinct keys in the new node, so a key split takes place. At time 9, when i and j
are inserted and g is updated, another copy and key split occur. This causes the new root to obtain two new index entries.
At time 11, a new version of record c causes an overflow with only a copy, not a split. There is one new index entry.

h<0,8>

6

...

...

...

A copy is made when a page overflows. Page capacity is five records. If there are four or more records
in the new node, a key split is made after the copy. The root* structure points to the root for a given timestamp.
Records contain a key, a begin time, an end time and data. We shall not show the data. The "now" end time
 is represented with a # sign.

67

on the other is that the TSB does not have root*. When the only root in the TSB does a time split,

a new level is placed on the tree to contain the information about the split. When the root in the

MVBT does a time-split, root* obtains a new entry. When the root in the (fat-field) Persistent B-

tree does a time split, that root fat node obtains a new page and a new entry in the version block.

(Only when the root fat node requires a key split or a merge so that a new root fat node is

constructed, does root* obtain a new entry in the Persistent B-tree.)

Another difference with the WOBT is that the MVBT and the Persistent B-tree use a node

consolidation algorithm. When a node is sparse, it is consolidated with a sibling by time- splitting

(copying) both the sparse node and its sibling and then combining the two copies, possibly key

splitting if necessary.

In addition, the MVBT disallows thrashing (splitting and consolidating the same node

continually) by suggesting that the threshold for splitting be higher than twice the threshold for

consolidation. The Persistent B-tree does not disallow thrashing. This is not an issue with the

WOBT, since the WOBT does no node consolidation.

Search in root* for the correct root in MBVT isO(logBn). Although the example illustrated in

Figure 22 has a small root*, there is no reason why this should always be the case. One need only

imagine a database with one data node with records that are continually updated, causing the root

(which is also the data node) to continually time-split. So, if the root* becomes too large, a small

index has to be created above it.

In the MBVT, transaction range timeslice search (“range/-/point”) isO(logBn+a/B) since

search for the root is itselfO(logBn). The MVBT hasO(logBm) amortized update cost (wherem

denotes now the size of the current B+-tree on which the update is performed), andO(n/B) space

usage. Thus the MVBT provides the I/O-optimal solution to the transaction range timeslice

problem. The update cost is amortized because of the updating needed to maintain efficient access

to the root* structure.

The WOBT is not optimal because deletions of records can cause pages to be sparsely

populated as of some recent times. Thus transaction range-timeslice searches may become

inefficient. Insertions in the WOBT and in the MVBT areO(logBm) since a special pointer can be

kept to the root of the tree containing all current records (which areO(m)).

The MVBT uses more space than the WOBT, which in turn uses more space than the TSB-tree.

In order to guard against sparse nodes and thrashing the MVBT policies create more replication

68

(the constant in theO(n/B) space worst case bound of the method is about 10.)

Probably the best variation of the WOBT is to use some parameters to decide whether to time

split, time-and-key split, key split, time-split and merge or time-split, merge and key-split. These

parameters will depend on the minimum number of versions alive at any time in the interval

spanned by the page. All of the policies pit disk space usage against query time. A pure key split

creates one new page. A time-and-key split creates two new pages: one new historical page and

one new current page. The historical page will have copies of the current records, so more copies

are made than when pure key splits are allowed. Node consolidation creates at least two new

historical pages. However, once a minimum number of records is guaranteed to be alive for any

given version in all pages, range-timeslice queries will beO(logBn+a/B) and space usage will be

O(n/B). The different splitting policies will affect the total amount of space used and the average

number of copies of record versions made.

The Multiversion Access Structure (MVAS) [VV95] is similar to the MVBT, however it

achieves a smaller constant on the space bound by using better policies to handle the cases when

key-splits or merges are performed. There are two main differences in the MVAS policies. The first

deals with the case when a node becomes sparse after performing a record deletion. Instead of

always consuming a new page (as in the MVBT), the MVAS tries to find a sibling with free space

where the remaining alive entries of the time-split page can be stored. The conditions under which

this step is carried out are described in detail in [VV95]. The second difference deals with the case

when the number of entries in a just time-split node is below the pre-specified threshold. If a sibling

page has enough alive records, the MVBT would copy all the sibling’s alive records to the sparse

time-split page thus “deleting” the sibling page. Instead the MVAS will copy only as many alive

records from the sibling page, needed for the time-split page to avoid violating the threshold. The

above two modifications reduce the extent of duplication, hence reducing the overall space. As a

result the MVAS reduces the worst case storage bound of MVBT by a factor of 2.

Since the WOBT, TSB-tree, Persistent B-tree, MVBT and MVAS are similar in their approach

towards solving range-timeslice queries, we summarize their characteristics in Table A. The issues

of time-split, key-split, time- and key-split, sparse nodes, thrashing and history migration are

closely related.

The pure-key query was not addressed in the works of [DSST89], [LM91] and [BGO+93];

however, the technique that keeps with each record the address of any one copy of the most recent

69

distinct previous version of the record can avoid going through all copies of a record. The pure-key

query (with time predicate) is then addressed in ’s, just as proposed for the

WOBT (wherea represents the number of different versions of the given key).

As discussed in section 5.1.1, [VV95] solves the pure-key query (with time predicate) in

optimal query time using C-lists. Despite their extra complexity in maintenance,

an advantage of the C-lists is that they can be combined with the main MVAS method.

5.1.3.6 Exodus and Overlapping B+-Trees

The Overlapping B+-tree[MK90, BHK85] and the Exodus large storage object [RCDS86] are

similar. Here we begin with a B+-tree. When a new version makes an update in a leaf page, copies

are made of the full path from the leaf to the root, changing references as necessary. Each new

version has a separate root and subtrees may be shared (Figure 23).

Space usage isO(nlogBn) since new pages are created for the whole path leading to each data

page updated by a new version. Update processing isO(logBm) wherem is the size of the current

tree being updated. Timeslice or range-timeslice query time depends on the time needed to find the

correct root. If non consecutive transaction timestamps of events are used it isO(logBn+a/B).

Even though pure-key queries of the form “find the previous salary history of employeeA who

Table A: The basic characteristics of WOBT, TSB-tree, Persistent B-tree, MVBT and MVAS.

time
split

pure
key
split

time/key
split root*

history
migrate

sparse
node
merge

WOBT

TSB−Tree

no

N.A.

