A Language Coverage Test Suite for
TSQL2

Giuseppe Di Mauro and Larry A. Huebel

January 26, 1998

TR-22

A TiIMECENTER Technical Report

Title A Language Coverage Test Suite for TSQL2

Copyright (© 1998 Giuseppe Di Mauro and Larry A. Huebel. All
rights reserved.

Author(s) Giuseppe Di Mauro and Larry A. Huebel

Publication History February 1997. Initial version by Giuseppe Di Mauro.
January 1998. A TiMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Béhlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/>

Any software made available via TIMECENTER is provided “as is” and without any express or im-
plied warranties, including, without limitation, the implied warranty of merchantability and fitness
for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the
so-called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors
and successors. The Rune alphabet (second phase) has 16 letters, all of which have angular shapes
and lack horizontal lines because the primary storage medium was wood. Runes may also be found
on jewelry, tools, and weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

TSQL2 is a temporal query language, designed to query and manipulate time-varying data
stored in a relational database. TSQL2 is an upward-compatible extension of the international
standard relational query language SQL-92. This document presents a TSQL2 test suite that
utilizes many of the features of the TSQL2 temporal query language. The test suite consists of a
set of table creation statements, a set of data manipulation statements, and a set of queries. This
document includes the results of running the TSQL2 test suite on the 3.01 TSQL2 prototype
DBMS from the University of Arizona.

1 Introduction

The SQL standard is a long and involved document; therefore, the temporal extension to SQL is
necessarily a complex language. The TSQL2 temporal query language specification is 82 pages.
As a result, determining whether a tool, such as a DBMS, conforms to the TSQL2 language
specification is quite difficult. This test suite serves as a way to test such tools for complete
support of the TSQL2 language.

This suite was designed to contain a comprehensive set of integrity constraints, queries, mod-
ification statements, and data definition statements that completely covers the TSQL2 language.
In order for this TSQL2 test suite to be exhaustive, it was created using all aspects of the TSQL2
language. However, due to the complexity of the TSQL2 language specification, the test suite
undoubtedly does not cover every facet of the language. For verification, the suite also contains
the expected result of each statement when executed on known test data.

2 Structure

2.1 A Syntactic Classification

To better classify queries, the TSQL2 syntax has been divided into syntactical classes. These
classes provide a framework for developing a comprehensive test suite.
The best way to view this syntax classification is as a tree. Figure 1 contains the TSQL2 syntax
classification tree. Many of the queries of the test suite touch on more than one leaf of the tree.
The syntax tree is rooted in TSQL2, and this is the maximum abstraction. The leaves of the
tree represent the most concrete view of a syntactical construct. Thus, walking the tree from the
root to a leaf, different abstraction layers are reached, going from abstract to concrete.

2.2 Language Coverage Analysis

In this section, the queries of the TSQL2 test suite are presented as leaves of the syntax tree.
Because of the great number of queries, the queries are not represented in figure 1.

Data Definition

Table Definition
di, d2, d3, d4, d5, d6
Table Alteration

Data Manipulation

Data Types

ﬂ

| Data definition | [Datampulatim |

[Operators &

Calendar &
: Dverlapk
fitictions

calendric s;rstem
Temp. elem. e:-.é_t:an:ticu‘l
Temp. elem. construct|
[(Seale]/ [Cast | 5

[P.ritlnn etic oper atu::rsl

[Tatste definition |Table alteration]

|Table expression | Data m aripulation |

| Juery | [Agarezates |

Select

A gareoate
functions

V alid clause Coalescing

Figure 1: TSQL2 Syntax Classification

2

Period
Surrogate

d2, d3, d4, d5, d6, m1, m10, m14, 96, q9, q14, ql15,
q23, q24, q31
Indeterminacy
q45, q46, q47
Modification

Insert

ml, m5, m6, m10, m14, q22
Delete

ml7, m18, m19
Append

Query
Select
Valid Clause
q3, q4, q23, q45
Partitioning
ql, 92, g8, 99, q10, q11, q14, q16, q17, q20, g25,
q26
Coalescing
ql, 98, q9, q10, q17, q20, q23, q25, q26
Operators and Functions

Arithmetic Operators
ql2, q34, q35, q36, q37, q38, q39, q40, q41, q42, q43,
q44
Temporal Element Construction
a3, a4, 96, 98, q10, q12, q16, q43, q44, m17
Temporal Element Extraction
a5, 46, q7, 98, 99, q10, q11, q12, q13, ql14, q15, q16,
ql7, q18, q19, q21, q22, 925, q26, 28, q29, q31, q46,
q47
Cast
q21, q23, q26, q33
Scale
q27, q28, q29

Predicates

Comparison
q5, ql11, q21, 925, q26, q30, q31, q33
Overlaps
q2, q3, g6, q7, 98, q9, ql12, q13, ql16, q17, q46, q47
Aggregates

Aggregate Functions
q20, q21, q22, q23, gq31
Group By
ql8, ql19, q20, q21, q22, q23, q24
Having
q21
Calendar and Calendric Systems

q48

2.2.1 Uncovered Aspects

There are still some aspects uncovered in this test suite:

e Bitemporal Tables: This release does not cover bitemporal tables; transaction tables are not
tested in this release.

o Tuable Alteration: Temporal Element Construction and Temporal Element Extraction.

o Append

3 Test Suite Statements

3.1 The Schema

The database schema for the TSQL2 test suite is basically the one shown by the entity-relationship
graph in figure 2. Because of the non homogeneity of the queries and the need to cover as many
statements as possible, sometimes the schema may change to test a particular aspect of the TSQL2
temporal query language.

