Hashing Methods for Temporal Data

George Kollios and Vassilis J. Tsotras

February 12, 1998

TR-24

A TIMECENTER Technical Report

Title Hashing Methods for Temporal Data

Copyright(© 1998 George Kollios and Vassilis J. Tsotras. All rights re-
served.

Author(s) George Kollios and Vassilis J. Tsotras

Publication History

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Bohlen

Renato Busatto

Heidi Gregersen

Dieter Pfoser

Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta

Sudha Ram

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see TheME CENTER Homepage:
URL: <htt p: //www. cs. auc. dk/ general / DBS/ t db/ Ti meCent er/ >

Any software made available viaME CENTERis provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TiIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract:

External dynamic hashing has been used in traditional database systems as a fast method to answer
membershigjueries. Given a dynamic sBof objects, a membership query asks whether an object with
identity k is in the most curren®. This paper addresses the more general problefeofporal Hashing

In this setting changes to the dynamic set are timestamped and the membership query has a temporal
predicate, as in: “find whether object with identkywas in the seBat timet”. We present an efficient
solution to the Temporal Hashing problem. Our solution, also teyaetihlly persistent hashindehaves

as if a separate, ephemeral (i.e., non-temporal) dynamic hashing scheme is available on every state
assumed by s&over time. However if the buckets of these hashing schemes were to be stored for each
time of interest, the space would become prohibitively large (quadratic on the total number of changes in
setSs evolution); instead, our method uses linear space. We compare partially persistent hashing with
various straightforward approaches (like the traditional linear hashing scheme, the R-tree and the
Multiversion B-Tree) and it provides the faster membership query response time. Partially persistent
hashing should be seen as an extension of traditional external dynamic hashing in a temporal environment.
Itis independent from which ephemeral dynamic hashing scheme is used. While the paper considers linear
hashing, the methodology applies to other dynamic hashing schemes as well.

1. Introduction

Hashing has been used as a fast method to address membership queries. Gi&of @igjeicts
distinguished by some identity attribut@id), a membership query asks whether object withkoid

is in setS Hashing can be applied either as a main memory scheme (all data fits in main-memory
[DKM+88, FNSS92]) or in database systems (where data is stored on disk [L80]). Its latter form
is calledexternal hashindEN94, R97] and a hashing function maps oidstakets For every

object of § the hashing function computes the bucket number where the object is stored. Each
bucket has initially the size of a page. For this discussion we assume that a page danlbjelzts.

Ideally, each distinct oid should be mapped to a separate bucket, however this is unrealistic as the
universe of oids is usually much larger than the number of buckets allocated by the hashing scheme.
When more tham oids are mapped on the same bucket a (buaketjflowoccurs. Overflows are

dealt in various ways, including rehashing (try to find another bucket using another hashing
scheme) and/or chaining (create a chain of pages under the overflown bucket).

If no overflows are present, finding whether a given oid is in the hashed set is trivial: simply
compute the hashing function for the queried oid and visit the appropriate bucket. If the object is
in the set it should be in that bucket. Hence, if the hashing schepesfisct membership queries
are answered i©0(1) steps (just one 1/O to access the page of the bucket). Overflows however
complicate the situation. If data is not known in advance, the worst case query performance of
hashing is large. It is linear to the size of Ssince all oids could be mapped to the same bucket

G. Kollios is with the Dept. of Computer & Information Science, Polytechnic University, Brooklyn, NY 11201;
gkol li os@ar os. pol y. edu. V. J. Tsotras is with the Dept. of Computer Science, University of California, Riverside,
CA 92521;tsotras@s. ucr. edu. This research was partially supported by NSF grant IRI-9509527 and by the New
York State Science and Technology Foundation as part of its Center for Advanced Technology program.

if a bad hashing scheme is used. Nevertheless, practice has shown that in the absence of
pathological data, good hashing schemes with few overflows and constant average case query
performance (usually each bucket has size of one or two pages) exist. This is one of the major
differences between hashing and index schemes. If a balanced tree (B+ tree [C79]) is used instead,
answering a membership query takes logarithmic (on the si@giofie in the worst case. For many
applications (for example in join computations [SD90]), a hashing scheme that provides expected
constant query performance (one or two I/O’s) is preferable to the worst case but logarithmic query
performance (four or more 1/O’s §is large) of balanced search trees.

Statichashing refers to schemes that use a predefined set of buckets. This is inefficient if the
setSis allowed to change (by adding or deleting objects from the set). If the set is too small and
the number of pre-allocated buckets too large, the scheme is using more space than needed. If the
set becomes too large but a small number of buckets is used then overflows will become more
often, deteriorating the scheme’s performance. What is needelysaanichashing scheme which
has the property of allocating space proportional to the size of the hash&dsetous external
dynamic hashing schemes have been proposed, among kmi@ahhashingL80] (or a variation)

appears to be commonly used.

Note that even if the se&d evolves, traditional dynamic hashingephemerali.e., it answers
membership queries on the most current state oSshkt this paper we address a more general
problem. We assume that changes to theSsate timestamped by the time instant when they
occurred and we are interested in answering membership queries for any stateSipassessed.
Let S(t)denote the state (collection of objects) Sétad at time. Then the membership query has
atemporal predicate as in: “given di@nd timet find whetherk was inS(t)'. We term this problem
asTemporal Hashingnd the new query asmporal membershiguery.

Motivation for the temporal hashing problem stems from applications where current as well as
past data is of interest. Examples include: accounting, billing, marketing, tax-related, social/
medical, and financial/stock-market applications. Such applications cannot be efficiently
maintained by conventional databases which work in terms of a single (usually the most current)
logical state. Insteademporaldatabases were proposed [SA85] for time varying data. Two time
dimensions have been used to model reality, nawelig-timeandtransaction-timgJ+94]. Valid
time denotes the time when a fact is valid in reality. Transaction time is the time when a fact is
stored in the database. Transaction time is consistent with the serialization order of transactions

(i.e., it is monotonically increasing) and can be implemented using the commit times of

transactions [S94]. In the rest, the terms time or temporal refer to transaction-time.

Assume that for every timewhenS(t) changes (by adding/deleting objects) we could have a
good ephemeral dynamic hashing scheme (say linear hasi{ip¢f)at maps efficiently (with few
overflows) the oids ir5(t) into a collection of bucketb(t). One straightforward solution to the
temporal hashing problem would be to separately store each collection of bbfidts eacht.

To answer a temporal membership query forlo&hd timet we only need to appli(t) onk and
access the appropriate buckeb@). This would provide an excellent query performance as it takes
advantage of the good linear hashing schérftpused for eacl, but the space requirements are
prohibitively large! Ifn denotes the number of changes3a evolution, flashing each(t) on the
disk could easily creat®(r?) space.

Instead we propose a more efficient solution that has similar query performance as above but
uses space linear to We term our solutiomartially persistent hashings it reduces the original
problem into a collection of partially persistérﬂub-problems. We apply two approaches to solve
these sub-problems. The first approach “sees” each sub-problem as an evolving subsiod set
is based on the Snapshot Index [TK95]. The second approach “sees” each sub-problem as an
evolving sublist whose history is efficiently kept. In both cases, the partially persistent hashing
scheme “observes” and stores the evolution of the ephemeral hashing in an efficient way that
enables fast access to ahyt) and b(t). (We note that partial persistence fits nicely with a
transaction-time database environment because of the always increasing characteristic of
transaction-time.)

We compare patrtially persistent hashing with three other approaches. The first one uses a
traditional dynamic hashing function to map all oids ever created during the evolutg{t).dfhis
solution does not distinguish among the many copies of the sankalwéd may have been created
as time proceeds. A given okdcan be added and deleted fr@many times, creating copies kf
each associated with a different time interval. Because all such copies will be hashed on the same
bucket, bucket reorganizations will not solve the problem (this was also observed in [AS86]).
These overflows will eventually deteriorate performance especially as the number of copies
increases. The second approach sees each oid-interval combination as a multidimensional object
and uses an R-tree to store it. The third approach assumes that a B+ tree is used to in@€ each
and makes this B+ tree partially persistent [BGO+96, VV97, LS89]. Our experiments show that

1. A structure is called persistent if it can store and access its past states [DSST89]. It is called partially persistent if
the structure evolves by applying changes to its “most current” state.

the partially persistent hashing outperforms the other three competitors in membership query
performance while having a minimal space overhead.

The partially persistent B+ tree [BGO+96, VV97, LS89] is technically the more interesting
among the competitor approaches. It corresponds to extending an ephemeral B+ tree in a temporal
environment. Like the ephemeral B+ tree, it supports worst case logarithmic query time but for
temporal queries. It was an open problem, whether such an efficient temporal extension existed for
hashing schemes. The work presented here answers this question positively. As with a non-
temporal environment, partially persistent hashing provides a faster than indexing, (expected)
guery performance for temporal membership queries. This result reasserts our conjecture [KTF98]
that temporal problems that support transaction-time can be solved by taking an efficient solution

for the corresponding non-temporal problem and making it partially persistent.

The rest of the paper is organized as follows: section 2 presents background and previous work
as related to the temporal index methods that are of interest here; section 3 describes the basics of
the Snapshot Index and Linear Hashing. The description of partially persistent hashing appears in
section 4. Performance comparisons are presented in section 5, while conclusions and open
problems for further research appear in section 6.

2. Background and Previous Work

Research in temporal databases has shown an immense growth in recent years [OS95]. Work on
temporal access methods has concentrated on indexing. A worst case comparison of temporal
indexes appears in [ST97]. To the best of our knowledge, no approach addresses the hashing
problem in a temporal environment. Among existing temporal indexes, four are of special interest
for this paper, namely: the Snapshot Index [TK95], the Time-Split B-tree (TSB) [LS89], the
Multiversion B-Tree (MVBT) [BGO+96] and the Multiversion Access Structure (MVAS) [VV97].