N.A.

no

no

no

nono

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

1 2
3

4 5

Persistent
 B−tree

prevent
thrashing

Notes

1. All methods time−split (copy) data and index nodes. The TSB−tree can time−split by other than current time.
2. The TSB−Tree does pure key splits. The other methods do time−and−key splits. Pure key splits use less
 total space, but risk poor performance on past−time queries.
3. Thrashing is repeated merging and splitting of the same node. Only the MBVT prevents thrashing by choice
 of splitting and merging thresholds. Prevention of thrashing is not needed when there is no merging.
4. The use of root* enables the current tree search to be more efficient by keeping a separate pointer to
 its root. Past time queries must search within root*, so are not more efficient than methods without root*.
5. Only the TSB−tree has only one reference to current nodes, allowing historical data to migrate.

yes

MVBT/MVAS

O nBlog a+() I/O

O nBlog a B⁄+()

70

was alive att” (i.e., with time predicate) are not discussed, they can in principle be addressed in the

same way as with the other B+-tree based methods by linking together data records.

5.1.3.7 Multiattribute Indexes

Suppose that the transaction start time, transaction end time and database key are used as a triplet

key for a multiattribute point structure. If this structure clusters records in disk pages by closeness

in several attributes, one can obtain efficient transaction pure-timeslice and range-timeslice

queries, using only one copy of each record.

Records with similar values of start time, end time and key will be clustered together in disk

pages. Having both a similar start time and a similar end time means that long-lived records will

be in the same page as other long-lived records. These records will be answers to many timeslice

queries. Short lived records will only be on the same pages if their short lives are close in time.

These will contain many correct answers to timeslice queries with time values in the short interval

their entries span. Every timeslice query will access some of the long-lived record pages and a

small proportion of the short-lived record pages. Individual timeslice queries will not need to

access most of the short-lived record pages as they will not intersect the timeslice.

There are some subtle problems with this. Suppose a data page is split by start time. In one of

Figure 23: The Overlapping tree/Exodus structure.

old version newversion

shared shared old shared new

root of root of

71

the pages resulting from the split, all the record versions whose start time is before the split time

are stored. This page has an upper bound on start time, implying that no new record versions can

be inserted. All new record versions will have a start time afternow, which is certainly after the

split time. Further, if there are current records in this page, their end time will continue to rise, so

the lengths of the time spans of records in this page will be variable.

Some will be long and others short. Queries as of current transaction time may only retrieve a

few (or no) records from a page which has been limited by an upper bound on start time. This is

illustrated in Figure 24. Many such pages may have to be accessed in order to answer a query, each

one contributing very little to the answer (that is, the answer is not well clustered in pages).

Also, when a new version is created, its start time is often far from the start time of its

predecessor (the previous version with the same key). So consecutive versions of the same record

are unlikely to be on the same page if start-time splits are used.

Now suppose we decide that splitting by start time is a bad idea and we split only by key or by

end time. Splitting by end time enables migration of past data to a WORM disk. However, a query

as of a past transaction time may only retrieve a small number of records if the records are placed

only by the requirement of having an end time before some cut-off value just as in Figure 12.

Current pages (which have been split by key) can contain versions whose lifetimes are very

long and versions whose lifetimes are very short. This also makes past-time queries inefficient.

All of these subtle problems come from the fact that many records are still current and have

growing lifetimes and all new record versions have increasing start times. Perhaps if we use a

point-based multiattribute index for dead versions only, efficient clustering may be possible. Here

newly dead record versions can be inserted in a page with an upper limit on start time because the

start times may have been long ago. Items can be clustered in pages by key, nearby start times and

Figure 24: Storing data with similar start_times.

time

key

nowt

72

nearby end times. No guarantees can be made that a query as of a given time will hit a minimum number of

record versions in a page, however. For example, imagine a page with record versions with very short lifetimes

all of which are close by, but none of which overlap.

Although no guarantees of worst case search time can be made, the advantages of having only one copy of

each record and having no overlapping of time-key space, so that backtracking is not necessary, may make this

approach worthwhile at least for “dead” versions. Space usage is thus linear (space would beO(n/B) if in

addition the multiattribute method can guarantee that index and data pages have good space utilization). A

method for migrating current data to the WORM and of organizing the current data for efficient temporal queries

would be needed if the multiattribute method was used only for past data.

5.1.4 Summary

The worst case performance of the transaction-time methods is summarized in Table B. The reader should be

cautious when interpreting worst case performance. Sometimes the notation penalizes a method for its

performance on a pathological scenario. The footnotes indicate such cases.

Table B: The performance characteristics of the examined transaction-time methods.

Access Method
(related section)

Total Space
Update per

change
Pure-key Query

Pure-Timeslice
Query

Range-Timeslice
Query

AP-Tree(5.1.2.1) O(n/B) O(logBn) 1 N/A O(n/B) O(n/B)

ST-Tree(5.1.2.1) O(n/B) O(logBS) 2 O(logBS+a)2 O(SlogBn) 2 O(KlogBn) 3

Time-Index
(5.1.2.2)

O(n2/B) O(n/B) N/A O(logBn+a/B) O(logBn+s/B)4

Two-level Time
Index(5.1.2.2)

O(n2/B) O(n/B) N/A O(RlogBn+a) 5 O(MlogBn+a) 6

Checkpoint
Index(5.1.2.4)7

O(n/B) O(n/B) N/A O(n/B) O(n/B)

Archivable Time
Index(5.1.2.5)8

O(n/B) O(logBn) N/A O(log2n+a/B) O(log2n+s/B) 4

Snapshot Index
(5.1.2.6)

O(n/B) O(1) 9 O(a) 10 O(logBn+a/B) O(logBn+s/B) 4

Windows Method
(5.1.2.7)

O(n/B) O(logBn) O(logBn + a) O(logBn+a/B) O(logBn+s/B)4

R-Trees(5.1.3.1) O(n/B) O(logBn) O(n/B)11 O(n/B)11 O(n/B) 11

73

1. This is the time needed when the end_time of a stored interval is updated; it is assumed that the start_time of the updated interval
is given. If intervals can be identified by some key attribute, then a hashing function could find the updated interval atO(1)
expected amortized time. In the original paper it was assumed that intervals can only be added and in increasing start_time order;
in that case the update time isO(1).