3.1.1 Aspects of the Schema

The schema represented in figure 2 is comprised of six tables, named with letters from the English
alphabet. Any table in the figure may be joined to a particular table in the temporal environment,
yielding the following tables: snapshot, state, transaction, event, bitemporal state and transaction
and bitemporal event and transaction. The last two tables are mirrored from equivalent non-
temporal state and event tables, and they share data with the non-temporal state and event
tables.

3.2 Create Table Statements
d1

CREATE TABLE a (
g CHARACTER (10) NOT NULL,
PRIMARY KEY (g),
h DATE,
i CHARACTER,
FOREIGN KEY(i) REFERENCES b (i)

znapzhot table

=

&

=tate table
I i : 1 h
1

transaction table

d

ot

A
>

bitenp.=tate

=

a0
GO

™
bitemp. event

D

Figure 2: Entity-Relationship Graph for this Database Schema

T ﬁi: :: ::
event table
n 1 _ =

d2

CREATE TABLE b (
i CHARACTER NOT NULL,
PRIMARY KEY (i),
j TIMESTAMP,
k SURROGATE NOT NULL,
FOREIGN KEY(k) REFERENCES c (k)
)
AS VALID STATE;

d3

CREATE TABLE c (
k SURROGATE NOT NULL,
1 DECIMAL (8,0) NOT NULL,
PRIMARY KEY (1)

)
AS VALID EVENT;

d4

CREATE TABLE d (
m CHARACTER (5) NOT NULL,
PRIMARY KEY (m),
n TIME,
k SURROGATE NOT NULL,
FOREIGN KEY(k) REFERENCES c (k)
)
AS TRANSACTION;

ds

CREATE TABLE e (
i CHARACTER NOT NULL,
PRIMARY KEY(i),
j TIMESTAMP,
k SURROGATE NOT NULL,
FOREIGN KEY(k) REFERENCES c(k)
)
AS VALID STATE AND TRANSACTION;

deé

CREATE TABLE f (
k SURROGATE NOT NULL,
1 DECIMAL(8,0) NOT NULL,
PRIMARY KEY(1)
)
AS VALID EVENT AND TRANSACTION;

3.3 Data Manipulation

This section shows queries which populate the schema with data. For almost all queries, the SQL92
calendric system is used.

ml

INSERT INTO b
SELECT °’t’, TIMESTAMP ’1994-11-04 10:00’, k
VALID PERIOD (DATE ’1995-01-01’, TIMESTAMP ’now’)
FROM c
WHERE 1="107;

m2

INSERT INTO b
SELECT °f’, TIMESTAMP ’1994-11-03 10:20’, k
VALID PERIOD °[1993-01-01 - 1993-01-01]’
FROM c
WHERE 1="207;

m3

INSERT INTO b
SELECT ’i’, TIMESTAMP ’1994-12-03 13:00’, k
VALID PERIOD °[1993-01-01 - 1994-01-01]’
FROM c
WHERE 1="107;

m4

INSERT INTO b
SELECT ’h’, TIMESTAMP ’1990-08-07 11:00°, k
VALID PERIOD °[1996-01-07 - 1996-03-08]°
FROM c
WHERE 1="307;

mb

UPDATE b
SET j = TIMESTAMP ’1994-12-12 19:00’
VALID PERIOD °[1994-01-02 - 1994-08-10]°
WHERE b.j=TIMPESTAMP ’1994-12-03’ AND b.i=’t’;

Resulting b table from statements ml - mb5:

EE | k [| Valid Time
’t? | 71994-11-04 10:00° | X || [1995-01-01 - now]
7£7 | 71994-11-03 10:20° | Y || [1995-01-02 - now]
’t? | 71994-12-03 13:00’ | X || [1993-01-01 - 1994-01-01]
’h’ | 71994-08-07 13:00’ | Z || [1996-01-07 - 1996-03-08]
’t? | 71994-12-08° X || [1994-01-02 - 1994-08-10]

mo

INSERT INTO a
VALUES (’a’, DATE ’1970-11-21’, ’t’);

mv7

INSERT INTO a
VALUES (’b’, DATE ’1973-06-19’, ’t’);

m8

INSERT INTO a
VALUES (’c’, DATE ’1973-04-14’, ’t’);

m9

INSERT INTO a
VALUES (’h’, DATE ’1974-08-28’, ’h’);

Resulting a table from statements m6 - m9:

FEE B
’a’ | 71970-11-21° | ’¢’
’b’ | 21973-06-19° | ’t’
’c? | ’1973-04-14° | ’t’
’h’ | °1974-08-28’ | ’h’
’a’ | 71972-05-10’ | ’h’

mlo0

INSERT INTO c
VALUES (NEW, 10)
VALID TIMESTAMP ’1996-01-01 10:007;

mll

INSERT INTO c
VALUES (NEW, 20)
VALID TIMESTAMP ’1996-01-02 11:007;

ml2

INSERT INTO c
VALUES (NEW, 30)
VALID TIMESTAMP ’1996-01-03 12:007;

ml3

INSERT INTO c
VALUES (NEW, 40)
VALID TIMESTAMP ’1996-01-04 13:007;

Resulting ¢ table from statements ml0 - ml3:

‘k ‘1 “Vﬁﬁdfﬁnuﬁtmnp

X|’10° ?1996-01-01 10:00°
Y | ’20° ?1996-02-01 11:00°
Z | ’30° ?1996-03-01 12:00°
T | ’40° ?1996-04-01 13:00°

ml4
transaction time: January 3, 1996

INSERT INTO d

SELECT SNAPSHOT ’a’, TIME ’10:20°, x.k
FROM b(i,k) AS x
WHERE x.i="t’;

mlb5

transaction time: April 5, 1996

INSERT INTO d

SELECT SNAPSHOT ’b’, TIME °1:40 PM’,x.k

FROM b(i,k) AS x
WHERE x.i="f"’;