A simple model of temporal evolution follows. Assume that time is discrete described by the
succession of non-negative integers. Consider for simplicity an initially empt s&s time
proceeds, objects can be added to or deleted from this set. When an object is afded tmtil
(if ever) is deleted frong, it is called “alive”. This is represented by associating with each object
a semi-closed interval, difespan of the form: tart_time end_tim¢. While an object is alive it
cannot be re-added 8 i.e. S contains no duplicates. Deletions can be applied to alive objects.
When an object is added @tits start_time ig but its end_time is yet unknown. Thus its lifespan
interval is initiated ast[now), wherenowis a variable representing the always increasing current

time. If this object is later deleted fro®) its end_time is updated fronowto the object’s deletion

time. Since an object can be added and deleted many times, objects with the same oid may exist
but with non-intersecting lifespan intervals (i.e., such objects were alive at different times). The
state of the set at a given timaamelyS(t), is the collection of all alive objects at tirhe

Assume that this evolution is stored in a transaction-time database, in a way that when a change
happens at timg a transaction with the same timestatypdates the database. There are various
gueries we may ask on such a temporal database. A common querypigé¢isnapshoproblem
(also denoted as “*//g’ in the proposed notation of [TJS98]): “given timhdind S(tJ. Another
common query is theange-snapshatroblem (‘R/-/S’): “given time t and range of oids, find all
alive objects ir5(t) with oids in range”.

[ST97] categorizes temporal indexes according to what queries they can answer efficiently and
compares their performance using three costs: space, query time and update time (i.e., the time
needed to update the index for a change that happened 8 §#¢arly, an index that solves the
range-snapshot query can also solve the pure-snapshot query (if no range is provided). However,
as indicated in [TGH95], a method designed to address primarily the pure-snapshot query does not
need to order incoming changes according to oid. Note that in our evolution model, changes arrive
in increasing time order but are unordered on oid. Hence such method could enjoy faster update
time than a method designed for the range-snapshot query. The latter orders incoming changes on
oid so as to provide fast response to range-snapshot queries. Indeed, the Snapshot Index solves the
pure-snapshot query irD(logg(n/ B) + a/ B) I/O’s, usil@(n/B) space and onlY(1) update
time per change (in the expected amortized sense [CLR90] because a hashing scheme is
employed). This is the I/O-optimal solution for the pure snapshot query. Blecgresponds to the
number of alive objects in the queried sta(e.

For the range-snapshot query three efficient methods exist, namely, the TSB tree, the MVBT
tree and the MVAS structure. They all assume that there exists a B+ tree indexirg(8aahtime
proceeds and s&evolves the corresponding B+ tree evolves, too. They differ on the algorithms
provided to efficiently store and access the B+ tree evolution. Answering a range-snapshot query
about timet implies accessing the B+ tree as it was at tinaed search through its nodes to find
the oids in the range of interest. Conceptually, these approaches take a B+ tree and make it partially
persistent [DSST89]. The resulting structure has the form of a graph as it includes the whole history

of the evolving B+ tree, but it is able to efficiently access any past state of this B+ tree.

Both the MVBT and MVAS solve the range-snapshot querydlogg(n/ B) + a/ B) I/O’s,
usingO(n/B) space andO(logg(m/ B)) update per change (in the amortized sense [CLR90]).
This is thel/O -optimal solution for the range-snapshot query. Heenotes the number of
“alive” objects when an update takes place andenotes the answer size to the range-snapshot
query, i.e., how many objects from the querfeff) have oids in the query range The MVAS
structure improves the merge/split policies of the MVBT thus resulting to a smaller constant in the
space bound. The TSB tree is another efficient solution to the range-snapshot query. In practice it
is more space efficient than the MVBT (and MVAS), but it can guarantee worst case query
performance only when the set evolution is described by additions of new objects or updates on
existing objects. Since for the purposes of this paper we assume that object deletions are frequent
we use the MVBT instead of a TSB.

3. Basics of the Snapshot Index and Linear Hashing

For the purposes of partially persistent hashing we need the fundamentals from the Snapshot Index
and ephemeral Linear Hashing, which are described next. For detailed descriptions we refer to
[TK95] and [L80, S88, EN94, R97], respectively.

3.1 The Snapshot I ndex

This method [TK95] solves the pure-snapshot problem using three basic structures: a balanced tree
(time-treg that indexes data pages by time, a pointer strucagedss-fore3among the data pages

and a hashing scheme. The time-tree and the access-forest enable fast query response while the
hashing scheme is used for update purposes.

We first discuss updates. Objects are stored sequentially in data pages in the same order as they
are added to the s8t In particular, when a new object with dkds added to the set at tintga new
record of the form K, [t, now)> is created and is appended in a data page. When this data page
becomes full, a new data page is used and so on. At any given instant there is only one data page
that stores (accepts) records, #ueeptor(data) page. The time when an acceptor page was created
(along with the page address) is stored inttheetree. As acceptor pages are created sequentially
the time-tree is easily maintained (amortized.) 1/0 to index each new acceptor page). For object
additions, the sequence of all data pages resembles a regular log but with two main differences: (1)
on the way deletion updates are managed and (2) on the use of additional links (pointers) among

the data pages that create the access-forest.

Object deletions are not added sequentially; rather they are in-place updates. Whek isbject
deleted atsome time , its record is first located and then updated kdtnrow)> to <k, [t, t')>.
Object records are found using their oids through the hashing scheme. When an object is added in
S its oid and the address of the page that stores the object’s record are inserted in the hashing
scheme. If this object is deleted the hashing scheme is consulted, the object’s record is located and
its interval is updated. Then this object’s oid is removed from the hashing function.

Storing only one record for each object suggests that for some time inste@ntecords of the
objects inS(t)may be dispersed in various data pages. Accessing all pages with alive objects at
would require too much 1/O (i6(t) hasa objects, we may acce€3(a) pages). Hence the records
of alive objects must be clustered together (ideallg/B pages). To achieve good clustering we
introduce copying but in a “controlled” manner, i.e., in a way that the total space remains

O(n/ B) . To explain the copying procedure we need to introduce the concept otipafigness

Consider a page after it gets full of records (i.e., after it stops being the acceptor page) and the
number of “alive” records it contains (records with intervals endingda). For all time instants
that this page containgB alive recordg0 < u < 1) is calleduseful This is because for these times
t the page contains a good part of the answefSiy If for a pure-snapshot query about tirmnee
are able to locate the useful pages at that time, each such page will contribute aBlebjgtcts to
the answer. Thasefulnesparameteu is a constant that tunes the behavior of the Snapshot Index.

Acceptor pages are special. While a page is the acceptor page it may contain feweB than
alive records. By definition we also call a page useful for as long as it is the acceptor page. Such a
page may not give enough answer to justify accessing it but we still have to access it! Nevertheless,

for each time instant there exists exacthe acceptor page.

Let [u.start_time u.end_timedenote a page’s usefulness period; u.start_time is the time the
page started being the acceptor page. When the page gets full it either continues to be useful (and
for as long as the page has at leaBtalive records) or it becomes non-useful (if at the time it
became full the page had less tha#alive records). The next step is to cluster the alive records
for eacht among the useful pagestatWhen a page becomes non-usefulaaificial copy occurs
that copies the alive records of this page to the current acceptor page (as in a timesplit [E86, LS89]).
The non-useful page behaves as if all its objects are marked as deleted but copies of its alive records
can still be found from the acceptor page. Copies of the same record contain subsequent non-
overlapping intervals of the object’s lifespan. The copying procedure reduces the original problem

of finding the alive objects at into finding the useful pages &t The solution of the reduced

problem is facilitated through the access-forest.

The access-forest is a pointer structure that creates a logical “forest of trees” among the data
pages. Each new acceptor page is appended at the end of a doubly-linked list and remains in the
list for as long as it isiseful When a data paggbecomes non-useful: (a) it is removed from the
list and (b) it becomes the next child page under the gggeceding it in the list (i.e ¢ was the
left sibling ofd in the list whend became non-useful). As time proceeds, this process will create
trees of non-useful data pages rooted under the useful data pages of the list. The access-forest has
a number of properties that enable fast searching for the useful pages at any time. [TK95] showed
that starting from the acceptor page atl useful pages dtcan be found in at most twice as many
I/O’s (in practice much less I/O’s are needed). To find the acceptor padlesabalanced time-tree
is searched (which corresponds to the logarithmic part of the query time). In practice this search is
very fast as the height of the balanced tree is smalll (it stores only one entry per acceptor page which
is clearlyO(n/B)). The main part of the query time is finding the useful pages. The performance of
the Snapshot Index can be fine tuned by changing paramdtargeu implies that acceptor pages
become non-useful faster, thus more copies are created which increases the space but also clusters

the answer into smaller number of pages, i.e., less query 1/O.

3.2 Linear Hashing

Linear Hashing (LH) is a dynamic hashing scheme that adjusts gracefully to data inserts and
deletes. The scheme uses a collection of buckets that grows or shrinks one bucket at a time.
Overflows are handled by creating a chain of pages under the overflown bucket. The hashing
function changes dynamically and at any given instant there can be at most two hashing functions

used by the scheme.

More specifically, letU be the universe of oids arg: U -> {0,...,M-1} be the initial hashing
function that is used to load s&into M buckets (for exampldiy(oid) = oid modM). Insertions and
deletions of oids are performed usihguntil the first overflow happens. When this first overflow
occurs (it can occur ianybucket), thdirst bucket in the LH file, bucket 0, isplit (rehashed) into
two buckets: the original bucket 0 and a new bud®etwnhich is attached at the end of the LH file.
The oids originally mapped into bucket 0 (using functighare now distributed between buckets
0 andM using anewhashing functiorh;(oid). The next overflow will attach a new buckiet+1
and the contents of bucket 1 will be distributed usimdetween buckets 1 arid+1. A crucial

property ofh, is that any oids that were originally mappedtgyto buckef (0< j <M —1) should
be remapped either to bucketr to buckej+M. This is a necessary property for linear hashing to
work. An example of such hashing functionhigoid) = oid mod2\.

