
Indexing Valid Time Databases Via B�-trees –
The MAP21 Approach

Mario A. Nascimento and Margaret H. Dunham

March 9, 1998

TR- 26

A TIMECENTER Technical Report



Title Indexing Valid Time Databases Via B�-trees – The MAP21 Approach

Copyright c� 1998 Mario A. Nascimento and Margaret H. Dunham. All rights
reserved.

Author�s� Mario A. Nascimento and Margaret H. Dunham

Publication History March 1997. A Southern Methodist University Technical Report (97-CSE-08).
March 1998. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Dieter Pfoser
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta
Sudha Ram

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

We present an approach named MAP21 which uses standard B�-trees, in a multiple disks single processor
architecture, to provide efficient indexing of valid time ranges. The approach is based on mapping one dimen-
sional ranges to one dimensional points where the lexicographical order among the ranges is preserved. We
compare MAP21 to the Time Index and the R�-tree and we show that MAP21 is comparable to or outperforms
those, depending on the number of trees utilized, the degree of parallelization among these and the type of query.
The main contribution of this paper is to show that standard B�-trees, available in virtually any DBMS, can be
used to provide an efficient temporal index. Although our discussion is made in terms of valid time databases,
MAP21 can be used (or extended to be used) within other application domains as well.

1 Introduction

This paper deals with the problem of indexing one dimensional ranges. Assuming our domain of application to
be the one of Temporal Databases (TDBs), we focus on the problem of indexing valid time databases (VTDBs),
also referred to as historical databases [SA86]. In VTDBs each version of recordk (denoted byRk) has, besides
the non-temporal attributes, a valid time rangeV k � �V k

s � V
k
e �. This means thatRk was valid in the modeled

world during that time range [JCG�94]. VTDBs also support predictive and retroactive updates and thus do not
require any ordering among the temporal ranges at input time. On the other hand they do not allow two versions
of the same record Throughout the paper we consider a record version to be a record by itself, i.e., we assume
tuple-versioning instead of attribute-versioning.

There has been a respectable amount of published research devoted to TDB and its applications [McK86,
Soo91, Kli93,ÖS95, TK96]. However, relatively few have addressed the issue of indexing temporal data. In what
follows we briefly review some of the work done in the area. We do not intend for this review to be exhaustive
though. For a good survey we refer the reader to [ST94].

The Time Index [EWK93], Time Index� [K�94], TP-index [SOL94], Interval B-tree [AT95], and the B�-tree
based TP-index1 [G�96] all index valid time ranges, therefore no ordering in the ranges input is imposed. The
drawback of the Time Index is the size of the index itself which is quadratic on the number of indexed ranges. The
Time Index� is an improved Time Index, which does reduce substantially the storage needed by the original Time
Index while speeding up query processing time. However, in the worst case its storage requirement remains very
large. The TP-index maps a (one-dimensional) range into a point in the two-dimensional space, and the query
processing is reduced to a spatial search problem. It is space-wise more efficient than the Time Index, but is biased
towards some types of queries. The Interval B-tree overcomes both shortcomings above but requires a complex
nested data structure, which makes it difficult to be implemented. The B�-tree based TP-index assigns an ordering
among the two dimensional space created by the original TP-index, and this ordering is mapped into a B�-tree.
This approach is similar to the one we propose, but there are some fundamental differences. We discuss these
differences in more detail in Section 5, after presenting our approach.

The Monotonic B�-tree [EWK93], the Append-Only Tree [GS93] and the Snapshot Index [TK95] also aim at
indexing valid time ranges. However they require the input to be given with the valid start time in increasingly
monotonic order, which is a transaction time characteristic. This prevents these approaches from handling either
predictive or retroactive updates.

The Time-Split B-tree [LS93] indexes a transaction time database (also known as a rollback database [SA86]).
It models transaction time ranges assuming they are stepwise constant (i.e., the transaction end time of one version
is the transaction start time of the next version). The approach is unique in the sense that it indexes temporal and
non-temporal data under the same data structure. Although the structure behaves well in terms of space and query
processing, it models transaction time and therefore does not handle predictive or retroactive updates either.

Lastly, there are the access structures for spatial data, where the R-tree [Gut84] and its derivatives, (R�-tree
[SRF87] and R�-tree [BKSS90]) are well known representatives. Although the structures based on the R-tree
index aim primarily at indexing spatial data via N-dimensional minimum bounding rectangles, they can also be
used to index one dimensional ranges, e.g., valid time ranges. There are other techniques for indexing spatial data,
such as the Z-ordering [Ore86] and DOT [FR91]. We also discuss those in more detail later in Section 5.

The contribution of this paper is to address the problem of indexing VTDBs by using the proposed MAP21
approach. MAP21 makes use of a standard B�-tree (for an introduction refer to [EN94, Chapter 5] among many

1We adopted this name as the authors do not give an explicit name to their approach.

1



other texts), which is available in virtually any existing DBMS. Therefore, our approach does not require the im-
plementation of any novel data structure. Moreover, previous research results regarding issues such as concurrency
control of B�-trees [JS93] are therefore inherited. The basic (and realistic) assumption we need in order to offer
efficient query processing is that an upper bound for the length of the indexed ranges is kept. Due to the underlying
B�-tree structure, MAP21 usesO�Nr� space and requiresO�logB Nr� I/Os to process an update, whereNr is the
number of indexed ranges. Furthermore, we show that we can enhance query processing time by making use of
multiple trees, which can be parallelized.

Although some application domains can be well modeled using transaction time only, we believe that sup-
porting valid time, i.e., allowing retroactive and predicte updates is very important, indeed: “... One limitation in
supporting transaction time is that ... Errors can sometimes be overridden (if they are in the current state), but they
cannot be forgotten ...” [SA86]. MAP21 does allow predictive and retroactive updates, therefore ruling out the
limitations imposed by those structures aimed at transaction time or monotonic valid time, e.g., Time-Split B-tree,
Snapshot Index, Monotonic B�-tree and Append-Only Tree.

In the next sections we focus on the range indexing problem. To accomplish that, we introduce the MAP21
approach in Section 2, and also discuss algorithms to process some types of queries. In Section 3 we extend
MAP21 to make use of multiple, and potentially parallel, trees in a multiple disks single processor architecture.
Section 4 discusses how MAP21 can be incorporated into a standard (i.e., non-temporal) DBMS. Experiments
comparing MAP21, Time Index and the R�-tree are presented in Section 5. (A brief review of the Time Index and
the R�-tree is presented in the Appendix). We conclude in Section 6 summarizing the contributions presented in
this paper and offering directions for future research.

2 Indexing Valid Time Ranges – The MAP21 Approach

MAP21 maps the two end points of a valid time rangeV k � �V k
s � V

k
e � into a single value and uses this one as an

indexing value for the range. We assume the following:

Definition 1 � is the maximum number of digits needed to represent any time value.

Definition 2 The starting and ending points of an “indexable” valid time range are: (a) Non-negative integer
values and (b) Upper-bounded (due to Definition 1). In other words,V k � �V k

s � V
k
e �� � � V k

s � V k
e � �����.

Note that Definition 1 is not restrictive, all it states is that the user must know beforehand the domain of
the attribute he/she is indexing, in fact that is the case with any attribute when the user defines an attribute of a
relation. Assuming Definitions 1 and 2 any rangeV k � �V k

s � V
k
e � can be indexed using a unique value provided

by the following mapping function:

��V k� � ��V k
s � V

k
e � � V k

s ��
� � V k

e (1)

Note that, in pratical terms, what the function��V k� does is to “left-shift” the valid start time. This implies the
following [Nas96]:

Proposition 1 The above defined function����maps distinct ranges into distinct points, i.e., givenV k � �V k
s � V

k
e �

andV l � �V l
s � V

l
e � then��V k� � ��V l�� V k

s � V l
s andV k

e � V l
e .

Proposition 2 The ordered points in the resulting index represent a lexicographical order of the ranges, i.e., given
V k � �V k

s � V
k
e �, V

l � �V l
s � V

l
e �, and��V � as defined above,V k

s � V l
s � ��V k� � ��V l�; and if V k

s � V l
s then

V k
e � V l

e � ��V k� � ��V l�.

It is straightforward to obtain the original range given its mapping, namely:V k � ����s ���V k������e ���V k���

where:���s ���V k�� � ��V k����V k�����

��� , ���e ���V k�� � ��V k�	��� and % is the traditional remainder op-
erator. Finally:

Definition 3 Given a set of (indexed) rangesV k let
 � maxkfV
k
e � V k

s g.

2



We assume that the value of
, i.e., the maximum length over the indexed valid time ranges, is known. The

 value of the indexed ranges can be maintained in some sort of dictionary by the DBMS (see Section 4 for a
discussion). Furthermore, in temporal databases in general there is no physical deletion of data, as all history is to
be retained, hence the maintained
 is an exact (and dynamic) upper bound. Even though the higher the number
of indexed ranges (Nr), the higher the likelihood of having a large value for some valid time length,
 does not
vary as a function ofNr. Note that the approach we propose does not limit the size of the valid time ranges, we
simply assume
 is known. We believe, however, that in many if not most application domains, the value of

should not be too large compared to the whole time frame modeled. For instance, if one is modelling a hospital
database for 10 years or possibly more, it is hardly expected that patients are hospitalized for more than, say 2
years. Nevertheless, a large
 may exist and we do propose a framework that handles well such case.

Using MAP21 one can process several types of ranges-based queries, we will present details about three
particular types of queries, the intersection query, the inclusion query and the containment query (following the
naming in [AT95]). They are illustrated in Figure 1. Given a reference valid time range, these queries return all
the indexed ranges that respectively intersect, are included within or contain the given reference. A fourth type
of query, the location query, which returns all ranges that contain a given time point (instead of a range) can be
simulated using either the intersection or containment query when the reference range degenerates to a point, and
thus we do not treat it explicitly. Proposition 1 will be important as it guarantees that each range appears once
and only once in the indexing tree. Proposition 2 ensures that the search in the tree can be done in one-pass. And
finally, Definition 3 allows us to state exactly where to start and end the leaves searching during query processing
time.

