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Abstract:

External dynamic hashing has been used in traditional database systems as a fast method to answer
membershipqueries. Given a dynamic setSof objects, a membership query asks whether an object with
identity k is in the most currentS. This paper addresses the more general problem ofTemporal Hashing.
In this setting changes to the dynamic set are timestamped and the membership query has a temporal
predicate, as in: “find whether object with identityk was in the setSat timet”. We present an efficient
solution to the Temporal Hashing problem. Our solution, also termedpartially persistent hashing, behaves
as if a separate, ephemeral (i.e., non-temporal) dynamic hashing scheme is available on every state
assumed by setSover time. However if the buckets of these hashing schemes were to be stored for each
time of interest, the space would become prohibitively large (quadratic on the total number of changes in
setS’s evolution); instead, our method uses linear space. We compare partially persistent hashing with
various straightforward approaches (like the traditional linear hashing scheme, the R-tree and the
Multiversion B-Tree) and it provides the faster membership query response time. Partially persistent
hashing should be seen as an extension of traditional external dynamic hashing in a temporal environment.
It is independent from which ephemeral dynamic hashing scheme is used. While the paper considers linear
hashing, the methodology applies to other dynamic hashing schemes as well.

1. Introduction

Hashing has been used as a fast method to address membership queries. Given a setSof objects

distinguished by some identity attribute (oid), a membership query asks whether object with oidk

is in setS. Hashing can be applied either as a main memory scheme (all data fits in main-memory

[DKM+88, FNSS92]) or in database systems (where data is stored on disk [L80]). Its latter form

is calledexternal hashing[EN94, R97] and a hashing function maps oids tobuckets. For every

object ofS, the hashing function computes the bucket number where the object is stored. Each

bucket has initially the size of a page. For this discussion we assume that a page can holdB objects.

Ideally, each distinct oid should be mapped to a separate bucket, however this is unrealistic as the

universe of oids is usually much larger than the number of buckets allocated by the hashing scheme.

When more thanB oids are mapped on the same bucket a (bucket)overflowoccurs. Overflows are

dealt in various ways, including rehashing (try to find another bucket using another hashing

scheme) and/or chaining (create a chain of pages under the overflown bucket).

If no overflows are present, finding whether a given oid is in the hashed set is trivial: simply

compute the hashing function for the queried oid and visit the appropriate bucket. If the object is

in the set it should be in that bucket. Hence, if the hashing scheme isperfect, membership queries

are answered inO(1) steps (just one I/O to access the page of the bucket). Overflows however

complicate the situation. If data is not known in advance, the worst case query performance of

hashing is large. It is linear to the size of setSsince all oids could be mapped to the same bucket
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gkollios@paros.poly.edu. V. J. Tsotras is with the Dept. of Computer Science, University of California, Riverside,
CA 92521;tsotras@cs.ucr.edu. This research was partially supported by NSF grant IRI-9509527 and by the New
York State Science and Technology Foundation as part of its Center for Advanced Technology program.
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if a bad hashing scheme is used. Nevertheless, practice has shown that in the absence of

pathological data, good hashing schemes with few overflows and constant average case query

performance (usually each bucket has size of one or two pages) exist. This is one of the major

differences between hashing and index schemes. If a balanced tree (B+ tree [C79]) is used instead,

answering a membership query takes logarithmic (on the size ofS) time in the worst case. For many

applications (for example in join computations [SD90]), a hashing scheme that provides expected

constant query performance (one or two I/O’s) is preferable to the worst case but logarithmic query

performance (four or more I/O’s ifS is large) of balanced search trees.

Statichashing refers to schemes that use a predefined set of buckets. This is inefficient if the

setS is allowed to change (by adding or deleting objects from the set). If the set is too small and

the number of pre-allocated buckets too large, the scheme is using more space than needed. If the

set becomes too large but a small number of buckets is used then overflows will become more

often, deteriorating the scheme’s performance. What is needed is adynamichashing scheme which

has the property of allocating space proportional to the size of the hashed setS. Various external

dynamic hashing schemes have been proposed, among whichlinear hashing[L80] (or a variation)

appears to be commonly used.

Note that even if the setSevolves, traditional dynamic hashing isephemeral, i.e., it answers

membership queries on the most current state of setS. In this paper we address a more general

problem. We assume that changes to the setS are timestamped by the time instant when they

occurred and we are interested in answering membership queries for any state that setSpossessed.

Let S(t)denote the state (collection of objects) setShad at timet. Then the membership query has

a temporal predicate as in: “given oidkand timet find whetherkwas inS(t)”. We term this problem

asTemporal Hashing and the new query astemporal membership query.

Motivation for the temporal hashing problem stems from applications where current as well as

past data is of interest. Examples include: accounting, billing, marketing, tax-related, social/

medical, and financial/stock-market applications. Such applications cannot be efficiently

maintained by conventional databases which work in terms of a single (usually the most current)

logical state. Instead,temporaldatabases were proposed [SA85] for time varying data. Two time

dimensions have been used to model reality, namelyvalid-timeandtransaction-time[J+94]. Valid

time denotes the time when a fact is valid in reality. Transaction time is the time when a fact is

stored in the database. Transaction time is consistent with the serialization order of transactions

(i.e., it is monotonically increasing) and can be implemented using the commit times of
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transactions [S94]. In the rest, the terms time or temporal refer to transaction-time.

Assume that for every timet whenS(t)changes (by adding/deleting objects) we could have a

good ephemeral dynamic hashing scheme (say linear hashing)h(t) that maps efficiently (with few

overflows) the oids inS(t) into a collection of bucketsb(t). One straightforward solution to the

temporal hashing problem would be to separately store each collection of bucketsb(t) for eacht.

To answer a temporal membership query for oidk and timet we only need to applyh(t) on k and

access the appropriate bucket ofb(t). This would provide an excellent query performance as it takes

advantage of the good linear hashing schemeh(t) used for eacht, but the space requirements are

prohibitively large! Ifn denotes the number of changes inS’s evolution, flashing eachb(t) on the

disk could easily createO(n2) space.

Instead we propose a more efficient solution that has similar query performance as above but

uses space linear ton. We term our solutionpartially persistent hashingas it reduces the original

problem into a collection of partially persistent1 sub-problems. We apply two approaches to solve

these sub-problems. The first approach “sees” each sub-problem as an evolving subset of setSand

is based on the Snapshot Index [TK95]. The second approach “sees” each sub-problem as an

evolving sublist whose history is efficiently kept. In both cases, the partially persistent hashing

scheme “observes” and stores the evolution of the ephemeral hashing in an efficient way that

enables fast access to anyh(t) and b(t). (We note that partial persistence fits nicely with a

transaction-time database environment because of the always increasing characteristic of

transaction-time.)

We compare partially persistent hashing with three other approaches. The first one uses a

traditional dynamic hashing function to map all oids ever created during the evolution ofS(t). This

solution does not distinguish among the many copies of the same oidk that may have been created

as time proceeds. A given oidk can be added and deleted fromSmany times, creating copies ofk

each associated with a different time interval. Because all such copies will be hashed on the same

bucket, bucket reorganizations will not solve the problem (this was also observed in [AS86]).

These overflows will eventually deteriorate performance especially as the number of copies

increases. The second approach sees each oid-interval combination as a multidimensional object

and uses an R-tree to store it. The third approach assumes that a B+ tree is used to index eachS(t)

and makes this B+ tree partially persistent [BGO+96, VV97, LS89]. Our experiments show that

1. A structure is called persistent if it can store and access its past states [DSST89]. It is called partially persistent if
the structure evolves by applying changes to its “most current” state.
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the partially persistent hashing outperforms the other three competitors in membership query

performance while having a minimal space overhead.

The partially persistent B+ tree [BGO+96, VV97, LS89] is technically the more interesting

among the competitor approaches. It corresponds to extending an ephemeral B+ tree in a temporal

environment. Like the ephemeral B+ tree, it supports worst case logarithmic query time but for

temporal queries. It was an open problem, whether such an efficient temporal extension existed for

hashing schemes. The work presented here answers this question positively. As with a non-

temporal environment, partially persistent hashing provides a faster than indexing, (expected)

query performance for temporal membership queries. This result reasserts our conjecture [KTF98]

that temporal problems that support transaction-time can be solved by taking an efficient solution

for the corresponding non-temporal problem and making it partially persistent.

The rest of the paper is organized as follows: section 2 presents background and previous work

as related to the temporal index methods that are of interest here; section 3 describes the basics of

the Snapshot Index and Linear Hashing. The description of partially persistent hashing appears in

section 4. Performance comparisons are presented in section 5, while conclusions and open

problems for further research appear in section 6.

