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A temporal granularityis a unit of measuring time, e.g., second, day, week. Agranularity graph is a directed
graph showing the relationship among the granularities. Efficiently and correctly converting time values within
the granularity graph is critical for supporting multiple time granularities in an application program or a database
management system. The research involves finding an optimally efficient path in the granularity graph for any pair
of granularities and developing an algorithm to perform the conversion operation between the two granularities for
anchored time related values, to correctly convert a granule from a specified granularity to another granularity. The
research also evaluates several strategies to improve the performance of temporal operations at mixed granularities.
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Abstract

A temporal granularityis a unit of measuring time, e.g., second, day, week. Agranularity graph is a directed
graph showing the relationship among the granularities. Efficiently and correctly converting time values within
the granularity graph is critical for supporting multiple time granularities in an application program or a database
management system. The research involves finding an optimally efficient path in the granularity graph for any pair
of granularities and developing an algorithm to perform the conversion operation between the two granularities for
anchored time related values, to correctly convert a granule from a specified granularity to another granularity. The
research also evaluates several strategies to improve the performance of temporal operations at mixed granularities.



Chapter 1

INTRODUCTION

Supportingmultiple calendars in database applications is a highly desirable feature. Currently, the Gregorian
calendar (with a fixed number of granularities: year, month, day, hour, and second) is the single calendar
available in SQL-92 (Structured Query Language) for representing and manipulating time-related data. In
the real world, there are many applications that require a wide variety of calendar support. The usage
of a calendar depends on the cultural, legal and business aspects of the user. For example, the Eastern
world commonly uses a lunar calendar, the US government uses a business calendar with the financial year
starting in October, and universities generally use an academic calendar with years consisting of semesters
or quarters. Today’s database systems must support conversion among these calendars.

There has been considerable research in incorporating multiple calendars into a database system. But
most of the previous research has focused on theoretical aspects. For mixed granularities in multiple
calendars, no practical algorithm has been proposed that allows mappings to be composed automatically.

Based on the architecture first devised by Curtis Dyreson and Richard Snodgrass, with initial coding
by Marshall Freiman, our work develops an efficient algorithm and provides a software module to support
conversion operations for mixed granularities, i.e., converting a granule in one granularity to a granule in
another granularity. The objective of this work is to provide an efficient and correct algorithm for supporting
multiple time granularities within an application program or a database.

This thesis is organized as follows. Chapter Two gives an overview of the related work on the mixed
granularities, including introducing the granularity graph and the initial model of converting time values
from one granularity to another granularity. Chapter Three covers the granularity module interface and
shows how to integrate different calendars into a single granularity graph. This chapter also points out what
the interface needs to check to ensure the granularities declared by the user are properly defined. We examine
the paths for granule conversion in Chapter Four. We then present two recursive algorithms for finding an
optimal path and prove their correctness. We begin by giving an example to illustrate non-termination in
conversion operation. We then propose a reasonable constraint to ensure termination. Finally, we present the
algorithm for the conversionoperation is presented. Chapter Six providesan empirical performance analysis,
and examine the efficiency of path caching and the granularity origin offsets caching. We summarize our
work in Chapter Seven. We include the external data structures and the detailed description of the functions
provided by the external module in Appendix A. In addition, Appendix B gives the internal data structures.
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Chapter 2

RELATED WORK

Since the very early days of computers, applications have had a need to represent times in stored data and to
manipulate the information. But there is no standard; every computer system invented its own convention to
handle time related data. This is clearly unacceptable. There have been several languages fully implemented
to support the time related data available on commercial database management systems (DBMSs). The best
known of these is SQL. SQL was first designed and implemented at IBM Corporation as the interface for an
experimental relational database system called system R. SQL was first standardized in 1986 and was revised
significantly to form the standard SQL-92 [Melton & Simon 1993]. SQL-92 includes date and time data
types, and supports a single calendar, the Gregorian calendar. Recently, the Object Database Management
Group defined the ODMG-93 standard for object database management to provide for object databases what
SQL has provided for relational database [Cattell 1994]. But the time support in ODMG-93 is similar to
SQL-92. Generally, the existing database software has ignored the issue of the mixed granularities or have
assumed the use of a single calendar.

Anderson [Anderson 1982] first pointed out the need to support mixed granularities. Clifford and Rao
[Clifford & Rao 1987] then proposed a theoretical model of complete ordering of granularities. Wiederhold,
Jajodia and Litwin [Wiederhold et al. 1991] further developed this model by adding a specific semantics for
temporal comparisons.

Temporal granularities, e.g., seconds, days, weeks, months, were initially formalized as partitions of
some base time lines composed of indivisible time units, calledchronons(usually denoted as�), e.g.,
microseconds. We slightly generalize Wang et. al.’s definition of time unit [Wang et al. 1993] to the
following.

Definition 2.1 A granularity� is a set of nonoverlapping and contiguous granules. Each granule has an
integer index, with the ordering of integers. We use an integer subscripted with the granularity to identify
the granule. The granularity contains�� termed anchor. Here,

� � f� � ������ ��� ��� � � �g.

The granularity chronons (�) is the smallest granularity. Each granule at a granularity corresponds to
an contiguous set of chronons. To distinguish between a granule (an integer) and the sequence of chronons
that comprise a granule, we useCHR to represent the set of chronons in a given granule.

Definition 2.2 CHR�i�� � fc�jc� is in i�g , wherei� is theith granule in granularity� andc� is a
chronon.

The above definitions imply the following properties.
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� for chrononsc�, c�
�

and granulesi�, j�, c� � CHR�i��, c�� � CHR�j�� andc� � c�
�

implies
i� � j�.

� for chrononsc�, c�� andc���, c� � c�� � c��� , c� � CHR�i�� andc��� � CHR�i�� implies c�� �
CHR�i�� .

� For granulesi� andj� , i� �� j� impliesCHR�i�� � CHR�j�� � 	 .

The first property says that chronons and granules are totally ordered. The second one requires that a granule
contains a contiguous set of chronons and the third one ensures that the different granules do not overlap.
We differ from Wang’s definition in not requiring�� � CHR���� (Business calendar has an anchor in
Gregorian date October 1, 1990), and in allowing gaps, i.e., some chronons may not map to any granule of
a particular granularity, e.g., semesters with no summer coverage.

Cast, which converts a granule of one granularity to a granule of another granularity, is the basic
operation on granule. Other operations (for example,Scale, Plus) generally can be defined in terms of the
Cast. Following is the formal definition for theCast.

Definition 2.3 Cast�i�� �� �� 
 j� , where� and� are granularities,i� is theith granule in� andj� is
thejth granule in�.

Given the definition of granularity, clearly, there is a “finer than” relation between granularities. For
example, days is finer than months, months is finer than years, etc. Note that months is not a further
partitioning of weeks, or vice-versa.A complete latticeis a partially ordered set in which every pair of
elements have a unique least upper bound and a unique greatest lower bound [Vinogradov et al. 1988]. It
has been shown that a collection of granularities (or time units) can form a complete lattice with respect
to a “finer than” relationship [Wang et al. 1993]. By relating an arbitrary time unit (i.e., granularity) to the
smallest time unit (i.e., chronons), theCastoperation is easily definable (the latter because the existence of
a bottom in the lattice ensures that there is a path from a granularity to all other granularities, and the fact
that the granule-chronon mapping is invertible). This model is sufficient from a mathematical point of view,
but does not present a practical solution. First, most calendar users do not know what the smallest time
unit it is; they usually build a new calendar based on a well-known calendar. Second, given leap seconds
and various arbitrary aspects of human-designed calendars, the mapping functions from granularities to the
smallest time unit are generally complex. Third, if a set of granularities do not form a complete lattice,
one or more artificial granularities have to be added in order to form a complete lattice. These extra
granularities “may sometimes be very hard to compute and counter-intuitive to real-life concepts of time
units” [Wang et al. 1993]. Finally, this model has not considered the anchor difference between a pair of
granularities. It assumes that all granularities have a same anchor. In reality, this assumption is impractical.
At the physical level, time values are stored in fixed-size data structures called timestamps. For example, if
we pick midnight, January 1, A.D. 1 as the anchor-point for all granularities, then representing a time value
for Business day (starting on the Gregorian date October 1, 1990) would require many storage bits. Using
different anchors can significantly reduce the storage requirement.

Although Wang’s model provides a mathematical framework for mixed granularities, they do not
present calendars. Recently, Kraus et al. propose a very interesting approach to represent time in a calendar
[Kraus et al. 1996]. Most theoretical models including Wang’s model reference time with respect to integers
(granules), however, human being, as well as many applications specify time, not as integers, but as “dates”
to a particular calendar (i.e., Monday, Tuesday, January in the Gregorian calendar). Referring to this
mismatch between the theory and application, Kraus et al. provide a new definition of a calendar. They
define a time unit as a time-value set with a linear order. For example, the time unitmonth consists of
the 12 months of the year, i.e., January, February etc. In this model, they present time instances and time
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intervals in terms of constraints with respect to a given calendar. In case of multiple calendars, they also
show how to integrate those calendars into a single, unified calendar. This framework offers the advantage
that the user can work with his own calendar representation of time, which is more nature than representing
time as integers. This work relates to ours because they introduce a new way to represent time and provide
a new technique to integrate calendars. On the other hand, they do not discuss the conversions between the
time units, nor do they cover the conversions among calendars.

Kraus et al. is not the only group trying to solve the mismatch of time representations between internal
data structure and the external calendar specification. Dershowitz and Reingold [Dershowitz et al. 1990]
provide Lisp functions for converting time points between the specifications in different calendars, namely
the Gregorian, Julian, Islamic, Hebrew, and ISO (International organization for Standardization) calendars,
and integers. Later, Reingold, Dershowitz and Clamen add the Mayan, French Revolutionary, and Old
Hindu calendars [Reingold et al. 1993]. With this approach, a time point specified in one of the above
calendar can easily be converted to an integer and an integer can also be converted back to a desired calendar
representation. This approach also makes the internal conversion among the calendars possible.