INPUT

Query type

OUTPUT

POSSIBLE

Ts TeTs Te
(b) Containment (c) Inclusion

Ts Te
(d) Intersection

Figure 1: Queries used to benchmark MAP21’s performance.

The algorithms we present next show how to collect all pointers needed to actually access the data records,
hence we are not describing how to access the data records themselves. As we discuss later in the paper, the
physical organization of the data is a task left to the DBMS, which manages the underlying indexing structure. In
what follows we use the following notation:

� ddT ee (bbT cc) is the smallest (greatest) indexed value greater (smaller) than or equal toT .

� A MAP21 tree, denoted byM , is a B�-tree indexing point values which represent ranges, and were created
using the���� function described above.

Processing an Intersection Query – The intersection query accepts as input a time rangeT q � �Ts� Te� and
returns the pointers to all recordsRk such thatV k � T q �� NULL.

Lemma 1 Given that the indexed ranges are in lexigraphical order in the leaf nodes of the MAP21 tree, to find all
ranges that intersect with�Ts� Te� one needs only to scan the ranges between ranges�Ts�
� Ts� and�Te� Te�
�.

Proof: Given Definition 3 we know that no range starting beforeTs � 
 can intersect withT q, otherwise there
would be a range larger than
, which there cannot be. No range starting afterTe can intersect withT q either.

Algorithm 1 P = MAP21-Intersection(M�
� Ts� Te)

1. TRAVERSEM down to the leaf entry indexingIv � dd�Ts �
���� � Tsee

2. DO traverse (in ascending order) each leaf ofM indexingIv

3



(a) IF ����s ���Iv����
��
e ���Iv��� � �Ts� Te� �� NULL

THENP � P � f pointers associated to such entryg

3. UNTIL Iv � bbTe��
� � �Te �
�cc

4. RETURNP

Processing an Inclusion Query – The inclusion query accepts as input a time rangeT q � �Ts� Te� and returns
the pointers to all recordsRk such thatV k 	 T q.

Lemma 2 Given that the indexed ranges are in lexigraphical order in the leaf nodes of the MAP21 tree, to find
all ranges that are contained in�Ts� Te� one needs only to scan the ranges between ranges�Ts� Ts� and�Te� Te�.

Proof: As we are interested in ranges that lie completely withinT q (= �Ts� Te�) we are not interested in any range
starting beforeTs nor in any range starting afterTe, as those cannot be completely included inT q.

Algorithm 2 P = MAP21-Inclusion(M�Ts� Te)

1. TRAVERSEM down to the leaf entry indexingddTs��� � Tsee

2. DO traverse (in ascending order) each leaf entry ofM indexingIv

(a) IF���e ���Iv�� � Te
THENP � P � fpointers associated to this leaf entryg

3. UNTIL Iv � bbTe��
� � Tecc.

4. RETURNP

Processing a Containment Query – An inclusion query accepts as input a time rangeT q � �Ts� Te� and returns
the pointers to all recordsRk such thatV k 
 T q. Notice that ifL � Te � Ts � 
 no indexed range may contain
T q, therefore in what follows we assumeL � 
.

Lemma 3 Given that the indexed ranges are in lexigraphical order in the leaf nodes of the MAP21 tree, to find all
ranges that containT � �Ts� Te� one need only to scan the ranges between ranges�Te�
� Te� and�Ts� Ts�
�.

Proof: Due to Definition 3, any range starting farther thanTe �
 cannot containT . Otherwise, there would be
a range with length greater then
. It is similarly easy to see that any range starting afterTs or ending beforeTe
cannot containT either.

Algorithm 3 P = MAP21-Containment(M�
� Ts� Te)

1. IFTe � Ts � 

THEN RETURN P

2. TRAVERSEM to the leaf entry indexingdd�Te �
���� � Teee

3. DO traverse (in ascending order) each leaf entry ofM indexingIv

(a) IFTe � ���e ���Ik��
THENP � P � fpointers associated to this leaf entryg

4. UNTIL the leaf entry indexingbbTs��� � Ts �
cc

5. RETURNP

4



Remarks – Notice that the above algorithms may read ranges that do not belong to the answer, but no further
overhead is imposed. Eventual pointers to “useless” data records are filtered out of the algorithms’ output and
thus only data records belonging to the actual response will be accessed. It is also worthwhile mentioning that the
same behavior, i.e., reading pointers to useless data is also presented by the R-trees, and the R�-tree in particular
(we discuss this issue in Appendix A.2).

2.1 Indexing Open-Ended (V k

e
� NOW ) Ranges

In this section we treat the cases where the end point of a valid time range is not known. In the domain of temporal
databases, it is common to make use of a special temporal variable for the end of a range where the actual valid end
time is some time in the future but yet unknown. We denote such temporal variable byNOW. Those ranges with
Ve � NOW are valid from their valid start time (Vs) until the current time. Other researchers have proposed to
use other representation to achieve the same (or closely related) semantics, such asVe � ��, Ve � until-changed,
and others (see [CDI�94] for a good discussion on the topic).

What matters to MAP21 is that open-ended ranges would violate Definitions 2 and 3. We thus index all open-
ended ranges under another tree, which we refer to as an Open-Ended Tree (OET). The OET is a standard B�-tree,
where the indexed points are the valid start time of the open-ended ranges. As it is known that all ranges have the
same valid end time (which isNOW ), it need not be indexed. Furthermore once a range is “closed”, i.e. itsV k

e is
updated to a specific time point, it is fairly simple and not costly to move such range from the OET to the MAP21
tree. Hence, MAP21 is complemented with the OET in order to feasibly index all ranges in��� NOW �. Figure 2
shows an example instance of a MAP21 tree and the OET indexing a set of data adapted from [EWK93], where
EIJ stands for the Jth version of the Ith record and also serves as a unique identifier to the physical location of that
record, i.e., its pointer address (for simplicity the internal nodes are omitted).

E12 E42E11 E21 E31 E41 E32

(α = 2)tree
E11

ID

E12

E21

E31

E32

E41

E42

Data Set

MAP21

OET

3 5 7 203 809 4 8

0

0

3

Vs Ve

4

5

70

8 9

2 3

now

8 now

A

A

B

B

C

C

A

Dept

Pointers to data records

Figure 2: Example of the MAP21 indexing approach (Adapted from [EWK93]).

The earlier algorithms need to be extended to handle such open-ended ranges (and the extra OET) properly.
Such extensions are rather simple and thus we do not present them in this paper (nevertheless the interested reader
can find them in [Nas96]).

3 Using Multiple, Possibly Parallel, MAP21 Trees

We cannot deny that
 plays an important role in the search performance. For the intersection and containment
queries in particular the bigger the
 the longer the linear scan on the leaves of the MAP21 tree and, as we pointed
out earlier, a large value
 of may exist in some application domains. In fact, such
 may be due to as few a one
single large indexed range. Fortunately we can improve the search performance by applying a simple idea.

Let us assume a set of ranges with a
 value equal toL. We may distribute the data set intoNT distinct
MAP21 trees as follows. Let� � dL�NT e. We propose to partition the set of indexed ranges in such a way that
each MAP21 treeMj will index ranges with length within��j � ���� � ��� j�� � ��� ��.

As an example consider the scenario depicted in Figure 3. Figure 3(a) shows a set of ranges with lengths equal
to 0, 2, 5 and 10 time units. (Assume that the distance between two dashed vertical lines is equal to one time unit).
If all those were to be indexed under one single tree, it would result in
 � ��. Let us choseNT � �, implying

5



� � �. According to our discussion above, it would yield:M� indexing ranges with length in [0, 4],M� indexing
ranges with length in [5, 9],M� indexing ranges with length in [10, 14]. That is,M�, M� andM� will index the
sets of ranges depicted in Figures 3(b), (c) and (d) respectively. However, the actual
 value of each set may be
smaller than the one yielded by the partitioning criteria. Indeed, by simple inspection, we can see that the actual

 values for each those trees are 2, 5 and 10. Recall that, as we assume that the current
 value for any MAP21
is to be maintained by the DBMS, the performance in any single tree will not be any worse than it actually need
be. The range lengths determined by the above scheme serve as a guideline for the partitioning process only.

(c) Medium∆ (d) Large∆

∆(a) Large 

(b) Small∆

Valid Time LineValid Time Line

Valid Time LineValid Time Line

Figure 3: Illustration of the data partitioning based on the ranges length.

For the particular case of the intersection query, depending on which tree the algorithm is processing, a dif-
ferent value of (local)
 should be used. Each treeMj will be indexing ranges with lengths upper-bounded by
j�� � ��� �. The actual local
 for each tree, as discussed above, will thus be smaller than the original
 value.
Note that it is assumed that such local
s are also maintained for each tree, just as the original
 was maintained
for the single tree. The only difference is that we now have several
 values (i.e.,��� ���� �NT

) for each of theNT

trees. It is true that the last MAP21 tree,MNT
, will have the same
 as the original set, but that tree should also

have fewer indexing points than the original set, as smaller ranges are now hosted under other trees. The algorithm
for processing an intersection query using multiple MAP21 trees, built as described above, is as follows:

Algorithm 4 P � N-MAP21-Intersection(M��M�� ����MNT
� ��� ��� ���� �NT

� Ts� Te)

1. FORj = 1, 2, ...,NT

(a) P � P � MAP21-Intersection(Mj� �j � Ts� Te)

2. RETURNP

On the other hand, in the case of processing an inclusion query the algorithm for multiple MAP21 trees may
not need to traverse all trees. IfL is the length of the range in the input query, it is clear that any tree indexing
ranges with length strictly greater thanL need not be traversed, as none of its ranges can possibly be included in
a range of lengthL. Such observations lead to the following algorithm:

Algorithm 5 P � N-MAP21-Inclusion(M��M�� ����MNT
� ��� ��� ���� �NT

� Ts� Te)

1. FORj = 1, 2, ...,d�Te � Ts���e

(a) P � P � MAP21-Inclusion(Mj� Ts� Te)

2. RETURNP

For the processing of containment queries, similarly to the rationale used for the inclusion query, MAP21 trees
indexing ranges smaller than the queried range, need not be traversed. No range in treeMj (which have their
length upper bounded by�j) contain a range with length greater than�j . This yields the following algorithm:

Algorithm 6 P � N-MAP21-Containment(M��M�� ����MNT
� ��� ��� ���� �NT

� Ts� Te)

1. FORj = d�Te � Ts���e, ...,NT � �,NT

6



(a) P � P � MAP21-Containment(Mj� �j � Ts� Te)

2. RETURNP

Multiple trees can also be used to handle the case where a non-uniform distribution of the range length is
encountered. When using a single MAP21 tree, few large ranges would slow the search performance, by forcing
a longer linear scan in the leaf nodes (in the case of the intersection and containment queries). Using multiple
MAP21 trees one may distribute the ranges in such a way that each tree ends up having a more uniform distribution
of the ranges length. Likewise, even though we do not touch the issue, one may extend this idea into a dynamic
approach.

