Vacuuming Temporal Databases

Janne Skyt, Christian S. Jensen

September 4, 1998

TR-32

A TIMECENTER Technical Report

Title

Vacuuming Temporal Databases

Copyright(©) 1998 Janne Skyt, Christian S. Jensen. All rights reserved.

Author(s) Janne Skyt, Christian S. Jensen

Publication History September 1998. AiME CENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector), Michael HHBn, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimoSastenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Sudha Ram

Individual participants

Anindya Datta, Georgia Institute of Technology, USA

Kwang W. Nam, Chungbuk National University, Korea

Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, TimeConsult, Switzerland

Vassilis Tsotras, Polytechnic University, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see ThaMe CENTER Homepage:

Any software made available viame CENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular

URL: <htt p://ww. cs. auc. dk/ resear ch/ DBS/ t db/ Ti meCent er/ >

purpose.

The TiMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons

and were perceived by many as having magic, hidden powers.
The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

A wide range of real-world database applications, including financial and medical applications, are faced
with accountability and trace-ability requirements. These requirements lead to the replacement of the
usual update-in-place policy by an append-only policy, yielding so-called transaction-time databases.
With logical deletions being implemented as insertions at the physical level, these databases retain all
previously current states and are ever-growing. A variety of physical storage structures and indexing
techniques as well as query languages have been proposed for transaction-time databases, but the sup-
port for physical deletion, termed vacuuming, has received precious little attention. Such vacuuming

is called for by, e.g., the laws of many countries. Although necessary, with vacuuming, the database’s
previously perfect and reliable recollection of the past may be manipulated via, e.g., selective removal

of records pertaining to past states. This paper provides a semantic framework for the vacuuming of
transaction-time databases. The main focus is to establish a foundation for the correct and user-friendly
processing of queries and updates against vacuumed databases. Queries that may return results affected
by vacuuming are intercepted, and the user is presented with the option of issuing similar queries that
are not affected by vacuuming.

Keywords: Vacuuming, physical deletion, transaction-time databases.

1 Introduction

Real-world database applications are frequently faced with accountability and trace-ability requirements,
which in turn lead to so-called transaction-time databases that faithfully timestamp and retain all past states,
thus offering their applications with a perfect, uncorrupted record of the past [Cop82].

However, these databases are also ever-growing, and business policies and legal laws demand the ability
to physically delete data. Such physical deletion necessarily compromises irreversibly the previously perfect
record of past states. It is thus a fundamental requirement to physical deletion capabilities that these be
“controlled,” which leads to the introduction of vacuuming.

We provide a framework that encompasses a range of new concepts essential to vacuuming. As part
of this framework, we introduce vacuuming specifications and give their semantics. To meet the need
for controlled physical deletion, vacuuming specifications include removal specification parts as well as
so-called keep specification parts that override the former specification parts and specify what cannot be
removed.

The paper explores how detection of potentially vacuuming-affected queries may be accomplished. De-
tection of queries that may yield results affected by vacuuming opens the possibility for taking cooperative
action, providing, e.g., alternative queries that are similar to the original query, but are guaranteed to be
unaffected by vacuuming. This detection is contingent on the disciplined modification of vacuuming spec-
ifications. Specifically, we introduce the notionsgrbwing andalive specification parts, which open the
possibility of vacuuming the vacuuming specifications without loosing track of what is removed by vacu-
uming.

The techniques proposed in the framework separate the enforcement of vacuuming semantics from the
actual physical removal of data. This independence between correctness and physical vacuuming is highly
desirable because it offers maximum flexibility for the scheduling of physical removal.

Only little work related to vacuuming has been published. A preliminary exploration of vacuuming was
reported in reference [JM90]. In this unpublished technical report, we present different types of vacuuming
specifications and introduce an algebra for defining vacuuming specifications. The present paper is based
on and extends this report.

The TSQL2 temporal query language supports very basic vacuuming functionality: it is possible to
specify cut-off points [SAA94, Jen95] that indicate that data current only prior to a certain cut-off date

should be physically deleted. The semantic framework provided in this paper provides precise definitions
of the concepts underlying this functionality, and provides much more advanced functionality.

Next, the Postgres DBMS [RS87], which supports transaction-time databases, includes a vacuuming
cleaner daemon that is responsible for the asynchronous and transparent movement of logically deleted data
from magnetic disk to cheaper optical disk storage. This kind of daemon and the associated techniques
for physical deletion and reorganization and for the scheduling of the daemon may possibly be applied for
implementing physical deletions. Beyond that, this research are accommodated by the framework presented
here and is unrelated to this paper.