TSQL2 (Temporal Structured Query Language) [Snodgrass 1995] which is a temporal extension to SQL-
92 provides many capabilities not available in SQL-92. In particular, TSQL2 supports mixed granularities
and multiple calendars. Although TSQL2 also chooses integers to represent time points,by taking Reingold’s
approach, it provides a nice Input/Output interface for converting between the internal form of a timestamp
(i.e. integer), and various external forms, mainly character strings in a specific underlying calendars
[Dyreson & Snodgrass 1994B]. With the I/O interface, each user can define his own calendar and deal with
his calendar representation of time; at physical level, communication among those calendars is actually
going on via the timestamp representation. TSQL2 supports conversion between a pair of granularities
only if the user provides the direct mapping function for the conversions. As we stated before, most of the
mapping functions are complex; in addition, in a large multicalendar system, it is impossible to provide all
mapping functions for every pair of granularities. Based on the general architecture of the multicalendar
system in TSQL2, our research tries to realize TSQL2 by providing an practical algorithm to allow the
system to perform the conversions dynamically.

Dyreson and Snodgrass [Dyreson & Snodgrass 1994A] present a model for granularities in temporal
operations which offers a practical solution to convert time values between a pair of granularities. They
observe that the interactions between most granularities, e.g.,hours andminutes, days andweeks,
are regular: one is a further partitioning of the other, and so a granule represented by an integer can
be converted to another by a simple multiply or divide, with an anchor adjustment. They defined the
granularity graph explicitly, as mappings between granularities. Each node in the graph is a granularity, and
each edge represents a relationship between a pair of granularities. An arrow fromg to h indicates thatg
is finer granularity thanh. The graph in Figure 2.1 [Dyreson & Snodgrass 1994A] shows a multicalendar
granularity graph comprised of the Gregorian, Business, and Astronomy calendars. Mappings can beregular
mappings, e.g., betweenhours andminutes, with a conversion constant,irregular mappings(granules
can not be converted by a simple multiply or divide), e.g., betweenmonths anddays, or congruent
mappings(granularities with identical granules, but perhaps different anchors), e.g., between Gregorian
days and Businessdays. In the granularity graph, a directed thin line is a regular mapping while a
directed thick line is an irregular mapping. A congruent mapping is denoted by an undirected line labeled
with a conversion constant 1. Irregular mappings are associated with two C functions provided by the
granularity designers: one is for mapping “upward” (from finer to coarser granularity), the other is for
mapping “downward” (from coarser to finer granularity). For a system supporting multiple calendars, there
will be hundreds of granularities. However, without the immediate functional mappings from granules to
chronons, the system must perform aCastto do conversion among granularities. Dyreson and Snodgrass
proposed a method to perform aCastoperation. The first step is to find a correct path, then execute each
portion of the path applying the appropriate mapping. They conjecture that allV-pathsdown to a common
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Figure 2.1: A multicalendar granularity graph

ancestor then back up (due to the shape, these paths are termed V-paths) yield equivalent results, but paths
differ in computation cost, in terms of the number of user-defined functions that must be invoked.

The proposed work is to implement this model and provide an efficient and correct module to support
both temporal DBMSs and application programs that handle anchored time values.
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Chapter 3

THE GRANULARITY MODULE
INTERFACE

This chapter summarizes the module interface provided to perform the conversion operations for mixed
granularities. The SQL-92 standard only supports a single calendar, the Gregorian calendar. Our module
remains consistent with SQL-92 and also provides support for multicalendar system.

In this research, our goal is efficient and correct conversions between temporal granularities. For
example, to convert a time in Gregorian days to the same time in Chinese lunar days, the user is unlikely
to provide functions to do the conversion; instead, the database must be able to convert Gregorian days to
lunar days dynamically from the user-supplied relationships.

Calendars define granularities. We envision that the DBMS vendor will provide some common calendars
(for example, Gregorian calendar), and the database user can define his own calendars (for example, a
company’s business calendar). Different calendars are woven together to form the granularity graph.
The user can declare many granularities (consider fiscal years, academic semesters, and lunar years and
months etc.), each with a calendar-id which identifies the calendar that supports this granularity. An anchor
granularity and an anchor point must be given for each granularity. For the granularities in the user-defined
calendar, the user also needs to give the conversion constants for regular mappings and define the C functions
for irregular mappings.

The user can integrate the calendars by simply declaring a mapping between a pair of granulari-
ties from different calendars. An example is the congruent mapping between Gregoriandays and the
business days in Figure 2.1. In addition, the mapping between Gregorianseconds and Astronomy
astronomy day hundredths is an example of weaving different calendars by regular mapping.

Our module also allows the database administrator (DBA) to define additional mapping functions
to improve performance. For example, in Figure 2.1, the mapping between thebusiness days and
Gregorianseconds is an additional mapping. Gregorian calendar and Business calendar originally are
linked by a congruent mapping between Gregoriandays and thebusiness days. If the DBA knows
that casting from Businessbusiness days to Gregorianseconds will be performed repeatedly, then
a direct link can be added into the granularity graph. In casting a granule from thebusiness days to
Gregorianseconds, the direct link will be used instead of the composition ofbusiness days todays,
days to hours, hours to minutes, andminutes toseconds.

A determinatetimestamp records an instant located sometime during a particular granule. However,
if the exact granule the instant is located is unknown, anindeterminatetimestamp is used to represent the
instant [Dyreson & Snodgrass 1993]. The basic operations at mixed granularities areCastandScale. In
TSQL2, aCastoperation always produces a determinate timestamp by returning the first granule in the
result, while aScaleoperation may produce an indeterminate timestamp. Converting a granule from coarser
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to finer granularity produces an indeterminate result. For example, converting the day 01/01/1997 tohours
yields 01/01/1997 00 - 01/01/1997 23, which is the correct scaling result. But the correct casting result
for the above conversion is 01/01/1997 00 by taking the first granule. Chapter Five will describe theCast
operation in detail. Other operations in SQL-92 generally can be defined in terms of theCast. Our module
supports theCastand theScalebasic operations, along with other standard operations in SQL-92. This
module interface provides 20 different functions and has total 3000 lines of C code. The external data
structures and the functions provided in the module are listed in Appendix A.

The hardest part of the module is to ensure that the granularity graph declared by the user is properly
formed. In other words, when all granularities and mappings are defined, the module must respond if the
granularities are ill-specified.

One possible problem is a circularity in the granularity graph. The granularity graph must be acyclic.
The “finer than” relation cannot be defined if there is a cycle in the granularity graph. The module needs to
make sure this will not happen.

Another problem is caused by the non-termination in theCastalgorithm. Upon further investigating
theCastalgorithm, we notice that calculating the anchor offset is non-trivial. Since the anchors may be
expressed using different granularities, computing the anchor offset involves recursiveCast operations.
Chapter 5.1 gives an example illustrating the non-termination in theCastalgorithm. We state in Chapter
5.1 that in order to ensure the algorithm terminates, the user is limited to define the anchor of a granularity
in a previously defined finer granularity. In order to avoid the non-termination in theCastalgorithm, when
the user finishes the declaration, the module has to check if the anchor of every granularity is defined with
respect to a finer granularity.

One more aspect to check is if there exists a unique bottom in the granularity graph. Without a unique
bottom in the granularity graph, we can not guarantee a V-path for every pair of granularities. Notice that
a granularity graph is not constrained to a complete lattice in the module, so no artificial granularities are
introduced.

Our module provides a function calledDeclareDone. When the users have finished the declarations,
they call this function to check the above three requirements. The module returns an error report if any one
of above requirements is not satisfied.

7



Chapter 4

DETERMINING THE OPTIMAL PATH

When performing theCastoperation, if the mapping from a source granularity to a destination granularity
has not been given explicitly by the user or the DBA, the relationship between the source and destination
granularities must be computed as the composition of the existing mappings in the granularity graph. In
this chapter, we first examine the paths between a pair of granularities and identify the correct paths for
the conversion. Then, we introduce an algorithm to find the optimal path to improve the performance and
provide the proof of correctness.

4.1 The Correct Paths

Not all paths between a pair of granularities are suitable for the conversion. Because astraight-up path
(casting a granule from a finer to a coarser granularity) loses information, any path going up then going
down may yield an incorrect result. For example, to cast 02/01/1997 at granularitydays to granularity
months, if we choose the path:days up toyears (with result 1997), thenyears down tomonths,
we will get the result of 01/1997 instead of 02/1997 at granularitymonths. It is easier to see thatstraight-
down paths(from coarser to finer granularity), without losing any information, always produces the correct
casting results. Considering a V-path as a straight-down path followed by a straight-up path, although the
straight-up path losses information, we still get the correct casting result [Dyreson & Snodgrass 1994A].
To ensure that the least amount of information is lost during theCast, we add the constraint that the path
can either be astraight-line path(straight-down path or straight-up path) or a V-path. In Figure 2.1, the
path betweenyears andhours (years to months to days) is a straight-line path; the path between
years andweeks (years to months, months to days anddays to weeks) is a V-path. To find
a correct path between a source granularity� to a destination granularity�, the basic idea is to identify a
common ancestor (CA). To find a CA, we traverse the granularity graph from both the source and destination
granularities. The common granularities encountered are the CAs. For example, in Figure 2.1, the common
ancestor of source granularityyears and destination granularityweeks is granularitydays. The path
composes steps from� to the CA, and then from the CA to�. A straight-line path is a special V-path since
it’s CA is the finer granularity. From now on, we will use the term V-paths to represent both straight-line
paths and V-paths. For a properly formed granularity graph, the existing unique bottom in the granularity
graph guarantees at least one V-path between any pair of granularities. In the case of more than one CA, we
prove that all V-paths will yield the same result.

Before we prove that all V-paths yield the same result, we first need to introduce the formal definition for
the “finer” relationship by using Definition 2.1, 2.1 in Chapter Two. Second, we need to explicitly describe
the mechanism of theCast.