2. WhereS denotes the number of different keys (surrogates) ever created in the evolution.
3. WhereK denotes the number of keys in the query key range (which may or may not be alive at the time of interest).
4. Wheres denotes the size of the whole timeslice for the time of interest. No separation of the key space in regions is assumed.
5. WhereR is the number of predefined key regions.
6. Assuming that a query contains a number of predefined key-regions,M denotes the number of regions in the query range.
7. The performance is under the assumption that the Checkpoint Index creates very few checkpoints and the space remains linear.

The update time isO(n/B) since when the end_time of a stored interval is updated, the interval has to be found. As with the AP-
Index, if intervals can be identified by some key attribute, then a hashing function could find the updated interval atO(1). The
original paper did not deal with this issue since it was implicitly assumed that interval endpoints are known at insertion. If check-
points are often then the method will behave as the Time Index.

8. For the update it is assumed that the start_time of the updated interval is known. Otherwise, if intervals can be identified by some
key, a hashing function could be used to find the start_time of the updated interval. For the range-timeslice query, we assume no
extra structure is used. The original paper proposes using an approach similar to the Two-Level Time Index or the ST-Tree.

9. In the expected amortized sense, using a hashing function on the object key space. If no hashing but a B-tree is used then the
update becomesO(logBm) wherem is the size of the current state, on which the update is performed.

10. Assuming as in 9 that a hashing function is used. If a B-tree is used the query becomesO(logBS + a) whereS is the total number of
keys ever created.

11. This is apathological worst case, due to the non-guaranteed search on an R-tree based structure. In most cases the avg. perfor-
mance would beO(logBn+a). Note that all the R-tree related methods assume both interval endpoints are known at insertion time.

12. Here we assume that the WOBT tree is implemented thoroughly on a magnetic disk, and that no (or infrequent) deletions occur,
i.e., just additions and updates.

13. In the amortized sense, wherem denotes the size of the current tree being updated.
14. For a pure key query of the form: “find the previous salaries of employeeA who existed at timet”.

SR-Tree(5.1.3.1) O((n/B)logBn) O(logBn) O(n/B)11 O(n/B) 11 O(n/B) 11

WOBT (5.1.3.2)12 O(n/B) O(logBm)13 O(logBn+a)14 O(logBn+a/B) O(logBn+a/B)

TSB-Tree(5.1.3.3) O(n/B) O(logBn) O(logBn+a)14 O(n/B)15 O(n/B) 15

Persistent B-tree/
Fat Node(5.1.3.4)

O(n) O(logBm)13 O(logBnlogBm+a) 14,16 O(logBn(logBm
 + a/B)) 16

O(logBn(logBm
 +a/B)) 16

Persistent B-tree/
Fat Field (5.1.3.4)

O(n/B) O(logBm)13 O(logBnlogBm+a) 14,16 O(logBn(logBm
 +a/B)) 16

O(logBn(logBm
 +a/B)) 16

MVBT (5.1.3.5) O(n/B) O(logBm)13 O(logBn+a) 14 O(logBn+a/B) O(logBn+a/B)

MVAS (5.1.1 &

5.1.3.5)

O(n/B) O(logBm)13 O(logBn+a/B) 14,17 O(logBn+a/B) O(logBn+a/B)

Overlapping
B-Tree(5.1.3.6)

O(nlogBn) O(logBm)13 O(logBn+a) 14 O(logBn+a/B) O(logBn+a/B)

Access Method
(related section)

Total Space
Update per

change
Pure-key Query

Pure-Timeslice
Query

Range-Timeslice
Query

74

5.2 Valid-Time Methods

According to the valid-time abstraction presented in section 2, a valid-time database should

maintain a dynamic collection of interval-objects. Very recently, [AV96] presented an I/O optimal

solution for the “*/point/-” query. The solution (theExternal Interval Tree) is based on a main-

memory data structure, the Interval Tree [E83], that is made external (disk-resident). Valid

timeslices are supported inO(l/B) space, using update per change (interval addition,

deletion or modification) and query time. Herel is the number of interval-objects

in the database when the update or query is performed. Even though it is not clear how practical

the solution would be (various details are not included in the original paper) the result is very

interesting. To optimally support valid timeslices is a rather difficult problem because in a valid-

time environment the clustering of data in pages can dramatically change by the updates. Deletions

are now physical and insertions can happen anywhere in the valid-time domain. In contrast, in a

transaction-time environment objects are inserted in increasing time order and after their insertion

they can be “logically” deleted but they are not removed from the database.

A valid timeslice query (“*/point/-”) is actually aspecial case of a 2-dimensional range query.

Note that an interval contains a query pointv, if and only if, its start_time is less than or equal tov

and its end_time is greater than or equal tov. Let us map an intervalI = (x1,y1) into a point(x1,y1)

in the 2-dimensional space. Then an interval contains queryv, if and only if, its corresponding 2-

dimensional point lies inside the box generated by the linesx = 0,x = v, y = v andy = (Figure

25). Since an interval’s end_time is always greater or equal than its start_time, all intervals are

represented by points above the diagonalx = y. This 2-dimensional mapping is used in the Priority

Search Tree [McC85] the data structure which provides the main-memory optimal solution. A

number of attempts have been made to externalize this structure [KRVV93, IKO87, BG90].

[KRVV93] uses the above 2-dimensional mapping to address two problems: indexing

constraints and indexing classes in an I/O environment. Constraints are represented as intervals that

can be added, modified or deleted. The problem of indexing constraints is then reduced to the

dynamic interval management problem, i.e., the “*/point/-” query! For solving the dynamic

15. This is apathological worst case, where only key splits are performed. If a time-split is performed before a key-split when nodes
resulting from a pure key split would have too few records “alive” at the begin time of the node, then the query takes O(logBn+a),
also assuming infrequent deletions.

16. Wherem denotes the size of the ephemeral B+-tree at the time of interest.
17. The pure-key query performance assumes the existence of theC-lists on top of the MVAS structure.

