Point- Versus I nterval-based Temporal Data
Models

M. H. Bohlen, R. Busatto and C. S. Jensen

January 19, 1998

TR-21

A TIMECENTER Technical Report

Title Point- Versus Interval-based Temporal Data Models

Copyright© 1998 M. H. Bdhlen, R. Busatto and C. S. Jensen. All rights
reserved.

Author(s) M. H. Bohlen, R. Busatto and C. S. Jensen

Publication History January 1998. A IMECENTER Technical Report.
February 1998. Proceedings ICDE’98 (shorter version)

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Bohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see ThaMe CENTER Homepage:
URL: <htt p://ww. cs. auc. dk/ general / DBS/ t db/ Ti neCenter/ >

Any software made available viamME CENTER s provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fithess for a particular
purpose.

The TiIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

The association of timestamps with various data items such as tuples or attribute values is fundamental to
the management of time-varying information. Using intervals in timestamps, as do most data models, leaves
a data model with a variety of choices for giving a meaning to timestamps. Specifically, some such data
models claim to be point-based while other data models claim to be interval-based. The meaning chosen
for timestamps is important—it has a pervasive effect on most aspects of a data model, including database
design, a variety of query language properties, and query processing techniques, e.g., the availability of
query optimization opportunities.

This paper precisely defines the notions of point-based and interval-based temporal data models, thus
providing a new, formal basis for characterizing temporal data models and obtaining new insights into the
properties of their query languages. Queries in point-based models treat snapshot equivalent argument
relations identically. This renders point-based models insensitive to coalescing. In contrast, queries in
interval-based models give significance to the actual intervals used in the timestamps, thus generally treat-
ing non-identical, but possibly snapshot equivalent, relations differently. The paper identifies the notion of
time-fragment preservation as the essential defining property of an interval-based data model.

1 Introduction

Temporal data models include timestamp attributes in their relation schemas and give special semantics to
the values of these attributes in their query languages. Virtually all data models intended for practical use
employ some form of intervals for their timestamp values. With a fine-granularity time domain such as,
e.g., the defaulll MESTAMP domain of SQL, it is generally impractical to record individually all the time
points when some database fact was, is, or will be true.

Intervals may simply be employed for reasons of practicality, i.e., as syntactical shorthands for time
points, as has been done in some data models (e.g., [12], [14, ch. 1]). Thus, terming a data model interval-
based simply if it employs interval timestamps bears little real significance—it says little about the qualities
of the data model. Rather the notions of point- and interval-based data models must be defined on a semantic
level. The question then is what the real defining properties of point- and interval-based data models are—
this paper provides an answer to this question.

To get a feel for the range of possible semantics of data models, related to points versus intervals, it is
instructive to consider a simple example. We assume that the two tuple-timestamped relatiahs,
below, are given and consider possible definitions of the temporal difference of these two rejatioms,

ri. | A TS
al L] | rm: [A] 75
a | [11,20] a [[5,15]
a | [21,30]

The results,R; through Ry, of four possible definitions of the difference operator are given next, and
are discussed in turn.

Ri: [AT TS Ry: [AT TS
a| [1,4] a | [21,25]
a | [16,30] a | [26,30]
Ry: | A TS Ry | A TS
a | [1,10] a| [1,4]
a | [11,20] a | [16,20]
a | [21,30] a | [21,30]

The first result contains the times associated with valuemtimat are not associated with value a in
r9. This result is consistent with the perception that intervals are abbreviations for time points, and nothing
more. Thus, the first definition has a point-based feel to it.

The first result may also be characterized as beimgesced In coalescing, value-equivalent tuples
(tuples with identical non-temporal attribute values) with adjacent or overlapping intervals are replaced by
a single tuple with the same non-temporal attribute values and an interval that is the union of the intervals
of the original tuples.

In contrast, resulR, is far from being point-based in nature. This result contains all tuplgsnat
in ro. This definition of difference simply considers intervals as atomic values. Thus, it may be said to
“respect” the actual intervals given to the tuples, and it is devoid of any flavor of point-based-ness. It
may even be questioned whether this operator is temporal at all—it is simply the standard set-theoretical
difference operator. Resul; returns tuples fromr; with intervals that do not overlap with intervals of
tuples inry; the intervals of qualifying tuples are nonetheless split into two. The utility of a temporal
difference operator of this kind appears questionable.

The last result is similar to the first one: it also contains the times associated with valydtetrare
not associated with value a in. Put precisely,R; and R, are snapshot equivalent [12]. The difference
is that the second tuple iR; is “represented” by two tuples iR;. In other words,R; is the coalesced
version of R,. The idea behind this definition is to be point-based while also trying to respect the intervals
associated with the tuples in the argument relations.

It is our contention thaR, and R, are results of point-based operations and fand R, are results
of interval-based operations. The operation yielding reRui$ thus neither point- nor interval-based.