Definition 4.1.1 (“finer” relationship)

8
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α β

γ

path 2

path 1

ζ

Figure 4.1: A simple granularity graph with two V-paths

If granularity� is a further partition of granularity�, i.e., if �j � , �i� CHR�j�� 
 CHR�i��, then
granularity� is finer than granularity�, expressed as� � �.

The relation “�” is a partial order. For example,weeks andmonths are incomparable:weeks is
not finer thanmonths, andmonths is not finer thanweeks. Furthermore, it is easily seen that the “�”
relation is transitive due to transitivity ofsubseteq .

With the definition of the finer relation of granularities, we can describe the mechanism used to cast
finer mappings and coarser mappings respectively for theCastoperation.

If � � � then Cast�i�� �� ��
 j� such that min(CHR�i��� � min(CHR�j��) .
If � � � then Cast�i�� �� ��
 j� such that CHR�i�� 
 CHR�j�� .

Now we can prove that all V-paths yield the same casting result.

Theorem 4.1.2 All V-paths from a source granularity to a destination granularity yield the same casting
result.

Proof: As shown in Figure 4.1, let� and� be any two granularities, and path1 and path2 be any two V-paths

between� and� with different CAs:� and�. Let’s assume thatj� andj �� are the results of castingi� from
� to� along path1 and path2 respectively. We must show thatj� � j�� .

We begin from theCastdefinition:
For path 1:

Cast�i�� �� �� � Cast�Cast�i�� �� ��� �� �� � Cast�m� � �� �� � j� .

For path 2:

Cast�i�� �� �� � Cast�Cast�i�� �� ��� �� �� � Cast�n� � �� �� � j�� .

First, let’s look at the first half of the V-paths (� to the CAs) in the granularity graph. The finerCast
operation always returns the first granule in the granularity. Moreover, as� and� are finer granularities of
�, the granulesi�, m� , n� are aligned, as shown in Figure 4.2. According to the transitivity of�, we have,

min(CHR�i��� � min(CHR�m��� � min(CHR�n��� .

9
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Figure 4.2: The time-lines at granularities�, �, �, � and�

Now, let’s turn to the second half of the V-paths (the CAs to�). Since the paths from the CAs to� are
coarser paths, the source granules (m� andn�) may not align with the resulting granules, as shown in Figure
4.2. But from the coarserCastmechanism,min(CHR�i��� must be in the resulting granules in granularity
�. According to the transitivity of
, we have,

min(CHR�i��� � min(CHR�m��� � CHR�j�� .
min(CHR�i��� � min(CHR�n��� � CHR�j��� .

Since chronons is the partition of all granularities and granules in a granularity do not overlap, obviously
we have:

j� � j��

The paths we examined are arbitrary V-paths, thus we conclude that all V-paths yield the same casting
result. �

If more than one CA exists, we choose the one that can be computed most efficiently. The choice of
the paths is based on the computation cost: we assume that regular mappings are cheaper than irregular
mappings because each irregular mapping in the path requires invoking a potentially costly user-defined
function. Therefore, we choose the path with fewest irregular mappings. Of those with an equal number of
irregular mappings, we choose the path with the fewest steps.

Finding the optimal path between a pair of granularities is a shortest path problem in an acyclic graph
with the edge weights being 1 for irregular mappings and 0 for regular mappings in the granularity graph.
But existing shortest path algorithms cannot be used directly to solve the problem because of the added
constraint that the path must be a V-path. We have developed two algorithms to find the optimal V-path for
a pair of granularities. In the next two sections, we first present an extension to a common shortest path
algorithm to find the optimal V-path for a single pair of granularities. We then give a detailed analysis of a
dynamic programming approach to solve the all pairs optimal V-paths problem.

4.2 Extending The Dag-Shortest-Paths Algorithm

There are various ways to compute the optimal path for a single pair of granularities. The algorithm we
have developed is a simple extension to theDag-Shortest-Pathsalgorithm [Cormen et al. 1990], which,
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Algorithm 4.2.1 Search Path�G��� ��
Input: A granularity graphG, the source granularity�, and

the destination granularity�.
Output: The optimal V-path for� and�.
/* Initialize the variables */
Dag-Shortest-Paths�G���
 d� �� p� �;
for all v � V do

d��v� � d�v� � p��v� � p�v� ;
Dag-Shortest-Paths�G���
 d� �� p� ��
/* compute the CA for the optimal V-path */
ca� 	� min��;
for each v � V do

if �d��v� � d�v�� � min then
min � d��v� � d�v�;
ca � v

/* compute the optimal V-path usingp��ca� andp�ca� */
return �
 � � � 
 ca
 � � � 
 �;

Figure 4.3: TheSearchPathAlgorithm

given a weighteddag(directed acyclic graph)G � �V�E�, computes shortest paths from a single source in
O�jV j� jEj� time. Here,V is the set of nodes in the graph andE is the set of edges.

TheDag-Shortest-Pathstopologically sorts the dag from the source vertex to get a linear ordering on
the vertices. If an edge points from a vertexx to vertexy, thenx precedesy in the topological sort. The
Dag-Shortest-Pathsalgorithm then makes one pass over the vertices in the sorted order to compute the
shortest paths from the source vertex.

The intuition for the extended algorithm is that every V-path is built up from two directed paths that
meet at a granularity (CA). Since a granularity graph is a weighted dag with edges directed from coarser
to finer granularities, we run theDag-Shortest-Pathsalgorithm for the source (�) and the destination (�)
granularities respectively to compute the shortest directed paths from� and� to all finer granularities. For a
particular vertexv, we claim that the V-path (�
 v
 �), i.e., the combination of the two directed shortest
paths (� to v and� to v) is the shortest V-path between� and� going throughv. If the V-path is not the
shortest V-path going throughv, then there must exist a shorter path either from� to v or � to v. This
contradicts with the results of theDag-Shortest-Pathsalgorithm. The optimal V-path for� and� is then
computed by comparing all V-paths for differentv and selecting the shortest one.

The algorithm maintains the variabled�v� for each granularityv, which is the weight of the shortest path
from� to v. For each granularity in the graph, a predecessorp�x� that is either another granularity or Nil, is
used to present the path. Figure 4.2 shows a pseudo code version of this algorithm calledSearchPath. The
algorithm finds shortest paths from� to all vertices (granularities) and from� to all vertices. It then finds
the vertex whose shortest paths from� and from� have shortest total length.

The running time of theDag-Shortest-Pathsalgorithm isO�jV j� jEj�. In theSearchPathalgorithm,
we run theDag-Shortest-Pathsalgorithm twice and the computation of CAs is actually done in the second
run ofDag-Shortest-Paths. Computing the optimal CA takes O(|V|) time, since there are at most |V| of CAs
in the graph. Thus, the total running time of the extended algorithm isO�jV j� jEj�.
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4.3 A Dynamic Programming Algorithm

The SearchPath algorithm can compute the optimal V-path between a single pair of granularities. An
alternative is to compute all optimal paths at DBMS generation time and cache the results. This approach
is quite appealing for large DBMSs. However, for an application program dealing with only a small subset
of the granularities, computing the path as needed certainly provides better performance. Our approach is
to allow the user to request the precomputation. For application programs, we use a lazy caching strategy
(compute the optimal V-path as demanded and cache the result) to avoid recomputation.

The algorithm described in last section finds the optimal V-path for a single pair of granularities. For
database applications, we have developed an algorithm to satisfy the V-path constraint and use the top-down
dynamic programming method to solve the all-pairs optimal V-paths for a granularity graph. This algorithm
can be used to compute the optimal path for a single pair of granularities as needed or can be used at DBMS
generation time to determinate all-pair optimal V-path. Next, we will give a detail analysis of our approach
and describe the algorithm, then we will argue that the algorithm can be extended to solve all-pairs optimal
V-paths for a granularity graph. Finally, we will prove the correctness of the algorithm.

Dynamic programming is applicable if subproblems share subproblems. The intuition behind our
algorithm is that every V-path is formed by a smaller V-path. We observe that the optimal V-path for a
single pair of granularities can be solved by combining the optimal solutions to subproblems. (The formal
proof is given later in this section.) Given a pair of granularities� and�, if we consider the optimal paths
from � to all one step finer granularities of� as the subproblems, then the optimal V-path for� and� can
be found by comparing all V-paths composed of the optimal V-paths from the subproblems and the one step
finer paths. Thus, to find the optimal V-path, we traverse down the granularity graph from the source and
the destination granularities respectively to solve the subproblems first. The V-path constraint is achieved
by traversing the graph following the finer paths recursively. Each subproblem is computed just once and
the solution is stored to avoid traversing the graph multiple times.

First, let’s introduce the 2-dimensional variables (all are integer arrays) used to define a path. For
convenience, we call these variablespath-determiningvariables.

first������ The first granularity encountered in the V-path from source granularity� to destination granu-
larity �.

icost������ The number of irregular mappings in the V-path from source granularity� to destination
granularity�.

tag������ Enumerated type, with disjoint tags:

tag c Indicates that the path from� to � is a coarse(“c”) path (all edges in the path from finer to
coarser granularities).

tag f Indicates that the path from� to � is a finer (“f ”) path (all edges in the path from coarser to
finer granularities).

tag b Indicates that the path from� to� is a V shape path. We use the bottom granularity to represent
the finest granularity encountered in the path, so the “b” stands for “bottom”.

tag s Indicates that the path from� to� is a congruent path. The “s” stands for “same” to distinguish
from the coarser path.

tag u tag�x��x� � tag u marks the granularityx as unvisited (“u”). Note that this tag is only used
for diagonal entries.
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Below, we use show the above variables for the granularity graph in Figure 2.1.

first�decades��days� � years first�days��decades� � months
icost�decades��days� � � icost�days��decades� � �
tag�decades��days] � tag f tag�days��decades� � tag c

first�years��weeks� � days first�weeks��years� � days
icost�years��weeks� � � icost�weeks��years� � �
tag�years��weeks� � tag b tag�weeks��years� � tag b

tag�days��business days� � tag s icost�days��business days� � �

first�days��days� � days icost�days��days� � �

Notice that for V-paths, we usefirst� �� � to represent the CA of source and destination granularities.
Thusfirst�years��weeks� is granularitydays instead of granularitymonths. Givenfirst������ and
tag������, we can easily identify the path between� and� by recursively discovering all intermediate
steps. Iftag������ equalstag c (straight-up path) ortag f (straight-down path), we start from the source
granularity and recursively find out the intermediate steps until reach the destination granularity. For
example, to find the path between Gregorianyears anddays, we first computefirst�years��days�
with result: months; then computefirst�months��days� resulting indays to yield the pathyears
to months to days. If tag������ is tag b (V-path), thenfirst������ is first computed to get the CA.
We then find the path by traversing down to the CA from both source and destination granularities. For
example, to find the V-path betweenyears andweeks, first�years��weeks� is initially computed to
get the CA:days. With the resulting CA, we obtain one half of the V-path (years toweeks todays) by
computing the straight-down path fromyears today, and the other half (weeks to days) by computing
first�weeks��days�. The final V-path is the combination of the two straight-down paths:years to
months, months to days, anddays to weeks.

