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Abstract:

This paper attempts a comparison of different indexing techniques which have been proposed for supporting
efficient access to temporal data. The comparison is based on a collection of important performance criteria
that include the consumed space, the update processing and the query time for representative queries. Since
it was not possible to compare actual method implementations against the same data sets, the comparison is
based on worst case analysis, hence no assumptions on data distribution or query frequencies are made. When
a number of methods have the same asymptotic worst case behavior, features in the methods which affect
average case behavior are discussed. Additional criteria examined are the pagination of an index, the ability
to cluster related data together and the ability to efficiently separate old from current data (so that larger
archival storage media such as write-once optical disks can be used). The purpose of the paper is to identify
the difficult problems in accessing temporal data and provide a good description of how the different methods
aim to solve them. A general lower bound for answering basic temporal queries is also introduced.

1. Introduction

Conventional databases work in terms of a single logical state. Using transactions the database
evolves from one consistent state to the next, while the previous state is discarded after a
transaction commits; as a result, there is no memory with respect to prior states of the data. Such
databases capture a single snapshot of reality (also salgdhotlatabases) and are insufficient

for those applications that require the support of past, current or even future data. What is needed
is atemporaldatabase [SA86] since it fully supports the storage and querying of time varying data.

Research in temporal databases has shown an immense growth in recent years [TK96]. Various
aspects of temporal databases have been examined [0S95], including temporal data models, query
languages, access methods, etc. Prototype efforts appear in [B95]. In this paper we provide a
comparison of proposddmporal access methqd=., indexing techniques for temporal data. We
attempt to identify the problems in the area together with the solutions given by each method.

A taxonomy of time in databases has been developed in [SA85]. Specifreaibgction time
valid time and user-defined timehave been proposed. Transaction and valid time are two
orthogonal time dimensions. Transaction time is the time when a fact is stored in the database. It
is consistent with the serialization order of transactions (i.e., it is monotonically increasing) and
can be implemented using the commit times of transactions [S94]. Valid time denotes the time
when a fact becomes effective (valid) in reality. User-defined time is an uninterpreted time domain
managed by the user and therefore we will not discuss it further.

The term “temporal database” refers in general to a database that supports some aspect of time,
not counting the user-defined time. Depending on the time dimension(s) supported, there are three
kinds of temporal databasesansaction-timevalid-timeandbitemporal[J+94].
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State Science and Technology Foundation as part of its Center for Advanced Technology program



A transaction-time database records the history of a database activity rather than real world his-
tory. As such, it can “rollback” to one of its previous states. Since previous transaction times cannot
be changed (every change is stamped with a new transaction time), there is no way to change the
past. This is useful for applications in auditing, billing etc. A valid-time database maintains the en-
tire temporal behavior of an enterprise as best known now. It stores our current knowledge about
the enterprise’s past, current or even future behavior. If errors are discovered in this temporal be-
havior, they are corrected by modifying the database. When a correction is applied, previous values
are not retained. It is thus not possible to view the database as it was before the correction. A bitem-
poral database combines the features of the other two types. It more accurately represents reality
and allows for retroactive as well as postactive changes.

The tuple-versioning temporal model [LJ88, NA87] is used in this paper. Under this model the
database is a set of records (tuples) that store the versions of real-life objects. Each such record, has
a time-invariankey(surrogate) and, in general, a number of time-vaatnbutes for simplicity
we assume that each record has exactly one time varying attribute. In addition it has one or two
intervals depending on which types of time are supported. Each interval is represented by two

attributesstart_timeandend_time

Critical in the design of any access method is the accurate specification of the problem that
needs to be solved. This is particularly important in temporal databases since the problem specifi-
cation depends dramatically on the time dimension(s) supported. Whether valid and/or transaction
time are supported, affects directly the way records are created or updated. This has resulted in
much confusion in the past regarding the design of temporal access methods. To exemplify the dis-
tinct characteristics of the transaction and valid time dimensions, a sejimtaéetion describing
the central underlying problem for each kind of temporal database, is used.

The query performance of the examined methods is compared in the context of various
temporal queries. In order to distinguish among the various kinds of queries, we use a general
temporal query classificatiorscheme [SJ96]. The paper also introdulmser bounds for
answering basic temporal queries. Each lower bound assumes a disk-oriented environment and
describes the minimal I/O needed for solving the query if the space consumption is kept minimal.
Access methods that achieve a matching upper bound for a temporal query are also indicated.

Among the discussed methods, the ones that support transaction time (either in a transaction-
time or in a bitemporal environment) assumknaar transaction-time evolution [OS95]. This

implies that a new database state is created by updatindghe current database state. Another



option is the so-calledranchingtransaction time [OS95]. Branching methods are not discussed
further except noting that related problems are investigated in [DSST89], [LM91], [SL95] and
[LST95]. In particular, in [DSST89] and [LM91] a new state can be created by updating any of the
past states; each new state gets a separate version identifier by which it can be directly accessed.
In [SL95] version identifiers are replaced by (branch identifier, timestamp) pairs. Both a tree access
method and a forest access method are proposed for these branched versions. [LST95] deals with
multiple lines of evolutions created by splitting the database state: at some time instant the state of
the database can be split into independently evolving sub-states etc. Instead of version identifiers
timestamps are used. The same timestamp can appear in many different evolution lines, thus
concurrent states at parallel evolutions can be related through queries.

Recently, other kinds of temporal, in particuiare-seriesqueries have appeared in literature
[AFS93, FRM94, JIMM95]. Given are a pattern and a time-series (an evolution) and the typical
guery asks for all those times that a similar pattern appeared in the series. The search involves some
distance criterion that qualifies when a pattern is similar to the given pattern. The distance criterion
guarantees no false dismissals (false alarms are eliminated afterwards). Whole pattern matching
[AFS93] and sub-matching [FRM94] queries have been examined. Such time-series queries are
reciprocalin nature to the temporal queries addressed here (which usually provide a time instant
and ask for the pattern at that time) and are not covered in this paper.

The rest of the paper is organized as follows: section 2 specifies the basic problem underlying
each of the three temporal databases. We categorize a method as transaction-time, valid-time and
bitemporal, depending on which time dimension(s) it most efficiently supports. Section 3 presents
the items on which our comparison was based including the lower bounds. Section 4 discusses in
more detail the basic characteristics that a good transaction or bitemporal access method should
have. The examined methods are presented in section 5. The majority of them falls in the
transaction-time category which comprises the bulk of this paper (subsection 5.1). Within the
transaction-time category we further classify methods according to what queries they more
efficiently support (key-only, time-only or time-key methods) A table summarizing the worst case
performance characteristics of the transaction-time methods is also included. For completeness we
also cover valid-time and bitemporal methods in subsections 5.2 and 5.3 respectively. We conclude

the paper with a discussion on remaining open problems.



2. Problem Specification

The following discussion is influenced by [SA86] where the differences between valid and trans-
action time were introduced and illustrated through various examples. Here we attempt to identify
the implications to the access method design from the support of each time dimension.

To visualize a transaction-time database consider first an initially empty set of objects that
evolves over time as follows. Time is assumed to be discrete and described by a succession of
consecutive nonnegative integers. Any change is assumed to occur at a time indicated by one of
these integers. A change is the addition or deletion of an object or the value change of the object’s
attribute. A real life example would be the evolution of the employees in a company. Each
employee has a surrogates) and asalary attribute. The changes include additions of new
employees (as they hired or re-hired), salary changes or employee deletions (as they retire or leave
the company). Since an attribute value change can be represented by the artificial deletion of the
object followed by the simultaneous rebirth of this object having the modified attribute, we may
concentrate on object additions or deletions. Such an evolution appears in Figure 1. An object is
alive from the time that it is added in the set and until (if ever) it is deleted from the set. The state
of the evolving set at timig namelys(t), consists of all the alive objectstalNote that changes are
always applied to the most current s&(tg, i.e., past states cannot be changed.

Assume that the history of the above evolution is to be stored in a database. Since time is always
increasing and the past is unchanged, a transaction time database can be utilizednapticithe
updating assumptiothat when an object is added or deleted from the evolving set at, tane
transaction updates the database system about this change at the same time, i.e., this transaction has
commit timestampp.

When a new object is added on the evolving set atttimmeecord representing this object is
stored in the database accompanied by a transaction-time interval of the, foom).[ now is a
variable representing the current transaction time and is used because at the time the object is born
its deletion time is yet unknown. If this object is later deleted at time , the transaction-time
interval of the corresponding record is updated,td [ ). An object deletion in the evolving set is
thus represented as a “logical” deletion in the database (the record of the deleted object is still
retained in the database but with a different transaetion timé.

Since a transaction-time database system keeps both current and past data, it is natural to
introduce the notion of a logical database state as a function of time. We should therefore
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Figure 1: An example evolution where changes occur in increasing time order. The evolution is depicted as of time

t10- Lines ending to >’ correspond to objects that have not yet been deletgglsisttes(tg) = {a,f,g is

updated by the addition of objezto create stats(t;g) = {a,f,g,8.
distinguish between the database system and logical database state. (This is not required in
traditional database systems as there always exist exactly one logical database state---the current
one). The logical database state at tiroensists of those records whose transaction time interval
containst. Under the implicit updating assumption, the logical database state is equivalent to the
states(t) of the observed evolving set. Since an object can be reborn there may be many records
(or versions) that are stored in the database system representing the history of the same object. But
all these records correspond to disjoint transaction-time intervals in the object’s history and each
such record can belong to a single logical database state.

To summarize, an access method for a transaction-time database needs to: (a) store its past
logical states, (b) support addition/deletion/modification changes on the objects of its current
logical state, and, (c) efficiently access and query the objects in any of its states.

In general, a fact can be entered in the database at a different time than when it happened in
reality. This implies that the transaction-time interval associated with a record is actually related to
the process of updating the database (the database activity) and may not accurately represent the
period the corresponding object was alive in reality.

A valid-time database has a different abstraction. To visualize it, consider a dynamic collection
of interval-objectsWe use the term interval-object to emphasize that the object carries a valid-time
interval to represent the validity period of some object property. (In contrast, and to emphasize that
transaction-time represents the database activity rather than reality, we term the objects in the
transaction-time abstraction pkin-objects) The allowable changes are the addition/deletion/
modification of an interval-object, but the collection’s evolution (past stata®tikept. An



example of a dynamic collection of object-intervals appears at Figure 2.

previousCollection newCollection

valid-time axis valid-time axis

(@) (b)

Figure 2: Two states of a dynamic collection of interval-objects. Only the valid-time intervals of the objects are
shown. The new collection (b) is created from the previous collection (a) after deletind pajetadd-
ing objectl,. Only the new (latest) collection is retained.

As a real-life example consider the collection of contracts in a company. Each contract has an
identity (contract_ng, anamountattribute and an interval representing the contract’s duration or
validity. Assume that when a correction is applied only the corrected contract is kept.

A valid-time database is suitable for this environment. When an object is added to the
collection, it is stored in the database as a record that contains the object’s attributes (including its
valid-time interval). The time of the record’s insertion in the database is not kept. When an object
deletion occurs, the corresponding record is physically deleted from the database. If an object
attribute is modified, its corresponding record attribute is updated but the previous attribute value
is not retained. The valid-time database keeps only the latest “snapshot” of the collection of
interval-objects. Querying a valid-time database cannot give any information on the past states of
the database or how the collection evolved. Note that the database may store records with the same

surrogate but with non-intersecting valid-time intervals.

The notion of time is now related to the valid-time axis. Given a valid-time point, interval-
objects can be classified as past, future or current (alive) as related to this point, if their valid-time
interval is before, after or contains the given point. Valid-time databases are said to correct errors
anywhere in the valid-time domain (past, current or future) because the record of any interval-
object in the collection can be changed, independently of its position on the valid-time axis.

An access method for a valid-time database should therefore: (a) store the latest collection of
interval-objects, (b) support addition/deletion/modification changes to this collection, and, (c)



efficiently query the interval-objects contained in the collection when the query is asked.

Reality is more accurately represented if both time dimensions are supported. The abstraction
of a bitemporal database can be viewed as keeping the evolution (through the support of
transaction-time) of a dynamic collection of (valid-time) interval-objects. Figure 3 (taken from
[KTF95b]) offers a conceptual view of a bitemporal database. Instead of a single collection of
interval-objects there is a sequence of collections indexed by transaction time. If each interval-
object represents a company contract we can now represent how our knowledge about such
contracts evolved. When an interval-object is inserted in the database at transacti@réooed
is created with the object’s surrogate (contract_no), attribute (contract amount) and valid-time
interval (contract duration) and an initial transaction-time intetyalow). The transaction-time
interval endpoint will be changed to another transaction time if this object is later updated. For
example, the record for interval-objéghas transaction-time intervdj,[t,) since it was inserted
in the database at transaction-titnand was “deleted” df. Such a scenario happens if at tine

we realize that a contract was wrongly inserted at the database.
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Figure 3: A conceptual view of a bitemporal database.t®txés (--axis) corresponds to transaction (valid) times.
Only the valid-time interval is shown from each interval-object. At transaction tjirtiee database
recorded that interval-objetf is added on collectio@(t;). At t5 the valid-time interval of objedy is
modified to a new length.

A bitemporal access method should: (a) store its past logical states, (b) support addition/
deletion/modification changes on the interval-objects of its current logical state, and, (c) efficiently
access and query the interval-objects on any of its states.

Figure 3 is helpful in summarizing the differences among the underlying problems of the



various database types. A transaction-time database differs from a bitemporal database in that it

maintains the history of an evolving setpldin-objects instead afterval-objects. A valid-time

database differs from a bitemporal since it kempg one collection of interval-objects (the latest).

Each collectiorC(t) can be thought on its own as a separate valid-time database. A transaction-
time database differs from a (traditional) snapshot database in that it also kges gkates

instead of only the latest state. Finally, the difference between a valid-time and a snapshot database
Is that the former keepsterval-objects (and these intervals can be queried).

Most of the presented methods directly support a single time-dimension. We categorize
methods that take advantage of the increasing time ordered changes as transaction-time access
methods, since these are main characteristics of transaction-time. The bulk of this paper deals with
transaction-time methods. Fewer approaches deal with valid-time access methods and even less
with the bitemporal methods category (methods which support both time dimensions on the same
index).

3. Comparison ltems

This section elaborates on the items used in comparing the various access methods. We start with
the various queries examined and proceed with the other criteria.

3.1 Queries

From a query perspective a valid-time and a transaction-time database are simply a collection of
intervals. Figures 1 and 2(a) or 2(b) differ on how these intervals were created (which is important
to the update and space performance of the access method) and what is their meaning (which is
important for the application). Hence, for single time databases (valid or transaction) queries are
of similar form. Since most methods assume transaction-time characteristics we discuss first
queries in this domain, i.e., interval below corresponds to a transaction-time interval and
“history” is meant on the transaction-time axis. The examined queries can be categorized in the

following classes:

() Given a contiguous intervdl, find all objects alive during this interval.

(I Given a key range and a contiguous time intefyéind the objects with keys in the given
range and which are alive during interVal

(1) Given a key range find the history of the objects in this range.

A special case of class (I) is when interVak reduced to a single transaction time instant



This query has been termed thensaction pure-timeslicén the company employee example this
guery is “find all employees working at the company at timk is usually the case that an access
method which efficiently solves the timeslice query is also efficient for the more general interval
guery; we therefore consider the timeslice query as a good representative of class () queries.

Similarly for class (Il), special cases include combinations where the key range and/or the
transaction time interval, contain a single key and a single time instant respectively. For simplicity,
we will consider the representative case when the time interval is reduced to a single transaction
time instant; this is thé&ransaction range-timeslicquery (“find the employees working at the
company at timé and whose ssn belongs in ramdé.

From class (1) we choose the special case that the key range is reduced to a single key as in:
“find the salary history of employee with s&h This is thetransaction pure-keyguery. If
employeek ever existed the answer would be the salaries of that employee, else the answer is
empty. In some methods, an instance of an employee object must be provided in the query and its
previous salary history is found (this is because these methods need to include a time predicate in
their search). This special pure-key query (termed the pure-key with time predicate) is of the form:
“find the salary history of employdewho existed at time”

Query class (1) can be thought as a special case of class (Il) when no key range is specified and
class (Ill) a special case of (II) when no interval is specified (rather, all times in history are of
interest). As some of the proposed methods are better suited for answering queries from a particular
class we discuss all three classes separately. If an access method as originally presented does not
address queries from a given class but we feel that such queries could be addressed with a slight
modification which does not affect the method’s behavior we indicate so.

For valid-time databases we can similarly define the valid-time pure-timeslice (“find all
contracts valid at time’), valid-time range-timeslice (“find all contracts with numbers in rakge
and which are valid at’) etc. A bitemporal database enables queries in both time dimensions:
“find all contracts that were valid ar= January 1, 1994, as recorded in the database at transaction
timet = May 1, 1993". From all contracts in the collecti@(t) for t = May 1, 1993, the query
retrieves only the contracts that would be valid on Jan. 1, 1994.

The selection of the above query classes is definitely not complete, but contains basic, non-
trivial queries. In particular, classes (I) and (ll) relatmtersectionbased queries, i.e., the answer
consists of objects whose interval contains some query time point or in general intersects a query



interval. Depending on the application, other queries may be of importance. For example, find all
objects with intervals before or after a query time point/interval, or all objects with intervals
contained in a given interval [BO95, NDK96], etc.

To distinguish among the various temporal queries a three-entry notation, nideyé\yalid/
Transaction[SJ96], will be alternatively used. This notation specifies which object attributes are
involved in the query and in what way. Each entry is described as a “point”, “rangedr “-”.

A “point” for the Keyentry means that the user has specified a single value to match the object key;
“point” for the Valid or Transactionentry implies a single time instant is specified for the valid or
transaction-time domain. “range” indicates a specified range of object key valuedfey drery,

or, an interval for th&/alid/Transactionentries. A**” means that any value is accepted in this
entry, while “-” means that the entry is not applicable for this query. For example, “*/-/point”
denotes the transaction pure-timeslice query, “range/point/-” is the valid range timeslice query and
“point/-/*” is the transaction pure-key query. In a bitemporal environment the query “find all the
company contracts that were valid v January 1, 1994, as recorded in the database during
transaction time interval: May 1-May 20, 1993” is an example of a “*/point/range” query. As
presented, the three-entry notation deals with intersection queries but can be easily extended
through the addition of extra entry descriptions to accommodate before/after and other kinds of

temporal queries.

3.2 Access Method Costs

The performance of an access method is characterized by three costs: (1) the storage space used to
physically store the data records and the structures of the access method, (2) the update processing
(the time to update the method’s data structures about a change that took place), and, (3) the query

time for each of the basic queries.