O lBlog()

O lBlog a B⁄+()

∞

75

interval management problem, [KRVV93] introduces a new access method, theMetablock Tree,

which is aB-ary access method that partitions the upper diagonal of the 2-dimensional space into

metablocks, each of which withB2 data points (the structure is rather complex; for details we refer

to [KRVV93]). Note however that the Metablock Tree is asemi-dynamic structure, since it can

support only interval insertions (no deletions). It usesO(l/B) space, query time

and amortized insertion time. The insertion bound is amortized since the

maintenance of a metablock’s internal organization is rather complex to be performed after each

insertion. Instead, metablock reorganizations are deferred until enough insertions have

accumulated. If interval insertions are random, the expected insertion time becomes .

[IKO87] and [BG90] present two other external implementations of the Priority Search Tree.

Both use optimal space (O(l/B)); [IKO87] has query time I/O’s for valid

timeslices, while [BG90] has query time.

In [RS94], a new technique calledpath caching is introduced for solving 2-dimensional range

queries. This technique is used to turn various main-memory data structures, like the Interval Tree,

or the Priority Search Tree [McC85] into external structures. With this approach, the “*/point/-”

query is addressed in query time, amortized update time (including

insertions and deletions) but in space.

The above approaches are aimed at good worst case bounds but lead to rather complex struc-

tures. Another main-memory data-structure that solves the “*/point/-” query is the Segment Tree

[B77] which however uses more than linear space. [BG94] presents theExternal Segment Tree

(EST) which is a paginated version of the Segment Tree. We first describe the worst case perfor-

mance of the EST method. If the endpoints of the valid-time intervals take values from a universe

of sizeV (i.e., there areV possible endpoint values), the EST supports “*/point/-” queries using

 space, update per change and query time. [BG94] pre-

Figure 25: An interval is translated into a point in a 2-
dimensional space. Axesx and y represent an
interval’s starting and ending valid-times. Inter-
vals that intersect valid instantv correspond to
the points included in the shaded area.

x

y
I

0 v

v . (v, v)

 x1

y1 .

O lBlog a B⁄+()

O lBlog lBlog() 2 B⁄+()

O lBlog()

O l2log a B⁄+()

O lBlog a+()

O lBlog a B⁄+() O lBlog()

O
l
B

B2log
2

log()

O
l
B

V2log() O V2log() O V2log a+()

76

sents also an extended analysis of the expected behavior of the EST under the assumption of a

uniformly distributed set of intervals of fixed length. It is shown that the expected behavior is much

better; the average height of the EST is for all practical purposes small (this affects the logarithmic

portion of the performance) and the answer is found by accessing an additionalO(a/B) pages.

An advantage of the External Segment Tree is that the method can be modified to also address

queries with key predicates (like the “range/point/-” query). This is performed by embedding B-

trees in the EST. The original EST structure guides the search to a subset of intervals that contain

the query valid timev while an embedded B-tree allows to search this subset for whether the query

key predicate is also satisfied. For details we refer to [BG94].

Good average case performance could also be achieved by using a dynamic multidimensional

access method. If only multidimensional points are supported as in the k-d-B-tree [R84] or the h-

B-tree [LS90b], mapping an (interval, key) pair to a triplet consisting of (start_time, end_time, key)

as discussed above, would allow the valid intervals to be represented by points in three-dimension-

al space.

If intervals are represented more naturally, as line segments in a two dimensional key-time

space, the cell-tree [G89], the R-tree or one of its variants, the R* [BKKS90] or the R+ [SRF87]

could be used. Such solutions should provide good average case performance, but overlapping still

remains a problem especially if the interval distribution is highly non-uniform (as observed in

[KS91] for R-trees). If the SR-tree [KS91] is utilized for valid-time databases the overlapping is

decreased but the method may suffer if there are many interval deletions, since all remnants (seg-

ments) of a deleted interval have to be found and physically deleted.

Another possibility would be to facilitate a two level method whose top level indexes the key

attribute of the interval objects (using a B+-tree) while the second level indexes the intervals that

share the same key attribute. An example of such method is the ST-Index [GS93]. In the ST-Index

there is a separate AP-Tree that indexes the start_times of all valid-time intervals sharing a distinct

key attribute value. The problem with this approach is that a “*/point/-” query will have to check

all stored intervals for whether they include the query valid-timev.

The Time-Index [EWK90] may also be considered for storing valid-time intervals however

there are two drawbacks. First, changes can arrive in any order so leaf entries anywhere in the index

may have to merge or split thus affecting their relevant timeslices. Second, updating may be prob-

lematic as deleting (or adding or modifying the length of) an interval involves updating all the

77

stored timeslices that this interval overlaps.

[NDK96] offers yet another approach to indexing valid-time databases, theMAP21 structure.

A valid-time interval(x, y) is mapped to a point , wheres is the maximum number of

digits needed to represent any time point in the valid-time domain. This is enough to map each in-

terval to a separate point. A regular B-tree is then used to index these points. An advantage of this

approach is that interval insertions/deletions are easy using the B-tree. However, to answer a valid

timeslice query about timev the point closer tov is found in the B-tree and then a sequential search

for all intervals beforev is performed. At worse many intervals that do not intersectv can be found

([NDK96] assumes that in practice the maximal interval length is known, which limits how far

back the sequential search continues fromv).

Further research is needed in this area. An interesting open problem is whether an I/O optimal

solution exists for the “range/point/-” query (valid range timeslices).

5.3 Bitemporal Methods

As mentioned in section 4.5, one way to address bitemporal queries is to fully store some of the

C(ti) collections of Figure 3, together with the changes between these collections. To exemplify

searching through the intervals of a storedC(ti), an access method for each storedC(ti) is also

included. TheseC(ti)’s (and their accompanying methods) can then be indexed by a regular B-tree

on ti, the transaction time. This is the approach taken in theM-IVTT [NDE96]; the changes between

stored methods are called “patches” and each storedC(ti) is indexed by a MAP21 method

[NDK96].

The M-IVTT approach can be thought as an extension of the Time-Index [EWK90] to a bitem-

poral environment. Depending on how oftenC(ti)’s are indexed the space/update or the query time

of the M-IVTT will increase. For example, the space can easily become quadratic if the indexed

C(ti)’s are every constant number of changes and each change is the addition of a new interval.

In another approach, the intervals associated with a bitemporal object can be “visualized” as a

bounding rectangle which is then stored in a multidimensional index, like the R-tree [G84] (or

some of its variants, like the SR-Tree [KS91]). While this approach has the advantage of using a

single index to support both time dimensions, the characteristics of transaction-time create a seri-

ous overlapping problem [KTF95b]. All bitemporal objects which have not been “deleted” (in the

transaction sense) are represented with a transaction-time endpoint extending tonow (Figure 4).