The granularity graph in our module is represented as a collection of adjacency lists. Each node has
pointers referencing a regular finer mapping list, an irregular finer mapping list and a congruent mapping
list. The system builds the granularity graph as the user declares each granularity and mapping. The data
structures for the granularity graph are listed in Appendix B.

Initially, we settag to tag u (unvisited), and the other variables to the maximum number of granularities
to indicate that there is no path between any pair of granularities. To find a single-pair optimal path,
the source and destination granularities are stored in a queue (top queue). The strategy is to follow the
depth-first search to visit the unmarked granularity from thetops(the granularities in thetop queue) to finer
granularities whenever possible, and set the path-determining variables on the way down. Notice that the
first pass from the topgranularity always reaches the bottom�. At a granularityg, whenever one of theg’s
finer granularityx has been explored, the algorithm tests whether we can improve the best V-paths fromg to
all other granularities (y) found so far by going through the finer granularityx and, if so, updatesfirst�g��y�
andtag�g��y�.

The Find Path algorithm is given in Figure 4.4. Figure 4.6 also shows how to update the path-
determining variables between a source granularityg and the destination granularityy under different
situations. Assumingx is a finer granularity ofg and has been explored, if the path going throughx (g tox
to y) costs less than current path fromg to y, then update the variables. The solid arrow is the one-step finer
path fromg tox; the dotted line represents the current path betweeng andy; and the dashed arrow indicates
the optimal V-path fromx to y which has been computed during the visiting ofx. In Figure 4.6(a),y is
coarser thanx. Notice, the path fromg to y becomes a V-path; so we settag�g��y� to tag b andfirst�g��y�
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Algorithm 4.3.1 Find Path�G�
Input: A granularity graph
Output: first������
/* Initialize the variables */
for each � and� � G do

assignmax gran num to first������, andicost������;
tag������� tag u;

build thetop queue;
for each granularityg � top queue do

Do Close�g�;

Figure 4.4: AlgorithmFind Path

Algorithm 4.3.2 Do Close�g�
Input: A granularityg
Output: A portion offirst������
/* Traverse down the tree by followingg’s finer lists */
for each x � g�s finer lists�reg finer list� irreg finer list and congruent list� do

first�g��x�� x� first�x��g�� cg�
tag�g��x�� tag f � tag�x��g�� tag c�
if x � irreg finer list then icost�g��x�� � else icost�g��x�� ��
if tag�x��x� � tag u then Do Close�x��
for each y � G and y �� g do

if the cost ofg 
 x
 y � the cost ofg 
 y

/* Update the variables */
Assign new values tofirst�g��y�� first�y��g�� tag�g��y�, andtag�g��y�,
and updateicost as shown in Figure 4.6, according to values oftag�x��y�.

Figure 4.5: AlgorithmDo Close

to x. In Figure 4.6(b), y is finer thanx. In Figure 4.6(c), there is a V-path betweenx andy so the updated
path fromg to x to y is also a V-path. In the final graph 4.6(d), y is congruent withx. The updatedicost
is same for all cases and equals the sum of theicosts of the pathsg to x andx to g, where theicost of the
one-step finer path (g to x) is 1 for irregular mapping and 0 for regular and congruent mappings.

The algorithm always traverses down following the finer path, this guarantees the V-path constraint.
This approach examines all the possible V-paths between a pair of granularities and picks the cheaper path
each time it encounters a new V-path between a pair of granularities, so the final results infirst������ are
the optimal results. In the following we give a formal proof that this algorithm is correct and does indeed
compute the optimal paths.

Lemma 4.3.1 The updated paths represented by the variable first are V-paths.

Proof: Initially, each entry offirst contains the maximum number of granularities to indicate that there is

no path between any pair of granularities. Considering AlgorithmDo Close, the values of thefirst array
are updated only in following two cases:

1. Traversing down a one-step finer path (fromg to x)
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tag_b;

tag_b;

first[g][y] = first[y][g] 

tag[g][y] =tag[y][g]   

x;

first[y][x];x;  first[y][g]

tag_c;tag_f;   tag[y][g]

first[x][y];

x;   first[y][g] first[y][x];

tag_c;tag_f;   tag[y][g]

icost[g][x] + icost[x][y] ;icost[g][y] = icost[y][g]

first[g][y] = first[y][g]

tag[g][y] = tag[y][g]
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Figure 4.6: Updating the path-determining variables for theFind Path algorithm
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first�g��x� � x; first�x��g� � g

The path betweeng andx is obviously a V-path (a straight-up, a straight-down path or a congruent
path).

2. Updating the path betweeng andy through finer granularityx.

This is a recursive graph problem. Due to the existence of an unique bottom in the graph, the first pass
over the graph always reaches the bottom. The following passes traverse the graph from a granularity
down to the finest unvisited granularity (CA) to build the smallest V-paths, as shown in Figure 4.6(a).
The larger V-paths then can be built using the smaller ones as shown in Figure 4.6(c). If granularityy

is finer or congruent withx, then the resulting path is a straight down path fromg to y or a straight up
path fromy to g as in Figure 4.6(b) and (d). Depending on the relationship betweenx andy, which
is built recursively as in Figure 4.6, the new path fromg to y through finer granularityx can only be
a straight-down path or a V-path.

We conclude that the updated paths represented by the variablefirst are V-paths. In other words, the final
paths are V-paths. �

Theorem 4.3.2 If we run AlgorithmFind Path on a pair of granularities, then at termination, the paths
represented byfirst�x��y� are the optimal V-paths.

Proof: By Lemma 4.3.1, the paths represented byfirst are V-paths when we run the algorithm. We claim

that our algorithm is basically a top-down, dynamic-programming
algorithm (namedMemoization) to find the optimal V-path between a pair of granularities. We examine

two key ingredients that must exist to ensure an optimal solution [Cormen et al. 1990].

1. The optimal substructure of the optimal V-path problem.

We say a problem exhibitsoptimal substructureif an optimal solution to the problem contains within
it optimal solutions to subproblems. We use the same notation in AlgorithmDo Closeto illustrate the
optimal substructure in this problem.

Assuming the path (g to x to z to y) is the optimal V-path between granularitiesg andy (here,x
is a one-step finer granularity ofg andz is the bottom), then the subpath (x to z to y) must be the
optimal path forx andy. We can proof this by contradiction. If there were a better V-path forx and
y, substituting the path ing andy would produce another optimal V-path whose cost was lower than
the original path: contradiction. Using the same argument, we claim that, for an optimal straight path,
assumingg is the coarser granularity, then the subpath (x to y) is the optimal path forx andy. Thus,
an optimal solution to an instance of the optimal V-path problem contains within it optimal solutions
to subproblem instances. Note that we always traverse down from the coarser granularity. If we reach
bottomz, then the optimal subpath of the straight-path (z to y) is the path: the finer granularity ofy
to z.

2. A recursive solution

The second step is to define the value of an optimal solution recursively in terms of an optimal
solutions to subproblems.

Let V icost�g� y� be the number of irregular mappings in the optimal V-path fromg to y, and
I icost�g� y� be the number of irregular mappings in straight path from coarser to finer, we can
defineV icost�g� y� andI icost�g� y� recursively as follows. Ifg � y, there is no cost. To compute
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V icost�g� y� andI icost�g� y�wheng �� y, we take advantage of the structure of an optimal solution
from step 1. Let’s assume that the optimal path forg andy is throughx which is finer than and
adjacent tog in the granularity graph. We have

V icost�g� y� � V icost�x� y� � I icost�g� x� , and

I icost�g� y� � I icost�x� y� � I icost�g� x� .

Where,

I icost�g� x� �

�
� for irregular mapping

� for regular mapping

The above recursive equation assumes that we know which finer granularity (x) to form the optimal
V-path, which we don’t. Sincex is not the only finer granularity ofg and the optimal V-path must be
constructed by going through one of the finer granularities, we need to check them all to find the best
V-path. Thus, the recursive definition for the minimum cost of the optimal V-Path becomes

V icost�g� y� � min

���
��

I icost�g� y�
I icost�y� g�

min
x � g�s finer lists

fV icost�x� y� � I icost�g� x�g

I icost�g� y� �

�
� if g finer than y

min
x � g�s finer lists

fI icost�x� y� � I icost�g� x�g

Algorithm Find Path is a top-down algorithm based on the above recurrence to compute the optimal
V-path. This algorithm is one of the ways to calculate the tables defined above. Combining with Lemma
4.3.1, we conclude that the final results infirst array are the optimal V-paths. �

If we search for all top-granularities (granularities with no coarser but some finer or congruent gran-
ularities) in the granularity graph and store them instead of the source and destination granularities in the
top queue, the algorithm is extended to solve the all-pairs optimal V-paths for the granularity graph. This
is easy to see because if we traverse down from top-granularities, each subproblem will be encountered to
solve the optimal V-paths for the entire graph.

