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Abstract

In areas such as finance, marketing, and property and resource management, many database applications
manage spatio-temporal data. These applications typically run on top of a relational DBMS and manage
spatio-temporal data either using the DBMS, which provides little support, or employ the services of
a proprietary system that co-exists with the DBMS, but is separate from and not integrated with the
DBMS. This wealth of applications may benefit substantially from built-in, integrated spatio-temporal
DBMS support. Providing a foundation for such support is an important and substantial challenge.

This paper initially defines technical requirements to a spatio-temporal DBMS aimed at protecting
business investments in the existing legacy applications and at reusing personnel expertise. These re-
quirements provide a foundation for making it economically feasible to migrate legacy applications to
a spatio-temporal DBMS. The paper next presents the design of the core of a spatio-temporal exten-
sion to SQL–92, called STSQL, that satisfies the requirements. STSQL supports multiple temporal as
well as spatial dimensions. Queries may “ignore” any dimension; this provides an important kind of
upward compatibility with SQL–92. Queries may also view the tables in a dimensional fashion, where
the DBMS provides so-called snapshot reducible query processing for each dimension. Finally, queries
may view dimension attributes as if they are no different from other attributes.

1 Introduction

A wide range of applications manage spatial, time-varying, or spatio-temporal data. Typically, CAD and
GIS applications maintain huge volumes of spatio-temporal data, i.e., data that includes spatial extents,
shapes, or locations of objects, and time-related versioning of data. Financial and record-keeping applica-
tions such as accounting, banking, personnel management, and medical records, manage large amounts of
time-varying data.

A common characteristic of applications such as these is that the semantics of spatial and time-varying
data are the responsibility of and are encoded solely in the applications or some proprietary system [15,
22, 27]. That is, the semantics of the spatial and temporal dimensions, which are intrinsic properties of the
data, are unknown to the underlying DBMS. Thus, spatio-temporal applications do not currently enjoy the
built-in, integrated support that current DBMS’s already supply to less challenging applications. This paper
addresses the challenges of providing spatio-temporal DBMS support to spatio-temporal data management
applications. Legacy applications provide the toughest challenges: it should be possible to migrate them
from their current inadequate platforms to a spatio-temporal DBMS.

The database technology in the commercial market is not yet close to incorporating the necessary spatio-
temporal capabilities. However, over the past decade or two, substantial research efforts in the areas of
temporal and spatial data management have resulted in a substantial number of proposals for temporal and
spatial data models and query languages (e.g., IXSQL [16], TempSQL [10], TSQL2 [26], ROSE Alge-
bra [11], ParaSQL [6], Spatial SQL [8], and GEO System [20]). But, none of these proposals address the
migration of legacy applications to a spatio-temporal DBMS.

To be feasible, migrating legacy applications to a spatio-temporal DBMS must not require any substan-
tial modifications to the legacy code for it to remain operational. The typically significant investments in
the legacy applications must be protected. Stated more technically, a migration to a spatio-temporal DBMS
has to protect existing data, application code, and personnel expertise. The paper defines a requirement
aimed at guaranteeing that legacy application code, with its associated data, without modifications remains
operational when migrated to the spatio-temporal DBMS. Another requirement aims at ensuring that new
application code that exploits the new spatio-temporal support of the DBMS may co-exist harmoniously
with the legacy code. Finally, a requirement aims at ensuring that programmers familiar with SQL–92 may
start using the new features of the DBMS without a need for expensive training.

Based on earlier work on a temporally extended SQL, termed ATSQL [4], we apply a set of more generic
requirements to extend SQL–92 [17] to a spatio-temporal SQL, termed STSQL. STSQL supports the two
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generic temporal aspects,valid timeandtransaction time, of database facts that record when facts are true
in the modeled reality and when they are current in the database, respectively. STSQL may also associate
the corresponding spatial aspects,valid spaceandtransaction space, with facts, recording where facts are
true and from where they are registered, respectively. The time and space values are recorded bytimestamps
andspacestampsthat are associated with tuples as values of special attributes. STSQL also extends ATSQL
in another major respect: ATSQL allows at most one valid time and one transaction time per table. STSQL
permits multiple space and time dimensions for a single table.

The paper is organized as follows. Following an introduction, in Section 2, of a case that will be used for
illustration throughout, Section 3 defines three fundamental requirements to a spatio-temporal data model
and query language. Section 4 proceeds by presenting the design of the spatio-temporal extension STSQL
of SQL–92 that satisfies the requirements. At the end, Section 5 discusses related research, and Section 6
concludes the paper and outlines open research issues.

2 A Spatio-Temporal Data Management Application

The case example presented here is based on an existing legacy planning and scheduling system (termed
Ecoplan) used for forest management, specifically for long-term forest harvest scheduling based on ecolog-
ical, recreational, and economical constraints [18].

While the system has four modules, we focus on the data module, which at present manages data in a
loosely coupled fashion. Spatial data is stored in files and is managed by the module using proprietary data
structures. The associated textual and numeric property data is managed by a relational DBMS.

Using examples from this case, we will exemplify the design of a spatio-temporal relational data model
step-by-step. To concisely illustrate the contributions of this paper, we have substantially simplified the
system. We will thus assume that the system’s database contains three tables as shown in Figure 1.

stands: plans: estates:

st ID index specie planted pl ID st ID volume ripe es ID owner
st 100 high pine 1935 pl 29 st 100 2000 2000 es34 Paul
st 230 high birch 1957 pl 29 st 560 900 2000 es401 Mary
st 245 low birch 1946 pl 29 st 230 1500 2002 es63 Mary
st 560 high spruce 1963 pl 34 st 245 400 2010 es80 Peter

Figure 1: A Case Example Database

The stands table to the left captures data about regions that are homogeneous with respect to soil
fertility (a so-called index), wood specie, and average age (set by the year the trees were planted). Thus, a
tuple instands records surveyed data about a forest region; theestates table to the right records the
IDs of estates and their owners. Thus, an estate is a legal entity covering a geographical region, possibly
including one or more forests. Finally, theplans table in the middle defines the harvest plans for stands,
with each stand being associated with one or more plans (and vise versa), an estimated harvest volume in
m� for each stand, and an optimal harvest time (a so-called ripe year) of the stand. Thus, a plan of a stand
is a calculation based on the stands data and specific scheduling parameters. Figure 2 illustrates the spatial
locations of estates and stands, and it also indicates the plans of stands.