An access method has two modes of operation: in the Update mode data is inserted, altered or
deleted while in the Query mode queries are specified and answered using the access method. For
a transaction-time access method the input for an update consistisnefimstantt and all the
changes that occurred on the data on that instant. A change is further specified by thkeynique
of the object it affects and the kind cdfange(addition, deletion or attribute modification). The
access method’s data structure(s) will then be updated to include the new change. Similar is the
input to a bitemporal access method where the time of the change is also specified together with
the changes and the interval-object(s) affected. The input to a valid-time access method simply

10



contains the changes and the interval-object(s) affected.

For a transaction or a bitemporal method the space is a functimntted total number of
changes in the evolution, i.a.is the summation of insertions, deletions and modification updates.
If there are 1,000 updates to a database with only one reesrl000. If there are 1,000 insertions
to an empty database and no deletions or value modificatiea)so 1,000. Similarly, for 1,000
insertions followed by 1,000 deletions,is 2,000. Note thah corresponds to the minimal
information needed for storing the evolution’s past. We assume that the total number of transaction
instants is als®(n). This is a natural assumption since every real computer system can process a
possibly large but limited number of updates per transaction instant.

In a valid-time method, the space is a functioh, dhe number of interval-objects currently
stored in the method, i.e., the size of the collection. For example, in both 2(&)isXeyen.

The query time of a method is a function of the answerasi¥¢e usea to denote the answer
size of a query in general.

Since temporal data can be large (especially in transaction and bitemporal databases), a good
solution should use space efficiently. A method with fast update processing can be utilized even
with a quickly changing real world application. In addition, fast query times will greatly facilitate
the use of temporal data.

The basic queries that we examine can be considered as special cases of classical problems in
computational geometry for which efficient in-core (main memory) solutions have been provided
[CT92]. It should be mentioned that the general computational geometry problems support
physical deletions of intervals. Hence they are more closely related to the valid-time database
environment. The valid pure-timeslice query (“*/point/-”) is a special case of the dynamic interval
management problem. The best in-core bounds for the dynamic interval management are provided
by using the Priority-Search tree data structure of [McC85], yiel@iffjgspaceO(logl) update
processing per change aBdogl + a) query time (all logarithms are base-2). Heiethe number
of intervals in the structure when the query/update is performed. The range-timeslice query is a
special case of the orthogonal segment intersection problem for which a solutio® (kg
spaceO(logl loglog) update processing at{logl loglogl + a) query time has been provided in
[M84]; another solution [McC85] that uses a combination of the Priority-Search tree and the

Interval Tree [E83] yield©(l) spaceO(logl) update processing af{log? + a) query time.

The problems addressed by transaction or bitemporal methods are related to work on persistent

11



data structures [DSST89]. In particular, [DSST89] shows how to take an in-core “ephemeral data
structure” (meaning that past states are erased when updates are made) and convert it to a
“persistent data structure” (where past states are maintained). A “fully persistent” data structure
allows updates to all past states. A “partially persistent” data structure allows updates only to the
most recent state. Because of the properties of transaction time evolution, transaction and
bitemporal access methods can be thought as disk extensions of partially persistent data structures.

3.3 Index Pagination and Data Clustering

In a database environment the cost of a computation is not based on how many main memory slots
are accessed or how many comparisons are made (as it is the case with in-core algorithms) but
instead on how many pages are transferred between main and secondary memory. In our
comparison this is very crucial as the bulk of data will be stored in secondary storage media. It is
therefore natural to use an 1/0O complexity cost ([KRVV93]) that measures the number of disk
accesses for updating and query answering. Two important considerations regarding the 1/0
complexity of the query time argidex paginatioranddata clustering

Index pagination deals with the issue of how well index nodes of a method are paginated. Since
the index is used as a means to search for and update the data, its pagination greatly affects the
performance of the method. As an example,*dr& is a well-paginated index as it requires
O(loggr) page accesses for searching or updatoigects, using pages of sBeThe reader should
be careful with the notation: lggis itself anO(log,r) function only ifB is considered a constant.

For an I/O environmer is another problem variable. Thus dogepresents a l1gB speedup over

log,r which for 1/0O complexity is a great improvement. Transferring a page takes about 10 msec
on the fastest disk drives; in contrast, comparing two integers in main memory takes about 5 nsec.
Accessing pages also uses CPU time. The CPU cost of reading a page from the disk is about 2000
instructions [GR93].

Data clustering can also substantially improve the performance of an access method. If data
records that are “logically” related for a given query can also be stored physically close, then the
query is optimized as fewer pages are accessed. Consider for example an access method that can
cluster the data in such a way that answering the transaction pure-timeslice queD(ltajkes+
a/B) page accesses. This method is more 1/O efficient than another method which solves the same
guery inO(loggn + a) page accesses. Both methods use a well-paginated index (which corresponds

to the logarithmic part of the query). However, in the second method each data record that belongs
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to the answer set may be stored on a separate page, thus requiring a much larger number of page
accesses for solving the query.

Data can be clustered by the time dimension only, where data records that have been “alive”
for the same time periods are collocated, or by both time and key range, or by key range only. Note
that a clustering strategy that optimizes a given class of queries may not work for another query
class; for example, a good clustering strategy for pure-key queries would store all the versions of
a particular key in the same page; however this strategy would not work for pure-timeslice queries
as the clustering objective is different.

Clustering is in general more difficult to maintain in a valid-time access method because of its
dynamic behavior. The answer to a valid-time query depends on the collection of interval-objects
currently contained in the access method; this collection changes as valid-time updates are applied.
Even though some good clustering may have been achieved for some collection, it may not be as
efficient for the next collection that is produced after a number of valid-time updates. In contrast,
in transaction or bitemporal access methods the past is not changed, so an efficient clustering can
be retained more easily, despite updates.

Any method which clusters data (a primary index) and usesOglaggn + a/B) pages for
gueries can also be used (less efficiently) as a secondary index by replacing the data records with
pointers to pages containing data records, thus @{inggn + a) pages for queries. The distinction
between methods used as primary indexes and methods used as secondary indexes is one of
efficiency, not of algorithmic properties.

We use the term “primary index” only to mean that the index controls the physical placement
of data. For example, a primary-Bee has data in the leaves. A seconddryr& has only keys
and references to data pages (pointers) in the leaves. Primary indexes need not be on primary keys
of relations. Many of the methods do expect a unique non-time varying key for each record; we do
not attempt to discuss how these methods might be modified to cluster records by non-unique keys.

3.4 Migration of Past Data to Another Location

Methods that support transaction time maintain all their past states, a property that can easily result
in excessive amounts of data (even for methods that support transaction time in the most space-
efficient way). In comparing such methods it is natural to introduce two other comparison

considerations: (a) whether or not past data can be separated from the current data, so that the
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smaller collection of current data can be accessed more efficiently, and, (b) whether data is
appended sequentially to the method and never changed so that Write-Once Read-Many (WORM)
devices might be used.

On WORMSs, one must burn into the disk an entire page with a checksum (the error rate is high,
S0 a very long error-correcting code must be appended to each page.). Thus, once a page is written,
it cannot be updated. It should be noted that since the WORM devices are themselves random ac-
cess mediany access method which can use WORM devices can also be used with magnetic disks

only. There are no access methods which are restricted to the use of WORMSs.

3.5 Lower Bounds on 1/0O Complexity

We first establish a lower bound on the 1/0O complexity of basic transaction-time queries. The lower
bound is obtained using a comparison based model in a paginated environment and applies to the
transaction pure-timeslice (“*/-/point”), range-timeslice (“range/-/point”) and pure-key (with time
predicate, or a “point/-/range”) query. Any method that solves such a query inOie&) space

needs at lea€? (loggn +a/B)  1/Os to solve it.

Sincea corresponds to the query answer size, any method cannot do bett®(al)i/O’s
to provide the answeg/B is the minimal number of pages where this answer can be stored. We
proceed with the justification of the logarithmic part of the bound. Since the range-timeslice query
is more general than the pure-timeslice query, we first show that the pure-timeslice problem is re-
duced to the “predecessor” problem for which a lower bound is then established [TK95]. A similar

reduction can be proved for the pure-key query with time predicate.

The predecessor problem is defined as following: Given an orderdo$ét distinct items,
and an itenk, find the largest member of dethat is less than or equalkoFor the reduction of

the pure-timeslice problem assume thatPsebntains integers, <t, <... <ty and consider the

following real-world evolution: at timg a single real-world object with nameid) t, is created,
and lives until just before tintg i.e., the lifespan of objetitis [t,, t,). Then, real-world objedf is
born att, and lives for the intervat,] t;), and so on. Therefore, at any time instathie state of the
real-world system is a single object with namience thé integers correspond to= 2N chang-
es in the above evolution. Consequently, finding the whole timeslice at tedaces to finding

the largest element in detthat is less or equal tpi.e., the predecessor tohsideP.

We will show that in the comparison based model, and in a paginated environment the prede-
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cessor problem needs at le@stlogN) 1/0 's. The assumption is that each page &dtgaiss

and there is no charge for a comparison within a page. Our argument is based on a decision tree
proof. Let the first page be read and assume that the items read within that page are sorted (in any
case sorting inside one page is fred/Of  ’s). By exploring the entire page using comparisons, we
can only geB+1 different answers concerning itdmThese correspond to tBg1 intervals cre-

ated by théB items. No additional information can be retrieved. Then a new page is retrieved that

is based on the outcome of the previous comparisons of the first page, i.e., a different page is read
everyB+1 outcomes. In order to determine the predecesskitltd decision tree must haie

leaves (as there akepossible predecessors). As a result, the height of the tree niog,Ne . Thus

any algorithm solving the paginated version of the predecessor problem in the comparison model
needs at leag? (loggN) /0 ’s.

If there was a faster tha® (loggn+a/ B) method for the pure-timeslice problem using

O (n/ B) space, then we would have invented a method that solves the above predecessor problem
in less thai© (loggN) /O ’s.

Observe that the lower bound was shown for the query time of methods using linear space, ir-
respectively of the update processing. If the elements Bfaetgiven in order, one after the other,

O(1) time (amortized) per element is needed in order to create an index on the set that would solve
the predecessor problem@(log,N) /O ’s (more accurately, since no deletions are needed, we
only need a fully paginated, multilevel index that increases on one direction). If these elements are
given out of order, the® (loggN) time is needed per insertion (B-tree index). In the transaction
pure timeslice problem (“*/-/point”) time is always increasing @ftl) time for update processing

per change is enough and clearly minimal. Thus we call a m&aptimalfor the transaction
pure-timeslice query if it achieve8(n/B)  space @nfoggn+a/B) guery time using con-
stant updating.

Similarly, for the transaction range-timeslice problem (“range/-/point”), we call a mg@od
optimalif it achievesO (loggn+a/B) query timeQ (n/B)  space a@dloggm) update pro-
cessing per changmis the number of alive objects when the update takes place. The logarithmic
processing is needed because the range-timeslice problem requires ordering keys by their value.
Changes arrive in time order but out of key order and therm aleve keys on the latest state
among which an update has to choose.
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For the transaction pure-key with time predicate the lower bound for query time is
Q (loggn +a/ B) , since the logarithmic part is needed to locate the time predicate in the past and

a/B1/O’s are required to provide the answer in the output.

The same lower bound holds for bitemporal queries since they are at least as complex as trans-
action queries. For example, consider the “*/point/point” query which is specified by a valid time
v and a transaction tintelf the valid-time interval of each interval object extends fremm oo to
in the valid-time domain, finding all interval objects thatwhere intersectingreduces to finding
all interval-objects in collectio@(t) (since all of them would contain the valid instentHowever

this is the “*/-/point” query.

Since from a query perspective a valid and a transaction-time database are both collections of
intervals, a similar lower bound applies for the corresponding valid-time queries (by replacing
by I, the number of interval-objects in the collection). For example, any algorithm solving the “*/

point/-” query inO(I/B) space needs at lea@t(loggl +a/ B) I/O’s query time.

4. Issues in Efficient Method Design for Transaction/Bitemporal Data

A common problem to all methods that support the transaction time axis is how to efficiently store
large amounts of data. We first consider the transaction pure-timeslice query and show why
obvious solutions are not efficient. Similarly, we discuss the transaction pure-key and range-
timeslice queries. Bitemporal queries follow. The problem of separating past from current data
(and the use of WORM disks) is also examined.

4.1 The Transaction Pure-Timeslice Query

There are two straightforward solutions to the transaction pure-timeslice query (“*/-/point”) that
will serve as two extreme cases in our comparison; we denote them as the “copy” and “log”

approaches.

The “copy” approach stores a copy of the transaction database(st#tieneslice) for each
transaction time that at least one change occurred. These copies are indexed. Actiess to a
states(t) is performed by searching for timhen a multilevel index on the time dimension. Since
changes arrive in order, this multilevel index is clearly paginated. The closest time that is less or
equal tat is found withO(loggn) page accesses. An additio@dk/B)I/O time is needed to output

the copy of the state, whemedenotes the number of “alive” objects in the accessed database state.
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The major disadvantage of the “copy” approach is with the space and update processing
requirements. The space used can in the worst case be proportio(r@lBy. This happens if the
evolution is mainly composed of “births” of new objects. The database state is thus enlarged
continuously. If the size of the database remains relatively constant due to deletions and insertions
balancing out, and if there gpaecords on average, the space us€{igp/B)

The update processing @(n/B) per change instant in a growing database @(uB) per
change instant in a non-growing database, as a new copy of the database has to be stored at each
change instant. The “copy” approach provides a minimal query time. However, since the
information stored is much more than the actual changes, the space and update requirements suffer.

A variation on the copy approach stores a list of ADDRESSES of records which are “alive” at
each time when at least one change occurred. The total amount of space used is smaller than if the
records themselves are stored in each copy. However, the asymptotic space us@gdraByilbr
growing databases a@{np/B)for databases whose size does not increase significantly over time.
This will mean most records ha@n) references in the inde$n” does not have to be very large
before the index is several times the size of the record collection. In addition, by thus changing
from a primary to a secondary unclustered structdfa) not O(a/B) pages must be accessed to
output the copy of the a alive records (after the uSlabgn) accesses to find the correct list).

In the remainder of this paper, we will not be considering any secondary indexes. Indexes which
are described as secondary by their authors will be treated as if they were primary indexes in order
to make a fair comparison. Secondary indexes never cluster data in disk pages and thus always lose
out in query time. Recall that by “primary” index we mean only an index which dictates the
physical location of records, not an index on “primary key.” Secondary indexes can only cluster
references to records, not the records themselves.

In an attempt to reduce the quadratic space and linear updating of the “copy” approach, the
“log” approach stores only the changes that occur in the database timestamped by the time instant
on which they occurred. The update processing is clearly redude@l}qer change, as this
history management scheme appends the sequence of inputs in a “log” without any other
processing. The space is similarly reduced to the mini@@/B) Nevertheless, this
straightforward approach will increase the query tim@#wB) since in order to reconstruct a past

state the whole “log” may have to be searched.

Combinations of the two straightforward approaches are possible; for example a method could
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keep repeated timeslices of the database state and “logs” of the changes between the stored
timeslices. If repeated timeslices are stored after some bounded number of changes, this solution
is equivalent to the “copy” approach, since it is equivalent to using different time units (and
therefore changing only the constant in the space complexity measure). If the number of changes
between repeated timeslices is not bounded, the method is equivalent to the “log” approach, as it
corresponds to a series of logs. We will use the two extreme cases to characterize the performance
of the examined transaction-time methods. Some of the proposed methods are equivalent to one of
the two extremes. However, it is possible to combine the fast query time of the first approach with

the space and update requirements of the second.

In order for a method to answer the transaction pure-timeslice (**/-/point”) query efficiently,
data must at least be clustered according to its transaction time behavior. Since this query asks for
all records “alive” at a given time, this clustering can be based only on the transaction time axis,
i.e., records that are existing on the same time should be clustered together, independently of their
key values. We call access methods that cluster by time only, as (transaogésohlymethods.

There are methods that cluster by both time and key; we call them (transtctghkEymethods.

They optimize queries that involve both time and key predicates, like the transaction range-
timeslice query (“range/-/point”). Clustering by time only can lead to constant update processing
per change; thus a good time-only method can “follow” its input changes “on-line”. In contrast,
clustering by time and key would need some logarithmic update as changes arrive in time order but

not in key order; some appropriate placing of a change is needed based on the key it is applied on.

4.2 The Transaction Pure-Key Query

The “copy” and the “log” solutions could be used for the pure-key query (“point/-/*”"). However
they are both very inefficient. The “copy” method will use too much space, no matter what query
it is used for. In addition, finding a key in a timeslice implies either that one uses linear search or
that there is some organization on each timeslice (such as an index on the key). The “log” approach
will require running from the beginning of the log to the time of the query, keeping the most recent
version of the record with that key. This is SD(n/B)time.

A better solution to this query is to store the history of each key separately, i.e. cluster data by
key only. This creates a (transactiary-onlymethod. Since at each transaction time instant there
exists at most one “alive” version of a given key, the versions of the same key can be linked

together. Access to a key’s (transaction-time) history can be implemented by a hashing function
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(which must be dynamic hashing as it has to support additions of new keys) or a balanced multiway
search tree (B-tree). The hashing provides constant access (in the expected amortized sense) while
the B-tree logarithmic access. Note that hashing does not guarantee against pathological worst
cases while the B-tree does. Hashing cannot be used to obtain the history for a range of keys (as in
the general class (lll) query). After the queried key is identified, its whole history can be retrieved
(forward or backward reconstruction using the list of versions).

To answer a pure-key query with time predicate (“point/-/range”), the list of versions of each
key can be further organized in a separate array indexed by transaction time. Since updates are
appended at the end of such an array, a simple paginated multilevel index can be implemented on
each array to expedite searching. Then a query of the form: “provide the history lohkey
(before) timet”, is addressed by first findingy(using the hashing or the B-tree) and then locating
the version ok that is closest to transaction titngsing the multilevel index okis versions. This
takesO(loggn) time (each array can I6¥n/B) large).

The above straightforward data clustering by key only is efficient for class Il queries but is not
efficient for any of the other two classes. For example, to answer a “*/-/point” query, each key ever
created in the evolution must be searched for being “alive” at the query transaction time and it takes
logarithmic time for searching in each key’s version history.

4.3 The Transaction Range-Timeslice Query

If records that are “logically” related for a given query can also be stored physically close, then the
guery is optimized as fewer pages are accessed. Therefore, to answer a “range/-/point” query
efficiently, it is best to cluster by transaction tigmed key within pages. This is very similar to

spatial indexing. But it has some special properties.

If the time-key space is partitioned into disjoint rectangles, one for each disk page and only one
copy of each record is kept, long-lived records (records with long transaction-time intervals) would
have to be collocated with many short-lived ones that cannot all fit on the same page. We cannot
thus partition the space without allowing duplicate records. One therefore is reduced to either
making copiesdata duplicatiof, allowing overlap of time-key rectangledafa boundiny or
mapping records represented by key, (transaction) start_time and end_time, to points in 3-
dimensional spacealata mappinyand using a multidimensional search method.