10

mlé6
Transaction time: August 1, 1996

INSERT INTO d

SELECT SNAPSHOT ’c’, TIME ’12:20°,x.k
FROM b(i,k) AS x
WHERE x.i="f"’;

Resulting d table from statements ml4 - ml6:

‘ i ‘j ‘ k H Transaction Time
*a’ | 710:20° | X || 71996-01-03’
'’ | 71:40° Y || ’1996-04-05"
*c? | 712:20° | Y || 71996-08-01"

3.4 Other Data Manipulation Statements
ml7
DELETE FROM b

WHERE i=’t’
VALID PERIOD (DATE ’1996-09-10°, TIMESTAMP ’forever’);

Resulting b table:

BEE | k [| Valid Time
t? | 71994-11-04 10:00” | X || [1995-01-01 - 1996-09-10]
7£7 | 71994-11-03 10:20° | Y || [1995-01-02 - now]
’t? | 71994-12-03 13:00’ | X || [1993-01-01 - 1994-01-01]
’h’ | 71994-08-07 13:00’ | Z || [1996-01-07 - 1996-03-08]
’t’ | 71994-12-08° X || [1994-01-02 - 1994-08-10]

11

ml8

DELETE FROM b
WHERE i=’t’

VALID PERIOD °[1993-12-25 - 1994-04-14]’;

Same result as the previous table.

ml9

DELETE FROM b
WHERE i=’t’;

Transaction time is September 26, 1996.

Resulting b table:

EE | k [| Valid Time
’t? | 71994-11-04 10:00’ | X || [1995-01-01 - 1996-10-26]
7£7 | 71994-11-03 10:20° | Y || [1995-01-02 - now]
’t? | 71994-12-03 13:00’ | X || [1993-01-01 - 1994-01-01]
’h’ | 71994-08-07 13:00’ | Z || [1996-01-07 - 1996-03-08]
’t? | 71994-12-08° X || [1994-02-01 - 1994-08-10]

3.5 Query Statements
ql

SELECT SNAPSHOT a.h, x.i
FROM b(i) (PERIOD) AS x, a
WHERE x.i=’t’ AND x.i=a.i;

Resulting table:

12

EE

’t? | ’1970-11-21°
’t? | 71973-06-19°
’t? | 1973-04-14°
’t? | ’1970-11-21°
’t? | 71973-06-19°
’t? | 1973-04-14°
’h’ | 1974-08-28°
’h’ | 1972-05-10’

q2

SELECT SNAPSHOT y.g
FROM a(i) AS x, x(g,h) AS y
WHERE y.h PRECEDES DATE ’1973-08-017;

Resulting table:
)a)
)b)
)C)

q3

SELECT 1 VALID PERIOD (VALID(c), DATE °1996-01-31’)
FROM c
WHERE VALID (c) PRECEDES TIMESTAMP °’1996-02-28 12:007;

Resulting table:
|1 [Valid Time |
7107 || [1996-01-01 10:00 - 1996-02-28 12:00]
7207 || [1996-02-02 11:00 - 1996-02-28 12:00]

q4

SELECT =*
VALID INTERSECT PERIOD (DATE ’1993-04-01°,DATE ’1995-04-01’) FROM b;

Resulting table:

13

‘ i ‘ j ‘ k H Valid Timestamp ‘
>t | 71994-11-04 10:00” | X || [1993-04-01 - 1995-04-01]
>f£7 | 71994-11-03 10:20” | Y || [1995-02-01 - 1995-05-01]
>t | 71994-12-03 13:00” | X || [1995-05-01 - 1994-01-01]
>t | 71994-12-08 19:00’ | X || [1994-02-02 - 1994-10-08]

q5

SELECT SNAPSHOT VALID(x) AS v
FROM c AS x
WHERE x.1 < ALL(SELECT AVG(l) FROM c);

Resulting table:

v |
?1996-01-01 10:00°
?1996-02-01 11:00°

q6

SELECT SNAPSHOT BEGIN(VALID(x)) AS beg
FROM b AS x, c AS y
WHERE x.k = y.k AND PERIOD(VALID(c), TIMESTAMP ’now’) CONTAINS VALID(x);

Resulting table:

‘ beg ‘
| 21994-08-07 13:00°

q7

SELECT SNAPSHOT m
FROM d
WHERE VALID(d) PRECEDES DATE ’1996-05-05’;

Resulting table:

[n]

)a)
)b)

14

q8

SELECT x.i, VALID (x) AS v

FROM b(i) (PERIOD) AS x

WHERE
PERIOD (DATE °1995-01-01’,DATE ’1996-01-017)
CONTAINS BEGIN(VALID(x));

Resulting table:

(i |v |
’t? | [1995-01-01 - now]
>£2 | [1995-02-01 - now]

q9

SELECT SNAPSHOT y.i, z.1
FROM b(k) AS x, x(i)(PERIOD) AS y,
c(k) AS z, z(1)(PERIOD) AS t
WHERE FIRST(BEGIN((VALID(y))),VALID(z))
PRECEDES DATE ’1996-02-02’ AND x.k = z.k;

Resulting table:

)t))10)

)f))20)

)t))10)
qlo

SELECT SNAPSHOT x.1i

FROM b(i) (PERIOD) AS x

WHERE INTERSECT(VALID(x),PERIOD(DATE ’1994-05-01’,
DATE ’1995-05-01’)) IS NOT NULL;

Resulting table:
)t)
)f)