3 Migration Requirements

This section defines and discusses three important requirements to a spatio-temporal data model and query
language. While space and time are quite different aspects of data, the requirements are able to treat the two
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Figure 2: Distribution of Estates and Stands with Related Plans

aspects uniformly.

3.1 Overview

When migrating to a new DBMS, it is desirable, or even essential, to protect existing investments in legacy
application code and in programmer expertise. Informally stated,

1. all non-spatio-temporal legacy data is maintained by the new DBMS;

2. all non-spatio-temporal legacy code (i.e., queries and modifications) remains operational using the
new DBMS, and it may access the same data as before;

3. skilled legacy system developers should with little effort be able to utilize a core subset of the added
functionality in the spatio-temporal DBMS; and

4. the spatio-temporal DBMS should provide constructs to utilize the full potential of a spatio-temporal
data model and query language.

These requirements should be supported in concert by the data model and query language of a spatio-
temporal DBMS (STDBMS). The next step is to make the requirements precise.

3.2 Compatibility Requirements

The first two informal requirements above address upward compatibility issues, and are formally defined in
the following.

We will assume that a data model,M , is given by a query language component,QL, and a component
of data structures,DS, manipulated by the query language. A data model captures the functionality of
a DBMS that implements the data model. In the relational model, the most important user-level query
language is SQL, and the table is the central data structure.

With this convention, for a query language expressions and an associated databasedb, both legal ele-
ments of data modelM � �DS�QL�, definehhs�db�iiM as the result of applyings to db in data modelM .
With this notation, we can precisely describe the requirement to a new model that guarantees uninterrupted
operation of all application code.
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Definition 3.1 (upward compatibility—UC) Let two data models,M� � �DS�� QL�� andM� � �DS�� QL��,
be given. ModelM� is upward compatiblewith modelM� iff

� �db� � DS� �db� � DS��,

� �s� � QL� �s� � QL��, and

� �db� � DS� ��s� � QL� �hhs��db��iiM�
� hhs��db��iiM�

��.

Upward compatibility captures the conditions that need to be satisfied in order to allow a smooth transition
from a current system, with data modelM�, to a new system, with data modelM�. The first two condi-
tions imply that all existing databases and query expressions in the old system are also legal in the new
DBMS. The last condition guarantees that all existing queries compute the same results in the new and
the old DBMS. Thus, legacy application code remains operational, with no modifications necessary, when
transitioning to the new DBMS.

Upward compatibility ensures a smooth transition, but it does not guarantee a harmoneous co-existence
between legacy and new application code. Friction between legacy and new code may occur when existing
tables are altered to include new dimension attributes, i.e., spatial or temporal attributes. We thus formulate
a requirement that existing application code on non-dimensional tables must continue to work unmodified
when the tables are altered to become dimensional.

Intuitively, the requirement is that a queryq must return the same result on an associated snapshot
databasedb as on the dimensional counterpart of the database,D�db� (with operationD adding dimensions
to its argument database). Moreover, updates should not affect this.

Definition 3.2 (dimensional upward compatibility—DUC) Let a dimensional and a snapshot data model
be given byMd � �DSd� QLd� andMs � �DSs� QLs�, respectively. Also, letD be an operator that
changes the type of a snapshot table to a dimensional table with the same explicit attributes. Next, let
U � u�� u�� � � � � un (n � �) denote a sequence of update operations. With these definitions, modelMd is
dimensional upward compatiblewith modelMs iff

� Md is upward compatible withMs and

� �dbs � DSs �� U ��qs � QLs �hhqs�U�dbs��iiMs
� �hhqs�U�D�dbs���iiMd

����.

The DUC requirement ensures that every legacy query computes the same result on a dimensionally ex-
tended database in the new, dimensional DBMS, as it would have done on the original database and evalu-
ated in the old snapshot DBMS.

To illustrate the requirements, consider the following three statements. We assume that the new STDBMS
is in place and that it satisfies UC and DUC.

> SELECT * FROM plans;
> ALTER TABLE plans ADD harvest1 PERIOD AS VALID;
> SELECT * FROM plans;

The first statement is an SQL–92 query issued on the legacy table,plans. Due to UC, it returns the
same result as it did in the old DBMS. The next statement alters theplans table, by adding a valid-time
dimension to indicate harvest periods of stands, perhaps because a new application needs this information
about plans. The last statement is now on an extended table, but due to DUC it yields the same result as the
first statement.
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A UC evaluation is simply an evaluation that is identical to that of the legacy system, i.e., in this case an
SQL–92 evaluation. A DUC evaluation, informally, simulates a non-dimensional database where only one
state is maintained.

To be more specific, a DUC evaluation on a temporal dimension considers simply the currently valid, or
current, state and ignores past and future states. In queries, the argument tables are sliced as of the timenow

in each time dimension. Modifications, i.e., insertions, deletions, and updates are applied to and persists in
the current state. Further details on the temporal aspects of DUC may be found elsewhere [2].

To achieve a DUC evaluation of queries on tables extended with one or more spatial dimension at-
tributes, the approach is to simply ignore the spatial attributes—these attributes are eliminated using pro-
jections. Modification statements employ spatial default values and are discussed in further detail in Sec-
tion 4.3.

Having covered two compatibility requirements, the next step is to ensure that the spatio-temporal data
model is a “natural” extension of the snapshot data model.

3.3 Reducibility Requirements

To naturally generalize the snapshot relational model to a dimensional relational model, we adopt the view
that a dimensional table simply is a collection of snapshot tables, with each snapshot table having an
associated multi-dimensional point and containing all the snapshot tuples that have an associated multi-
dimensional region that contains the point.