Time-key spaces do not have the “density” problem of spatial indexes. Density is defined as the
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largest overlap of spatial objects at a point. There is only one version of each key at a given time
so the time-key objects (line segments in time-key space) never overlap. This makes data
duplication a more attractive option than in spatial indexing, especially if the amount of duplication
can be limited as in [E86, LS90a, LM91, BGO+93, VV95].

Data bounding may force single-point queries to use backtracking as there is not a unique path
to a given time-key point. In general, for the data-bounding approach, temporal indexing has worse
problems than spatial indexing because long-lived records are likely to be common. In a data-
bounding structure, such a record will be stored in a page with a long time-span and some key
range. Every timeslice query in that timespan must access that page even though the long-lived
record may be the only one alive at the search time (the other records in the page are alive at another
part of the timespan). The R-tree based-methods [S87, KS89, KS91] use data bounding.

The third possibility, data mapping, will map a record to three (or more) coordinates: its
transaction start_time, end_time, and key(s) and then use a multiattribute point index. Here records
with long transaction-time intervals would be clustered with other records with long intervals as
their start and end times would be close. Records with short transaction-time intervals would be
clustered with other records with short intervals if they were alive at nearby times. This would be
efficient for most queries as the long-lived records would be the answers to many queries. The
pages with short-lived records would effectively partition the answers to different queries; most
such pages would not be touched for a given timeslice query. However, there are special problems
because many records may still be current and have growing lifetimes (i.e., transaction-time

intervals extending taow). This approach is further discussed in the end of section 5.1.3.

Naturally, the most efficient methods for the transaction range-timeslice query are the ones that
combine the time and key dimensions. In contrast, by using a (transaction) time-only method, the
whole timeslice for the given transaction time is first reconstructed and then the records with keys
outside the given range are eliminated. This is clearly inefficient, especially if the requested range

is a small part of the whole timeslice.

4.5 Bitemporal Queries

An obvious approach would be to index bitemporal objects on a single time axis (transaction or
valid time) and use a single time access method. For example, if a transaction access method is
utilized, a bitemporal “*/point/point” query is answered in two steps. First all bitemporal objects
existing at transaction timere found. Then the valid time interval of each such object is checked
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whether it includes valid time. This approach is inefficient because very few of the accessed
objects may actually satisfy the valid-time predicate.

If both axes are utilized, an obvious approach is an extended combination of the “copy” and
“log” solutions. This approach stores copies of the collect@)s(Fig. 3) at given transaction-
time instants and a log of changes between copies. Together with each callégtian access
method (for example an R-tree [G84]) that indexes the objects ofC(hjsis also stored.
Conceptually it is like storing snapshots of R-trees and changes between them. While each R-tree
enables efficient searching on a stored colled@() the approach is clearly inefficient because
the space or query time increases dramatically depending on the frequency of snapshots.

Thedata boundinginddata mappingpproaches can also be used in a bitemporal environment.
However, the added (valid-time) dimension provides an extra reason for inefficiency. For example,
the bounding rectangle of a bitemporal object consists of two intervals (Figure 4; taken from
[KTF95a]). A “*/point/point” query is translated into finding all rectangles that include the query
point (t;, v;). An R-tree [G84] could be used to manage these rectangles. However, the special
characteristics of transaction time (many rectangles may extenchapjtand the inclusion of the
valid-time dimension, increase the possibility of extensive overlapping which in turn reduces the
R-tree query efficiency [KTF95b].
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Figure 4: The bounding-rectangle approach for bitemporal queries (the key dimension is not shown). The evolutio
of Fig.3 is depicted, as of (transaction) titrets. The modification of intervdl, atts ends the initial rect-
angle forl; and inserts a new rectangle frégo now

4.6 Separating Past from Current Data and the use of WORM disks

In transaction or bitemporal databases, it is usually the case that access to current data is more
frequent than to past data (in the transaction-time sense). In addition, since the bulk of data in these

21



databases is due to the historical part, it would be advantageous to use a higher capacity, but slower
access medium for the past data, such as optical disks. First, the method should provide for natural
separation between current and past data. There are two ways to achieve this separation: (a) With
the “manual” approach, a process will vacuum all records that are “dead” (in the transaction-time
sense) when the process is invoked; this vacuuming process can be invoked at any time. (b) With
the “automated” approach, where such “dead” records are migrated to the optical disk due to a
direct cause from the evolution process (for example during an update). The total I/O involved is
likely to be smaller than in a manual method, since it is piggybacked on 1/0O which is necessary for

index maintenance in any case (such as the splitting of a full node).

Even though Write-Many Read-Many optical disks are available, the WORM optical disks are
still the main choice for storing large amounts of archival data; they are less expensive, have larger
capacities and usually have faster write transfer times. Since the contents of WORM disk blocks
cannot be changed after their initial writing (due to an added error-correcting code) data that is to
be appended on a WORM disk should not be allowed to change in the future. Since on the
transaction axis the past is not changed, past data can be written on the WORM disk.

We emphasize again that methods which can be used on WORM disks are not “WORM
methods”-- they can also be used on magnetic disks. Thus the question of separation of past and
current records can be considered regardless of the availability of WORM disks.

5. Method Classification and Comparison

This section provides a concise description of the methods we examine. Since it was practically
impossible to run simulations for all methods on the same collections of data and queries, our
analysis is based on worst case performance. Various access method proposals provide a
performance analysis that may have strong assumptions about the input data (uniform distribution
of data points, etc.) and may very well be that under those constraints the proposed method works
quite well. Our purpose however was to categorize the methods without any assumption on the
input data or the frequency of queries asked. Obviously the worst case analysis may penalize a
method for some very unlikely scenarios; to distinguish against likely worst cases we call such
scenariopathologicalworst cases. We shall also point out some features which may affect average
case behavior without necessarily affecting worst-case behavior.

We first describe transaction-time access methods. These methods are further classified to key-
only, time-only and time-key, based on the way data is clustered. In the key-only methods we study
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the Reverse ChainingAccession Lists, Time Sequence ArragdC-lists Among the time-only
we examine: théppend-only Treethe Time-Indexand its variationsMonotonic B-Tree, Time-
Index+), the Differential File approach, the&Checkpoint Indexthe Arhivable Time Indexthe
Snapshot Indeand thewindows Methodin the time-key category we present: the POSTGRES
Storage System and the usé€oinposite IndexetheSegment-R Tre¢gheWrite-Once B-Treghe
Time-Split B-Tree the Persistent B-Treethe Multiversion B-Tree the Multiversion Access
Structureand theODverlapping B-TreeA comparison tabléTable B) is included in the end of the
section with a summary of each method’s worst case performance. We then proceed with the valid-
time access methods where we discussMie¢ablock Tregethe External Segment Tree¢he
External Interval Treeand theMAP21 methods. The bitemporal category describesMH¥TT,
theBitemporal Interval Treand theBitemporal R-Tree

5.1 Transaction-time Methods

In this category we have included methods which assume that changes arrive in increasing time
order, a characteristic of transaction time. This property greatly affects the update processing of the
method. If “out of order” changes (a characteristic of valid-time) were to be supported, the
updating cost becomes much higher (practically prohibitive).

5.1.1 Key-only Methods

The basic characteristic of transaction key-only approaches is the organization of evolving data by
key (surrogate), i.e., all versions that a given key assumes are “clustered” together logically or
physically. Such organization makes these methods more efficient for transaction pure-key
gueries. In addition, the approaches considered here correspond to the earliest solutions proposed
for time evolving data.

Reverse chainingvas introduced in [B82] and further developed in [LDE+84]. Under this
approach, previous versions of a given key are linked together in reverse chronological order. The
idea of keeping separate stores for current and past data was also introduced. Current data is
assumed to be queried more often, so by separating it from past data, the size of the search structure
is decreased and queries for current data become faster.

Each version of a key is represented by a tuple (which includes the key, attribute value and a
lifespan interval) augmented with a pointer field that points to the previous version (if any) of this
key. When a key is first inserted into a relation, its corresponding tuple is put iotorde store
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with its previous-version pointer beimyll. When the attribute value of this key is changed, the
version existing in the current store is moved topthst storewith the new tuple replacing it in the
current store. The previous-version pointer of the new tuple points to the location of the previous
version in the past store. Hence a chain of past versions is created out of each current key. Tuples
are stored in the past store without necessarily being clustered by key.

Current keys are indexed by a regulastige (“front” B*-tree). The chain of past versions of a
current key is accessed by following previous-version pointers starting from the current key. If a
current key is deleted, it is removed from theeti2e and is inserted in a secondti&e (“back”

B*-tree) which indexes the latest version of keys that are not current. The past version chain of the
deleted key is still accessed from its latest version stored in the “batkéa If a key is “reborn”

it is reinserted in the “front” Btree. Subsequent modifications of this current key create a new
chain of past versions. It is thus possible to have two chains of past versions, one starting from its
current version and one from a past version, for the same key. Hence queries about the past are
directed to both Btrees. If the key is later deleted again, its new chain of past versions is attached
to its previous chain by appropriately updating the latest version stored in the “Dack&B

Clearly this approach us€Xn/B) space, whera denotes the number of changes Bnd the
page size. The number of changes corresponds to the number of versions for all keys ever created.
When a change occurs (such as a new versideybr the deletion okey) the “front” B*-tree
(current store) has first to be searched to locate the current verdieg Hfit is a deletion, the
“back” B*-tree is also searched to locate the latest versiokeypfif any. Hence the update
processing of this method @(loggn) since the number of different keys can be similar to the
number of changes.

To find all previous versions of a givéey, the “front” B*-tree is first searched for the latest
version ofkey; if keyis in the current store, its pointer will provide access to recent past versions
of key Since version lists are in reverse chronological order, one has to follow such a list until a
version number (transaction timestamp) that is less or equal to the query timestamp is found. The
“back” B*-tree is then searched for older past versiona.dénotes all past versions kdy the
guery time i€(loggn+a) since versions of a given key could in the worst case be stored in different
pages. This can be improvedcllular chaining, clusteringr stackingis used [AS88]. If each
collection of versions for a given key is clustered in a set of pages, but versions of distinct keys are
never on the same page, query time woul®feggn+a/B) but space utilization would E&(n)
pages (noO(n/B)) as the versions of a key may not be enough to justify the use of a full page.
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Reverse chaining can be further improved by the introducti@ca#ssion list$AS88]. An
accession list clusters together all version numbers (timestamps) of a given key. Each timestamp
is associated with a pointer to the accompanying tuple which is stored in the past store (or to a
cluster of tuples). Thus instead of searching a reverse chain until a given timestamp, one can search
an index of the chain’s timestamps. As timestamps are stored in chronological order on an
accession list, finding the appropriate version of a given key wouldQékggn+logga). The
space and update processing remain as before.

While the above structure can be efficient for a transaction pure-key query, answering pure- or
range-timeslice queries is problematic. For example to answer a “*/-/point” query that is satisfied
only by some keys, one has to search the accession lists of all keys ever created.

Another early approach proposed the use Tohe Sequence Arrays (TSA$KS6].
Conceptually, a TSA is a two dimensional array with a row for each key ever created; each column
represents a time instant. Tixgy) entry stores the value of keyat timey. Static (the data set has
been fully collected) and dynamic (the data set is continuously growing--as in a transaction-time
environment) are examined. If this structure is implemented as a two-dimensional array the query
time is minimal (just access the appropriate array entry), but the update processing and space are
prohibitive ©O(n) and O(n2) respectively). One could implement each row as an array keeping
only values when there was a change; this is conceptually the same solution as the reverse chaining
with accession lists. A solution based on a multidimensional partitioning scheme is proposed in
[RS87], but the underlying assumption is that the whole temporal evolution is known in advance

before the partitioning scheme is implemented.

The theoretically optimal solution to the transaction pure-key query with time predicate is
provided by theC-listsof [VVV95]. C-lists are similar to accession lists in that they cluster together
the versions of a given key. There are two main differences. First, access to each C-list is provided
through another method, the Multiversion Access Structure [VV95] (in short “MVAS”; the MVAS
is discussed later with the time-key methods). Second, C-list maintenance is more complicated:
splitting/ merging of C-list pages is guided by the page splitting/merging of the MVAS (for details
we refer to [VV95]). If there aren “alive” keys in the structure, updating takegoggm). The
history of keyk before timet, is found inO(loggn+a/B) I/Os, which is optimal. An advantage of
C-lists is that they can be combined with the MVAS structure to create a method that answers
optimally both the range-timeslice and pure-key with time predicate queries. However, the
additional complexity (an extra B+-tree is needed together with double pointers between the C-lists
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and the MVAS) limits its practicality.

5.1.2 Time-only Methods

Most time-only methods timestamp changes (additions, deletions etc.) by the transaction time they
occurred and append them in some form of a “history log”. Since no clustering of data according

to keys is made, such methods optimize “*/-/point” or “*/-/range” queries. Because changes arrive

in chronological order, ideally a time-only method can provide constant update processing (as the
change is simply appended at the end of the “history log”); this advantage is important in applica-
tions where changes are frequent and the database has to “follow” these changas-linean

fashion. For efficient query time, most methods use some index on the top of the “history log” that
indexes the (transaction) timestamps of the changes. Because of the time-ordered changes, the cost
of maintaining this (paginated) index on the transaction time-axis is minimal, am@fizeder

change.

While organizing data only by its time behavior provides for very fast updating, it is not
efficient for answering transaction range-timeslice queries. In order to use time-only methods for
such queries, one suggestion [EWK93, GS93] is to employ a sepayatelexwhose leaves point
to predefined key “regions”. A key region could be a single key or a collection of keys (either a
sub-range of the key space or a relation). The history of each “region” is organized separately,
using an individual time-only access method (such as the Time Index or the Append-Only Tree).
Thekey indexwill direct a change of a given key to update the method that keeps the history of the
key’s region. However, after the region is found, the placement of this key in the region’s access

method, is based only on the key’s time behavior (and not any more on the key itself).

To answer transaction range-timeslice queries one has to search the history of each region that
belongs to the query range. The range-timeslice is thus constructed by creating the individual
timeslices for every region in the query rangdr I§ the number of regions, the key index would
addO(R/B)space an@ (loggR) update processing to the performance of the individual historical
access methods. The query time for the combination of the key index and the time-only access
methods would b® (Mf(n;, t,a;)) , wheh is the number of regions that fall in the given query
range, andf (n,, t, &) is the time needed in each individual region= 1(...,m) to perform a
timeslice query for time(n, anda; correspond to the total number of changesin  and the number
of “alive” objects fromr; at timé, respectively). For example, if the Time-Index [EWK90] is used

as the access method in each individual region, tién;, t, a;) = O (loggn, +a;/B)
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There are three drawbacks with this approach: (1) if the query key range is a small subset of a
given region, the whole region’s timeslice is reconstructed, even if most of its objects may not be-
long to the query range and thus do not contribute to the answer, (2) if the query key range contains
many regions, all these regions have to be searched, even if they may contribute no “alive” objects
at the transaction time of interésand, (3) for every region examined, at best, a logarithmic search
is performed in order to locat@mong the changes recorded in the region. To put this in perspec-
tive, imagine replacing a multi-attribute spatial search structure with a number of collections of
records from predefined key ranges in one attribute and then organizing each key range by some
other attribute.

To answer general pure-key queries of the form: “find the salary history of employee named
k’, an index on the key space can be utilized. This index keeps the latest version of a key while key
versions are linked together. Since the key space is separate from the time space, such an index is
easily updated. In some methods this index has the form Bifee® and is also facilitated for the
transaction range-timeslice queries (like the Surrogate Superindex used in the AP-Tree [GS93] and
the Archivable Time Index [VV94]) or it has the form of a hashing function as in the Snapshot In-
dex [TK95]. A general method is to link records to any one copy of the most recent distinct past
version of the record. We continue with the presentation of various time-only methods.

5.1.2.1 The Append-Only Tree

The Append-Only TreeAP-Treg is a multi-way search tree that is a hybrid of %M Index and

a B'-Tree. It was proposed as a method to optimize event-joins [SG89, GS93]. Here we examine
it as an access method for the query classes of section 3.1. Each tuple is associated with a
(start_time end_time interval. The basic method indexes the start_times of tuples. Each leaf node
has entries of the formt, ) wheret is a time instant anldis a pointer to a bucket that contains all
tuples with start_time greater than the time recorded in the previous entry (if any) and less than or
equal tat. Each non-leaf node indexes nodes at the next level (Figure 5).

In the AP-Tree insertions of new tuples arrive in increasing start_time order. Based on this, we
consider it as a transaction-time method. It is also assumed that the end_times of tuples are known
when a tuple is inserted in the access method. In that case the update procé€gsiginse the
tuple is inserted (“appended”) on the rightmost leaf of the tree. (This is somewhat similar to the
procedure used in most commercial systems for loading a sorted file to a multilevel index [S88],
except that insertions are now successive instead of batched). If end_times are not known at
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Figure 5: The Append-Only Tree. Leaves include onlydfset timefields of intervals. Each leaf points to file
pages, with records ordered according tosthet_timefield. New records are added only at the rightmost
leaf of the tree. It is assumed that both endpoints are known for the intervals in this figure.

insertion but are updated later (as in a transaction-time environment), the index has to be searched
for the record that is updated. If the start_time of the updated record is given in the input then this
search i©(loggn). Otherwise, one could use a hashing function that stores only the alive objects
and for each such object it points in its position in the AP-Tree (this however is not discussed in

the original paper).

To answer a transaction pure-timeslice query for tintike AP-Tree is first searched for the
leaf that contains All intervals on the “right” of this leaf have start_times that are largertthan
and thus should not be searched further. However, all intervals on the left of this leaf (i.e. the data
file from the beginning untt) have to be checked for “containing’Such a search can be as large
asO(n/B) since the number of intervals in the tree is proportional to the number of changes in the
evolution. Of course, if we assume that the queries are randomly distributed over the entire
transaction-time range, on the average half of the leaf nodes must be searched. Th@gp8ge is

For answering transaction pure-key and range-timeslice queries the $&siedehas been
proposed [GS93]. This method facilitates a separaf€r8e index (calle@urrogate Superindgx
on the keys (surrogates) ever inserted in the database. A leaf node of such a tree contains entries of
the form: key, p;, p,) wherep, is a pointer to an AP-Tree (called fhene Subindexhat organizes
the evolution of the particular key apglis a pointer to the latest version of a key. This approach
solves the problem of updating intervals by key (just search the Surrogate Superindex for the key
of the interval; then this key’s Time Subindex will provide the latest version of this interval, i.e.,

the version to be updated). TB&-Treeapproach is conceptually equivalentréwerse chaining
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with an index on eacaccession listhowever due to its relation to the AP-Tree we included it in

the time-only methods).