So far, attempting to capture in general the defining properties of point-based and, in particular, interval-
based data models has proven notoriously difficult and has led to much confusion. This paper gives mean-
ingful and general definitions of what point- and interval-based data models are and thus contributes to
clearing away the confusion. The definitions provide a foundation for deciding whether a model is point- or
interval-based.

To the knowledge of the authors, no papers have previously been devoted to the issues addressed here.
Rather, some papers that either define new data models or describe existing data models have made brief
statements concerning the point- versus interval-based nature of data models.

For example, Snodgrass states that “A temporal query language should have a canonical model, in which
relations are identical if and only if all of their snapshots are identical” [12, p. 288]. Chomicki states that
“It is important to see that the data model of TQuel is point-based, not interval-based. Intervals serve only
as a representational device. The truth values of facts are associated with points, not intervals” [5, p. 521]
and that *..amodel is point-based if facts are associated with single time points, interval-based — if they
are associated with intervals (represented as pairs of points)” [6, p. x+7]. Finally, Toman states that “In this
paper we establish the correspondence between the point- and interval-based views of temporal databases
and the corresponding first-order temporal languages. This correspondence shows that all first-order queries
can be conveniently asked using the point-based query languageafdthen mechanically translated to
an interval-based query language” [15, p.59].

The literature reveals that different researchers perceive the notions of point-based and interval-based
data models quite differently. In particular, the notion of interval-based data model remains to be given a
formal definition, alongside a rigorous semantics.

In the next section, we further motivate the topic and explore the problem space. Section 3 introduces
the notions of temporal data models and time domains, providing the basis for formally defining the notions
of point-based and interval-based temporal data models in Sections 4 and 5. Section 6 informally discusses
some of the aspects of the definitions, and Section 7 concludes and points to directions for future research.

2 Maotivation and Problem Space

Before giving formal definitions of point- and interval-based models, this section explores the properties of
the two kinds of models, showing that there are significant differences between them.

2.1 Semantics and Expressive Power

When asking queries on a temporal database, the results may vary depending on whether or not argument
relations are coalesced. For example, this is the case for selections and projections that involve the argument
timestamps. To see this, consider the two relations in Figure 1. The relation at the top is uncoalesced
whereas the one at the bottom is the corresponding coalesced relation.

Employment
| Name| Position | TS |
Lars | programmer| [92/01/01,94/12/31]
Lars | programmer| [95/01/01,96/12/31]
Niels | accountant| [92/01/01,96/12/31]

Employment
| Name| Position | TS |
Lars | programmer| [92/01/01,96/12/31]
Niels | accountant| [92/01/01,96/12/31]

Figure 1: Uncoalesced and Corresponding Coalesced Relation Instance

Consider the uncoalesced Employment relation, which models job contracts in a company with temporary
positions only. The queryyame, starT(Ts) (Employmeni returns three tuples because three contracts were
signed (function START returns the start time of an interval). If the exact same query is evaluated over the
coalesced instance, only two tuples are returned.

The example illustrates that there exist queries that can be asked over the uncoalesced instances, but not
over the coalesced ones. For example, the coalesced instance of the employment relation does not reveal
that Lars signed two contracts, let alone when he signed the second one.

On the other hand, it is impossible to come up with a query that can be answered over the coalesced, but
not over the uncoalesced, instance. The reason for this is that it is possible to derive the coalesced relation
instance from an uncoalesced one, e.g., using a regular SQL statement [4].

These considerations indicate that a model that is able to tell coalesced and uncoalesced relation in-
stances apart, and in this sense is interval-based, is in some sense more powerful than a model that cannot
tell them apart, i.e., a point-based model. Next, we explore this difference further.

2.2 DataModeling

The relative expressiveness of data models that do or do not differentiate between coalesced and uncoalesced
relation instances may also involve data modeling. It may be argued that if the database schema is designed
appropriately, it is possible to answer the same queries using a coalesced model as can be answered by an
uncoalesced model.

For example, if individual contracts are important, which is not unlikely, we can record their unique
numbers in the Employment relation, as shown in Figure 2.

This way, it may be possible to “compensate” for the lack on uncoalesced relations in a point-based
data model. It may be argued that it is quite natural that certain queries cannot be answered if they were not
anticipated when the database was designed—this is true for any database.

Employment
| Name| Position | Contrld | TS |
Lars | programmer| 1091 | [92/01/01,94/12/31]
Lars | programmer| 2154 | [95/01/01,96/12/31]
Niels | accountant| 1095 | [92/01/01,96/12/31]

Figure 2: Alternative Modeling of Employment

Still, introducing additional attributes may sometimes have subtle drawbacks not experienced if the
attributes could be omitted because the data model allowed uncoalesced relations. For example, we might
introduce dependencies (contract numbers increase over time) or we might not be able to faithfully represent
our mini-world (“new” follow-up contracts with the same contract number).

