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Abstract

A temporal granularityis a unit of measuring time, e.g., second, day, weekgranularity graphis a directed

graph showing the relationship among the granularities. Efficiently and correctly converting time values within
the granularity graph is critical for supporting multiple time granularities in an application program or a database
management system. The research involves finding an optimally efficient path in the granularity graph for any pair
of granularities and developing an algorithm to perform the conversion operation between the two granularities for
anchored time related values, to correctly convert a granule from a specified granularity to another granularity. The
research also evaluates several strategies to improve the performance of temporal operations at mixed granularities.



Chapter 1

INTRODUCTION

Supporting multiple calendars in database applicationsis a highly desirable feature. Currently, the Gregorian
calendar (with a fixed number of granularities: year, month, day, hour, and second) is the single calendar
available in SQL-92 (Structured Query Language) for representing and manipulating time-related data. In
the real world, there are many applications that require a wide variety of calendar support. The usage
of a calendar depends on the cultural, legal and business aspects of the user. For example, the Eastern
world commonly uses a lunar calendar, the US government uses a business calendar with the financial year
starting in October, and universities generally use an academic calendar with years consisting of semesters
or quarters. Today'’s database systems must support conversion among these calendars.

There has been considerable research in incorporating multiple calendars into a database system. But
most of the previous research has focused on theoretical aspects. For mixed granularities in multiple
calendars, no practical algorithm has been proposed that allows mappings to be composed automatically.

Based on the architecture first devised by Curtis Dyreson and Richard Snodgrass, with initial coding
by Marshall Freiman, our work develops an efficient algorithm and provides a software module to support
conversion operations for mixed granularities, i.e., converting a granule in one granularity to a granule in
another granularity. The objective of this work is to provide an efficient and correct algorithm for supporting
multiple time granularities within an application program or a database.

This thesis is organized as follows. Chapter Two gives an overview of the related work on the mixed
granularities, including introducing the granularity graph and the initial model of converting time values
from one granularity to another granularity. Chapter Three covers the granularity module interface and
shows how to integrate different calendars into a single granularity graph. This chapter also points out what
the interface needs to check to ensure the granularities declared by the user are properly defined. We examine
the paths for granule conversion in Chapter Four. We then present two recursive algorithms for finding an
optimal path and prove their correctness. We begin by giving an example to illustrate non-termination in
conversion operation. We then propose a reasonable constraintto ensure termination. Finally, we presentthe
algorithm for the conversion operationis presented. Chapter Six provides an empirical performance analysis,
and examine the efficiency of path caching and the granularity origin offsets caching. We summarize our
work in Chapter Seven. We include the external data structures and the detailed description of the functions
provided by the external module in Appendix A. In addition, Appendix B gives the internal data structures.



Chapter 2

RELATED WORK

Since the very early days of computers, applications have had a need to represent times in stored data and to
manipulate the information. But there is no standard; every computer system invented its own convention to
handle time related data. Thisis clearly unacceptable. There have been several languages fully implemented
to support the time related data available on commercial database management systems (DBMSs). The best
known of these is SQL. SQL was first designed and implemented at IBM Corporation as the interface for an
experimental relational database system called system R. SQL was first standardized in 1986 and was revised
significantly to form the standard SQL-92 [Melton & Simon 1993]. SQL-92 includes date and time data
types, and supports a single calendar, the Gregorian calendar. Recently, the Object Database Management
Group defined the ODMG-93 standard for object database management to provide for object databases what
SQL has provided for relational database [Cattell 1994]. But the time support in ODMG-93 is similar to
SQL-92. Generally, the existing database software has ignored the issue of the mixed granularities or have
assumed the use of a single calendar.

Anderson [Anderson 1982] first pointed out the need to support mixed granularities. Clifford and Rao
[Clifford & Rao 1987] then proposed a theoretical model of complete ordering of granularities. Wiederhold,
Jajodia and Litwin [Wiederhold et al. 1991] further developed this model by adding a specific semantics for
temporal comparisons.

Temporal granularities, e.g., seconds, days, weeks, months, were initially formalized as partitions of
some base time lines composed of indivisible time units, call@dnons(usually denoted ag), e.g.,
microseconds. We slightly generalize Wang et. al.’s definition of time unit [Wang et al. 1993] to the
following.

Definition 2.1 A granularity« is a set of nonoverlapping and contiguous granules. Each granule has an
integer index, with the ordering of integers. We use an integer subscripted with the granularity to identify
the granule. The granularity contaifs, termed anchor. Here,
a={ 1404 1q,-}.
The granularity chrononsl() is the smallest granularity. Each granule at a granularity corresponds to
an contiguous set of chronons. To distinguish between a granule (an integer) and the sequence of chronons
that comprise a granule, we uUS&IR to represent the set of chronons in a given granule.

Definition 2.2 CHR(i,) = {cy|cy isini,} , wherei, is thei’” granule in granularityn andc; is a
chronon.

The above definitions imply the following properties.



e for chrononsc,, ¢, and granules,, j., c; € CHR(i,), ¢, € CHR(j,) andec, < ¢, implies
iO{ S jO{'

e for chrononsc,, ¢, and¢d|, ¢y < ¢, < ¢, ey € CHR(i,) and¢] € CHR(7,) impliesc| €
CHR(i,) .

e Forgranules, andj, , i, # j. impliesCHR(i,) N CHR(j,) =0 .

The first property says that chronons and granules are totally ordered. The second one requires thata granule
contains a contiguous set of chronons and the third one ensures that the different granules do not overlap.
We differ from Wang's definition in not requiring, € CHR(0,) (Business calendar has an anchor in
Gregorian date October 1, 1990), and in allowing gaps, i.e., some chronons may not map to any granule of
a particular granularity, e.g., semesters with no summer coverage.

Cast which converts a granule of one granularity to a granule of another granularity, is the basic
operation on granule. Other operations (for examptmle, Plus) generally can be defined in terms of the
Cast Following is the formal definition for th€ast

Definition 2.3 Cas{i,, o, 3) — js , wherea andj are granularities;,, is thei'" granule inoe andj; is
the j*" granule ing.

Given the definition of granularity, clearly, there is a “finer than” relation between granularities. For
example, days is finer than months, months is finer than years, etc. Note that months is not a further
partitioning of weeks, or vice-versaA complete latticas a partially ordered set in which every pair of
elements have a unique least upper bound and a unique greatest lower bound [Vinogradov et al. 1988]. It
has been shown that a collection of granularities (or time units) can form a complete lattice with respect
to a “finer than” relationship [Wang et al. 1993]. By relating an arbitrary time unit (i.e., granularity) to the
smallest time unit (i.e., chronons), tRastoperation is easily definable (the latter because the existence of
a bottom in the lattice ensures that there is a path from a granularity to all other granularities, and the fact
that the granule-chronon mapping is invertible). This model is sufficient from a mathematical point of view,
but does not present a practical solution. First, most calendar users do not know what the smallest time
unit it is; they usually build a new calendar based on a well-known calendar. Second, given leap seconds
and various arbitrary aspects of human-designed calendars, the mapping functions from granularities to the
smallest time unit are generally complex. Third, if a set of granularities do not form a complete lattice,
one or more artificial granularities have to be added in order to form a complete lattice. These extra
granularities “may sometimes be very hard to compute and counter-intuitive to real-life concepts of time
units” [Wang et al. 1993]. Finally, this model has not considered the anchor difference between a pair of
granularities. It assumes that all granularities have a same anchor. In reality, this assumption is impractical.
At the physical level, time values are stored in fixed-size data structures called timestamps. For example, if
we pick midnight, January 1, A.D. 1 as the anchor-point for all granularities, then representing a time value
for Business day (starting on the Gregorian date October 1, 1990) would require many storage bits. Using
different anchors can significantly reduce the storage requirement.

Although Wang's model provides a mathematical framework for mixed granularities, they do not
present calendars. Recently, Kraus et al. propose a very interesting approach to represent time in a calendar
[Kraus et al. 1996]. Most theoretical models including Wang’s model reference time with respect to integers
(granules), however, human being, as well as many applications specify time, not as integers, but as “dates”
to a particular calendar (i.e., Monday, Tuesday, January in the Gregorian calendar). Referring to this
mismatch between the theory and application, Kraus et al. provide a new definition of a calendar. They
define a time unit as a time-value set with a linear order. For example, the timeamtit consists of
the 12 months of the year, i.e., January, February etc. In this model, they present time instances and time
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intervals in terms of constraints with respect to a given calendar. In case of multiple calendars, they also
show how to integrate those calendars into a single, unified calendar. This framework offers the advantage
that the user can work with his own calendar representation of time, which is more nature than representing
time as integers. This work relates to ours because they introduce a new way to represent time and provide
a new technique to integrate calendars. On the other hand, they do not discuss the conversions between the
time units, nor do they cover the conversions among calendars.

Kraus et al. is not the only group trying to solve the mismatch of time representations between internal
data structure and the external calendar specification. Dershowitz and Reingold [Dershowitz et al. 1990]
provide Lisp functions for converting time points between the specifications in different calendars, namely
the Gregorian, Julian, Islamic, Hebrew, and ISO (International organization for Standardization) calendars,
and integers. Later, Reingold, Dershowitz and Clamen add the Mayan, French Revolutionary, and Old
Hindu calendars [Reingold et al. 1993]. With this approach, a time point specified in one of the above
calendar can easily be converted to an integer and an integer can also be converted back to a desired calendar
representation. This approach also makes the internal conversion among the calendars possible.

TSQL2 (Temporal Structured Query Language) [Snodgrass 1995] which is a temporal extension to SQL-
92 provides many capabilities not available in SQL-92. In particular, TSQLZ2 supports mixed granularities
and multiple calendars. Although TSQL2 also chooses integers to represent time points, by taking Reingold’s
approach, it provides a nice Input/Output interface for converting between the internal form of a timestamp
(i.e. integer), and various external forms, mainly character strings in a specific underlying calendars
[Dyreson & Snodgrass 1994B]. With the I/O interface, each user can define his own calendar and deal with
his calendar representation of time; at physical level, communication among those calendars is actually
going on via the timestamp representation. TSQLZ2 supports conversion between a pair of granularities
only if the user provides the direct mapping function for the conversions. As we stated before, most of the
mapping functions are complex; in addition, in a large multicalendar system, it is impossible to provide all
mapping functions for every pair of granularities. Based on the general architecture of the multicalendar
system in TSQL2, our research tries to realize TSQL2 by providing an practical algorithm to allow the
system to perform the conversions dynamically.