Further overflows will cause additional buckets to split itireear bucket-number order. A
variablep indicates which is the bucket to be split next. Conceptually the valpelehotes which
of the two hashing functions that may be enabled at any given time, applies to what buckets.
Initially p=0, which means that only one hashing functibg) {s used and applies to all buckets in
the LH file. After the first overflow in the above examples1 andh is introduced. Suppose that
an object with oik is inserted after the second overflow (i.e., wher2). First the older hashing
function () is applied onk. If hy(k) = p then the buckehy(k) has not been split yet aridis
stored in that bucket. Otherwisgh(k) < p) the bucket providetddtyas already been split and
the newer hashing functiomy) is used; oidk is stored in buckeh,(k). Searching for an oid is
similar, that is, both hashing functions may be involved.

After enough overflows, all origindl buckets will be split. This marks the end gplitting-
roundO. During round Op went subsequently from bucket O to buckétl. At the end of round O
the LH file has a total of ®I buckets. Hashing functiohy is no longer needed as alVPbuckets
can be addressed by hashing functmgrinote:h,: U -> {0,...,2M-1}). Variablep is reset to 0 and
anewround, namely splitting-round 1, is started. The next overflow (in any of ihéackets) will
introduce hashing functiohy(oid) = oid modZM. This round will last until bucket -1 is split.
In general, round starts withp = 0, buckets {0,...,21-1} and hashing functions;(oid) and
hi;1(oid). The round ends when allM buckets are split. For our purposes we tigeid) = oid
mod2M. Functiondh;, j=1,..., are calledplit functionsof hy. A split functionh; has the properties:
() h:U-> {O,...,2j M-1} and (ii) for any oid, eitheh;(oid) = h;_;(oid) or hj(oid) = h;_1 (oid) + 21w

At any given time, the linear hashing scheme is completely identified by the round number and
variablep. Given round and variablep, searching for oik is performed usindy; if h;(k) = p;
otherwiseh;,; is used. During roundthe value ofp is increased by one at each overflow; when

p=2i M the next roundH1 starts ang is reset to 0.

A split performed whenever an overflow occurs iswarcontrolledsplit. Letl denote the LH
file's load factor, i.e.,| = |S]/ BR wherel§ is the current number of oids in the LH file (size of
setS), B is the page size (in number of oids) aRdhe current number of buckets in the file. The

load factor achieved by uncontrolled splits is usually between 50-70%, depending on the page size

and the oid distribution [L80]. In practice, to achieve a higher storage utilization a split is instead
performed when an overflow occuasd the load factor is above sompper threshold gThis is

a controlledsplit and can typically achieve 95% utilization. Deletions in Setill cause the LH

file to shrink Buckets that have been split can be recombined if the load factor falls below some
lower threshold €f < g). Then two buckets are merged together; this operation is the reverse of
splitting and occurs in reverse linear order. Practical valuelssiodg are 0.7 and 0.9, respectively.

4. Partially Persistent Hashing

We first describe the evolving-set approach which is based on the Snapshot Index; the evolving-
list approach will follow.

4.1 The Evolving-Set Approach

Using partial persistence, the temporal hashing problem will be reduced into a number of sub-
problems for which efficient solutions are known. Assume that an ephemeral linear hashing
scheme (as the one described in section 3) is used to map the obj&¢ts Af S(t) evolves with

time the hashing scheme is a function of time, too. lLld{t) denote the linear hashing file as it is

at timet. There are two basic time-dependent parameters that idéhiify for eacht, namelyi(t)
andp(t). Parametei(t) is the round number at tinteThe value of parametgxt) identifies the next
bucket to be split.

An interesting property of linear hashing is that buckets are reused; whenirguistirts it has
double the number of buckets of rounidut the first half of the bucket sequence is the same since
new buckets are appended in the end of the file.d.g} denote the longest sequence of buckets
ever used during the evolution 8{t)and assume thét,,, consists of buckets: 0,1,2,29M -1
Let b(t) be the sequence of buckets used at tinfdhe above observation implies that forialb(t)
is a prefix ofbo,,. In additioni(t) <q, Ot .

Consider buckel, from the sequendg, (0< j < 29M — 1) and the observe the collection of
objects that are stored in this bucket as time proceeds. The state of bLakiamet, namelyb(t),
is the set of oids stored to this bucket.dtet |bj (t)| denote the number of oidslix(t). If all states
b(t) can somehow be reconstructed for each bubketnswering a temporal membership query
for oid k at timet can be answered in two steps:

(1) find which buckeb;, oidk would have been mapped by the hashing schetarad,
(2) search through the contentsxgf) until k is found.

10

The first step requires identifying which hashing scheme was used at.tifhe evolution of
the hashing schemeéH(t) is easily maintained if a record of the fornt<(t), p(t) > is appended to
an arrayH, for those instantswhere the values oft) and/orp(t) change. Given anly the hashing
function used at is identified by simply locating inside the time-ordere#i in a logarithmic
search.

The second step implies accessir(g). The obvious way would be to store edzft), for those
times thaty(t) changed. As explained earlier this would easily create quadratic space requirements.
The updating per change would also suffer since the 1/O to store the current shatecofid be
proportional to the bucket’s current size, namé)y| bj(t)|/ B)

By observing the evolution of buckéf we note that its state changes aseanlving seby
adding or deleting oids. Each such change can be timestamped with the time instant it occurred. At
times the ephemeral linear hashing scheme may apply a rehashing procedure that remaps the
current contents of buckéf to bucketh; and some new buckét. Assume that such a rehashing
occurred at some timg and its result is a move oids fromb; to b;. For the evolution ob; (b,),
this rehashing is viewed as a deletion (respectively addition) of thds at timet’ , i.e., all such
deletions (additions) are timestamped with the same time for the corresponding object’s
evolution.

Figure 1 shows an example of the ephemeral hashing scheme at two different time instants. For
simplicity M =5 andB = 2. Figure 2 shows the corresponding evolution ofSztd the evolutions
of various buckets. At time= 21 the addition of oid 8 on bucket 3 causes the first overflow which
rehashes the contents of bucket O between bucket 0 and bucket 5. As a result oid 15 is moved to
bucket 5. For bucket’s 0 evolution this change is considered as a deletier2atbut for bucket
5 it is an addition of oid 15 at the same instan®1.

If bj(t) is available, searching through its contents forloiglperformed by a linear search. This
process is lower bounded b¢(|bj(t)|/ B) I/O’s since these many pages are at least needed to
storeb(t). (This is similar with traditional hashing where a query about some oid is translated into
searching the pages of a bucket; this search is also linear and continues until the oid is found or all
the bucket’s pages are searched.) What is therefore needed is a method which for ahgaiven
reconstruchy(t) with effort proportional to|bj(t)|/B I/O’s. Since every bucKetbehaves like a
set evolving over time, the Snapshot Index [TK95] can be used to store the evolution of aadh
reconstruct ani;(t) with the required efficiency.

11

i = 0,p = 0; hp(oid) = oid mod5,t = 20

bucket #: 0 1 2 3 4
10 21 7 3 29
15 36 12 13

(@)

i = 0,p = 1; hy(oid) = oid mod5,h;(oid) = oid mod10,t = 21

bucket #: 0 1 2 3 4 5
10 21 7 3 29 15
36 12 13
8
(b)
Figure 1: Two instants in the evolution of an ephemeral hashing scheme. (a) Until @8, no split ha

occurred ang = 0. (b) Att = 21, oid 8 is mapped to bucket 3 and causes an overflow. Buciset 0
rehashed usinly; andp = 1.

We can thus conclude that given an evolving Separtially persistent hashing answers a
temporal membership query about &dt timet, with almost the same query time efficiency (plus
a small overhead) as if a separate ephemeral hashing scheme existed dd(t¢akhgood
ephemeral hashing scheme &(t)would require an expectegd(1) I/0O’s to answer a membership
query. This means that on average each bubkgtused forS(t) would be of limited size, or
equivalently, |bj(t)|/B corresponds to just a few pages (in practice one or two pages). In
perspective, partially persistent hashing will reconst(¢tin O bj(t)|/B) I/O’s, which from
the above is expectéd(1).

The small overhead incurred by persistent hashing is due to the fact that it stores the whole
history of Ss evolution and not just a single steiét). Array H stores an entry every time a page
overflow occurs. Even if all changes are new oid additions, the number of overflows is upper
bounded byO(n/B). Hence arrayH indexes at mostO(n/ Bz) pages and searching it takes

O(logs(n/ BY)) 1/0's.

Having identified the hashing function the appropriate bubkistpinpointed. Then timemust
be searched in the time-tree associated with this bucket. The overhead implied by this search is
bounded byO(logg(nj/ B)) where; corresponds to the number of changes recorded in bucket

12

evolution of seGup evolution of bucket O: records in bucket 0’s history
to timet = 25:

(t oid opern att = 20: att=21: att = 25:
(t oid open 1 10, + <oid, lifespan> <oid, lifespan> <oid, lifespan>
1, 10, + 9, 15, +
2 7.+ 21 15 - <10, [1,now)> <10, [1,now)> <10, [1, 25)>
4, 3, + 25 10, - <15,[9,now)> <15,[9,21)> <15,[9, 21)>
8, 21, +
9, 15, +
15, 36, +
16, 29, + evolution of bucket 3: records in bucket 3's history
17, 13, +
20, 12. + (t oid oper) att = 20: att = 21: att = 25:
21, 8, + 4, 3 4 <oid, lifespan> <oid, lifespan> <oid, lifespan>
17, 13, + P
25, 10, - 21, o T <3, [4,now)> <3, [4,now> <3, [4,now)>
N <13, [17,now)> <13, [17,now)> <13, [17,now)>
<8, [21,nowW)> <8, [21,now)>
evolution of bucket 5: records in bucket 5s history
(t oid open att = 20: att = 21: att = 25:
21, 15, +

<oid, lifespan> <oid, lifespan> <oid, lifespan>
- <15, [21,now)> <15, [21,now)>

Figure 2: The detailed evolution for s8tuntil time t = 25 (a “+/-" denotes addition/deletion respectively
Changes assigned to the histories of three buckets are shown. The hashing scheme of Bigure 1 i
assumed. Addition of oid 8 iBatt = 21, causes the first overflow. Moving oid 15 from buckebO t
bucket 5 is seen as a deletion and an addition respectively. The records stored in each buckgt’s histor
are also shown. For example,ta5, oid 10 is deleted from s& This updates the lifespan of i
oid’s corresponding record in bucket 0’s history from <10n{)> to <10, [1, 25)>.

by's history. In practice, we expect that theehanges irEs evolution will be concentrated on the

first few in theb,,, bucket sequence, simply because a prefix of this sequence is always used. If

we assume that most 8fs history is recorded in the firdM buckets (for somen; behaves as
O(n/(2iM)) and therefore searchifgs time-tree is rather fast.