2.3 Query Processing and Query Optimization

The point- versus interval-basis of a query language also affeisy processingndquery optimization
For an interval-based language, care has to be taken that processing and optimization strategies respect the
interval-based semantics, which can be quite complex. This severely restricts the possibilities to manipulate
and transform intervals. In contrast, specific timestamps may be modified (as long as snapshot equivalence
is preserved) in a point-based language, allowing the database system a choice of timestamps among several
alternatives. This indicates that an interval-based language leaves less possibilities for query optimization
and, thus, efficient evaluation strategies.

In favor of an interval-based language, it can be said that a point-based databasensystgunarantee
that the result of queries do not depend on the specific choice of timestamp values. This guarantee is met by
performing coalescing operations, which can be expensive [4]. While it is possible to sometimes eliminate
coalescing during query optimization, there remain situations where coalescing has to be performed [13,
ch. 27].

3 Temporal Data Modelsand Time Domains

A relational data modelM = (D, A) is composed of a set of data structur®s,and a setd of algebraic
operations defined on the data structuregedporal relational data modes a relational data model that
hastemporal relationsas the underlying data structure, and whose operators are all temporal.

Temporal relations include a temporal attribute. The exact denotation of this attribute is not important
for the topic of this paper, but for simplicity we assume that it denotes the tuple’s valid time, i.e., when
the information recorded by the remaining attributes of a tuple is true in the modeled reality. Tuples of
temporal relations may therefore be put under the fatm .., z,||ts) or as(x||ts) when the number of
attributes is immaterial. We term, ..., z,, the non-temporal(or explicit) attribute values, anés is the
(tuple) timestamp A finite set of such relations may be referred to astitheestamp representatioof a
temporal database [1].

An operator istemporalif and only if it generates a temporal relation whenever applied to temporal
relations.

When designing a temporal data model, an important and central aspect is the choice of appropriate
timestamps of the database faclsme pointsandtime intervals defined below, provide the most common
choices. Intervals may be built from time points [2], [14, ch. 21].

Definition 3.1 (Time-point and Time-interval Domains) L&tbe an infinite set.

1. 7P = (T, <) is atime point domairover T iff < defines a total order ofi. Each element of’
corresponds to éime pointof 77.

2. Atime intervall of 77 is any connected subset®?, i.e.,

(P €IApy€IAPs €T Ap1 <p3<ps) = ps€l
3. Tt = (Z,C) is thetime interval domairover 77 iff Z is the set of all time intervals ¢f*. Both 77
and7" aretime (or tempora) domainsoverT.

4. Atimestampver7? is either a time point or a time interval gP.

A temporal relation- whose tuples are all timestamped with either time points or time intervals of a time
point domain7? represents eemporal relation oveff?. When the timestamps are points [intervaisinay

be referred to apoint- [interval-] timestamped (temporal) relaticover 7. If M = (D, A) is a temporal

data model such thd® is a set of temporal relations ovét, then7? is thetime point domairof M.

In general, since time intervals are sets of time points, it is not always clear in what sense the usage
of intervals as timestamps differs from the usage of points. To exemplify this, assume that the integers
with the < order is our time point domain. Then it seems reasonable to claim that the relatiens
{(a]|2), (a]|3), (a]|4)} andry = {(al|[2,4])} have the same information contents, i.e., thgtis valid at
instants2, 3, and4, and nothing more. This assumption, nonetheless, is incorregttfecause intervals in
addition to being points also are uniquely delimiteddtgrt andend pointgwhich may or may not be part
of the interval). Hence, we would timestamp a tuple suckuasith intervals if the end points bear some
meaning, and use time points as timestamps if the notion of end points is meaningless.

Predicates and operations for points and intervals are described in almost all definitions of temporal
data models [14] [13, ch. 10]. Some interval predicates and operators apply just to interval data models—
their properties would make them meaningless in a point-based framework; for example, the optdtors
and end that retrieve thenitial andfinal instants, respectively, of an interval could not be defined for a
point-based database in the same way as described above (cf. Section 4).

The point timestamp representation of a temporal database is infeasible from the storage viewpoint for
all but the simplest temporal relations, so intervals are used as an abbreviation for sets of points for practical
reasons. For example, relatiesnabove may be represented by Whether an interval is an abbreviation
for a set of points or not depends on the operators of the data model. Only if the point contents of the output
of a temporal operator remain invariant for sets of argument relations with the same point contents, it is
possible to consider intervals as abbreviations for sets of points. This property is more formally explored
next.

4 Point-based Data M odels

It would be easy to decide whether or not a data model is point- or interval-based if this could always be
determined by inspecting the data type of the timestamps used. However, syntactic criteria are available
only for simple point-timestamped relatibn¥he major difficulty concerns relations involving intervals as
timestamps. This section defines the notion of a point-based data model.

In a point-based data model, two interval-timestamped relations that correspond to the same point-
timestamped relation are considered equivalent, in the sense that they record the same information. The
notion ofsnapshot equivalend&, 9] formalizes this.