To be more precise, we first define the notion ofsnapshot reducibilityamong data models. We will
user andrd for denoting a snapshot and a dimensional table, respectively. Similarly,db anddbd are sets
of snapshot and dimensional tables, respectively. The definition uses a dimensional slice operator,�M

d�M
p ,

which takes as arguments a dimensional tablerd (in the data modelMd) and a dimensional pointp. It
returns a snapshot tabler (in the data modelM ) containing all tuples that are defined at pointp. In other
words,r consists of all tuples ofrd, but without the dimensional attributes, whose associated (dimensional)
region as defined by the combination of its dimensional attributes includes the pointp.

Definition 3.3 (snapshot reducibility) Let M � �DS�QL� be a snapshot relational data model, and let
Md � �DSd� QLd� be a dimensional data model. Data modelMd is snapshot reducible with respect to
data modelM if

�q � QL ��qd � QLd ��dbd � DSd ��p ��M
d�M

p �qd�dbd�� � q��M
d�M

p �dbd������.

This concept of snapshot reducibility generalizes the similar concept from temporal databases in a straight-
forward manner [23]. The commutativity diagram in Figure 3 illustrates snapshot reducibility. The diagram
states that for all query expressionsq in the snapshot model (the bottom row), there must exist a queryqd

in the dimensional model (the top row) so that for alldbd and for all point arguments, the equality at the
bottom right holds.

Observe thatqd being snapshot reducible with respect toq poses no syntactical restrictions onqd. It is
thus possible forqd to be quite different fromq, andqd might be very involved. This is undesirable, as we
would like the dimensional model to be a straight-forward extension of the snapshot model. Consequently,
we require thatqd andq be syntactically similar.

Definition 3.4 (syntactically similar snapshot-reducible extension—S-RED) [5] Let M � �DS�QL�

be a snapshot data model, and letMd � �DSd� QLd� be a dimensional data model. Data modelMd is a
syntactically similar snapshot-reducible extensionof modelM if

� data modelMd is snapshot reducible with respect to data modelM , and
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Figure 3: Snapshot Reducibility of Queryqd with respect to Queryq

� there exist two (possibly empty) strings,S� andS�, such that each queryqd in QLd that is snapshot
reducible with respect to a queryq in QL is syntactically identical toS�qS�.

If the two stringsS� andS� are both the empty string, the extension is termed a syntactically identical
snapshot reducible extension.

The S-RED requirement makes it possible for the SQL–92 programmer to easily formulate spatio-
temporal queries. To illustrate this, we first extend theestates andstands tables with two-dimensional
valid-space attributes and then issue the following three spatio-temporal queries, which are explained next.
(Remember that we earlier extended the plans table with a valid time attribute.)

> ALTER TABLE estates ADD es_area 2D_REGION AS VALID;
> ALTER TABLE stands ADD st_area 2D_REGION AS VALID;

> SEQUENCED (es_area) 2D_REGION ’Sherwood_Forest’
SELECT * FROM estates;

> SEQUENCED (harvest1) PERIOD ’1996’
SELECT plans.st_ID FROM plans;

> SEQUENCED (es_area st_area) AS area
SELECT es_ID, st_ID
FROM estates, stands;

Note that the queries have an SQL–92 core and are prepended with aSEQUENCED string. The string, termed
a flag, indicates how to handle the dimension attributes in the queries and also restricts the qualifying tuples
based on the values of their dimension attributes. Flags in STSQL is an important topic of the next section.

The first statement returns all tuples ofestates, with the restriction that thees area attribute of a
qualifying tuple must overlap with the2D REGION denoted bySherwood Forest. The second state-
ment finds stands that were harvested in 1996.

The third statements retrieves estate and stand pairs with intersecting areas, along with their common
areas. It thus computes a spatial Cartesian product. Imagine that all spatial values for estates and stands,
shown in Figure 2, are stored in the database in Figure 1. Then the result of this query contains these two
tuples:

hes34, st245, reges �� � regst ���i
hes80, st245, reges �� � regst ���i

This result is arrived at by computing the query in a point-by-point fashion, as indicated by the presence of
theSEQUENCED flag. More specifically, for every point in space for which both an estate and a stand tuple
is space-valid, a tuple with the pair of IDs of the estate and stand contributes to the result, and STSQL also
includes thespace-validpoint with the result. Upon finding all snapshot pairs of IDs and associated space
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points that contribute to the result, tuples with identical ID pairs are replaced by a single tuple that has the
same ID values and stores as an attributearea the region corresponding to the union of all the tuples’ space
points. (Here, we assume that the data type used for spatial regions, i.e., the data type ofarea is capable of
representing any union of points in space. If this is not the case, several tuples may be needed for capturing
the spatial region of a pair of IDs.)

This way, a pair of IDs in the result has associated as attributearea the intersection of the particular
tuples’ estate and stand regions, as stored ines area andst area. Thus, one stand may join with more
than one estate and one estate may join with more than one stand.

In summary, a snapshot reducible query generalizes a snapshot query by reducing argument dimensional
tables to point-indexed snapshot tables, then computes the corresponding snapshot query on those snapshot
tables, and finally “unions” the snapshot results to achieve a dimensional result table. Our use of the
period data type for time dimensions limits the extent to which tuples with identical non-dimensional
attribute values, termed value equivalent [13], may be “unioned,” termed coalesced [13]. Specifically, two
tuples may only be coalesced into one if their time dimensions overlap. The main characteristic of snapshot-
reducible evaluation is its point-based nature, where dimensional tables may be seen as indexed sequences
of snapshot tables. Hence, the key wordSEQUENCED.

A spatio-temporal query language should also provide queries that have no counterparts in the snapshot
query language. That topic is considered next.