A logarithmic overhead that is proportional to the number of changess a common
characteristic in query time of all temporal indexes that use partial persistence. The MVBT (or
MVAS) tree will answer a temporal membership query aboutkad timet, in O(logg(n/ B))

I/O’s. We note that MVBT's logarithmic bound contains two searches. First, the appropriate B-tree
that indexe$(t)is found. This is a fast search and is similar to identifying the hashing function and
the bucket to search in persistent hashing. The second logarithmic search in MVBT is for finding
kin the tree that indexeS(t)and is logarithmic on the size &f(t). Instead persistent hashing finds

oid k in expected)(1) I/O’s.

13

4.1.1 Update and Space Analysis. We proceed with the analysis of the update and space
characteristics of partially persistent hashing. It suffices to show that the schen@(n&&space.

An O(1) amortized expected update processing per change can then be derived. Cleatty array
satisfies the space bound. Next we show that the space used by bucket histories is also bounded by
O(n/B). Recall thatn corresponds to the total number of real object additions/deletions [Bisset
evolution. However, the rehashing process moves objects among buckets. For the bucket histories,
each such move is seen as a new change (deletion of an oid from the previous bucket and
subsequent addition of this oid to the new bucket). It must thus be shown that the number of moves
due to rehashing is still bounded by the number of real chamdesr this purpose we will use two
lemmas.

Lemma 1: ForN overflows to occur at leaBiB+1 real object additions are needed.

Proof: The proof is based on induction on the number of overflows. (1) For the creation of the first
(N=1) overflow at leasB+1 oid additions are needed. This happens if all such oids are mapped to
the same bucket that can hold odyids (each bucket starts with one empty page). (2) Assume
that for theN first overflowsNB+1 real object additions are needed. (3) It must be proved that the
N+1 first overflows need at lea$i{1)B+1 oid additions. Assume that this is not true, i.e., that only
(N+1)B oid additions are enough. We will show that a contradiction results from this assumption.
According to (2) the firsN of the(N+1) overflows needeNB+1 real object additions. Hence there

are B-1 remaining oid additions to create an extra overflow. Consider the page where the last
overflow occurred. This bucket has a page with exactly one record (if it had less there would be no
overflow, if it had more, théN-th overflow could have been achieved with one less oid). For this
page to overflow we need at le&more oid additions, i.e., the remainiBgl are not enough for

the (N+1)-th overflow. Which results in a contradiction and the Lemma is proved. (Note that only
the page where thid-th overflow occurred needs to be considered. Any other page that has space
for additional oids cannot have more than one oid already, since the overflow that occurred in that
bucket could have been achieved with less oids). 0

The previous Lemma lower bounds the number of real oid additions Mawerflows. The
next Lemma upper bounds the total number of copies (due to oid rehashings) that can happen from
N overflows.

Lemma 2: N overflows can create at md¢tB+1) oid copies.

Proof: We will use again induction on the number of overflows. (1) The first overflow can create at

14

mostB+1 oid copies. This happens if when the first overflow occurs all the oids in that bucket are
remapped to a new bucket. The deleted records of the remdpiedids are still stored in the
history of the original bucket. (2) Assume that for tidirst overflows at mosN(B+1) oid copies.

(3) It must be shown that the firdil¢1) overflows can create at modt«1)(B+1) oid copies. We

will use contradiction. Hence let’'s assume that this is not true, i.e., the Nitgt)(overflows can
create more copies. Lef1)(B+1)+x be that number where>1 . Consider tastN overflows

in the sequence of overflows. From (2) it is implied that these overflows have already created at
mostN(B+1) oid copies. Hence there are at |eBsi +x additional copies to be created by the first
overflow. However this is a contradiction since from (1) the first overflow can only create at most
B+1 oid copies. 0

We are now ready to prove the basic theorem about space and updating.

Theorem 1: Partially Persistent Hashing uses space proportional to the total number of real

changes and updating that is amortized expeo{éyl per change.

Proof: Assume for simplicity that s& evolves by only adding oids (oid additions create new
records, overflows and hence more copying; deletions do not create overflows). As overflows
occur, linear hashing proceeds in rounds. In the first round varastarts from bucket 0 and in

the end of the round it reaches buclkétl. At that point 21 buckets are used and all copies
(remappings) from oids of the first round have been created. $ihoeerflows have occurred,
lemmas 1 and 2 imply that there must have been at l&sil real oid additions and at most

M(B+1) copies. By construction, these copies are placed in thd lastkets.

For the next round, variable will again start from bucket 0 and will extend to buckét-Z.
Whenp reaches bucket\2-1, there have beerM2new overflows. These new overflows imply that
there must have been at leadB+1 new real oid additions and at mod¥igB+1) copies created
from these additions. There are also M&+1) copy oids from the first round, which for the
purposes of the second round are “seen” as regular oids. At most each such copy oid can be copied
once more during the second round (the original oids from which these copies were created in the
first round, cannot be copied again in the second round as they represent deleted records in their
corresponding buckets). Hence the maximum number of copies after the second rod{@ist 2
+ M(B+1).

The total number of copieS,,, created after theth round {=0,1,2,...) is upper bounded by:

15

Cioa S [{M(B+1} +{2M(B+ 1)+ M(B+1)} +..+{2ZM(B+1) +..+ M(B+1)}]
where each {} represents copies per round. Equivalently:

i+2

i k
Ctota|sM(B+1){ Sy 211 = M(B+1)[22 T -1)—(i+1)] <M(B+1)2"? (i)

k=0j=0

After thei-th round the total number of real oid additidgg, is lower bounded by:

Agig 2 [{MB+1} +{2MB+1} + .. +{2M(B+1)}]

Equivalently:

i
o2 MB Y 2°+(i+1) = MB(2
k=0

i+1 i+1

1) +i+1>MB(2 TP =1 >MB2 ii).

From (i), (ii) it can be derived that there exists a positive constorst such that
Ciotal’ Arota) < CONst and sinceA, is bounded by the total number of changesve have that
Ciota= O(Nn). To prove that partially persistent hashing I@(&) expected amortized updating per
change, we note that when a real change occurs it is directed to the appropriate bucket where the
structures of the Snapshot Index are updated®fh) expected time. Rehashings have to be
carefully examined. This is because a rehashing of a bucket is caused by a single real oid addition
(the one that created the overflow) but it results into a “bunch” of copies made to a new bucket (at
worse the whole current contents of the rehashed bucket are sent to the new bucket). However,
using the space bound we can prove that any sequentesal changes can at most cre@t@)
copies (extra work) or equivalent}(1) amortized effort per real change. 0

4.1.2 Optimization Issues. Optimizing the performance of partially persistent hashing involves
the load factot of the ephemeral Linear Hashing and the usefulness parametéhe Snapshot
Index. The loadl lies between thresholdk and g. Note thatl is an average over time of

I(t) = |(S(1)|/BR(1), where|S(t)] andR(t)denote the size of the evolving seand the number

of buckets used dt(clearly R(t) < b,)- A good ephemeral linear hashing scheme will try to

equally distribute the oids among buckets for eaddence on average the size (in oids) of each
bucketb(t) will satisfy:|bj(t)| =|(S(1)|/R(t) .

16

One of the advantages of the Snapshot Index is the ability to tune its performance through
usefulness parametar The index will distribute the oids of eadd(t) among a number afseful
pages. Since each useful page (except the acceptor page) containsui? &ast oids, the oids in
by(t) will be occupying at mostbj (t)|/uB pages, which is actuddly Ideally, we would like the
answer to a snapshot query to be contained in a single page (plus probably one more for the
acceptor page). Then a good optimization choice is to kéep< 1 . Conceptually, theyloas
a measure of the size of a bucket (“alive” oids) at each time. These alive oids are stored into the
data pages of the Snapshot Index. Recall that an artificial copy happens if the number of alive oids
in a data page falls belowB. At that point the remainingB-1 alive oids of this page are copied
to a new page. By keepifgoelowu we expect that the alive oids of the split page will be copied
in a single page which minimizes the number of 1/0O’s needed to find them.

On the other hand, the usefulness paramesdfects the space used by the Snapshot Index and
in return the overall space of the persistent hashing scheme. As mentioned in section 3, higher
values ofu imply frequent time splits, i.e., more page copies and thus more space. Hence it would
be advantageous to keapow but this implies an even lowérIn return, lowel would mean that
the buckets of the ephemeral hashing are not fully utilized. This is becaudetuges seb(t)to
be distributed into more buckets not all of which may be fully occupied.

At first this requirement seems contradictory. However, for the purposes of partially persistent
hashing, having low is still acceptable. Recall that the lowapplies to the ephemeral hashing
scheme whose history the partially persistent hashing observes and accumulates. Even though at
single time instants thig(t)’s may not be fully utilized, over the whole time evolution many object
oids are mapped to the same bucket. What counts for the partially persistent scheme is the total
number of changes accumulated per bucket. Due to bucket reuse, a bucket will gather many
changes creating a large history for the bucket and thus justifying its use in the partially persistent
scheme. Our findings regarding optimization will be verified through the experimentation results
that appear in the next section.