15

qll

SELECT SNAPSHOT VALID(x) AS v

FROM c(1) AS x

WHERE VALID(x)<=(SELECT FIRST(VALID(c)) FROM c);

Resulting table:

Lv |
| 71996-01-01 10:00’

ql2

SELECT SNAPSHOT i

FROM b

WHERE VALID(b) CONTAINS PERIOD ’[1994-01-01 - 1995-01-01]’ +
PERIOD(DATE ’1996-01-01’, TIMESTAMP ’now’);

Resulting table:

FEmpty

ql3

SELECT SNAPSHOT 1
FROM c
WHERE PERIOD °[1995-01-01 - 1996-03-01]’ CONTAINS VALID(c);

Resulting table:
)10)
)20)

ql4
SELECT SNAPSHOT x.i
FROM b(i,k) AS x, d AS ¥
WHERE x.k=y.k
AND BEGIN(TRANSACTION(y)) = DATE ’1996-04-04’;

Resulting table:

16

)f)

qlb

SELECT SNAPSHOT x.i
FROM b(i) AS x, x(period) as y
WHERE VALID(y)=’[1996-01-07 - 1996-03-08]°

Resulting table:

)h)

ql6

SELECT x.1

FROM c(1) AS x

WHERE PERIOD °[1995-05-01 - 1996-28-02]°
OVERLAPS PERIOD (VALID(x), DATE ’now’);

Resulting table:
)10)
)20)

ql7

SELECT SNAPSHOT a.h
FROM b(i) (PERIOD) AS x, a
WHERE a.i=x.i AND PERIOD °’[1973-04-14 - 1996-07-01]’ MEETS VALID(x);

Resulting table:
h
’1974-08-28°
71972-05-10°

17

ql8

SELECT SNAPSHOT AVG(x.1l) AS a
FROM c AS x

GROUP BY VALID(x) USING 1 YEAR;

Resulting table:

ql9

SELECT SNAPSHOT (x.1) AS a

FROM c AS x

GROUP BY VALID(x) USING PERIOD ’All of time’ YEAR;

Resulting table:

(2|

q20

SELECT SNAPSHOT COUNT(DISTINCT x.i) AS ¢
FROM b(i) (PERIOD) AS x
GROUP BY VALID(x) USING 6 MONTH LEADING 6 MONTH TRAILING 6 MONTH;

Resulting table:

TR
)2)
)3)

q21

SELECT SNAPSHOT AVG(x.j) AS a, CAST(VALID(x) AS YEAR) AS y
FROM b AS x

GROUP BY VALID(x) USING 1 YEAR

HAVING CAST(VALID(x) AS INTERVAL DAY) > INTERVAL °180° DAY;

Resulting table:

18

a y

?1994-12-03 13:00’ ?1993°
?1994-12-08 19:00° *1994°
’1994-12-03 10:10PM’ | 71995’

q22

SELECT SNAPSHOT AVG(VALID(c)) AS avg
FROM c
GROUP BY VALID(c) USING PERIOD ’All of time’ MINUTE;

Resulting table:
avg

q23

CREATE TABLE £ (
1 DECIMAL (8,0) NOT NULL,
PRIMARY KEY(1)

)

INSERT INTO f
SELECT x.1
VALID y

FROM b(PERIOD) AS y, c AS x
WHERE y.k=x.k;

SELECT SNAPSHOT MAX(WEIGHTED f.1) AS max
FROM £
GROUP BY VALID(f) USING PERIOD ’All of time’ MINUTE;

Resulting table:
max

q24

CREATE TABLE b2 (
i CHARACTER NOT NULL,
PRIMARY KEY (i),
j TIMESTAMP
) AS VALID STATE;

19

Resulting table:

‘ k ‘ attr H Valid Time

‘a’ | 7107 [1994-01-03 - 1994-04-04]
*a’ | ’B? [1994-04-05 - 1995-06-07]
‘a’ | 7157 [1995-06-08 - 1995-12-11]
‘a’ | 7207 [1995-12-12 - 1995-12-31]
a’ | 711° [1996-01-01 - 1996-03-01]
‘a’ | 7127 [1996-03-02 - now]

'’ | 7107 [1994-01-03 - 1995-07-07]
'’ | 79? [1995-07-07 - 1995-01-01]
'’ | 7107 [1996-01-02 - 1996-01-03]
'’ | 7117 [1996-01-04 - now]

SELECT SNAPSHOT RISING(attr) AS r, k

FROM b2
GROUP BY k;

Resulting table:

E

[1994-05-01 - 1995-11-12]

[1995-08-07 - now]

q25

SELECT SNAPSHOT x.i, VALID (x) AS v

FROM b(i) (PERIOD) AS x

WHERE CAST(VALID(x) AS INTERVAL DAY) > CAST(INTERVAL ’6° MONTH AS INTERVAL DAY);

Resulting table:

i |v

’t? | [1995-01-01 - now]

>£2 | [1995-02-02 - now]

’t? | [1993-01-01 - 1994-10-08]

q26

SELECT SNAPSHOT x.i, CAST(VALID(x) AS INTERVAL MONTH) AS v

FROM b(i) (PERIOD) AS x

WHERE CAST(VALID(x) AS INTERVAL DAY) > CAST(INTERVAL ’6° MONTH AS INTERVAL DAY);

Resulting table:

20

i v

*t’? | 723’ MONTHS
*£7 | 7227 MONTHS
*t’ | 734’ MONTHS

q27

SELECT SNAPSHOT m, SCALE (n AS DAY)
FROM d;

Resulting table:

ENE

*a’ | 70 10:20°
'’ | 0 1:40°

*c? | 70 12:20°

q28

SELECT SNAPSHOT m, SCALE(TRANSACTION(d) AS HOUR) AS s
FROM d;