1In this sense, temporal logic can be also said to be point-based, as the temporal domain consists of points [5].

Definition 4.1 (Snapshot Equivalence) L&t = (T, <) be a time point domain.

1. Thetimesliceoperatorr, for a time pointp € T' maps an interval-timestamped relation oy2ito a
non-temporal one, and is defined as

7p(r) = r' iff
Ve(JI({(z||I) erApel) s (x) €r')

2. Two interval-timestamped relations ovgt, 1 andry, aresnapshot equivalent.e.,r 2 o, Iff
Vp(p €T = 1p(r1) = 1p(r2))

The notion of snapshot equivalence allows us to characterize operators that, when applied to snapshot
equivalent relations, yield results that are also snapshot equivalent [9]. Such operators are faithful to the
point-based nature of the timestamps of their argument relations, and we will use them to define point-based
data models.

Definition 4.2 (Point-based Operator) L&é? be an-ary operator on interval-timestamped relations, and
{r1,...,rp} @and{ri,...,r,} be sets of interval-timestamped relations that satisfy the preconditiafls of
O is point-basedff it preserves snapshot equivalence, i.e., iff it satisfies the following property

rEFA AT B = O,) O, L)

Example 4.1 Thetemporal intersection natural joi=) is a binary operator. Two argument tuples with
identical explicit join attribute values contribute to the result if their timestamps overlap. Timestamps of re-
sult tuples are the intersections of the timestamps of argument tuples. Thus {ifa||[2, 5]), (al/[7, 11]) }

andry = {(a||[3,9])} thenry <t ro = {(al|[3, 5]}, (a]|[7,9])}. It can be shown that this operator preserves
snapshot equivalence, hence it is point-based.

Example 4.2 The coalescing operatofcoal) is a unary operator that merges value-equivalent tuples (tu-
ples with mutually identical explicit attribute values) if the union of their timestamps is an interval. The
merged tuple then has this union as its new timestamp. Thus, # {(a|/[2,5]), (a|/[6,11])} then

coalry) = {(a||[2,11])}. Like temporal intersection natural join, this operation is point-based because
snapshot equivalent arguments will yield snapshot equivalent results: for snapshot-equivalent arguments,
the result will always be the exact same, which is a trivial case of snapshot equivalence.

With the definition above, we are in a position to define point-based data models.

Definition 4.3 (Point-based Temporal Data Model) A temporal data model= (D, .4) with time point
domain7? is point-basedff the following conditions are met.

1. Dis entirely composed of interval-timestamped relations G¥%eand
2. the operators afl are all point-based.

Lemma4.1 Atemporal data modeM = (D, A), whereD is composed of interval-timestamped relations,
is point-based iff, for every operat@® € A,

O(r1,...,rp) £ O(coalr),...,coalr,)) (1)

wherery, ..., r, are relations o that satisfy the preconditions ¢f.

6

PrRoOOF

(=) If M is point-based, then, according to Definitions 4.2 and 4.3, every opefhater.4 preserves
snapshot equivalence. Sincé- coal(r), for anyr € D, (1) follows from these two facts bgnodus
ponens

(<) Assume thai}) holds but M is not point-based. SincP has only interval-timestamped relations,
there must be an operatore A and sets of relation§r, . .., 7, } and{#, ..., 7.} of D that satisfy
the preconditions aP such that

From (x), it can be inferred thatoal(7;) = coal(7), for all 1 < i < n; hence, it must be the case
that O(coal (1), ..., coal(r,)) = O(coal(7}),...,coal(r)), from which it trivially follows that
O(coal(7), ..., coal (7)) Z O(coal (), ..., coal (7)).

On the other hand, given that) and(««) hold, and tha£ is an equivalence relatiérthen

O(coal(7), . .., coal (7)) # O(coal(7), . .., coal (7))
which conflicts with the previous paragraph. Hence, whengvdnolds, M is point-based. O

The lemma illustrates why theart andendfunctions mentioned in Section 3 cannot be defined in a point-
based data model by considering individual intervals in isolation. The presence of, e.g., the:tlj@/é])

in a point-based relation does not mean thettruly a start point fot, since the relation may contain other
value-equivalent tuples that overlap with this interval. As a result, the computation of the above functions
in a point-based data model requires that the argument relation first be coalesced. The defisionh of
could then be expressed as follows.

(x| I) erA(z||I') €coal(r) N\IC I =
start((x||I), r) = start(I')

Finally, in a point-based data model, it holds true that intervals are nothing but abbreviations for sets
of points. Hence, it is always possible to translate any interval-timestamped relatitma corresponding
point-timestamped relatioff. The following relationship holds between the two relations.

(z|y) €r? iff 3(y € IA (z||I)er)

Algorithmically, P can be generated by simply replacing each typle/) in r by a tuple(x||y) for exactly
each time poiny € I.

5 Interval-based Data M odels

To the best of our knowledge, no good definition of an interval-based data model exists. Purely syntactical
definitions are inappropriate, and defining any data model that is not point-based as interval-based is also
unsatisfactory.