4.2 The Evolving-List Approach

The elements of buckdd(t) can also be viewed as avolving list Ii(t) of alive oids. Such an
observation is consistent with the way buckets are searched in ephemeral hashing, i.e., linearly, as
if a bucket’s contents belong to a list. This is because in practice each bucket is expected to be about
one or two pages long. Accessing the bucket st is then reduced to reconstructiiig(t).

Equivalently, the evolving list of oids should be made partially persistent.

17

When bucket; is first created, an empty page is assigned tdihstA list page has two areas.
The first area is used to store oid records and its siBg vghereB, < B. The second area (of size
B -B,) accommodates an extra structure (afxy to be explained shortly. When the first dids
added on buckd; at timet, a record ¥, [t, now)> is appended in the first list page. Additional oid
insertions will create record insertions in the list and more pages are appended as needéd. If oid
is deleted at’" from the bucket, its record in the list is found (by a serial search among the list
pages) and its end_time is updated froowto t' (a logical deletion).

As with the Snapshot Index, we need a notion of pagefulnessA page is called useful as
long as it contains at lea$talive objects or while it is the last page in the list. Otherwise it is a
non-useful page. For the following discussion we assumeQkaV < B,/ 4 . Except for the last
page in the list, a useful page can become non-useful because of an oid deletion (which will bring
the number of alive oids in this page below the threshold). The last page can turn from useful to
non-useful when it gets full of records (an event caused by an oid insertion). At that time if the
page’s total number of alive oids is less thattie page becomes non-useful. Otherwise it continues
to be a regular useful page. When the last page gets full, a new last page is added in the list.

Finding the statd(t) is again equivalent to finding the useful pageshift). We will use two
extra structures. The first structure is an arfdy(t) which for any timet provides access to the
first useful page i;(t). Entries in arrayT; have the form #ime, pid> where pid is a page address.

If the first useful page of the list changes at sanreenew entry wititime=t and the pid of the new
first useful page is appendedfiT;. This array can be implemented as a multilevel, paginated index
since entries are added to it in increasing time order.

To find the remaining useful pages ltf(t), every useful page must know which is the next
useful page after itin the list. This is achieved by the second structure which is implemented inside
every list page. In particular, this structure has the form of an array stored in the page area of size
B -B.. Let NT(A) be the array inside pagk This array is maintained for as long as the page is
useful. Entries ilNT(A) are also of the form &me, pid>, where pid corresponds to the address of
the next useful page after useful page

If during the usefulness period of some p@gés next useful page changes many tinl¢§(A)
can become full. Assume this scenario happens attiamel letC be the useful page before page
A. PageAis thenartificially turned to non-useful (even if it still has more thdalive records) and

is replaced by a copy of it, pag&’ . We call this process artificial, since it was not caused by an

18

oid insertion/deletion to this page, rather it is due to a change in a page ahead. The nei& page
has the same alive recordsAadvut an emptyNT(A"'). A new entry is then added INT(C) with
A'’s pid. The first entry oNT(A") has the pid of the useful page (if any) that was after pagt.

If all useful list pages until paga had theirNT arrays full just before timg the above process
of artificially turning useful pages to non-useful can propagate all the way to the top of the list. If
it reaches the first useful page in the list, a copy of it is created and Bffay updated. However,
this does not happen often. Figure 3 shows an example of how &tfigyandFT, are maintained.

Timet List Ib;(t) = t; 1, NT(D)
t=0 O FT, NT(©)
ty 0} {0 NT(A)
t ot NT(E)
ts Gk [k RR

® X
O»® ; - [
®

“artificia/l" entry

?

J%éi

ts NT(A NT(E)
(A)

ty f <{INul
ianl

(a

—~

(b)

Figure 3: (a) An example evolution for the useful pages ofltigt). (b) The correspondinETj andNT arrays.
From each page only theT array is shown. In this exampR-B; = 4 entries. Since the page in frion
of pageA changes often, itBIT(A) array fills up and at timé; an artificial copy of pagé\ is create
with arrayNT(A’). Array NT(C)is also updated about the artificially created new page.

The need for artificial creation of acopy of pa§es for faster query processing. ThE (C)
array enables finding which is the next useful page atéor various time instants. Assume for
the moment that no new copy of pades created, but insteadT(A)is allowed to grow over the
B -B, available area of pagg, in additional pages. The last entry bif (C)would then still point
to pageA. Locating which is the next page aft€rat timet would lead to pagé but then a serial
search among the pages of arMi/(A)is needed. Clearly this approach is inefficient if the useful
page in front of pagé changes often. The use of artificial copies guards against similar situations
as the next useful list page for any time of interest is found by one I/O! This technique is a
generalization of thbackward updatingechnique used in [TGH95].

Special care is needed when a page turns from useful to non-useful due to an oid deletion/

19

insertion in this page. To achieve good answer clustering, the alive oids from such a page are
merged with the alive oids of a sibling useful page (if such a sibling exists) to create one (or two,
depending on the number of alive oids) new useful page(s). The new useful page(s) may not be full
of record oids, i.e., future oid insertions can be accommodated there. As a result, when a new oid
is inserted, the list of useful pages is serially searched and the new oid is added in the first useful
page found that has space (in By@rea) to accommodate it. Details are described in the Appendix.

To answer a temporal membership query forloat timet the appropriate buckéf, where oid
k would have been mapped by the hashing schemenatst be found. This part is the same with
the evolving-set approach. Reconstructing the state of bugets performed in two further
steps. First, usingthe first useful page itb;(t) is found by searching arrdyT; (which corresponds
to searching the time-tree of each bucket in the evolving-set approach). This search is bounded by
O(logg(nj/B)) . The remaining useful pages Hi(t) (and thus the oids iiy(t)) are found by
locatingt in theNT array of each subsequent useful page (instead, the evolving-set approach uses
the access forest of the Snapshot Index). Since all useful pages (except the last itbift®) Isave
at leastV alive oids from the answer, the oidsly{t) are found with an additionaD(| bj(t)|/ B)
I/O’s. The space used by all the evolving-list structur€x(igB).

There are two differences between the evolving-list and the evolving-set approaches. First,
updating using the Snapshot Index remains constant, while in the evolving list the whole current
list may have to be searched for adding or deleting an oid. Second, the nature of reconstyticting
is different. In the evolving-list reconstruction starts from the top of the list pages while in the
evolving-set reconstruction starts from the last page of the bucket. This may affect the search for a
given oid depending whether it has been placed near the top or near the end of the bucket.

5. Performance Analysis
We compared Partially Persistent Hashing (PPH) against Linear Hashing (in pariteriaporal

linear hashing, to be discussed later), the MVBT and the R*-tree. The implementation and the
experimental setup are described in 5.1, the data workloads in 5.2 and our findings in 5.3.

5.1 Method I mplementation - Experimental Setup.

We set the size of a page to hold 25 oid recoB25). An oid record has the following formosd,
start_time, end_time, p# where the first field is the oid, the second is the starting time and the
third the ending time of this oid’s lifespan. The last field is a pointer to the actual object (which

may have additional attributes).

20

We first discuss thé&temporalinear hashing (ALH). It should be clarified that ALH m®t the
ephemeral linear hashing whose evolution the partially persistent hashing observes and stores.
Rather, it is a linear hashing scheme that treats time as just another attribute. This scheme simply
maps objects to buckets using the object oids. Consequently, it “sees” the different lifespans of the
same oid asopiesof the same oid. We implemented ALH using the scheme originally proposed
by Litwin in [Lin80]. For split functions we used the hashing by division functib{sid) = oid
mod 2M with M = 10. So as to get good space utilization, controlled splits were employed. The
lower andupperthresholds (nameliyandg) had values 0.7 and 0.9 respectively.

Another approach for Atemporal hashing would be a scheme which uses a combination of oid
and the start_time or end_time attributes. However this approach would still have the same
problems as ALH for temporal membership queries. For example, hashing on start_time does not
help for queries about time instants other than the start_times.

The Multiversion B-tree (MVBT) implementation is based on [BGO+96]. For fast updating the
MVBT uses a buffer that stores the pages in the path to the last update (LRU buffer replacement
policy is used). Buffering during updating can be very advantageous since updates are directed to
the most current B-tree, which is a small part of the whole MVBT structure. In our experiments we
set the buffer size to 10 pages. The original MVBT uses this buffer for queries, too. However, for
a fair comparison with the other methods when measuring the query performance of the MVBT we
invalidate the buffer content from previous queries. Thus the measured query performance is
independent from the order in which queries are executed. Finally, in the original MVBT, the
process of answering a query starts fromoat* array. For every time, this array identifies the
root of the B-tree at that time (i.e., where the search for the query should start from). Even though
the root* can increase with time is small enough to fit in main memory. Thus we do not count 1/O

accesses for searching root*.

As with the Snapshot Index, a page in the MVBT is “alive” as long as it has at dealste
records. If the number of alive records falls belgthis page has to be merged with a sibling (this
is called awveak version underfloywOn the other extreme, if a page has alreBatgcords (alive or
not) and a new record has to be added, the page splits (agqvagiow). Both conditions need
special handling. First, a time-split happens (which is like the copying procedure of the Snapshot
Index). All alive records in the split page are copied to a new page. Then the resulting new page
has to be incorporated in the structure. The MVBT requires that the number of alive records in the
new page should be betweghe andB-e wheree is a predetermined constant. Constamtorks

21

as a buffer that guarantees that the new page can be split or merged only after atneast
changes. Not all values for, eandB are possible as they must satisfy some constraints; for details
we refer to [BGO+96]. In our implementation we gt 5 ande = 4. The directory pages of the
MVBT have the same format as the data pages.