2. Background and Previous Work

Research in temporal databases has shown an immense growth in recent years [OS95]. Work on

temporal access methods has concentrated on indexing. A worst case comparison of temporal

indexes appears in [ST97]. To the best of our knowledge, no approach addresses the hashing

problem in a temporal environment. Among existing temporal indexes, four are of special interest

for this paper, namely: the Snapshot Index [TK95], the Time-Split B-tree (TSB) [LS89], the

Multiversion B-Tree (MVBT) [BGO+96] and the Multiversion Access Structure (MVAS) [VV97].

A simple model of temporal evolution follows. Assume that time is discrete described by the

succession of non-negative integers. Consider for simplicity an initially empty setS. As time

proceeds, objects can be added to or deleted from this set. When an object is added toSand until

(if ever) is deleted fromS, it is called “alive”. This is represented by associating with each object

a semi-closed interval, orlifespan, of the form: [start_time, end_time). While an object is alive it

cannot be re-added inS, i.e. S contains no duplicates. Deletions can be applied to alive objects.

When an object is added att, its start_time ist but its end_time is yet unknown. Thus its lifespan

interval is initiated as [t, now), wherenow is a variable representing the always increasing current
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time. If this object is later deleted fromS, its end_time is updated fromnowto the object’s deletion

time. Since an object can be added and deleted many times, objects with the same oid may exist

but with non-intersecting lifespan intervals (i.e., such objects were alive at different times). The

state of the set at a given timet, namelyS(t), is the collection of all alive objects at timet.

Assume that this evolution is stored in a transaction-time database, in a way that when a change

happens at timet, a transaction with the same timestampt updates the database. There are various

queries we may ask on such a temporal database. A common query, is thepure-snapshotproblem

(also denoted as “*//-/S” in the proposed notation of [TJS98]): “given timet find S(t)”. Another

common query is therange-snapshotproblem (“R//-/S”): “given time t and range of oidsr, find all

alive objects inS(t) with oids in ranger”.

[ST97] categorizes temporal indexes according to what queries they can answer efficiently and

compares their performance using three costs: space, query time and update time (i.e., the time

needed to update the index for a change that happened on setS). Clearly, an index that solves the

range-snapshot query can also solve the pure-snapshot query (if no range is provided). However,

as indicated in [TGH95], a method designed to address primarily the pure-snapshot query does not

need to order incoming changes according to oid. Note that in our evolution model, changes arrive

in increasing time order but are unordered on oid. Hence such method could enjoy faster update

time than a method designed for the range-snapshot query. The latter orders incoming changes on

oid so as to provide fast response to range-snapshot queries. Indeed, the Snapshot Index solves the

pure-snapshot query in I/O’s, usingO(n/B)space and onlyO(1) update

time per change (in the expected amortized sense [CLR90] because a hashing scheme is

employed). This is the I/O-optimal solution for the pure snapshot query. Here,a corresponds to the

number of alive objects in the queried stateS(t).

For the range-snapshot query three efficient methods exist, namely, the TSB tree, the MVBT

tree and the MVAS structure. They all assume that there exists a B+ tree indexing eachS(t); as time

proceeds and setSevolves the corresponding B+ tree evolves, too. They differ on the algorithms

provided to efficiently store and access the B+ tree evolution. Answering a range-snapshot query

about timet implies accessing the B+ tree as it was at timet and search through its nodes to find

the oids in the range of interest. Conceptually, these approaches take a B+ tree and make it partially

persistent [DSST89]. The resulting structure has the form of a graph as it includes the whole history

of the evolving B+ tree, but it is able to efficiently access any past state of this B+ tree.

O n B⁄( )Blog a B⁄+( )
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Both the MVBT and MVAS solve the range-snapshot query in I/O’s,

usingO(n/B) space and update per change (in the amortized sense [CLR90]).

This is the -optimal solution for the range-snapshot query. Herem denotes the number of

“alive” objects when an update takes place anda denotes the answer size to the range-snapshot

query, i.e., how many objects from the queriedS(t) have oids in the query ranger. The MVAS

structure improves the merge/split policies of the MVBT thus resulting to a smaller constant in the

space bound. The TSB tree is another efficient solution to the range-snapshot query. In practice it

is more space efficient than the MVBT (and MVAS), but it can guarantee worst case query

performance only when the set evolution is described by additions of new objects or updates on

existing objects. Since for the purposes of this paper we assume that object deletions are frequent

we use the MVBT instead of a TSB.

3. Basics of the Snapshot Index and Linear Hashing

For the purposes of partially persistent hashing we need the fundamentals from the Snapshot Index

and ephemeral Linear Hashing, which are described next. For detailed descriptions we refer to

[TK95] and [L80, S88, EN94, R97], respectively.

3.1 The Snapshot Index

This method [TK95] solves the pure-snapshot problem using three basic structures: a balanced tree

(time-tree) that indexes data pages by time, a pointer structure (access-forest) among the data pages

and a hashing scheme. The time-tree and the access-forest enable fast query response while the

hashing scheme is used for update purposes.

We first discuss updates. Objects are stored sequentially in data pages in the same order as they

are added to the setS. In particular, when a new object with oidk is added to the set at timet, a new

record of the form <k, [t, now)> is created and is appended in a data page. When this data page

becomes full, a new data page is used and so on. At any given instant there is only one data page

that stores (accepts) records, theacceptor(data) page. The time when an acceptor page was created

(along with the page address) is stored in thetimetree. As acceptor pages are created sequentially

the time-tree is easily maintained (amortizedO(1) I/O to index each new acceptor page). For object

additions, the sequence of all data pages resembles a regular log but with two main differences: (1)

on the way deletion updates are managed and (2) on the use of additional links (pointers) among

the data pages that create the access-forest.

O n B⁄( )Blog a B⁄+( )

O m B⁄( )Blog( )

I/O
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Object deletions are not added sequentially; rather they are in-place updates. When objectk is

deleted at some time , its record is first located and then updated from <k, [t, now)> to <k, [t, )>.

Object records are found using their oids through the hashing scheme. When an object is added in

S, its oid and the address of the page that stores the object’s record are inserted in the hashing

scheme. If this object is deleted the hashing scheme is consulted, the object’s record is located and

its interval is updated. Then this object’s oid is removed from the hashing function.

Storing only one record for each object suggests that for some time instantt the records of the

objects inS(t)may be dispersed in various data pages. Accessing all pages with alive objects att,

would require too much I/O (ifS(t)hasa objects, we may accessO(a) pages). Hence the records

of alive objects must be clustered together (ideally ina/B pages). To achieve good clustering we

introduce copying but in a “controlled” manner, i.e., in a way that the total space remains

. To explain the copying procedure we need to introduce the concept of pageusefulness.

Consider a page after it gets full of records (i.e., after it stops being the acceptor page) and the

number of “alive” records it contains (records with intervals ending tonow). For all time instants

that this page containsuBalive records( ) is calleduseful. This is because for these times

t the page contains a good part of the answer forS(t). If for a pure-snapshot query about timet we

are able to locate the useful pages at that time, each such page will contribute at leastuBobjects to

the answer. Theusefulnessparameteru is a constant that tunes the behavior of the Snapshot Index.

Acceptor pages are special. While a page is the acceptor page it may contain fewer thanuB

alive records. By definition we also call a page useful for as long as it is the acceptor page. Such a

page may not give enough answer to justify accessing it but we still have to access it! Nevertheless,

for each time instant there exists exactlyone acceptor page.

Let [u.start_time, u.end_time)denote a page’s usefulness period; u.start_time is the time the

page started being the acceptor page. When the page gets full it either continues to be useful (and

for as long as the page has at leastuB alive records) or it becomes non-useful (if at the time it

became full the page had less thanuB alive records). The next step is to cluster the alive records

for eacht among the useful pages att. When a page becomes non-useful, anartificial copyoccurs

that copies the alive records of this page to the current acceptor page (as in a timesplit [E86, LS89]).

The non-useful page behaves as if all its objects are marked as deleted but copies of its alive records

can still be found from the acceptor page. Copies of the same record contain subsequent non-

overlapping intervals of the object’s lifespan. The copying procedure reduces the original problem

t ′ t ′

O n B⁄( )

0 u 1≤<
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of finding the alive objects att into finding the useful pages att. The solution of the reduced

problem is facilitated through the access-forest.

The access-forest is a pointer structure that creates a logical “forest of trees” among the data

pages. Each new acceptor page is appended at the end of a doubly-linked list and remains in the

list for as long as it isuseful. When a data paged becomes non-useful: (a) it is removed from the

list and (b) it becomes the next child page under the pagec preceding it in the list (i.e.,c was the

left sibling of d in the list whend became non-useful). As time proceeds, this process will create

trees of non-useful data pages rooted under the useful data pages of the list. The access-forest has

a number of properties that enable fast searching for the useful pages at any time. [TK95] showed

that starting from the acceptor page att all useful pages att can be found in at most twice as many

I/O’s (in practice much less I/O’s are needed). To find the acceptor page att the balanced time-tree

is searched (which corresponds to the logarithmic part of the query time). In practice this search is

very fast as the height of the balanced tree is small (it stores only one entry per acceptor page which

is clearlyO(n/B)). The main part of the query time is finding the useful pages. The performance of

the Snapshot Index can be fine tuned by changing parameteru. Largeu implies that acceptor pages

become non-useful faster, thus more copies are created which increases the space but also clusters

the answer into smaller number of pages, i.e., less query I/O.