3.4 Beyond Reducibility

Reducible STSQL queries perform computations on the dimension attributes as specified by reducibility and
by the SQL–92 queries they reduce to. The advantage is that it is easy to immediately write a wide range
of dimensional queries that perform potentially complex manipulation of dimension attributes. However,
reducible queries also have limitations. Indeed, many reasonable and useful dimensional queries cannot be
specified as reducible generalizations of snapshot queries. There is a need for the ability to specify queries
where no processing of the dimension attributes is hard-wired into the data model, but where instead the
programmer has complete control over the manipulation of the dimension attributes.

The approach we adopt is to make it possible to specify in the flag of a statement that dimension at-
tributes should be considered as regular attributes, with no built-in semantics in the query language. In
addition, we provide a range of predicates and function that operate on the data types of the dimension at-
tributes. This gives the programmer full control over the dimension attributes. For example, non-reducible
queries may relate database states that apply to different points in multi-dimensional space. For this reason,
we use the key wordNONSEQUENCED to indicate dimension attributes that should be treated as regular
attributes in a query. An example follows.

> NONSEQUENCED (es_area st_area)
SELECT e.es_ID, s.st_ID, INTERSECT(es_area, st_area) AS area
FROM estates e, stands s
WHERE es_area OVERLAPS st_area;

This query is similar to the last reducible query given in Section 3.3. The flag specifies that the two di-
mension attributeses area andst area of estates andstands, respectively, should be treated as
regular attributes in the query. The result of the query is a snapshot table with the attributes specified in
theSELECT clause. Since there is no built-in dimension processing, an explicitOVERLAPS predicate is
necessary in theWHERE clause to obtain the effect of the reducible query from earlier. Note that, while this
example allows us to replace the sequenced query with a nonsequenced one, this is not feasible in general.
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3.5 Summary

We have introduced three ways of handling dimension attributes in spatio-temporal tables. Dimension at-
tributes that are not mentioned in the flag of a query language statement are “ignored,” or treated consistently
with the dimension upward compatibility requirement. If the key wordSEQUENCED is used for dimension
attributes, they are treated as implicit dimensions of data, and the statement is evaluated with semantics
that meet the snapshot reducibility requirement. This provides built-in spatio-temporal query processing.
Finally, if the key wordNONSEQUENCED is used for dimension attributes in the flag of a statement, the
dimension attributes are treated as regular attributes. This provides maximum flexibility in writing spatio-
temporal queries.

4 STSQL design

This section discusses the design of a spatio-temporal extension to SQL–92 based on the requirements and
evaluation modes discussed in Section 3. We briefly discuss the new datatypes of STSQL, then explore in
more detail its syntax and semantics.

It is an important characteristics of STSQL that it seamlessly extends SQL–92 in that it prepends SQL–
92 statements with an optional flag. If this flag is omitted, legacy SQL–92 statements result. This approach
makes the semantics of STSQL relatively easy to define in terms of SQL–92 and to understand for someone
familiar with SQL–92. When formulating a query, the core SQL–92 statement can be formulated as usual—
not considering the dimensions. The flags may then be added to handle the dimensions as desired.

4.1 Space and Time Data Types

The initial step in the design of STSQL is to introduce new datatypes that capture time and space values.
For time values STSQL uses anchored time periods. Spatial values are unions of regions. Regions are
either defined over 1-, 2-, or 3-dimensional spatial domains. The corresponding datatypes arePERIOD,
1D REGION, 2D REGION and3D REGION, respectively. A further specialization of the region datatype
would lead to points, (poly-)lines, rings, and polygons. In this paper, the number of different region data
types and their individual characteristics are of minor importance (the interested reader is referred to, e.g.,
Güting [11] for more details about a variety of spatial data types).

The new data types must be accompanied by predicates and functions that operate on them. Again, the
specific choice and number of these is not important for the contribution of this paper, so we simply give a
list of names and brief informal definitions of some useful, representative predicates and functions.

name definition domain value
BEGIN/END timestamp’s start/end time period time instant
MEETS adjacent/neighbors period/region boolean
OVERLAPS sharing some instants/points period/region boolean
CONTAINS one within the other period/region boolean
PRECEDES one strict earlier than the other period boolean
INTERSECT shared period/region period/region period/region
DURATION length of period in specified units period a number
AREA number of square units region a number

The predicates for periods and regions should be well known to those familiar with, e.g., Allen’s interval
logic [1] and Egenhofer and Franzosa’s point-set topological spatial relations [9].
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4.2 Dimensional Tables and Databases

The next step is to make tablesdimensional, in order to provide a basis for built-in dimensional support
for modifications and queries in the query language. The data types introduced in the previous section are
utilized.

As a precursor to creating actual dimensional tables using the data types, we note that the data types, like
any other SQL–92 data types, may be employed for defining domains of attributes that are in principle no
different from regular attributes. Including such attributes in a table does not render the table dimensional;
rather, the table is a regular table that includes regular attributes, some or all of which happen to be of type
PERIOD, 1D REGION, 2D REGION, or 3D REGION. The DBMS attaches no special semantics to these
attributes.

To provide built-in dimensional support, e.g., dimensional upward compatibility and snapshot reducibil-
ity, it is necessary to be able to designate certain time or space valued attributes as special dimensional
attributes. Tables with such attributes are then dimensional tables.

In STSQL, dimensional tables may have any number of dimensional attributes, and each dimension
attribute may be of any of the four new time and space types introduced in Section 4.1. In addition, a
dimension attribute is specified as either aVALID or aTRANSACTION attribute.

Combining the options for defining dimension attributes, we obtain four conceptually different types of
dimension attributes. Withd att being the name of a dimension attribute, the four types are as follows
(wherex denotes1, 2, or3).

d att PERIOD AS VALID
d att PERIOD AS TRANSACTION
d att xD REGION AS VALID
d att xD REGION AS TRANSACTION

In typical use, a dimension value of a tuple is associated with the tuple as a whole. In the first type,
d att then records when some temporal aspect of the information recorded by the (non-dimensional)
attributes of the tuple as a whole is true, or valid, in the mini-world. For example, we have previously added
aharvest1 attribute to theplans table, recording the harvest period for a plan.