Resulting table:

EXIE

*a’ | 71996-01-01 O 1996-01-03 23’
'’ | 71996-04-04 O 1996-04-05 23’
*c? | 71996-08-01 1996-08-01 23’

q29

SELECT SNAPSHOT SCALE(VALID(b) AS INTERVAL HOUR) AS s
FROM b;

Resulting table:

s

*16656° HOURS
*16632° HOURS
’8760° HOURS
*1464° HOURS
*5304° HOURS

21

q30

SELECT SNAPSHOT b.i, b.]j
FROM b AS x
WHERE EXTRACT(MONTH FROM x.j) = ’November’ MONTH;

Resulting table:
EF |
’t? | 71994-11-04 10:00’
>£7 | 71994-11-03 10:20’

q31

SELECT SNAPSHOT PERIOD(Db.j, VALID(c)) AS p
FROM b,c
WHERE b.k = c.k AND b.j < VALID(c);

Resulting table:
P |
[1994-11-04 10:00 - 1996-01-01 10:00]
[1994-12-03 10:20 - 1996-01-01 10:00]
[1994-12-08 14:00 - 1996-01-01 10:00]
[1994-11-03 10:20 - 1996-02-01 11:00]
[1994-08-07 13:00 - 1996-03-01 12:00]

q32

CREATE TABLE a1l (
g CHARACTER (10) NOT NULL,
h DATE,
i CHARACTER,
m INTERVAL MONTH
)

Table contents are:
(g |h m [i |
’a’ | 71970-11-21° | 3’ YEARS '
’b? | 71973-06-19° | ’2’ YEARS '
’c? | 71973-04-14’ | 10’ YEARS | ’h’
’h’ | 71974-04-28" | 9’ YEARS '

22

SELECT SNAPSHOT al.g, al.m
FROM ail;

q33

SELECT SNAPSHOT al.g

FROM a1l

WHERE CAST(PERIOD(al.h,DATE ’1978-01-01’) AS INTERVAL YEARS)
< (SELECT AVG(al.m) FROM al);

Resulting table:
)b)
)C)
)h)

q34

SELECT SNAPSHOT al.m-INTERVAL YEARS AS dif

FROM ail;

)6)

Resulting table:
dif

)_1)

YEARS

)_2)

YEARS

)6)

YEARS

)4)

YEARS

q35

SELECT SNAPSHOT ABSOLUTE(al.m-INTERVAL ’6’ MONTHS) AS abs
FROM ail;

Resulting table:

’1’ YEARS
*2’ YEARS
’6’ YEARS
*4’ YEARS

23

q36

SELECT SNAPSHOT -al.m AS int
FROM ail;

Resulting table:

Interval

)_3)

YEARS

)_2)

YEARS

)_10)

YEARS

)_9)

YEARS

q37

SELECT SNAPSHOT al.m - INTERVAL
FROM ail;

>1> MONTH AS dif

Resulting table:
dif
)2)
)1)
)9)
)8)

YEARS
YEARS
YEARS
YEARS

q38

SELECT SNAPSHOT INTERVAL
FROM ail;

>3’ MONTH + al.m AS sum

Resulting table:
sum

)4)

YEARS

)3)

YEARS

)11)

YEARS

)9)

YEARS

q39

SELECT SNAPSHOT al.h, al.m, al.h+al.m AS sum
FROM ail;

24

Resulting table:

h m sum

?1970-11-217 | *3’ YEARS ’1973-11-21°
?1973-06-19’ | ’2’ YEARS ?1975-06-19°
?1973-04-14’ | 10’ YEARS | ’1983-04-14’
?1974-08-28’ | 8’ YEARS ?1982-08-28"

q40

SELECT SNAPSHOT al.h, al.m, al.h-al.m AS dif
FROM ail;

Resulting table:
h m dif
’1970-11-21° | ’3’ YEARS ’1967-11-21°
71973-06-19° | ’2’ YEARS 71971-06-19°
’1973-04-14° | *10’ YEARS | ’1963-04-14°
’1974-08-28" | ’8’ YEARS ’1966-08-28"

q41

SELECT SNAPSHOT al.m, al.m*2 AS mul
FROM ail;

Resulting table:

m mul

*3’ YEARS ’6’ YEARS
*2’ YEARS *4’ YEARS
*10° YEARS | ’20’ YEARS
’8’ YEARS ’16° YEARS

q42

SELECT SNAPSHOT al.m, al.m/INTERVAL ’2°’ YEAR AS div
FROM ail;

Resulting table:

25

m ‘ div

’3’ YEARS ’1.5°

’2? YEARS 71

10’ YEARS | ’5?

’8’ YEARS 14
q43

SELECT SNAPSHOT al.m,

FROM

al.m+PERIOD(DATE °1995-01-01’ ,DATE ’1996-01-01’) AS sum

al;

Resulting table:

m ‘sum

>3’ YEARS [1998-01-01 - 1999-01-01]

’2’ YEARS [1997-01-01 - 1998-01-01]

’10° YEARS | [2005-01-01 - 2006-01-01]

’8’ YEARS [2003-01-01 - 2004-01-01]
q44

SELECT SNAPSHOT al.m,

FROM

al.m - PERIOD(DATE °

al;

Resulting table:

1992-01-01’ ,DATE °1997-01-02’) AS dif

m | dif

’3’ YEARS | [1989-01-01 - 1994-01-02]

’2° YEARS | [1990-01-01 - 1995-01-02]

’10° YEARS | [1982-01-01 - 1987-01-02]

'8’ YEARS | [1984-01-01 - 1989-01-02]
q45

Due to the indetermination

in this query, table b table is modified as follow:

26

ERE | k | Valid Time |
’t? | 71994-11-04 10:00’ | X | [1994-12-25 1995-01-01
’£7 | 71994-11-03 10:20° | Y | [1994-12-01 1995-01-02
t? | 71994-12-03 13:00” | X | [1992-12-21 1993-01-01
Z
X

now]

now]

1994-12-01 1994-01-01]
1996-03-08 1996-03-18]
1994-08-10 1994-12-10]

’h’ | 21994-08-07 13:00’ [1996-01-04 1996-01-07
’t? | 71994-12-08" [1994-01-30 1994-01-02

SELECT =*

VALID x

FROM b AS x WITH CREDIBILITY 50
WHERE i=’t’;

Resulting table:
EE | k | Valid Time |
’t? | 71994-11-04 10:00’ | X | [1994-12-28 1995-01-01 - now]

’t? | 71994-12-03 13:00° | X | [1992-12-26 1993-01-01 - 1994-12-01 1994-06-01]
>t? | 71994-12-08° X | [1994-01-31 1994-01-02 - 1994-08-10 1994-10-10]

q46

SELECT SNAPSHOT VALID(x), x.i
FROM b AS x
WHERE INDETERMINATE DATE ’1994-12-31 1995-02-01’ OVERLAPS x WITH PLAUSIBILITY 25;

Resulting table:
EE | k | Valid Time |
‘ 't "1994—11—04 10:00" X ‘[1994—12—25 1995-01-01 - now]

q47

SELECT SNAPSHOT VALID(x), x.i
FROM b AS x
WHERE INDETERMINATE DATE °12/31/1994 2/1/1995° OVERLAPS x WITH PLAUSIBILITY 75;

Resulting table:
BEE | k | Valid Time |
’t? | 71994-11-04 10:00° | X | [1994-12-25 1995-01-01 - now]
*£7 | 71994-11-04 10:00° | X | [1995-10-01 1995-02-01 - now]

27

q48
DECLARE CALENDRIC SYSTEM AS russian;

SELECT SNAPSHOT i,j WITH CALENDRIC SQL92_calendric_system

FROM b;

WHERE BEGIN(VALID(b)) < TIMESTAMP ’2 Jinvar 1996’
AND CAST (VALID(b) AS INTERVAL DAY) > INTERVAL ’800 days’
WITH CALENDRIC SQL92 calendric_system;

DECLARE CALENDRIC SYSTEM AS SQL92 calendric_system;

Resulting table:
ERF |
’t? | 71994-12-03 13:00°
’t? | 71994-12-08°

4 Applying the Test Suite

This section describes the results of running the TSQL2 test suite on the 3.01 TSQL2 prototype
DBMS. The results are very interesting because they highlight unimplemented or incorrectly im-
plemented portions of the prototype.

The tables below describe the results of running the TSQL2 test suite on the 3.01 TSQL2
temporal DBMS prototype. The tables display the results for three categories of TSQL2 statements:
data definition, data manipulation, and query statements.

Table 1: Results of Test Suite on Prototype 3.01 - (Data)

‘ Statement H Frontend ‘ Semantic ‘ Interpreter ‘

di yes yes failure
d2 failure
d3 failure
d4 failure
d5s failure
dé failure

The data definition queries d2 - d6 fail frontend syntax analysis because SURROGATEFE is not
implemented.

Similarly, the general queries q3 - q23, q25 - q31, and q45 - q48 fail frontend syntax analysis
because SURROGATE is not implemented.

All other queries fail either frontend, semantic, or interpreter stages of the 3.01 TSQL2 proto-
type due to individual problems in the prototype implementation.

28

Table 2: Results of Test Suite on Prototype 3.01 - (Manipulation)

Statement H Frontend ‘ Semantic ‘ Interpreter ‘

ml yes seg. fault

m2 yes seg. fault

m3 yes seg. fault

m4 yes seg. fault

mb5 failure

mo6 yes Error 38

m7 yes Error 38

m8 yes Error 38

m9 yes Error 38

ml0 yes Error 38

mll yes Error 38

ml2 yes Error 38

ml3 yes Error 38

ml4 yes seg. fault

ml5 yes seg. fault

ml6 yes seg. fault

ml17 yes yes seg. fault
ml8 failure

m19 yes yes seg. fault

5 Acknowledgements

Giuseppe Di Mauro

Being that this work is a result of research at the University of Arizona to write my bachelor
thesis, many people have helped me in this. Particular greetings to Prof. Richard T. Snodgrass
who permitted me to have this experience. Prof. Snodgrass also lead and helped in the research
itself.

Larry A. Huebel
I would also like to thank Professor Snodgrass for giving me the opportunity to work with him.
This project was quite challenging.

29

Table 3: Results of Test Suite on Prototype 3.01 - (Queries)

‘ Statement H Frontend ‘ Semantic ‘ Interpreter ‘

ql yes yes lacks grouping
q2 yes Error 38

q3 failure

q4 failure

q5 failure

q6 failure

q7 failure

q8 failure

q9 failure

qlo failure

qll failure

ql2 failure

ql3 failure

ql4 failure

qls failure

qlé6 failure

ql7 failure

ql8 failure

ql9 failure

q20 failure

q21 failure

q22 failure

q23 failure

q24 failure

q25 failure

q26 failure

q27 failure

q28 failure

q29 failure

q30 failure

q31 failure

q32 yes yes passes
q33 yes Error 38

q34 yes yes passes
q35 yes yes passes
q36 yes yes passes
q37 yes yes passes
q38 yes yes passes
q39 yes yes passes
q40 yes yes passes

30

Table 4: Results of Test Suite on Prototype 3.01 - (Queries Continued)

Statement H Frontend ‘ Semantic ‘ Interpreter ‘

q41 yes yes passes
q42 yes yes passes
q43 yes yes passes
q44 yes yes failure
q45 failure
q46 failure
q47 failure
q48 failure

A Appendix : References to the TSQL2 Book

A.1 Syntactic Coverage

This appendix represents the relationship between the syntax specification in the book “The TSQL2
Temporal Query Language” and the numbered queries of the TSQL2 test suite.