3.2 Linear Hashing

Linear Hashing (LH) is a dynamic hashing scheme that adjusts gracefully to data inserts and

deletes. The scheme uses a collection of buckets that grows or shrinks one bucket at a time.

Overflows are handled by creating a chain of pages under the overflown bucket. The hashing

function changes dynamically and at any given instant there can be at most two hashing functions

used by the scheme.

More specifically, letU be the universe of oids andh0: U -> {0,...,M-1} be the initial hashing

function that is used to load setSinto M buckets (for example:h0(oid) = oid modM). Insertions and

deletions of oids are performed usingh0 until the first overflow happens. When this first overflow

occurs (it can occur inanybucket), thefirst bucket in the LH file, bucket 0, issplit (rehashed) into

two buckets: the original bucket 0 and a new bucketM, which is attached at the end of the LH file.

The oids originally mapped into bucket 0 (using functionh0) are now distributed between buckets

0 andM using anewhashing functionh1(oid). The next overflow will attach a new bucketM+1

and the contents of bucket 1 will be distributed usingh1 between buckets 1 andM+1. A crucial
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property ofh1 is that any oids that were originally mapped byh0 to bucketj should

be remapped either to bucketj or to bucketj+M. This is a necessary property for linear hashing to

work. An example of such hashing function is:h1(oid) = oid mod2M.

Further overflows will cause additional buckets to split in alinear bucket-number order. A

variablep indicates which is the bucket to be split next. Conceptually the value ofp denotes which

of the two hashing functions that may be enabled at any given time, applies to what buckets.

Initially p=0, which means that only one hashing function (h0) is used and applies to all buckets in

the LH file. After the first overflow in the above example,p=1 andh1 is introduced. Suppose that

an object with oidk is inserted after the second overflow (i.e., whenp=2). First the older hashing

function (h0) is applied onk. If then the bucketh0(k) has not been split yet andk is

stored in that bucket. Otherwise the bucket provided byh0 has already been split and

the newer hashing function (h1) is used; oidk is stored in bucketh1(k). Searching for an oid is

similar, that is, both hashing functions may be involved.

After enough overflows, all originalM buckets will be split. This marks the end ofsplitting-

round0. During round 0,p went subsequently from bucket 0 to bucketM-1. At the end of round 0

the LH file has a total of 2M buckets. Hashing functionh0 is no longer needed as all 2M buckets

can be addressed by hashing functionh1 (note:h1: U -> {0,...,2M-1}). Variablep is reset to 0 and

anewround, namely splitting-round 1, is started. The next overflow (in any of the 2M buckets) will

introduce hashing functionh2(oid) = oid mod22M. This round will last until bucket 2M-1 is split.

In general, roundi starts withp = 0, buckets {0,...,2iM-1} and hashing functionshi(oid) and

hi+1(oid). The round ends when all 2iM buckets are split. For our purposes we usehi(oid) = oid

mod2iM. Functionshj, j=1,..., are calledsplit functionsof h0. A split functionhj has the properties:

(i) hj: U -> {0,...,2jM-1} and (ii) for any oid, eitherhj(oid) = hj-1(oid) or hj(oid) = hj-1(oid) + 2j-1M.

At any given time, the linear hashing scheme is completely identified by the round number and

variablep. Given roundi and variablep, searching for oidk is performed usinghi if ;

otherwisehi+1 is used. During roundi the value ofp is increased by one at each overflow; when

p=2i M the next roundi+1 starts andp is reset to 0.

A split performed whenever an overflow occurs is anuncontrolledsplit. Let l denote the LH

file’s load factor, i.e., where is the current number of oids in the LH file (size of

setS), B is the page size (in number of oids) andR the current number of buckets in the file. The

load factor achieved by uncontrolled splits is usually between 50-70%, depending on the page size

0 j M 1–≤ ≤( )

h0 k( ) p≥

h0 k( ) p<( )

hi k( ) p≥

l S BR⁄= S
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and the oid distribution [L80]. In practice, to achieve a higher storage utilization a split is instead

performed when an overflow occursand the load factor is above someupper threshold g. This is

a controlledsplit and can typically achieve 95% utilization. Deletions in setSwill cause the LH

file to shrink. Buckets that have been split can be recombined if the load factor falls below some

lower threshold f . Then two buckets are merged together; this operation is the reverse of

splitting and occurs in reverse linear order. Practical values forf andgare 0.7 and 0.9, respectively.

4. Partially Persistent Hashing

We first describe the evolving-set approach which is based on the Snapshot Index; the evolving-

list approach will follow.

4.1 The Evolving-Set Approach

Using partial persistence, the temporal hashing problem will be reduced into a number of sub-

problems for which efficient solutions are known. Assume that an ephemeral linear hashing

scheme (as the one described in section 3) is used to map the objects ofS(t). As S(t)evolves with

time the hashing scheme is a function of time, too. LetLH(t) denote the linear hashing file as it is

at timet. There are two basic time-dependent parameters that identifyLH(t) for eacht, namelyi(t)

andp(t).Parameteri(t) is the round number at timet. The value of parameterp(t) identifies the next

bucket to be split.

An interesting property of linear hashing is that buckets are reused; when roundi+1 starts it has

double the number of buckets of roundi but the first half of the bucket sequence is the same since

new buckets are appended in the end of the file. Letbtotal denote the longest sequence of buckets

ever used during the evolution ofS(t)and assume thatbtotal consists of buckets: 0,1,2,..., .

Let b(t) be the sequence of buckets used at timet. The above observation implies that for allt, b(t)

is a prefix ofbtotal. In addition .

Consider bucketbj from the sequencebtotal and the observe the collection of

objects that are stored in this bucket as time proceeds. The state of bucketbj at timet, namelybj(t),

is the set of oids stored to this bucket att. Let denote the number of oids inbj(t). If all states

bj(t) can somehow be reconstructed for each bucketbj, answering a temporal membership query

for oid k at timet can be answered in two steps:

(1) find which bucketbj, oidk would have been mapped by the hashing scheme att, and,

(2) search through the contents ofbj(t) until k is found.

f g≤( )

2
q
M 1–

i t( ) q t∀,≤

0 j 2
q
M≤ ≤ 1–( )

bj t( )
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The first step requires identifying which hashing scheme was used at timet. The evolution of

the hashing schemeLH(t) is easily maintained if a record of the form <t, i(t), p(t) > is appended to

an arrayH, for those instantst where the values ofi(t) and/orp(t) change. Given anyt, the hashing

function used att is identified by simply locatingt inside the time-orderedH in a logarithmic

search.

The second step implies accessingbj(t). The obvious way would be to store eachbj(t), for those

times thatbj(t) changed. As explained earlier this would easily create quadratic space requirements.

The updating per change would also suffer since the I/O to store the current state ofbj would be

proportional to the bucket’s current size, namely .

By observing the evolution of bucketbj we note that its state changes as anevolving setby

adding or deleting oids. Each such change can be timestamped with the time instant it occurred. At

times the ephemeral linear hashing scheme may apply a rehashing procedure that remaps the

current contents of bucketbj to bucketbj and some new bucketbr. Assume that such a rehashing

occurred at some time and its result is a move ofv oids frombj to br. For the evolution ofbj (br),

this rehashing is viewed as a deletion (respectively addition) of thev oids at time , i.e., all such

deletions (additions) are timestamped with the same time for the corresponding object’s

evolution.

Figure 1 shows an example of the ephemeral hashing scheme at two different time instants. For

simplicity M = 5 andB = 2. Figure 2 shows the corresponding evolution of setSand the evolutions

of various buckets. At timet = 21 the addition of oid 8 on bucket 3 causes the first overflow which

rehashes the contents of bucket 0 between bucket 0 and bucket 5. As a result oid 15 is moved to

bucket 5. For bucket’s 0 evolution this change is considered as a deletion att = 21 but for bucket

5 it is an addition of oid 15 at the same instantt = 21.

If bj(t) is available, searching through its contents for oidk is performed by a linear search. This

process is lower bounded by I/O’s since these many pages are at least needed to

storebj(t). (This is similar with traditional hashing where a query about some oid is translated into

searching the pages of a bucket; this search is also linear and continues until the oid is found or all

the bucket’s pages are searched.) What is therefore needed is a method which for any givent can

reconstructbj(t) with effort proportional to I/O’s. Since every bucketbj behaves like a

set evolving over time, the Snapshot Index [TK95] can be used to store the evolution of eachbj and

reconstruct anybj(t) with the required efficiency.