While with the first type above, we record when some temporal aspect of a tuple is valid, the second type
records when a tuple is current in the table, or, equivalently, when we believed in the information recorded
by the tuple. This transaction-time aspect of a tuple is important in applications that require accountability or
traceability of database modifications. Where valid-time values are determined by the mini-world modeled
by the database, the transaction-time values are determined by the modification activity on the database.

The two last types replace time with space. The first of these types records some spatial aspect of a
tuple. For example, we have previously added the attributees area 2D REGION AS VALID to the
estates table. This dimensional attribute is intended to record the geographic areas of individual estates.
We have also added a dimensionalst area attribute to thestands table for recording the specific regions
of forests that are surveyed and found homogeneous with respect to certain parameters.

Transaction-time attributes were used for recordingwhentuples are current in a table. The last type
of dimension attribute recordswherea tuple was recorded. Notationally, we term this a transaction-space
attribute.

In contrast to most spatial and temporal models, STSQL permits multi-dimensional tables where a
single table may have any number of dimension attributes of any of the types explored above. This added
generality is useful for many purposes.

Several valid-time attributes are useful, e.g., when the information of a tuple is true in several different
(possible) worlds. For example, different historians, archeologists, or interest groups may possess different,
competing world views, all of which could be represented in a single table.
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SeveralVALID-type attributes may also record different temporal aspects of a tuple. For example, the
plans table previously presented, had aVALID attributeharvest1 recording when a stand is supposed
to be harvested. We can also add a newVALID attribute denoting when the textual property data about a
plan for a stand are valid. Certainly, these two attributes record different aspects of a plan.

We may also add aVALID attribute recording an alternative harvest period that denotes a harvest period
of a stand calculated using a different method and different parameters. The resulting two harvest attributes
reflect different (possible) worlds.

Reasons for recording multiple transaction-time attributes have been explored elsewhere [14]. The
choice of how to use multiple valid and transaction times is up to each specific application.

Considering space instead of time, it is equally easy to envision uses of multiple dimension attributes:
The multiple-worlds argument applies equally well to space, and tuples may have several different kinds
of spatial aspects. Couclelis discusses issues related to these [7]. Furthermore, several transaction-space
attributes may simply record that (parts of) a tuple are recorded jointly from several locations.

In summary, we have added multiple space and time dimensions to tables, thereby obtaining the seman-
tics necessary to enable dimensional semantics to be built into modifications and queries. The next step is
to explore the management of databases with multi-dimensional tables.

4.3 STSQL Statements

This section presents the core of STSQL. EBNF syntax is given for the central extensions to SQL–92. Ex-
amples from the forest management application are used for illustrating the semantic properties of STSQL.

4.3.1 Dimensional Default Values

In various situations, SQL–92 inserts a default value whenever a regular attribute value is missing. This
occurs if an insert statement lacks a value, if a tuple referenced by a foreign key is deleted, or if an alter
statement adds an attribute to a table. In all these cases, SQL–92 resorts to a user-defined default value or,
if none is specified, to the system-default,NULL.

STSQL adheres to this approach whenever reasonably possible, but there are also situations where
STSQL has to extend this approach in order to get the intended semantics for the dimensions of tables,
especially where DUC evaluation is involved. For example, the transaction time of inserted tuples must
extend to the current time, and legacy SQL–92 statements are evaluated on only the current database state,
as discussed briefly in Section 3.1 [2].

For time dimensions, the implicit handling of timestamps has been investigated carefully [2]. DUC
query expressions are evaluated only on tuples with valid and transaction times that overlap withnow. DUC
modification statements are slightly more complicated. Common to all DUC modification statements is
that they affect current and future data only. Thus, tuples inserted by SQL–92 statements get valid and
transaction time periods from the current time untilnow, whereas SQL–92 deletions set the end times of
periods of tuples to be deleted to the current time, making the tuples invisible to future SQL–92 queries.

In contrast to the temporal dimensions there are no obvious default values for spatial dimensions. One
possible value would be to use some notion of “current” location, but it is unclear how well this choice
would make it possible to reflect real-world semantics.

We therefore have decided to let DUC queries ignore spatial dimensions. This is consistent with how
spatial dimensions are handled when spatial values are captured using explicit attributes: if such attributes
are not mentioned explicitly (e.g., in theSELECT clause), they are simply ignored.

This choice for handling spatial dimensions in queries poses no restrictions on our choices for handling
legacy modifications. Legacy SQL–92 modifications set the transaction space to the location where the
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transaction is issued, i.e., the current location. For valid space, a legacy modification inserts a default spatial
value, i.e., either a user-defined default or the system default,NULL.

These choices are compatible with STSQL being dimensional upward compatible with SQL–92. The
issues are exemplified and discussed further in the following.

4.3.2 Alter and Create Statements

Legacy tables can be extended with spatial and temporal dimensions. For example, the following statements
extend the tables from our case with further dimensions.

> ALTER TABLE estates ADD es_vt PERIOD AS VALID;
> ALTER TABLE estates ADD es_tt PERIOD AS TRANSACTION;
> ALTER TABLE plans ADD pl_vt PERIOD AS VALID;
> ALTER TABLE plans ADD harvest2 PERIOD AS VALID;
> ALTER TABLE stands ADD survey PERIOD;
> ALTER TABLE stands ADD st_vt PERIOD AS VALID;
> ALTER TABLE stands ADD st_tt PERIOD AS TRANSACTION;

These statements makeestates a three-dimensional table with a transaction-time, a valid-time, and a
valid-space dimension (cf. Section 3). Theplans table becomes a three-dimensional valid-time table. The
stands table is altered to include a valid-time dimension, a transaction-time dimension, and a user-defined
attribute, the latter denoting the period during which a stand is surveyed. Note the difference between
survey andst vt. The former is not a dimension and, therefore, not covered by upward compatibility,
dimensional upward compatibility, or reducibility.

Similar syntactic extensions apply to create statements. As an example, we next define a table that keeps
track of owners of estates.