The table below is divided by the pages of the book. For every page there may be many
productions of the form pa-y, where z represents the particular point of the grammar in the order
it appears in the section leaded on the page; the number y represents the right side of the point .

Because of the complexity of the syntax, there are many points (or subpoints) that are blank.
Blank points do not necessarily represent uncovered parts of the grammar which are absent from
the test suite. In many cases, only one of many similar grammar constructs are tested. For example,
only a few arithmetic operators are tested.

A.2 Coverage Analysis
Page 551

p2-1
p2-2

q6, 98, q12, q13, q48
p2-3
q45

p2-4
p2-5

ds, deé

p2-6
p2-7
p2-8

q46, q47

31

p2-9
p2-10

ql7
p2-11
ml10, m11l, m12, m13

p2-12
p2-13
p2-14

ql, 93, q4, 96, 98, q9, q10, q12, q13, q16, q17, q19, q20, q22, q23,
q25, q31, 933, q43, q44, m17, m18, ml, d8, m3, m4, m5

p2-15

q45, q46, q47
p2-16

a2, 93, q7, q9

p2-17
p2-18
p2-19

q24
p2-20

q27, 928, q29
p2-21

q30, q31, gq32, 933, 934, 935, q36, q37, 938, q39, q40, q41, q42,
q43, q44, q45, q46, q1, q2, 95, 96, q7, 99, q10, q11, q12, q13, q14,
ql5, q17, q18, q19, q20, q21, q22, q23, q24, 925, q26, q27, q28, q29,
ml4, ml5, ml6

p2-22
q24
p2-23
d2, d3, d4, d5, d6

p2-24
p2-25

q3, 94, 95, 96, q7, q8, q9, q10, q11, q12, q13, q16, q17, q18, q19,
q20, q21, q22, 923, q25, q26, q29, q31, q45, q46, q47, m17, m18

32

p2-26
q23
Page 552-553
p2
d4, q7, q10, q16, q46, q47

p3
p4

q4, q6, q9, q10, q12, q14, ql15, q23, q48, m17
pd
q34, q35, q37, q38, q42
pl2
ql2, q13, q16, q17, q19, q22, q23, m18
Page 561
q48
Page 563

p2-1
pH-1
p6-1

d2, d3, d4, d5, d6
p7-1
d1
p7-2
d4
p7-3
d2, d5
pl0-1
Page 568

pl-1
p2-1

q45

33

p3-1
p3-2
p4-1
pH-1

ql, q2, g8, q9, q10, ql11, q14, q15, q16, q17, q20, 925, q26

p6-1
p6-2
p7-1
p7-2

ql, 98, 99, q10, q17, q20, q23, q25, q26
Page 570

pl-1
p2-1

q24
Page 573
pl-1
q6, 98, q9, ql14, q15

pl-2
pl-3

q9

pl-4
pl-5

qll

pl-6
pl-7

a3, 45, 96, q7, 98, q9, q10, q11, q12, q13, q16, q17, q21, 22, q25,
q26, q29, q31, q46, q47

pl-8
q27, q28

pl-9
pl-10

Page 574
pl-1

q21, q25, q26, q33, q48

34

Page 579

pl-1
pl-2
pl-3

Page 580
pl-1
Page 582
pl-1
Page 583

pl-1
pl-2

q35

pl-3
pl-4
pl-5

Page 584

pl-1
pl-2
pl-3
p2-1
p2-2
p2-3
p2-4
p2-5
p2-6

Page 585
pl-1

a3, 45, 96, q7, 98, q9, q10, q11, q12, q13, q16, q17, q21, 22, q25,
q26, q29, q31, q46, q47

pl-2

ql4, q15, q28
pl-3

q8, q12, q16, q31, q33, q43, q44, m17
pl-4

qlo

35

q9, q11

Page 587

Page 588
pl-1

a3, 45, 96, q7, 98, q9, q10, q11, q12, q13, q16, q17, q21, 22, q25,
q26, q29, q31, q46, q47

pl-2
qlo
pl-3
q27, 928, q29
Page 589

pl-1
pl-2
p2-1

Page 590
pl-1

q3, 45, 96, q7, 98, q9, q10, q11, q12, q13, q16, q17, q18, q19, q20,
q21, q22, q23, 925, q26, q29, q31, q46, q47

pl-2
qlo

Page 591

36

pl-1
p2-1

ml, d8, m3, m6, m7, m2, m9, m10, ml11l, m12, m13
Page 592

pl-1
p2-1

a3, 94, 95
Page 593
pl-1
q46, q47
Page 594
pl-1
ql8, q19, q20, q21, q22, q23, q24
p2-1
ql8, ql19, q20, q22, q23

p2-2
p2-3

ql8, q19, q20, q21, q22, q23
p2-4

ql8
p2-5

ql8

p3-1
p3-2
p3-3

ql8, q20, q21
p3-4

ql9, q22, q23
Page 597
q43

Page 598

37

pl-1
p2-1

Page 599
pl-1
a2, 93, q7, q9
pl-2
ql7
pl-3
ql6, q46, q47
pl-4
q6
Page 600
q20, q25, q26, q33
Page 601
q31, 925, 926, q5, q6, ql11, q30, q31, q33
Page 602
pl-1
ql6, q46, q47
p2-1
q2, 93, q4, q9
p3-1
ql7
p4-1
q6, 98, ql12, q13
Page 605

pl-1
pl-2
p2-1
p3-1
p4-1
p4-2
pH-1

38

Page 607
pl-1
di, d2, d3, d4, d5, d6
Page 608
pl-1
d2, d3, d4, d5, d6

pl-2
p2-1

d2, d3, d5, d6
p2-2
d4
p3-1
Page 610
pl-1
Page 611

pl-1
pl-2

Page 613-614
empty
Page 616
empty
Page 617
empty
Page 618-619
empty
Page 621
empty
Page 623
empty