O bj t( ) B⁄( )

t ′

t ′

t ′

O bj t( ) B⁄( )

bj t( ) B⁄
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We can thus conclude that given an evolving setS, partially persistent hashing answers a

temporal membership query about oidk at timet, with almost the same query time efficiency (plus

a small overhead) as if a separate ephemeral hashing scheme existed on eachS(t). A good

ephemeral hashing scheme forS(t)would require an expectedO(1) I/O’s to answer a membership

query. This means that on average each bucketbj(t) used forS(t) would be of limited size, or

equivalently, corresponds to just a few pages (in practice one or two pages). In

perspective, partially persistent hashing will reconstructbj(t) in I/O’s, which from

the above is expectedO(1).

The small overhead incurred by persistent hashing is due to the fact that it stores the whole

history ofS’s evolution and not just a single stateS(t). Array H stores an entry every time a page

overflow occurs. Even if all changes are new oid additions, the number of overflows is upper

bounded byO(n/B). Hence arrayH indexes at most pages and searching it takes

I/O’s.

Having identified the hashing function the appropriate bucketbj is pinpointed. Then timet must

be searched in the time-tree associated with this bucket. The overhead implied by this search is

bounded by wherenj corresponds to the number of changes recorded in bucket

bucket #: 0 1 2 3 4

bucket #: 0 1 2 3 4 5

i = 0,p = 0;h0(oid) = oid mod5,t = 20

i = 0,p = 1;h0(oid) = oid mod5,h1(oid) = oid mod10,t = 21

10

15

21

36

7

12

3

13

29

10 21

36

7

12

3

13

29

8

15

(a)

(b)

Figure 1: Two instants in the evolution of an ephemeral hashing scheme. (a) Until timet = 20, no split has
occurred andp = 0. (b) At t = 21, oid 8 is mapped to bucket 3 and causes an overflow. Bucket 0is
rehashed usingh1 andp = 1.

bj t( ) B⁄

O bj t( ) B⁄( )

O n B
2⁄( )

O n B
2⁄( )Blog( )
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bj’s history. In practice, we expect that then changes inS’s evolution will be concentrated on the

first few in thebtotal bucket sequence, simply because a prefix of this sequence is always used. If

we assume that most ofS’s history is recorded in the first buckets (for somei), nj behaves as

 and therefore searchingbj’s time-tree is rather fast.

A logarithmic overhead that is proportional to the number of changesn, is a common

characteristic in query time of all temporal indexes that use partial persistence. The MVBT (or

MVAS) tree will answer a temporal membership query about oidk on timet, in

I/O’s. We note that MVBT’s logarithmic bound contains two searches. First, the appropriate B-tree

that indexesS(t)is found. This is a fast search and is similar to identifying the hashing function and

the bucket to search in persistent hashing. The second logarithmic search in MVBT is for finding

k in the tree that indexesS(t)and is logarithmic on the size ofS(t). Instead persistent hashing finds

oid k in expectedO(1) I/O’s.

Figure 2: The detailed evolution for setS until time t = 25 (a “+/-” denotes addition/deletion respectively).
Changes assigned to the histories of three buckets are shown. The hashing scheme of Figure 1 is
assumed. Addition of oid 8 inSat t = 21, causes the first overflow. Moving oid 15 from bucket 0 to
bucket 5 is seen as a deletion and an addition respectively. The records stored in each bucket’s history
are also shown. For example, att=25, oid 10 is deleted from setS. This updates the lifespan of this
oid’s corresponding record in bucket 0’s history from <10, [1,now)> to <10, [1, 25)>.

evolution of setS up
to timet = 25:

(t oid oper.)
1, 10, +
2, 7, +
4, 3, +
8, 21, +
9, 15, +
15, 36, +
16, 29, +
17, 13, +
20, 12, +
21, 8, +
25, 10, -

<10, [1,now)>
<15, [9,now)>

<oid, lifespan>

at t = 20:

records in bucket 0’s history

<10, [1,now)>
<15, [9, 21)>

<oid, lifespan>

at t = 21:

evolution of bucket 0:

(t oid oper.)
1, 10, +
9, 15, +
21, 15, -
25, 10, -

<10, [1, 25)>
<15, [9, 21)>

<oid, lifespan>

at t = 25:

<3, [4,now)>
<13, [17,now)>

<oid, lifespan>

at t = 20:

records in bucket 3’s history

<3, [4,now>
<13, [17,now)>

<oid, lifespan>

at t = 21:

evolution of bucket 3:

(t oid oper.)
4, 3, +
17, 13, +
21, 8, + <3, [4,now)>

<13, [17,now)>

<oid, lifespan>

at t = 25:

-

<oid, lifespan>

at t = 20:

records in bucket 5’s history

<15, [21,now)>

<oid, lifespan>

at t = 21:

evolution of bucket 5:

(t oid oper.)
21, 15, +

<15, [21,now)>

<oid, lifespan>

at t = 25:

<8, [21,now)> <8, [21,now)>

2
i
M

O n 2
i
M( )⁄( )
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4.1.1 Update and Space Analysis. We proceed with the analysis of the update and space

characteristics of partially persistent hashing. It suffices to show that the scheme usesO(n/B)space.

An O(1) amortized expected update processing per change can then be derived. Clearly arrayH

satisfies the space bound. Next we show that the space used by bucket histories is also bounded by

O(n/B). Recall thatn corresponds to the total number of real object additions/deletions in setS’s

evolution. However, the rehashing process moves objects among buckets. For the bucket histories,

each such move is seen as a new change (deletion of an oid from the previous bucket and

subsequent addition of this oid to the new bucket). It must thus be shown that the number of moves

due to rehashing is still bounded by the number of real changesn. For this purpose we will use two

lemmas.

Lemma 1: ForN overflows to occur at leastNB+1 real object additions are needed.

Proof: The proof is based on induction on the number of overflows. (1) For the creation of the first

(N=1) overflow at leastB+1 oid additions are needed. This happens if all such oids are mapped to

the same bucket that can hold onlyB oids (each bucket starts with one empty page). (2) Assume

that for theN first overflowsNB+1 real object additions are needed. (3) It must be proved that the

N+1 first overflows need at least (N+1)B+1 oid additions. Assume that this is not true, i.e., that only

(N+1)B oid additions are enough. We will show that a contradiction results from this assumption.

According to (2) the firstN of the(N+1) overflows neededNB+1 real object additions. Hence there

are B-1 remaining oid additions to create an extra overflow. Consider the page where the last

overflow occurred. This bucket has a page with exactly one record (if it had less there would be no

overflow, if it had more, theN-th overflow could have been achieved with one less oid). For this

page to overflow we need at leastB more oid additions, i.e., the remainingB-1 are not enough for

the (N+1)-th overflow. Which results in a contradiction and the Lemma is proved. (Note that only

the page where theN-th overflow occurred needs to be considered. Any other page that has space

for additional oids cannot have more than one oid already, since the overflow that occurred in that

bucket could have been achieved with less oids). ❑

The previous Lemma lower bounds the number of real oid additions fromN overflows. The

next Lemma upper bounds the total number of copies (due to oid rehashings) that can happen from

N overflows.

Lemma 2: N overflows can create at mostN(B+1) oid copies.

Proof: We will use again induction on the number of overflows. (1) The first overflow can create at
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mostB+1 oid copies. This happens if when the first overflow occurs all the oids in that bucket are

remapped to a new bucket. The deleted records of the remappedB+1 oids are still stored in the

history of the original bucket. (2) Assume that for theN first overflows at mostN(B+1) oid copies.

(3) It must be shown that the first (N+1) overflows can create at most (N+1)(B+1) oid copies. We

will use contradiction. Hence let’s assume that this is not true, i.e., the first (N+1) overflows can

create more copies. Let (N+1)(B+1)+x be that number where . Consider thelastN overflows

in the sequence of overflows. From (2) it is implied that these overflows have already created at

mostN(B+1) oid copies. Hence there are at leastB+1+x additional copies to be created by the first

overflow. However this is a contradiction since from (1) the first overflow can only create at most

B+1 oid copies. ❑

We are now ready to prove the basic theorem about space and updating.

Theorem 1: Partially Persistent Hashing uses space proportional to the total number of real

changes and updating that is amortized expectedO(1) per change.

Proof: Assume for simplicity that setS evolves by only adding oids (oid additions create new

records, overflows and hence more copying; deletions do not create overflows). As overflows

occur, linear hashing proceeds in rounds. In the first round variablep starts from bucket 0 and in

the end of the round it reaches bucketM-1. At that point 2M buckets are used and all copies

(remappings) from oids of the first round have been created. SinceM overflows have occurred,

lemmas 1 and 2 imply that there must have been at leastMB+1 real oid additions and at most

M(B+1) copies. By construction, these copies are placed in the lastM buckets.