> CREATE TABLE people (
name VARCHAR(40),
street_addr VARCHAR(60),
phone VARCHAR(10),
vt PERIOD AS VALID,
tt PERIOD AS TRANSACTION);

4.3.3 Queries, Flags and Dimension Identifiers

Next, we explore dimensional queries. All sample queries are evaluated on the tables shown in Figure 4.
In order to understand the queries and modifications, it is essential to understand the semantics associated
with these tables. We discuss each table in turn.

1. Thestands table models the (surveyed and analyzed) status of stands. For each stand we record,
e.g., the specie of the stand’s dominant tree population, the soil fertility of the stand (i.e., the in-
dex), the stand’s location, and a period of validity. A transaction time is used to retain a record of
modifications.

In stand st100, pines have good growing conditions, i.e., high soil fertility. They were planted in
1935 and the stand was surveyed between 1984 and 1986. The stand location is the regionregst ���.
The information has been valid since 1989, but was first recorded 1996.

2. Theestates table records for each estate its owner, the validity period of the ownership, and the
area that it covers. A transaction time is used to record modifications.

11



stands
st ID index specie planted survey st vt st tt st area

st 100 high pine 1935 1984-1986 1989-now 1996-now regst ���

st 230 high birch 1957 1984-1986 1989-now 1996-now regst ���

st 245 low birch 1946 1984-1986 1989-now 1996-now regst ���

st 560 high spruce 1963 1984-1986 1989-now 1996-now regst ���

estates
es ID owner es area es vt es tt

es34 Paul reges �� 1995-now 1994-now
es63 Mary reges �� 1996-now 1996-now
es80 Peter reges �� 1996-now 1995-1996
es 401 Mary reges ��� 1996-now 1995-1996
es80 Peter reges �� 1996-1999 1997-now
es 401 Mary reges ��� 1996-1999 1997-now
es 100 Tom reges ��� 2000-now 1997-now

plans
pl ID st ID volume ripe pl vt harvest1 harvest2

pl 29 st 100 2000 2000 1996-now 1998-2000 1999-2004
pl 29 st 560 900 2000 1996-now 1999-2001 2001-2003
pl 29 st 230 1500 2002 1996-now 2000-2002 2005-2008
pl 34 st 245 400 2010 1995-1996 2009-2011 2009-2011
pl 35 st 245 500 2011 1997-now 2010-2012 2010-2012

Figure 4: The Spatio-Temporal Example Database

During 1995 and 1996, it was recorded that estate es80, covering areareges ��, was owned by Peter
from 1996 onwards. Similarly, it was recorded that estate es401, covering areareges ���, is owned
by Mary from 1996 onwards.

In 1997, Mary and Peter agreed to sell their estates es401 and es80, respectively, to Tom, effective as
of year 2000. Tom’s estate will then cover the areareges ���, which is the union of the two previous
estates.

3. Theplans table records how stands are cultivated. For each stand, we record the volume to be
harvested and the ripe year. Each plan has two harvest periods, calculated according to different
scheduling methods that emphasize some growth conditions differently, e.g., according to soil fertility,
climate, etc.

Plan pl34 schedules stand st245 to be harvested from 2009 to 2011. The expected harvest volume
is 400m�, and the ripe year is 2010.

At some point, plan pl34 for stand st245 is superseded by plan pl35. The new plan postpones the
harvest period to 2010–2012 because, due to new climate estimates, the new expected ripe year has
moved to 2011. The new expected harvest volume is 500m�.

The syntactic extensions to SQL–92 that are needed to formulate spatio-temporal statements are rela-
tively few. Theflag is the central novel construct and is used to indicate the desired evaluation mode(s)
(cf. Section 2). Flags are placed in front of SQL statements and indicate whether the statements have to be
evaluated sequentially and/or non-sequentially. Additionally, it is possible to express domain restrictions
and range specifications.
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The following EBNF defines the syntax of flag. The<cursor specification> is the standard’s
production for theSELECT statement [17].

<cursor specification> ::=
flags <query expressions> [ <order by clause> ]

flags ::= [ flag { "AND" flag } |
range_spec { "AND" range_spec } ]

flag ::= modifier dimensions [ domain_constant ][ range_spec ]
range_spec ::= "SET" <identifier> dim_datatype range_expression
modifier ::= "SEQUENCED" | "NONSEQUENCED"
dimensions ::= "(" column_reference { column_reference } ")"

[ "AS" <identifier> ]
dim_datatype ::= PERIOD | 1D_REGION | 2D_REGION | 3D_REGION

The dimension(s) that a particular flag modifier applies to is (are) given by the non-terminaldimensions
and have to follow the sequenced or nonsequenced modifier. Because of the multi-dimensional nature of
STSQL, dimensions have to be named explicitly—unlike in frameworks with a fixed number of dimensions,
this information cannot be inferred automatically.

To be meaningful, a sequenced evaluation must apply to precisely one dimension from each argument
table in the SQL statement. This requirement reflects the fact that a flag (and thus a sequenced evaluation)
applies to anentire statement. In general, no meaningful semantics can be given to sequenced statements
with tables that do not participate in the sequenced evaluation. Note that derived table expressions (i.e.,
table expressions in the from clause) start a new scope whereas subqueries, in the where clause, do not start
a new scope. It should also be clear that the dimension types that take part in a sequenced evaluation must
be homogeneous. Sequenced semantics are not meaningful when combining valid time and valid space or
transaction time and valid time because of the different semantics associated with the respective dimensions.

When formulating queries on dimensional tables, it is advantageous to proceed in several steps. Initially,
all dimensions are ignored and the core STSQL query, typically an SQL–92 query, is formulated.

The next steps concern the formulation of the query’s flag. For each dimension of each table in the
query, we must determine and express in the flag the dimension’s use in the query. First, we determine what
dimensions should be evaluated with sequenced semantics. Each occurrence of theSEQUENCED keyword
requires the participation of exactly one dimension from each table.