Finally, parallel updates and searches can be feasibly implemented in a straigthforward manner, as theNT

trees are totally independent.

4 Incorporating MAP21 into a DBMS

We now discuss the implications of using MAP21 within the framework of a standard relational DBMS. The
purpose of this section is to demonstrate the feasibility of MAP21’s implementation. Examples should be seen as
simple illustrations of how easy it is to use the MAP21 approach. Further research is needed to examine the best
approach to be used for its implementation.

Figure 4 illustrates how we envision MAP21 would be used with a traditional DBMS which provides B�-trees
as indexing structures. The conventional database and non-temporal indices are supplemented with the temporal
database (i.e., temporal relations) and temporal indices. On top of the DBMS is placed a (software) temporal
database interface. All DBMS queries (temporal and non-temporal) are sent through this interface. Non-temporal
queries are passed directly to the DBMS without modification. Temporal queries are modified to access (or create
or update) the appropriate temporal relations and indices. To the DBMS all relations and indices appear as standard
ones. Determining whether a query is temporal or not cannot be made based upon the query format only. Indeed
TSQL2 [Sno95] can be used for both temporal and non-temporal data, as it is upward compatible with SQL-92
[SKS95]. The distinction must be made upon the relation type, i.e., whether it is a temporal or non-temporal
relation. The temporal interface is also required to collect query results and format those correctly for the user,
e.g., coalescing data records. This approach is very similar to that used in TimeDB [Ste96].

We have two major objectives for our implementation. First, the underlying DBMS cannot be modified in
any way. Second, it should utilize the indexing capabilities of the DBMS (where possible) to avoid having the
temporal layer actually create and maintain the indices. This avoids any problems which might arise in terms of
pointer manipulation and maintenance if we implemented the indexing in the temporal layer itself. Both of these
objectives will lead to a relatively “small” temporal interface layer. That is, most of the work required will be
performed by the DBMS itself.

DBMS
Temporal 
Interface

Non-temporal DB
Indexes on non-temporal data

Temporal DB
Indexes on temporal-data
(MAP21, OET and KBI)

temporal queries

Output

Temporal and non-

Figure 4: Incorporating a temporal interface to a standard DBMS.

7



4.1 Implementation of Indexes

To ensure that the DBMS can automatically maintain the indices we need to be able to issue a “CREATE TABLE”
and “CREATE INDEX” for each relation/index pair required. This means that each MAP21 tree and each OET
will be created as an index into a table. Given a set of temporal data, then, we divide this set into disjoint parts
based on the MAP21 divisions. For example, when evaluating Figure 3 data, we see that (based upon
) data
is divided into three disjoint sets. For this case we would have four table/index pairs: three for the MAP21 trees
and one for the OET. What we are proposing, then, is that instead of creating one temporal table with multiple
MAP21 indices, we will actually have multiple temporal tables each with its own MAP21 index. This allows us
to meet our second objective above. The indices will be maintained by the relational DBMS itself. The temporal
layer will have the knowledge that logically all of the MAP21/table and OET/table pairs fit together to form one
user temporal relation. The underlying DBMS is not aware of this relationship. Figure 5 shows this proposed
technique. The set of temporal data is partitioned based on the
 value to be maintained in each MAP21 tree. The
temporal table reflecting the temporal data is also partitioned. If there aren partitions reflecting the desire forn
MAP21 indexes the data is actually partitioned inton� � disjoint subsets. The additional subset reflects the data
with open ended ranges.

(Original) Data Set D0

Data Set D1 Data Set D2 Data Set Dn+1Data Set Dn....

OETMAP211 MAP21 MAP212 n

Figure 5: Proposed approach to implementing MAP21

As is done with TimeDB [Ste96]. we assume that the data dictionary information concerning the temporal data
(including the partitioning and the
 values) is maintained as regular DBMS tables. The temporal interface uses
these tables to determine the partitioning used, to maintain
 values, and to determine how to divide the temporal
queries into traditional SQL queries.

MAP21 is a temporal index. If the user is expected to pose queries against non-temporal attributes often,
another index, such as a B�-tree or a hash table, should be built on those attributes. MAP21 does not replace a
non-temporal index, but, along with the OET, complements it.

Consider, as an illustration only, Figure 6 where KBI stands for the non-temporal key-based index (which is
considered a B�-tree, but could be any other access structure as well). The set of pointers in MAP21 and the OET
are obviously disjoint. On the other hand the pointers in the KBI point to the current version of each non-temporal
key, which may or may not be open-ended. Therefore, each data record version is pointed to by a pointer from a
MAP21 tree or (exclusively) the OET. The most current version of each data record is also pointed to by a pointer
from the KBI. A query based solely on a non-temporal data would traverse the KBI only and process only the
current versions of the data records. A query based on temporal and non-temporal data would traverse the MAP21
tree and/or OET and the KBI. A query based only on temporal data would traverse the MAP21 tree and/or the
OET. Updating a record, i.e., versioning, is not complex either as all trees can be updated efficiently. Care must be
taken when creating indices on user data. Because of the temporal time values, attributes which would represent
key values in a snapshot database are no longer keys. This implies that if primary indexes on the snapshot keys
are built they may be quite large and could contain many duplicates. Further research is required to determine the
how to effectively integrate user indices with temporal ones.

Query processing algorithms, such as those presented in the previous sections, are implemented in the temporal
interface. Given the temporal query language (such as TSQL2) such temporal layer will convert the query into
a series of SQL statements directed to the DBMS. A major responsibility of the temporal interface will be in
collecting the results from the various MAP21/OET trees (as is shown as set union operations in the the earlier
algorithms). The temporal interface can either buffer the results, store them in temporary files, or actually create

8



... ...

Data Records

MAP21 OET KBI
... ... ...

Figure 6: Combining all indexing trees.

temporal relations to store the results. The best option will be determined based on many factors such as the size
of the result and the number of tables. Further study will explore the “best” approach to be used.

An interesting performance issue related to our proposed implementation is how data is clustered. In a tradi-
tional table/index approach, the data is clustered based on the primary key by which it is accessed. In our approach
the data may also be clustered. How best to cluster should be based on how to efficiently provide access to the
data. Since no temporal benchmark is available, how the data should be clustered is not really known. In normal
DBMS environments (such as Oracle [Ora92]) the database user has the ability to cluster data as he/she desires
using a “CREATE CLUSTER” command. This should still be allowed in a temporal environment which implies
that the temporal interface layer must be able to recognize such statements and cluster the data accordingly. How
to do this is an open research issue and requires much further examination. Nonetheless, in the following section
we briefly explore how the temporal data can be easily clustered on the user key, while at the same time indexing
the temporal data.

4.2 Example

In this section we briefly examine one approach to implement the simple example shown in Figure 2. In this case
(as is shown) the data is partitioned into two parts: one for the MAP21 tree and one for the OET. Assuming that
the user also wishes to frequently access via the user key (which is the Employee ID, denoted byempid) we
cluster the temporal data accordingly. Below we show sample SQL code (using the format of SQL*Plus from
Oracle [Ora92]) which might be generated by the temporal interface:

CREATE CLUSTER empid_cl (id char(2));
CREATE INDEX empid_cl_ind ON CLUSTER empid_cl;
CREATE TABLE employee_closed(
empid char(2) not null,
dept char(1),
mapped_vsve number(2)
) CLUSTER empid_cl (empid);

CREATE INDEX employee_map21 ON employee_closed (mapped_vsve);
CREATE TABLE employee_open(
empid char(2) not null,
dept char(1),
vs number(1)
) CLUSTER empid_cl (empid);

CREATE INDEX employee_oet ON employee_open (vs);

Notice that we did not create a primary index on the user key. However the cluster and its index serve the
purpose of such an index. Keep in mind, though, that this contains duplicates. However, because of the clustering,
all duplicate records with the same user key values will be stored close together. Using Oracle as an example
DBMS this will create two tables,employee closed andemployee open, stored together and clustered
by empid. The data with open ended ranges is placed in theemployee open table and indexed by the OET,

9



employee oet. Three B�-trees indices will be created2. The clustering index based on the key ofempid will
allow efficient access of data viaempid. The MAP21 index,employee closed map21, indexes the table
employee closed by vs andve combined.

5 Performance Analysis

In this section we compare the performance yielded by MAP21 against those by Time Index and by R�-tree We
examine the space (i.e., number of disk blocks to store the structure) and the time (i.e., number of disk blocks read)
needed to process the queries discussed earlier. MAP21 and the R�-tree were actually implemented. The Time
Index was partially implemented on top of a B�-tree, with its incremental buckets being simulated (we discuss
such simulation in Appendix A.1).