Dyreson and Snodgrass [Dyreson & Snodgrass 1994A] present a model for granularities in temporal
operations which offers a practical solution to convert time values between a pair of granularities. They
observe that the interactions between most granularities,h@gr,s andm nut es, days andweeks,
are regular: one is a further partitioning of the other, and so a granule represented by an integer can
be converted to another by a simple multiply or divide, with an anchor adjustment. They defined the
granularity graph explicitly, as mappings between granularities. Each node in the graph is a granularity, and
each edge represents a relationship between a pair of granularities. An arrow fodirindicates thay
is finer granularity thak. The graph in Figure 2.1 [Dyreson & Snodgrass 1994A] shows a multicalendar
granularity graph comprised of the Gregorian, Business, and Astronomy calendars. Mappingegatabe
mappingse.g., betweehour s andmni nut es, with a conversion constaritregular mappingggranules
can not be converted by a simple multiply or divide), e.g., betwsamt hs anddays, or congruent
mappings(granularities with identical granules, but perhaps different anchors), e.g., between Gregorian
days and Businesslays. In the granularity graph, a directed thin line is a regular mapping while a
directed thick line is an irregular mapping. A congruent mapping is denoted by an undirected line labeled
with a conversion constant 1. Irregular mappings are associated with two C functions provided by the
granularity designers: one is for mappingpivard’ (from finer to coarser granularity), the other is for
mapping ‘downward (from coarser to finer granularity). For a system supporting multiple calendars, there
will be hundreds of granularities. However, without the immediate functional mappings from granules to
chronons, the system must perforn€astto do conversion among granularities. Dyreson and Snodgrass
proposed a method to performGCastoperation. The first step is to find a correct path, then execute each
portion of the path applying the appropriate mapping. They conjecture th&jpaithsdown to a common

4



decades busi ness_years

o r

astronomy_centuries years busi ness_quarters

fortnights

100 Tz W 12 | 360
astrono ears
y_y weeks mont hs 90 busi ness_weeks
days busi ness_days
astronony_days 1
100 24
ast ronomy_day_hundr edt hs hour s
60
864 m nut es

seconds

1000

Chronons

Figure 2 1: A multicalendar granularity graph

ancestor then back up (due to the shape, these paths are termed V-paths) yield equivalent results, but paths
differ in computation cost, in terms of the number of user-defined functions that must be invoked.

The proposed work is to implement this model and provide an efficient and correct module to support
both temporal DBMSs and application programs that handle anchored time values.



Chapter 3

THE GRANULARITY MODULE
INTERFACE

This chapter summarizes the module interface provided to perform the conversion operations for mixed
granularities. The SQL-92 standard only supports a single calendar, the Gregorian calendar. Our module
remains consistent with SQL-92 and also provides support for multicalendar system.

In this research, our goal is efficient and correct conversions between temporal granularities. For
example, to convert a time in Gregorian days to the same time in Chinese lunar days, the user is unlikely
to provide functions to do the conversion; instead, the database must be able to convert Gregorian days to
lunar days dynamically from the user-supplied relationships.

Calendars define granularities. We envision thatthe DBMS vendor will provide some common calendars
(for example, Gregorian calendar), and the database user can define his own calendars (for example, a
company’s business calendar). Different calendars are woven together to form the granularity graph.
The user can declare many granularities (consider fiscal years, academic semesters, and lunar years and
months etc.), each with a calendar-id which identifies the calendar that supports this granularity. An anchor
granularity and an anchor point must be given for each granularity. For the granularities in the user-defined
calendar, the user also needs to give the conversion constants for regular mappings and define the C functions
for irregular mappings.

The user can integrate the calendars by simply declaring a mapping between a pair of granulari-
ties from different calendars. An example is the congruent mapping between Gredayianand the
busi ness_days in Figure 2.1. In addition, the mapping between Gregosianonds and Astronomy
ast ronony_day_hundr edt hs is an example of weaving different calendars by regular mapping.

Our module also allows the database administrator (DBA) to define additional mapping functions
to improve performance. For example, in Figure 2.1, the mapping betwedyulicmess_days and
Gregorianseconds is an additional mapping. Gregorian calendar and Business calendar originally are
linked by a congruent mapping between Gregodays and thebusi ness _days. If the DBA knows
that casting from Businedsusi ness _days to Gregoriarseconds will be performed repeatedly, then
a direct link can be added into the granularity graph. In casting a granule frobutiieness days to
Gregoriarseconds, the direct link will be used instead of the compositiobaki ness days todays,
days tohour s, hour s tom nut es, andmi nut es toseconds.

A determinatdimestamp records an instant located sometime during a particular granule. However,
if the exact granule the instant is located is unknowningeterminatdimestamp is used to represent the
instant [Dyreson & Snodgrass 1993]. The basic operations at mixed granulariti€ast@nd Scale In
TSQL2, aCastoperation always produces a determinate timestamp by returning the first granule in the
result, while aScaleoperation may produce an indeterminate timestamp. Converting a granule from coarser



to finer granularity produces an indeterminate result. For example, converting the day 01/01H®97¢0

yields 01/01/1997 00 - 01/01/1997 23, which is the correct scaling result. But the correct casting result
for the above conversion is 01/01/1997 00 by taking the first granule. Chapter Five will describasthe
operation in detail. Other operations in SQL-92 generally can be defined in terms@dsheOur module
supports theCastand theScalebasic operations, along with other standard operations in SQL-92. This
module interface provides 20 different functions and has total 3000 lines of C code. The external data
structures and the functions provided in the module are listed in Appendix A.

The hardest part of the module is to ensure that the granularity graph declared by the user is properly
formed. In other words, when all granularities and mappings are defined, the module must respond if the
granularities are ill-specified.

One possible problem is a circularity in the granularity graph. The granularity graph must be acyclic.
The “finer than” relation cannot be defined if there is a cycle in the granularity graph. The module needs to
make sure this will not happen.

Another problem is caused by the non-termination in@aetalgorithm. Upon further investigating
the Castalgorithm, we notice that calculating the anchor offset is non-trivial. Since the anchors may be
expressed using different granularities, computing the anchor offset involves recGesveperations.
Chapter 5.1 gives an example illustrating the non-termination irCémalgorithm. We state in Chapter
5.1 that in order to ensure the algorithm terminates, the user is limited to define the anchor of a granularity
in a previously defined finer granularity. In order to avoid the non-termination i@#sealgorithm, when
the user finishes the declaration, the module has to check if the anchor of every granularity is defined with
respect to a finer granularity.

One more aspect to check is if there exists a unique bottom in the granularity graph. Without a unique
bottom in the granularity graph, we can not guarantee a V-path for every pair of granularities. Notice that
a granularity graph is not constrained to a complete lattice in the module, so no artificial granularities are
introduced.

Our module provides a function callékclare Done When the users have finished the declarations,
they call this function to check the above three requirements. The module returns an error report if any one
of above requirements is not satisfied.



Chapter 4

DETERMINING THE OPTIMAL PATH

When performing th&€astoperation, if the mapping from a source granularity to a destination granularity
has not been given explicitly by the user or the DBA, the relationship between the source and destination
granularities must be computed as the composition of the existing mappings in the granularity graph. In
this chapter, we first examine the paths between a pair of granularities and identify the correct paths for
the conversion. Then, we introduce an algorithm to find the optimal path to improve the performance and
provide the proof of correctness.

4.1 TheCorrect Paths

Not all paths between a pair of granularities are suitable for the conversion. Becatra@ht-up path
(casting a granule from a finer to a coarser granularity) loses information, any path going up then going
down may yield an incorrect result. For example, to cast 02/01/1997 at grandayity to granularity
nont hs, if we choose the pathdays up toyear s (with result 1997), theiyear s down tonont hs,
we will get the result of 01/1997 instead of 02/1997 at granulanityit hs. It is easier to see thatraight-
down pathgfrom coarser to finer granularity), without losing any information, always produces the correct
casting results. Considering a V-path as a straight-down path followed by a straight-up path, although the
straight-up path losses information, we still get the correct casting result [Dyreson & Snodgrass 1994A].
To ensure that the least amount of information is lost duringhst we add the constraint that the path
can either be atraight-line path(straight-down path or straight-up path) or a V-path. In Figure 2.1, the
path betweelyear s andhour s (year s to nmont hs to days) is a straight-line path; the path between
years andweeks (years tonont hs, nont hs to days anddays to weeks) is a V-path. To find
a correct path between a source granularity a destination granularity, the basic idea is to identify a
common ancestofJA). To find a CA, we traverse the granularity graph from both the source and destination
granularities. The common granularities encountered are the CAs. For example, in Figure 2.1, the common
ancestor of source granularijyear s and destination granularityeeks is granularitydays. The path
composes steps fromto the CA, and then from the CA 1o. A straight-line path is a special V-path since
it's CA is the finer granularity. From now on, we will use the term V-paths to represent both straight-line
paths and V-paths. For a properly formed granularity graph, the existing unique bottom in the granularity
graph guarantees at least one V-path between any pair of granularities. In the case of more than one CA, we
prove that all V-paths will yield the same result.

Before we prove that all V-paths yield the same result, we first need to introduce the formal definition for
the “finer” relationship by using Definition 2.1, 2.1 in Chapter Two. Second, we need to explicitly describe
the mechanism of th€ast

Definition 4.1.1 (“finer” relationship)
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Figure 4 1: A simple granularity graph with twa V-paths

If granularity 3 is a further partition of granularityy, i.e., if ¥j 5 , 37, CHR(j3) C CHR(i,), then
granularity 7 is finer than granularityx, expressed ag < «.

The relation <" is a partial order. For exampleyeeks andnont hs are incomparableweeks is
not finer thamont hs, andnont hs is not finer thanmeeks. Furthermore, it is easily seen that the™
relation is transitive due to transitivity et:bseteq .

With the definition of the finer relation of granularities, we can describe the mechanism used to cast
finer mappings and coarser mappings respectively foCtstoperation.

If >3 then Cast(i,, o, 3) — js suchthat min(CHR(:,)) = min(CHR(j3)) .
If o < then Cast(i,, o, 3) — js suchthat CHR(i,) C CHR(js) .