Page 624

39

pl-1
ml7, ml18
Page 625
pl-1
ml, d8, m3, m4, m10, m11l, m12, m13

p2-1
p3-1
p3-2

ml10, m11l, m12, m13
Page 624
pl-1
ml7, ml18
Page 625
pl-1
ml, d8, m3 , m10, ml1l, m12, m13

p2-1
p3-1
p3-2

ml10
Page 626
mb
Page 627
mb
Page 629-630

empty

40

B Appendix : MULTICAL 3.01 Prototype DBMS

B.1 MuLrticAL Files
The multical3.01/prototype directory has the following directory structure:
total 208

drwxr-x--- 13 login timecenter 4096 Oct 26 13:16 .
drwxr-x--- 13 login timecenter 4096 Oct 6 16:35 ..

-rwxr-x--- 1 login timecenter 2023 Oct 26 12:40 Makefile
-rwxr-x--- 1 login timecenter 31831 Nov 9 17:19 Makefile.multical
drwxr-x--- 2 login timecenter 4096 Oct 6 16:34 bin
drwxr-x--- 3 login timecenter 12288 Jan 7 18:43 coverage
drwxr-x--- 2 login timecenter 4096 Oct 6 16:34 errors
drwxr-x--- 7 login timecenter 4096 Jan 7 18:29 frontend
drwxr-x--- 3 login timecenter 8192 Jan 7 18:43 initest
drwxr-x--- 4 login timecenter 4096 Jan 7 18:32 interpret
drwxr-x--- 2 login timecenter 4096 Oct 26 11:05 lextest
drwxr-x--- 2 login timecenter 4096 Jan 7 18:35 lib
drwxr-x--- 3 login timecenter 4096 Jan 7 18:35 oneprocess
drwxr-x--- 6 login timecenter 4096 Jan 7 18:32 semantic
drwxr-x--- 3 login timecenter 4096 Jan 7 18:27 specs

The bin directory contains the MULTICAL executables.

The coverage directory contains the TSQL2 test suite described in this document. The data
definition statements, data manipulation statements, and query statements adhere to the naming
described in Section 3.2 through Section 3.5. However, all statements end in the .sql suffix. For
example, the first data definition statement is named d1.sql.

The errors directory contains diagnostic output.

The frontend directory contains the code for the frontend of the prototype DBMS. Some of
the files in this directory are:

e doparse.c : IDL frontend rules.
e frontend.idl : contains IDL code concerning the frontend.

frontendInv.idl : contains IDL invariant code

lex.1 : lex lexical analyzer code.
e parser.y : yacc parser code.

The initest directory contains the regression test suite.

The interpret directory contains the code for the interpreter of the prototype DBMS. Some
of the files in this directory are:

41

e dointerpret.c: IDL interpreter rules.
e interpret.idl : contains IDL code concerning the interpreter.
e interpretInv.idl : contains IDL invariant code.

The lextest directory contains some SQL queries that are used to test the lexical analyzer of the
frontend.

The 1ib directory contains MULTICAL component executables that are used to create the final
MULTICAL executable.

The oneprocess directory contains code from the frontend, semantic, and interpreter directories.
Oneprocess refers to the fact that 3 disjoint MULTICAL components - frontend analysis, semantic
analysis, and interpretation - are combined to create one executable. Thus, SQL statements can be
run through oneprocess to test all components of MULTICAL. Diagnostic messages from MULTICAL
indicate which component failed if queries do not pass.

The semantic directory contains code for the semantic analyzer of the prototype DBMS. Some of
the files in this directory are:

e doanalysis.c: IDL semantic rules.
e semantic.idl : contains IDL code concerning the analyzer.
e semanticInv.idl : contains IDL invariant code.

The specs directory contains IDL code for parsing and semantic analysis.

B.2 Building MULTICAL

Before building the MULTICAL 3.01 prototype DBMS, edit the Makefile.include file found in the
multical3.01 directory. Verify that the information found in Makefile.include is correct for
your system. The file contains many variables which point to UNIX system tools. Make certain
the variables are set correctly.

Lastly, verify that the TOPDIR variable points to the multical3.01 directory. For example, if
you installed multical3.01 in your home directory, then TOPDIR should be set as:

TOPDIR=/home/yourhome/multical3.01
where yourhome is your home directory.

Once the Makefile.include file is configured properly, change directories to the multical3.01/prototype
directory. At the UNIX command prompt enter:

make full _clean

This make command will remove any MULTICAL 3.01 executable files that will be built during
a full install.

42

Next enter:
make install

This make command installs all the MurLTICAL 3.01 binaries needed.

B.3 Running the Test Suite on MULTICAL

Change directories to the multical3.01/prototype directory. At the UNIX command prompt
enter:

make coveragetest
This make command will run the entire TSQL2 test suite on the MULTICAL 3.01 prototype DBMS.

It will also report any unexpected behavior which differs from the output listed in Table 1, Table 2,
Table 3, and Table 4 of Section 4.

43