We chose the Time Index because it is a conceptually simple structure, which despite its inefficient use of
storage may yield good average query processing time. It has also been used as a reference structure in other
published research [SOL94, K�94, AT95, G�96]. Furthermore, the TP-index and the Interval B-tree have rather
unique internal data structures, and we believe that the use of simple data structures, such as the B�-trees, is a
very desirable important feature of temporal indices, if they aim at being of practical use.

The B�-tree based TP Index [G�96], recently published, deserves a deeper discussion. As the TP-index
[SOL94], it maps a rangeV � �Vs� Ve� into a two-dimensional point�Vs� Ve � Vs�. Instead of mapping a query
on a two-dimensional search problem, the authors propose to use an ordering among the spatial points (which is
basically a mapping, although very different from MAP21’s), and this ordering is then reflected into those points
in the leaf nodes of a B�-tree. Figure 7(a) shows the B�-tree based TP-index indexing the same data set of
Figure 2 and Figures 7(b) and (c) show two possible mappings, respectively denoted as horizontal and vertical.
For example, the data items in Figure 7(a) would have the orderfE41, E32, E11, E21, E31, E42, E12g under the
horizontal ordering and the orderfE11, E21, E31, E41, E32, E12, E42g under the vertical ordering, which are
obviously quite distinct.

E11 0

0

3

ID Vs Ve

E12 4

E21 5

E31 70

E32 8 9

E41 2 3

now

E42 8 now

Data Set

E42

E12

y (Ve-Vs)

x (Vs)

x+y = NOW

(a) An instance of the TP-index

y (Ve-Vs)

x (Vs)

x+y = NOW

E32

E21

E31

E41

y (Ve-Vs)

x (Vs)

x+y = NOW

(b) horizontal order (c) vertical order

E11

Figure 7: Illustrating the B�-tree based TP-index
.

The major problem in this approach is that “... different indexes (constructed using different ordering relations)
may be used to support the various types of queries” [G�96]. That is, for some queries the horizontal mapping
is appropriate, but it may may not be for others. This does not mean an adequate mapping cannot be always
found, but it does mean that one may need to maintain (concurrently) several indices, each representing a different
mapping, which may not be very desirable. Furthermore, “... not all temporal queries may be mapped to a simple
range query, it may be necessary for the spatial search to be decomposed into a number of interval queries” [G�96].
For all those reasons we believe MAP21 is a superior temporal access structure. The authors compared, only by
analytical means though, their approach to Time Index. As with MAP21, they found their technique to require
less space and the number of pages accessed was somewhat smaller. However, their comparison was based on one
query: “Retrieve all persons who arrived during the interval�Ts� Te�” and one single ordering (V-ordering). Their
comparison did not examine different orderings or more general queries. In addition, the paper does not present

2Oracle uses a variation of the B�-tree called a B�-tree. This probably creates a more efficient way to implement MAP21 as the fill factor
of each node is greater. Nevertheless, using B�-trees instead of B�-trees is irrelevant as far as MAP21’s rationale is concerned.

10



a methodology to chose the underlying order based on the queries. Thus, to avoid taking the risk of not using the
best ordering for the queries we investigated, we elected not to compare their approach to ours. Finally it is not
clear how (or whether it would be possible) to parallelize access to the B�-tree based TP-index.

Due to the fact that we do not impose any requirement on the order the ranges are input, nor is the MAP21
specialized for such requirement, we do not compare it to those indexing structures based on transaction time (Time
Split B-tree) or monotonically growing valid (start) time (Monotonic B�-tree, Append-Only tree and Snapshot
Index).

The R-tree [Gut84] is probably the most well known data structure for spatial indexing, and although we
are dealing with ranges in the temporal domain, they can be understood as segments in the one dimensional
space. Such segments can be seen as degenerate minimum bounding rectangles (MBRs), and indexed in a one-
dimensional R-tree. However, more recent work upon R-trees have designed more efficient R-tree “derivatives”.
Such as the R�-tree [SRF87] and the R�-tree [BKSS90]. (We review them briefly in Appendix A.2). It has been
well argued in the literature that R�-trees perform better than R-trees and R�-trees [BKSS90, TP95, KSCL95].
We thus chose to use the R�-tree

There are other techniques for indexing spatial data. Among those we can cite those based on mapping N-
dimensional objects to points in the N-dimensional space, such as the Z-ordering [Ore86] and the DOT approach
[FR91]. The Z-ordering transforms a spatial object, not necessarily a rectangle, to one or more, possibly disjoint,
segments in the one dimensional space. Similarly to the R�-tree, this results in the possible replication of pointers
to objects, which is a feature we would rather avoid. A good feature of the Z-ordering is that it can manage, besides
MBRs, other “non-regular” structures. Unfortunately though, such a feature is of no use in our application domain.
Unlike the MAP21 mapping, which preserves the lexicographical ordering among the ranges, DOT preserves the
distance among them by using a fractal curve for the range mapping. To index one dimensional ranges, DOT
transform them into two-dimensional points (step called 1st-transformation) and then, via fractal functions, maps
such points again into one dimensional space (called 2nd transformation). In [FR91] DOT is shown to be up to
50% faster than the linear R-tree [Gut84]. In this paper we compare MAP21 to the R�-tree, which has been shown
to be up to 400% faster than the linear R-tree [BKSS90]. We thus conjuncture that if we verify MAP21 to be at
least comparable to the R�-tree, then it is quite safe to conclude that MAP21 outperforms the R-tree as well, and
this is accomplished by a much simpler approach than DOT’s. Finally, it seems that the DOT technique cannot be
easily paralellized, unlike MAP21. The same observation holds true for the Z-ordering approach.

5.1 Assumptions

In most of the experiments conducted next we assume that there are no open-ended valid time ranges, even though
both the MAP21 and the R�-tree can support them. The reason for such an assumption is that indexing open-ended
ranges would not help to compare the performance of the investigated structures. This is discussed in more detail
later (in Section 5.4.5). Nevertheless, for the sake of completeness, we do investigate MAP21’s performance with
respect to the presence of open-ended ranges (even though not in a comparative way).

In order to conduct our experiments to evaluate MAP21’s performance we adopted the parameters shown in
Table 1. The reasoning behind the choices for the ranges length is that we believe that TDBs are to keep track
of records which are updated often, therefore large values to those ranges would not reflect that. In Section 5.2
we present the size of the structures, while in Section 5.3 we investigate the query processing time (by means of
the number of I/Os needed to process several types of queries). In Section 5.4 we vary some of the parameters in
Table 1, e.g., distribution of the ranges length (where we employ an exponential distribution instead of a uniform).

The range and query lengths were generated using a uniform distribution with the maximum generated range
lengths being those shown in Table 1 (the mean being, naturally, half of those). We first generate the range length,
and then a starting point within the range��� V max

e � is generated (also using a uniform distribution) until the
generated range fits in��� V max

e �. A set of 250 queries was also generated using the same scheme and we report
the average number of nodes accessed, i.e., the number of I/Os yielded.

We ran tests using a single and two MAP21 trees, for the last one a parallel implementation was simulated by
neglecting any CPU overhead and using the maximum number of I/Os implied by any of the trees as the overall
number of I/Os needed to process a query. We denote those by MAP21, 2-MAP21 and 2P-MAP21 respectively.
Even though a larger number of trees could be used we will show that as few as two parallel MAP21 trees suffices
to deliver the best overall performance.

11



Table 1: Parameters used in the experiments conducted.

Parameter Value Comments/Used for

Disk block size 1024 bytes Equal to a node in the trees
V max
e 2000 time units Maximum possible time value (�� NOW )

VSL, VSQ Uniform(0, 1% ofV max
e ) Very Short Lifespan and Queries

SL, SQ Uniform(0, 5% ofV max
e ) Short Lifespan and Queries

ML, MQ Uniform(0, 10% ofV max
e ) Medium Lifespan and Queries

LL, LQ Uniform(0, 20% ofV max
e ) Long Lifespan and Queries

VLL, VLQ Uniform(0, 50% ofV max
e ) Very Long Lifespan and Queries

Nr 10000 Number of ranges

 VSL, SL, ML, LL, VLL Upper bound for range lengths
Note: We use the term lifespan and valid time range length interchangeably

5.2 Index Size

We first compared the size (in number of nodes, i.e., disk blocks being used) of the indices. MAP21 indexes a
range via the mapping function���� defined in Equation 1. The size (in bytes) of the data type indexed is twice as
big as the size of each end point of the input range and this was taken into account. When multiple MAP21 trees
are employed, the size reported was the combined total size of all trees. We do not include disk blocks used to
hold the actual data records, but only the indexing structures themselves.

0

50

100

150

200

250

300

350

400

1%5% 10% 20% 50%

In
de

x 
S

iz
e 

(d
is

k 
bl

oc
ks

 u
se

d)

Maximum Lifespan (percent of total modeled time)

R* tree
MAP21

2-MAP21
Time Index

Figure 8: Size of the indexing trees (one tree node = one disk block).

Figure 8 shows the results obtained. The MAP21 tree, i.e., the B�-tree underneath it, consumed less than
10% more storage than the R�-tree. Note that as the average lifespan increases, the amount of replication in Time
Index’s incremental buckets also increases, and hence the overall size of that index grows rather sharply.

Using multiple trees implied very small, if any, storage overhead, i.e., the sum of the multiple tree sizes is
approximately the same size as the single tree. We observed, though, that the size of the trees depends on the
ordering in the input data. In fact, due to the “plain” B�-tree framework the worst case happens when the ranges
are input in lexicographical order. In that case, once a node splits it will remain nearly half empty, because no
indexing value will be input in any other leaf but the rightmost one.

5.3 Query Processing Time

To investigate the query processing time, we first ran experiments by fixing the lifespan length as very short,
medium and very large, and queried each of those data sets for intersections, inclusions and containments using all

12



five sizes of queries. The cases where the lifespans were short and long are not shown for brevity, but did follow
the trend suggested by the results reported.