To avoid this overlapping, the use of two R-trees (2-R approach) has been proposed [KTF95b].

z x10s y+=

78

When a bitemporal object with valid-time intervalI is added in the database at transaction-timet,

it is inserted at thefront R-tree. This tree keeps bitemporal objects whose right transaction endpoint

is unknown. If a bitemporal object is later “deleted” at some time it is physically deleted

from the front R-tree and inserted as a rectangle of heightI and width fromt to in theback R-

tree. The back R-tree keeps bitemporal objects with known transaction-time interval (Figure 26,

taken from [KTF95b]). At any given time, all bitemporal objects stored in the front R-tree share

the property that they are “alive” in the transaction-time sense. The temporal information of every

such object is thus represented simply by a vertical (valid-time) interval that “cuts” the transaction

axis at the transaction-time this object was inserted in the database. Insertions in the front R-tree

objects are in increasing transaction time while physical deletions can happen anywhere on the

transaction axis.

A “*/point/point” query about(ti, vj) is then answered with two searches. The back R-tree is

searched for all rectangles that contain point(ti, vj). The front R-tree is searched for all vertical in-

tervals which intersect a horizontal intervalH. IntervalH starts from the beginning of transaction

time and extends until pointti at heightvj (Figure 26). To support “range/range/range” queries, an

additional third dimension for the key ranges is added in both R-trees.

The usage of two R-trees is reminiscent of the Dual-Root Mixed Media R-tree proposed in

[KS89] as a mixed-media index that stores intervals and consists also of two R-trees. There, new

intervals are stored on one R-tree and are gradually moved to the second R-tree. There are however

the following differences: (a) in the Dual-Root Mixed Media R-tree intervals inserted have both

their endpoints known in advance (which is not a characteristic of transaction-time); (b) both R-

trees in [KS89] store intervals with the same format; (c) the transferring of data in the Dual-Root

t' t' t>(),

t'

Figure 26: In the 2-R-tree approach bitemporal data is divided according to whether their right transaction endpoint
is known. The scenario of Fig. 3 is presented here (i.e., after timet5 has elapsed). The left 2-dimensional
space is stored in thefront R-tree while the right in theback R-tree.

t

v

t1 t2 t4 t5

I2

I1

t

v

t3 t5

I3

. (ti,vj)

I1

00

(0, vj) .
H

. (t3, v2)

. (t3, v1)

. (ti,vj).

.

79

Mixed Media R-tree is performed in a batched way. When the first R-tree reaches a threshold near

its maximum allocated size, avacuuming process completely vacuums all the nodes of the first R-

tree (except its root) and inserts them to the second R-tree. In contrast, transferring of a bitemporal

object in the 2-R approach is performed whenever this object is deleted in the transaction-time

sense. Such a deletion can happen to any currently “alive” object in the front R-tree.

Bitemporal problems can also be addressed by the partial persistence approach; this solution

emanates from the abstraction of a bitemporal database as a sequence of history-timeslicesC(t)

(Figure 3) and has two steps. First, a good ephemeral structure is chosen to represent eachC(t).

This structure must support dynamic addition/deletion of (valid-time) interval-objects. Second,

this structure is made partially persistent. The collection of queries supported by the ephemeral

structure implies what queries are answered by the bitemporal structure.

The main advantage obtained by “viewing” a bitemporal query as a partial persistence problem

is that the valid-time requirements are disassociated from the transaction-time ones. More specifi-

cally, the valid time support is provided from the properties of the ephemeral structure while the

transaction time support is achieved by making this structure partially persistent. Conceptually,

this methodology provides fast access to theC(t) of interest on which the valid-time query is then

performed.

The partial persistence methodology was also used in [LM91, BGO+93, VV95] for the design

of transaction-time access methods. For a transaction-time environment the ephemeral structure

must support dynamic addition/deletion of plain-objects; hence a B-tree is the obvious choice. For

a bitemporal environment two access methods have been proposed: the Bitemporal Interval Tree

[KTF95a] which is created by making an Interval Tree [E83] partially persistent (and well paginat-

ed), and, the Bitemporal R-Tree [KTF95b] created by making an R-tree partially persistent.

The Bitemporal Interval Tree is designed for the “*/point/point” and “*/range/point” queries.

Answering such queries implies that the ephemeral data structure should support point-enclosure

and interval-intersection queries, respectively. In the absence of anexternal ephemeral method that

optimally solves these problems [KRVV93, RS94], a main-memory data structure, the Interval

Tree (which optimally solves the in-core versions of the above problems) was used and was made

partially persistent and well paginated. One constraint of the Bitemporal Interval Tree is that the

universe sizeV on the valid domain is known in advance. The method computes “*/point/point”

and “*/range/point” queries in I/O’s. The space isO((n+V)/B); the update

is amortized I/O’s per change. Heren denotes the total number of changes,a is

O VBlog nBlog a+ +()

O m V+()
B

log()

80

the answer size andm is the number of intervals contained in the current timesliceC(t) when the

change is performed.

The Bitemporal R-Tree does not have the valid-universe constraint. It is a method designed for

the more general “range/point/point” and “range/range/point” bitemporal queries. For that pur-

pose, the ephemeral data structure must support range point-enclosure and range interval-

intersection queries on interval-objects. Since neither a main-memory, nor an external data struc-

ture exists with good worst-case performance for this problem, the R*-tree [BKKS90] was used,

an access method that has good average-case performance for these queries. As a result, the per-

formance of the Bitemporal R-Tree is bound by the performance of the ephemeral R*-tree. This is

because a method created by the partial-persistence methodology behaves asymptotically as the

original ephemeral structure.

[KTF95b] contains various experiments comparing the average case performance of the 2-R

methodology, the Bitemporal R-tree and the obvious approach which stores bitemporal objects in

a single R-tree (the 1-R approach, as in Figure 4). Due to the limited copying introduced by partial

persistence, the Bitemporal R-tree uses some small extra space (about double the space used by the

1-R and 2-R methods) but it has much better update and query performance. Similarly, the 2-R ap-

proach has in general better performance than the 1-R approach.