In the context of data warehousing, an approach to “expiring” data has recently been presented [GMLY98].
This work studies the removal of data not needed for maintaining predefined views. Further, all access to the
data warehouse is assumed to occur through views. So, unlike in this paper, unrestricted, ad-hoc querying
is not considered. Perhaps more importantly, because the underlying databases are not append-only, the
correctness concerns fundamental to the work presented in this paper also play no role.

The contents are structured as follows. Section 2 offers an overview of a vacuuming-extended DBMS
and identifies challenges posed by the introduction of vacuuming and met in the remainder of the paper.
Section 3 provides the necessary details of the concrete data model context for the study of vacuuming,
setting the stage for the introduction of vacuuming specifications, the semantics of which are defined in
Section 4. Sections 5 and 6 then proceed to consider the querying and modification of databases with
vacuuming, respectively. Notions of correctness and user-friendliness are the foci of these sections. Finally,
Section 7 concludes and offers research directions.

2 Vacuuming—An Overview

In order to provide a global view of the paper’s topic, this section gives a comprehensive example of a
database system extended with vacuuming. Using the example, we introduce the semantics of vacuuming
and consider the querying of vacuumed databases.

Assume we have an instanempof a temporal relation schentemp given as follows.

Emp = {S : SURROGATE; Empld, Sal, Bal : INT; Sex : {M,F}; TT", TT" : TIME}

Attribute S is a tuple identifier,Empld identifies an employee, angh/ and Bal record the salaries and
account balances of employees, respectively. AttribiitEsand77 are both of typelIME and record
the time of insertion and deletion, respectively

First, we assume no vacuuming is specified on the database that the refapispart of. Therempis
given as in Table 1.

All updates of a temporal relation such espresult in tuples being inserted, and tuples are never
physically removed. (For emphasis, we will use “delete” for logical deletion and “remove” for physical
removal throughout the paper.) Therefoeepis ever-growing, and it is likely thaempwill eventually
contain some data that is irrelevant to its users or must be (physically) removed for other reasons. Now,
assume that the current business policy is that data (logically) deleted more than four years ago is not
to be retained, that tuples deleted between two and four years ago with Nadfiattribute Sexz can be
disregarded, but that all tuples in the database containiBgleof $§ — 5,000 or less must be retained.
Using standard relational algebra, this may be specified with the following vacuuming specifi¢ation,

{U17U27U3}-

lUpdates are modeled as deletions followed by insertions and assign deletion timestamps to some tuples and insertion times-
tamps to others.

| S | Empld | Sal | Bal | Sex | TT™ | TT™ |

1 234 |32k | $-6,015 | M 2/7/93 | 5/10/94
2 128 | 28k | $ 10,274 | F 8/14/93 | 8/31/97
3 234 |32k | $—-2,015| M 5/11/94 | 6/2/94
4 597 | 40k | $—4,652 | M 5/12/94 | 7/2/94
5 597 |47k | $—-2,576 | M 7/3/94 | NOW

6 234 |35k |$ 1,763 | M 11/8/94 | NOW

7 318 | 21k | $ 211 F | 11/24/94| 6/2/95

Table 1. TheempRelation

U1 p(emp) : UTT“SNOW—ALyrs(emp)
V2 p(emp) : O'NOW—4yrs<TT"SNOW—ers/\Sez:F(emp)
U3 Kk(emp) : UBal§$—5,000(emp)

The specification is read as follows: “Remoyg from empall tuples deleted more than four years ago, i.e.,
tuples where the value of the attribdfg™ is less than the current tim&/O W, minus four years. Remove
from empall tuples deleted between two and four years ago where attriaatdas valueF'. Keep) in
empall tuples where attribut®al has the valué — 5, 000 or less.”

While v; andv, are removal specification parts and tell what possibly can be remavisda keep
specification part stating what must be kept. Keep specification parts always override removal specification
parts, for safeguarding reasons. Submitting specificdtigrields the vacuumed relatioempin Table 2,
the current time (and the value of variab¥g W [CDI97]) being7/14/98.

| S | Empld | Sal | Bal | Sex | TT™ | TT™ |
1 234 32k | $—-6,015 | M 2/7/93 | 5/10/94
2 128 28k | $ 10,274 | F | 8/14/93| 8/31/97
5 597 47k | $—2,576 | M 713/94 | NOW
6 234 35k | $ 1,763 | M | 11/8/94| NOW

Table 2: Relatiorempat Time7/14/98, Vacuumed According t& = {u, ve, v3}

Without vacuuming, a transaction-time relation satisfies the propefitbful history encodingto be
formalized later), stating that previously current database states are retained. This property is jeopardized
when vacuuming is allowed. To illustrate this, an example follows showing that querying a vacuumed
database, it is possible to obtain answers affected by vacuuming, i.e., some queries return different answers
than they would have without vacuuming.