For the next round, variablep will again start from bucket 0 and will extend to bucket 2M-1.

Whenp reaches bucket 2M-1, there have been 2M new overflows. These new overflows imply that

there must have been at least 2MB+1 new real oid additions and at most 2M(B+1) copies created

from these additions. There are also theM(B+1) copy oids from the first round, which for the

purposes of the second round are “seen” as regular oids. At most each such copy oid can be copied

once more during the second round (the original oids from which these copies were created in the

first round, cannot be copied again in the second round as they represent deleted records in their

corresponding buckets). Hence the maximum number of copies after the second round is: 2M(B+1)

+ M(B+1).

The total number of copiesCtotal created after thei-th round (i = 0,1,2,...) is upper bounded by:

x 1≥



16

where each {} represents copies per round. Equivalently:

 (i)

After thei-th round the total number of real oid additionsAtotal is lower bounded by:

.

Equivalently:

 (ii).

From (i), (ii) it can be derived that there exists a positive constantconst such that

and sinceAtotal is bounded by the total number of changesn, we have that

Ctotal= O(n). To prove that partially persistent hashing hasO(1) expected amortized updating per

change, we note that when a real change occurs it is directed to the appropriate bucket where the

structures of the Snapshot Index are updated inO(1) expected time. Rehashings have to be

carefully examined. This is because a rehashing of a bucket is caused by a single real oid addition

(the one that created the overflow) but it results into a “bunch” of copies made to a new bucket (at

worse the whole current contents of the rehashed bucket are sent to the new bucket). However,

using the space bound we can prove that any sequence ofn real changes can at most createO(n)

copies (extra work) or equivalentlyO(1) amortized effort per real change. ❑

4.1.2 Optimization Issues. Optimizing the performance of partially persistent hashing involves

the load factorl of the ephemeral Linear Hashing and the usefulness parameteru of the Snapshot

Index. The loadl lies between thresholdsf and g. Note that l is an average over time of

, where andR(t)denote the size of the evolving setSand the number

of buckets used att (clearly ). A good ephemeral linear hashing scheme will try to

equally distribute the oids among buckets for eacht. Hence on average the size (in oids) of each

bucketbj(t) will satisfy: .

Ctotal M B 1+( ){ } 2M B 1+( ) M B 1+( )+{ } ... 2
i
M B 1+( ) ... M B 1+( )+ +{ }+ + +[ ]≤

Ctotal M B 1+( ) 2
j
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i
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One of the advantages of the Snapshot Index is the ability to tune its performance through

usefulness parameteru. The index will distribute the oids of eachbj(t) among a number ofuseful

pages. Since each useful page (except the acceptor page) contains at leastuBalive oids, the oids in

bj(t) will be occupying at most pages, which is actuallyl/u. Ideally, we would like the

answer to a snapshot query to be contained in a single page (plus probably one more for the

acceptor page). Then a good optimization choice is to keep . Conceptually, the loadl gives

a measure of the size of a bucket (“alive” oids) at each time. These alive oids are stored into the

data pages of the Snapshot Index. Recall that an artificial copy happens if the number of alive oids

in a data page falls belowuB. At that point the remaininguB-1 alive oids of this page are copied

to a new page. By keepingl belowu we expect that the alive oids of the split page will be copied

in a single page which minimizes the number of I/O’s needed to find them.

On the other hand, the usefulness parameteru affects the space used by the Snapshot Index and

in return the overall space of the persistent hashing scheme. As mentioned in section 3, higher

values ofu imply frequent time splits, i.e., more page copies and thus more space. Hence it would

be advantageous to keepu low but this implies an even lowerl. In return, lowerl would mean that

the buckets of the ephemeral hashing are not fully utilized. This is because lowl causes setS(t)to

be distributed into more buckets not all of which may be fully occupied.

At first this requirement seems contradictory. However, for the purposes of partially persistent

hashing, having lowl is still acceptable. Recall that the lowl applies to the ephemeral hashing

scheme whose history the partially persistent hashing observes and accumulates. Even though at

single time instants thebj(t)’s may not be fully utilized, over the whole time evolution many object

oids are mapped to the same bucket. What counts for the partially persistent scheme is the total

number of changes accumulated per bucket. Due to bucket reuse, a bucket will gather many

changes creating a large history for the bucket and thus justifying its use in the partially persistent

scheme. Our findings regarding optimization will be verified through the experimentation results

that appear in the next section.

4.2 The Evolving-List Approach

The elements of bucketbj(t) can also be viewed as anevolving list lbj(t) of alive oids. Such an

observation is consistent with the way buckets are searched in ephemeral hashing, i.e., linearly, as

if a bucket’s contents belong to a list. This is because in practice each bucket is expected to be about

one or two pages long. Accessing the bucket statebj(t) is then reduced to reconstructinglbj(t).

Equivalently, the evolving list of oids should be made partially persistent.

bj t( ) uB⁄

l u⁄ 1<
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When bucketbj is first created, an empty page is assigned to listlbj. A list page has two areas.

The first area is used to store oid records and its size isBr whereBr < B. The second area (of size

B -Br) accommodates an extra structure (arrayNT) to be explained shortly. When the first oidk is

added on bucketbj at timet, a record <k, [t, now)> is appended in the first list page. Additional oid

insertions will create record insertions in the list and more pages are appended as needed. If oidk

is deleted at from the bucket, its record in the list is found (by a serial search among the list

pages) and its end_time is updated fromnowto  (a logical deletion).

As with the Snapshot Index, we need a notion of pageusefulness. A page is called useful as

long as it contains at leastV alive objects or while it is the last page in the list. Otherwise it is a

non-useful page. For the following discussion we assume that . Except for the last

page in the list, a useful page can become non-useful because of an oid deletion (which will bring

the number of alive oids in this page below the threshold). The last page can turn from useful to

non-useful when it gets full of records (an event caused by an oid insertion). At that time if the

page’s total number of alive oids is less thanL the page becomes non-useful. Otherwise it continues

to be a regular useful page. When the last page gets full, a new last page is added in the list.

Finding the statebj(t) is again equivalent to finding the useful pages inlbj(t). We will use two

extra structures. The first structure is an arrayFTj(t) which for any timet provides access to the

first useful page inlbj(t). Entries in arrayFTj have the form <time, pid> where pid is a page address.

If the first useful page of the list changes at somet, a new entry withtime= t and the pid of the new

first useful page is appended inFTj. This array can be implemented as a multilevel, paginated index

since entries are added to it in increasing time order.

To find the remaining useful pages oflbj(t), every useful page must know which is the next

useful page after it in the list. This is achieved by the second structure which is implemented inside

every list page. In particular, this structure has the form of an array stored in the page area of size

B -Br. Let NT(A) be the array inside pageA. This array is maintained for as long as the page is

useful. Entries inNT(A)are also of the form <time, pid>, where pid corresponds to the address of

the next useful page after useful pageA.

If during the usefulness period of some pageA, its next useful page changes many times,NT(A)

can become full. Assume this scenario happens at timet and letC be the useful page before page

A. PageA is thenartificially turned to non-useful (even if it still has more thanV alive records) and

is replaced by a copy of it, page . We call this process artificial, since it was not caused by an

t ′

t ′

0 V< Br 4⁄≤

A'
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oid insertion/deletion to this page, rather it is due to a change in a page ahead. The new page

has the same alive records asA but an emptyNT( ). A new entry is then added inNT(C)with

’s pid. The first entry ofNT( ) has the pid of the useful page (if any) that was after pageA at t.

If all useful list pages until pageA had theirNTarrays full just before timet, the above process

of artificially turning useful pages to non-useful can propagate all the way to the top of the list. If

it reaches the first useful page in the list, a copy of it is created and arrayFTj is updated. However,

this does not happen often. Figure 3 shows an example of how arraysNT() andFTj are maintained.

The need for artificial creation of a copy of pageA is for faster query processing. TheNT(C)

array enables finding which is the next useful page afterC for various time instants. Assume for

the moment that no new copy of pageA is created, but insteadNT(A) is allowed to grow over the

B -Br available area of pageA, in additional pages. The last entry onNT(C)would then still point

to pageA. Locating which is the next page afterC at timet would lead to pageA but then a serial

search among the pages of arrayNT(A) is needed. Clearly this approach is inefficient if the useful

page in front of pageA changes often. The use of artificial copies guards against similar situations

as the next useful list page for any time of interest is found by one I/O! This technique is a

generalization of thebackward updating technique used in [TGH95].