Second, we determine which dimensions are to be givenNONSEQUENCED semantics. This semantics
is chosen if we want to formulate user-defined predicates (e.g.,CONTAINS) on the attribute or if we want
to override DUC consistent semantics, which is the semantics given to dimension attributes not mentioned
in the flag.

In the sequel, a set of example queries are employed to illustrate the concepts introduced above and the
formulation of queries in STSQL.

Query Q1 For each stand that is ripe in 2000, determine its harvest periods. This query requires us to
join thestands and theplans tables. We use a sequenced join over the valid times to associate stands
with relevant plans only. Next, we are only interested in thestands table as best known as of now, i.e., we
restrict the transaction time to overlapnow. This is exactly the semantics provided by DUC and we therefore
do not specify any flag forst tt. The location of a stand is not relevant and, thus, must be disregarded.
This semantics is supported by DUC, which means that no flag forst area has to be specified. Finally,
we want to retrieve (and handle) the harvest periods like regular attributes. This is achieved by specifying a
nonsequential flag for these dimensions.
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> SEQUENCED (st_vt, pl_vt) AS vt AND
NONSEQUENCED (harvest1, harvest2)
SELECT st.st_ID, specie, index, harvest1, harvest2
FROM stands st, plans pl
WHERE pl.st_ID = st.st_ID
AND st.ripe = 2000;

st.st_ID specie index harvest1 harvest2 vt
-------------------------------------------------------
st_100 pine high 1998-2000 1999-2004 1996-now
st_560 spruce high 1999-2001 2000-2003 1996-now

Query Q2 Determine all stands that did not change status for more than 5 years, together with the corre-
sponding estate(s). This query requires us to sequentially join a) the locations ofstands andestates
and b) the valid times of both tables. Additionally, we have to specify a where clause condition that captures
the user-defined restriction on the valid time of stands. Because we are only interested in the table contents
as best known as of now we restrict the transaction times to overlapnow. This is exactly the semantics
provided by DUC and we therefore do not specify any flag for the transaction times.

> SEQUENCED (st_area, es_area) AS st_es_area AND
SEQUENCED (st_vt, es_vt) AS st_es_vt
SELECT st_ID, es_ID
FROM stands, estates
WHERE DURATION(st_vt, YEAR) > 5;

Query Q3 For all stands, determine when the two harvest periods are scheduled contemporarily.Search-
ing for contemporary occurrences (i.e., at every instant the harvest periods overlap) hints at sequenced
semantics. In this case, we have to self-join thestands table, thereby sequentially joiningharvest1
andharvest2. Note that a nonsequential semantics has to be specified for those harvest periods we are
not interested in, i.e.,harvest2 for pl1 andharvest1 for pl2, respectively. We have to do so to
prevent a DUC-consistent evaluation. Such an evaluation would restrict the times of the respective harvest
periods to the current time, which is clearly not what we want.

> SEQUENCED (pl1.harvest1, pl2.harvest2) AS agreed_harvest AND
NONSEQUENCED (pl1.harvest2, pl2.harvest1)
SELECT pl1.st_ID
FROM plans pl1, plans pl2
WHERE pl1.st_ID = pl2.st_ID;

Query Q3’ The astute reader might wonder why we do not simply state an explicit selection predicate
that requires the harvest periods to overlap. This, of course, is also possible. QueryQ3’ produces the same
result as QueryQ3, the only difference being thatagreed harvest is a dimension attribute in the former
and a regular attribute in the lattter.

> NONSEQUENCED (harvest1, harvest2)
SELECT st_ID, INTERSECT(harvest1, harvest2) AS agreed_harvest
FROM plans
WHERE harvest1 OVERLAPS harvest2;

QueryQ3’ is shorter, and without an enhanced query optimiser we can expect this query to evaluate faster
than Q3. However, there is an important difference between the two queries. This becomes clear if we
consider a (slight) variation of the original query.
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Query Q4 For all stands, determine when the first harvest period is ongoing while the second is not.
The only difference fromQ3 is that we are not looking for contemporary occurrences ofharvest1 and
harvest2, but for exclusive occurrences ofharvest1. Our first solution scales up nicely. The flags
remain exactly the same. We only have to change the SQL statement to specify a negation rather than a
join.

> SEQUENCED (pl1.harvest1, pl2.harvest2) AS light_harvest AND
NONSEQUENCED (pl1.harvest2, pl2.harvest1)
SELECT pl1.st_ID
FROM plans pl1
WHERE pl1.st_ID NOT IN (
SELECT pl2.st_ID
FROM plans pl2 );

The formulation of this query becomes much more complex with the second approach, i.e., theQ3’ ap-
proach. Depending on the exact data, the representation of timestamps, and the functions on timestamps,
it can become exceedingly difficult to formulate queries with this approach. This indicates that built-in
sequential processing is both powerful and user-friendly.

Thus having explored queries, we turn our attention to modification statements.

4.3.4 Modification Statements

The EBNF of STSQL modifications is shown below. It is similar to that of SQL–92, the difference being
that statements can be prepended with flags.

<SQL data change statement> ::=
flags <insert statement> |
flags <delete statement> |
flags <update statement>

Statements with an emptyflags clause are either UC or DUC modifications. Otherwise, the modification
is SEQUENCED or NONSEQUENCED, possibly restricted by arange spec clause.

In the following, examples of inserts and updates in our case are used for illustrating how STSQL
behaves for various types of statements. First, some DUC statements are issued. A newly surveyed forest
region has got its data analyzed and its plan scheduled. A legacy application issues the following statements
on January 15, 1997.