For the Partially Persistent Hashing we implemented both the set-evolutiongPdttd-the
list-evolution (PPHBP approaches. Both approaches observe an ephemeral linear hhstithg
whose load(t) lies betweeri=0.1 andy=0.2. ArrayH which identifies the hashing scheme used at
each time is kept in main-memory, so no 1/O access is counted for using this structure. This is
similar to keeping the root* array of the MVBT in main memory. In all our experiments the size
of arrayH is never greater than 15 KB. Unless otherwise noted, BR#s implemented with =
0.3 (various other values for usefulness parameteere also examined). Since the entries in the
time-tree associated with a bucket have half the oid record size, each time-tree page can hold up to
50 entries.

In the PPHEI implementation, the space for the oid recoBlsan hold 20 such records. The
value ofV s set equal to 5 sinc@<V < B,/4 .This means that, a page in the list can be useful as
long as the number of alive oids in the page is greater or equal to 5. The remaining space in a list
page (of size 5 oid records) is used for the pag¢lsarray. Similarly with the time-array$\T
arrays have entries of half size, i.e., each page can hoNTléntries. For the same reason, the
pages of eackT, array can hold up to 50 entries.

For the R*-tree method we used two implementations, one with intervalsiriRa two-
dimensional space, and another with points in a three-dimensional spaje TRe R
implementation assigns to each oid its lifespan interval; one dimension is used for the oids and one
for the lifespan intervals. When a new dids added in seSat timet, a record %, [t, now), ptr> is
added in an R*-tree data page. If dids deleted at' , the record is updated tq i, t'), ptr>.
Directory pages include one more attribute per record so as to represent an oid rang®. The R
implementation has similar format for data pages, but it assigns separate dimensions for the
start_time and the end_time of the object’s lifespan interval. Hence a directory page record has
seven attributes (two for each of the oid, start_time, end_time and one for the pointer). During
updating, both R*-tree implementations use a buffer (10 pages) to keep the pages in the path
leading to the last update. As with the MVBT, this buffer is not used for the query phase.

22

5.2 Workloads.

Various workloads were used for the comparisons. Each workload contains an evolution of a
datasetS and temporal membership queries on this evolution. More specificallygriload is
defined by tripletW=(U,E,Q), whereU is the universe of the oids (the set of unique oids that
appeared in the evolution of s8, E is the evolution of sefandQ = {Q;, ,Q,} is a collection

of queries, where = |U| and Q is the set of queries corresponds toloid

Each evolution starts at time 1 and finishes at tih&XTIME Changes in a given evolution
were first generated per object oid and then merged. First, for each object wikhtb&number
ny of the different lifespans for this object in this evolution was chosen. The choigaexdds made
using a specific random distribution function (namélpiform, Exponential, Stepr Normal)
whose details are described in the next section. The start_times of the lifespanskoiverd
generated by randomly picking, different starting points in the set {1,.MAXTIME. The
end_time of each lifespan was chosen uniformly between the start_time of this lifespan and the
start_time of the next lifespan of okdsince the lifespans of each didhave to be disjoint). Finally
the whole evolutior for setSwas created by merging the evolutions for every object.

For another “mix” of lifespans, we also created an evolution that picks the start_times and the
length of the lifespans using Poisson distributions; we called Raigsonevolution.

A temporal membership query in query $@tis specified by tuplgoid,t). The number of
queries Qfor every object with oick was chosen randomly between 10 and 20; thus on average,
Qi ~ 15. To form the(k,t) query tuples the corresponding time instanigere selected using a
uniform distribution from the set {1, ... MAXTIME. The MAXTIME is set to 50000 for all
workloads.

Each workload is described by the distribution used to generate the object lifespans, the number
of different oids, the total number of changes in the evolutiqnbject additions and deletions),
the total number of object additioNd8, and the total number of queries.

5.3 Experiments.

First, the behavior of all implementations was tested using a hasformworkload. The number

of lifespans per object follows a uniform distribution between 20 and 40. The total number of
distinct oids wasU| = 8000, the number of real changes 466854 andNB = 237606 object
additions. Hence the average number of lifespans per oidNBas 30 (we refer to this workload

as Uniform-30). The number of queries was 115878.

23

Figure 4.a presents the average number of pages accessed per query by all methods. The PPH
methods have the best performance, about two pages per query. The ALH approach uses more
query 1/0O (about 1.5 times in this example) because of the larger buckets it creates. The MVBT
uses about twice as many I/O’s than the PPH approaches since a tree has to be traversed per query.
The R uses more 1/O’s per query than the MVBT, mainly due to node overlapping and larger tree
height (which in the Rstructure relates to the total number of oid lifespans while in the MVBT
corresponds to the number of alive oids at the time specified bgubey). The problem of node
overlapping is even greater with the query performance of thted, which in Figure 4.a has been
truncated to fit the graph {Rused an average of 44 1/O’s per query in this experiment). In the R
all alive oids have the same end_tinm®y) that causes them to be clustered together even though
they have different oids (that is, overlapping extends to the oid dimension as well). As observed
elsewhere [KTF98], transaction-time lifespans are not maintained efficiently by plain R-trees.

Figure 4.b shows the average number of I/O’s per update. The best update performance was
given by the PPHsmethod. The MVBT had the second best update performance. It is larger than
PPHssince MVBT is traversing a tree for each update (instead of quickly finding the location of
the updated element through hashing). The update @lRws; it is larger that the MVBT since
the size of the tree traversed is related to all oid lifespans (while the size of the MVBT tree traversed
is related to the number of alive oids at the time of tipelate). The ALH and PPHused even
larger update processing. This is because in ALH all lifespans with the same oid are thrown on the
same bucket thus creating large buckets that have to be searched serially during an update. In PPH-
| the NT array implementation inside each page limits the actual page area assigned for storing oids
and thus increases the number of pages used per bucket. ilreeRuses even larger update

processing which is due to the bad clustering on the conrmowend_time.

The space consumed by each method appears in figure 4.c. The ALH approach uses the
smallest space since it stores a single record per oid lifespan and uses “controlled” splits with high
utilization (f andg values). The PPH methods have also very good space utilization with the PPH-

s being very close to ALH. PPH-uses more space than PRBHsecause theNT array
implementation reduces page utilization. The R-tree methods follpydes slightly less space

than the R because paginating intervals (putting them into bounding rectangles) is more
demanding than with points. Note that similarly to ALH, both R* methods use a single record per
oid lifespan; the additional space is mainly because the average R-tree page utilization is about
65%. The MVBT has the largest space requirements, about twice more space than the ALH and

24

20.0

E—"
T
> 150 — — - - — - 4
[}
>
o
g
°
z 100 — — — — — — — — — = - —
g
IS
>
=2
@ 50 - — — I - 4
3

| N
0.0 & . (a)
MVBT

Ri Rp

7.0

60~ — — — — — — — = = -

3.0 — I

20 —

Avg. Number of I/0' per Update

10 —

(b)

0.0
ALH PPHs PPHI MVBT Ri Rp

30000

25000 — 1

20000 — T T

isooo; — — —

Number of Pages

10000

5000

©

ALH PPHs PPH{ MVBT Ri Rp

Figure 4: (a) Query, (b) Update, and, (c) Space performance for all implementations on a uniform workioad wit
8K oids,n ~ 0.5M andNB ~ 30.

25

PPHs methods.

In summary, the PPI3-has the best overall performance. Similarly with the comparison
between ephemeral hashing and B-trees, the MVBT tree behaves worse than temporal hashing
(PPHs) for temporal membership queries. The ALH is slightly better than BRHIy in space
requirements, even though not significantly. The R-tree based methods are much worse than PPH-

s in all three performance criteria.

To consider the effect of lifespan distribution all approaches were compared using four
additional workloads (namely the exponential, step, normal and poisson). These workloads had the
same number of distinct oiddJ]|= 8000), number of queries (115878) and similr~0.5M) and
NB (~30) parameters. ThExponentialworkload generated the, lifespans per oid using an
exponential distribution with probability density functidrfx) = Bexp(-Bx) and meap =30.
The total number of changes was= 487774, the total number of object additions VB =
245562 and\B = 30.7. In theStepworkload the number of lifespans per oid follows a step
function. The first 500 oids have 4 lifespans, the next 500 have 8 lifespans and so on, i.e., for every
500 oids the number of lifespans advances by 4. In this workload we h&d0425NB = 272064
andNB = 34. TheNormalworkload used a normal distribution witln = 30 aod = 25 . Here
the parameters were:= 470485NB = 237043 and\B = 29.6.

For thePoissonworkload the first lifespan for every oid was generated randomly between time
instants 1 and 500. The length of a lifespan was generated using a Poisson distribution with mean
1100. Each next start time for a given oid was also generated by a Poisson distribution with mean
value 500. For this workload we haa = 498914,NB = 251404 andNB = 31. The main
characteristic of the Poisson workload is that the number of alive oids over time can vary from a
very small number to a large proportion &ff] i.e., there are time instants where the number of
alive oids is some hundreds and other time instants where almost all distinct oids are alive.

Figure 5 presents the query, update and space performance under the new workloads. For
simplicity only the R method is presented among the R-tree approaches (as with the uniform load,
the Rp used consistently more query and update thaarfd similar space). The results resemble
the previous uniform workload. As before, the PBEpproach has the best overall performance
using slightly more space than the “minimal” space of ALH. PIPHas the same query
performance and comparable space with PRidt uses much more updating. Note that in Figure
5.a, the query performance of Ras been truncated to fit the graph (on averageised about 10,

13,11 and 10 I/O’s per query in the exponential, step, normal and poisson workloads respectively).

26

Similarly, in Figure 5.c the space of the MVBT is truncated (MVBT used about 26K, 29K, 25K
and 35.5K pages for the respective workloads).