Now we can prove that all V-paths yield the same casting result.

Theorem 4.1.2 All V-paths from a source granularity to a destination granularity yield the same casting
result.

Proof: Asshownin Figure 4.1, let andg be any two granularities, and path1 and path2 be any two V-paths
betweeny and 3 with different CAs:y and(. Let's assume that; andjj; are the results of casting from

« to 3 along pathl and path2 respectively. We must showjthat j; .
We begin from theCastdefinition:
For path 1:
Cast(iy, o, ) = Cast(Cast(iy, ,v),7, ) = Cast(m,v,3) = js .
For path 2:
Cast(iy, o, B) = Cast(Cast(ia, a, (), ¢, f) = Cast(ne, ¢, 5) = jh -
First, let's look at the first half of the V-patha (o the CAs) in the granularity graph. The fin€ast
operation always returns the first granule in the granularity. Moreoveraagl( are finer granularities of
«, the granules,, m,, n, are aligned, as shown in Figure 4.2. According to the transitivity ofve have,

min(CHR(i,)) = min(CHR(m,)) = min(CHR(n)) .

9
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Now, let’s turn to the second half of the V-paths (the CAg}o Since the paths from the CAs foare
coarser paths, the source granules @ndn.) may not align with the resulting granules, as shown in Figure
4.2. But from the coarseZastmechanisminin(CHR(3,)) must be in the resulting granules in granularity
. According to the transitivity ofZ, we have,

min(CHR(i,)) = min(CHR(m,)) € CHR(jj;) .
min(CHR(is)) = min(CHR(n¢)) € CHR(j}) .

Since chronons is the partition of all granularities and granules in a granularity do not overlap, obviously
we have:

Js =1Jj

The paths we examined are arbitrary V-paths, thus we conclude that all V-paths yield the same casting
result. a

If more than one CA exists, we choose the one that can be computed most efficiently. The choice of
the paths is based on the computation cost: we assume that regular mappings are cheaper than irregular
mappings because each irregular mapping in the path requires invoking a potentially costly user-defined
function. Therefore, we choose the path with fewest irregular mappings. Of those with an equal number of
irregular mappings, we choose the path with the fewest steps.

Finding the optimal path between a pair of granularities is a shortest path problem in an acyclic graph
with the edge weights being 1 for irregular mappings and 0 for regular mappings in the granularity graph.
But existing shortest path algorithms cannot be used directly to solve the problem because of the added
constraint that the path must be a V-path. We have developed two algorithms to find the optimal V-path for
a pair of granularities. In the next two sections, we first present an extension to a common shortest path
algorithm to find the optimal V-path for a single pair of granularities. We then give a detailed analysis of a
dynamic programming approach to solve the all pairs optimal V-paths problem.

4.2 Extending The Dag-Shortest-Paths Algorithm

There are various ways to compute the optimal path for a single pair of granularities. The algorithm we
have developed is a simple extension to Bey-Shortest-Pathalgorithm [Cormen et al. 1990], which,
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Algorithm 4.2.1 Search_Path(G, «, 3)
Input: A granularity grapi7, the source granularity, and
the destination granularity.
Output: The optimal V-path forv and.
/* Initialize the variables */
Dag-Shortest-Pathg/, o) — d[ |, p[ ];
forall v € V do
do[v] = d[v];  pa[v] = p[v] ;
Dag-Shortest-Paths/, 3) — d[ ], p[ |;
/* compute the CA for the optimal V-path */
ca <+ 0; min + oo;
for each v € V do
if (do[v]+ d[v]) < min then
min = d,[v] + d[v];
ca = v
I* compute the optimal V-path using,[ca] andp[ca] */
reeurn o — ---—ca—---— 03;

Figure 4 3: TheSearchPath Algorithm

given a weightedag (directed acyclic graph)' = (V, F), computes shortest paths from a single source in
O(|V| + |E|) time. Here,V is the set of nodes in the graph afAds the set of edges.

The Dag-Shortest-Pathtopologically sorts the dag from the source vertex to get a linear ordering on
the vertices. If an edge points from a vertexo vertexy, thenz precedeg in the topological sort. The
Dag-Shortest-Pathalgorithm then makes one pass over the vertices in the sorted order to compute the
shortest paths from the source vertex.

The intuition for the extended algorithm is that every V-path is built up from two directed paths that
meet at a granularity (CA). Since a granularity graph is a weighted dag with edges directed from coarser
to finer granularities, we run theag-Shortest-Pathalgorithm for the sourcen() and the destinations(
granularities respectively to compute the shortest directed pathsifieomd 5 to all finer granularities. For a
particular vertex, we claim that the V-path( — v — ), i.e., the combination of the two directed shortest
paths ¢ to v andg to v) is the shortest V-path betweenand s going throughv. If the V-path is not the
shortest V-path going through then there must exist a shorter path either frerto v or 5 to v. This
contradicts with the results of tHeag-Shortest-Pathalgorithm. The optimal V-path fore and 5 is then
computed by comparing all V-paths for differanand selecting the shortest one.

The algorithm maintains the variabigv] for each granularity, which is the weight of the shortest path
from o to v. For each granularity in the graph, a predeceggdrthat is either another granularity or Nil, is
used to present the path. Figure 4.2 shows a pseudo code version of this algorithiBeattddPath The
algorithm finds shortest paths fromto all vertices (granularities) and fromto all vertices. It then finds
the vertex whose shortest paths franand fromg have shortest total length.

The running time of th®ag-Shortest-Pathalgorithm isO(|V| + |E]). In the SearchPathalgorithm,
we run theDag-Shortest-Pathalgorithm twice and the computation of CAs is actually done in the second
run of Dag-Shortest-Path€Computing the optimal CA takes O(|V|) time, since there are at most |V| of CAs
in the graph. Thus, the total running time of the extended algoritt®{[§| + | E|).
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4.3 A Dynamic Programming Algorithm

The SearchPath algorithm can compute the optimal V-path between a single pair of granularities. An
alternative is to compute all optimal paths at DBMS generation time and cache the results. This approach
is quite appealing for large DBMSs. However, for an application program dealing with only a small subset
of the granularities, computing the path as needed certainly provides better performance. Our approach is
to allow the user to request the precomputation. For application programs, we use a lazy caching strategy
(compute the optimal V-path as demanded and cache the result) to avoid recomputation.

The algorithm described in last section finds the optimal V-path for a single pair of granularities. For
database applications, we have developed an algorithm to satisfy the V-path constraint and use the top-down
dynamic programming method to solve the all-pairs optimal V-paths for a granularity graph. This algorithm
can be used to compute the optimal path for a single pair of granularities as needed or can be used at DBMS
generation time to determinate all-pair optimal V-path. Next, we will give a detail analysis of our approach
and describe the algorithm, then we will argue that the algorithm can be extended to solve all-pairs optimal
V-paths for a granularity graph. Finally, we will prove the correctness of the algorithm.

Dynamic programming is applicable if subproblems share subproblems. The intuition behind our
algorithm is that every V-path is formed by a smaller V-path. We observe that the optimal V-path for a
single pair of granularities can be solved by combining the optimal solutions to subproblems. (The formal
proof is given later in this section.) Given a pair of granularitiesnd 3, if we consider the optimal paths
from « to all one step finer granularities gfas the subproblems, then the optimal V-pathdand /s can
be found by comparing all V-paths composed of the optimal V-paths from the subproblems and the one step
finer paths. Thus, to find the optimal V-path, we traverse down the granularity graph from the source and
the destination granularities respectively to solve the subproblems first. The V-path constraint is achieved
by traversing the graph following the finer paths recursively. Each subproblem is computed just once and
the solution is stored to avoid traversing the graph multiple times.

First, let's introduce the 2-dimensional variables (all are integer arrays) used to define a path. For
convenience, we call these variabpegh-determiningariables.

first[a][] The first granularity encountered in the V-path from source granularitydestination granu-
larity 3.

icost[a][#] The number of irregular mappings in the V-path from source granularity destination
granularityg.

tag[a][#] Enumerated type, with disjoint tags:

tag_c Indicates that the path from to 5 is a coarse(”) path (all edges in the path from finer to
coarser granularities).

tag_f Indicates that the path from to 5 is a finer (“f") path (all edges in the path from coarser to
finer granularities).

tag_b Indicates that the path fromto 3 is a V shape path. We use the bottom granularity to represent
the finest granularity encountered in the path, so thistands for “bottom”.

tag_s Indicates thatthe path fromto 3 is a congruent path. The™stands for “same” to distinguish
from the coarser path.

tag_u taglz][z] = tag-u marks the granularity as unvisited (%"). Note that this tag is only used
for diagonal entries.
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Below, we use show the above variables for the granularity graph in Figure 2.1.

first[decades][days]| = years first[days][decades] = nont hs
icost[decades][days] = 1 icost[days][decades] = 1
tag[decades][days] = tag_f tag[days][decades] = tag_c
first[year s][weeks] = days firstweeks]year s] = days
icost[year s]jweeks] = 1 icostiweeks][years] =1
tagyear s][weeks] = tag_b tagweeks][year s] = tag-b

tag[days][busi ness_days] = tag_s icost[days][busi ness_days| =0

first[days][days] = days icost[days][days] = 0

Notice that for V-paths, we usgirst| ][ ] to represent the CA of source and destination granularities.
Thus first]year s][weeks] is granularitydays instead of granularitpyont hs. Given first[a][5] and
tag[a][F], we can easily identify the path betweenand 5 by recursively discovering all intermediate
steps. Iftag[][5] equalstag_c (straight-up path) otag_f (straight-down path), we start from the source
granularity and recursively find out the intermediate steps until reach the destination granularity. For
example, to find the path between Gregonyeear s anddays, we first computefirst[year s][days]
with result: mont hs; then computefirst[mont hs][days] resulting indays to yield the pathyear s
to nont hs to days. If tag[a][F] is tag-b (V-path), thenfirst[«][/] is first computed to get the CA.

We then find the path by traversing down to the CA from both source and destination granularities. For
example, to find the V-path betwegmear s andweeks, first[year s][weeks] is initially computed to

get the CAdays. With the resulting CA, we obtain one half of the V-pajteér s toweeks todays) by
computing the straight-down path fropear s to day, and the other halifeeks to days) by computing
firstjweeks][days]. The final V-path is the combination of the two straight-down pathsar s to

nont hs, nont hs todays, anddays toweeks.