2From the symmetry and transitivity &f, it follows thatr; £ 7o Ay Z r3 D 1y £ 3.

The distinction between point-based and non-point-based models is orthogonal to what distinguishes
interval-based data models from those that are not interval-based. For example, an operator of an interval-
based data model needs not be point-based, but there are operators of such models that are point-based.

To define the notion of an interval-based data model, we distinguish between the algebraic operators that
aretimestamp-preservingnd those that agmestamp-transformingrhe former operators are unproblem-
atic and easily qualify for the interval-based status. The latter operators must satisfy additional properties
to qualify for the interval-based status.

Specifically, when intervals are adopted as timestamps, there will normally be several ways of times-
tamping result relations. In such cases, the argument interval timestamps should be praséntactly
as possiblei.e., maximally respected, if an operator is to be regarded as interval-based. This means that,
whenever an operation requires the modification of an argument interval timestamp, the resulting interval
should be the one (or one of the choices) that maximally takes the argument interval into consideration.
Alternatively, this property could be statedtas largest possible fragments of the argument interval times-
tamps should be preserved in the resdlhe objective of the remainder of this section is to formalize the
above notions.

5.1 Interval-based Requirements

The first step is to define the notionminimum requirement®r an algebraic temporal operator. Informally,
the minimum requirements define the set of time points that the timestamps of the result of a temporal
operator must include. Explanations follow the formal definition.

Definition 5.1 (Minimum Requirements) Leit = (D,.4) be a temporal data model with time point
domain7?, whereD is a set of interval-timestamped relations. Th@mimum requirementfor a n-ary
temporal operator is a formula of the four, . .., r,, z, A) where

1. the timestampl associated with a result tuple that satisfies the requirements for the argument relations
ri,...,m € Dis a(not necessarily connected) set of time point$ofand

2. ((b(?“l,. ..,Tn,il?,Al) A¢(T1,...,Tn,$,A2)) = A1 = As.

Clearly, » must also include the preconditions for the specified operator. From the second condition of the
definition, it follows that, for each sequence of explicit attributes values the result, there is one and
only one associated set of instantssince the minimum requirements do not impose any partition on this
set of instants (i.e4 defines a partial, parameterized functign_ ,. such thatf,, ., () = A). Thus,
formula ¢ specifies a family of operators, in the sense thabay be (usually) split into a list of intervals in
several distinct ways. We useto emphasize that we are dealing with generic sets of instants, i.e., temporal
elements, rather than with intervals only.

The next step towards defining interval-based data models is to characterize thelsstaoft argument
tuplesfor each particular result tuple, as defined by the minimum requirengefttsan operator. A set of
argument tuples' is relevant for a particular result tupje, A) iff both 2 and A can be entirely determined
from S, but not from any proper subset §f

Definition 5.2 (Relevant Argument Tuples) Le¥t = (D, A) be a temporal data model with time point
domain7?, whereD is a set of interval-timestamped relations. batenote the minimum requirements for
an-ary temporal operator, . .., r, be temporal relations dp, A be a set of time points of?, andx be a

finite sequence of attribute valueS.is a set ofrelevant argument tuples.r.t. ¢ for the argument relations

r1,...,r, and the result tupléx, A), i.e., relevantr, A, S, ¢, n, ...) iff

O(r1y. . yrp, @y A) A
A, (
T Cri A AT Crg A
S =Uiziri Ao(ry, ... om, 2, A) A
Vel (P S AL AT Tl A
zT'Lzl r7ljl - S) = _'¢(Tllla v arga T, A))
Note thatS does not necessarily correspond to a relation, since.,r, may not be union compatible.
Also, it is necessary to require that the reguit A) satisfy the minimum requirements for both the original

argument relations and their restricted forms because the one does not imply the other.

Example 5.1 Assume a temporal difference operator. Let the integers witk<tbeder be the underlying
time point domain, ang” denote the minimum requirements for this operator. Assgrae{(a||[2, 10])}
andry = {(all[1,4]), (all[8, 11]), (all[12, 17]), (bI[2, 6]))}. If r{ = r{ = r1, ry = {{all[L, 4])}, andry =
{(all[1,4]), {al|8, 11])}, then

ng (Tla 2, <a’>7 {57 67 7})

¢P (11,75, {a), {5,6,7,8,9,10})

¢P(r{, 15, (a),{5,6,7})
The set of relevant argument tuples for the result tupk is ' Ur4. No proper subset &f” satisfies the
minimum requirements.

The next example illustrates that set of relevant argument tuples is not uniquely defined.