It remains an interesting open problem to find the theoretically I/O optimal solutions even for

the simplest bitemporal problems, like the “*/point/point” and “*/range/point” queries.

6. Conclusions

We presented a comparison of various temporal access methods. While we have also covered

valid-time and bitemporal approaches, the bulk of this paper addresses transaction-time methods

as they represent the majority among the published approaches. Since it is practically impossible

to run simulations of all methods under the same input patterns, our comparison was based on the

worst case performance of the examined methods. Comparison items included the space

requirement, the update characteristics and the query performance. The query performance is

measured against three basic transaction-time queries, the pure-key, the pure-timeslice and the

range-timeslice queries, or, using the three-entry notation, the “point/-/*”, the “*/-/point” and the

“range/-/point” queries respectively. In addition we addressed problems like index pagination, data

clustering and the ability of a method to efficiently migrate data to another medium (like a WORM

device). We also introduced a general lower bound for such queries. A method that achieves the

81

lower bound for a particular query is termed I/O-optimal for that query. The worst-case

performance of each transaction-time method is summarized in table B. The reader should be

cautious when interpreting worst case performance. Sometimes the notation penalizes a method for

its performance on a pathological scenario. We have indicated such cases. While tableB provides

a good feeling for the asymptotic behavior of the examined methods, the choice of the appropriate

method for the particular application also depends on the application characteristics. In addition,

issues such as data clustering, index pagination, migration of data to optical disks etc. may also be

more or less important according to the application. While I/O-optimal (and practical) solutions

exist for many transaction-time queries, this is not the case for the valid and bitemporal domain.

An I/O optimal solution exists for the valid-timeslice query but is mainly of theoretical importance;

more work is needed in this area. All examined transaction-time methods support “linear”

transaction time. Another promising area of research is the support of branching transaction time.

Acknowledgments:

The idea of doing this survey was proposed to the authors by R. Snodgrass. We would like to thank

the anonymous referees for many insightful comments that improved the presentation of this paper.

The performance and the description of the discussed methods are based on our understanding of

the related papers, hence any error is entirely our own. The second author would also like to thank

J.P. Schmidt for many helpful discussions on lower bounds in a paginated environment.

R e f e r e n c e s :

[AFS93] R. Agrawal, C. Faloutsos, A. Swami, “Efficient Similarity Search in Sequence Databases”,
Proc. FODO Conference,1993.

[AS88] I. Ahn, R. Snodgrass, “Partitioned Storage for Temporal Databases”,Information Systems,
Pergamon Press, Vol. 13, No 4, pp 369-391, 1988.

[AV96] L. Arge, J.S. Vitter, “Optimal Dynamic Interval Management in External Memory”, inProc.
37th IEEE Symp. on Foundations of Computer Science, Vermont, Oct. 1996.

[B77] J.L. Bentley, “Algorithms for Klee’s Rectangle Problems”, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, 1977.

[B82] J. Ben-Zvi, “The Time Relational Model”, Ph.D. DissertationUCLA, 1982.

[B95] M. H. Böhlen, “Temporal Database System Implementations”, inACM Sigmod Record,
Vol.24, No. 4, pp 53-60 (1995)

[BG90] G. Blankenagel, R.H. Guting, “XP-Trees, External Priority Search Trees”, Technical Report,
Fern Universitat Hagen, Informatik-Bericht No.92, 1990.

82

[BG94] G. Blankenagel, R.H. Guting, “External Segment Trees”,Algorithmica, Vol.12, No.6, pp
498-532, 1994.

[BGO+93] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer, “On Optimal Multiversion Ac-
cess Structures”,Proc. Symp. on Large Spatial Databases, in Lecture Notes in Computer
Science, Vol. 692, pp 123-141, Singapore 1993.

[BHK85] F.W. Burton, M.M. Huntbach, J.G. Kollias, “Multiple Generation Text Files using Overlap-
ping Tree Structures”,The Computer Journal, Vol. 28, pp 414-416, 1985.

[BKKS90] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The R*-tree: An efficient and Robust
Access Method for Points and Rectangles”,Proc. ACM SIGMOD, pp 322-331, 1990.

[BO95] T. Bozkaya, M. Ozsoyoglu, “Indexing Transaction-Time Databases”, Tech. Rep. CES-95-19,
Case Western Reserve University, 1995.

[CT92] Y.J. Chiang, R. Tamassia, “Dynamic Algorithms in Computational Geometry”,Proceedings
of IEEE, Special Issue on Computational Geometry, Vol 80, No 9, pp 362-381, 1992.

[DKM+88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer, H. Rohnhert and R. Tarjan, “Dynamic
Perfect Hashing: Upper and Lower Bounds”,Proc. 29th IEEE FOCS, pp. 524-531, 1988.

[DSST89] J.R. Driscoll, N. Sarnak, D. Sleator, R.E. Tarjan, “Making Data Structures Persistent”,J. of
Comp. and Syst. Sci., Vol 38, pp 86-124, 1989.

[E83] H. Edelsbrunner, “A new Approach to Rectangle Intersections, Part I&II”,Int. Journal of
Computer Mathematics, Vol. 13, pp 209-229, 1983.

[E86] M. C. Easton, “Key-sequence data sets on indelible storage”,IBM J. Res. Development,
Vol.30, No.3, pp 230-241, 1986.

[EKW91] R. Elmasri, Y. Kim, G. Wuu, “Efficient Implementation Techniques for the Time Index”,
Proc. 7th IEEE Intern. Conf. on Data Engineering, pp 102-111, 1991.

[EWK90] R. Elmasri, G. Wuu, Y. Kim, “The Time Index: An Access Structure for Temporal Data”,
Proc.16th Conference on Very Large Databases, pp 1-12, 1990.

[EWK93] R. Elmasri, G. Wuu, V. Kouramajian, “The Time Index and the Monotonic B+-tree”, in
A.Tansel, J. Clifford, S.K. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.),Temporal
Databases: Theory, Design, and Implementation, Benjamin/Cummings, pp 433-456, 1993.

[FRM94] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, “Fast Subsequence Matching in Time-Se-
ries Databases”,Proc. ACM SIGMOD Conf. on the Management of Data, pp 419-429, 1994.

[G84] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”,Proc. ACM SIG-
MOD Conf. on the Management of Data, pp 47-57, 1984.