5.3.1 Intersection Query

0

5

10

15

20

25

30

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query Length (percent of total modeled time)

2P-MAP21
R* tree
MAP21

Time Index
2-MAP21

Figure 9: Intersection query performance when indexing very short lifespans

0

5

10

15

20

25

30

35

40

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query Length (percent of total modeled time)

2P-MAP21
Time Index

R* tree
2-MAP21

MAP21

Figure 10: Intersection query performance when indexing medium lifespans

Results for the intersection query are presented in Figures 9, 10 and 11. As the number of leaves scanned in
the Time Index depends chiefly on the query length, its performance degrades slower (as the lifespan increases)
than the other structures, indeed it yields the least number of I/Os for very large lifespan. It is important to
remember though, that when indexing very long lifespans Time Index is nearly 300% larger than the R�-tree and
MAP21 (using one or two trees). When indexing very short lifespans two non-parallel MAP21 trees yield worse
performance than using a single one. This happens because the “local”
 of those trees are relatively close to each
other and thus there is little gain in the local
s. On the other hand, when indexing very large lifespans, the local

s are farther apart, and thus the gain in using smaller local
s can be better appreciated. Two parallel MAP21
trees are always faster than the R�-tree and much smaller than the Time Index.

Point and Extremely Short Queries For the sake of completeness, we also investigate the performance of all
access structures with respect to point and (what we call) extremely short queries. For simplicity we have set the
lifespan fixed at the medium size and varied the query size from point queries (i.e., zero length) to queries as large

13



0

10

20

30

40

50

60

70

80

90

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query Length (percent of total modeled time)

Time Index
2P-MAP21

R* tree
2-MAP21

MAP21

Figure 11: Intersection query performance when indexing very long lifespans

as only 0.5%V max
e . The results are shown in Figure 12. We can observe that the results are similar to those

in Figure 10, when the query length is very short. Again, we can verify that using multiple parallel trees is the
best overall approach, i.e., while Time Index presents virtually the same query processing time, MAP21 is always
smaller.

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query length (% of VeMax)

2P-MAP21
Time Index

R* tree
2-MAP21

MAP21

Figure 12: Intersection query performance when querying points and extremely short ranges (indexing medium
lifespans).

5.3.2 Inclusion Query

Figures 13, 14 and 15 show the experiments carried out using the inclusion query. It is easy to see that the R�-trees
are not very efficient to process inclusion queries. As discussed in Appendix A.2, this is due to the fact that the
R�-tree is traversed in the very same way when processing an intersection query or an inclusion query, and, in a
sense, inclusion queries are much less demanding than intersection queries. Therefore, even the single tree based
MAP21 is better than the R�-tree in all cases. In fact, as the indexed lifespans increase, so does the gap between
MAP21’s and R�-tree’s performance.

In general, as the query length increases using multiple MAP21 trees is worthwhile (i.e., better than using a
single tree) only if they are implemented in parallel. This can be explained as follows. If the query length is large
enough, most, if not all (due to the uniform distribution), indexed ranges in the “initial” trees (i.e., those indexing
smaller ranges) will be part of the answer, hence all such leaf nodes will be scanned. In a single tree the same
ranges would have a more clustered ordering which would imply only one smaller linear scan. See, for instance,

14



0

5

10

15

20

25

30

35

40

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query length (percent of total modeled time)

2P-MAP21
MAP21

2-MAP21
R* tree

Time Index

Figure 13: Inclusion query performance when indexing very short lifespans

0

5

10

15

20

25

30

35

40

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query length (percent of total modeled time)

2P-MAP21
MAP21

2-MAP21
R* tree

Time Index

Figure 14: Inclusion query performance when indexing medium lifespans

the case when very long lifespans are indexed (Figure 15). When two MAP21 trees are used, non-parallel MAP21
trees are viable only for long sized (or smaller) queries. We conclude, as a rule of thumb, that using non-parallel
MAP21 trees is worthwhile only when the query size is smaller then the average indexed lifespans, on the other
hand operating MAP21 in parallel is always the best option.

5.3.3 Containment Query

Recall that the containment query is most meaningful when there are indexed ranges with a lifespan larger than
the query length. This is particularly important in the case where multiple trees are used, because if a tree indexes
only lifespans smaller than the query then it need not be traversed. Nevertheless, neither the Time Index nor the
R�-tree seem to be able to take advantage of such fact. In order to not bias the conclusion towards MAP21 we run
tests using very long lifespans only, hence we are assured (due to the uniform distribution of the ranges length)
that it is very likely that some indexed ranges contain the queried range.

The results are shown in Figure 16. It is quite natural to think that the larger the query the less ranges will
be selected in the answer. Hence it would be desirable that the indexing structure would also require less I/Os
as the query size increases. That is exactly what MAP21 and the R�-tree do, with MAP21 requiring on average
30% more I/Os. The Time Index is far more efficient than MAP21 and the R�-tree for small queries. However,
instead of decreasing the number of I/Os needed as the query size increases, the number of I/Os actually increases
proportionally to it. This is due, as discussed before for the intersection query, to the fact that the length of the
linear scan in the Time Index tree is dictated mainly by the query size, regardless of the answer size. Notice that

15



0

10

20

30

40

50

60

70

80

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query length (percent of total modeled time)

2P-MAP21
MAP21

2-MAP21
R* tree

Time Index

Figure 15: Inclusion query performance when indexing very long lifespans

0

10

20

30

40

50

60

1%5% 10% 20% 50%

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Query length (percent of total modeled time)

Time Index
2P-MAP21

R* tree
2-MAP21

MAP21

Figure 16: Containment query performance when indexing very long lifespans

an average query size larger than a very long query, would deem Time Index to be worse than both the R�-tree and
MAP21.

By analysing Figure 16 we verified that multiple MAP21 trees (even if not implemented in parallel) were
always faster than the single tree counterpart. This happens because not all trees are traversed for all queries (as
was the case for the inclusion query). In fact for larger query sizes, the initial trees are not traversed at all, because
they cannot contain a large range. Hence the sharper drop in the MAP21’s performance as the query gets larger.
The non-parallel MAP21 are not as efficient as the Time Index for smaller queries, although they are for larger
queries. Nonetheless, the parallel MAP21 trees are always better than the R�-trees and better than the Time Index
for lifespans larger than what we defined as medium. One should not forget that the high efficiency of Time Index
is obtained at the expense of a large storage, where as MAP21, using single or multiple trees is always much
smaller than the Time Index.

5.4 Varying Other Parameters

In the results just discussed we have used the parameters in Table 1, i.e., we have basically set some constants and
varied the length of the indexed lifespan and queries.

For the sake of completeness, in this section we vary the disk block,V max
e , Nr and the distribution of the

lifespan ranges, one at a time. We fixed the maximum lifespan and maximum query length in the medium range,
i.e., both are set to 10% of the currentV max

e . We conclude this section by investigating MAP21’s performance
with respect to the ratio of open-ended ranges.

16



Finally, due to limited space we show only the experiments we ran using the intersection query as, in a sense,
this is the most demanding one. The qualitative behavior of the other types of queries was not significantly
different.

5.4.1 Varying the Modeled Time Frame Size –Vmax
e

In our previous runs we used a fixedV max
e � 
� ��� time units. As Time Index indexes both end points of

the ranges, the number of indexing points which could be actually indexed was upper bounded byV max
e , i.e.,

2,000. On the other hand, MAP21 maps each distinct range to a point and thus it might index (using the same
data set) a much higher number of distinct points. The same is valid for the data under the R�-tree. Therefore
we experimented using different values forV max

e , from 5,000 up to 30,000 in increments of 5,000. Note that
the maximum lifespan size and the maximum query length are proportional (10%) to the currentV max

e , therefore
these values increase withV max

e .

0

100

200

300

400

500

600

700

5000 10000 15000 20000 25000 30000

In
de

x 
S

iz
e 

(n
um

be
r 

of
 b

lo
ck

s 
ac

ce
ss

ed
)

Length of modeled time frame (starting at 0)

R* tree
MAP21

2-MAP21
Time Index

0

5

10

15

20

25

5000 10000 15000 20000 25000 30000

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Length of modeled time frame (starting at 0)

2P-MAP21
2-MAP21

R* tree
MAP21

Time Index

(a) Index sizes. (b) Query performance.

Figure 17: VaryingV max
e .

In terms of size (see Figure 17(a)), neither MAP21 nor the R�-tree are affected by the increase inV max
e ,

basically because the size of these structures is a function ofNr much more than ofV max
e . Time Index, however,

is affected by the variance inV max
e . The greater it is, the more distinct indexed points are generated and thus

the more populated the index. Consequently the more incremental buckets are also needed. Figure 17(b) shows
the results in terms of I/Os for query processing. As we expected, the Time Index is the best alternative for small
values ofV max

e . As it increases, the structure becomes larger (as discussed above), and thus the queries are more
expensive to process. As before, using two parallel MAP21 trees offers the best overall performance.

5.4.2 Varying the Number of Indexed Ranges –Nr

We also run experiments varyingNr = 1,000; 5,000; 10,000; 20,000 and 30,000. The size of the indexing struc-
tures are shown in Figure 18(a), while the query performance is shown in Figure 18(b).

None of the structures’ size seemed to be particularly sensitive to the increase inNr, all increased practically
linearly withNr. In terms of query performance however, we have some more interesting results. For rather small
values ofNr Time Index delivers the worst performance whereas it previously presented the best performance.
This is so because that for small values ofNr the length of the linear scan on the Time Index search is chiefly
dictated by the query length, whereas for both MAP21 and R�-tree it is dictated by the number of indexed ranges.
After Nr � �� ���, both MAP21’s and R�-tree’s performance decrease faster, due to the fact that both will have
more leaf nodes to search asNr increases. 2P-MAP21, on the other hand delivers performance comparable to
Time Index, while consuming less storage space.