The granularity graph in our module is represented as a collection of adjacency lists. Each node has
pointers referencing a regular finer mapping list, an irregular finer mapping list and a congruent mapping
list. The system builds the granularity graph as the user declares each granularity and mapping. The data
structures for the granularity graph are listed in Appendix B.

Initially, we settag totag_u (unvisited), and the other variables to the maximum number of granularities
to indicate that there is no path between any pair of granularities. To find a single-pair optimal path,
the source and destination granularities are stored in a quepe{eue). The strategy is to follow the
depth-first search to visit the unmarked granularity fromtéps(the granularities in th&p queue) to finer
granularities whenever possible, and set the path-determining variables on the way down. Notice that the
first pass from the tagranularity always reaches the bottdm At a granularityy, whenever one of the's
finer granularity: has been explored, the algorithm tests whether we can improve the best V-patiggdrom
all other granularitiesy) found so far by going through the finer granularitgnd, if so, updategirst[¢][y]
andtaglg][y].

The Find_Path algorithm is given in Figure 4.4. Figure 4.6 also shows how to update the path-
determining variables between a source granularignd the destination granularity under different
situations. Assuming is a finer granularity of and has been explored, if the path going throudh to =
to y) costs less than current path frgnto y, then update the variables. The solid arrow is the one-step finer
path fromg to z; the dotted line represents the current path betwesardy; and the dashed arrow indicates
the optimal V-path frome to ¥ which has been computed during the visitingrof In Figure 4.6(a)y is
coarser tharm. Notice, the path frong to y becomes a V-path; so we sey|[¢][y] to tag_b and first[g][y]
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Algorithm 4.3.1 Find_Path(G)

Input: A granularity graph

Output: first[a][5]

/* Initialize the variables */

for each v andg € G do
assignmazx _gran_num to first[a][3], andicost[a][5];
taglal[B] + tag_u;

build thetop_queue;

for each granularityg € top_queue do
Do _Close(g);

Figure 4.4: AlgorithmFind_Path

Algorithm 4.3.2 Do_C'lose(g)
Input: A granularityg
Output: A portion of first[a][5]
/* Traverse down the tree by following’s finer lists*/
for each z € ¢'sfiner lists(reg_finer list, irreg_finer_list and congruent_ list) do
firstlglla] < x;  first[z][g] + cg;
taglgl[x] < tag_f; taglz]lg] + tag_c;
if  €irreg_finer_list then icostlg]lz]<+ 1 else icost[g][z] < 0;
if tag[z][z]=tag-u then Do Close(z);
foreach ye Gand y#g¢ do
if the costofy — 2 — y <thecostofy — y
/* Update the variables */

Assign new values tgirst[g][y], first[yllg], tag[g][y], andtag[g][y],
and updatécost as shown in Figure 4.6, according to valuesof[z][y].

Figure 4 5: AlgorithmDo Clase

to . In Figure 4.6(b), y is finer tham. In Figure 4.6(c), there is a V-path betweeandy so the updated
path fromg to = to y is also a V-path. In the final graph 4.6(d), y is congruent withThe updatedcost
is same for all cases and equals the sum ofthe's of the pathg to = andz to g, where thecost of the
one-step finer pathy(to ) is 1 for irregular mapping and 0 for regular and congruent mappings.

The algorithm always traverses down following the finer path, this guarantees the V-path constraint.
This approach examines all the possible V-paths between a pair of granularities and picks the cheaper path
each time it encounters a new V-path between a pair of granularities, so the final regulte/ in|[3] are
the optimal results. In the following we give a formal proof that this algorithm is correct and does indeed
compute the optimal paths.

Lemma4.3.1 The updated paths represented by the variable first are V-paths.

Proof: Initially, each entry offirst contains the maximum number of granularities to indicate that there is

no path between any pair of granularities. Considering AlgorithenC'lose, the values of thgrst array
are updated only in following two cases:

1. Traversing down a one-step finer path (frgno =)
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icost[g][y] = icost[y][g] < icost[g][X] + icost[X][y] ;

tag_x[x][y]

(a) tag_c: g 4 first{g]ly] = firstiyllg] = x;
\ taglaly] =teglyllg] < tag_b;
X
(b) tag_f /g firstig]ly] = x; firstlyllg] = firstiy][x];
X taglg]ly] < tag_f; tag[ylg] < tag_c;
Ly
(c) tag_b: 9\ , first[g]ly] = firstlyllg] = firstx][y];
x. ) tag[g]ly] = taglyllg] < tag_b;
\\\ //
Z
(d) tag_s: g
\ firstig]ly] = x; firstly][g] < first[y][x];
X--=-- -~y tag[g]ly] = tag_f; tag[yllg] = tag_c;

Figure 4.6: Updating the path-determining variables forklied _Path algorithm
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firstlgllz] = ;  first[z]lg]=g
The path between andz is obviously a V-path (a straight-up, a straight-down path or a congruent
path).

2. Updating the path betwegrandy through finer granularity.

This is arecursive graph problem. Due to the existence of an unique bottom in the graph, the first pass
over the graph always reaches the bottom. The following passes traverse the graph from a granularity
down to the finest unvisited granularity @) to build the smallest V-paths, as shown in Figure 4.6(a).

The larger V-paths then can be built using the smaller ones as shown in Figure 4.6(c). If grapularity

is finer or congruent with, then the resulting path is a straight down path fipta i or a straight up

path fromy to g as in Figure 4.6(b) and (d). Depending on the relationship betwestdy, which

is built recursively as in Figure 4.6, the new path frgno y through finer granularity can only be

a straight-down path or a V-path.

We conclude that the updated paths represented by the vafiatteare V-paths. In other words, the final
paths are V-paths. O

Theorem 4.3.2 If we run AlgorithmFind_Path on a pair of granularities, then at termination, the paths
represented by'irst[z][y] are the optimal V-paths.

Proof: By Lemma 4.3.1, the paths representedibst are V-paths when we run the algorithm. We claim

that our algorithm is basically a top-down, dynamic-programming
algorithm (namedvemoizationto find the optimal V-path between a pair of granularities. We examine
two key ingredients that must exist to ensure an optimal solution [Cormen et al. 1990].

1. The optimal substructure of the optimal VV-path problem.

We say a problem exhibitgptimal substructuré an optimal solution to the problem contains within
it optimal solutions to subproblems. We use the same notation in AlgobBihi@loseto illustrate the
optimal substructure in this problem.

Assuming the pathg(to = to z to y) is the optimal V-path between granularitigand y (here,x

is a one-step finer granularity gfand = is the bottom), then the subpath {o = to y) must be the
optimal path forz andy. We can proof this by contradiction. If there were a better V-path:fand

y, substituting the path in andy would produce another optimal V-path whose cost was lower than
the original path: contradiction. Using the same argument, we claim that, for an optimal straight path,
assumingy is the coarser granularity, then the subpathq(y) is the optimal path for: andy. Thus,

an optimal solution to an instance of the optimal V-path problem contains within it optimal solutions
to subproblem instances. Note that we always traverse down from the coarser granularity. If we reach
bottomz, then the optimal subpath of the straight-pathd y) is the path: the finer granularity gf

to z.

2. Arecursive solution

The second step is to define the value of an optimal solution recursively in terms of an optimal
solutions to subproblems.

Let V _icost[g, y] be the number of irregular mappings in the optimal V-path frgrto y, and
I_icost[g,y] be the number of irregular mappings in straight path from coarser to finer, we can
defineV _icost[g, y] andl _icost[g, y] recursively as follows. Ify = y, there is no cost. To compute
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V _icost[g, y] andl _icost[g, y] wheng # y, we take advantage of the structure of an optimal solution
from step 1. Let's assume that the optimal path Jaand y is throughz which is finer than and
adjacent tgy in the granularity graph. We have

V_icost[g,y] = V _icost[z, y] + [ _icost[g, z] , and

I_icost[g,y] = I_icost[z,y]+ I _icost[g, z].
Where,

Licostlg.a]={ L forirregular mapping
_tcost|g, x| = 0 for regularmappmg

The above recursive equation assumes that we know which finer granuldrityform the optimal
V-path, which we don’t. Since is not the only finer granularity of and the optimal V-path must be
constructed by going through one of the finer granularities, we need to check them all to find the best
V-path. Thus, the recursive definition for the minimum cost of the optimal V-Path becomes

I_icost|g, y]

V_icost[g,y] = min Iicostly, g]
min {V Zcostz,y] + I_icost[g, x]}

x € g's finer lists

. o0 if g finer than y
L-icost[g, y] = min {I_icost[z,y]+ [_icost[g, z]}

x € g's finer lists

Algorithm Find_Pathis a top-down algorithm based on the above recurrence to compute the optimal
V-path. This algorithm is one of the ways to calculate the tables defined above. Combining with Lemma
4.3.1, we conclude that the final resultsfiir st array are the optimal V-paths. ]

If we search for all top-granularities (granularities with no coarser but some finer or congruent gran-
ularities) in the granularity graph and store them instead of the source and destination granularities in the
top_queue, the algorithm is extended to solve the all-pairs optimal V-paths for the granularity graph. This
is easy to see because if we traverse down from top-granularities, each subproblem will be encountered to
solve the optimal V-paths for the entire graph.

What is the running time of the above algorithm? If there @fé€ granularities andF| number of
mappings (edges) in the granularity graplV, £), building the top queue takes timé¥|V'|). Each
granularity is visited at most once, and procedre C'lose is called exactly once for each granularity
in G. During the execution ofDo C'lose, the loop for the one-step finer granularitiesgofs executed
| finer_granularities(g)| (the number of one-step finer granularitieg/pfimes. Since

> | finer_granularities(g)| = O(|El),

cgeG

and there is a testing loop at each granularity, the total running time of Algofithid _Path isO(|V|) +
O(VIIE]), or O(|V]| £1).

17



Chapter 5

THE Cast OPERATION

The Cast operation is performed to correctly convert time from the source to the destination granularity.
Given the optimal path, th€astalgorithm needs to convert a time value from one granularity to another
in each step of the path. For an irregular mapping step, the algorithm simply invokes the user-defined
C functions to convert the granule. For a regular mapping or a congruent mapping, the granule can be
converted by multiplying or dividing by the conversion constant with an anchor adjustment.