The effect of the number of lifespans per oid was tested using eight uniform workloads with
varying average number of lifespans. All useldl + 8000 different oids and the same number of
gueries (~115K). The other parameters are shown in the following table:

Table 1:

workload n NB NB
uniform-10 149801 75601 9.4
uniform-20 308091 155354 19.4
uniform-30 466854 237606 29.7
uniform-40 628173 316275 39.5
uniform-50 787461 396266 49.5
uniform-80 1264797 635604 79.5
uniform-100 1585949 796451 99.5

The results appear in Figure 6. The query performance of atemporal hashing deteridies as
increases since buckets become larger (Figure 6.a). ThesPPiPH1 and MVBT methods have a
query performance that is independenN& (this is because in all three methods Niglifespans
of a given oid appear at different time instants and thus do not interfere with each other). The query
performance of Rwas much higher and it is truncated from Fig. 6.a. Interestingly, thgury
performance decreases graduallj\N&increases (from 12.6 1/0’s to 9.4 1/O’s). This is because R
clustering improves aNB increases (there are more records with the same key).

PPHs outperforms all methods in update performance (Figure 6.b). As with querying, the
updating of PPHs, PPH} and MVBT is basically independent BiB. Because of better clustering
with increased\B, the updating of Rgradually decreases. In contrast, because increli&d
implies larger bucket sizes, the updating of ALH increases. The space of all methods increases with
NB as there are more changeper evolution (Table 1). The ALH has the lower space, followed
by the PPHs; the MVBT has the steeper space increase K\iBivalues 80 and 100, MVBT used
~68K and 84.5K pages).

The effect of the number of distinct oids used in an evolution was examined by considering
three variations of the uniform workload. The number of distinct digjswas: 5000, 8000 and

27

L (T T T+~ T+
>
E 50 -
& [| ALH
8 40 N - N N I PPHs
5 L
= a0l || PPHI
o) N
& [MVBT
Qo
E 207 R
3 L
E’ 10 -
L L L L L | a
0.0 Exponential Step Normal Poisson @
70 r
@ I _
g 6.0 - m
5 | B _
g 507 | ALH
0 4ol ~ ~ I PPHs
= [.| PPHY
S | = — < N
& 30 N N N MVBT
E I .
2 20/ L IRi
g', L
< 1.0
I (b)
0.0 Exponential Step Normal Poisson
- , b
L N N T~ N~
20000 -
2 16000 | i
oA -
8 | - u u I PPHSs
& 12000 | [PPHI
é [MVBT
E 8000 i |:| Ri
4000 -
r (©)
0 L L L L L 1
Exponential Step Normal Poisson

Figure 5: (a) Query, (b) Update, and, (c) Space performance for ALH,$PRH{, MVBT and R methods using
the exponential, step, normal and poisson workloads with 8K miel§.5M andNB ~ 30.

28

6.0

) - 4
S 50t 4 A—A ALH
g I] +—+ PPHs
= 4.0 - — St /i - [O—+F1 PPHI
o) e —c | %——k MVBT
S 30 4 60— Ri
g]
§ 20 - &= == == == == == = -
zZ
g 1ot 4
0.0 @)
0 20 40 60 80 100
9.0
% 80 | i
S 70 [1 A—A ALH
5 I +—+ PPHs
o 6.0 71 @—£& PPH
Q 50 [4 %—k MVBT
o r .
5 40 L] O—= R
_Q -
E 30 |]
z [+ + + + + + t
S 20 ;
> F 4
< 10 f i
00 L N (b)
0 20 40 60 80 100
45000 | ' ' ' ' o]
40000 |- 71 A—A ALH
g 35000 4 4+—+ PPHs
E’ 30000 |- | O—=H1 PPHY
5 25000 |-] Ak MVBT
—_ - 4 G_Q Rl
S 20000 +]
§ 15000]
10000 | 4
5000 | 4
0)) ‘ ‘ ‘ (©)
0 20 40 60 80 100

Avg. Number of Lifespans per oitiB)

Figure 6: (a) Query, (b) Update, and, (c) Space performance for ALH,$PRH}, MVBT and Ri methods using
various uniform workloads with varyirgB.

29

12000, respectively. All workloads had similar average number of lifespans per distinbtiiel (

30). The other parameters appear in Table 2. The results appear in figure 7. The query performance
of PPHs and PPHEis independent ot]|. In contrast, it increases for both MVBT and e R

used about 10.4, 12 and 13 1/O’s per query). The reason for this increase is that there are more oids
stored in these tree structures thus increasing the structure’s height (this is more evidess in R

all oids appear in the same tree). In theory, ALH should also be independent of the universe size
|U[; the slightincrease for ALH in Figure 7.ais due to the “controlled” splits policy that constrained
ALH to a given space utilization. Similar observations hold for the update performance. Finally,

the space of all methods increases becauisereases (Table 2).

workload n NB #of querieq
uniform-5K 291404 146835 72417
uniform-8K 466854 237606 115878
uniform-12K 700766 353067 174167

From the above experiments, the PBHRethod appears to have the most competitive
performance among all solutions. As mentioned in section 4.1.2, thesRfeiHormance can be
further optimized through the setting of usefulness parameteéigure 8 shows the results for the
basic Uniform-30 workload (J| = 8000,n = 466854 NB = 237606 andNB ~ 30) but with different
values ofu. As expected, the best query performance occurssigreater than the maximum load
of the observed ephemeral hashing. For these experiments the maximum load was 0.2. As asserted
in Figure 8.a, the query time is minimized after 0.3. The update is similarly minimized (Figure
8.b) foru’'s above 0.2, since after that point, the alive oids are compactly kept into few pages that
can be updated easier (for smallés the alive oids can be distributed into more pages which
increases the update process). Figure 8.c shows the space & PBH¥'s below the maximum
load the alive oids are distributed among more data pages, hence when such a page becomes non-
useful it contains less alive oids and thus less copies are made, resulting in smaller space
consumption. Using this optimization, the space of PRtdan be made similar to that of the ALH

at the expense of some increase in query/update performance.

6. Conclusions and Open Problems

This paper addressed the problenTemporal Hashingor equivalently, how to support temporal
membership queries over a time-evolving Sefn efficient solution termegartially persistent

30

6.0 — 71 r 1 rr 1t . T T 1 T T T T
Py
9 I 1 A—A ALH
ol 4+ PPHs
(]
o 40 1 [E@—£ PPHY
Q ¥—% MVBT
5 I A 1 &6— Ri
3 r—
E 20 f HH = tH .
Pz
)
S I 1
<
0.0 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 (a)
4 5 6 7 8 9 10 11 12 13
6.0
g 3 0 1
'g 50 | = —=— —=] _ A_A ALH
-} I | +— PPHs
S 40 L | [E—+1 PPHi
o I | ¥—% MVBT
5 30 F ﬁ% el 1 ¢ S Ri
o) i 1
£ + + +
€ 20 .
zZ L i
g 1.0 | -
0.0 : : : : : : . . (b)
4 5 6 7 8 9 10 11 12 13
40000
35000 |- -
© 30000] A—A AH
g I | 4+— PPHs
& 25000 1 ©—0 PPH
o 20000 4 kK MVBT
9 - i &— Ri
E 15000} s
Z L 4
10000 - -
5000 |- -
0 I L L L L L L L L] (C)
4 5 6 7 8 9 10 11 12 13

Number of distinct oiddJ| (in thousands)

Figure 7: (a) Query, (b) Update, and, (c) Space performance for ALH,$PRH{, MVBT and R methods using
various uniform workloads with varying|.

31

B Avg. Number of I/O'" per Query

Number of Pages

2.25 T T T 2.40

@ A]
2.20 1 8235t .
F PPH-s o— < ! PPH-s o—
2.15 I 1 :: 2.30 4

- q') i
2.10 . 2 505 i
2.05 {4 9 !

A « 2.20]
2.00 © s <
1.95 |]og25y]
1.90 | i g 2.10 -_ _.

i] 2205t :
1.85 - _ 3: I]
1'8%.10 0_.20 0.3.0 0:40 0.50 2'000.10 0.20 0.30 0.40 0.50

¥y (b) u

16000

15000 - PPH-s o—= -

14000 8

Figure 8: (a) Query, (b) Update, and, (c) Space
performance for PPHK-on a uniform
T workload with varying values of the

usefulness parameter

0.10 0.20 0.30 0.40 0.50

hashing(PPH) was prgsented. For queries and updates, this scheme behaves as if a separate,
ephemeral dynamic hashing scheme is available on every state assumedSgvsettime.
However the method still uses linear space. By hashing oids to various buckets over time, PPH
reduces the temporal hashing problem into reconstructing previous bucket states. Two flavors of
partially persistent hashing were presented, one based on an evolving-set abstractighgRéPH-

one on an evolving-list (PPH-: They have similar query and comparable space performance but
PPHsuses much less updating. Both methods were compared against straightforward approaches
namely, traditional (atemporal) linear hashing scheme, two R*-tree implementations and the
Multiversion B-Tree. The experiments showed that Pstds the most robust performance among

all approaches. Partially persistent hashing should be seen as an extension of traditional external
dynamic hashing in a temporal environment. The methodology is independent from which
ephemeral dynamic hashing scheme is used. While the paper considers linear hashing, it applies to

other dynamic hashing schemes as well. There are various open and interesting problems.

32

Traditionally hashing has been used to speed up join computations. We currently investigate the
use of temporal hashing to speed up temporal joins [SSJ94]. Another problem is to extend temporal
membership queries to time intervals (find whetherloieas in any of the states séhad over an
interval T). The discussion in this paper assumes temporal membership queries over a linear
transaction-time evolution. It is interesting to investigate hashing in branched transaction

environments [LST95].

Acknowledgments
We would like to thank B. Seeger for kindly prow) us with the R* and MVB-tree code. Part of this work was
performed while V.J. Tsotras was on a sabbatical visit to UCLA; we would thus like to thank Carlo Zaniolo

for his comments and hospitality.

References

[AS86] I. Ahn, R.T. Snodgrass, “Performance evaluation of a temporal database management
system”,Proc. ACM SIGMOD Confpp.96-107, 1986.