Example 5.2 The minimum requirements for temporal difference are given by the forgula

union.compatiblér;, r3)A
Vp(3L({x||I1) € r1 Ap € 1A
VIb((x|| o) €Ero =p & 1)) & p e A)

Assumer; = {(al|[4, 8]), (al|[1, 6]), (a]|[7, 10]) } andre = {(al|[1, 3]}, (a||[9, 10])}. ThenA = {4,5,6,7,8}
satisfies the minimum requirements for temporal difference for the explicit attripyt@nd the input rela-
tionsr; andr,. Concerning the relevant argument tuplesyaindr; for (a), there are two sets that satisfy
the definition,S; = {(a||[4,8])} U{ } and Sy = {(a||[1, 6]), (a||[7, 10])} U {{a||[1, 3]), (a||[9, 10])}. Note
thatr; U ro does not qualify as a set of relevant argument tuples, since there are subrelaticarsdef
whose union also satisfies

A final auxiliary concept concerns the notionmbaximal interval partition which determines the decom-
position of a set of time points into the least possible number of non-overlapping intervals:

Definition 5.3 (Maximal Interval Partition) Letd be a (doubly bounded) set of time points. Thaximal
interval partitionfor A is a sequence of intervals . . ., I, such that

1. LuUu...Ul,=A,
2. ;NI =0,withi#j,1<i<n,1<j<n,and
3. any other interval partitiod, . . ., I[’) for A satisfying the above two conditions is such that n.

Using the concepts developed so far, we can now define the notioteofal-based operator

9

Definition 5.4 (Interval-based Operator) Le¥! = (D, .A) be a temporal data model with time point do-
main7?, whereD is a set of interval-timestamped relations. balenote the minimum requirements for a
n-ary temporal operator. A temporal operatdre A that satisfies) is interval-basedff for any argument
temporal relations,, ..., r, € D, the following holds.

1. 3I((z||I) € O(r1,...,m0)) =
d)(rla ceey Ty &y U Wts(aexpl:$(0(r1a e arn))))
2. f@¢(r1,...,m,x, A), (b) S = UJ_, S;, whererelevan{x, A, S;, ¢, 71, ...,r,), foralli, 1 <i< p,
©) (y||lI) e S,d)ANT # 0, and (e)L,..., I, correspond to the maximal interval partition for
ANI, then(z||L),...,(x||l,) € O(r1,...,).

The first condition of Definition 5.4 ensures that, for each group of tupl€3(ef .. ., r,) whose explicit
attributes values are, the union of all timestamps of such tuples is identical to the set of time points
identified by the minimum requirements for the same argument, i.e., specified and resulting timestamps
must be extensionally identical far. The second condition ensures the preservation of the relevant input
intervals in the result, whenever possible, under the form of overlapping framents

relevant input intervals

o I output point set A
o ‘ . (minimum requirements)

output intervals (1)
(non-overlapping fragmesit

AR I Y output intervals (2)
I - - _ (full fragments)

Figure 3: Hypothetical Interval-based Operator

The preservation of argument timestamp fragments in an interval-based operator is illustrated in Fig-
ure 3. For the relevant argument intervals and the corresponding hypothetical set of output timelpoints
given in Figure 3, two sets of output intervals are given. The first one is built on top of a minimal decom-
position strategy, where each interval of the result must be contained in one of the relevant input intervals,
but no output intervals may overlap, even when there is overlapping at the input level. The second solution
is the only one that satisfies all conditions of Definition 5.4: for each relevant input interval, its intersection
with A, represented under the form of (maximal) intervals, is included in the output. In particular, note that
Definition 5.4 does not allow the result intervals to be chopped or merged.

Example 5.3 The minimum requirements formulgr , 5, x, A) for temporal unionis

union.compatibléry,) A
Vp(AI(((z||I) € ry V{z||[I) Ere) Apel) & pe A).

The setS of relevant argument tuples for a particular result A) can be computed from the definition of
S and the minimum requirements for temporal union; for the above case, it can be shownsmaade of
the tuples of andr, that are value-equivalent ta:, A).
Figure 4 shows several alternative definitions for a temporal union operator that gatigfiterna-
tives 1, 2, and 3 represent operators that do not preserve argument fragments, since the relevant argument

3The usage ofemporal elementsiefined e.g., in [8], would lead to a single result tuple of the féaihh U ... U I,,,).

10

timestamps are not properly represented in any of them. Alternative 4 is the only one that contains all
the required (fragments of) intervals. All four alternatives represent satisfactory solutions with respect
to snapshot-equivalence preservation. As a fragment-preserving operator, the temporal union operator is
superfluous—it amounts to its standard set-theoretical counterpart.

relevant input intervals

output point set
(minimum requirements)

Possible ‘

Temporal : : : : 1

Union

Operators : k : 2 NFP operators

4 FP operator

Figure 4: Alternative Solutions for Temporal Union

Example 5.4 The temporal join operator from Example 4.1 is not only point-based, but also interval-based,
because its intersecting of argument intervals satisfies fragment preservation.

Example 5.5 A selection operator that constrains the timestamp and returns a temporal relation is interval-
based, but not point-based. For example, consiglgtrore [7,0(7) With » = {{al|[2, 5]), (al[[6, 11])}.