For example, to cast an instant, thegranule, from granularity to granularity3, assuming a regular
mapping with conversion constaft then

Cast(i,, a, §) = 1, X C+ anchoroffset

We defined in Chapter Two that an anchor is @ifegranule of a granularity. In the specification of a
granularity graph, the anchor may be defined in terms of a granularity that also needs to be converted. The
user declares granularities, each with an anchor, the latter in an anchor granularity. As stated in Chapter
Two, we don't want to require the user to use chronons for the anchor granularity; in other words, we want
to allow non-chronon anchor granularities. For example, a student wishes to design a special calendar for
his academic activities with year origin defined as the first year he was in this department. He knows the
origin is Fall,1995 (the anchor of his special calendar which is defined on the Gregorian years), but most
likely, he has no idea which chronon that is. We also don’t want to use a same anchor for all granularities
as we stated in Chapter two.

In this Chapter, we will first describe the problem caused by computing the anchor offset, and the
solution we come up with, then we present the algorithm forGhastoperation and provide the proof of
correctness.

5.1 Computing The Anchor Offset

To compute the anchor offset, we need to call @astalgorithm recursively. Unfortunately, this will
sometimes cause the algorithm to never halt if the granularity graph declared by the user is not properly
formed. We give the following example to illustrate the termination problem.

Figure 5.1 is a granularity graph with three user-declared granularitje$, ¢y) as well as the bottom
granularity (chronons). In this particular exampieand~ anchors on chronons amdanchors onv. Note
thata is a coarser granularity thah When we sayi’s anchor is the 4th granule of, we really mean that
3’s anchor is the first chronon in the 4th granulexofThe problem is that the software has no information
about what3’s anchor is in chronons. Suppose we are to cast'thgranule from3 to v, we need to know
the anchor offset of and~. The following are the steps needed to compute the anchor offset.
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a (anchor = 5th granule in Chronons)
|
B (anchor = 4th granule inx )
|
Y (anchor = Oth granule in Chronons)

chronons (anchor assumed)

Figure 5.1: A granularity graph with nontermination problem

1. We need to calculate anchor@gxpressed on granule of
2. Giventhe anchor of on« (the fourth granule oft), we need to call th€astfunction to cast the 4th
granule froma to .
Cast(ig, 3,7) = tg X C' 4+ Cast(4,, o, 7)
The only path we can have in the granularity graphiss» 5 — ~v

3. Convert the fourth granule i to granule in3. The result is obviously the Oth granuledn

4. Then convert the Oth granule ihto v, and we go back to step 1.

This example shows that a user, when defining granularities and anchors, can indeed get into trouble,
even when the granularity graph is clearly acyclic. To avoid this problem, we will require that the anchor
granularity be finer than the granularity being defined. This is a reasonable constraint. It will be checked
at DBMS generation time; the module will report an error if this constraint is not satisfied. Given the
constraint, we can prove that ti@astalgorithm always terminates. We call the computation of anchor
offset as anchoring” to differentiate it from the reaCastoperation. In the next two sections, we first
present th&astalgorithm, then prove the algorithm terminates.

5.2 TheCast Algorithm

Suppose we are to cast a granglefrom granularitya to 5 and a granulg; from granularity to «.
Assuming thatv is coarser thag,

Cast(go,a, B) = |ga x C7F + Ag|
Cast(gs, 3,0) = |gs x CP7* — A x CF7]

where,

CoP = C,}ﬁ is the conversion constant fromto 3, and
Af is the anchor of expressed in granule of a finer granulayity

To computeA ], we useA?, which isa’s anchor defined in the finer granularity Then,
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Algorithm 5.2.1 Cast(g, from,to)
Input: The granule to be convertegl)( the source granularityf¢om), and
the destination granularityq).
Output: The granule in the destination granularity §u!lt).
if from=to then return g;
/*find the path between the source and the destination granularities */
path « Find_Path(from,to);
result « g;
while (path is not null)
switch (path.mapping_type)
case trreg_finer _mapping:
result < firreguiar_finer_mapping(result, path. from, path.to);
case irreg_coarser_mapping :
result < firrequiar _coarser mapping (r€sult, path. from, path.to);
case reg_finer_mapping OF congruent_mapping :
anchor_v is the anchor value op@th. from);
anchor_granularity is the anchor granularity op@th. from);
result < |result x (path.C') +
Cast(anchor v, anchor _granularity, path.to) |;
case reg_coarser_mapping :
anchor_v is the anchor value opg@th.to);
anchor_granularity is the anchor granularity op@th.to);
result < |result X (path.C') —
Cast(anchor v, anchor _granularity, path. from) X path.C'|;
path + path.next;
return result;

Figure 5.2: The''ast algorithm

Af = Cast(Ag, 7, 3)

Note that for congruent mapping, either one of the alidast can be used to compute the anchor offset.

To perform theCastoperation from a source to a destination granularities, we need to find the optimal
path. The optimal path is stored in a linked list nampeth, of steps. The structure also contains the source
(from) and the destinationi¢) granularities, the mapping types{pping type), and for regular mapping,
the conversion constant’{, for irregular mapping, two pointers pointing to the user-defined C mapping
functions. Figure 5.2 gives th@astalgorithm.

The Castalgorithm in Figure 5.2 actually does the path finding and recursive anchoring operation at
each step of the conversion. This is considered inefficient for both the application programs and databases
applications. In either case, the previously computed optimal V-paths and anchor offsets are cached to avoid
the recomputation. This will be further discussed in next chapter. Recalling that we do not consider the
recursive anchor offset computing when we derivefiied_Path algorithm, the main reason of ignoring
the anchor offsets is that an anchor offset is computed only when it is first encountered. The computed
anchor offset is stored so the value is simply looked up each subsequent time it appears. With the caching
strategy, the anchor offset computing won't affect the choice of an optimal V-path.

Notice that in Algorithm 5.2.1, for any determinate instance, @astalways returns a determinate
result. For any anchored indeterminate instance, the start and the end of the instance are cast separately to
get the indeterminate result. Our module provides functions to perform all the standard SQL-92 operations
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for a multicalendar system. The functions are listed in Appendix A.

5.3 Proof Of Termination

The proof of termination involves constructing a bipartite graph foiGhsetoperation, and using a partial
order to argue the nonexistence of cycles in the graph.

The directed bipartite grapli-() is constructed based on the granularity gra@h)( To distinguish the
bipartite graph and the granularity graph, we use the subsdaagnhdicate the bipartite graph.

LetGy, = (Vi, Fb, Us) be the bipartite graph. The vertices are partitioned into two disjoint sulisets (
andU;,) such that there is no edge connecting two vertices from the same subset.

V, is a set of anchor offsets needed to be computed in the granularity@Graphvertex inV, is denoted
by A7, wherez is a coarser or a congruent granularity/ah &, and the mapping betweerandy is either
regular or congruent. Remember there is no need to compute the anchor offset for an irregular mapping.

U, is the other set of vertices in which each vertex represents an one-step mapping in the granularity
graph. Avertexir, is denoted byz, y) to indicate the one-step mapping betweemdy in the granularity
graph.

F, is a set of directed edges connecting vertices betwgeandV,. The edges are constructed by
following the processes taken to compute an anchor offset. An edge points from awette, y) in the
setU, to a vertexy, = Ay inthe setV, if the mapping ¢, y) requires computing the anchor offskf. Note
that only regular and congruent mappings require to compute the anchor offsets; for an irregular mapping,
there is no edge coming out of the nodé/in Given the anchor of is in 7, the pathp from = to y is needed
to compute the anchor offseh(). An edge points from an vertex = A7 in V, to a vertexu, in U, if the
one-step path im, is contained in the corresponding path

Figure 5.3 shows a simple granularity grapfy and the corresponding bipartite graph. In the
granularity graph, the anchor afis in v, the anchors off, v andé are in the chronong and the anchor
of pisin §. Note that the mapping betweenands is an irregular mapping and the mapping between
andn is a congruent mapping. Let's follow the anchor offset computatiah pto construct the edges for
the bipartite graph. Given’s anchor inv, the casting path is — 5. Since this is a coarser mapping,
the required anchor offset 'rsg. The anchor ofs is defined inL, so to computeﬁfj, the needed path is
L— & — ~. Since the path is composed of two steps, there are two edgeslffolp\ointing to (L, 4) and
(6,7)- Following the anchor offset computation &f) will give us the rest of edges in the bipartite graph.
For this particular example, starting fratxt; andA7 yields the complete bipartite graph. Note that there is
no edge coming out ok’ in V, and(a, v) in U,. The former is because the anchor offset is given for the
granularity graph; the latter is because the mapping betweserd~ is irregular. Since th€astalgorithm
effectively follows the edges in the graph, if there is an cycle in the gfaptihe Castalgorithm will not
terminate.

To ensure the termination of tigastalgorithm, we add the constraint that the anchor of a granularity
should be defined in a finer granularity. We claim that @estalgorithm will always terminate for a
granularity graph satisfying the above constraint. Before we give the formal proof of the claim, let’s define
a partial order for the vertices (the one-step paths) if/setWe use a subscripton this partial order to
distinguish the coarser relation for the one step patig,ifrom the coarser relation for granularities.
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o AfG (o, B)
/ \ (av 77)
g AP (8,7)

(@) Gy, (b) Gy

Definition 5.3.1 coarser (“>,”) relationship
Given two vertices in séf, in the bipartite graph:u, = (21, y1) andu, = (21, y2),
Uy >, Uy ff

(1) (maz(zy, y1) > maz(zq,y2)) V
(2) ((x1 ~ y1 ~ @) A (y2 < @a))  V
) (1 ~y1 ~ya) A (w2 < ya))

In above definitionmax returns the coarser granularity and chooses an arbitrary granularity if the two
granularities are congruent. The first condition in Definition 5.3.1 is straight forward: the p&thvirth
the coarser granularity is the coarser path. The second and third conditions are for special cases: we define
a congruent path, to be coarser than a path composed of a granularity congruent with granularities in
and a finer granularity. Applying the definition on Figure 5.3(b), we have

(a, B) >, (B,7) >p (vsm) >p (v,6) >, (6, L) and
(04, 77) >p (ﬁv'Y) >p (77 77) >p (77 5) >p (57 J—) :
Since the definition of the>*,” is based on the relation between granularities, as in the finer relation for
granularities, the *,” is a partial order. In Figure 5.3(b}¢, ) is not coarser tha, v), and(«, ) is not
coarser thaifier, 3). The “>,” also has the following two properties, which follow from its definition:
e Transitivity: if u; >, u; andu; >, u, thenu; >, uy .

o Inreflexivity: u; %, u; .
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With Definition 5.3.1 and the assumption about the finer anchor granularity, we argue that starting from
any vertex in th&x, built on a granularity graph satisfying the constraint about the finer anchor granularity,
and following the direction of edges to compute an anchor offset, the encountered vertices i tlaeet
in descending order with respect to the," relation.