[BGO+96] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer, “An Asymptotically Optimal
Multiversion B-tree” Very Large Data Bases Journaol.5, No 4, pp 264-275, 1996.

[BKKS90] N.Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The R*-tree: An efficient and Robust
Access Method for Points and Rectangl€&sc. ACM SIGMOD Confpp 322-331, 1990.

[C79] D. Comer, “The Ubiquitous B-TreeACM Computing Survey$1(2), pp121-137,1979.

[CLR90] T.H. Cormen, C.E. Leiserson, R.L. RiveBtfroduction to AlgorithmsThe MIT Press and
McGraw-Hill, 1990.

[DKM+88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer, H. Rohnhert and R. Tarjan, “Dynamic
Perfect Hashing: Upper and Lower Bound3foc. 2%h IEEE FOCS$pp. 524-531, 1988.

[DSST89] J.R. Driscoll, N. Sarnak, D. Sleator, R.E. Tarjan, “Making Data Structures Persigtenit”,
Comp. and Syst. Scvol 38, pp 86-124, 1989.

[EN94] R. Elmasri, S. Navathésundamentals of Database SysterSecond Edition, Benjamin/
Cummings Publishing Co, 1994.

[FNSS92] A.Fiat, M. Naor, J.P. Schmidt, A. Siegel, “Nonoblivious HashidgCM, Vol 39, No 4, pp.
764-782, 1992.

[G84] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial SearchiRgbc. ACM
SIGMOD Conf.pp 47-57, 1984.
[J+94] C.S. Jensen, editor et. al., “A Consensus Glossary of Temporal Database Codepts”,

SIGMOD RecordYol. 23, No. 1, pp. 52-64, 1994,

[KTF98] A. Kumar, V.J. Tsotras, C. Faloutsos, “Designing Access Methods for Bitemporal
DatabaseslEEE Trans. on Knowledge and Data Engineerirgh. 1998.

[L8O] W. Litwin, “Linear Hashing: A New Tool for File and Table Addressing®roc. of VLDB
Conf, pp 212-223, 1980.

[L96] W. Litwin, M.A. Neimat, D. A. Schneider, “LH*-A Scalable, Distributed Data Structure”,
ACM Trans. on Database Systeisl. 21, No. 4, pp 480-525, 1996.

[LS89] D. Lomet, B. Salzberg, “Access Methods for Multiversion Datafpc. ACM SIGMOD

33

[LST95]
[0S95]

[R97]
[S88]
[S94]

[SA85]
[SD9O]
[SL95]
[SSJ94]

[ST97]

[TGHO5]
[TJS98]
[TK95]

[VV97]

Conf, pp 315-324, 1989.

G.M. Landau, J.P. Schmidt, V.J. Tsotras, “On Historical Queries Along Multiple Lines of
Time Evolution”,Very Large Data Bases Journalol. 4, pp. 703-726, 1995.

G. Ozsoyoglu, R.T. Snodgrass, “Temporal and Real-Time Databases: A SURE,
Trans. on Knowledge and Data EngineetiNgl. 7, No. 4, pp 513-532, Aug. 1995.

R. Ramakrishnahatabase Management Systeihst ed., McGraw-Hill, 1997.
B. SalzbergFile structures Prentice Hall, Englewood Cliffs, NJ, 1988.

B. Salzberg, “Timestamping After CommitRroc. 3rd Intern. Conf. on Parallel and
Distributed Information Systemgp 160-167, 1994.

R.T. Snodgrass, I. Ahn, “A Taxonomy of Time in Databas&gc. ACM SIGMOD Conyf.

pp 236-246, 1985.

D.A. Schneider, D.J. DeWitt, “Tradeoffs in Processing Complex Join Queries via Hashing in
Multiprocessor Database MachineBtoc. of VLDB Conf.pp 469-480, 1990.

B. Salzberg, D. Lomet, “Branched and Temporal Index Structures”, College of Computer
Science Technical Report, NU-CCS-95-17, Northeastern University.

M.D. Soo, R.T. Snodgrass, C.S. Jensen, “Efficient Evaluation of the Valid-Time Natural
Join”, Proc. IEEE Conf. on Data Engineeringp. 282-292, 1994.

B. Salzberg, V.J. Tsotras, “A Comparison of Access Methods for Time-Evolving Data”, to
appear alhCM Computing Surveysippears as TimeCenter Tech. Report TR-18, Aalborg
University, 1997 (http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/publications2.html).

V. J. Tsotras, B. Gopinath, G.W. Hart, “Efficient Management of Time-Evolving Databases”,
IEEE Trans. on Knowledge and Data Engineerivigl. 7, No. 4, pp 591-608, Aug.1995.

V.J. Tsotras, C.S. Jensen, R.T. Snodgrass, “An Extensible Notation for Spatiotemporal Index
Queries”, ACM Sigmod Recorgp 47-53, March 1998.

V.J.Tsotras, N. Kangelaris, “The Snapshot Index, an I/O-Optimal Access Method for
Timeslice Queries’Information Systems, An International Jourriébl. 20, No.3, 1995.

P.J. Varman, R.M. Verma, “An Efficient Multiversion Access Structurf®EE Trans. on
Knowledge and Data Engineeringol 9, No 3, pp 391-409, 1997.

Appendix: Description and Analysis of the Evolving-List approach

Method Description. Special care is needed when a list page becomes non-useful due to an oid deletion/

insertion. Assume that list pagemoves from the useful state to non-useful at some tinet V, andRy

respectively be the number of alive oid records and the total number of records it contains (it is always true

thatV , < R, < B,). To achieve good answer clustering, the alive oids from such a page are merged with the

alive oids of a sibling useful page (if such a sibling exists) to create one or two (depending on the number

of alive oids) new useful page(s). We distinguish two cases:

(1) PageA is the first useful page in the list. Then we have:

(1.1) There is a useful padgethat followsA in the list. PageA became non-useful because one of

its alive oids was deleted; th\ig = V-1. LetD containVp alive oids among a total &, oids.

34

(1.1.1)Ry + V< B, (i.e., the alive oids ok can fit in pageD). Copy theV, alive records of
Ainto D and update théT; table to point to pag® at timet. (PageD contains at least\21
alive objects unlesb is the last page in the list).

(1.1.2)Ry + V> B, . Two subcases must be examined:

(1.1.2.a)Vp<3V . The?Wy +V,<B, , i.e,, the alive oids from bothandD can fit in a
page). Create a new pagend copy all alive oids fronA andD into E. PageD is artificially
made non-useful. Add a new entry in arfa¥; to point to pagé= att and a new entry in array
NT(E)to point to the next sibling (if any) db att. (New pageE contains at least\21 alive
objects unless it is the new last page in the list).

(1.1.2.b)V > 3V . Create a new pagend copy the/-1 alive oids from pagé andV alive

oids from pagé into pageE. Since pagé& replaces pag#é on the top of the list, add a new

entry in arrayFT; to point to pagéE at timet. Add a new entry ilNT(E)to point to pageD at

t. New pageE starts with 2/-1 alive oids while pag® continues with at least\2alive oids.
(1.2) PagéA is the last page in the list arith = B,. ThusA became non-useful by an oid insertion
that made it a full page but without enough alive oNg<V). Becausé became full, a new empty
last pageD is created afteA. Copy the alive oids of into D and update the previous sibling (if
any) ofA to point toD.

(2) PageA is not the first useful page in the list. Hence there exists a useful @dlgat is the previous

sibling of Ain the list.

(2.1) PageA became non-useful because one of its alive oids was deleted, FeV-1.

(2.1.1) If R +V, < B, , there is enough space in pa@® hold the remaining alive oids &
Hence copy th&/, alive oids intoC and updaté&T(C)to point to the next useful list page after
A (if any) at timet.

(2.1.2) IfR. +V,>B, , two subcases must be examined:

(2.1.2.a) IfV-< 3V , then as in case (1.1.2.a) create a new pagyed copy all alive oids
of AandC into E. UpdateNT arrays appropriately.

(2.1.2.b) ItV > 3V create a new page Similarly with case (1.1.2.b), copy thel alive
oids of pageA andV alive oids from page€ into new pageé. Since pagé replaces page
A, arrayNT(C)is updated to point to pade A new entry is added in arrdyT(E)to point
to the useful page (if any) that was after
(2.2) PageA is the last page in the list ari®h=B,. ThusA became non-useful by an oid insertion
that made it a full page but without enough alive oilg<€V). As in case (1.2) above, create a new

35

empty last pag® and copy all alive oids @& into D.

Update and Space Analysis. Updating in the evolving-list approach i@(|bj(t)|/B) since the whole

current list has to be searched until a new oid is added or an existing oid is updated as deleted. Despite page
copying, the space ©(n/B), wheren is the total number of changes recorded in the evolution of bucket

b,. Note thatn; contains both the real oid additions/deletions and the changes recorded due to bucket

overflows. However, Lemmas 1 and 2 still apply, ingis proportional to the number of real changes.

Copying occurs when a page turns from useful to non-useful. This can happen when d\Jageasy
becomes full. It can be easily verified that the extra space used bpatlevard updatingechnique
[TGH95] is O(ny/B). Another way for a page to become non-useful is by an oid deletion/insertion into this
page. Copying from such cases results to linear space, too. More specifically, using the “accounting”
method of [CLR90] (also applied in [BGO+96, VV97]) we can show that for a sequenteaf changes
(insertions/deletions) the space consumed(ig/B). For each oid change that updates a pageeditof 1/

V is accumulated. Thehargefor each new page is 1. It is enough to show that adequate credit has been
accumulated before a new page is created. The proof is based on the fact that each new useful page starts
with at least ¥/-1 alive oids unless it is the last page in the list. In both cases such a useful page can become
non-useful only after a substantial amount of new changes. For example, a new useful payéeative

oids can become non-useful only after at |8adeletions. A new last page may start with less thalive

oids, but it can turn non-useful only after it becomes full of records, i.e., after atVeastvadditions.

36