The result is{(al|[2,5])}. Using = {{a||[2, 11])}, which is snapshot equivalent 19 as the argument

would yield an empty result. Since selection does not preserve snapshot-equivalence, it is not point-based.
On the other hand, it is easy to see that selection is interval-based. All result intervals are identical to
argument intervals and, therefore, fragments are trivially preserved.

The definition of an interval-based temporal data model follows.

Definition 5.5 (Interval-based Temporal Data Model) A temporal data madek (D, A) with time point
domain7? is interval-basedff the following conditions are met.

1. Dis entirely composed of interval-timestamped relations G¥%eand
2. the operators off are all interval-based.

6 Discussion

In this section, we discuss properties of point- and interval-based data models. We start by discussing
the scope of our approach. Then we look at mixed data models, i.e., models that are neither point- nor
interval-based, and finally we evaluate representative temporal data models.

6.1 Scope of our Approach

The scope of the definitions of point- and interval-based operators are temporal extensions of relational
algebra operators, i.e., temporal variants of, U, \, x, and their derivatives. These are the basic operators

of a temporal algebra, and they have been investigated in almost all temporal data models. Our definitions
can be used to evaluate and classify these operators and, thus, models. However, the definitions are appli-
cable to all possible temporal operators. For example, we have illustrated the application to coalescing. To
further illustrate and delimit our definitions, we discuss possible extensions.

11

Enlarging the set of interval-based operators. There exist candidate operators that do not preserve
fragments, but that we still might want to classify as interval-based. Two such operators are described in
Examples 6.1 and 6.2, below.

Example 6.1 Assume aregular time-shift operato?s that returns all tuples of the argument relation
with the timestamps being shifted one time unit to the right. Assume {(a||[2, 5]), (a||[6,11])} and
re = {{all[2, 11]) }. Theno(r1) = {{all[3, 6]}, (all[7, 12])} ando™*(r2) = {{all[3, 12])}.

Example 6.2 Assume arirregular time-shift operatord®® that, for any tuple of the argument relation,
shifts the start time by two units to the right and the end time by one unit to the rightt Assume
{{all[2,5]), (al|[6,11])} andr; = {{al[[2, 11])}. Theno'*(r1) = {{al[[4,6]), (all[8, 12])} ando**(r;) =
{(alll4,12])}.

The time-shift operators are faithful to their argument intervals in the sense that they dislocate each sin-
gle interval present in the input relation. Therefore, they could be classified as interval-based. Our definition
is stricter in this respect and classifies both as non-interval-based because argument interval fragments are
not preserved.

Note that the regular time-shift operator is point-based whereas the irregular one is not. Specifically, a
regular time-shift moves all intervals of tuples in an argument relation. All basic properties of the argument,
e.g., the length and the relative positions of the tuples’ time intervals, are preserved. The irregular time-shift
operator, on the other hand, changes some basic properties of the input set. Because start and end times are
shifted differently, it may be that intervals that meet or overlap in the argument do not meet or overlap in
the result ' (r,) illustrates this). This clearly leads to violations of snapshot-equivalence preservation.
Narrowing the set of interval-based operators. It can make sense to make the definition of interval-
based more restrictive. Our current definition of interval-based comprises all operators and models that do
not interpret timestamps in any special way. Examples are relational operators in SQL-92 [11] (extended
with a period data type), relational operations in IXSQL [10], and non-sequenced operations in ATSQL [3].

In all these cases, standard relational operators are applied to timestamps. Such an approach is trivially
faithful to argument intervals—the operators have no special temporal semantics. One can argue that such
operators do not provide (enhanced) temporal support. This is an argument in favor of not classifying such
operators as interval-based, or even temporal.

6.2 Mixed Data Models

With point- and interval-based being orthogonal properties, there are four classes of temporal operators, as
indicated in Figure 5. Specifically, coalescing is point- but not interval-based, temporal selection is interval-
but not point-based, temporal intersection join is point- and interval-based, and the irregular time-shift
operator is neither point- nor interval-based.

Temporal operators

interval-based

point-based

Figure 5: Temporal Operator Types

12

From Definitions 4.3 and 5.5, it follows that there exist temporal data models that are neither point- nor
interval-based. In practice, we expect many models to have point-based and interval-based operations. For
example, both IXSQL and ATSQL have a core set of interval-based operations. However, both models also
include a point-based coalescing operation. We term such miobets]

6.3 An Evaluation of Temporal Data M odels

In this section we touch upon a few popular temporal data models and evaluate them according to our
criteria. Note that we only consider proper temporal algebraic operators, i.e., operators that take temporal
relations as arguments and return a temporal relation (cf. Section 3).

SQL-92 [11] SQL-92 (extended with an interval data type) is based on the relational algebra and treats
intervals as atomic values without any special temporal semantics. This means that all operators are time-
fragment preserving. Therefore, SQL-92 is an interval-based data model. It also follows that SQL-92 is not
point-based.