Special care is needed when a page turns from useful to non-useful due to an oid deletion/

A'

A'

A' A'

Figure 3: (a) An example evolution for the useful pages of listlbj(t). (b) The correspondingFTj andNT arrays.
From each page only theNT array is shown. In this exampleB-Br = 4 entries. Since the page in front
of pageA changes often, itsNT(A)array fills up and at timet6 an artificial copy of pageA is created
with arrayNT(A’). ArrayNT(C) is also updated about the artificially created new page.
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insertion in this page. To achieve good answer clustering, the alive oids from such a page are

merged with the alive oids of a sibling useful page (if such a sibling exists) to create one (or two,

depending on the number of alive oids) new useful page(s). The new useful page(s) may not be full

of record oids, i.e., future oid insertions can be accommodated there. As a result, when a new oid

is inserted, the list of useful pages is serially searched and the new oid is added in the first useful

page found that has space (in theBr area) to accommodate it. Details are described in the Appendix.

To answer a temporal membership query for oidk at timet the appropriate bucketbj, where oid

k would have been mapped by the hashing scheme att must be found. This part is the same with

the evolving-set approach. Reconstructing the state of bucketbj(t) is performed in two further

steps. First, usingt the first useful page inlbj(t) is found by searching arrayFTj (which corresponds

to searching the time-tree of each bucket in the evolving-set approach). This search is bounded by

. The remaining useful pages oflbj(t) (and thus the oids inbj(t)) are found by

locatingt in theNT array of each subsequent useful page (instead, the evolving-set approach uses

the access forest of the Snapshot Index). Since all useful pages (except the last in the listlbj(t)) have

at leastV alive oids from the answer, the oids inbj(t) are found with an additional

I/O’s. The space used by all the evolving-list structures isO(nj/B).

There are two differences between the evolving-list and the evolving-set approaches. First,

updating using the Snapshot Index remains constant, while in the evolving list the whole current

list may have to be searched for adding or deleting an oid. Second, the nature of reconstructingbj(t)

is different. In the evolving-list reconstruction starts from the top of the list pages while in the

evolving-set reconstruction starts from the last page of the bucket. This may affect the search for a

given oid depending whether it has been placed near the top or near the end of the bucket.

5. Performance Analysis

We compared Partially Persistent Hashing (PPH) against Linear Hashing (in particularAtemporal

linear hashing, to be discussed later), the MVBT and the R*-tree. The implementation and the

experimental setup are described in 5.1, the data workloads in 5.2 and our findings in 5.3.

5.1 Method Implementation - Experimental Setup.

We set the size of a page to hold 25 oid records (B=25). An oid record has the following form, <oid,

start_time, end_time, ptr>, where the first field is the oid, the second is the starting time and the

third the ending time of this oid’s lifespan. The last field is a pointer to the actual object (which

may have additional attributes).

O nj B⁄( )
B

log( )

O bj t( ) B⁄( )
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We first discuss theAtemporallinear hashing (ALH). It should be clarified that ALH isnot the

ephemeral linear hashing whose evolution the partially persistent hashing observes and stores.

Rather, it is a linear hashing scheme that treats time as just another attribute. This scheme simply

maps objects to buckets using the object oids. Consequently, it “sees” the different lifespans of the

same oid ascopiesof the same oid. We implemented ALH using the scheme originally proposed

by Litwin in [Lin80]. For split functions we used the hashing by division functionshi(oid) = oid

mod 2iM with M = 10. So as to get good space utilization, controlled splits were employed. The

lower andupper thresholds (namelyf andg) had values 0.7 and 0.9 respectively.

Another approach for Atemporal hashing would be a scheme which uses a combination of oid

and the start_time or end_time attributes. However this approach would still have the same

problems as ALH for temporal membership queries. For example, hashing on start_time does not

help for queries about time instants other than the start_times.

The Multiversion B-tree (MVBT) implementation is based on [BGO+96]. For fast updating the

MVBT uses a buffer that stores the pages in the path to the last update (LRU buffer replacement

policy is used). Buffering during updating can be very advantageous since updates are directed to

the most current B-tree, which is a small part of the whole MVBT structure. In our experiments we

set the buffer size to 10 pages. The original MVBT uses this buffer for queries, too. However, for

a fair comparison with the other methods when measuring the query performance of the MVBT we

invalidate the buffer content from previous queries. Thus the measured query performance is

independent from the order in which queries are executed. Finally, in the original MVBT, the

process of answering a query starts from aroot* array. For every timet, this array identifies the

root of the B-tree at that time (i.e., where the search for the query should start from). Even though

the root* can increase with time is small enough to fit in main memory. Thus we do not count I/O

accesses for searching root*.

As with the Snapshot Index, a page in the MVBT is “alive” as long as it has at leastq alive

records. If the number of alive records falls belowq this page has to be merged with a sibling (this

is called aweak version underflow). On the other extreme, if a page has alreadyB records (alive or

not) and a new record has to be added, the page splits (a pageoverflow). Both conditions need

special handling. First, a time-split happens (which is like the copying procedure of the Snapshot

Index). All alive records in the split page are copied to a new page. Then the resulting new page

has to be incorporated in the structure. The MVBT requires that the number of alive records in the

new page should be betweenq+e andB-e wheree is a predetermined constant. Constante works
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as a buffer that guarantees that the new page can be split or merged only after at leaste new

changes. Not all values forq, eandB are possible as they must satisfy some constraints; for details

we refer to [BGO+96]. In our implementation we setq = 5 ande = 4. The directory pages of the

MVBT have the same format as the data pages.

For the Partially Persistent Hashing we implemented both the set-evolution (PPH-s) and the

list-evolution (PPH-l) approaches. Both approaches observe an ephemeral linear hashingLH(t)

whose loadl(t) lies betweenf=0.1 andg=0.2. ArrayH which identifies the hashing scheme used at

each time is kept in main-memory, so no I/O access is counted for using this structure. This is

similar to keeping the root* array of the MVBT in main memory. In all our experiments the size

of arrayH is never greater than 15 KB. Unless otherwise noted, PPH-swas implemented withu =

0.3 (various other values for usefulness parameteru were also examined). Since the entries in the

time-tree associated with a bucket have half the oid record size, each time-tree page can hold up to

50 entries.

In the PPH-l implementation, the space for the oid recordsBr can hold 20 such records. The

value ofV is set equal to 5 since .This means that, a page in the list can be useful as

long as the number of alive oids in the page is greater or equal to 5. The remaining space in a list

page (of size 5 oid records) is used for the page’sNT array. Similarly with the time-arrays,NT

arrays have entries of half size, i.e., each page can hold 10NT entries. For the same reason, the

pages of eachFTj array can hold up to 50 entries.

For the R*-tree method we used two implementations, one with intervals (Ri) in a two-

dimensional space, and another with points in a three-dimensional space (Rp). The Ri

implementation assigns to each oid its lifespan interval; one dimension is used for the oids and one

for the lifespan intervals. When a new oidk is added in setSat timet, a record <k, [t, now), ptr> is

added in an R*-tree data page. If oidk is deleted at , the record is updated to <k, [t, ), ptr>.

Directory pages include one more attribute per record so as to represent an oid range. The Rp

implementation has similar format for data pages, but it assigns separate dimensions for the

start_time and the end_time of the object’s lifespan interval. Hence a directory page record has

seven attributes (two for each of the oid, start_time, end_time and one for the pointer). During

updating, both R*-tree implementations use a buffer (10 pages) to keep the pages in the path

leading to the last update. As with the MVBT, this buffer is not used for the query phase.

0 V< Br 4⁄≤

t ′ t ′
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5.2 Workloads.

Various workloads were used for the comparisons. Each workload contains an evolution of a

datasetS and temporal membership queries on this evolution. More specifically, aworkload is

defined by tripletW=(U,E,Q), whereU is the universe of the oids (the set of unique oids that

appeared in the evolution of setS), E is the evolution of setSandQ = {Q1, .... ,Qr} is a collection

of queries, wherer = |U| and Qk is the set of queries corresponds to oidk.

Each evolution starts at time 1 and finishes at timeMAXTIME. Changes in a given evolution

were first generated per object oid and then merged. First, for each object with oidk, the number

nk of the different lifespans for this object in this evolution was chosen. The choice ofnk was made

using a specific random distribution function (namelyUniform, Exponential, Stepor Normal)

whose details are described in the next section. The start_times of the lifespans of oidk were

generated by randomly pickingnk different starting points in the set {1,...,MAXTIME}. The

end_time of each lifespan was chosen uniformly between the start_time of this lifespan and the

start_time of the next lifespan of oidk (since the lifespans of each oidk have to be disjoint). Finally

the whole evolutionE for setSwas created by merging the evolutions for every object.

For another “mix” of lifespans, we also created an evolution that picks the start_times and the

length of the lifespans using Poisson distributions; we called it thePoisson evolution.