17



0

50

100

150

200

250

300

350

400

5000 10000 15000 20000 25000 30000

In
de

x 
si

ze
 (

di
sk

 b
lo

ck
s 

us
ed

)

Number of indexed ranges

R* tree
MAP21

2-MAP21
Time Index

0

10

20

30

40

50

5000 10000 15000 20000 25000 30000

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Number of indexed ranges

2P-MAP21
Time Index

R* tree
2-MAP21

MAP21

(a) Index sizes. (b) Query performance.

Figure 18: VaryingNr.

0

50

100

150

200

250

300

350

400

600 800 1000 1200 1400 1600 1800 2000

In
de

x 
S

iz
e 

(n
um

be
r 

of
 b

lo
ck

s 
us

ed
)

Disk block (i.e., tree node) size in bytes

MAP21
2-MAP21

R* tree
Time Index

0

5

10

15

20

25

30

35

40

600 800 1000 1200 1400 1600 1800 2000

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Disk block (i.e., tree node) size in bytes

2P-MAP21
Time Index

R* tree
2-MAP21

MAP21

(a) Index sizes. (b) Query performance.

Figure 19: Varying page size.

5.4.3 Varying the Page Size

We finally experimented with a varying disk block size. In addition to the size of 1024 bytes used earlier, we
also use 512, and 2048 bytes. Figure 19(a) shows how the size of the indexing structures vary with the block
size. As expected, the bigger the block size the smaller the number of blocks needed for all structures. However,
Figure 19(b) also serves to confirm an interesting result. As discussed in Appendix A.1 that every leaf node in
the Time Index maintains an SC bucket in the leading entry with pointer to all records valid at that indexed point
in time. The bigger the leaves, the more values it holds and thus a smaller number of SC buckets is needed.
Basically, a long lived record will be replicated in less SC buckets. For this reason, we observe that the drop in the
number of nodes used for the Time Index is much sharper than for the other structures3. Notice that for block sizes
greater than 1024 Time Index’s curve shape follows the other structures. This happens because we are simulating
its incremental buckets. As the simulation assumes a block fully used, for larger block sizes one disk block is
probably enough to hold all incremental buckets, and thus the Time Index “degenerates” to a B�-tree with one
additional disk block.

The results regarding query processing are shown in Figure 19(b). For both MAP21 and the R�-tree larger
nodes allow more data to be indexed in a given node, hence the proportional reduction on the searching effort.

3This also serves to confirm that our simulation of the Time Index incremental buckets is based upon an accurate model.

18



The Time Index though, does not benefit as much in terms of query processing time. One reason is that there is
a minimum number of nodes it needs to read, namely to traverse down the tree, one leaf node and the associated
incremental buckets, which are hosted in at the very least one disk block. We believe that the small slope in Time
Index’s curve is due to the fact that it is approaching such point.

5.4.4 Using an Exponential Distribution for the Lifespan Lengths

In all previous experiments in this section we have used a fixed value for the
, namely 10% ofV max
e , and used

an underlying uniform distribution. This let us determine a good upper bound for
. In what follows we use
an exponential distribution for the lifespans, where the average of the generated values ispV max

e . The values
generated by such a distribution can lie, in theory in the interval������ but for simplicity we force them to lie in
��� V max

e �. Therefore, unlike when the uniform distribution was used, we cannot infer a good upper bound for the
ranges length, i.e., a tight value for
. We thus aim to investigate how much MAP21 is dependent on the choice
of 
. We have again fixedNr � ��� ���, V max

e � 
� ���, and the page size at 1,024 bytes and we use only the
medium sized intersection query. Thep value used in the generation of the range lengths varied between 1% and
50% (again, per our assumption that most records should have a relatively short lifespan). The results obtained are
detailed next.

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50

In
de

x 
S

iz
e 

(n
um

be
r 

of
 b

lo
ck

s 
us

ed
)

Average Lifespan (% VeMax)

Time Index
R* tree
MAP21

2-MAP21

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

Average lifespan (% of VeMax)

Time Index
2P-MAP21

2-MAP21
R* tree
MAP21

(a) Index sizes. (b) Query performance.

Figure 20: Varying the average lifepan size under an exponential distribution.

The sizes of the structures is shown in Figure 20(a). We again note a steep increase in Time Index’s size
as the average lifespan grows. Even though one cannot clearly see from the figure, it is interesting to note that
when using two MAP21 trees, and smallp values, one of the trees had only one node (obviously the root). This
happened because that tree was responsible to hold only large ranges, and due to the low average value, very few
of those where generated. Asp increased such long ranges were more numerous and thus the trees tended to have
a mode equivalent load. Nonetheless, comparing to previous results, the sizes of the investigated structures was
not affected by the different distribution in lifespan sizes.

A quite different conclusion can be made regarding query processing time. Figure 20(b) shows how MAP21 is
affected by a
 which is not very tight. This is easier to see by looking at the curves yielded by using two parallel
MAP21 trees. Whenp is small, there is virtually no difference whether or not one uses such trees in parallel.
This happens because one tree contain virtually all the ranges, and this single tree dominates the searching. As
p increases it becomes more advantageous to search both trees in parallel. The larger the average the higher the
likelihood that larger ranges are generated, and thus the better load balancing between the trees. This ultimately
implies a larger difference between using the two trees in parallel or not. The figure shows this trend well. It is
interesting to note though that the R�-tree’s curve had the highest growth rate. This can be explained by the fact
that asp increases, the number of larger ranges grows relatively faster, and also the ratio of overlaps, which leads
to this performance degeneration. The overall conclusion about not knowing a good
 when using MAP21 is that
it may indeed hurt its performance, and may render the use of parallel MAP21 trees not very effective. However,

19



the larger the average lifespan, the more effective is the use of parallel MAP21 trees. Finally, the Time Index had
the best performance, but at the expense of a much larger storage size (see Figure 20(a)).

5.4.5 Using the OET with MAP21 to Handle Open-Ended Ranges

When there are open-ended ranges, i.e., ranges whereVe � NOW , we propose to use another B�-tree, called
OET, to handle them. As a matter of fact the same approach could be used for both the Time Index and the
R�-tree. Under the Time Index, the open-ended ranges would cause a large number of replicated pointers to the
associated data records. If one consider that an open-ended range is basically valid (and thus replicated) from
its valid start time untilNOW , and thatNOW is always the largest indexed value, it is easy to see how fast
Time Index size, namely the number of SC buckets, will increase. The faster such number increases the faster
its overall performance degenerates as well. The R�-tree suffers from a different shortcoming, equally bad for
its performance though. It is natural to think that open-ended ranges tend to become larger as long as they are
kept open. Therefore those ranges increase the amount of overlap among all the indexed ranges. As argued in
the literature, the larger the overlap ratio, the more degenerated the R-tree performance, and the R�-tree, although
more resilient, is not an exception to the rule. Therefore the conclusion that an OET-like approach would benefit
both the Time Index and the R�-tree.

Nonetheless it is interesting to observe the behavior of the indexing structure with respect to the ratio of open-
ended ranges. Thus, in this section we investigate only MAP21’s behavior given that we do not wish to modify
either the original Time Index nor the R�-tree.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

In
de

x 
si

ze
 (

di
sk

 b
lo

ck
s 

us
ed

)

% of open-ended ranges

MAP21
OET

MAP21 + OET

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

N
um

be
r 

of
 I/

O
s 

(d
is

k 
bl

oc
ks

 a
cc

es
se

d)

% of open-ended ranges

MAP21
OET

MAP21 + OET

(a) Index sizes. (b) Query performance.

Figure 21: Varying the ratio of open-ended ranges.

We have then fixedNr� V
max
e as before (see Table 1) and the distribution of the closed ranges follow a uniform

distribution with lengths up to medium size. The query size is also fixed at medium. Finally we used only one
MAP21 tree, although we could have used several ones (in parallel or not). We vary the ratio of open-ended ranges
from 0% up to 90% of the total number of ranges. Observe that using 100% of the ranges as open-ended does
not make too much sense as (1) the overall approach reduces to a single B�-tree (the OET), and (2) our basic
concern is to propose an efficient approach to index ranges and not only points. To make the analysis simple we
assume that the time pointNOW is equal toV max

e , we also assume that the query range lies strictly in the interval
��� V max

e �.
Figure 21(a) shows the size of both the MAP21 tree and the OET. The overall size (i.e., MAP21’s plus OET’s)

is also shown. Recall that the OET indexes only one time point (Vs), which is half as big as the mapped range
indexed under the MAP21 tree. This explains why the sharper drop in MAP21’s size as it becomes less populated.
This also explains why the OET size grows much smoother. Overall, the larger the ratio of open-ended ranges, the
smaller the space consumed by the MAP21 approach.

The presence of open-ended ranges does not significantly affect MAP21’s performance, that is the conclusion
we can draw from Figure 21(b). We can observe that for small ratios of open-ended ranges the performance is

20



driven by the MAP21 tree. As that ratio increases the effort in searching the OET becomes the dominant factor.
The overall performance though (which can be derived by “summing up” both curves) does not vary in a significant
way. Notice that this implicitly assumes that both trees are searched sequentially. If the MAP21 tree and the OET
are hosted under different disks then they may be searched in parallel and the overall performance would follow
the shape of an wide open “V”, with its minimum given by a open-ended ranges ratio close to 50%.

6 Summary and Future Directions

We have presented MAP21, an indexing approach (rather than a new and specialized data structure) for temporal
ranges, which can be implemented using simple B�-trees. Hence, one of the appeals of such an approach is its
ease of implementation using available DBMS facilities, such as embedded SQL and the fact that most DBMSs
offer some sort of B�-tree implementation. The basic assumption made is that an exact upper bound for the length
of the temporal ranges indexed is kept. As data is never physically deleted from a VTDB we believe that such
assumption is reasonable. The larger such upper bound the greater the number of I/Os needed to process some
types of queries. To address this we have proposed the use of multiple trees, where the data set is partitioned based
upon the length of the valid time ranges. This can also be used to deal with the case where the ranges do not have
a uniformly distributed length.