What is the running time of the above algorithm? If there arejV j granularities andjEj number of
mappings (edges) in the granularity graphG�V�E�, building the top queue takes timesO�jV j�. Each
granularity is visited at most once, and procedureDo Close is called exactly once for each granularity
in G. During the execution ofDo Close, the loop for the one-step finer granularities ofg is executed
jfiner granularities�g�j (the number of one-step finer granularities ofg) times. Since

P
cg�G

jfiner granularities�g�j� O�jEj�,

and there is a testing loop at each granularity, the total running time of AlgorithmFind Path isO�jV j� �
O�jV jjEj�, orO�jV jjEj�.
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Chapter 5

THE Cast OPERATION

TheCast operation is performed to correctly convert time from the source to the destination granularity.
Given the optimal path, theCastalgorithm needs to convert a time value from one granularity to another
in each step of the path. For an irregular mapping step, the algorithm simply invokes the user-defined
C functions to convert the granule. For a regular mapping or a congruent mapping, the granule can be
converted by multiplying or dividing by the conversion constant with an anchor adjustment.

For example, to cast an instant, theith granule, from granularity� to granularity�, assuming a regular
mapping with conversion constantC, then

Cast�i�� �� �� � i� � C� anchoroffset

We defined in Chapter Two that an anchor is the�th granule of a granularity. In the specification of a
granularity graph, the anchor may be defined in terms of a granularity that also needs to be converted. The
user declares granularities, each with an anchor, the latter in an anchor granularity. As stated in Chapter
Two, we don’t want to require the user to use chronons for the anchor granularity; in other words, we want
to allow non-chronon anchor granularities. For example, a student wishes to design a special calendar for
his academic activities with year origin defined as the first year he was in this department. He knows the
origin is Fall,1995 (the anchor of his special calendar which is defined on the Gregorian years), but most
likely, he has no idea which chronon that is. We also don’t want to use a same anchor for all granularities
as we stated in Chapter two.

In this Chapter, we will first describe the problem caused by computing the anchor offset, and the
solution we come up with, then we present the algorithm for theCastoperation and provide the proof of
correctness.

5.1 Computing The Anchor Offset

To compute the anchor offset, we need to call theCast algorithm recursively. Unfortunately, this will
sometimes cause the algorithm to never halt if the granularity graph declared by the user is not properly
formed. We give the following example to illustrate the termination problem.

Figure 5.1 is a granularity graph with three user-declared granularities (�, �, �) as well as the bottom
granularity (chronons). In this particular example,� and� anchors on chronons and� anchors on�. Note
that� is a coarser granularity than�. When we say�’s anchor is the 4th granule of�, we really mean that
�’s anchor is the first chronon in the 4th granule of�. The problem is that the software has no information
about what�’s anchor is in chronons. Suppose we are to cast theith granule from� to �, we need to know
the anchor offset of� and�. The following are the steps needed to compute the anchor offset.
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(anchor assumed)

  (anchor = 0th granule in Chronons)

(anchor = 5th granule in Chronons)

(anchor = 4th granule in α )

α

β

γ

chronons

Figure 5.1: A granularity graph with nontermination problem

1. We need to calculate anchor of� expressed on granule of�.

2. Given the anchor of� on� (the fourth granule of�), we need to call theCastfunction to cast the 4th
granule from� to �.

Cast�i�� �� �� � i� � C � Cast�	�� �� ��

The only path we can have in the granularity graph is:�
 �
 �

3. Convert the fourth granule in� to granule in�. The result is obviously the 0th granule in�.

4. Then convert the 0th granule in� to �, and we go back to step 1.

This example shows that a user, when defining granularities and anchors, can indeed get into trouble,
even when the granularity graph is clearly acyclic. To avoid this problem, we will require that the anchor
granularity be finer than the granularity being defined. This is a reasonable constraint. It will be checked
at DBMS generation time; the module will report an error if this constraint is not satisfied. Given the
constraint, we can prove that theCastalgorithm always terminates. We call the computation of anchor
offset as “anchoring” to differentiate it from the realCastoperation. In the next two sections, we first
present theCastalgorithm, then prove the algorithm terminates.

5.2 The Cast Algorithm

Suppose we are to cast a granuleg� from granularity� to � and a granuleg� from granularity� to �.
Assuming that� is coarser than�,

Cast�g�� �� �� � bg� � C��� �
�
�c

Cast�g�� �� �� � bg� � C��� �
�
� � C���c

where,

C��� � �

C��� is the conversion constant from� to�, and

�

� is the anchor of� expressed in granule of a finer granularity�.
To compute
�

� , we use
�
� , which is�’s anchor defined in the finer granularity�. Then,
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Algorithm 5.2.1 Cast�g� from� to�
Input: The granule to be converted (g), the source granularity (from), and

the destination granularity (to).
Output: The granule in the destination granularity (result).
if from � to then return g;
/*find the path between the source and the destination granularities */
path� Find Path�from� to�;
result� g;
while (path is not null)

switch �path�mapping type�
case irreg finer mapping:

result� firregular finer mapping�result� path�from� path�to�;
case irreg coarser mapping �

result� firregular coarser mapping�result� path�from� path�to�;
case reg finer mapping or congruent mapping �

anchor v is the anchor value of (path�from);
anchor granularity is the anchor granularity of (path�from);
result� bresult � �path�C� �

Cast�anchor v� anchor granularity� path�to�c;
case reg coarser mapping �

anchor v is the anchor value of (path�to);
anchor granularity is the anchor granularity of (path�to);
result� bresult � �path�C� �

Cast�anchor v� anchor granularity� path�from�� path�Cc;
path� path�next;

return result;

Figure 5.2: TheCast algorithm


�
� � Cast�
�

� � �� ��

Note that for congruent mapping, either one of the aboveCasts can be used to compute the anchor offset.
To perform theCastoperation from a source to a destination granularities, we need to find the optimal

path. The optimal path is stored in a linked list namedpath, of steps. The structure also contains the source
(from) and the destination (to) granularities, the mapping types (mapping type), and for regular mapping,
the conversion constant (C), for irregular mapping, two pointers pointing to the user-defined C mapping
functions. Figure 5.2 gives theCastalgorithm.

TheCastalgorithm in Figure 5.2 actually does the path finding and recursive anchoring operation at
each step of the conversion. This is considered inefficient for both the application programs and databases
applications. In either case, the previously computed optimal V-paths and anchor offsets are cached to avoid
the recomputation. This will be further discussed in next chapter. Recalling that we do not consider the
recursive anchor offset computing when we derive theFind Path algorithm, the main reason of ignoring
the anchor offsets is that an anchor offset is computed only when it is first encountered. The computed
anchor offset is stored so the value is simply looked up each subsequent time it appears. With the caching
strategy, the anchor offset computing won’t affect the choice of an optimal V-path.

Notice that in Algorithm 5.2.1, for any determinate instance, theCastalways returns a determinate
result. For any anchored indeterminate instance, the start and the end of the instance are cast separately to
get the indeterminate result. Our module provides functions to perform all the standard SQL-92 operations
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for a multicalendar system. The functions are listed in Appendix A.

5.3 Proof Of Termination

The proof of termination involves constructing a bipartite graph for theCastoperation, and using a partial
order to argue the nonexistence of cycles in the graph.

The directed bipartite graph (Gb) is constructed based on the granularity graph (Gg). To distinguish the
bipartite graph and the granularity graph, we use the subscriptb to indicate the bipartite graph.

LetGb � �Vb� Eb� Ub� be the bipartite graph. The vertices are partitioned into two disjoint subsets (V b

andUb) such that there is no edge connecting two vertices from the same subset.
Vb is a set of anchor offsets needed to be computed in the granularity graphGg. A vertex inVb is denoted

by
x
y , wherex is a coarser or a congruent granularity ofy inGg and the mapping betweenx andy is either

regular or congruent. Remember there is no need to compute the anchor offset for an irregular mapping.
Ub is the other set of vertices in which each vertex represents an one-step mapping in the granularity

graph. A vertex inUb is denoted by�x� y� to indicate the one-step mapping betweenx andy in the granularity
graph.

Eb is a set of directed edges connecting vertices betweenUb andVb. The edges are constructed by
following the processes taken to compute an anchor offset. An edge points from a vertexub � �x� y� in the
setUb to a vertexvb � 
x

y in the setVb if the mapping (x� y) requires computing the anchor offset
x
y . Note

that only regular and congruent mappings require to compute the anchor offsets; for an irregular mapping,
there is no edge coming out of the node inUb. Given the anchor ofx is in�, the pathp from� toy is needed
to compute the anchor offset (
x

y). An edge points from an vertexvb � 
x
y in Vb to a vertexub in Ub if the

one-step path inub is contained in the corresponding pathp.
Figure 5.3 shows a simple granularity graphGg and the corresponding bipartite graphGb. In the

granularity graph, the anchor of� is in �, the anchors of�, � and	 are in the chronons� and the anchor
of 
 is in 	. Note that the mapping between� and
 is an irregular mapping and the mapping between�

and
 is a congruent mapping. Let’s follow the anchor offset computation of
�
� to construct the edges for

the bipartite graph. Given�’s anchor in�, the casting path is� 
 �. Since this is a coarser mapping,
the required anchor offset is
�

� . The anchor of� is defined in�, so to compute
�
� , the needed path is

�
 	 
 �. Since the path is composed of two steps, there are two edges from
�
� , pointing to (�� 	) and

(	� �). Following the anchor offset computation of
�
� will give us the rest of edges in the bipartite graph.

For this particular example, starting from
�
� and
�

� yields the complete bipartite graph. Note that there is
no edge coming out of
�

�
in Vb and��� �� in Ub. The former is because the anchor offset is given for the

granularity graph; the latter is because the mapping between� and� is irregular. Since theCastalgorithm
effectively follows the edges in the graph, if there is an cycle in the graphGb, theCastalgorithm will not
terminate.

To ensure the termination of theCastalgorithm, we add the constraint that the anchor of a granularity
should be defined in a finer granularity. We claim that theCast algorithm will always terminate for a
granularity graph satisfying the above constraint. Before we give the formal proof of the claim, let’s define
a partial order for the vertices (the one-step paths) in setUb. We use a subscriptp on this partial order to
distinguish the coarser relation for the one step paths inU b from the coarser relation for granularities.
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Figure 5.3: (a) A simple granularity graph. (b) The corresponding bipartite graph.