The update processing is n@{ogsS) whereS denotes the total number of keys (surrogates)
ever createdSis itselfO(n)). Note that there may be key histories with just one record. For the
space to remai®(n/B) unused page portions should be shared by other key histories. This implies
that the versions of a given key may reside in separate pages. Answering a pure key query then
takesO(logsS + a) I/Os. The given key can be found with a logarithmic search on the Surrogate
Superindex and then igsversions are accessed but at worst each version may reside in a distinct
page. For a transaction range-timeslice query whose range cdftagys (alive or not aj) the
guery time i90(Kloggn) as each key in the range has to be searched. When the range is the whole
key space, that is, to answer a transaction pure-timeslice query far, ime has to perform a
logarithmic search on the Time Subindex of each key ever created. Thi©t{&aegin) time.

The basic AP-Tree does not separate past from current data so transferring to a write-once
optical disk may be problematic. One could start transferring data to the write-once medium in
start_time order, but this could also transfer long-lived tuples that are still current (alive) and may
be later updated. The ST-Tree does not have this problem as data are clustered by key; the history
of each key represents past data that can be transferred to an optical medium.

If the AP-Tree is used in a valid-time environment, interval insertions, deletions or updates may
happen anywhere in the valid-time domain. This implies that the index would not be as compact
as in the transaction domain where changes arrive in order, but it would behave as a B-Tree. If for
each update, only the key associated with the updated interval is provided, the whole index may
have to be searched. If the start_time of the updated interval is given, a logarithmic search is
needed. Since tHevalid intervals are sorted by start_time a “*/point/-" query taR@fB) I/O’s.

For “range/point/-" queries, the ST-Tree must be combined with a B-Tree as its Time Subindex.
Updates are logarithmic (by traversing the Surrogate Superindex and the Time Subindex). A valid
range timeslice query whose range cont&irieys take©(Kloggl) 1/0’s since every key in the

guery range must be searched for being alive at the valid query time.

5.1.2.2 The Time Index

The Time Index, proposed in [EWK90, EKW91], is a Bee based access method on the time
axis. In the original paper the method was proposed for storing valid-times. It makes however the
assumption that changes arrive in increasing time order and that physical deletions rarely occur.
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Since these are basic characteristics of the transaction-time dimension we consider the Time-Index

in the transaction-time category. There is*aliBee that indexes a linearly ordered set of time

points, where a time point (referred alsaraexingpoint in [EWK90]) is either the time instant

where a new version is created or the next time instant after a version is deleted. Thus a time point

corresponds to the time instant of a change (for deletions it is the next time instant after the

deletion). Each entry of a leaf node of the Time Index is of the fgyim: wheret is a time point

andb is a pointer to a bucket. The pointer of a leaf’s first entry points to a bucket that holds all

records that are “alive” (i.e., a snapshot) at this time point; the rest of the leaf entries point to

buckets that hold incremental changes (Figure 6). As a result, the Time Index does not need to

know in advance the end_time of an object (which is an advantage over the AP-Tree).
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Figure 6: The Time Index. Each first leaf entry holds a full timeslice while the next entries keep incremental

changes.

The Time Index was originally proposed as a secondary index. We shall treat it as a primary

30



index here in order to make a fair comparison to other methods, as explained in section 4.1. This
makes the search estimates competitive with the other methods without changing the worst case
asymptotic space and update formulas.

Since in a transaction environment changes occur in increasing time order, new nodes are
always added on the rightmost leaf of the index. This can produce a more compact index than the
B+ tree used in the original paper, called Mh@notonic B-Tree[EWK93]. (The Monotonic B
Tree insertion algorithm is similar to that of the AP-tree).

To answer a transaction pure-timeslice query for sometfiome has to search the Time Index
for t; this will lead to a leaf node that “contairtsThe past state is reconstructed by accessing all
the buckets of entries of this leaf node that contain timestamps that are less or edfial¢o
assume that the number of changes that can occur at each time instant is bounded (by some
constant) the query time of the Time IndeXOigoggn + a/B). After the appropriate leaf node is
found in logarithmic time, the answaris reconstructed by reading leaf buckets. The update
processing and space can be as largga#)and O ( n’/ B) respectively. Therefore, this method
is conceptually equivalent to the “copy” approach of section 4.1 (the only difference is that copies
are now made after a constant number of changes).

Answering a transaction range-timeslice query with the Time-Index requires reconstructing the
whole timeslice for the time of interest and then selecting only the tuples in the given range. To
answer range-timeslice queries more efficiently, the Two-Level Attribute/Time Index (using
predefined key regions) has been proposed [EWK90]. Assuming that thé&emaaefined key

regions (anR is smaller tham), the update processing and space ref@&iB) andO(nz/ B)

respectively, since most of the changes can happen to a single region. Answering a “*/-/point”
guery would mean creating the timeslices folRathnges, even if a range does not contribute to

R
the answer. Thus the pure-timeslice query time is proportionﬂ tloggn, +a,/B , where and
i=1

a, correspond to the total number of changes in individual region  and the number of “alive”
objects fromr, at timé respectively. This can be as highG{&oggn + a), since each region can

contribute a single tuple to the answer. Similarly, for “range/-/point” queries the query time
becomedO(Mloggn + a) whereM is the number of regions that fall in the given query range

(assuming that the query range contains a number of regions, otherwise a whole region timeslice
has to be created).
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Pure-key queries are not supported as record versions of the same object are not linked (for
example, to answer a query of the form: find all past versions of a given key, one may have to
search the whole history of the range where this key belongs).

In [EWK93], it is suggested to move record versions to optical disk when their end times
change to a time beforew This is under the assumption that the Time Index is being used as a
secondary index and that each record version is only located in one place. The leaf buckets
therefore contain lists of addresses of record versions.

In order to move full pages of data to the optical disk, a buffer is used in the magnetic disk to
collect records as their end times are changed. An optical disk page is reserved for the contents of
each buffer page. When a record version is placed in a buffer page, all pointers to it in the Time
Index must be changed to refer to its new page in the optical disk. This can @(uir8) update
processing as a record version pointer can be contained v B) leaves of the Time Index. A
method for finding pointers for particular record versions within the lists of addresses in the leaf's
first entry, in order to update them, is not given.

Index leaf pages can be migrated to the optical disk only when all their pointers are references
to record versions which are on the optical disk or in the magnetic disk buffer used to transfer
record versions to optical disk. Since each index leaf page contains the pointers to all record
versions which were alive at the time the index page was created, it is likely that many index pages
may not qualify for moving to optical disk, because they contain long-lived records.

It is suggested in [EWK93] that long-lived records which are inhibiting movement of index
pages also be kept in a magnetic buffer and assigned an optical address so that the index leaf page
can be moved. When all the children of an internal index page have been moved to the optical disk,
an internal index page can also be moved. However, the number of long-lived record versions can
also beO(n). Thus the number of empty optical pages waiting for long-lived object versions to die
and having mirror buffers on magnetic dislO&/B).

In an attempt to overcome the high storage and update requirements, the Tinfe Index
[KKEW94] has been proposed. There are two new structures in the Timé:ltie8CSand the
SClbuckets. In the original Time Index, a timeslice is stored for the first timestamp entry of each
leaf node. Since sibling leaf nodes may share much of this timeslice, in the Timedddexven
pairs of sibling nodes store their common parts of the timeslice in a sh@®oucket. Even

though theSCStechnique would in practice save considerable space (about half of what was used
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before), the asymptotic behavior remains the same as of the original Time Index.

Common intervals that span a number of leaf nodes are stored together on some parent index
node (similarly to the Segment Tree data structure [B77]). Each index node in the Tinfeigndex
associated with a range, i.e., the range of time instants covered by its subtree. A timd iisterval
stored in the highest internal nodsuch that coversv's range and does not cover the rangésof
parent. All such intervals are kept in tB€lbucket of an index node.

By keeping the intervals in this way the quadratic space is dramatically reduced. Observe that
now an interval may be stored in at most logarithmic many internal nodes (this is due to the
segment tree property [M84]). This implies that the space consumption of the Timé imdex
reduced t@((r/B) loggn) space. The authors mention in the paper that in practice there is no need
to associat&Clbuckets to more than two-levels of index nodes. However, $Ciduckets are

used in higher levels, the asymptotic behavior would remain similar to the original Time Index.

In addition, it is not clear how the updates are performed Bk#buckets are used. In order
to find the actuabCk where a given interval will be stored, both endpoints of the interval should
be known. Otherwise, if an interval is initially insertedtasow)it has to be found and updated
when at a later time the right endpoint becomes known. This implies that some search structure is
needed in eacBCIl which would of course affect the update behavior of the whole structure.

Finally, the query time bound remains the same for the Time Tratefor the original Time Index.

If the original Time-Index (using the regular B+ tree) is used in a valid-time environment,
physical object deletions anywhere in the (valid) time domain should be supported. However, a
deleted object should removed from all the stored (valid) snapshots. If the deleted object has a long
valid-time interval, the whole structure may have to be updated, making such deletions very costly.
Similarly, objects can be added anywhere in the valid domain; this implies that all affected stored
snapshots have to be updated.

5.1.2.3 The Differential File Approach

While the Differential File Approach [JMR91, JMRS92] does not propose the creation of a new
index, we discuss it since it involves an interesting implementation of a database system based on
transaction time. In practice, an index can be implemented on top of the differential file approach,
however here we assume no such index exists. Changes that occur for a base estastored
incrementally and timestamped on the relation’s log; this log is itself considered a special relation,
called abacklog In addition to the attributes of the base relation, each entry of the backlog contains
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a triplet: time, key, op Heretime corresponds to the (commit) time of the transaction that updated
the database about a change that was applied on the base relation tugky sitttogate pp
corresponds to the kind of change that was applied on this tuple (addition, deletion, or modification
operation).

As a consequence of the use of timestamps a base relation is a function of timg); ihas
timeslice of the base relation at timeA timeslice of a base relation can be stored or computed.
Storing a timeslice can be implemented eithera@she(where pointers to the appropriate backlog
entries are used) or as materialized data (where the actual tuples of the timeslice are kept). Using
the cache avoids storing probably long attributes, however some time is needed to reconstruct the
full timeslice (Figure 7).
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Figure 7: The Differential File approach.

A timeslice can bdixed (for exampleir(t,)) or time-dependengr(now-t)). Time-dependent
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stored base relations have to be updated; this is done eagerly (changes are directly updating such
relations) or lazy (when the relation is requested, the backlog is used to bring it up in the current
state). An eager current(fow)) timeslice is like a snapshot relation, that is, a collection of all
records that are current.

A time-dependent base relation can also be computed from a previous stored timeslice and the
set of changes that occurred in between. These changes correspdiftéterdialfile (instead of
searching the whole backlog). Differential files are also stored as relations.

For answering “*/-/point” queries, this approach can be conceptually equivalent to the “log” or
the “copy” methods, depending on how often timeslices are stored. Consider for example a single
base relatiom with backlogb,: if timeslices are infrequent or the distance (number of changes)
between timeslices is not fixed, the method is equivalent to the “log” approach hyvieitbe
history log. The space 3(n/B)and the update processing is constant (amortized) per change, but
the reconstruction can also ©¢n/B). Conversely, if timeslices are kept with fixed distance, the
method would behave similarly to the “copy” approach.

In order to address “range/-/point” queries one has to produce the timeslice of the base relation
and then check all of the tuples of this timeslice for being in the query range. Similarly, if the value
of a given key is requested as of some time, the whole relation must first be reconstructed as of that
time. The history (previous versions) of a key is not kept explicitly as versions of a given key are
not connected together.

5.1.2.4 The Checkpoint Index

The Checkpoint Index was originally proposed for the implementation of various temporal
operators (temporal joins, parallel temporal joins, snapshot/interval operators, etc.) [LM92a,
LM92b, LM93]. Here we take the liberty to consider its behavior if it was used as an access method
for transaction-time queries. Timeslices (caldbe@ckpointsare periodically taken from the state

of an evolving relation. If the query operator is a join, checkpoints from two relations are taken.
Partial relation checkpoints based on some key predicate have also been proposed. For simplicity
we concentrate on checkpointing a single relation.

The Checkpoint Index assumes that the object intervals are ordered by their start_time. This is
a property of the transaction-time environment (Fig. 19trAam processdollows the evolution
as time proceeds. When a checkpoint is made at some (checkpoint)tinsiaimbjects alive dt
are stored in the checkpoint. A separate structure, calleththestream pointefDSP), points to
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the first object born aftet. Conceptually the DSP provides access to an ordered (by interval
start_time) list of objects born between checkpoints. The DSP is needed since some of these objects
may end before the next checkpoint so they would not be recorded otherwise. The checkpoint time
instants are indexed through &Bree like structure (Figure 8).

t,
ti(ty t; |ty
Checkpointt;) Checkpointty) Checkpoint(;) Checkpointt)
{a} {a,h,b,f} {a,f,c} {a,f,g}
DSRty) DSRt,) DSRt;) DSRtg)

{h} {c} {9} {e}

Figure 8: The Checkpoint Index. The evolution at Fig. 1 is assumed.

The performance of the Checkpoint Index for pure-timeslice queries depends on how often
checkpoints are taken. On the one extreme, if very few checkpoints are taken the space remains
linearO(n/B). Conversely, if checkpoints are kept within fixed distance, the method would behave
similarly to the “copy” approach. In general, the DSP pointer may be “reset” backwards in time to
reduce the size of a checkpoint (which is an optimization issue).

When an object is deleted, its record has to be found so as to update the end_time. The original
presentation of the Checkpoint Index implicitly assumes that the object end_times are known
(since the whole evolution atreamis known). However a hashing function on the alive objects
can be used to solve this problem (as with the AP-Tree). The Checkpoint Index resembles the
Differential File and the Time Index in that all keep various timeslices. However instead of simply
storing the changes between timeslices, the Checkpoint Index keeps the DSP pointers to actual
object records. Hence in the Checkpoint Index, an update to an interval end_time cannot simply be
added at the end of a log but it has to update the corresponding object’s record.

To address range-timeslice queries with the Checkpoint Index, the timeslice of the base relation
is first produced and then all of the tuples of this timeslice are checked for being in the query range.
The history (previous versions) of a given key is not kept explicitly as versions of the same key are
not connected together.
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The Checkpoint Index could use a transfer policy to an optical medium similar to the one of the
Time Index.

5.1.2.5 The Archivable Time Index

The Archivable Time Index [VV94] does not directly index actual transaction time instants but
version numbers. The transaction time instant of the first change takes version number 0 and
successive changes are mapped to consecutive version numbers. An interval is represented by the
version numbers corresponding to its start and end times. A special structure is needed to transform
versions to timestamps and vice versa. For the rest we use the terms time instant and version

number synonymously.

Let T denote the current time. The method partitions recorstentandpast For the current
records (those with unknown end_time) a conventional B+-tree structure is used to index the
start_time of their transaction intervals. For the past (records whose end_time is less orf@gqual to
a more complex structure, the PVAS, is used. Conceptually, the PVAS can be viewed as a logical
binary tree of siz&? T<2? ). Each node in the tree represents a segment of the transaction time
space. AT only some of the nodes of the tree would have been created; new nodes are dynamically
added on the right path of the tree, as time increases. A node denoted by sggnvbetéi <j,
hasspan (j-i) The root is denoted as f, ]. The left child of naigg i node [,(i+j)/2] and its
right child is node(i+j)/2, j]. Hence the span of a node is the sum of the span of its two children.
The span of a leaf node is two. Figure 9 (taken from [VV94]) shows an example of the PVAS tree
atT =55 witha = 6. Node segments appear inside the nodes.

Past records are stored in the nodes of this tree. Each record is stored in exactly one node, the
lowest node whose span contains the record’s interval. For example, a record with interval [3,16]
is assigned to node [0,16]. The nodes of the binary tree are partitioned into three disjoint sets:
passive, activandfuture nodes. A node is passive if no more records can ever be stored in that
node. It is an active node if it is possible for a record with interval endifgpitbe stored there. It
is a future node if it can only store records whose intervals endratfter, in the future. Initially
all nodes begin as future node3a0 then become active and finally they end up as passive nodes,
as time proceeds. Nodg [ becomes active dt= (i+j)/2 if it is a leaf, or al= (i+j)/2 +1 otherwise.

For example, in Figure 9, f@=55, node [48,64] belongs to the future nodes. This is because any
record with interval contained in [48,55] will be stored somewhere in its left subtree. The only
records that can be stored in [48,64] have intervals ending after time 55, so they are future records.
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Future nodes need not be kept in the tree before becoming active.

active

active

future
TS, future

active

Interval stored /
at this node —_

active
Figure 9: The PVAS binary tree. The current logical time is 55.

Each interval assigned to a PVAS node is stored in two lists, one that stores the intervals in
increasing start_time order and one that stores them in increasing end_time order. This is similar
to the Interval Tree [E83]. In [VV94] a different structure is used to implement these lists for the
active and passive nodes, by exploiting the fact that passive nodes do not get any new intervals after
they become passive. In particular, all passive node lists can be stored in two sequential files (the
IFILE and the JFILE) a property that provides for good pagination and record clustering. Two
dynamic structures, the ITREE (a B-tree structure) and JLISTS (a collection of lists) are used for
the active node lists.

The PVAS logical binary tree and its accompanied structures can be placed efficiently into
pages (details appear in [VV94]) occupyldfn/B)space. Since the structure does not index record
keys, the update assumes that the start_time of the updated record is known; then updating is
O(loggn). As with most of the other time-only methods, if updates are provided only by the record
key, a hashing function can be used to find the start_time of the record before the update proceeds
on the PVAS.

To answer a transaction pure-timeslice query both the CVAS and the PVAS are searched. Since
the CVAS is ordered on the start_times a logarithmic search will provide which of the current
records is born before the query tilm&earching the PVAS structure is more complicated. The
search follows a single path down the logical binary tree and the lists of nodes whose span contains
t are searched sequentially. Searching each list provides clustered answer, but there maybe

38



O(log,n) binary nodes whose lists are searched. Since every list access may be a separate 1/O, the
guery time becomed(log,n + a/B).

Since no record keys are indexed, the method as presented above cannot answer efficiently
pure-key queries. For transaction range-timeslice queries the whole timeslice should first be
computed. To answer pure-key and range-timeslice queries, [VV94] assumes the existence of
another index for various key regions, in a similar way as for the Time-Index.

5.1.2.6 The Snapshot Index

The Snapshot Index [TK95] achieves the I/O-optimal solution to the transaction pure-timeslice
problem. It conceptually consists of three data structures: a multilevel index that provides access
to the past by timé& a multi-linked structure among the leaf pages of the multilevel index that
facilitates the creation of the query answet, @&nd, a hashing function that provides access to
records by key, used for update purposes. A real-world object is represented by a record with a time
invariant id (object id), a time-variant (temporal) attribute and a semi-closed transaction-time
interval of the form: $tart_time end_timé¢. When a new object is added at titha new record is
created with intervalt] now] and is stored sequentially in a data page. At any given instant there

is only one data page that stores (accepts) records and it is calectémorpage. When an
acceptor page becomes full, a new acceptor page is created. Acceptor pages are added at the end
of a linked list (listL) as they are created. Up to now, the Snapshot Index resembles a linked “log”

of pages that keeps the object records.