MAP21 is about 1/3 larger than than the R�-tree, and much smaller than the Time Index. Unlike the Time
Index and like the R�-tree, its storage does not vary as a function of the average lifespan, but rather as a function
of the number of indexed ranges.

In terms of query processing time, We have seen that using as few as two parallel MAP21 trees was virtually
always the best choice. When it was not, it lost to the Time Index, which is a much larger structure. We have
observed that it is always a good option to partition the data among several MAP21 trees, even if not implemented
in parallel. An exception, which demands a bit more care is the case of inclusion queries. We have also shown
MAP21 to be resilient to several factors, such as the length of modeled time window, distribution of the lifespan
sizes (when using parallel trees) and ratio of open-ended ranges. We thus conclude that MAP21 is an atractive and
feasible alternative to index temporal data.

Future research regarding MAP21 will be towards two mainstreams. First, we plan on investigating how to
build the Temporal Interface mentioned in Section 4. Second, we will extend MAP21 to use it for indexing data
in higher dimensions. In such case, one could use two (or more) MAP21 trees to index spatial data. In fact, in our
preliminary studies [ND96] we used two MAP21 trees to index the projections (in both axes) of two-dimensional
MBRs, and we verified that such framework outperforms the classical R-tree [Gut84]. Likewise, one might use
two (or more) MAP21 trees to index each temporal dimension in a bitemporal database [KTF95, NDE96]. In such
case, however, we may specialize the MAP21 framework to more efficiently index transaction time, which has
very distinct characteristics when compared to valid time. We are currently verifying this issue in particular.

Acknowledgements

We wish to thank several people, specially: V. Kouramajian, R. Elmasri, R.T. Snodgrass, C.S. Jensen, A. Steiner,
G. Yap and the anonymous reviewers. Their feedback (as well as those from many colleagues) helped us improve
this paper. We acknowledge the use of Jan Janninck’s implementation of the B�-tree [Jan95] as MAP21’s frame-
work. The R�-tree implementation was kindly provided by Yannis Theodoridis. Mario A. Nascimento performed
this research while on leave from EMBRAPA at Southern Methodist University and supported by the Brazilian
National Research Council (CNPq, Process 260088/92.7). Margaret H. Dunham is with the Southern Methodist
University (mhd@seas.smu.edu).

A Appendix – An Introduction to the Time Index and the R-trees

In this section we briefly review the Time Index and the R�-tree. We focus on those issues related to this paper.
For further details refer to the original papers on the Time Index [EWK90] and on the R�-tree [BKSS90].

21



A.1 Time Index

The basic idea on the Time Index is to extend a B�-tree to index temporal ranges. This is done by indexing the
end points of each record’s lifespan (i.e., valid time range). That is, each record EIJ valid at each time point
Tk � �Vs� Ve�, will appear at the leaf node entry indexingTk. It is easy to see that as long as the object is valid its
“ID” is replicated, what consumes considerable space. To alliviate this problem the authors proposed the use of
incremental buckets. Such buckets are for those records valid in the previous node’s last entry and still valid in the
first entry of the current node (called SC bucket); and for those records that start or end being valid at a given entry
(called SP and SM, respectively). In such incremental approach, only the leading node of a leaf would hold all
IDs that are valid at that point in time, the subsequent nodes of that leaf would just record the IDs that are inserted
or deleted4.

Such incremental approach is shown in Figure 22. For good descriptions of the algorithms used to process
several types of queries using the Time Index framework described above we refer the reader to [Kou94].

E11

ID

E12

E21

E31

E32

E41

E42

Data Set

0

0

3

Vs Ve

4

5

70

8 9

2 3

now

8 now

A

A

B

B

C

C

A

Dept 20 4 6 8 10 now

Pointers to data records

E12, E42

E12

E32

E32,E42
E31

E41

E11,E21,E31

E12

E21

E21, E31

E11,E41

Time Index

Pointer to SC
Pointer to SP
Pointer to SM

Figure 22: An example Time Index [EWK93].

To the best of our knowledge, no research has been done regarding the parallelization of the Time Index.
Recently, some work has been done regarding the Monotonic B�-tree [KEC94], but this takes advantage of mono-
tonically increasign valid start time, which is not always the case with VTDBs in general.

Simulating Time Index’s Incremental Buckets – To implement the Time Index we have used the same B�-tree
source code used for MAP21, while the incremental buckets were simulated. We now discuss how such simulation
was implemented.

For each range the Time Index will index both end values, i.e., givenNr ranges, the Time Index will hold
Nr

values, where some may be repeated (but indexed only once). LetLi be the indexed lifespan length of recordi
and letL be the average length of the indexed ranges. The average number of versions valid at any given time is:P

Nr

i��
Li

Vmax
e

�
Nr

P
Nr

i��

Li
Nr

Vmax
e

� NrL
Vmax
e

.

While an internal node in the Time Index is exactly the same as an internal/leaf node in a B�-tree (see Fig-
ure 23(a)) the same is not true for the leaf nodes (depicted in Figure 23(b)) due to the incremental buckets. As-
suming that a pointer consumesSp bytes, and an indexing value consumesSv bytes, we can derive that a leaf node
(i.e., a disk block of sizeSd) in the Time Index can holdNv indexing points, whereNv � �Sd�
Sp���Sv�
Sp�.
Hence, if the leaf nodes are in averageln 
 full [Yao78], we needNl � 
Nr��Nv ln 
� leaf nodes to index all
Nr

values.
Therefore every leaf node has an SC bucket of size:NrL

Vmax
e

Sp i.e., one pointer to each version valid at the

indexing point in the leading entry of that node. The number of disk blocks consumed by such bucket isNrL
Vmax
e

Sp
Sd

and the total space needed by all SC buckets is obtained by multiplying this equation byNl.

4Insertion (deletion) meaning that such an ID is starting (ending) to be valid at that point in time

22



... leaf
next

Indexed (time) values

...

Indexed (time) values

(a) Internal nodes in the Time Index

Pointers to internal/leaf nodes

(internal/leaf nodes in a B+-tree)
(b) Leaf nodes in the Time Index

SP
SM SM

SP
SM

SP
SM

SP

SC

Figure 23: Internal and leaf nodes in the Time Index.

The number of disk blocks consumed by the SP (SM) buckets is found similarly. GivenV max
e possible time

points and
Nr end values of theNr ranges, we have on averageNr�V
max
e ranges starting (ending) at any of the

V max
e possible indexable time points. Hence, we have that each SP (SM) bucket consumesNr

Vmax
e

Sp
Sd

space in a
disk block.

Note that, when compared to a “standard” B�-tree leaf node, a leaf node in the Time Index indexes a smaller
number of values. This is due to the overhead space consumed for the incremental buckets (clearly seen in
Figure 23(b)). By assuming a “standard” B�-tree leaf node for the Time Index and simulating the incremental
buckets we are not impairing the Time Index performance. In fact, we are improving its performance, by allowing
more entries per leaf, and thus less leaf nodes are to be traversed in Time Index’s query processing. Therefore all
results shown in this study provide in fact optimistic values for the Time Index’s size and query processing time.

A.2 R-Trees

The R-tree was first developed by Guttman [Gut84] and is almost certainly the most well-known indexing struc-
ture for spatial data. The main assumption is that the objects to be indexed can be modeled by means of the
smallest rectangle, called Minimum Bounding Rectangles (MBRs), that contain them. Although such MBRs are
N-dimensional, we, for simplicity, refer to them as if they were two dimensional rectangles.

The R-tree [Gut84] is a hierachical data structure, designed to index minimum bounding rectangles (MBRs)
and which resembles the B�-tree in many aspects. It is paginated, balanced, has the leaf nodes pointing to the
actual data records, and non leaf nodes pointing to either leaf nodes or represent a super-MBR which englobes
other super-MBRs or MBRs. Figure 24 (adapted from [SRF87]) shows an example of MBRs (C, D, E, ..., J) and
super-MBRs (A and B) and the resulting R-tree.

The R�-tree [SRF87] and the R�-tree [BKSS90] are R-tree derivatives which address the R-tree’s original
problems in dealing with a large degree of overlap among the indexed MBRs.

G H I J

A B

DC E FJ

G
F

C

E

I

A B

H

D

Figure 24: A sample of MBRs and the resulting R-tree (adapted from [SRF87]).

The authors of the R�-tree propose that MBRs need not be indexed as a whole unit, but rather may be “clipped”
in such a way that no super-MBR has any overlap with any other super-MBR in the internal nodes of the structure.
This may enhance the query processing time significantly but causes the overall index size to increase.

When designing the R�-tree, the authors noticed that simply deleting a the heuristics employed by the R-tree
made poor decisions which led to poor performance in the long term. The authors of the R�-tree then proposed
the concept of forced re-insertion, sometimes also referred to as deferred spliting. Simply putting, the main idea
is to, whenever a node split is to occur, to delete some of the MBRs in the node about to be split and re-insert

23



them. This will avoid the split while ensuring (by the virtue of the heuristics employed to select the MBRs) good
properties of the R-tree, hence improving performance considerably [BKSS90]. Notice that the R-tree and R�-
tree are essentially the same structure, unlike the R�-tree. The basic difference is in the node split policy. It is
worthwhile mentioning that the CPU cost of the update in the R�-tree is higher than that of the R-tree, which is
paid-off with the increase in the query processing performance. As argued earlier (Section 5) is recognized to be
the R-tree derivative to present the best overall performance.