Definition 5.3.1 coarser (“�p”) relationship
Given two vertices in setUb in the bipartite graph:u� � �x�� y�� andu� � �x�� y��,
u� �p u� iff

(1) �max�x�� y�� � max�x�� y��� �
(2) ��x� � y� � x�� � �y� � x��� �
(3) ��x� � y� � y�� � �x� � y���

In above definition,max returns the coarser granularity and chooses an arbitrary granularity if the two
granularities are congruent. The first condition in Definition 5.3.1 is straight forward: the path inU b with
the coarser granularity is the coarser path. The second and third conditions are for special cases: we define
a congruent pathu� to be coarser than a path composed of a granularity congruent with granularities inu�
and a finer granularity. Applying the definition on Figure 5.3(b), we have

��� �� �p ��� �� �p ��� 
��p ��� 	��p �	��� and

��� 
��p ��� �� �p ��� 
��p ��� 	��p �	��� .

Since the definition of the “�p” is based on the relation between granularities, as in the finer relation for
granularities, the “�p” is a partial order. In Figure 5.3(b),��� �� is not coarser than��� ��, and��� �� is not
coarser than��� ��. The “�p” also has the following two properties, which follow from its definition:

� Transitivity: if ui �p uj anduj �p uk thenui �p uk .

� Inreflexivity: ui ��p ui .
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With Definition 5.3.1 and the assumption about the finer anchor granularity, we argue that starting from
any vertex in theGp built on a granularity graph satisfying the constraint about the finer anchor granularity,
and following the direction of edges to compute an anchor offset, the encountered vertices in the setU are
in descending order with respect to the “�p” relation.

Lemma 5.3.2 Given a granularity graph, if the anchor of each granularity is defined in a finer granularity,
then following an arbitrary edge in the corresponding bipartite graph, for any two consecutive verticesu i

andui�� in Ub, we haveui �p ui�� :

Proof: Let ui be an arbitrary one-step path (�� �) in Ub and�’s anchor is in�. Assuming� is finer than�,

an edge in the bipartite graph points fromui to 
�
� . The outward edges from
�

� should point to each step
of the pathp from � to� in order to compute the anchor offset. The pathp must be either a straight-up path,
a straight-down path or a V shape path in the granularity graph. Letui�� be any consecutive vertex in the
bipartite graph, then the pathp can be expressed as� � � � �.

1. For a straight-up path, due to the transitivity of granularities, we have

� � � � � � � .

Along with the assumption that� � �, it’s straight forward to see that all granularities in the pathp

is finer than�. By Definition 5.3.1 (1), we prove thatui �p ui�� .

2. For a straight-down path,

� � � � � � � .

Given� � � from the constraint about the finer anchor granularity, as in step 1, all granularities in
the pathp are finer than� resulting inui � ui�� .

3. For a V shape path, theCA is finer than� and� by theCA definition. From step 1 and step 2, we
immediately haveui �p ui�� .

If � is congruent with�, because of the assumption of the finer anchor granularity, the pathp from � to
� can only be a straight-up path or a V-path. Applying step 1 and step 3, and plus Definition 5.3.1 (2) and
(3), we also findui �p ui��. Combining the all steps, we have proved the Lemma. �

Now we can further prove that given the constraint, theCastalgorithm terminates.

Theorem 5.3.3 Given a granularity graph, if the anchor of each granularity is defined in a finer granularity
, then the Cast algorithm on any pair of granularities always terminates.

Proof: This is proved by contradiction.

Suppose the algorithm does not terminate. Since each step of theCastalgorithm traverses an edge of
Gb, and since there are finite number of nodes in this graph, there must be a cycle in the bipartite graphGb.
The cycle contains two verticesui anduj in Ub such that

ui 
 � � � 
 uj 
 � � � 
 ui .
Then according to Lemma 5.3.2 and the transitivity of “�p”, we haveui �p ui .

This is in contradiction with the inreflexivity of “�p”, so we have proved Theorem 5.3.3. �
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Chapter 6

PERFORMANCE

Performance is an important issue. Our goal is to provide a package to support the multiple time granularities
within both application programs and databases. A scalable solution, capable of handling hundreds of
granularities, is desired. We use several strategies to improve the performance.

The first strategy is to compose the path for regular mappings and congruent mappings with the same
anchor. We defineacost as the cost of the anchor adjustments in the path. For V-paths between a pair
of granularities, theicost (the number of irregular mappings) is the major factor to choose which path is
better. If two granularities have the same anchor and the same anchor offset, then theacost of these two
granularities is zero. In the case of the sameicost, the path with smalleracost will be selected. Theacost
is also used to improve the performance further. For a straight-line path (either finer or coarser path), if
theacost is zero in each step, and there is no irregular mapping in the path, then the path can be combined
into a single step with a new conversion constant to reduce the mappings. For example, in Figure 2.1,
the mappings fromdays 
 hours 
 minutes can be combined asdays 
 minutes with a new
conversion constant 1440.

Since the number of the anchor offsets needed to be computed in a granularity graph is a fixed number,
the number of edges, we use a lazy caching strategy to improve the performance. An anchor offset is
computed on demand and stored in the front of the cache, which is a linked list. Each subsequent time this
anchor offset is encountered, the value in the list is used and the anchor offset is moved to the front of the
list. When the cache is full, the values at the back of the list are freed to give space for the newly computed
anchor offsets. We envision that if there aren’t a great many edges, the cache can be made large enough to
hold all anchores.

The performance of computing the optimal V-paths is more complicated. We emphasize that our module
is designed to support both application programs and databases. As we stated in Chapter 4.3, for database
applications, during the graph specification the optimal V-paths computation can be very slow, but theCast
must be fast at query-time. If the set of granularities is small, the optimal V-path between any two pair of
granularities can be determined at DBMS generation time, as the declaration is done. However, as there
areO�jV j�� optimal V-paths in a given granularity graphG�V�E�, for many application programs that cast
and scale between a small subset of granularities, computing all optimal V-paths is overkill. Our solution
is to allow precomputation optionally, as a separate user command. This would be appropriate for database
applications. For application programs, we use the lazy caching approach: the optimal V-path is calculated
on demand and cached after the computation.

To quantify the actual cost of computing an optimal V-path, we ran a series of tests on the multicalendar
granularity graph shown in Figure 2.1, with 18 granularities and 20 edges. We start with a sequence of pairs
of randomly selected granularities. As the length of the sequence increases, we expect that the average cost
per optimal V-paths (termed theV-cost) will drop for the lazy caching approach. We then vary the degree
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of randomness and the cache size to determine the effect of the lazy caching strategy. To precisely measure
the V-cost, we ran the tests on a DEC 2000/233 workstation (with an Alpha 21064 processor running at
233MHz) and use the atom tool [SE94] to measure the number of cycles spent in computing an optimal path.
Each test is repeated 50 times (each time with a random sequence of pairs) to get the average results. The
V-cost is computed by dividing the total cost of searching the paths by��� sequence length. The following
is the parameters used in the tests:

AlgorithmsThe algorithms used to compute the optimal V-paths:

DP-ALLThe dynamic programming approach (DP), using Algorithm 4.3.1 toprecompute the variable
first for the all-pairs (ALL) optimal V-paths.

DP-SThe dynamic programming approach (DP), using Algorithm 4.3.1 to compute the variable
first as needed for a single (S) pair of granularities .

EDSP-SThe extendedDag-Shortest-PathsAlgorithm (EDSP), to compute the optimal V-path as
needed for a single pair (S) of granularities without caching.

EDSP-SCThe extendedDag-Shortest-PathsAlgorithm (EDSP), to compute the optimal V-path as
needed for a single pair (S) of granularities with the lazy caching strategy (C).

Sequence LengthThe length of the call sequences with values 1, 2, 4, 8, 16, 32, 64, 128 and 256.

Cache SizeThe cache size for EDSP-SC with values 1KB, 2KB, 3KB, 4KB, 5KB, 6KB, 7KB and 8KB.

Degree of RandomnessThe number of the unique pairs of granularities needed to compute the optimal
V-paths, with values 1, 2, 4, 8, 16, 32, 64, 128 and 256. Forn unique pairs of granularities, the
pairs are generated randomly, then pairs are randomly chosen to form a series of calls. A value of 1
specifies all pairs are identical; a values of 256 results in a totally random sequence of pairs.

Figure 6.1 shows the V-cost versus sequence length with randomly generated sequences for different
algorithms. We choose the cache size 1KB for EDSP-SC to match the size of the variables (first, tag and
cost) in Algorithms DP-ALL and DP-S. For DP-ALL, precomputing thefirst variable costs 156555 cycles.
Figure 6.1 shows the V-cost with the precomputation and without the precomputation. As one would expect,
the V-cost for EDSP-S (16684 cycles) is much higher (8 times higher) than that for DP-ALL (2331 cycles not
including the precomputation). As shown in the graph, for EDSP-SC, the 1KB cache has no effect on the cost
because of the randomly generated sequences. Figure 6.2 is a log scaled version of Figure 6.1. We observe
that for shorter sequences (sequence length� 
), the V-costs for DP-ALL (including the precomputation)
and DP-S are higher than those for EDSP-SC and EDSP-S. This makes sense — Algorithm DP-ALL and
DP-S use a dynamic programming approach, thus computing the optimal V-paths for subproblems. For
longer sequences, the V-costs for DP-ALL and DP-S reduce quickly below the cost for EDSP-S since the
previously computed optimal V-paths are simply looked up in thefirst variable. Note that, for longer
sequences, the cost for DP-ALL drops even faster than that for DP-S.

Figure 6.3 gives the result for different degrees of randomness for the DP-S approach. The curves
show that a lower degree of randomness yields a smaller V-cost. The interesting point is that the V-cost
for different randomness are not dramatically different. At longer sequences, the costs are quite similar for
different randomness.