There are three main differences from a regular log: the use of the hashing function, the in-place
deletion updates and the notionpzige usefulnessShe hashing function is used for updating
records about their “deletion”. When a new record is created, the hashing function will store the id
of this record together with the address of the acceptor page that stores it. Object deletions are not
added at the and of the log. Rather they are represented by changing the end_time of the corre-
sponding deleted record. This access is facilitated by the hashing function. All records with
end_time equal taoware termed “alive” else they are called “deleted”.

As pointed out in section 4.1 time-only methods need to order their data by time only and not
by time and key. Since data arrives ordered by time, a dynamic hashing function is enough for ac-
cessing a record by key (membership test) when updating it. Of course hashing cannot guarantee
against pathological worst cases (i.e., when a bad hashing function is chosen). In those*cases a B
tree on the keys can be used instead of hashing, leading to logarithmic worst case update.
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A data page is defined to bsefulfor: (i) all time instants, for which it was the acceptor page,
or, (ii) after it ceased being the acceptor page, for all time instants, for which the page contains at
leastu [B “alive” records. For all other instants, the page is catbeduseful The useful period
[u.start_timeu.end_timgof a page forms a “usefulness” interval for this page.ulsrt_times
the time instant the page became an acceptor pageis€hdnesparameteu (O<u<1l) isa
constant that tunes the behavior of the Snapshot Index. To answer a pure-timeslice abthe time
Snapshot Index will only access the pages usefybaequivalently, those pages that have at least
u [Brecords alive d) plus at most one additional page that was the acceptor padéiatsingle

page may contain less thamB  records from the answer.

When a useful data page becomes non-useful, its “alive” records are copied to the current ac-
ceptor page (this is like a time-split [E86, LS89]). In addition, based on its position in the linked
list L, a non-useful data page is removed filomnd is logically placed under the previous data
page in the list. This creates a multi-linked structure that resembles a forest of trees of data pages
and is called thaccess foredfFigure 10). The root of each tree in the access forest lies in list
The access forest has the following properties: (auTdtart_timefields of the data pages in a tree
are organized in preorderfashion. (b) The usefulness interval of a page, includes all the corre-
sponding intervals of the pages in its subtree. (c) The usefulness intdneysapd fd,,, e,,) of
two consecutive children under the same parent page may have one of two ordegrgs;<e,,

or di<di+1<e|<e|+l'

Finding the timeslice as of a given times reduced to finding the data pages that were useful
at timet. This is equivalent to the set-history problem of [TG90, TGH95]. The acceptor page as of
t is found through the multilevel index which indexesutstart_timefields of all the data pages.
That is, all data pages are at the leaves of the multilevel index (the link list and the access forest are
implemented among these leaf pages). Since time is increasing, the multilevel index is “packed”
and increases only through its right side. After the acceptor data gagdoatited, the remaining
useful data pages ttire found by traversing the access forest. This traversing can be done very

efficiently using the access forest properties [TK95].

As a result, the Snapshot Index solves the “*/-/point” query optim@llfoggn + a/ B) I/Os

for query time O (n/ B) space ar@1) update processing per change (in the expected amortized
sense, assuming the use of a dynamic hashing function [DKM+88] instead of a B-tree). The num-
ber of useful pages depends on the choice of paramdtargeru means faster query time (less
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Figure 10: A schematic view of the access forest for a given collection of usefulness intervals. (a)The usefulness
interval of each data page as of time 80 is depicted. An open interval &ttBlerepresents a data page
that is still useful at that time. (b)The access forest as it is at tii® qiowin this figure corresponds to
time 79). Each page is represented by a tuple <page-id, page-usefuleness.periddide Ratgs the top
of list L, while the current acceptor page is always at the ehd(ojThe access forest at time 80. At
that time pageE became non-useful (because some record deletion reduced the number of “alive”
records inE below theuB threshold). As a result it is removed franand placed (together with its sub-
tree) under the previous page in the list, pag&he multilevel index is not shown.
number of accessed pages) in the expense of additional space (which remainsriiBasiace

more space is available, the answer would be contained in a smaller number of useful pages.

Migration to a WORM disk is possible for each data page that becomes non-useful. Since the
parent of a non-useful page in the access forest may still be a useful page, an optical disk page must
be reserved for the parent. Observe however, that the Snapshot Index uses a “batched” migration

policy which guarantees that the “reserved” space in the optical disk is limited to a controlled small
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fraction of the number of pages already transferred to the WORM.

Different versions of a given key can be linked together so that pure-key queries of the form:
“find all versions of a given key” are addressed®ifia) 1/0 's, wiaeepresents now the num-
ber of such versions. Since the key space is separate from the transaction time space, the hashing
function used to access records by key can keep the latest version of a key, if any. Each key version
when updated can be linked to its previous version; thus each record representing a key contains
an extra pointer to the record’s previous version. If instead of a hashing function a B-tree is used
to access the key space, the bound bec@(egsS+ a) whereSis the number of different keys

ever created.

For answering “range/-/point” queries the Snapshot Index has the same problem as the other
time-only methods: the whole timeslice must first be computed. This is in general the trade-off for

the fast update processing provided.

5.1.2.7 The Windows Method

Very recently, [R97] provided yet another solution to the “*/-/point” queryWivedows Method

This approach has the same performance as the Snapshot Index. It is a paginated version of a data-
structure presented in [C86] and which optimally solved the pure timeslice query in main-memory.
[R97] partitions the time space in contiguous “windows” and associates with each window a list of

all intervals that intersect the window’s interval. Windows are indexed by a B-tree structure
(similar to the multilevel index of the Snapshot Index).

To answer a pure timeslice query, the appropriate window that contains this timeslice is first
found and then the window’s list of intervals is accessed. Note that the “windows” of [R97] would
correspond to one or more consecutive pages in the access-forest of [TK95].

As with the Snapshot Index some objects will appear in many windows (when a new window
is created, it gets copies of the “alive” objects from the previous) but the space @méB)sThe
Windows Method uses the B-tree to also access the objects by key, hence updating is amortized

O (loggn) . If all copies of a given object are linked as proposed in the previous section, all ver-

sions of a given key can be found@(loggn + a) I/Os.

5.1.3 Time-Key Methods

To answer a transaction range-timeslice query efficiently, it is best to cluster data by both
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transaction time and key within pages; then “logically” related data for this query are co-located
thus minimizing the number of pages accessed. Methods in this category are based on some form
of a balanced tree whose leaf pages dynamically correspond to regions of the two dimensional
transaction time-key space. While changes still occur in increasing time order, the corresponding
keys on which the changes are applied are not in order. Thus there is a logarithmic update
processing per change so that data is placed according to key values in the above time-key space.

An example of a page containing a time-key range is shown in Figure 11. Here, at transaction
time instant 5, a new version of the record with key created. At time 6, a record with kgys
inserted. At time 7, a new version of the record with&esycreated. At time 8, bothandf have
new versions and recohds deleted. Each line segment, whose start and end time are represented

by ticks, represents one record version. Each record version takes up space in the disk page.

There have been two major approaches: methods based on variants of R-Trees [S87, KS89,
KS91] and methods based on variants 6fBes [E86, LS89, LM91, MK90, BGO+93, VV95]. A
strong advantage of using R-Tree based methods is that R-trees [G84, SRF87, BKKS90, KF94]
can represent additional dimensions on the same index (in principal such a method could support
both time dimensions on the same index). A disadvantage of the R-tree based methods is that they
cannot guarantee good worst case update and query time performance. However, such worst cases
are usuallypathological (do not happen often). In practice R-trees have shown good average case
performance. Another characteristic of R-tree based methods, is that the end_time of a record’s
interval is assumed known when the record is inserted in the method, which is not a property of
transaction time.

key

DT OaQ0 ™ Q T

56 7 8 9 10

time ———

Figure 1. Each page is storing data from a time-key range.
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5.1.3.1 R-Tree based methods

The POSTGRES database management system [S87] proposed a novel storage system in which no
data is ever overwritten. Rather updates are turned into insertions. POSTGRES timestamps are
timestamps of committed transactions. Thus the POSTGRES storage system is a transaction-time

access method.

The storage manager accommodates past states of the database on a WORM optical disk
(archival system) in addition to the current state that is kept on an ordinary magnetic disk. The
assumption is that users will access current data more often than past data, thus the faster magnetic
disk is more appropriate for recent data. As past data keeps increasing the magnetic disk will

eventually be filled.

As data becomes “old” it migrates to the archival system by means of an asynchronous process,
called thevacuum cleanerEach data record has a corresponding intefvair{ Tmay, where
TminandTmaxare the commit times of the transactions that inserted and (logically) deleted this
record from the database, respectively. When the vacuum cleaner operates, it transfers data whose
end time is before some fixed time to the optical disk. The versions of data which reside on an
optical disk page have similar end tim&sn@y, but may have widely varying start tim&sr(in).

Thus pages on the optical disk are as in Figure 12. If such a page is accessed for a query about some
“early” timet, it may contribute only a single version to the answer, i.e., the answer would not be

well clustered among pages.

key

t time — = now

Figure 12: A page storing data with similar end times.

Since data records can be accessed by queries that may involve both time and key predicates,
a 2-dimensional R-Tree [G84] access method has been proposed for archival data. POSTGRES
assumes that this R-tree is a secondary access method. Pointers to data records are organized
according to their key value in one dimension and to their intervals (life-spans) in the other

44



dimension.

The data are written sequentially to the WORM device by the vacuuming process. It is not
possible to insert new records in a data page on a WORM device which already contains data. Thus
it is not possible to have a primary R-tree with leaves on the optical disk, without changing the R-
tree insertion algorithm. However, we will make estimates based on a primary R-tree in keeping
with our policy of section 4.1.

For current data, POSTGRES does not specify the indexing used. Whatever this is, queries as
of any past time before the most recent vacuum time must access both the current and the historical
components of the storage structure. Current records are stored only in the current database and
their start times can be arbitrarily far back in the past.

For archival data, (secondary) indexes spanning the magnetic and optical disk are proposed
(combined mediarcomposite indexgsThere are two advantages in allowing indexes to span both
media: (a) improved search and insert performance as compared to indexes that are completely on
the optical medium (such as té&ite-Once Balanced Trd&86] and théAllocation Treg[\V85]),
and, (b) reduced cost per bit of disk storage as compared to indexes entirely contained on magnetic
disk. Two combined media R-Tree indexes were proposed in [KS89]; they differ on the way index
blocks are vacuumed from the magnetic to the archival medium.

In the first approach, the R-Tree is rooted on the magnetic disk and whenever its size on the
magnetic disk exceeds some pre-allocated threshold, the vacuuming process starts moving some
of the leaf pages to the archival medium. These pages refer to records which have already been
moved to the optical disk. Each such record Tasxless than some time value. For each leaf
page, the maximummaxis recorded. The pages with smallest maxinfumaxrefer to data which
was transferred longest ago. These are the pages which are transferred. Following the vacuuming
of the leaf nodes the process recursively vacuums all parent nodes that point entirely to children
nodes which have already been stored on the archive. The root node however is never a candidate
for vacuuming.

The second approacbyal R-Tre¢ maintains two R-Trees, both rooted on the magnetic disk.
The first is entirely stored on the magnetic disk while the second is stored on the archival disk
except for its root (in general except from the upper levels). When the first tree gains the height of
the second tree, the vacuuming process will vacuum all the nodes of the first tree, except its root,

to the optical disk. References to the blocks below the root of the first tree are inserted in the root
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of the second tree. Over time, there would continue to be two R-Trees, the first completely on the
magnetic disk and periodically archived. Searches are performed by descending both R-Trees.

In analyzing the use of the R-tree as a temporal index, we will speak of records rather than
pointers to records. In both approaches a given record is kept only once, therefore the space is
clearly linear to the number of changes (the number of data records in the tree is proportjonal to
Since the height of the treesOgoggn) each record insertion needs logarithmic time. While on the
average searching an R-tree is also logarithmic, in (pathological) worst case this searching can be
O(n/B) since the whole tree may have to be traversed due to the overlapping regions. Figure 13

shows the general R-tree method, using overlapping rectangles of time-key space.

R-Trees are best suited for indexing data that exhibits a high degree of natural clustering in
multiple dimensions; then the index can partition data into rectangles so as to minimize both the
coverage and the overlap of the entire set of rectangles (i.e., rectangles corresponding to leaf pages
and internal nodes). Transaction time databases however, may consist of data whose attribute
values vary independently of their transaction time intervals, thus exhibiting only one-dimensional
clustering. In addition, in an R-Tree that stores temporal data, page splits cause a good deal of
overlap in the search regions of the non-leaf nodes. It was observed that for data records with non-
uniform interval lengths (i.e., a large proportion of “short” intervals and a small proportion of
“long” intervals), the overlapping is clearly increased, affecting the query and update performance

of the index.

Figure 14 shows how long-lived records inhibit the performance of structures which keep only
one copy of each record and which keep time-key rectangles. The problem is that a long-lived
record determines the length of the time range associated with the page in which it resides. Then
even if only one other key value is present, and there are many changes to the record with the other
key value in that time range, overlap is required. For example, in Figure 14, the eleventh record
version (shown with a dotted line) belongs to the time-key range of this page but it cannot fit since
the page has already ten record versions. It will instead be placed in a different page whose
rectangle has to overlap this one. The same example also illustrates that the number of leaf pages
to be retrieved for a timeslice can be lar@¢a)) since only a few records may be “alive” (contain

the given time value in their interval) for any one page.

In an attempt to overcome the above problemsStgment R-TregSR-Treg was proposed
[KS91, K93]. The SR-Tree combines properties of the R-Tree aretiment Trea binary tree
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Suppose a maximum capacity of 5 record versions in each page
Record versions are entered as they die. At time instant 9, the
records must be split into two pages as illustrated here because
at instant 9 there are six dead record versions.
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These are possible data page boundaries at the time record version d dies.
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This is a possible allocation to R—-tree data pages of all versions shown,
given that at most 5 and and least 3 record versions must be in each
page. The parent node will contain the border coordinates for each

of the five children. For example, data node C has borders with time
running between 0 and 14 and keys b and c only. The version of record
¢ between 8 and 12 belongs to E. A time slice query at time instant

8 visits A, B, C, and E and obtains one record version from each page.

Figure 13: An example of data bounding as used in R-tree based methods.
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a) The first record version is very long-lived. Its time span is the
minimum time span this time—key rectangle can have. Here we add
one other record, with another key. Now we have minimum boundaries
in both time and key.

key

time —

b) The second record gets many new versions over the time span

of the first (long-lived) record. If the page capacity is ten record
versions, the eleventh version in this time-key rectangle does not fit.
This implies that there will be overlapping with another time-key
rectangle, which holds the next version of the second record. This
shows where one long-lived record and one record with a different key
and many short versions forces time—key rectangles to overlap.

Figure 14: The effect of long-lived records on overlapping.

data structure proposed in [B77] for storing line segments. A Segment Tree stores the interval
endpoints on the leaf nodes; each internal node is associated with a “range” that contains all the
endpoints in its subtree. An interddb stored in the highest internal nodsuch that coversv's

range and does not cover the rangeéoparent. Observe that an interval may be stored in at most

logarithmic many internal nodes; thus the space is no longer linear [M84].

The SR-Tree (Figure 15) is an R-Tree where intervals can be stored in both leaf and non-leaf
nodes. An intervall is placed to the highest level nodef the tree such thatspans at least one
of the intervals represented Xig child nodes. It does not spaX, spans at least one of its children
but is not fully contained iiX, thenl is fragmented.

Using this idea, long intervals will be placed in higher levels of the R-Tree, thus the SR-Tree
tends to decrease the overlapping in leaf nodes (in the regular R-Tree, a long interval stored in a
leaf node will “elongate” the area of this node thus exacerbating the overlap problem). One risks
having large numbers of spanning records or fragments of spanning records stored high up in the
tree. This decreases the fan-out of the index as there is less room for pointers to children. It is
suggested to vary the size of the nodes in the tree, making higher-up nodes larger. “Varying the
size” of a node means that several pages are used for one node. This adds some page accesses to
the search cost.

As with the R-tree, if the record is inserted at a leaf (because it did not span anything) the
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Figure 15: The SR-Tree.
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boundaries of the space covered by the leaf node in which it is placed may be expanded.
Expansions may be needed on all nodes on the path to the leaf which contains the new record. This
may change the spanning relationships since records may no longer span children which have been
expanded. In this case, such records are reinserted in the tree, possibly being demoted to occupants
of nodes they previously spanned. Splitting nodes may also cause changes in spanning
relationships as they make children smaller -former occupants of a node may be promoted to

Similarly with the Segment Tree, the space used by the SR-Tree is no longer linear. An interval
may be stored in more than one non-leaf nodes (irspaa@ningand remnantportions of this
interval). Due to the use of the segment-tree property, the space can be as @(ibgas).




Inserting an interval still takes logarithmic time. However, due to possible promotions, demotions
and fragmentation, insertion is slower than in the R-tree. Even though the segment property tends
to reduce the overlapping problem, the (pathological) worst case performance for the deletion and
guery time remains the same as for the R-Tree organization. The average case behavior is again

logarithmic.

To improve the performance of their structure, the authors have also proposed the use of a
Skeleton SR-Tre&vhich is an SR-Tree which pre-partitions the entire domain into some number
of regions. This pre-partition is based on some initial assumption on the distribution of data and the
number of intervals to be inserted. Then the Skeleton SR-Tree is populated with data; if the data
distribution is changed the structure of the Skeleton SR-Tree can be changed, too.

An implicit assumption made by all R-Tree based methods is that when an interval is inserted
both itsTminandTmaxvalues are known. In practice however this is not true for “current” data.
One solution would be to enter all such intervals Bwiif, now), wherenow is a variable
representing the current time. A problem with this approach is that a “deletion” update that changes
thenowvalue of an interval tdmax is implemented by a search for the interval, a deletion of the
(Tmin, now) interval and a re-insertion abnfin, Tmay interval. Since searches are not guaranteed
for worst case performance this approach could be problematic. The delgflonimf now)is a
physical deletion which implies the physical deletion of all remnant portions of this interval. A
better solution would be to keep the current records in a separate index (probably a basic R-tree).
This will avoid the above deletion problem but the worst case performance remains as before.

The pure-key query is addressed as a special case of a range time-interval query, where the
range is limited to a key and the time-interval is the whole time axis. Hence all pages that contain
the key in their range will be accessed. However, if this key never existed, the search may go
throughO(n/B) pages in (pathological) worst case. If this key has existed, the search will definitely

find its appearances but it may also access pages that do not contain any appearances of this key.

If the SR-Tree is used as a valid-time method, then physical deletions of any stored interval
should be supported efficiently. As above, the problem with physical deletions emanates from
keeping an interval in many remnant segments that all have to be found and physically deleted.
Actually, the original SR-Tree paper [KS91] assumes that physical deletions do not happen often.