> INSERT INTO stands VALUES (’st_562’, ’medium’, ’spruce’, 1952, 1996-1997);
> INSERT INTO plans VALUES (’pl_34’, ’st_562’, 9000, 2011);
> COMMIT;

Since thestands andplans tables both are dimensional, the DUC evaluations of these statements pro-
vide default values for the dimension attributes of the respective tables. The following two tuples result
from evaluating the two statements, i.e., the new tuples are as follows.

hst 252, medium, spruce, 1952,����� ����, ����� now� ����� now� NULLi
hpl 34, st562, 9000, 2011,����� now� ����� now� ����� nowi

Note that DUC evaluations implicitly add values for unspecified dimensions, i.e., for the valid times, the
transaction time, the area, and the two harvest periods. While it has been shown that in uni- and bitemporal
tables, it is reasonable to timestamp “from the current time onwards,” this is less obvious in multi-temporal
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frameworks. In our example, it certainly makes sense to apply this default tost vt, st tt, andpl vt.
However, this makes less sense for the harvest periods. On the other hand, we have no other value that is
clearly superior. (This illustrates that dimensional upward compatibility is limited in scope when it comes
to the interpretation of timestamps, which is not surprising.) Thest area dimension forstands is set
to NULL because no user default was specified when the dimension was added.

A range specification can be used to insert past, present, or future data.

> SET es_vt PERIOD ’1956-1986’ AND
SET es_area 2D_REGION ’reg_es_63’
INSERT INTO estates VALUES (’es_63’, ’Jim’);

> COMMIT;

Recall that a range specification is used to set/add dimension values in query, insert, or update statements.
In simple modification statements, it is also possible to use standard techniques to set dimension values
(e.g., add the range expressions to the value list).

> INSERT INTO estates VALUES (’es_63’, ’Jim’, ’reg_es_63’, ’1956-1986’);
> COMMIT;

While possible, this type of insertion is not recommended because the position of the dimension attributes
has to be taken into consideration (the same problem exist for standard attributes in SQL–92) and because
this format is inapplicable if the values to be inserted are defined in terms of an SQL query expression.

Next, it is discovered that Paul’s correct name is Jean Paul. The wrong information is corrected inde-
pendently of time and space, i.e., with a nonsequenced statement.

> NONSEQUENCED (es_vt, es_area)
UPDATE estates
SET owner = ’Jean Paul’
WHERE owner = ’Paul’;

> COMMIT;

Internally, the transaction time end of the current tuple, i.e., the tuple with name Paul, is set to the current
time and a new tuple with name Jean Paul is inserted.

hes 34, Paul, reges ��� ����� now� ����� ����i
hes 34, Jean Paul, reges ��� ����� now� ����� nowi

Finally, we give a statement that postpones the average planting time by two years for stands located
within estate es63.

> SEQUENCED (st_area, es_area)
UPDATE stands
SET planted = planted + INTERVAL ’2 YEAR’
WHERE EXISTS ( SELECT *

FROM estates
WHERE es_ID = ’es_63’ );

> COMMIT;

Note that all STSQL modification examples include core SQL statements. Thus, if the STSQL-specific
prepended strings are removed, the core of the statements are all legal SQL statements. This yields a user-
friendly query language. The above SQL statements, that could be part of a legacy application, are easily
turned into spatio-temporal statements. This means that it is possible to easily extend legacy applications
to become spatio-temporal, which is beyond simply permitting legacy applications to co-exist with new
spatio-temporal applications.
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5 Related Work

The migration requirements that dictate the general properties of STSQL were originally developed in the
context of bitemporal tables, i.e., tables supporting, at most, one transaction time and one valid time [2].

STSQL supports multiple valid- and transaction-time and multiple valid- and transaction-space at-
tributes in a single dimensional table. We are aware of no other models with this property.

Among the few spatio-temporal data models that exist, ParaSQL [6] may be the closest relative of
STSQL. Being based on an attribute-value stamped data model, ParaSQL differs substantially from STSQL;
apart from upward compatibility, it is our contention that it does not satisfy any of the migration require-
ments.

Within temporal databases, ATSQL [4] and proposed additions to the SQL/Temporal part of the SQL3
standard [24, 25] support bitemporal tables and also satisfy the migration requirements. STSQL may be
seen as a generalization of these languages, its closest temporal relatives.

Considering spatial data models, we have found no data models that provide migration support beyond
upward compatibility. The SQL-based languages GEOQL [19], PSQL [21], KGIS [12] and Spatial SQL [8]
preserve the non-dimensional SQL and satisfy UC, and they define explicit extensions to the SQL select
statement for the handling of spatial values. KGIS and Spatial SQL also define, outside SQL, other language
constructs to augment the spatial capabilities of their models and languages.

6 Conclusion and Future Research

This paper has investigated how existing database applications using a conventional SQL–92-based DBMS
may be migrated to a spatio-temporal DBMS without changing the application code; it has investigated
how new spatio-temporal applications may be added without affecting the existing applications; and it has
investigated how to reuse programmer expertise by designing the spatio-temporal SQL carefully.

A spatio-temporal extension to SQL–92, termed STSQL, that aims at satisfying the above requirements,
while providing built-in data management support for spatio-temporal data, has been explored. No other
spatio-temporal language satisfies all the requirements. Within temporal databases, two bitemporal query
languages satisfy the requirements; unlike these two languages, STSQL supports an arbitrary number of
temporal and spatial attributes with built-in support in the query language.

This paper presents the initial design of the core of STSQL, and in doing so, it touches upon a variety
of language facilities. However, further formalizations of the language, beyond the informal semantics give
here, is warranted. Perhaps most prominently, the semantics of spatio-temporal modifications have yet to
be determined in full, and then specified.

In this paper, we have chosen one reasonable semantics for DUC statements, but in a multidimensional
framework, there appears to be several reasonable semantics for these. For example, it is possible to not
restrict temporal DUC evaluations to the current time or to restrict spatial DUC evaluations to the current
location. It would be interesting to explore the alternative semantics and relate them to the those chosen in
this paper.

Another future direction worth persuing would be to implement a core subset of STSQL on top of an
existing DBMS, e.g., Oracle using its Spatial Data Option. This layered approach allows for relatively
quick construction of a prototype that may then be used as a vehicle for experimentation with the query
language design. We have previously provided such a prototype implementation of STSQL’s temporal
relative, ATSQL.
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