Figure 6.4 and Figure 6.5 show the performance for Algorithm EDSP-SC. We wish to determinate the
right cache size for different randomness. In Figure 6.4, we measure the V-cost versus sequence length with
a fixed degree of randomness of 8 for different cache sizes. As shown in the figure, clearly, the 2KB cache is
sufficient for the sequences with 8 unique pairs. The V-cost drops rapidly as the sequence length increases.
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For sequences longer than 64 pairs, the V-cost drops below that (2331 cycles) for DP-ALL in Figure 6.1,
which shows that for a degree of randomness of 8 and a sequence length� �	, EDSP-SC provides the best
performance.

To further evaluate the effect of the lazy caching strategy, we ran further tests with different randomness
for EDSP-SC. Figure 6.5 shows the results. This figure indicates which cache size is sufficient for different
degree of randomness. For example, 3KB is enough for Randomness=16 and 5KB for Randomness=32.
Surprisingly, we find that with 3KB cache, Algorithm EDSP-SC can achieve the best performance (the cost
per optimal V-path is less than 500 cycles comparing with 2231 cycles for DP-ALL) for sequences up to 16
unique pairs.

These analysis shows that different algorithms do affect the cost of theCastoperations. Although
the tests ware done only on one granularity graph, that of Figure 2.1, the results suggest that for a user,
performing theCasts with higher degree of randomness and shorter sequence length, EDSP-S works fine;
for lower degree of randomness (� ��), EDSP-SC with small cache size (about 3KB for this particular
graph) provides surprisingly good results; for higher degree of randomness and longer sequence length,
precomputation (DP-ALL and DP-S) are the best choices.

27



28

0

2000

4000

6000

8000

10000

12000

8 16 32 64 128 256

A
ve

ra
ge

 ti
m

e 
pe

r 
op

tim
al

 V
-p

at
h 

(c
yc

le
s)

Sequence Length (log)

cache=1KB
cache=2KB
cache=3KB
cache=4KB

Figure 6.4: The V-cost versus Sequence Length with Randomness=8 for EDSP-SC.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 ti
m

e 
pe

r 
op

tim
al

 V
-p

at
h 

(c
yc

le
s)

Degree of Randomness

cache=1KB
cache=2KB
cache=3KB
cache=4KB
cache=5KB
cache=6KB
cache=7KB
cache=8KB

Figure 6.5: The V-cost versus Degree of Randomness with Sequence Length=256 for EDSP-SC.

28



Chapter 7

SUMMARY

This thesis involves elaborating a software architecture for supporting multiple time granularities within an
application program or a database. First, we described a granularity as partitioning of the time-line, and
the mapping relationship for a pair of granularities, which may be either a regular mapping, an irregular
mapping or a congruent mapping. We showed how to weave granularities from different calendars into a
single granularity graph. In Chapter Three we also pointed out the three requirements for a properly formed
granularity graph. When the graph is declared, the module will check the graph and report any errors. We
described why the V-paths are the correct paths to perform theCastoperation and proved that all V-paths
yield the same result. We then extended the shortest path algorithm to compute the optimal path for a single
pair of granularities and also presented an dynamic programming algorithm to solve the all-pairs optimal
V-paths. We pointed out the nontermination problem in the computation of anchor offset and proved that
given a granularity graph, if the anchor of each granularity is defined in a finer granularity, then theCast
algorithm on any pair of granularities always terminates. Chapter Five gave the correctCastalgorithm for
casting the anchored time values. Finally, we presented our strategies to improve the performance. We
emphasized that our module is to support both application programs and database management systems and
we also described the different performance requirement for application programs and DBMSs. The lazy
caching strategy is recommended to avoid computing previously computed results. The external module
interface is listed in Appendix A. This work will serve as an important part of a comprehensive library,
supporting both temporal DBMSs and application programs that handle time values.

There are some future work can be done. First, this thesis assumes that the costs for all irregular
mappings are the same by assigning a cost of 1 to all edges. Such an approach has a drawback, however. It
does not distinguishthe edges with different execution time, which may affect the computation of the optimal
path. If we know the execution costs of irregular mappings, our module interface can easily be extended to
provide potentially faster V-paths. Second, this thesis does not deal withintervals, i.e., unanchored durations
of time. An interval is an amount of time with a known length but no specific starting or ending instants
[Dyreson & Snodgrass 1994A]. For example, an interval two months has a duration of two months, but can
be any block of two consecutive months, which could be a wide ranges of days due to the irregular mapping
between months and days. Given leap granules and various arbitrary aspects of calendars, computing the
duration of an interval in a finer granularity is generally complex. The computation involves checking the
every possible duration in the entire time line of the interval granularity, which is practically impossible.
Therefore, how to compute intervals in the granule operations is still an open question in temporal databases.
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Appendix A

THE EXTERNAL INTERFACE

/* The internal timestamp with maximum 96 bits. */
typedef int polymorphic int;

/* The mappings types */ typedef enum f
reg finer,
reg coarser,
conguent,
irreg finer,
irreg coarser

g mapping type;

/* The possible error types */
typedef enum f

gran OK,
gran not found,
gran other not found,
gran exists,
gran result not available,
gran overflow,
gran cross calender operators,
gran too many granularities,
gran lattice error

g gran error type;

/* granularity is a global notion. Each is supplied by a calendar. */
typedef unsigned char granularity;

/*
* Each calendar also has, known to it, local identifiers, which are
* integers, of the granularities it supports. When any of the mapping
* or other calendar-specific functions are called, the granularities
* are always referred to by their local identifiers, which should be
* known to the calendar.
*/
/*
* There is a distinguished granularity, 0, with anchor 0, in relation
* to which all other granularities are defined. The distinguished
* granularity is the base-line second.
*/
static const granularity second granularity=0;

extern granularity gran default granularity;
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/* USED FOR INITIALIZATION */
/*
* Routine: declare granularity
*
* Description: Declare a granularity, and associate an anchor with it.
*
* Arguments: id -- (IN): granularity being associated with the anchor
* calendar id -- (IN): identifies the calendar that
* supports this granularity
* local id -- (IN): the local identifier for the
* granularity, within the calendar
* anchor -- (IN): position of anchor
* anchor gran -- (IN): the granularity of the anchor
*
* Return Value: Error Code
*
* Errors: gran exists
*
* Side Effects: Granularity id, if not previously declared,
* is now defined.
*/
gran error type declare granularity(granularity id, int calendar id,

int local id, polymorphic int anchor, granularity anchor gran);

/*
* Routine: declare congruent
*
* Description: Declare two granularities to be identical partitionings
* of the underlying time line (with possibly different
* anchors). This relationship is reflexive, symmetric
* and transitive.
*
* Arguments: one -- (IN): one of the congruent granularities
* two -- (IN): the other congruent granularity
*
* Return Value: Error Code
*
* Errors: gran not found: if one not found
* gran other not found: if two not found
*
* Side Effects: The two granularities, and any previously congruent
* granularities, and considered to be congruent.
*/
gran error type declare congruent (granularity one, granularity two);

/*
* Routine: declare irregular mapping
*
* Description: Declare an irregular mapping from one granularity to
* another. The mapping consists of three functions
* that are available for converting a value in one
* granularity to a value in a different granularity.
* Mappings are allowed only between granularities
* supported by the same calendar.
*
* Arguments: from -- (IN): the source granularity
* to -- (IN): the destination granularity
* cast -- (IN): user-defined function that yields the
* closest determinate value in the destination
* granularity where cast has the following
* parameters:

31



32

* from -- (IN): local id of the source granularity
* to -- (IN): local id of the destination granularity
* this lower -- (IN): value to be converted
* result -- (OUT): value in the to granularity
* and returns an error code (gran not found or
* gran other not found)
* scale determinate -- (IN): user-defined function that
* yields a possibly indeterminate value (in the
* destination granularity) of a determinate value
* in the source granularity where scale determinate
* has the following parameters.
* from -- (IN): local id of the source granularity
* to -- (IN): local id of the destination granularity
* this lower -- (IN): value to be converted
* result lower -- (OUT): lower support in the to
* granularity
* result upper -- (OUT): upper support in the to
* granularity
* and returns an error code (gran not found or
* gran other not found)
* scale indeterminate -- (IN): function that yields a
* possibly indeterminate value (in the destination
* granularity) of an indeterminate value in the source
* granularity where scale indeterminate has the
* following parameters
* from -- (IN): local id of the source granularity
* to -- (IN): local id of the destination granularity
* this lower -- (IN): value to be converted
* this upper -- (IN): value to be converted
* result lower -- (OUT): lower support in the to
* granularity
* result upper -- (OUT): upper in the to granularity
* and returns an error code (gran not found
* or gran other not found)
*
* Return Value: Error Code
*
* Errors: gran not found: if from not found
* gran other not found: if to not found
*
* Side Effects: Mapping is recorded for use in conversion operations.
*/
gran error type declare irregular mapping(granularity from,

granularity to,
gran error type (*cast finer)(),
gran error type (*cast coarser)(),
gran error type (*scale determinate)(),
gran error type (*scale indeterminate)());

/* * Routine: declare regular mapping
*
* Description: Declare an irregular mapping from one granularity to
* another. A regular mapping is simply an integral
* to conversion. An example is from hours to minutes
* by multiplying by 60. An anchor adjustment may also
* be required. Regular mappings can be defined between
* granularities supported by different calendars.
*
* Arguments: from -- (IN): the source (coarser) granularity
* to -- (IN): the target (finer) granularity
* conversion -- (IN): the multiplicative conversion factor
*
* Return Value: Error Code
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*
* Errors: gran not found: if from not found
* gran other not found: if to not found
*
* Side Effects: Mapping is recorded for use in conversion operations.
*/
gran error type declare regular mapping(granularity from,

granularity to, int conversion);