5.1.3.2 The Write-Once B-Tree
The Write-Once B-tree or WOBT, proposed in [E86], was originally intended for a database which

50



resided entirely on WORMSs. However, many variations of this method, the Time-Split B-tree
[LS89], the Persistent B-tree [LM91], the Multiversion B-tree [BGO+93] and the Multiversion
Access Structure [VV95] have been proposed which may use both a WORM and a magnetic disk,
or only a magnetic disk. The WOBT itself can be used either on a WORM or on a magnetic disk.
The WOBT is a modification of the*Bree given the constraints of a WORM.

The WORM characteristics imply that once a page is written no new data can be entered or
updated in the page (since a checksum is burned into the disk). As a result, each new index entry
occupies an entire page; for example, if a new index entry takes 12 bytes and a page is 1024 bytes,
99% of the page is empty. Similarly, each new record version is an entire page. Tree nodes are
collections of pages, for example a track on a disk. Record versions contain their transaction start
time only. A new version with the same key is placed in the same node. Its start time is the end time
of the previous version. Nodes represent a rectangle in the transaction time-key space. The nodes
partition that space-- each time-key point is in exactly one node.

When a node fills up, it can be split by (current) transaction time or split first by current
transaction time and then by key. The choice depends on how many records in the node are current
versions at the time of the split. The old node is left in place. (There is no other choice.) The record
versions “alive” at the current transaction time are copied to a new node or two new nodes if it is
also split by key. There is space for new versions in the new nodes. Deletions of records are
handled in the only possible way: a node deletion record is written in a current node and it contains
the end time. When the current node is split, the deleted record is not copied. This design enables
some clustering of the records in nodes by time and key (after a node split, “alive” records are
stored together in a page) but most of the space of most of the optical disk pages is empty (because
most new entries occupy whole pages).

When a root node splits, a new root is created. Addresses of consecutive roots and their creation
times are held in a “root log” that has the form of a variable-length append-only array. This array
will provide access to the appropriate root of the WOBT by time.

If the WOBT is implemented on a magnetic disk, space utilization is immediately improved as
it is not necessary to use an entire page for one entry. Pages can be updated, so they can be used
for nodes. Space utilization@®(n/B)and range queries atéloggn+a/B), if one disregards record
deletion. These bounds are for using the method exactly as described in the paper, except that each
node of the tree will be a page on a magnetic disk. In particular, the old node in a split is not moved.
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Current records are copied to a new node or to two new nodes. Since deletions are simply handled
with a deletion record (which is “seen” by the method as another updated value) the search
algorithm is not able to avoid searching pages that may be full of “deleted” records. Therefore, if
deletions are frequent, pages that do not contribute in the answer may be accessed.

Since all the B-tree based transaction-time methods search data records by both transaction
time and key, or, by transaction time only, answering a pure-key query with the WOBT (and the
Time-Split B-tree, Persistent B-tree and Multiversion B-tree) requires that a given version
(instance) of the key whose previous versions are requested should be also provided by the query.
That is, a transaction time predicate should be provided in the pure-key query as for example in:

“find the previous salary history of employAevho was alive at”

Different versions of a given key can be linked together so that the pure-key query (with time
predicate) is addressed by the WOBTOrfloggn+a) I/O 's. The logarithmic part is spent for
finding the instance of employéein versiont and then its previousversions are accessed using
a linked structure. Basically, the WOBT (and the Time-Split B-tree, Persistent B-tree and the
Multiversion B-tree) can have backwards links in each node to the previous historical version. This
does not use much space, but for records which do not change over many copies, one needs to go
back many pages before getting more information. To achieve the above bound, each record needs

to keep the address of the last different version of that record.

If such addresses are kept in records, the address of the last different version for each record is
available at the time the data node does a time split. Then these addresses can be copied to the new
node with their respective records. A record whose most recent previous version is in the node
which is split must add that address. A record which is the first version with that key must have a
special symbol to indicate this fact. This simple algorithm can be applied to any method which does

time splits.

To answer the general pure-key query “find the previous salary history of emplagegiires
finding if A was ever an employee. The WOBT would need to copy “deleted” records when a time
split occurs, which implies that the WOBT state carries the latest record for all keys ever created.
However this will increase the space consumption. Otherwise, if “deleted” records are not copied,

all pages including this key in their key space may have to be searched.

The WOBT used on a magnetic disk still makes copies of records where it does not seem

necessary. The WOBT always makes a time split before making a key split. This creates one
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historical page and two current pages where previously there was only one current page. A B-tree
split creates two current pages where there was only one. No historical pages are created. It seems
like a good idea to be able to make pure key splits as well as time splits or time-and-key splits. This
would make the space utilization better.

5.1.3.3 The Time Split B-Tree

The Time-Split B-tree (or “TSB-tree”) [LS89, LS90a, LS93a] is a modification of the WOBT
which allows pure key splits and which keeps the current data in an erasable medium such as a
magnetic disk and migrates the data to another disk (which could be magnetic or optical) when a
time split is made. This partitions the data in nodes by transaction time and key like the WOBT,
but is more space efficient. It also separates the current records from most of the historical records.
In addition, the TSB-tree does not keep a “root log”. Instead it creates new rodisessRlo, by
increasing the height of the tree when the root splits.

When a data page is full and there are less than some threshold value of alive distinct keys, the
TSB-tree will split the page by transaction time only. This is the same as what the WOBT did,
except now times other than the current time can be chosen. For example, the split time for a data
page could be the “time of last update”, after which there were only insertions of records with new
keys and no updates creating new versions of already existing records. The new insertions, after
the time chosen for the split, need not have copies in the historical node. Time splits in the WOBT

and in the TSB-tree are illustrated in Figure 16.

Time splitting, whether by current time or by time of last update, enables an automatic
migration of older versions of records to a separate historical database. This is to be contrasted with
POSTGRES’ vacuuming which is “manual” and is invoked as a separate background process

which searches through the database for dead records.

Itis also to be contrasted with methods which reserve optical pages for pages which cannot yet
be moved and maintain two addresses (a magnetic page address and an optical page address) for
search for the contents. TSB-tree migration takes place when a time split is made. The current page
retains the current contents and the historical records are written sequentially to the optical disk.
The new optical disk address and the time of the split are posted to the parent in the TSB-tree. As
with B*-tree node splitting, only the node to be split, the newly allocated node and the parent are
affected (also, rarely, a full parent requires further splitting). Since the node is full and is obtaining
new data, a split must be made anyway, whether or not the new node is on an optical disk. (This
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(b) The TSB tree can choose other times to split.

Figure 16: Time splitting in the WOBT and TSB-tree.

migration to an archive can also be used for media recovery as illustrated in [LS93b].)

Time splitting by other than the current transaction time has another advantage. It can be used
in distributed databases where the commit time of a transaction is not known until the commit
message is sent from the coordinator. In such a database, an updated record of a PREPARED cohort
may or may not have a commit time before the time when an overflowing page containing it must
be split. Such a page can only be split by a time before the time voted by the cohort as the earliest
time it might commit (see [S94,L93] for details).

Full data pages with a large number of distinct keys currently “alive” are split by key only in
the TSB-tree. The WOBT splits first by time and then by key. Similarly with the WOBT, the space
usage for the TSB-tree @(n/B). The constant factor in the asymptotic bound will be smaller for
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the TSB-tree since it makes less copies of records. Key splitting for the WOBT and the TSB-tree

is illustrated in Figure 17.
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(b) The TSB-tree can split by key alone.

Figure 17: Key splitting in the WOBT and TSB-tree.

An extensive average case analysis using Markov chains and considering various rates of
update versus insertions of records with new keys can be found in [LS90a]. This shows at worst
two copies of each record even under large update rates. The split threshold wasB@p{lat 2
more than B/3 distinct keys were in the page, a pure key split was made.)

There is however a problem with pure key splits. The decision on the key splits is made based
on the alive keys at the time the key split is made. For example in Figure 17 (b), the key split is
taken at timeé=18, when there are six keys alive, that are separated three per new page. However,
this key range division does not guarantee that the two pages will have enough alive keys for all
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previous times; at time=15 the bottom page has only one key alive.

Suppose you have a database where most of the changes are insertions of records with a new
key. As time goes by, in the TSB-tree, only key splits are made. After a while, queries as of a past
time will become inefficient. Every timeslice query will have to visit every node of the TSB-tree
since they are all current nodes. Queries as of now, or recent time, will be efficient since every node
will have many alive records. But queries as of the distant past will be inefficient since many of the
current nodes will not contain records which were “alive” at that distant past time.

In addition, as in the WOBT, the TSB-tree merely posts deletion markers and does not merge
sparse nodes. If no merging of current nodes is done, and there are many record deletions, a current
node may contain few current records. This could make current search slower than it should be.

Thus the worst case search time for the TSB-tree c&{'®)for a transaction (pure or range)
timeslice. Pages may be accessed which have no answers to the query. Other modifications of
[E86] discussed in the next section combined with the TSB-tree modifications of [E86] should
solve this problem. Basically, when there are too few distinct keys at any time covered by the time-
key rectangle of a node to be split, it must be split by time and then possibly by key. Node
consolidation should also be supported (to deal with pages that become sparse of alive keys due to
deletions).

Index nodes in the TSB-tree are treated differently from data nodes. The children of index
nodes are rectangles in time-key space. So making a time split or key split of an index node may
cause a lower level node to be referred to by two parents.

Index node splits in the TSB-tree are restricted in ways which guarantee that current nodes (the
only ones where insertions and updates occur) have only one parent. This parent is a current index
node. Updates need never be made in historical index nodes, which like historical data nodes can
be placed on WORM devices.

A time split can be done on any time before the start time of the oldest current child. If time
splits were allowed at current transaction time for index nodes, lower level current nodes would
have more than one parent.

A key split can be done at any current key boundary. This also assures that lower level current

nodes have only one parent. Index node splitting is illustrated in Figure 18.

Unlike the WOBT (or [LM91] or [BGO+93]), the TSB-tree can move the contents of the
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Figure 18: Index node splitting in the TSB-tree.

historical node to another location in a separate historical database without updating more than one
parent. No node which might be split in the future has more than one parent. If a node does a time
split, the new address of the historical data from the old node can be placed in its unique parent and
the old address can be used for the new current data. If it does a key split, the new key range for
the old page can be posted along with the new key range and address.

As with the WOBT, pure-key queries with time predicate are addressedloggn+ a)
I/O’s, wherea represents the size of the answer.

5.1.3.4 The Persistent B-tree

Several methods [LM91, BGO+93, VV95] were derived from a method [DSST89] for general
main-memory resident linked data structures. [DSST89] shows how to take an “ephemeral data
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structure” (meaning that past states are erased when updates are made) and convert it to a
“persistent data structure” (where past states are maintained). A “fully persistent” data structure
allows updates to all past states. A “partially persistent” data structure allows updates only to the
most recent state.

Consider the abstraction of a transaction time database as the “history of an evolving set of
plain objects” (Fig. 1). Assume that &Bee is used to index the initial state of this evolving set.
If this B*-tree is made partially persistent we have constructed an access method that supports
transaction range-timeslice queries (“range/-/point”). Conceptually, a range-timeslice query for
transaction timeis answered by traversing thé-Bee as it was dt Partial persistence suits nicely
to transaction time since only the most recent state is updated. Note that the method used to index
the evolving set state affects what queries are addressed. For example, to construct a pure-timeslice
method, the evolving set state is represented by a hashing function that is made partially persistent.
This is another way to “visualize” the approach taken by the Snapshot Index.

Note that a fully persistent access structure can be restricted to the partially persistent case. That
is the reason for discussing [DSST89] and [LM91] in this survey.

[LM91] provides a fully persistent Biree. For our purposes we are only interested in the
methods presented in [LM91] when reduced to partial persistence. We thus teguartidiéy
persistent method of [LM91] as the Persistent B-Tree. The Multiversion B-Tree (or “MVBT") of
[BGO+93] and the MVAS of [VV95] are also patrtially persisteiitiges. The Persistent B-Tree
and the MVBT, MVAS support node consolidation (that is, a page is consolidated with another
page if it becomes sparse of alive keys due to frequent deletions). In comparison, the WOBT and
the TSB-tree are partially persistertttees which do not do node consolidation (since they aim
for applications were data is mainly updated and infrequently deleted). Node consolidation may
result in thrashing (consolidating and splitting the same page continually) which results in more
space. The MVBT, MVAS disallow thrashing while the Persistent B-Tree does not.

[DSST89], [LM91], [BGO+93] and [VV95] speak of version numbers rather than of
timestamps. One important difference between version numbers for partially persistent data and
timestamps is that timestamps as we have defined them are transaction time instants when events
(changes) are stored. So timestamps are not consecutive integers. But version numbers can be
consecutive integers. This has an effect on search operations since [DSST89], [LM91], [BGO+93]

and [VV95] maintain an auxiliary structure callet* which serves the same purpose as the “root
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log” of the WOBT.

In [DSST89], root* is an array indexed on version numbers. Each array entry has a pointer to
the root of the version in question. If the version numbers are consecutive integers, search for the
root isO(1). If timestamps are used, searc®(koggn). In [LM91], [BGO+93] and [VV95], root*
only obtains entries when a root splits. Although root* is thus smaller than it would be if it had an

entry for each timestamp, search within root* for the correct rdofaggn).

The use of the root* structure (array) in [LM91, BGO+93, VV95] facilitates faster update
processing as the most current version of thér@&e is thus separated from most of the previous
versions. The most current root can have a separate pointer yi@(dingccess to that root. (Each
root corresponds to a consecutive set of versions). If the current version hasugidating is
O(logsm). Methods that do not use the root* structure Hagleggn) update processing.

[DSST89] explains how to make any ephemeral main-memory linked structure persistent. Two
main methods are proposed: tia¢ nodemethod and th@ode copyingnethod. The fat node
method keeps all the variations of a node in a variable-sized “fat node.” When an ephemeral
structure would update the contents of a node, the fat node method would simply append the new
values to the old node, with a notation of the version number (timestamp) which does the update.

When an ephemeral structure would create a new node, a new fat node is created.

[LM91] applies the fat node method of [DSST89] to tHet®e. The fat nodes are collections
of B*-tree pages, each corresponding to a set of versions. Versions can’*strapefges if the
records in them are identical for each member of the sharing set. But versions with only one
different data record have distinct-Bee pages.

Pointers to lower levels of the structure are pointers to fat nodes, not to individual pages within
fat nodes. When a record is updated or inserted or deleted, a new leaf page is created. The new leaf
is added to the old fat node. If the new leaf contents overflows, the new leaf is split, with the lower-
value keys in the old fat node and the higher value keys in a new fat node. When a leaf splits, the
parent node must be updated to direct search correctly for part of the new version that is in the new
fat node. When a new page is added to a fat node, the parent need not be updated.

Similarly, when index nodes obtain new values because a fat node child has a split, new pages
are allocated to the fat index node. When an index node would split, the parent of the index node
obtains a new value. When roots split, a new pointer is put in the array root*, which allows access
to the correct (fat) root nodes.
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Since search within a fat node would mean fetching all the pages in the fat node until the correct
one was found (with the correct version number), [LM91] suggests an auxiliary structure in each
fat node of the Persistent B-treezaasion block The version block indicates which page or block
in the fat node corresponds to which version number. Figure 19 shows the incremental creation of
a version block with its fat node pages. In Figure 20, an update causes this version block to split.
The version block is envisioned as one disk page, but there is no reason that it might not become
much larger. It may itself have to take the form of a multiway access tree (since new entries are
always added at the end of a version block). Search in one version block for one data page could
itself beO(loggn). For example, if all changes to the database were updates of-tree Bage,
the fat node would hawveB*-tree pages in it.

Although search is no longer linear within the fat node, the path from the root to a leaf is at least
twice as many blocks as it would be for an ephemeral structure. The height of the tree in blocks is
at least twice what it would be for an ephemeratrBe containing the same data as in one of the
versions. Update processing is amorti@€lbgsm) wherem s the size of the currentBree being
updated. Range timeslice searcldifloggn (loggm + a/ B) ) . After the correct root is found, the
tree that was current at the time of interest is searched. This tree ha®ieigim) and searching
each version block in the path@loggn). A similar bound holds for the pure-timeslice query.
Space i9(n) (notO(n/B)) since new leaf blocks are created for each update.

To avoid creating new leaf blocks for each update, the “fat field method” is also proposed in
[LM91]. Here updates can fit in space of non-full pages. In the general full persistence case, each
update must be marked with the version number which created it and with the version numbers of
all later versions which delete it. Since we are interested only on partial persistence, this
corresponds to the start time and the end time of the update. Fat fields for the Persistent B-tree are

illustrated in Figure 21.

When a page becomes full, the version creating the overflow copies all information which is
relevant to that version to a new node. The Persistent B-tree then creates a fat node and a version
block. If the new copied node is still overflowing, a key split can be made and then information
must be posted to the parent node regarding the key split and the new version. Thus the Persistent
B-tree of [LM91] does time splits and time-and-key splits just as in the WOBT. In this variation,
space usage © (n/ B) , update processing is amor@ledz;m) and query time (for both the
range and pure-timeslice queries) @(loggn(loggm+a/B)). The update and query time
characteristics remain asymptotically the same as in the fat-node method since the fat-field method
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At time 0, the database contains records with keys h, f, c and b. At time 5,

a new version is created which has an update to record c. At time 6,

record g is inserted. Each time instant when a change occurs corresponds to
a new version of the database. We assume a capacity of 5 records per page.

version block
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a) Every time a new version of the database

is created by a transaction, a new data page

is allocated to hold only those records alive after
the change. A version block (another disk page)
directs search to the correct data page. Here,
for times before 5, search goes to the first

data page. At and after 5, it goes to the

second data page. The record "c2" is the
updated version of the record "c". A set of data
pages with their version block is called a

“fat node."

fat node

version block b) At time 6, a new record, with key

"g", is inserted. A new data page is
allocated. The version block is updated
to direct search at and after 6 to the
third data page.

o | [neaio
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node after an update is made
on record "b" at time 7.
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is made on records with
keys "c" and "f" at time 8.
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Figure 19: Incremental creation of a fat node in the Persistent B-Tree.
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Figure 20: An example of a split on a fat node in the Persistent B-Tree.
still uses version blocks.

If a page becomes sparse, from too many deletions, a node consolidation algorithm is presented.
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A copy is made when a page overflows. Page capacity is five records. If there are four or more records

in the new node, a key split is made after the copy. The root* structure points to the root for a given timestamp.
Fat fields contain a key, a begin time, an end time and data. We shall not show the data. The "now" end time
is represented with a # sign.