[G89] O. Gunther, “The Design of the Cell-Tree: An Object-Oriented Index Structure for Geometric
Databases”,Proc.5th IEEE Intern. Conf. on Data Engineering, pp 598-605, 1989.

[GR93] J. Gray, A. Reuter,Transaction Processing: Concepts and Techniques, Morgan Kaufmann,
1993.

[GS93] H. Gunadhi, A. Segev, “Efficient Indexing Methods for Temporal Relations”,IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 5, No. 3, pp 496-509, 1993.

[IKO87] C. Icking, R. Klein, T. Ottmann, “Priority Search Trees in Secondary Memory”,Proc. of
Graph-Theoretic Concepts in Computer Science, LNCS314, pp 84-93, 1987.

83

[J+94] C.S. Jensen, editor et al., “A Consensus Glossary of Temporal Database Concepts”,ACM
SIGMOD Record, Vol. 23, No. 1, pp. 52-64, 1994.

[JMM95] H.V. Jagadish, A.O. Mendelzon, T. Milo, “Similarity-Based Queries”,Proc. 14th ACM
PODS, Symp. on Princ. of Database Systems, pp 36-45, 1995.

[JMR91] C.S. Jensen, L. Mark, N. Roussopoulos, “Incremental Implementation Model for Relational
Databases with Transaction Time”,IEEE Trans. on Knowledge and Data Engineering, Vol.
3, No. 4, pp 461-473, 1991.

[JMRS92] C.S. Jensen, L. Mark, N. Roussopoulos, T. Sellis, “Using Differential Techniques to Effi-
ciently Support Transaction Time”,VLDB Journal, Vol.2, No.1, pp 75-111, 1992.

[K93] C. Kolovson, “Indexing Techniques for Historical Databases”, in A.Tansel, J. Clifford, S.K.
Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.),Temporal Databases: Theory, Design,
and Implementation, Benjamin/Cummings, pp 418-432, 1993.

[KF94] I. Kamel, C. Faloutsos, “Hilbert R-tree: An Improved R-tree using Fractals”,Proc. 20th
VLDB Conf., pp 500-509, 1994.

[KKEW94] V. Kouramajian, I. Kamel, R. Elmasri, S. Waheed, “The Time Index+: An Incremental Access
Structure for Temporal Databases”,Proc. 3rd Intern. Conf. on Information and Knowledge
Management CIKM’94.

[KRVV93] P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, J.S. Vitter, “Indexing for Data Models with
Constraints and Classes”,Proc. ACM PODS, Symp. on Princ. of Database Systems, pp 233-
243, 1993.

[KS89] C. Kolovson, M. Stonebraker, “Indexing Techniques for Historical Databases”,Proc. 5th
IEEE Intern. Conf. on Data Engineering, pp 127-137, 1989.

[KS91] C. Kolovson, M. Stonebraker, “Segment Indexes: Dynamic Indexing Techniques for Multi-
dimensional Interval Data”,Proc. ACM SIGMOD Conf. on the Management of Data, pp 138-
147, 1991.

[KTF95a] A. Kumar, V.J. Tsotras, C. Faloutsos, “Access Methods for Bitemporal Databases”,Interna-
tional Workshop on Temporal Databases.In Recent Advances in Temporal Databases,J.
Clifford, A. Tuzhilin (eds.), pp. 235-254, Springer-Verlag, 1995

[KTF95b] A. Kumar, V.J. Tsotras, C. Faloutsos, “Designing Access Methods for Bitemporal Databas-
es”, AT&T Bell Laboratories Tech. Rep. No: 112530-950926-11-TM, 1995. To appear in
IEEE Trans. on Knowledge and Data Engineering.

[L93] D. Lomet, “Using Timestamping to Optimize Commit”,Proc.2nd Intern. Conf. on Parallel
and Distributed Information Systems, pp 48-55, 1993

[LDE+84] V. Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, J. Woodfill, “De-
signing DBMS Support for the Temporal Database”,Proc. ACM SIGMOD Conf. on the
Management of Data, pp 115-130, 1984.

[LJ88] N.A. Lorentzos, R.G. Johnson, “Extending Relational Algebra to Manipulate Temporal
Data”, Information Systems, Pergamon Press, Vol 13, No. 3, pp 289-296, 1988.

[LM91] S. Lanka, E. Mays, “Fully Persistent B+ Trees”,Proc. ACM SIGMOD Conf. on the Manage-
ment of Data, pp 426-435, 1991.

[LM92a] T.Y.C. Leung, R.R. Muntz, “Generalized Data Stream Indexing and Temporal Query Pro-

84

cessing”, 2nd Intern. Work. on Res.Issues in Data Eng.: Trans. and Query Proc.,Feb.1992.

[LM92b] T.Y.C. Leung, R.R. Muntz, “Temporal Query Processing and Optimization in Multiprocessor
Database Machines”,Proc.18th VLDB Conf., pp. 383-394, 1992.

[LM93] T.Y.C. Leung, R.R. Muntz, “Stream Processing: Temporal Query Processing and Optimiza-
tion, in A.Tansel, J. Clifford, S.K. Gadia, S. Jajodia, A. Segev and R. Snodgrass (eds.),
Temporal Databases: Theory, Design, and Implementation, Benjamin/Cummings, pp 329-
355, 1993.

[LS89] D. Lomet, B. Salzberg, “Access Methods for Multiversion Data”,Proc. ACM SIGMOD Conf.
on the Management of Data, pp 315-324, 1989.

[LS90a] D. Lomet, B. Salzberg, “The Performance of a Multiversion Access Method”,Proc. ACM
SIGMOD Conf. on the Management of Data, pp 353-363, 1990.

[LS90b] D. Lomet, B. Salzberg, “The hB-Tree: A Multiattribute Indexing Method with Good Guaran-
teed Performance”,ACM Trans. on Database Systems, Vol.15, No.4, pp 625-658, 1990.

[LS93a] D. Lomet, B. Salzberg, “Transaction-Time Databases”, in A.Tansel, J. Clifford, S.K. Gadia,
S. Jajodia, A. Segev, and R. Snodgrass (eds.),Temporal Databases: Theory, Design, and Im-
plementation, Benjamin/Cummings, pp 388-417, 1993.