Lemma5.3.2 Given a granularity graph, if the anchor of each granularity is defined in a finer granularity,
then following an arbitrary edge in the corresponding bipartite graph, for any two consecutive vertices
andu, ., in Uy, we haveu, >, u;4q :

Proof: Letu,; be an arbitrary one-step path,(5) in U, anda’s anchor is iny. Assumings is finer thany,

an edge in the bipartite graph points framto Ag. The outward edges from§ should point to each step
of the pathp from ~ to 4 in order to compute the anchor offset. The gathust be either a straight-up path,
a straight-down path or a V shape path in the granularity graphu Ligtbe any consecutive vertex in the
bipartite graph, then the paghcan be expressed as - - 3.

1. For a straight-up path, due to the transitivity of granularities, we have

v K ﬁ i
Along with the assumption that < «, it's straight forward to see that all granularities in the gath
is finer thanw. By Definition 5.3.1 (1), we prove that, >, w1 .

2. For a straight-down path,

ﬁ < ey
Giveny < « from the constraint about the finer anchor granularity, as in step 1, all granularities in
the pathp are finer thanv resulting inu; > w;,, .

3. For a V shape path, th€ A is finer thans and~ by theC' A definition. From step 1 and step 2, we
immediately haver; >, u;1; .

If o is congruent with3, because of the assumption of the finer anchor granularity, theyiedm ~ to
[ can only be a straight-up path or a V-path. Applying step 1 and step 3, and plus Definition 5.3.1 (2) and
(3), we also find:; >, u;41. Combining the all steps, we have proved the Lemma. O

Now we can further prove that given the constraint,@astalgorithm terminates.

Theorem 5.3.3 Given agranularity graph, if the anchor of each granularity is defined in a finer granularity
, then the Cast algorithm on any pair of granularities always terminates.

Proof: This is proved by contradiction.

Suppose the algorithm does not terminate. Since each step Gastalgorithm traverses an edge of
G, and since there are finite number of nodes in this graph, there must be a cycle in the bipartité,graph
The cycle contains two vertices andu; in U, such that

Uy —> oo U = U
Then according to Lemma 5.3.2 and the transitivity af", we haveu; >, u; .
This is in contradiction with the inreflexivity of< ,”, so we have proved Theorem 5.3.3. O
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Chapter 6

PERFORMANCE

Performance is an importantissue. Our goal is to provide a package to supportthe multiple time granularities
within both application programs and databases. A scalable solution, capable of handling hundreds of
granularities, is desired. We use several strategies to improve the performance.

The first strategy is to compose the path for regular mappings and congruent mappings with the same
anchor. We definecost as the cost of the anchor adjustments in the path. For V-paths between a pair
of granularities, thecost (the number of irregular mappings) is the major factor to choose which path is
better. If two granularities have the same anchor and the same anchor offset, thessthef these two
granularities is zero. In the case of the samet, the path with smalletcost will be selected. Thecost
is also used to improve the performance further. For a straight-line path (either finer or coarser path), if
theacost is zero in each step, and there is no irregular mapping in the path, then the path can be combined
into a single step with a new conversion constant to reduce the mappings. For example, in Figure 2.1,
the mappings frondays — hours — mi nut es can be combined agays — mi nut es with a new
conversion constant 1440.

Since the number of the anchor offsets needed to be computed in a granularity graph is a fixed number,
the number of edges, we use a lazy caching strategy to improve the performance. An anchor offset is
computed on demand and stored in the front of the cache, which is a linked list. Each subsequent time this
anchor offset is encountered, the value in the list is used and the anchor offset is moved to the front of the
list. When the cache is full, the values at the back of the list are freed to give space for the newly computed
anchor offsets. We envision that if there aren’t a great many edges, the cache can be made large enough to
hold all anchores.

The performance of computing the optimal V-paths is more complicated. We emphasize that our module
is designed to support both application programs and databases. As we stated in Chapter 4.3, for database
applications, during the graph specification the optimal V-paths computation can be very slow,@asthe
must be fast at query-time. If the set of granularities is small, the optimal V-path between any two pair of
granularities can be determined at DBMS generation time, as the declaration is done. However, as there
areO(|V]?) optimal V-paths in a given granularity graph(V, F'), for many application programs that cast
and scale between a small subset of granularities, computing all optimal V-paths is overkill. Our solution
is to allow precomputation optionally, as a separate user command. This would be appropriate for database
applications. For application programs, we use the lazy caching approach: the optimal V-path is calculated
on demand and cached after the computation.

To quantify the actual cost of computing an optimal V-path, we ran a series of tests on the multicalendar
granularity graph shown in Figure 2.1, with 18 granularities and 20 edges. We start with a sequence of pairs
of randomly selected granularities. As the length of the sequence increases, we expect that the average cost
per optimal V-paths (termed thécos} will drop for the lazy caching approach. We then vary the degree
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of randomness and the cache size to determine the effect of the lazy caching strategy. To precisely measure
the V-cost, we ran the tests on a DEC 2000/233 workstation (with an Alpha 21064 processor running at
233MHz) and use the atom tool [SE94] to measure the number of cycles spentin computing an optimal path.
Each test is repeated 50 times (each time with a random sequence of pairs) to get the average results. The
V-cost is computed by dividing the total cost of searching the patli®bgequence length. The following

is the parameters used in the tests:

AlgorithmsThe algorithms used to compute the optimal V-paths:

DP-ALLThe dynamic programming approach (DP), using Algorithm 4.3.1 to precompute the variable
first for the all-pairs (ALL) optimal V-paths.

DP-SThe dynamic programming approach (DP), using Algorithm 4.3.1 to compute the variable
first as needed for a single (S) pair of granularities .

EDSP-SThe extendedag-Shortest-PathAlgorithm (EDSP), to compute the optimal V-path as
needed for a single pair (S) of granularities without caching.

EDSP-SCThe extendedag-Shortest-Path&lgorithm (EDSP), to compute the optimal V-path as
needed for a single pair (S) of granularities with the lazy caching strategy (C).

Sequence Lengifhe length of the call sequences with values 1, 2, 4, 8, 16, 32, 64, 128 and 256.
Cache Siz&he cache size for EDSP-SC with values 1KB, 2KB, 3KB, 4KB, 5KB, 6KB, 7KB and 8KB.

Degree of Randomne3$ie number of the unique pairs of granularities needed to compute the optimal
V-paths, with values 1, 2, 4, 8, 16, 32, 64, 128 and 256. /Fanique pairs of granularities, the
pairs are generated randomly, then pairs are randomly chosen to form a series of calls. A value of 1
specifies all pairs are identical; a values of 256 results in a totally random sequence of pairs.

Figure 6.1 shows the V-cost versus sequence length with randomly generated sequences for different
algorithms. We choose the cache size 1KB for EDSP-SC to match the size of the varfabiest¢g and
cost) in Algorithms DP-ALL and DP-S. For DP-ALL, precomputing thié-st variable costs 156555 cycles.

Figure 6.1 shows the V-cost with the precomputation and without the precomputation. As one would expect,
the V-cost for EDSP-S (16684 cycles) is much higher (8 times higher) than that for DP-ALL (2331 cycles not
including the precomputation). As showninthe graph, for EDSP-SC, the 1KB cache has no effect on the cost
because of the randomly generated sequences. Figure 6.2 is a log scaled version of Figure 6.1. We observe
that for shorter sequences (sequence lerg#), the V-costs for DP-ALL (including the precomputation)

and DP-S are higher than those for EDSP-SC and EDSP-S. This makes sense — Algorithm DP-ALL and
DP-S use a dynamic programming approach, thus computing the optimal V-paths for subproblems. For
longer sequences, the V-costs for DP-ALL and DP-S reduce quickly below the cost for EDSP-S since the
previously computed optimal V-paths are simply looked up in fhest variable. Note that, for longer
sequences, the cost for DP-ALL drops even faster than that for DP-S.

Figure 6.3 gives the result for different degrees of randomness for the DP-S approach. The curves
show that a lower degree of randomness yields a smaller V-cost. The interesting point is that the V-cost
for different randomness are not dramatically different. At longer sequences, the costs are quite similar for
different randomness.

Figure 6.4 and Figure 6.5 show the performance for Algorithm EDSP-SC. We wish to determinate the
right cache size for different randomness. In Figure 6.4, we measure the V-cost versus sequence length with
a fixed degree of randomness of 8 for different cache sizes. As shown in the figure, clearly, the 2KB cache is
sufficient for the sequences with 8 unique pairs. The V-cost drops rapidly as the sequence length increases.
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For sequences longer than 64 pairs, the V-cost drops below that (2331 cycles) for DP-ALL in Figure 6.1,
which shows that for a degree of randomness of 8 and a sequenceXefigiicDSP-SC provides the best
performance.

To further evaluate the effect of the lazy caching strategy, we ran further tests with different randomness
for EDSP-SC. Figure 6.5 shows the results. This figure indicates which cache size is sufficient for different
degree of randomness. For example, 3KB is enough for Randomness=16 and 5KB for Randomness=32.
Surprisingly, we find that with 3KB cache, Algorithm EDSP-SC can achieve the best performance (the cost
per optimal V-path is less than 500 cycles comparing with 2231 cycles for DP-ALL) for sequences up to 16
unique pairs.

These analysis shows that different algorithms do affect the cost aC&lseoperations. Although
the tests ware done only on one granularity graph, that of Figure 2.1, the results suggest that for a user,
performing theCass with higher degree of randomness and shorter sequence length, EDSP-S works fine;
for lower degree of randomness (16), EDSP-SC with small cache size (about 3KB for this particular
graph) provides surprisingly good results; for higher degree of randomness and longer sequence length,
precomputation (DP-ALL and DP-S) are the best choices.