A temporal membership query in query setQ is specified by tuple(oid,t). The number of

queries Qk for every object with oidk was chosen randomly between 10 and 20; thus on average,

Qk ~ 15. To form the(k,t) query tuples the corresponding time instantst were selected using a

uniform distribution from the set {1, ... ,MAXTIME}. The MAXTIME is set to 50000 for all

workloads.

Each workload is described by the distribution used to generate the object lifespans, the number

of different oids, the total number of changes in the evolutionn (object additions and deletions),

the total number of object additionsNB, and the total number of queries.

5.3 Experiments.

First, the behavior of all implementations was tested using a basicUniformworkload. The number

of lifespans per object follows a uniform distribution between 20 and 40. The total number of

distinct oids was |U| = 8000, the number of real changesn = 466854 andNB = 237606 object

additions. Hence the average number of lifespans per oid wasNB ~ 30 (we refer to this workload

as Uniform-30). The number of queries was 115878.
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Figure 4.a presents the average number of pages accessed per query by all methods. The PPH

methods have the best performance, about two pages per query. The ALH approach uses more

query I/O (about 1.5 times in this example) because of the larger buckets it creates. The MVBT

uses about twice as many I/O’s than the PPH approaches since a tree has to be traversed per query.

The Ri uses more I/O’s per query than the MVBT, mainly due to node overlapping and larger tree

height (which in the Ri structure relates to the total number of oid lifespans while in the MVBT

corresponds to the number of alive oids at the time specified by thequery). The problem of node

overlapping is even greater with the query performance of the Rp tree, which in Figure 4.a has been

truncated to fit the graph (Rp used an average of 44 I/O’s per query in this experiment). In the Rp

all alive oids have the same end_time (now) that causes them to be clustered together even though

they have different oids (that is, overlapping extends to the oid dimension as well). As observed

elsewhere [KTF98], transaction-time lifespans are not maintained efficiently by plain R-trees.

Figure 4.b shows the average number of I/O’s per update. The best update performance was

given by the PPH-smethod. The MVBT had the second best update performance. It is larger than

PPH-s since MVBT is traversing a tree for each update (instead of quickly finding the location of

the updated element through hashing). The update of Ri follows; it is larger that the MVBT since

the size of the tree traversed is related to all oid lifespans (while the size of the MVBT tree traversed

is related to the number of alive oids at the time of theupdate). The ALH and PPH-l used even

larger update processing. This is because in ALH all lifespans with the same oid are thrown on the

same bucket thus creating large buckets that have to be searched serially during an update. In PPH-

l the NT array implementation inside each page limits the actual page area assigned for storing oids

and thus increases the number of pages used per bucket. The Rp tree uses even larger update

processing which is due to the bad clustering on the commonnow end_time.

The space consumed by each method appears in figure 4.c. The ALH approach uses the

smallest space since it stores a single record per oid lifespan and uses “controlled” splits with high

utilization (f andg values). The PPH methods have also very good space utilization with the PPH-

s being very close to ALH. PPH-l uses more space than PPH-s because theNT array

implementation reduces page utilization. The R-tree methods follow; Rp uses slightly less space

than the Ri because paginating intervals (putting them into bounding rectangles) is more

demanding than with points. Note that similarly to ALH, both R* methods use a single record per

oid lifespan; the additional space is mainly because the average R-tree page utilization is about

65%. The MVBT has the largest space requirements, about twice more space than the ALH and
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Figure 4: (a) Query, (b) Update, and, (c) Space performance for all implementations on a uniform workload with
8K oids,n ~ 0.5M andNB ~ 30.
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PPH-s methods.

In summary, the PPH-s has the best overall performance. Similarly with the comparison

between ephemeral hashing and B-trees, the MVBT tree behaves worse than temporal hashing

(PPH-s) for temporal membership queries. The ALH is slightly better than PPH-s only in space

requirements, even though not significantly. The R-tree based methods are much worse than PPH-

s in all three performance criteria.

To consider the effect of lifespan distribution all approaches were compared using four

additional workloads (namely the exponential, step, normal and poisson). These workloads had the

same number of distinct oids (|U| = 8000), number of queries (115878) and similarn (~0.5M) and

NB (~30) parameters. TheExponentialworkload generated thenk lifespans per oid using an

exponential distribution with probability density function and mean =30.

The total number of changes wasn = 487774, the total number of object additions wasNB =

245562 andNB = 30.7. In theStepworkload the number of lifespans per oid follows a step

function. The first 500 oids have 4 lifespans, the next 500 have 8 lifespans and so on, i.e., for every

500 oids the number of lifespans advances by 4. In this workload we hadn = 540425,NB= 272064

andNB = 34. TheNormalworkload used a normal distribution with and . Here

the parameters were:n = 470485,NB = 237043 andNB = 29.6.

For thePoissonworkload the first lifespan for every oid was generated randomly between time

instants 1 and 500. The length of a lifespan was generated using a Poisson distribution with mean

1100. Each next start time for a given oid was also generated by a Poisson distribution with mean

value 500. For this workload we hadn = 498914,NB = 251404 andNB = 31. The main

characteristic of the Poisson workload is that the number of alive oids over time can vary from a

very small number to a large proportion of |U|, i.e., there are time instants where the number of

alive oids is some hundreds and other time instants where almost all distinct oids are alive.

Figure 5 presents the query, update and space performance under the new workloads. For

simplicity only the Ri method is presented among the R-tree approaches (as with the uniform load,

the Rp used consistently more query and update than Ri and similar space). The results resemble

the previous uniform workload. As before, the PPH-s approach has the best overall performance

using slightly more space than the “minimal” space of ALH. PPH-l has the same query

performance and comparable space with PPH-sbut uses much more updating. Note that in Figure

5.a, the query performance of Ri has been truncated to fit the graph (on average, Ri used about 10,

13, 11 and 10 I/O’s per query in the exponential, step, normal and poisson workloads respectively).

f x( ) βexp βx–( )= 1 β⁄

µ 30= σ2 25=
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Similarly, in Figure 5.c the space of the MVBT is truncated (MVBT used about 26K, 29K, 25K

and 35.5K pages for the respective workloads).

The effect of the number of lifespans per oid was tested using eight uniform workloads with

varying average number of lifespans. All used |U| = 8000 different oids and the same number of

queries (~115K). The other parameters are shown in the following table:

The results appear in Figure 6. The query performance of atemporal hashing deteriorates asNB

increases since buckets become larger (Figure 6.a). The PPH-s, PPH-l and MVBT methods have a

query performance that is independent ofNB (this is because in all three methods theNB lifespans

of a given oid appear at different time instants and thus do not interfere with each other). The query

performance of Ri was much higher and it is truncated from Fig. 6.a. Interestingly, the Ri query

performance decreases gradually asNB increases (from 12.6 I/O’s to 9.4 I/O’s). This is because Ri

clustering improves asNB increases (there are more records with the same key).

PPH-s outperforms all methods in update performance (Figure 6.b). As with querying, the

updating of PPH-s, PPH-l and MVBT is basically independent ofNB. Because of better clustering

with increasedNB, the updating of Ri gradually decreases. In contrast, because increasedNB

implies larger bucket sizes, the updating of ALH increases. The space of all methods increases with

NB as there are more changesn per evolution (Table 1). The ALH has the lower space, followed

by the PPH-s; the MVBT has the steeper space increase (forNB values 80 and 100, MVBT used

~68K and 84.5K pages).

The effect of the number of distinct oids used in an evolution was examined by considering

three variations of the uniform workload. The number of distinct oids |U| was: 5000, 8000 and

Table 1:

workload n NB NB

uniform-10 149801 75601 9.4

uniform-20 308091 155354 19.4

uniform-30 466854 237606 29.7

uniform-40 628173 316275 39.5

uniform-50 787461 396266 49.5

uniform-80 1264797 635604 79.5

uniform-100 1585949 796451 99.5
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Figure 5: (a) Query, (b) Update, and, (c) Space performance for ALH, PPH-s, PPH-l, MVBT and Ri methods using
the exponential, step, normal and poisson workloads with 8K oids,n ~ 0.5M andNB ~ 30.
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Figure 6: (a) Query, (b) Update, and, (c) Space performance for ALH, PPH-s, PPH-l, MVBT and Ri methods using
various uniform workloads with varyingNB.