0 6 ... ... root*

a<6#> | f<6#> | i<9,#ﬂ\

i<9,#> j<9,#>

version block

6 9

s <

f<0,8> f<8,#> | g<6,#> h<0,8>

version block

0 6 11

i<g#> |0<0.13> | g<13.4> |

b<0,#> | ¢<0,5> c<5,#> | f<0,#> h<0,#>

N—
\

b<0,7> [ b<7#> | ¢<5,8> | c<8#> |e<10#>

c<1l,#> | e<10#>

The fat field method stores records from several versions as long as they fit in a page. At time 5, a new

version of record c is placed in the page. The old version gets 5 as its new end time. At time 6, overflow occurs.
There are four distinct keys in the new node, so a key split takes place. At time 9, when i and j are inserted

and g is updated, another copy and key split occur. This causes the new root to obtain a new index entry.

At time 11, a new version of record ¢ causes an overflow with only a copy, not a key split. Fat nodes are created
when the first copy operation is made. Search for a given time follows pointers which begin before or at the
search time and do not end before the search time. Search in a version block (or in root*) follows the largest time
before or equal the search time.

Figure 21: The fat-field method of the Persistent B-Tree.
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The version making the last deletion copies all information relative to that version to a new node.
Then a sibling node also has its information relative to that version copied to the new node. If it is
necessary, the new node is then key-split.

Technically speaking, the possibility of thrashing by continually consolidating and splitting the
same node could cause the space usage to b&rreotO(n/B) This could happen by inserting
a record in a node, causing it to time-and-key split, then deleting a record from one of the new
current nodes and causing a node consolidation, which creates a new full current node, and so forth.
A solution for thrashing appears in [MS81]. Basically, the threshold for node consolidation is made
lower than half the threshold for node splitting. Since this is a rather pathological scenario, we will
continue to assume that the space usage for the fat-fields variation of the Persistent B-tree is
Oo(n/B).

For moving historical data to another medium, observe that time splitting by current transaction
time as performed in the Persistent B-Tree means that nodes cannot be moved once they are created
unless all the parents (not just the current one) are updated with the new address of the historical
data. Only the TSB-tree solves this problem by splitting index nodes before the time of the earliest
start time of their current children. Thus in the TSB-tree when a current node is time-split, the
historical data can be moved to another disk. In the TSB-tree, current nodes have only one parent.

Fat nodes are not necessary for partial persistence. This is observed in [DSST89], where “node-
copying” for partially persistent structures is discussed.

The reason fat nodes are not needed is that although alive (current) nodes have many parents,
only one of them is current. So when a current node is copied or split, only its current parent has
to be updated. The other parents will correctly refer to its contents as of a previous version. The
fact that new items may have been added does not affect correctness of search. Since nodes are
always time split (most recent versions of items copied) by current transaction time, no information
is erased when a time split is made.

Both approaches of the Persistent B-Tree use a version block inside each fat-node. If the node
in question is never key-split (that is, all changes are applied to the same ephértremahBde),
new version block pages may be created for this node without updating the parent’s version block.
Thus when answering a query, all encountered version blocks have to be searchedtfdn time
comparison, the MVBT and MVAS we discuss next use “node-copying” and thus have better
asymptotic query timeJ(loggn+a/B)).
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5.1.3.5 The Multiversion B-Tree and the Multiversion Access Structure

The Multiversion B-Tree of [BGO+93] and the Multiversion Access Structure of [VV95] provide
another approach to partially persistentties. Both structures have the same asymptotic
behavior but the MVAS improves the constant of MVBT’s space complexity. We first discuss the
MVBT and then present its main differences with the MVAS.

The MVBT is similar to the WOBT, however it efficiently supports deletions (as in [DSST89]
and [LM91]). Supporting deletions efficiently implies use of node consolidation. In addition, the
MVBT uses a form of node-copying [DSST89] and disallows thrashing.

As with the WOBT and the Persistent B-tree, it uses a root* structure. When the root does a
time-split, the sibling becomes a new root. Then a new entry is placed in the variable length array
root*, pointing to the new root. If the root does a time-and-key split, the new tree has one more
level. If a child of the root becomes sparse and merges with its only sibling, the newly merged node
becomes a root of a new tree.

Figures 21 and 22 illustrate some of the similarities and differences between Persistent B-tree,
the MVBT and the WOBT. To better illustrate the similarities, we picture the WOBT in Figure 22
with end times and start times in each record version. In the original WOBT, end times of records
were calculated from the begin times of the next version of the record with the same key. If no such
version was in the node, the end time of the record was known to be after the end time of the node.

In all three methods, if we have no node consolidations, the data nodes are exactly the same. In
all three methods, when a node becomes full, a copy is made of all the records “alive” as of the
time of the version making the update which causes the overflow. If the number of distinct records
in the copy is above some threshold, the copy is split into two nodes by key.

The Persistent B-tree creates a fat node when a data node is copied. The WOBT and the MVBT
do not create fat nodes. Instead, as illustrated in Figure 22, information is posted to the parent of
the overflowing data node. A new index entry or two new index entries which describe the split are
created. If there is only one new data node, the key used as the lower limit for the overflowing child
is copied to the new index entry. The old child pointer gets the time of the copy as its end time and
the new child pointer gets the split time as its start time. If there are two new children, they both
have the same start time, but one has the key of the overflowing child and the other has the key
used for the key split.

A difference between the Persistent B-tree, the WOBT, the MVBT on one hand and the TSB
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A copy is made when a page overflows. Page capacity is five records. If there are four or more records

in the new node, a key split is made after the copy. The root* structure points to the root for a given timestamp.
Records contain a key, a begin time, an end time and data. We shall not show the data. The "now" end time

is represented with a # sign.

root*

0 b<0#> | c<0,5> | c<5#> | f<04> | h<op>

6

a<6,11> |a<l11#> f<6,9> f<9,#> i<9,#>

b<0,7> | b<7#> | c<5,8> | c<8#> |e<10#>

b<7,13> | c<11,#> | e<10,#>

f<0,8> f<8,#> | g<6,#> h<0,8>

f<8#> | 9<9,13> | g<13#>

i<9,#> j<9,#>

At time 5, a new version of record c is placed in the page. The old version gets 5 as its new end time. At time 6,

overflow occurs. There are four distinct keys in the new node, so a key split takes place. At time 9, when i and j

are inserted and g is updated, another copy and key split occur. This causes the new root to obtain two new index entries.
At time 11, a new version of record ¢ causes an overflow with only a copy, not a split. There is one new index entry.

Figure 22: The Multiversion B-Tree and the Write-Once B-Tree. (For simplicity of comparison, both the end and
start times appear in each record, which is not needed in the original WOBT).
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on the other is that the TSB does not have root*. When the only root in the TSB does a time split,
a new level is placed on the tree to contain the information about the split. When the root in the
MVBT does a time-split, root* obtains a new entry. When the root in the (fat-field) Persistent B-
tree does a time split, that root fat node obtains a new page and a new entry in the version block.
(Only when the root fat node requires a key split or a merge so that a new root fat node is
constructed, does root* obtain a new entry in the Persistent B-tree.)

Another difference with the WOBT is that the MVBT and the Persistent B-tree use a node
consolidation algorithm. When a node is sparse, it is consolidated with a sibling by time- splitting
(copying) both the sparse node and its sibling and then combining the two copies, possibly key
splitting if necessary.

In addition, the MVBT disallows thrashing (splitting and consolidating the same node
continually) by suggesting that the threshold for splitting be higher than twice the threshold for
consolidation. The Persistent B-tree does not disallow thrashing. This is not an issue with the
WOBT, since the WOBT does no node consolidation.

Search in root* for the correct root in MBVT @loggn). Although the example illustrated in
Figure 22 has a small root*, there is no reason why this should always be the case. One need only
imagine a database with one data node with records that are continually updated, causing the root
(which is also the data node) to continually time-split. So, if the root* becomes too large, a small
index has to be created above it.

In the MBVT, transaction range timeslice search (“range/-/pointQ(sggn+a/B) since
search for the root is itse®(loggn). The MVBT hasO(logsm) amortized update cost (where
denotes now the size of the currerittBe on which the update is performed), &{d/B) space
usage. Thus the MVBT provides the 1/O-optimal solution to the transaction range timeslice
problem. The update cost is amortized because of the updating needed to maintain efficient access
to the root* structure.

The WOBT is not optimal because deletions of records can cause pages to be sparsely
populated as of some recent times. Thus transaction range-timeslice searches may become
inefficient. Insertions in the WOBT and in the MVBT &dogzm) since a special pointer can be
kept to the root of the tree containing all current records (whic@mg).

The MVBT uses more space than the WOBT, which in turn uses more space than the TSB-tree.
In order to guard against sparse nodes and thrashing the MVBT policies create more replication
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(the constant in th®(n/B) space worst case bound of the method is about 10.)

Probably the best variation of the WOBT is to use some parameters to decide whether to time
split, time-and-key split, key split, time-split and merge or time-split, merge and key-split. These
parameters will depend on the minimum number of versions alive at any time in the interval
spanned by the page. All of the policies pit disk space usage against query time. A pure key split
creates one new page. A time-and-key split creates two new pages: one new historical page and
one new current page. The historical page will have copies of the current records, so more copies
are made than when pure key splits are allowed. Node consolidation creates at least two new
historical pages. However, once a minimum number of records is guaranteed to be alive for any
given version in all pages, range-timeslice queries wilDfleggn+a/B) and space usage will be
O(n/B). The different splitting policies will affect the total amount of space used and the average
number of copies of record versions made.

The Multiversion Access Structure (MVAS) [VV95] is similar to the MVBT, however it
achieves a smaller constant on the space bound by using better policies to handle the cases when
key-splits or merges are performed. There are two main differences in the MVAS policies. The first
deals with the case when a node becomes sparse after performing a record deletion. Instead of
always consuming a new page (as in the MVBT), the MVAS tries to find a sibling with free space
where the remaining alive entries of the time-split page can be stored. The conditions under which
this step is carried out are described in detail in [VV95]. The second difference deals with the case
when the number of entries in a just time-split node is below the pre-specified threshold. If a sibling
page has enough alive records, the MVBT would copy all the sibling’s alive records to the sparse
time-split page thus “deleting” the sibling page. Instead the MVAS will copy only as many alive
records from the sibling page, needed for the time-split page to avoid violating the threshold. The
above two modifications reduce the extent of duplication, hence reducing the overall space. As a
result the MVAS reduces the worst case storage bound of MVBT by a factor of 2.

Since the WOBT, TSB-tree, Persistent B-tree, MVBT and MVAS are similar in their approach
towards solving range-timeslice queries, we summarize their characteristics in Table A. The issues
of time-split, key-split, time- and key-split, sparse nodes, thrashing and history migration are
closely related.

The pure-key query was not addressed in the works of [DSST89], [LM91] and [BGO+93];

however, the technique that keeps with each record the address of any one copy of the most recent
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Table A: The basic characteristics of WOBT, TSB-tree, Persistent B-tree, MVBT and MVAS.

pure sparse
time key 2 time/key node prevent 3 history 5
split 1| split split merge | thrashing | root* 4 | migrate
WOBT yes no yes no N.A. yes no
TSB-Tree yes yes no no N.A. no yes
Persistent
B-tree yes no yes yes no yes no
MVBT/MVAS yes no yes yes yes yes no

Notes

1. All methods time-split (copy) data and index nodes. The TSB-tree can time-split by other than current time.

2. The TSB-Tree does pure key splits. The other methods do time-and-key splits. Pure key splits use less
total space, but risk poor performance on past-time queries.

3. Thrashing is repeated merging and splitting of the same node. Only the MBVT prevents thrashing by choice
of splitting and merging thresholds. Prevention of thrashing is not needed when there is no merging.

4. The use of root* enables the current tree search to be more efficient by keeping a separate pointer to
its root. Past time queries must search within root*, so are not more efficient than methods without root*.

5. Only the TSB-tree has only one reference to current nodes, allowing historical data to migrate.

distinct previous version of the record can avoid going through all copies of a record. The pure-key
query (with time predicate) is then addresse®ifloggn+a) 1/O 'S, just as proposed for the
WOBT (wherea represents the number of different versions of the given key).

As discussed in section 5.1.1, [VV95] solves the pure-key query (with time predicate) in
optimal O (loggn+a/ B) query time using C-lists. Despite their extra complexity in maintenance,
an advantage of the C-lists is that they can be combined with the main MVAS method.

5.1.3.6 Exodus and Overlapping BTrees

The Overlapping Btree[MK90, BHK85] and the Exodus large storage object [RCDS86] are
similar. Here we begin with a*‘Bree. When a new version makes an update in a leaf page, copies
are made of the full path from the leaf to the root, changing references as necessary. Each new

version has a separate root and subtrees may be shared (Figure 23).

Space usage 9(nloggn) since new pages are created for the whole path leading to each data
page updated by a new version. Update processibfiagsm) wherem is the size of the current
tree being updated. Timeslice or range-timeslice query time depends on the time needed to find the
correct root. If non consecutive transaction timestamps of events are usefagim+a/B).

Even though pure-key queries of the form “find the previous salary history of employe
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was alive at” (i.e., with time predicate) are not discussed, they can in principle be addressed in the

same way as with the othet-Bee based methods by linking together data records.

root of root of

AN

shared shared old shared new

Figure 23: The Overlapping tree/Exodus structure.

5.1.3.7 Multiattribute Indexes

Suppose that the transaction start time, transaction end time and database key are used as a triplet
key for a multiattribute point structure. If this structure clusters records in disk pages by closeness
in several attributes, one can obtain efficient transaction pure-timeslice and range-timeslice

gueries, using only one copy of each record.

Records with similar values of start time, end time and key will be clustered together in disk
pages. Having both a similar start time and a similar end time means that long-lived records will
be in the same page as other long-lived records. These records will be answers to many timeslice
gueries. Short lived records will only be on the same pages if their short lives are close in time.
These will contain many correct answers to timeslice queries with time values in the short interval
their entries span. Every timeslice query will access some of the long-lived record pages and a
small proportion of the short-lived record pages. Individual timeslice queries will not need to
access most of the short-lived record pages as they will not intersect the timeslice.

There are some subtle problems with this. Suppose a data page is split by start time. In one of
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the pages resulting from the split, all the record versions whose start time is before the split time
are stored. This page has an upper bound on start time, implying that no new record versions can
be inserted. All new record versions will have a start time atiesr which is certainly after the

split time. Further, if there are current records in this page, their end time will continue to rise, so
the lengths of the time spans of records in this page will be variable.

Some will be long and others short. Queries as of current transaction time may only retrieve a
few (or no) records from a page which has been limited by an upper bound on start time. This is
illustrated in Figure 24. Many such pages may have to be accessed in order to answer a query, each
one contributing very little to the answer (that is, the answer is not well clustered in pages).

key

time t now

Figure 24: Storing data with similar start_times.

Also, when a new version is created, its start time is often far from the start time of its
predecessor (the previous version with the same key). So consecutive versions of the same record
are unlikely to be on the same page if start-time splits are used.

Now suppose we decide that splitting by start time is a bad idea and we split only by key or by
end time. Splitting by end time enables migration of past data to a WORM disk. However, a query
as of a past transaction time may only retrieve a small number of records if the records are placed
only by the requirement of having an end time before some cut-off value just as in Figure 12.

Current pages (which have been split by key) can contain versions whose lifetimes are very
long and versions whose lifetimes are very short. This also makes past-time queries inefficient.

All of these subtle problems come from the fact that many records are still current and have
growing lifetimes and all new record versions have increasing start times. Perhaps if we use a
point-based multiattribute index for dead versions only, efficient clustering may be possible. Here
newly dead record versions can be inserted in a page with an upper limit on start time because the
start times may have been long ago. Items can be clustered in pages by key, nearby start times and
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nearby end times. No guarantees can be made that a query as of a given time will hit a minimum numbe
record versions in a page, however. For example, imagine a page with record versions with very short lifetin
all of which are close by, but none of which overlap.

Although no guarantees of worst case search time can be made, the advantages of having only one coj
each record and having no overlapping of time-key space, so that backtracking is not necessary, may make
approach worthwhile at least for “dead” versions. Space usage is thus linear (space wo(Bbé in
addition the multiattribute method can guarantee that index and data pages have good space utilization
method for migrating current data to the WORM and of organizing the current data for efficient temporal queri

would be needed if the multiattribute method was used only for past data.

5.1.4 Summary

The worst case performance of the transaction-time methods is summarized in Table B. The reader shoul
cautious when interpreting worst case performance. Sometimes the notation penalizes a method for

performance on a pathological scenario. The footnotes indicate such cases.

Table B: The performance characteristics of the examined transaction-time methods.

Access Method Update per i Pure-Timeslice | Range-Timeslice
(related section) Total Space change Pure-key Query Query Query
AP-Tree(5.1.2.1) O(n/B) O(oggn) 1 N/A O(n/B) O(n/B)
ST-Tree(s.1.2.1) O(n/B) 0(0ggS) 2 O(logsS+a) 2 O(Joggn) 2 O(Kloggn) 3
Time-Index O(r¢/B) O(n/B) N/A Ologgn+a/B) OQoan+s/B)4
(5.1.2.2)
Two-level Time O(r¥/B) O(n/B) N/A O(Roggn+a)® | O(Mloggn+a) ©
Index(5.1.2.2)
Checkpoint O(n/B) O(n/B) N/A O(n/B) O(n/B)
Index(s.1.2.4)"
Archivable Time O(n/B) O(oggn) N/A O(og,n+a/B) O(og,n+s/B) 4
Index(5.1.2.5)3
Snapshot Index|  O(n/B) ow)°? O(a)10 O(loggn+a/B) | O(oggn+s/B) 4
(5.1.2.6)
Windows Method O(n/B) O(oggn) O(loggn + a) O(oggnt+a/B) anan+s/B)4
(5.1.2.7)
R-Treess.1.3.1) O(n/B) O(oggn) o(n/B)11 o(n/B)11 o(n/B) 1
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Access Method Update per i Pure-Timeslice | Range-Timeslice
(related section) Total Space change Pure-key Query Query Query
SR-Treg5.1.3.1) | O((n/BJoggn) | O(loggh) o(n/B)11 o(n/B) 11 o(n/B) 1
WOBT (5.1.3.2)12 O(n/B) Ofogsm)'3 O(loggn+a) 14 O(loggn+a/B) | O(oggn+a/B)

TSB-Tree(5.1.3.3) O(n/B) O(oggn) O(loggn+a) 14 O(n/B) 15 O(n/B) 15
Persistent B-tree O(n) OQogBm)13 O(loggnloggntta) 1416 O(loggn(loggm | O(loggn(loggm
Fat Node(5.1.3.4) + a/B)) 16 +a/B)) 16
Persistent B-tree O(n/B) O(ogBm)13 O(loggnloggnta) 14,16 O(loggn(loggm | O(loggn(loggm
Fat Field(5.1.3.4) +a/B)) 16 +a/B)) 16
MVBT (5.1.3.5) O(n/B) Ofogsm) 13 O(loggn+a) 14 O(loggn+a/B) | O(oggn+a/B)
MVAS (5.1.1 & O(n/B) Ofogem)13 | O(oggn+a/B) 1417 | O(logsn+a/B) O(oggn+a/B)
5.1.3.5)
Overlapping O(nloggn) | O(oggm)13 O(loggn+a) 14 O(loggn+a/B) | O(oggn+a/B)
B-Tree(5.1.3.6)

1.