/*
* Routine: declare e plus s
*
* Description: Declare a function to do this arithmetic operation
* in the indicated span granularity.
*
* Arguments: s gran -- (IN): granularity of the event
* e plus s -- (IN): function which can perform the operation
* where e plus s has the following parameters
* e -- (IN): source event
* e gran -- (IN): local granularity of the event
* s -- (IN): source span
* s gran -- (IN): local granularity of the span
* result -- (OUT): the event resulting from the,
* addition in the e gran
* and returns an error code (gran not found or
* gran other not found)
*
* Return Value: Error Code
*
* Errors: gran not found
*
* Side Effects: The function pointer is stored, or overwritten if
* previously present, for later use.
*
*
*
*gran error type declare e plus s(granularity s gran,
* gran error type (*e plus s)(polymorphic int e,
* granularity e gran, polymorphic int s,
* polymorphic int* result));
*/
gran error type declare e plus s(granularity s gran,

gran error type (*e plus s)());

/*
* Routine: declare s plus e
*
* Description: Declare a function to do this arithmetic operation in
* the indicated span granularity.
*
* Arguments: s gran -- (IN): granularity of the span
* s plus e -- (IN): function which can perform the operation
* where s plus e has the following parameters
* s -- (IN): source span
* e -- (IN): source event
* e gran -- (IN): local granularity of the span
* result -- (OUT): the event resulting from the
* addition in the s gran
* and returns an error code (gran not found)
*
* Return Value: Error Code
*
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* Errors: gran not found
*
* Side Effects: The function pointer is stored, or overwritten if
* previously present, for later user
*
*gran error type declare s plus e(granularity s gran,
* gran error type (*s plus e)(polymorphic int s,
* polymorphic int e, granularity e gran,
* polymorphic int *result));
*/
gran error type declare s plus e(granularity s gran,

gran error type (*s plus e)());

/*
* Routine: declare e minus e
*
* Description: Declare a function to do this arithmetic operation with
* the indicated result granularity.
*
* Arguments: result gran -- (IN): desired granularity of the result
* e minus e -- (IN): function which can perform the operation
* where e minus e has the following parameters:
* left -- (IN): source event
* left gran -- (IN): local granularity of left
* right -- (IN): other source event
* right gran -- (IN): local granularity of right
* result -- (OUT): the span resulting from the
* subtraction, in the result gran
* and returns an error code (gran not found or
* gran other not found)
*
* Return Value: Error Code
*
* Errors: gran not found
*
* Side Effects: The function pointer is stored, or overwritten if
* previously present, for later use.
*
*gran error type declare e minus e(granularity result gran,
* gran error type (*e minus e)(polymorphic int left,
* granularity left gran,
* polymorphic int right,
* granularity right gran,
* int *result));
*/
gran error type declare e minus e(granularity result gran,

gran error type (*e minus e)());

/*
* Routine: declare extract
*
* Description: Declare an extraction function requesting a specified
* granularity
*
* Arguments: right gran -- (IN): the specified granularity
* extract -- (IN): a function which performs the requested
* operation.
* where extract has the following parameters:
* right gran--(IN): the specified granularity
* right -- (IN): an event
* left gran -- (IN): the requested granularity
* result -- (OUT): the value of the requested
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* granularity
* and returns an error code (gran not found, gran overflow)
*
* Return Value: Error Code
*
* Errors: gran not found
*
* Side Effects: None.
*
*gran error type declare extract(granularity right gran,
* gran error type (*extract)(granularity right gran,
* polymorphic int right,
* granularity left gran,
* int *result) );
*/
gran error type declare extract(granularity right gran,

gran error type (*extract)());

/*
* Routine: extract
*
* Description: Extracts the indicated component of the argument event
* or span. As an example, extracting the year from the
* event "April 19, 1955" yields 1955. Extracting the
* month yields 4, and extracting the day yields 19.
* Of course, the specific values returned are
* calendar-dependent.
*
* Arguments: left gran -- (IN): the granularity to be extracted
* right -- (IN): an event or span, from which the value
* is to be extracted
* right gran -- (IN): the granularity of right
* result -- (OUT)
*
* Return Value: Error Code
*
* Errors: gran not found
* gran other not found
* gran cross calender operators
* gran overflow -- the integer returned is too big to
* fit in an int
*
* Side Effects: A calendar supplied function is called.
*/
gran error type extract(granularity left gran, polymorphic int right,

granularity right gran, int *result);

/*
* Routine: scale determinate
*
* Description: Yields a possibly indeterminate value (in the
* destination granularity) of a determinate value
* in the source granularity
*
* Arguments: original -- (IN): value to be converted
* from -- (IN): the source granularity
* to -- (IN): the target granularity
* result lower -- (OUT): lower support in the to
* granularity
* result upper -- (OUT): upper support in the to
* granularity
*
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* Return Value: Error Code
*
* Errors: gran not found: if from not found
* gran other not found: if to not found
*
* Side Effects: One or more calendar supplied functions may be called.
*/
gran error type scale determinate(polymorphic int original,

granularity from, granularity to,
polymorphic int* result lower,
polymorphic int* result upper);

/*
* Routine: scale indeterminate
*
* Description: Yields an indeterminate value (in the destination
* granularity) of a determinate value in the source
* granularity.
*
* Arguments: this lower -- (IN): lower support of value to be converted
* this upper -- (IN): upper support of value to be converted
* from -- (IN): the source granularity
* to -- (IN): the target granularity
* result lower -- (OUT): lower support in the to
* granularity
* result upper -- (OUT): upper support in the to
* granularity
*
* Return Value: Error Code
*
* Errors: gran not found: if from not found
* gran other not found: if to not found
*
* Side Effects: One or more calendar supplied functions may be called.
*/
gran error type scale indeterminate(polymorphic int this lower,

polymorphic int this upper, granularity from,
granularity to, polymorphic int *result lower,
polymorphic int* result upper);

/*
* Routine: cast
*
* Description: Yields the first determinate value in the destination
* granularity of a value, either determinate, or lower
* support if indeterminate
*
* Arguments: this lower -- (IN): input event
* from -- (IN): source granularity
* to -- (IN): target granularity
* result -- (IN): *
* Return Value: Error Code
*
* Errors: gran not found: if from not found
* gran other not found: if to not found
*
* Side Effects: A calendar supplied function is called.
*/
gran error type cast(polymorphic int this lower, granularity from,

granularity to, polymorphic int* result);
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/*
* Routine: e plus s
*
* Description: Adds an event and a span, of mixed granularities,
* yielding an event.
*
* Arguments: e gran-- (IN): granularity of the event
* e -- (IN): the source event
* s gran -- (IN): granularity of the span
* s -- (IN): the source span
* result -- (OUT): The result is in e gran
*
* Return Value: Error Code
*
* Errors: gran not found: if e gran not found
* gran other not found: if s gran not found
* gran cross calender operators
*
* Side Effects: A calendar supplied function is called.
*/
gran error type e plus s(granularity e gran, polymorphic int e,

granularity s gran, polymorphic int s,
polymorphic int* result);

/*
* Routine: s plus e
*
* Description: Adds an event and a span, of mixed granularities,
* 3.2cmyielding an event.
*
* Arguments: s gran -- (IN): the granularity of the span
* s -- (IN): the source span
* e gran -- (IN): the granularity of the event
* e -- (IN): the source event
* result -- (OUT): in the s gran granularity
*
* Return Value: Error Code
*
* Errors: gran not found: if s gran not found
* gran other not found: if e gran not found
* gran cross calender operators
*
* Side Effects: A calendar supplied function is called.
*/
gran error type s plus e(granularity s gran, polymorphic int s,

granularity e gran, polymorphic int e,
polymorphic int* result);

/*
* Routine: e minus e
*
* Description: Subtracts two events, in mixed granularities,
* yielding a span, in a specified granularity.
*
* Arguments: left gran -- (IN): granularity of left
* left -- (IN): one of the source events
* right gran -- (IN): granularity of right
* right -- (IN): the other of the source events
* result gran -- (IN): the desired resulting granularity
* result -- (OUT): *
* Return Value: Error Code
*
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* Errors: gran not found: if from not found
* gran other not found: if to not found
* gran cross calender operators
*
* Side Effects: A calendar supplied function is called.
*/
gran error type e minus e(granularity left gran,

polymorphic int left, granularity right gran,
polymorphic int right, granularity result gran,
polymorphic int* result);
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Appendix B

THE INTERNAL DATA STRUCTURE

/* The linked-list structure for regular mappings. It contains the
* destination granularity, the conversion constant and a pointer
* referencing the next finer mapping.
*/
typedef struct reg map list struct f

int conversion;
granularity destination;
struct reg map list struct *next ptr;

g reg map list type;

/* The linked-list structure for irregular mappings. It contains the
* destination granulairty, the irregular mapping funtions and a
* pointer referencing the next irregular mapping.
*/
typedef struct irreg map list struct f

granularity destination ;
gran error type (*cast)(); /*user-defined function*/
gran error type (*scale det)(); /*user-defined function*/
gran error type (*scale indet)(); /*user-defined function*/
struct irreg map list struct *next ptr;

g irreg map list type;

/* The structure for the granularity graph. It contains the
* user id given by the user, the internal id: local id,
* the calender id which the granularity belongs to, the
* anchor and the anchor granularity. It also contains pointers
* referencing the regular mapping list, the irregular mapping
* list and thecongruent mapping list.
*/
typedef struct gran lattice struct f

granularity user id;
int calender id;
int local id;
polymorphic int anchor;
granularity anchor gran;
reg map list type *reg map coarser list;
reg map list type *reg map finer list;
reg map list type *cong map list;
irreg map list type *irreg map coarser list;
irreg map list type *irreg map finer list;

g gran lattice type;

/* The structure for the optimal path. It contains the source
* granularity, the destination granularity, the mapping type,
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* the conversion constant for the regular mapping and mapping
* functions for irregular mappings. It also has a pointer
* referencing the next step in the path.
*/
typedef struct super path struct f

granularity from;
granularity to;
double conversion;
mapping type map type; /*mapping type*/
gran error type (*cast)();
gran error type (*scale det)();
gran error type (*scale indet)();
struct super path struct *next ptr;

g super path type;
typedef super path type *super path type ptr;
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