(a)

(b)

(c)

0 20 40 60 80 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

A
vg

. N
um

be
r 

of
 I/

O
' p

er
 Q

ue
ry

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

A
vg

. N
um

be
r 

of
 I/

O
' p

er
 U

pd
at

e

0 20 40 60 80 100

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Avg. Number of Lifespans per oid (NB)

N
um

be
r 

of
 P

ag
es

0 20 40 60 80 100

ALH

PPH-s

PPH-l

MVBT

Ri

ALH

PPH-s

PPH-l

MVBT

Ri

ALH

PPH-s

PPH-l

MVBT

Ri



30

12000, respectively. All workloads had similar average number of lifespans per distinct oid (NB~

30). The other parameters appear in Table 2. The results appear in figure 7. The query performance

of PPH-s and PPH-l is independent of |U|. In contrast, it increases for both MVBT and Ri (the Ri

used about 10.4, 12 and 13 I/O’s per query). The reason for this increase is that there are more oids

stored in these tree structures thus increasing the structure’s height (this is more evident in Ri as

all oids appear in the same tree). In theory, ALH should also be independent of the universe size

|U|; the slight increase for ALH in Figure 7.a is due to the “controlled” splits policy that constrained

ALH to a given space utilization. Similar observations hold for the update performance. Finally,

the space of all methods increases becausen increases (Table 2).

From the above experiments, the PPH-s method appears to have the most competitive

performance among all solutions. As mentioned in section 4.1.2, the PPH-s performance can be

further optimized through the setting of usefulness parameteru. Figure 8 shows the results for the

basic Uniform-30 workload (|U| = 8000,n = 466854,NB= 237606 andNB~ 30) but with different

values ofu. As expected, the best query performance occurs ifu is greater than the maximum load

of the observed ephemeral hashing. For these experiments the maximum load was 0.2. As asserted

in Figure 8.a, the query time is minimized afteru = 0.3. The update is similarly minimized (Figure

8.b) foru’s above 0.2, since after that point, the alive oids are compactly kept into few pages that

can be updated easier (for smalleru’s the alive oids can be distributed into more pages which

increases the update process). Figure 8.c shows the space of PPH-s. Foru’s below the maximum

load the alive oids are distributed among more data pages, hence when such a page becomes non-

useful it contains less alive oids and thus less copies are made, resulting in smaller space

consumption. Using this optimization, the space of PPH-scan be made similar to that of the ALH

at the expense of some increase in query/update performance.

6. Conclusions and Open Problems

This paper addressed the problem ofTemporal Hashing, or equivalently, how to support temporal

membership queries over a time-evolving setS. An efficient solution termedpartially persistent

workload n NB #of queries

uniform-5K 291404 146835 72417

uniform-8K 466854 237606 115878

uniform-12K 700766 353067 174167
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Figure 7: (a) Query, (b) Update, and, (c) Space performance for ALH, PPH-s, PPH-l, MVBT and Ri methods using
various uniform workloads with varying |U|.
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hashing(PPH) was presented. For queries and updates, this scheme behaves as if a separate,

ephemeral dynamic hashing scheme is available on every state assumed by setS over time.

However the method still uses linear space. By hashing oids to various buckets over time, PPH

reduces the temporal hashing problem into reconstructing previous bucket states. Two flavors of

partially persistent hashing were presented, one based on an evolving-set abstraction (PPH-s) and

one on an evolving-list (PPH-l). They have similar query and comparable space performance but

PPH-suses much less updating. Both methods were compared against straightforward approaches

namely, traditional (atemporal) linear hashing scheme, two R*-tree implementations and the

Multiversion B-Tree. The experiments showed that PPH-shas the most robust performance among

all approaches. Partially persistent hashing should be seen as an extension of traditional external

dynamic hashing in a temporal environment. The methodology is independent from which

ephemeral dynamic hashing scheme is used. While the paper considers linear hashing, it applies to

other dynamic hashing schemes as well. There are various open and interesting problems.

Figure 8: (a) Query, (b) Update, and, (c) Space
performance for PPH-s on a uniform
workload with varying values of the
usefulness parameteru.
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Traditionally hashing has been used to speed up join computations. We currently investigate the

use of temporal hashing to speed up temporal joins [SSJ94]. Another problem is to extend temporal

membership queries to time intervals (find whether oidk was in any of the states setShad over an

interval T). The discussion in this paper assumes temporal membership queries over a linear

transaction-time evolution. It is interesting to investigate hashing in branched transaction

environments [LST95].
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Appendix: Description and Analysis of the Evolving-List approach

Method Description. Special care is needed when a list page becomes non-useful due to an oid deletion/

insertion. Assume that list pageA moves from the useful state to non-useful at some timet; let VA andRA

respectively be the number of alive oid records and the total number of records it contains (it is always true

that: ). To achieve good answer clustering, the alive oids from such a page are merged with the

alive oids of a sibling useful page (if such a sibling exists) to create one or two (depending on the number

of alive oids) new useful page(s). We distinguish two cases:

(1) PageA is the first useful page in the list.Then we have:

(1.1) There is a useful pageD that followsA in the list. PageA became non-useful because one of

its alive oids was deleted; thusVA = V-1. LetD containVD alive oids among a total ofRD oids.

VA RA Br≤ ≤
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(1.1.1) (i.e., the alive oids ofA can fit in pageD). Copy theVA alive records of

A into D and update theFTj table to point to pageD at timet. (PageD contains at least 2V-1

alive objects unlessD is the last page in the list).

(1.1.2) . Two subcases must be examined:

(1.1.2.a) . Then , i.e., the alive oids from bothA andD can fit in a

page). Create a new pageE and copy all alive oids fromA andD into E. PageD is artificially

made non-useful. Add a new entry in arrayFTj to point to pageE at t and a new entry in array

NT(E) to point to the next sibling (if any) ofD at t. (New pageE contains at least 2V-1 alive

objects unless it is the new last page in the list).

(1.1.2.b) . Create a new pageE and copy theV-1 alive oids from pageA andV alive

oids from pageD into pageE. Since pageE replaces pageA on the top of the list, add a new

entry in arrayFTj to point to pageE at timet. Add a new entry inNT(E)to point to pageD at

t. New pageE starts with 2V-1 alive oids while pageD continues with at least 2V alive oids.

(1.2) PageA is the last page in the list andRA = Br. ThusA became non-useful by an oid insertion

that made it a full page but without enough alive oids (VA<V). BecauseA became full, a new empty

last pageD is created afterA. Copy the alive oids ofA into D and update the previous sibling (if

any) ofA to point toD.

(2) PageA is not the first useful page in the list. Hence there exists a useful pageC that is the previous

sibling ofA in the list.

(2.1) PageA became non-useful because one of its alive oids was deleted, i.e.,VA = V-1.

(2.1.1) If , there is enough space in pageC to hold the remaining alive oids ofA.

Hence copy theVA alive oids intoC and updateNT(C)to point to the next useful list page after

A (if any) at timet.

(2.1.2) If , two subcases must be examined:

(2.1.2.a) If , then as in case (1.1.2.a) create a new pageE and copy all alive oids

of A andC into E. UpdateNT arrays appropriately.

(2.1.2.b) If create a new pageE. Similarly with case (1.1.2.b), copy theV-1 alive

oids of pageA andV alive oids from pageC into new pageE. Since pageE replaces page

A, arrayNT(C) is updated to point to pageE. A new entry is added in arrayNT(E)to point

to the useful page (if any) that was afterA.

(2.2) PageA is the last page in the list andRA=Br. ThusA became non-useful by an oid insertion

that made it a full page but without enough alive oids (VA<V). As in case (1.2) above, create a new

RD VA+ Br≤

RD VA+ Br>

VD 3V≤ VD VA+ Br<

VD 3V>

RC VA+ Br≤

RC VA+ Br>

VC 3V≤

VC 3V>
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empty last pageD and copy all alive oids ofA into D.

Update and Space Analysis. Updating in the evolving-list approach is since the whole

current list has to be searched until a new oid is added or an existing oid is updated as deleted. Despite page

copying, the space isO(nj/B), wherenj is the total number of changes recorded in the evolution of bucket

bj. Note thatnj contains both the real oid additions/deletions and the changes recorded due to bucket

overflows. However, Lemmas 1 and 2 still apply, i.e.,nj is proportional to the number of real changes.

Copying occurs when a page turns from useful to non-useful. This can happen when a page’sNTarray

becomes full. It can be easily verified that the extra space used by thebackward updatingtechnique

[TGH95] is O(nj/B). Another way for a page to become non-useful is by an oid deletion/insertion into this

page. Copying from such cases results to linear space, too. More specifically, using the “accounting”

method of [CLR90] (also applied in [BGO+96, VV97]) we can show that for a sequence ofnj oid changes

(insertions/deletions) the space consumed isO(nj/B). For each oid change that updates a page, acreditof 1/

V is accumulated. Thechargefor each new page is 1. It is enough to show that adequate credit has been

accumulated before a new page is created. The proof is based on the fact that each new useful page starts

with at least 2V-1 alive oids unless it is the last page in the list. In both cases such a useful page can become

non-useful only after a substantial amount of new changes. For example, a new useful page with 2V-1 alive

oids can become non-useful only after at leastV deletions. A new last page may start with less thanV alive

oids, but it can turn non-useful only after it becomes full of records, i.e., after at least 3V new additions.

O bj t( ) B⁄( )