There is one shortcoming regarding the R-tree family of structures, which is worthwhile discussing. The way
the tree is constructed, makes it very intuitive to search for MBRs that either overlap or contain a reference MBR.
Indeed, to answer a query where one needs all MBRs that overlap (intersect with) a reference MBR (which we
denote byR) the procedure is the following: Start from the root traversing each sub-tree with a root (super-MBR)
which intersects withR until the leaf node is reached (possibly several ones) is reached. Then each entry in that
leaf is compared toR and returned or not as part of the response. (Notice that possibly several leaf nodes may be
reached, and some may not contribute to the answer at all.) However, if one is interested in the MBRs which are
contained within a reference MBR, the R-tree (or the R�-tree) performance degrades to that of an overlap query.
The reason is that any super-MBR that overlaps the reference may contain another super-MBR (or MBR if it is
in a leaf node) that is contained within that very same reference. Therefore, the search for the MBRs contained
within a reference is identical to the search of the MBRs that overlap that reference. The only difference is made at
the leaf nodes level, when only those actually contained within the reference are returned as part of the response.
Notice that if the reference MBR is small, the search may be very unproductive, as several useless sub-trees will
eventually be searched. So, the R�-tree (as well as the R-tree) suffers from one drawback MAP21 also does,
namely reading useless data pointers. In the processing of a query not all indexed MBRs in a leaf node actually
belong to the answer and thus must be filtered out. Note that in the inclusion query, this becomes even worse, it
may read whole sub-trees (all the way down to the leaf nodes) that do not contribute to the answer.

Some work has been done regarding the parallelization of the R-tree [KF92]. However, as R-trees (or deriva-
tives) are not widely available in most commercial DBMSs (there seem to exist exceptions though, such as CA-
OpenIngres5) we believe that Parallel R-trees cannot be claimed to be a practical approach, unlike MAP21. To our
knowledge no research has been done on parallelizing the R�-tree or the R�-tree.

References

[AT95] C-H. Ang and K-P. Tan. The interval B-tree.Information Processing Letters, 53(2):85–89, January
1995.

[BKSS90] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: An efficient and robust access
method for points and rectangles. InProceedings of the 1990 ACM SIGMOD International Confer-
encee on Management of Data, pages 322–331, Atlantic City, NJ, June 1990.

[CDI�94] J. Clifford, C. Dyreson, T. Isakowitz, C.S. Jensen, and R.T. Snodgrass. On the semantics of “NOW”
in temporal databases. Technical Report R-94-2047, Dept. of Mathematics and Computer Science,
Aalborg University, November 1994.

[EN94] R. Elmasri and S.B. Navathe.Fundamentals of Database Systems. Benjamin/Cummings, Redwood
City, CA, 2nd edition, 1994.

[EWK90] R. Elmasri, G.T.J. Wuu, and Y.-J. Kim. The Time Index: An access structure for temporal data. InPro-
ceedings of the 16th Very Large Databases Conference (VLDB’90), pages 1–12, Brisbane, Australia,
1990.

[EWK93] R. Elmasri, G.T.J. Wuu, and V. Kouramajian. The Time Index and the Monotonic B�-tree. In A. Tansel
et al., editors,Temporal Databases: Theory, Design and Implementation, chapter 18, pages 433–456.
Benjamin/Cummings, Redwood City, CA, 1993.

[FR91] C. Faloutsos and Y. Rong. DOT: A spatial access method using fractals. InProceedings of the 7th
IEEE International Conference on Data Engineering, pages 152–159, Kobe, Japan, April 1991.

5As per URL http://www.cai.com/products/addbm/oidir/oidir.htm (as of December 19, 1996).

24



[G�96] C.H. Goh et al. Indexing temporal data using existing B�-trees.Data and Knowledged Engineering,
18:147–165, 1996.

[GS93] H. Gunadhi and A. Segev. Efficient indexing methods for temporal relations.IEEE Transactions on
Knowledge and Data Engineering, 5(3):496–509, June 1993.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProceedings of the 1984
ACM SIGMOD International Conferencee on Management of Data, pages 47–57, Jun 1984.

[Jan95] J. Janninck. Implementing deletions in B�-trees.ACM SIGMOD Record, 24(1):6–8, March 1995.

[JCG�94] C.S. Jensen, J. Clifford, S.K. Gadia, A. Segev, and R.T. Snodgrass. A consensus glossary of temporal
database concepts.ACM SIGMOD Record, 23(1):52–64, Jan 1994.

[JS93] T. Jonhson and D. Shasha. The performance of concurrent data structure algorithms.Transactions on
Database Systems, 18(1):51–101, March 1993.

[K�94] V. Kouramajian et al. The Time Index�: An incremental access structure for temporal databases.
In Proceedings of Third International Conference on Knowledge and Management (CIKM’94), pages
296–303, Gaithersburg, MD, November 1994.

[KEC94] V. Kouramajian, R. Elmasri, and A. Chaudhry. Declustering techniques for parallelizing temporal
access structures. InProceedings of the 10th IEEE International Conference on Data Engineering,
pages 232–242, Houston, TX, February 1994.

[KF92] I. Kamel and C. Faloutsos. Parallel R-trees. InProceedings of the 1992 ACM SIGMOD International
Conferencee on Management of Data, pages 195–204, San Diego, CA, June 1992.

[Kli93] N. Kline. An update of the temporal database bibliography.ACM SIGMOD Record, 22(4):66–80,
December 1993.

[Kou94] V. Kouramajian.Temporal Databases: Access Structures, Search Methods, Migration Strategies, and
Declustering Techniques. PhD thesis, University of Texas at Arlington, Arlington, TX, 1994.

[KSCL95] M.S. Kim, Y.S. Shin, M.J. Cho, and K.J. Li. A comparative study of spatial access methods. In
Proceedings of the 3rd ACM International Workshop on Advances in Geographic Information Systems
(ACM-GIS’95), pages 29–36, Baltimore, MD, December 1995.

[KTF95] A. Kumar, V.J. Tsotras, and C. Faloutsos. Access methods for bi-temporal databases. InProceedings of
the International Workshop on Temporal Databases, Workshop in Computing, pages 235–254, Zurich,
Switzerland, September 1995. Springer and British Computer Society.

[LS93] D. Lomet and B. Salzberg. Transaction time databases. In A. Tansel et al., editors,Temporal
Databases: Theory, Design and Implementation, chapter 16, pages 388–417. Benjamin/Cummings,
Redwood City, CA, 1993.

[McK86] E. McKenzie. Bibliography: Temporal databases.ACM SIGMOD Record, 15(4):40–52, December
1986.

[Nas96] M.A. Nascimento.Efficient Indexing of Temporal Databases Via B�-trees. PhD thesis, Southern
Methodist University, Dallas, TX, August 1996. Available at URL http://www.dcc.unicamp.br/�mario/
Papers/dissertation.ps.

[ND96] M.A. Nascimento and M.H. Dunham. Using B�-trees as a practical alternative to the classical R-tree.
In Proceedings of the 12th Brazilian Symposium on Databases (SBBD’96), pages 187–200, S˜ao Carlos,
Brazil, October 1996. Available at URL http://www.dcc.unicamp.br/�mario/Papers/tr-96-cse-05.ps.

[NDE96] M.A. Nascimento, M.H. Dunham, and R. Elmasri. M-IVTT: An index for bitemporal databases.
In Proceedings of the 7th International Conference on Databases and Expert Systems Applications
(DEXA’96), pages 779–790, Zurich, Switzerland, September 1996. Lecture Notes in Computer Sci-
ence, Vol. 1134.

25



[Ora92] Oracle.Oracle 7 Server - SQL Language Reference Manual. Oracle Corp., 1992.

[Ore86] J. Orestein. Spatial query processing in an object-oriented database system. InProceedings of the 1986
ACM SIGMOD International Conferencee on Management of Data, pages 326–336, Washington, DC,
May 1986.

[ÖS95] G.Özsoyoğlu and R.T. Snodgrass. Temporal and real-time databases: A survey.IEEE Transactions
on Knowledge and Data Engineering, 7(4):513–532, August 1995.

[SA86] R.T. Snodgrass and I. Ahn. Temporal databases.IEEE Computer, 19(9):35–42, September 1986.

[SKS95] M.D. Soo, N. Kline, and R.T. Snodgrass. SQL-92 compatibility issues. In R.T. Snodgrass, editor,The
TSQL2 Temporal Query Language, chapter 26, pages 501–504. Kluwer Academic, Boston, MA, 1995.

[Sno95] R.T. Snodgrass, editor.The TSQL2 Temporal Query Language. Kluwer Academic, Boston, MA, 1995.

[SOL94] H. Shen, B.C. Ooi, and H. Lu. The TP-Index: A dynamic and efficient indexing mechanism for
temporal databases. InProceedings of the 10th IEEE International Conference on Data Engineering,
pages 274–281, Houston, TX, February 1994.

[Soo91] M.D. Soo. Bibliography on temporal databases.ACM SIGMOD Record, 20(1):14–23, March 1991.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R�-tree: A dynamic index for multidimensional
objects. InProceedings of the 13th Very Large Databases Conference (VLDB’87), pages 507–518,
Brighton, England, September 1987.

[ST94] B. Salzberg and V.J. Tsotras. A comparison of access methods for time evolving data. Technical
Report NU-CCS-94-21, College of Computer Science, Northeastern University, 1994. (Also published
as Technical Report CATT-TR-94-81 at Polytechnic University).

[Ste96] A. Steiner. TimeDB home page. URL: http://www.inf.ethz.ch/personal/steiner/TimeDB.html, 1996.

[TK95] V.J. Tsotras and N. Kangelaris. The snapshot index, an I/O optimal access method for timeslice queries.
Information Systems, 3(20):237–260, 1995.

[TK96] V.J. Tsotras and A. Kumar. Temporal database bibliography update.ACM SIGMOD Record, 25(1):41–
51, March 1996.

[TP95] Y. Theodoridis and D. Papadias. Range queries involving spatial relations: A performance analy-
sis. InProceedings of the 2nd International Conference on Spatial Information Theory (COSIT’95),
Semmering, Austria, September 1995.

[Yao78] A. Yao. 2-3 trees.Acta Informatica, 2(9):159–170, 1978.

26