Assume the query) = ogu>35k(emp) is issued, let” = (), and assume that the current time is
7/14/98. Then@ would evaluate to the result shown in Table 3. If instéae: {1, v, v3}, Q will evaluate
to tuples5 and6, since tuplet was logically deleted more than four years ago and®ds> $ — 5, 000.

So query(Q is affected by the vacuuming according ¥q and in general)(emp,) # Q(emp,V)
(here,(emp, V') denotes relatioempvacuumed according @). Thus, our sample quely returns a result
inconsistent with the previously current database states. This result is misleading to users expecting faithful
history encoding. Users knowing that faithful history encoding may have been compromised are unable to
properly interpret the answer. To properly interpret an answer, the users must understand the vacuuming
specifications in effect.

| S | Empld | Sal | Bal | Sex | TT™ | TT™ |
4 597 40k | $—4,652 | M | 5/12/94 | 7/2/94

5 597 | 47k | $—2,576 | M 7/3/94 | NOW
6 234 |35k |$ 1,763 | M | 11/8/94| NOW

Table 3: The Result of) = og4/>35%(emp, 0)

A system with vacuuming should support its users in interpreting the results of queries. Specifically,
the system should suppd#ithful history queryingalso to be formalized later), stating that only queries
unaffected by vacuuming are answered without an accompanying warning. On the other hand, queries that
may return results affected by vacuuming must return an error or be accompanied by a warning. Assuming
that an error message is returned, the system should return also at least one alternative, similér query,
satisfying faithful history querying. This is illustrated in Figure 1. The reader may verify that the alternative

>> sel ect [Sal >= 35k] (enp)
Error: Query affected by vacuum ng; alternative query:
select [((TTend > NOWV- 4yrs and (TTend > NOWV- 2yrs or Sex = M)
or Bal <= -5000) and Sal >= 35k] (enp)
Run? (YY)

Figure 1: The Result of Submitting Quey = os,;>351(emp, V')

query (') returns the tuple$5, 6}. So, issued on the vacuumed versiorofp ¢ returns the same answer
as((see Tables 1 and 2). However, quéfys not affected by vacuuming, i.€(emp,) = Q' (emp, V'),
and this query thus satisfies the faithful history querying property.

Presented with the vacuuming-modified query, the user can choose either to issue this query or to modify
it and reissue the result. In the latter case, the system may have to go through a new modification-and-display
process.

In the next sections, we present the necessary parts of a data model that will serve as the context for
introducing vacuuming; we show how to determine whether a query such ssisfies faithful history
guerying and how to determine a similar query that is not affected; and we consider the modification of the
vacuuming of user-defined relations and vacuuming specifications.

3 Data Model Context

A concrete data model context is needed for presenting the vacuuming framework. This section presents
the necessary aspects of the temporal data model that provides the context for our study. Initially, the
data structures, schemas as well as instances, of the model are presented. Then the syntax of vacuuming
specifications is given. The framework is independent of the particular query language adopted, so rather
than adopting one of the many existing temporal algebras or defining yet a new algebra [MS91], we reuse
the well-known relational algebra as the language associated with the data structures.

3.1 Temporal Relation Structures

LetUp = {D1,D,,...,Dp} be a set of non-empty domains, andlet= UD; be the set of all values. Let
Dy = {vy,vs,...,vy} be the specific domain of vacuuming specification parts.7Let {¢,?,...,t,}

be a finite, non-empty set of times withas the total order relation. We use elemggyf in T for denoting
the current time. Finally, Isfyow = TU{NOW }, whereNOW is a variable that evaluates to the current
time [CDI*97]. Then, fort € T and? € Tyow, we define the meaning dfat timet, [¢'],, as follows.

t ift=NOW
[t'], =
£ 1# otherwise

Next, letUy = {A;, Ay,..., A4} be a set of attributes, leVspec € Uy, and letTT" and TT"
be distinguished time attributes representing insertion and deletion time, respectively [SA85]. With these
definitions in place, we can define the schema aspects of a database.

A temporal relation schemar,, is defined as a paifAgr,, DOM), where: (1)Ar, C Uy, and
Ag, U{TT",TT"} is the set of attributes of the schema. The latter two attributes are timestamp attributes
of R,; (2) DOMg, is a function fromAg, U {TT", TT"} to Up U {T, Tyow }, Which assigns domains
in Up to attributes indg, , the domairl” to the attributel’7™, and the domaifiyoy to the attributel 7.