27



28

12000 ‘

cache=1KB ——
cache=2KB -+~
cache=3KB -8--
cache=4KB -x

10000 .
8000
6000

4000 |- RV .

Average time per optimal V-path (cycles)

2000 |- e 8

0 Il Il Il Il
8 16 32 64 128 256
Sequence Length (log)

Figure 6.4: The V-cost versus Sequence Length with Randomness=8 for EDSP-SC.

18000
16000 - cache=1KB <—
cache=2KB -+--
cache=3KB -B--
cache=4KB -x
I 14000 |- cache=5KB -&-- A 1
Q@ cache=6KB --- o
S cache=7KB -¢-- e _—
= 12000 cache=8KB e
£ ,,
Q
g %
< 10000 4
£ .
g et
@ 8000 : B
Q
(]
£
[} 6000 B
(=
o
[
>
< 4000 g
2000 B
0 Il
1 2 4 8 16 32 64 128 256

Degree of Randomness

Figure 6.5: The V-cost versus Degree of Randomness with Sequence Length=256 for EDSP-SC.

28



Chapter 7

SUMMARY

This thesis involves elaborating a software architecture for supporting multiple time granularities within an
application program or a database. First, we described a granularity as partitioning of the time-line, and
the mapping relationship for a pair of granularities, which may be either a regular mapping, an irregular
mapping or a congruent mapping. We showed how to weave granularities from different calendars into a
single granularity graph. In Chapter Three we also pointed out the three requirements for a properly formed
granularity graph. When the graph is declared, the module will check the graph and report any errors. We
described why the V-paths are the correct paths to perforr€éstoperation and proved that all V-paths

yield the same result. We then extended the shortest path algorithm to compute the optimal path for a single
pair of granularities and also presented an dynamic programming algorithm to solve the all-pairs optimal
V-paths. We pointed out the nontermination problem in the computation of anchor offset and proved that
given a granularity graph, if the anchor of each granularity is defined in a finer granularity, th€ashe
algorithm on any pair of granularities always terminates. Chapter Five gave the c@asgelgorithm for

casting the anchored time values. Finally, we presented our strategies to improve the performance. We
emphasized that our module is to support both application programs and database management systems and
we also described the different performance requirement for application programs and DBMSs. The lazy
caching strategy is recommended to avoid computing previously computed results. The external module
interface is listed in Appendix A. This work will serve as an important part of a comprehensive library,
supporting both temporal DBMSs and application programs that handle time values.

There are some future work can be done. First, this thesis assumes that the costs for all irregular
mappings are the same by assigning a cost of 1 to all edges. Such an approach has a drawback, however. It
does not distinguishthe edges with different execution time, which may affect the computation of the optimal
path. If we know the execution costs of irregular mappings, our module interface can easily be extended to
provide potentially faster V-paths. Second, this thesis does not deahvetiials i.e., unanchored durations
of time. An interval is an amount of time with a known length but no specific starting or ending instants
[Dyreson & Snodgrass 1994A]. For example, an interval two months has a duration of two months, but can
be any block of two consecutive months, which could be a wide ranges of days due to the irregular mapping
between months and days. Given leap granules and various arbitrary aspects of calendars, computing the
duration of an interval in a finer granularity is generally complex. The computation involves checking the
every possible duration in the entire time line of the interval granularity, which is practically impossible.
Therefore, how to compute intervals in the granule operations is still an open question in temporal databases.

29



Appendix A

THE EXTERNAL INTERFACE

/* The internal tinestanp with maxi mum 96 bits. */
typedef int pol ynorphic.int;

/* The mappi ngs types */ typedef enum {
reg-finer,
reg._coar ser,
conguent,
irregfiner,
i rreg_coarser
} mappi ng-type;

/* The possible error types */
typedef enum {
gran_CK,
gr an_not _f ound,
gr an_ot her _not _f ound,
gran_exi sts,
gran_resul t _not _avai | abl e,
gran_overfl ow,
gran_cr oss_cal ender _oper at or s,
gran_t oo_many_granul ari ti es,
gran_lattice_error
} gran_error _type;

/* granularity is a global notion. Each is supplied by a cal endar.
t ypedef unsigned char granularity;

/*
* Each cal endar al so has, known to it, local identifiers, which are

* integers, of the granularities it supports. Wen any of the napping

* or other cal endar-specific functions are called, the granularities
* are always referred to by their local identifiers, which should be
* known to the cal endar.

*/

/*

* There is a distinguished granularity, 0, with anchor 0, in relation
* to which all other granularities are defined. The distinguished

* granularity is the base-line second.

*/

static const granularity second_granul arity=0;

extern granularity gran_default_granularity;
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/* USED FOR | NI TI ALI ZATI ON */

/*

* Routine: declare_granularity

*

* Description: Declare a granularity, and associate an anchor with it.
*

* Argunents: id -- (IN: granularity being associated with the anchor
* calendar_id -- (IN): identifies the cal endar that
* supports this granularity

* local .id -- (IN): the local identifier for the

* granularity, within the cal endar

* anchor -- (IN: position of anchor

* anchor _gran -- (IN: the granularity of the anchor
*

* Return Value: FError Code

*

* BErrors: gran_exists

*

* Side Effects: Ganularity id, if not previously declared,

* i s now defined.

*

/
gran_error_type declare_granularity(granularity id, int cal endar.id,
int local_id, polynorphic.int anchor, granularity anchor_gran);

/*

* Routine: declare_congruent

*

* Description: Declare tw granularities to be identical partitionings
* of the underlying time line (with possibly different
* anchors). This relationship is reflexive, symretric
* and transitive.

*

* Argunents: one -- (IN): one of the congruent granularities

* two -- (IN: the other congruent granularity

*

* Return Value: Error Code

*

* Errors: gran.not_found: if one not found

* gran_ot her _not found: if two not found

*

* Side Effects: The two granularities, and any previously congruent
* granularities, and considered to be congruent.

*/

gran_error_type decl are_congruent (granularity one, granularity two);

cl osest determ nate value in the destination
granularity where cast has the follow ng
par anet er s:

/*

* Routine: declare.irregul ar_nmappi ng

*

* Description: Declare an irregular mapping fromone granularity to
* another. The nmapping consists of three functions
* that are available for converting a value in one
* granularity to a value in a different granularity.
* Mappi ngs are allowed only between granularities

* supported by the same cal endar.

*

* Argunents: from-- (IN): the source granularity

* to -- (IN): the destination granularity

* cast -- (IN): user-defined function that yields the
*

*

*

31



E R S N . N R N N S N N S S N N N S S D T I . N N N N N S N N N N

/

32

from-- (IN: local id of the source granularity
to -- (IN: local id of the destination granularity
thislower -- (IN: value to be converted

result -- (QUT): value in the to granularity

and returns an error code (gran_not_found or

gran_ot her _not _f ound)

scal e_determinate -- (IN): user-defined function that

yields a possibly indeterm nate value (in the
destination granularity) of a determ nate val ue
in the source granularity where scal e_.determ nate
has the followi ng paraneters.

from-- (IN: local id of the source granularity
to -- (IN: local id of the destination granularity
thislower -- (IN: value to be converted
result_lower -- (QUT): |ower support in the to

granularity

resul t _upper -- (QUT): upper support in the to

granularity

and returns an error code (gran_not_found or

gran_ot her _not _f ound)

scale_indeterminate -- (IN: function that yields a

possibly indeternminate value (in the destination
granularity) of an indeterm nate value in the source
granularity where scal e_i ndeterninate has the
foll owing paraneters

from-- (IN: local id of the source granularity

to -- (IN: local id of the destination granularity

thislower -- (IN: value to be converted

this_.upper -- (IN: value to be converted

result_lower -- (QUT): |ower support in the to
granularity

resul t _upper -- (QUT): upper in the to granularity

and returns an error code (gran-not_found
or gran_ot her _not _f ound)

Return Value: FError Code
Errors: gran.not found: if fromnot found
gran_ot her _not _found: if to not found

Side Effects: Mapping is recorded for use in conversion operations.

gran_error_type decl are.irregul ar _mappi ng(granul arity from

granularity to,
gran_error _type
gran_error _type
gran_error _type
gran_error _type

*

Description: Decl

Argunents: from -

L R N S T R R

Ret urn Val ue: Err

to --
conversion -- (IN: the nultiplicative conversion factor

*cast _finer)(),

*cast _coarser) (),

*scal e_determ nate) (),
*scal e_i ndeterminate) ()):

~AN AN~

* Routine: declare_regul ar _mappi ng

are an irregular mapping fromone granularity to

another. A regular mapping is sinply an integral

to conversion. An exanple is fromhours to minutes
by multiplying by 60. An anchor adjustrment may al so
be required. Regular nappings can be defined between
granularities supported by different cal endars.

- (IN: the source (coarser) granularity
(IN): the target (finer) granularity

or Code
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Errors: gran.not found: if fromnot found
gran_ot her _.not found: if to not found

Side Effects: Mapping is recorded for use in conversion operations.
/
gran_error _type decl are_regul ar _mappi ng(granul arity from
granularity to, int conversion);

* 0% Ok X Ok

*

Routine: declare_eplus.s

Description: Declare a function to do this arithnetic operation
in the indicated span granularity.

Argunents: s.gran -- (IN): granularity of the event
eplus.s -- (IN: function which can perform the operation

where e_plus_s has the following paraneters

e -- (IN: source event

egran -- (IN): local granularity of the event

s -- (IN): source span

sgran -- (IN): local granularity of the span

result -- (QUT): the event resulting fromthe,

addition in the egran
and returns an error code (gran_not_found or
gran_ot her _not _f ound)

Return Value: Error Code
Errors: gran-not _found

Side Effects: The function pointer is stored, or overwitten if
previously present, for |later use.

gran_error_type declare_e_plus_s(granularity s_gran,
gran_error_type (*e_pl us_s)(pol ynorphic.int e,
granul arity e_gran, polynorphic.int s,
pol ynorphic_.int* result));

L B S S S T S R N N . N N N I S R R R

*/
gran_error_type decl are_e_plus_s(granularity s_gran,
gran_error_type (*e_plus.s)());

addition in the s_gran
and returns an error code (gran_not_found)

Return Value: Error Code

/*

* Routine: declare_splus_e

*

* Description: Declare a function to do this arithnetic operation in
* the indicated span granularity.