IXSQL [10]1XSQL operators are timestamp-preserving because they inherit the standard SQL-92 seman-
tics. In addition, IXSQL provides normalize and unnormalize operations in order to convert between time
points and intervals. These special operations are point-based, but not interval-based: snapshot equivalence
is preserved, but interval fragments are not. Thus, IXSQL is a mixed data model.

TSQL2 [13] Unlike the two previous models, TSQL2 employs a temporal algebra that gives a special
meaning to timestamps. It was one of the design goals of TSQL2 to make the format of timestamps irrele-
vant. This is achieved by enforcing a canonical representation based on temporal elements. Thus, TSQL2
is clearly not interval-based. On the other hand, all operators preserve snapshot equivalence because they
are defined over the canonical representation of a database. This makes TSQL2 a point-based data model.

ATSQL [3] ATSQL introduces sequenced and nonsequenced statements together with corresponding al-
gebras. Nonsequenced statements provide the power of regular SQL-92 statements and are, like SQL-92
and IXSQL statements, interval-based. Sequenced statements are also interval-based. In addition, most
sequenced statements are point-based. Coalescing is available to enforce a canonical representation of
snapshot-equivalent relations. Thus, while clearly interval-based in nature ATSQL has also a non-interval-
based operation (coalescing) which makes it a mixed data model.

7 Conclusions and Research Directions

We have provided definitions for point- and interval-based operators and data models. Point-based operators
are defined by employing the notion of snapshot equivalence. The notion of an interval-based operator is
much more elusive. The essence is to define what it means for an operator to maximally preserve, or respect,
the timestamps of argument tuples when timestamping result tuples. Based on the notion of fragment
preservation, we have provided a definition of interval-based operators. Throughout the paper, we have
explored the properties of point-based and interval-based data models.

Several promising directions for further research may be identified. First, the mapping of instances in
one temporal data model to instances in another has already been explored in a point-based framework [9],
but this mapping has not been explored in the context of interval-based data models.

Next, we have argued that interval-based data models are in some sense more expressive than point-
based data models. The added expressiveness comes at the cost of more complicated operators that are
harder to define and, more importantly, understand and use. A continued exploration of the relative merits
of the two kinds of models is in order, as are studies of possible refinements of the definition of interval-
based data models.

13

Finally, we have illustrated that interval-based operators can be quite different in nature. In particular,
some of them are timestamp preserving while others are timestamp transforming. It would be interesting to
exploit these two notions to obtain a more detailed classification of data models.

Acknowledgements

This research was supported in part by the Danish Technical Research Council through grant 9700780 and
by the CHOROCHRONOS project, funded by the European Commission DG XlI Science, Research and
Development, as a Networks Activity of the Training and Mobility of Researchers Programme, contract no.
FMRX-CT96-0056.

References

[1] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal Connectives Versus Explicit Timestamps in Temporal
Query Languagedkecent Advances in Temporal Databageges 43-57. Springer-Verlag, 1995.

[2] J. van Benthem.The Logic of Time — A Model-Theoretic Investigation into the Varieties of Temporal Ontology
and Temporal DiscourseKluwer, 1991.

[3] M. H. Bohlen and C. S. Jensen. Seamless Integration of Time into SQL. TR R-96-2049, Aalborg University,
Department of Computer, Fredrik Bajers Vej 7, DK-9220 Aalborg, Dec 1996.

[4] M. H. Bbhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal DatabRess. of the 22nd VLDB
Conf, pages 180-191. Morgan Kaufmann, Sep 1996.

[5] J. Chomicki. Temporal Query Languages: a SurvByoc. of the First Intern. Conf. on Temporal Logjgages
506-534, 1994.

[6] J. Chomicki. Temporal Query Languages: a Survey. 1995. Submitted to IEEE TKDE (available via URL
http://ww. ci s. ksu. edu/ ~chomi cki).

[7] S. K. Gadia. Weak Temporal RelatiorBroc. of the 5th PODS Symposiuh986.

[8] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal Datak@st$0ODS 13
(4):418-448, 1988.

[9] C. Jensen, M. Soo, and R. T. Snodgrass. Unifying Temporal Models via a Conceptual Moftgmation
Systemsl9(7):513-547,1994.

[10] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval DAtEE TKDE 9(3):480-499, May
1997.

[11] J. Melton and A. R. SimonUnderstanding the new SQL: A Complete Guilitorgan Kaufmann, 1993.
[12] R.T. Snodgrass. The Temporal Query Language TQAMEM TODS 12(2):247-298, Jun 1987.
[13] R. T. SnodgrassThe TSQL2 Temporal Query Languad¢iduwer Academic, 1995.

[14] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snoddersgoral Databases: Theory, Design,
and ImplementatianBenjamin/Cummings, 1993.

[15] D. Toman. Point-based vs Interval-based Temporal Query Languiges of the 15th ACM PODS Symposium
pages 58-67, Jun 1996.

14