[LS93b] D. Lomet, B. Salzberg, “Exploiting a History Database for Backup”,Proc. 19th Conference
on Very Large Data Bases, pp 380-390, 1993.

[LST95] G.M. Landau, J.P. Schmidt, V.J. Tsotras, “On Historical Queries Along Multiple Lines of
Time Evolution”,Very Large Data Bases Journal, Vol. 4, pp. 703-726, 1995.

[M84] K. Mehlhorn,Data Structures and Algorithms3: Multi-Dimensional Searching and Compu-
tational Geometry, Springer-Verlag, 1984.

[McC85] E.M. McCreight, “Priority Search Trees”,SIAM Journal of Computing, Vol.14, No 2, pp 257-
276, 1985.

[MK90] Y.Manolopoulos, G. Kapetanakis, “Overlapping B+ Trees for Temporal Data”,Proc. of5th
JCIT Conf., Jerusalem, Israel, Oct.22-25, pp 491-498, 1990.

[MS91] D. Maier, S.C. Salveter, “Hysterical B-trees”,Information Processing Letters, Vol. 12, pp
199-202, 1981.

[NA87] S.B. Navathe, R. Ahmed, “A Temporal Relational Model and a Query Language”,Informa-
tion Sciences, North Holland, Vol. 49, 1987.

[NDE96] M.Nascimento, M.H. Dunham, R. Elmasri, “M-IVTT: A Practical Index for Bitemporal Da-
tabases”,Proc. DEXA’96, Zurich, Switzerland.

[NDK96] M.Nascimento, M.H. Dunham, V. Kouramajian, “A Multiple Tree Mapping-Based Approach
for Range Indexing”.Journal of the Brazilian Computer Society, Vol.2, No.3, April 1996.

[O85] M.H. Overmars, “Range Searching in a Set of Line Segments”,Proc. ACM Symp. Computa-
tional Geometry, pp. 177-185, 1985.

[OS95] G. Ozsoyoglu, R. Snodgrass, “Temporal and Real-Time Databases: A Survey”,IEEE Trans.
on Knowledge and Data Engineering, Vol. 7, No. 4, pp 513-532, Aug. 1995.

[R84] J.T. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional Dynamic
Indexes”,Proc. ACM SIGMOD Conf. on the Management of Data, pp 10-18, 1984.

85

[R97] S. Ramaswamy, “Efficient Indexing for Constraint and Temporal Databases”,Proc. ICDT’97
Intern. Conference on Database Theory, Delphi, Greece, Jan. 8-10, 1997.

[RCDS86] J.E. Richardson, M.J. Carey, D.J. DeWitt, E.J. Shekita, “Object and File Management in the
Exodus Extensible System”,Proc. 12th Conference on Very Large Databases, pp 91-100,
1986.

[RS87] D. Rotem, A. Segev, “Physical Organization of Temporal Data”, 3rd IEEE Intern. Conf. on
Data Engineering, pp 547-553, 1987

[RS94] S. Ramaswamy, S. Subramanian, “Path Caching: a Technique for Optimal External Search-
ing”, Proc.13th ACM Symp. on Principles of Database Systems (PODS), pp 25-35, 1994.

[S87] M. Stonebraker, “The Design of the Postgres Storage System”,Proc. 13th Conference on
Very Large Databases, pp 289-300, 1987.

[S88] B. Salzberg,File Structures: An Analytic Approach, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

[S94] B. Salzberg, “Timestamping After Commit”,Proc.3rd Intern. Conf. on Parallel and Distrib-
uted Information Systems, pp 160-167, 1994.

[SA85] R. Snodgrass, I. Ahn, “A Taxonomy of Time in Databases”,Proc. ACM SIGMOD Conf. on
the Management of Data, pp 236-246, 1985.

[SA86] R. Snodgrass, I. Ahn, “Temporal Databases”,IEEE Computer, Vol.19, No.9, pp 35-42, 1986.

[SG89] A. Segev, H. Gunadhi, “Event-Join Optimization in Temporal Relational Databases”,Proc.
15th Conference on Very Large Data Bases, pp 205-215, 1989.

[SJ96] R. Snodgrass, C.S. Jensen, private communication, 1996

[SK86] A. Shoshani, K. Kawagoe, “Temporal Data Management”,Proc. 12th Conf. on Very Large
Data Bases, pp 79-88, 1986.

[SL95] B. Salzberg, D. Lomet, “Branched and Temporal Index Structures”, College of Computer Sci-
ence Technical Report, NU-CCS-95-17, Northeastern University.

[SRF87] T. Sellis, N. Roussopoulos, C. Faloutsos, “The R+-Tree: A Dynamic Index for Multi-Dimen-
sional Objects”,Proc. VLDB Conf., Sept. 1987.

[TG90] V.J. Tsotras, B. Gopinath, “Managing the History of Evolving Databases”,Proc. ICDT’90 In-
tern. Conference on Database Theory, in Lect. Notes in Comp. Science, Vol 470, pp 141-174,
Springer-Verlag,1990.

[TGH95] V. J. Tsotras, B. Gopinath, G.W. Hart, “Efficient Management of Time-Evolving Databases”,
IEEE Trans. on Knowledge and Data Engineering, Vol. 7, No. 4, pp 591-608, Aug.1995.

[TK95] V.J.Tsotras, N. Kangelaris, “The Snapshot Index, an I/O-Optimal Access Method for
Timeslice Queries”,Information Systems, An International Journal, Vol. 20, No.3, 1995.

[TK96] V.J. Tsotras, A. Kumar, “Temporal Database Bibliography Update”,ACM Sigmod Record,
Vol. 25, No. 1, pp 41-51, March 1996.

[V85] J.S. Vitter, “An Efficient I/O Interface for Optical Disks”,ACM Trans. on Database Systems,
Vol.10, No.2, pp 129-162, 1985.

[VV94] R.M. Verma, P.J. Varman, “Efficient Archivable Time Index: A Dynamic Indexing Scheme
for Temporal Data”,Intern. Conf. on Computer Systems and Education, pp 59-72, 1994.

86

[VV95] P.J. Varman, R.M. Verma, “An Efficient Multiversion Access Structure”, Tech. Rep. TR-
9518, Dept. of Electr. and Comp. Engineering, Rice Univ. To appear inIEEE Trans. on
Knowledge and Data Engineering.