*

* Argunments: s.gran -- (IN: granularity of the span

* spluse -- (IN): function which can perform the operation
* where s_plus_e has the followi ng paraneters

* s -- (IN): source span

* e -- (IN: source event

* egran -- (IN): local granularity of the span

* result -- (QUT): the event resulting fromthe

*

*

*

*

*
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Errors: gran-not _found

*

*

* Side Effects: The function pointer is stored, or overwitten if
* previously present, for |ater user

*

*gran_error _type declare_s_plus_e(granularity s_gran,

* gran_error _type (*s_plus_e)(polynorphic.int s,
* pol ynorphic_.int e, granularity e_gran,

* pol ymorphic.int *result));

*/

gran_error_type declare_s_plus_e(granularity s_gran,
gran_error_type (*s_plus_e)());

*

Routine: declare_e_m nus_e

the indicated result granularity.

subtraction, in the result_gran
and returns an error code (gran_not_found or
gran_ot her _not _f ound)

Return Value: Error Code
Errors: gran-not _found

Side Effects: The function pointer is stored, or overwitten if
previously present, for |later use.

gran_error_type declare_e.minus_e(granul arity result_gran,
gran_error_type (*e_m nus_e) (pol ynorphic_.int left,
granularity |eft_gran,
pol ynor phic_int right,
granul arity right_gran,
int *result));

L B B T I N S S R N R I I R

~

gran_error_type decl are_e.mi nus_e(granularity result_gran,
gran_error_type (*e_nminus_e)());

*

Routine: decl are_extract

granularity
Argunents: right_gran -- (IN: the specified granularity

operation.
where extract has the follow ng paraneters:
right_gran--(IN): the specified granularity
right -- (IN: an event
left_gran -- (IN: the requested granularity
result -- (QUT): the value of the requested

* 0% X 3k 3k 3k X X k¥ 3k F ¥ T~
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Description: Declare a function to do this arithnmetic operation wth

Argunents: result_gran -- (IN): desired granularity of the result
emnus_e -- (IN): function which can perform the operation
where e_m nus_e has the follow ng paraneters:
left -- (IN): source event
left_gran -- (IN: local granularity of |eft
right -- (IN): other source event
right_gran -- (IN: local granularity of right
result -- (QUT): the span resulting fromthe

Description: Declare an extraction function requesting a specified

extract -- (IN): a function which perforns the requested
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* granularity

* and returns an error code (gran_not_found, gran_overflow)
*

* Return Value: Error Code

*

* Errors: gran_not _found

*

* Side Effects: None.

*

*gran_error _type declare_extract(granularity right_gran,
* gran_error_type (*extract)(granularity right_gran,
* pol ymor phic_int right,

* granularity |eft_gran,

* int *result) );

*/

gran_error_type declare_extract(granularity right_gran,
gran_error_type (*extract)());

*

Routine: extract

Description: Extracts the indicated conponent of the argument event
or span. As an exanple, extracting the year fromthe
event "April 19, 1955" yields 1955. Extracting the
nonth yields 4, and extracting the day yields 19.

O course, the specific values returned are
cal endar - dependent .

Argunents: left_gran -- (IN): the granularity to be extracted
right -- (IN): an event or span, from which the val ue
is to be extracted
right_gran -- (IN: the granularity of right
result -- (QUT)

Return Value: Error Code

Errors: gran-not _found
gr an_ot her _not _f ound
gran_cross_cal ender _operators
gran_overflow -- the integer returned is too big to
fit in an int

Side Effects: A cal endar_supplied function is called.

L B S B S T N R R S B R B R I

~

gran_error_type extract(granularity |eft_gran, polynorphic.int right,
granularity right_gran, int *result);

*

Routine: scal e.determ nate

Description: Yields a possibly indetermnate value (in the
destination granularity) of a determ nate val ue
in the source granularity

Argunents: original -- (IN: value to be converted
from-- (IN): the source granularity
to -- (IN: the target granularity
result_lower -- (QUT): |ower support in the to
granularity
resul t _upper -- (QUT): upper support in the to
granularity

L S S A T R R
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Return Value: Error Code

*
*
* Errors: gran.not_found: if from not found

* gran_ot her _not found: if to not found
*

*

*

Side Effects: One or nore cal endar _supplied functions nay be call ed.
/
gran_error_type scal e_det erm nat e( pol ynor phic_.int original,
granularity from granularity to,
pol ynor phi c_i nt* result_|l ower,
pol ynor phi c_i nt* resul t _upper);

*

Routine: scal e.indeterm nate

Description: Yields an indeterm nate value (in the destination
granularity) of a determ nate value in the source
granul arity.

Argunents: this_.lower -- (IN: lower support of value to be converted
thi s_upper -- (IN): upper support of value to be converted
from-- (IN): the source granularity
to -- (IN: the target granularity
result_lower -- (QUT): lower support in the to

granularity
resul t _upper -- (QUT): upper support in the to
granularity

Return Value: Error Code

Errors: gran.not found: if fromnot found
gran_ot her _not found: if to not found

Side Effects: One or nore cal endar _supplied functions nay be call ed.

L B B R T R R B S S R R e
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gran_error_type scal e_i ndet er m nat e( pol ynor phi c_i nt this_l ower,
pol ymor phi c_int this_upper, granularity from
granularity to, polynorphic.int *result_|l ower,
pol ynor phi c_i nt* result _upper);

/*

* Routine: cast

*

* Description: Yields the first determ nate value in the destination
* granularity of a value, either determ nate, or |ower
* support if indeterm nate

*

* Argunents: this_lower -- (IN): input event

* from-- (IN): source granularity

* to -- (IN: target granularity

* result -- (IN: *

* Return Value: FError Code

*

* Errors: gran.not _found: if from not found

* gran_ot her _not found: if to not found

*

* Side Effects: A cal endar_supplied function is called.

*

~

gran_error_type cast(pol ynorphic.int this_lower, granularity from
granularity to, polynorphic.int* result);
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gran_error_type e_plus.s

/*

* Routine: eplus.s

*

* Description: Adds an event and a span, of nmixed granularities,
* yi el ding an event.

*

* Argunents: egran-- (IN): granularity of the event

* e -- (IN: the source event

* sgran -- (IN): granularity of the span

* s -- (IN): the source span

* result -- (QUT): The result is in egran
*

* Return Value: FError Code

*

* Errors: gran.not_found: if e_gran not found

* gran_ot her _not found: if s_gran not found
* gran_cross_cal ender _operators

*

* Side Effects: A cal endar_supplied function is called.
*/

(granul arity e_gran, polynorphic.int e,

granularity s_gran, polynorphic.int s,
pol ynorphic_int* result);

gran_error_type s_plus_e

/*

* Routine: s.plus.e

*

* Description: Adds an event and a span, of nmixed granularities,
* 3.2cnyielding an event.

*

* Argunments: s.gran -- (IN: the granularity of the span
* s -- (IN): the source span

* egran -- (IN: the granularity of the event
* e -- (IN: the source event

* result -- (QUT): in the s_gran granularity
*

* Return Value: FError Code

*

* Errors: gran.not_found: if s_gran not found

* gran_ot her _not found: if e_gran not found

* gran_cross_cal ender _operators

*

* Side Effects: A cal endar_supplied function is called.
*/

(granul arity s_gran, polynorphic.int s,

granularity e_gran, polynorphic_.int e,
pol ynorphic_int* result);

*

Routine: e_mnus_e

yi el ding a span,

Ret urn Val ue: Error

L R S S T I R

Description: Subtracts two events, in mxed granularities,

in a specified granularity.

Argunents: left_gran -- (IN: granularity of left

left -- (IN): one of the source events

right_gran -- (IN: granularity of right

right -- (IN): the other of the source events
result_gran -- (IN): the desired resulting granularity

result -- (QUT): *

Code

37
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Errors: gran.not found: if fromnot found
gran_ot her _not found: if to not found
gran_cross_cal ender _operators

*
*
*
*
*
*

/

gran_error _type e_ninus_e(granularity left_gran,

pol ymorphic_int left, granularity right_gran,
pol ynorphic_.int right, granularity result_gran,
pol ynorphic_int* result);

38

Side Effects: A calendar_supplied function is called.
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Appendi x B

THE | NTERNAL DATA STRUCTURE

/* The linked-list structure for regular mappings. |t contains the
* destination granularity, the conversion constant and a pointer
* referencing the next finer mapping.
*/
typedef struct reg-map.list_struct {
int conversion;
granul arity destination;
struct reg-map.list_struct *next_ptr;
} reg_map.list_type;

/* The linked-list structure for irregular mappings. It contains the
* destination granulairty, the irregular mapping funtions and a
* pointer referencing the next irregular nmapping.
*/
typedef struct irreg-map.list_struct {
granul arity destination ;
gran_error _type (*cast)(); /*user-defined function*/
gran_error_type (*scal e_det)(); /*user-defined function*/
gran_error_type (*scale.indet)(); /*user-defined function*/
struct irreg-map_list_struct *next_ptr;
} irreg_map.ist_type;

/* The structure for the granularity graph. It contains the

* user_.id given by the user, the internal id: |Iocal.id,

* the calender_id which the granularity belongs to, the

* anchor and the anchor granularity. It also contains pointers
*

referencing the regular mapping list, the irregular mapping
* |ist and thecongruent napping |ist.
*/
typedef struct gran.lattice_struct {
granul arity user._id;
int cal ender._id;
int |ocal.id,
pol ymor phi c_i nt anchor;
granul arity anchor _gran;
reg-map.list_type *reg-map_coarser _|ist;
reg-map.list_type *reg-map_finer_list;
reg-map.list_type *cong_map_li st;
irreg_-map_list_type *irreg_map_coarser._list;
irreg_-map_list_type *irreg_.map_finer_list;
} gran_lattice_type;

/* The structure for the optimal path. It contains the source
* granularity, the destination granularity, the napping type,

39



* the conversion constant for the regular nmapping and mapping

* functions for irregular nmappings. It also has a pointer
* referencing the next step in the path.
*/

typedef struct super_path_struct {
granularity from
granularity to;
doubl e conver si on;
mappi ng-t ype map-type; /*mapping type*/
gran_error_type (*cast)();
gran_error_type (*scal e_det)();
gran_error_type (*scal e.i ndet) () ;
struct super_path_struct *next_ptr;

} super _pat h_t ype;

t ypedef super _path_type *super_path_type_ptr;

40
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