NogoswN

10.

11.

12.

13.
14.

This is the time needed when the end_time of a stored interval is updated,; it is assumed that the start_time of theenyalated i
is given. If intervals can be identified by some key attribute, then a hashing function could find the updated if2¢tyal at
expected amortized time. In the original paper it was assumed that intervals can only be added and in increasing star_time o
in that case the update timeO§1).

WhereS denotes the number of different keys (surrogates) ever created in the evolution.

WhereK denotes the number of keys in the query key range (which may or may not be alive at the time of interest).

Wheres denotes the size of the whole timeslice for the time of interest. No separation of the key space in regions is assumed.
WhereR is the number of predefined key regions.

Assuming that a query contains a number of predefined key-relfiates)otes the number of regions in the query range.

The performance is under the assumption that the Checkpoint Index creates very few checkpoints and the space remains |
The update time i©(n/B) since when the end_time of a stored interval is updated, the interval has to be found. As with the AF
Index, if intervals can be identified by some key attribute, then a hashing function could find the updated i@étyaThe
original paper did not deal with this issue since it was implicitly assumed that interval endpoints are known at insbeida. If
points are often then the method will behave as the Time Index.

For the update it is assumed that the start_time of the updated interval is known. Otherwise, if intervals can be ydeoriiged b
key, a hashing function could be used to find the start_time of the updated interval. For the range-timeslice query, we assum
extra structure is used. The original paper proposes using an approach similar to the Two-Level Time Index or the ST-Tree.

In the expected amortized sense, using a hashing function on the object key space. If no hashing but a B-tree is @sed the
update becomed(logsm) wherem s the size of the current state, on which the update is performed.

Assuming as in 9 that a hashing function is used. If a B-tree is used the query li2¢ogg8st+ a)whereSis the total number of

keys ever created.

This is gpathological worst case, due to the non-guaranteed search on an R-tree based structure. In most cases the avg. p
mance would b&(loggn+a). Note that all the R-tree related methods assume both interval endpoints are known at insertion time
Here we assume that the WOBT tree is implemented thoroughly on a magnetic disk, and that no (or infrequent) deletions o
i.e., just additions and updates.

In the amortized sense, whengenotes the size of the current tree being updated.

For a pure key query of the form: “find the previous salaries of employe existed at timé'.
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15. This is gathological worst case, where only key splits are performed. If a time-split is performed before a key-split when nod
resulting from a pure key split would have too few records “alive” at the begin time of the node, then thekgs€{otan+a),
also assuming infrequent deletions.

16. Wherem denotes the size of the ephemeratiBe at the time of interest.

17. The pure-key query performance assumes the existence@fithieon top of the MVAS structure.

5.2 Valid-Time Methods

According to the valid-time abstraction presented in section 2, a valid-time database should
maintain a dynamic collection of interval-objects. Very recently, [AV96] presented an I/O optimal
solution for the “*/point/-” query. The solution (thexternal Interval Tregis based on a main-
memory data structure, the Interval Tree [E83], that is made external (disk-resident). Valid

timeslices are supported @(I/B) space, usin@ (loggl) update per change (interval addition,

deletion or modification) an® (loggl +a/B)  query time. Hérethe number of interval-objects

in the database when the update or query is performed. Even though it is not clear how practical
the solution would be (various details are not included in the original paper) the result is very
interesting. To optimally support valid timeslices is a rather difficult problem because in a valid-
time environment the clustering of data in pages can dramatically change by the updates. Deletions
are now physical and insertions can happen anywhere in the valid-time domain. In contrast, in a
transaction-time environment objects are inserted in increasing time order and after their insertion
they can be “logically” deleted but they are not removed from the database.

A valid timeslice query (“*/point/-") is actually gpecial case of a 2-dimensional range query.
Note that an interval contains a query peinf and only if, its start_time is less than or equal to
and its end_time is greater than or equal foet us map an interval= (x;,y;) into a point(xy,y;)
in the 2-dimensional space. Then an interval contains quérgnd only if, its corresponding 2-
dimensional point lies inside the box generated by the %me8,x = v, y =v andy = o (Figure
25). Since an interval’'s end_time is always greater or equal than its start_time, all intervals are
represented by points above the diagarmay. This 2-dimensional mapping is used in the Priority
Search Tree [McC85] the data structure which provides the main-memory optimal solution. A
number of attempts have been made to externalize this structure [KRVV93, IKO87, BG90].

[KRVV9O3] uses the above 2-dimensional mapping to address two problems: indexing
constraints and indexing classes in an I/0O environment. Constraints are represented as intervals that
can be added, modified or deleted. The problem of indexing constraints is then reduced to the
dynamic interval management problem, i.e., the “*/point/-" query! For solving the dynamic
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- Figure 25: An interval is translated into a point in a 2-

Vi . dimensional space. Axes andy represent an
interval’s starting and ending valid-times. Inter-

v (v, v) vals that intersect valid instamtcorrespond to

the points included in the shaded area.

-
0 x Vv X

interval management problem, [KRVV93] introduces a new access methddethielock Tree

which is aB-ary access method that partitions the upper diagonal of the 2-dimensional space into
metablockseach of which withs? data points (the structure is rather complex; for details we refer

to [KRVV93]). Note however that the Metablock Tree iseani-dynamicstructure, since it can
support only interval insertions (no deletions). It uS¢éB) spaceO (loggl +a/B) query time

andO (loggl + (loggl) 2/ B) amortized insertion time. The insertion bound is amortized since the
maintenance of a metablock’s internal organization is rather complex to be performed after each
insertion. Instead, metablock reorganizations are deferred until enough insertions have
accumulated. If interval insertions are random, the expected insertion time be&a¢loggl)

[I[KO87] and [BG90] present two other external implementations of the Priority Search Tree.
Both use optimal spacgO(I/B)); [IKO87] has O(log,l+a/B) query time I/O's for valid
timeslices, while [BG90] ha® (loggl +a)  query time.

In [RS94], a new technique callpdth cachings introduced for solving 2-dimensional range
gueries. This technique is used to turn various main-memory data structures, like the Interval Tree,
or the Priority Search Tree [McC85] into external structures. With this approach, the “*/point/-”
query is addressed i@ (loggl +a/B)  query tin@(log;l) amortized update time (including
insertions and deletions) butm(élogzlong) space.

The above approaches are aimed at good worst case bounds but lead to rather complex struc-
tures. Another main-memory data-structure that solves the “*/point/-" query is the Segment Tree
[B77] which however uses more than linear space. [BG94] presenEcthnal Segment Tree
(EST) which is a paginated version of the Segment Tree. We first describe the worst case perfor-
mance of the EST method. If the endpoints of the valid-time intervals take values from a universe
of sizeV (i.e., there ar& possible endpoint values), the EST supports “*/point/-" queries using
O(I|3I092V) space,O (log,V) update per change a@dlog,V + a) query time. [BG94] pre-

75



sents also an extended analysis of the expected behavior of the EST under the assumption of a
uniformly distributed set of intervals of fixed length. It is shown that the expected behavior is much
better; the average height of the EST is for all practical purposes small (this affects the logarithmic
portion of the performance) and the answer is found by accessing an ad@{atlpages.

An advantage of the External Segment Tree is that the method can be modified to also address
gueries with key predicates (like the “range/point/-" query). This is performed by embedding B-
trees in the EST. The original EST structure guides the search to a subset of intervals that contain
the query valid tim& while an embedded B-tree allows to search this subset for whether the query
key predicate is also satisfied. For details we refer to [BG94].

Good average case performance could also be achieved by using a dynamic multidimensional
access method. If only multidimensional points are supported as in the k-d-B-tree [R84] or the h-
B-tree [LS90b], mapping an (interval, key) pair to a triplet consisting of (start_time, end_time, key)
as discussed above, would allow the valid intervals to be represented by points in three-dimension-
al space.

If intervals are represented more naturally, as line segments in a two dimensional key-time
space, the cell-tree [G89], the R-tree or one of its variants, the R* [BKKS90] or the R+ [SRF87]
could be used. Such solutions should provide good average case performance, but overlapping still
remains a problem especially if the interval distribution is highly non-uniform (as observed in
[KS91] for R-trees). If the SR-tree [KS91] is utilized for valid-time databases the overlapping is
decreased but the method may suffer if there are many interval deletions, since all remnants (seg-
ments) of a deleted interval have to be found and physically deleted.

Another possibility would be to facilitate a two level method whose top level indexes the key
attribute of the interval objects (using &tBee) while the second level indexes the intervals that
share the same key attribute. An example of such method is the ST-Index [GS93]. In the ST-Index
there is a separate AP-Tree that indexes the start_times of all valid-time intervals sharing a distinct
key attribute value. The problem with this approach is that a “*/point/-" query will have to check
all stored intervals for whether they include the query valid-time

The Time-Index [EWK90] may also be considered for storing valid-time intervals however
there are two drawbacks. First, changes can arrive in any order so leaf entries anywhere in the index
may have to merge or split thus affecting their relevant timeslices. Second, updating may be prob-
lematic as deleting (or adding or modifying the length of) an interval involves updating all the
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stored timeslices that this interval overlaps.

[NDK96] offers yet another approach to indexing valid-time databases]AR21 structure.
A valid-time interval(x, y)is mapped to a poirt = x10°+y , whesés the maximum number of
digits needed to represent any time point in the valid-time domain. This is enough to map each in-
terval to a separate point. A regular B-tree is then used to index these points. An advantage of this
approach is that interval insertions/deletions are easy using the B-tree. However, to answer a valid
timeslice query about timethe point closer tg is found in the B-tree and then a sequential search
for all intervals before is performed. At worse many intervals that do not interseah be found
(INDK96] assumes that in practice the maximal interval length is known, which limits how far
back the sequential search continues frym

Further research is needed in this area. An interesting open problem is whether an I/O optimal
solution exists for the “range/point/-" query (valid range timeslices).

5.3 Bitemporal Methods

As mentioned in section 4.5, one way to address bitemporal queries is to fully store some of the
C(t) collections of Figure 3, together with the changes between these collections. To exemplify
searching through the intervals of a sto€g), an access method for each sto@t) is also
included. Thes€(t)'s (and their accompanying methods) can then be indexed by a regular B-tree
ont;, the transaction time. This is the approach taken iNtRéTT [NDE96]; the changes between
stored methods are called “patches” and each stG(edis indexed by a MAP21 method
[NDK96].

The M-IVTT approach can be thought as an extension of the Time-Index [EWK90] to a bitem-
poral environment. Depending on how oft&ft)’s are indexed the space/update or the query time
of the M-IVTT will increase. For example, the space can easily become quadratic if the indexed
C(t)’s are every constant number of changes and each change is the addition of a new interval.

In another approach, the intervals associated with a bitemporal object can be “visualized” as a
bounding rectangle which is then stored in a multidimensional index, like the R-tree [G84] (or
some of its variants, like the SR-Tree [KS91]). While this approach has the advantage of using a
single index to support both time dimensions, the characteristics of transaction-time create a seri-
ous overlapping problem [KTF95b]. All bitemporal objects which have not been “deleted” (in the
transaction sense) are represented with a transaction-time endpoint extendiwgRigure 4).

To avoid this overlapping, the use of two R-trees (2-R approach) has been proposed [KTF95b].
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When a bitemporal object with valid-time intervas added in the database at transaction-time
itis inserted at thiront R-tree. This tree keeps bitemporal objects whose right transaction endpoint
is unknown. If a bitemporal object is later “deleted” at some tim@' > t) itis physically deleted

from the front R-tree and inserted as a rectangle of hemgyd width fromt to t' in thebackR-

tree. The back R-tree keeps bitemporal objects with known transaction-time interval (Figure 26,
taken from [KTF95b]). At any given time, all bitemporal objects stored in the front R-tree share
the property that they are “alive” in the transaction-time sense. The temporal information of every
such object is thus represented simply by a vertical (valid-time) interval that “cuts” the transaction
axis at the transaction-time this object was inserted in the database. Insertions in the front R-tree
objects are in increasing transaction time while physical deletions can happen anywhere on the
transaction axis.

vA . (6 V) VA

(0, v) » (6,V) ! (t,v)

u (t31 Vl) Il

0 t3 -t oY t; i ts

Figure 26: In the 2-R-tree approach bitemporal data is divided according to whether their right transaction endpoint
is known. The scenario of Fig. 3 is presented here (i.e., aftet;timas elapsed). The left 2-dimensional
space is stored in tHent R-tree while the right in theackR-tree.

A “*Ipoint/point” query aboutt;, v) is then answered with two searches. The back R-tree is
searched for all rectangles that contain p(ijnt). The front R-tree is searched for all vertical in-
tervals which intersect a horizontal intertalIntervalH starts from the beginning of transaction
time and extends until poigtat heighty; (Figure 26). To support “range/range/range” queries, an
additional third dimension for the key ranges is added in both R-trees.

The usage of two R-trees is reminiscent of the Dual-Root Mixed Media R-tree proposed in
[KS89] as a mixed-media index that stores intervals and consists also of two R-trees. There, new
intervals are stored on one R-tree and are gradually moved to the second R-tree. There are however
the following differences: (a) in the Dual-Root Mixed Media R-tree intervals inserted have both
their endpoints known in advance (which is not a characteristic of transaction-time); (b) both R-
trees in [KS89] store intervals with the same format; (c) the transferring of data in the Dual-Root
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Mixed Media R-tree is performed in a batched way. When the first R-tree reaches a threshold near
its maximum allocated size vacuumingprocess completely vacuums all the nodes of the first R-
tree (except its root) and inserts them to the second R-tree. In contrast, transferring of a bitemporal
object in the 2-R approach is performed whenever this object is deleted in the transaction-time
sense. Such a deletion can happen to any currently “alive” object in the front R-tree.

Bitemporal problems can also be addressed by the partial persistence approach; this solution
emanates from the abstraction of a bitemporal database as a sequence of history-t@{gslices
(Figure 3) and has two steps. First, a good ephemeral structure is chosen to represgt each
This structure must support dynamic addition/deletion of (valid-time) interval-objects. Second,
this structure is made partially persistent. The collection of queries supported by the ephemeral
structure implies what queries are answered by the bitemporal structure.

The main advantage obtained by “viewing” a bitemporal query as a partial persistence problem
is that the valid-time requirements are disassociated from the transaction-time ones. More specifi-
cally, the valid time support is provided from the properties of the ephemeral structure while the
transaction time support is achieved by making this structure partially persistent. Conceptually,
this methodology provides fast access toGf# of interest on which the valid-time query is then

performed.

The partial persistence methodology was also used in [LM91, BGO+93, VV95] for the design
of transaction-time access methods. For a transaction-time environment the ephemeral structure
must support dynamic addition/deletion of plain-objects; hence a B-tree is the obvious choice. For
a bitemporal environment two access methods have been proposed: the Bitemporal Interval Tree
[KTF95a] which is created by making an Interval Tree [E83] partially persistent (and well paginat-
ed), and, the Bitemporal R-Tree [KTF95b] created by making an R-tree partially persistent.

The Bitemporal Interval Tree is designed for the “*/point/point” and “*/range/point” queries.
Answering such queries implies that the ephemeral data structure should support point-enclosure
and interval-intersection queries, respectively. In the absencegfeanal ephemeral method that
optimally solves these problems [KRVV93, RS94], a main-memory data structure, the Interval
Tree (which optimally solves the in-core versions of the above problems) was used and was made
partially persistent and well paginated. One constraint of the Bitemporal Interval Tree is that the
universe sizé&/ on the valid domain is known in advance. The method computes “*/point/point”
and “*/range/point” queries i@ (loggV +loggn +a)  1/O’s. The spac©ign+V)/B); the update
is amortizedO (IogB(m+ V)) 1/O’s per change. Haereenotes the total number of changeis,
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the answer size amd is the number of intervals contained in the current time€l{€ewhen the

change is performed.

The Bitemporal R-Tree does not have the valid-universe constraint. It is a method designed for
the more general “range/point/point” and “range/range/point” bitemporal queries. For that pur-
pose, the ephemeral data structure must support range point-enclosure and range interval-
intersection queries on interval-objects. Since neither a main-memory, nor an external data struc-
ture exists with good worst-case performance for this problem, the R*-tree [BKKS90] was used,
an access method that has good average-case performance for these queries. As a result, the per-
formance of the Bitemporal R-Tree is bound by the performance of the ephemeral R*-tree. This is
because a method created by the partial-persistence methodology behaves asymptotically as the
original ephemeral structure.

[KTF95b] contains various experiments comparing the average case performance of the 2-R
methodology, the Bitemporal R-tree and the obvious approach which stores bitemporal objects in
a single R-tree (the 1-R approach, as in Figure 4). Due to the limited copying introduced by partial
persistence, the Bitemporal R-tree uses some small extra space (about double the space used by the
1-R and 2-R methods) but it has much better update and query performance. Similarly, the 2-R ap-
proach has in general better performance than the 1-R approach.

It remains an interesting open problem to find the theoretically I/O optimal solutions even for
the simplest bitemporal problems, like the “*/point/point” and “*/range/point” queries.

6. Conclusions

We presented a comparison of various temporal access methods. While we have also covered
valid-time and bitemporal approaches, the bulk of this paper addresses transaction-time methods
as they represent the majority among the published approaches. Since it is practically impossible
to run simulations of all methods under the same input patterns, our comparison was based on the
worst case performance of the examined methods. Comparison items included the space
requirement, the update characteristics and the query performance. The query performance is
measured against three basic transaction-time queries, the pure-key, the pure-timeslice and the
range-timeslice queries, or, using the three-entry notation, the “point/-/*”, the “*/-/point” and the
“range/-/point” queries respectively. In addition we addressed problems like index pagination, data
clustering and the ability of a method to efficiently migrate data to another medium (like a WORM
device). We also introduced a general lower bound for such queries. A method that achieves the
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lower bound for a particular query is termed I/O-optimal for that query. The worst-case
performance of each transaction-time method is summarized in table B. The reader should be
cautious when interpreting worst case performance. Sometimes the notation penalizes a method for
its performance on a pathological scenario. We have indicated such cases. Whietabides

a good feeling for the asymptotic behavior of the examined methods, the choice of the appropriate
method for the particular application also depends on the application characteristics. In addition,
issues such as data clustering, index pagination, migration of data to optical disks etc. may also be
more or less important according to the application. While 1/0-optimal (and practical) solutions
exist for many transaction-time queries, this is not the case for the valid and bitemporal domain.
An 1/0O optimal solution exists for the valid-timeslice query but is mainly of theoretical importance;
more work is needed in this area. All examined transaction-time methods support “linear”
transaction time. Another promising area of research is the support of branching transaction time.
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