Next, symbolV denotes the specific temporal relation schéfidspec}, DOM,) for vacuuming spec-
ification parts, whereDOM,, is a function assigning the domair3,, T, and Tyow to the attributes
Vspee, TT", andTT™, respectively.

A temporal database scher®3 is then a finite set of temporal relation scherRas= (Ag,, DOMR,),
one of them being the schera= ({ Vispec}, DOMy).

EXAMPLE: In Section 2,empis the temporal relation with schem{ak,,,,, DOM .,,,,), Where A.,,, =
{S, Empld, Sal, Bal, Sex} and DOM ,,, is the function assigning the doma8iURROGATHo S, the
domainINT to each attribute€mpld, Sal, and Bal, the domain{ M, F'} to attributeSez, and finally the
domainsT” andTyow to TT™ andTT, respectively.

Furthermore, we hav®B = {(Acmp, DOM ¢ip), - - ., ({ Vspec}, DOMy)}, as an example of a tem-
poral database schema. O

We proceed to define instances of the schemas just definteghlé\u, on relation schem@4:,, DOM g,)
is a function from the attribute setz, U {T'T",TT"} to D U {T, Tyow }, which assigns an element in
DOM g, (A;) to each attributed; € Ag,, an element irff” to 77", and an element iffyow to TT™; u
assigns the elements to the satisfaction of:

V' > uwTT™ (uTT™ < [wTT |y A (wTT™ = tyow = u.TT" = NOW)).

This formula simply states that intervals must start no later than when they end and that the end time
must beNOW if the start time is the current time.

For any pair of tuples; andusy on relations with the same explicit attributds we say that;, andus
arevalue equivalentu; = us, if and only if VA; (u.4; = uy.A;).

We also say that a tupkeon relationR, is current at timet in the database if and onlyif.77" < t <
[w.TT™],, and more specifically that a tupledsrrentin the database if it is current g, .

We define aemporal vacuuming specification patit, to be a tuple on the vacuuming specification
schem&{ Vspec}, DOMy), assigning values from the domalk- to the Vspec attribute, and values from
T andTyow to TT™ andTT™, respectively.

With tuples in place, we proceed to relationstelnporal relationR, with schema& Ag, , DOMpg,) is
a finite set of tuplesR, does not contain value equivalent tuples that are current at the same time. We term
these user-defined relations. As a specific temporal relation, we de#neparal vacuuming specification
V with schema) = ({ Vspec}, DOMy). Thus,V is a finite set of temporal vacuuming specification parts.

Having a temporal relatiod, and a vacuuming specificatiol’, the effect of specifying vacuuming
for R, is a modified relatiorz,,, written as(R;, V). SoR, is the relationR, modified by the vacuuming
specification”. We will return to the semantics of vacuuming, and to the definitidty, ah Section 4.

5

Finally, atemporal databasé B with schemaD;% = {&, . .;,Rn,V} is a set of temporal relations
modified by vacuuming specificatidn, i.e.,DB = {R1,...,R,,V'}.

ExAMPLE: Our sample database contains the modified temporal relatibpsand’ .

Relationempcontains a set of tuples, and as shown in Table 1, the first tuple is the function assigning
valuel to S, values234, 32k, $ — 6,015 to Empld, Sal, Bal, respectively, value M t§ez, and transaction
timestamps 2/7/93 and 5/10/94 to the time attrib@&s andT'T™, respectively.

The temporal vacuuming specificatidh = {u, v2,v3} shown in Section 2 is given next as the rela-
tion V.

| | Vspec | TT" | TT" |
vi | p(emp) :OTTA<NOW —ayrs(€MP) 5/16/1992 | NOW
V2 | p(emp) : ONOW —ayrs<TTH<NOW —2yrsnSex=r(€mp) | 8/30/1995 | NOW
v3 | K(emp) :0pa<s 5,000(€mp) 5/16/1992 | NOW

Here,v; is the tuple that assigns tIBTRINGvalue “p(emp) : opr-< now —ayrs (emp)” to attribute Vspec,
the time 5/16/1992 t@'7", and the variabl&VOW to T'T".

Later, after defining the semantics of vacuuming, we will return to the modified counterpartgahd
V. For now, Tables 1 and 2 show relatiempand its modified counterpaetnp, respectively. O

3.2 Syntax of Vacuuming Specifications

We have defined a vacuuming specification part as a tuple on the sciémeec}, DOM;), assigning
values fromDy to Vspec. Next, we specify which values domainy offers as possible, owvell-formed
specification part expressions.

One aspect of a specification part expression being well-formed is being syntactically correct. The
syntax of a vacuuming specification part expressiamgiven by the following specification. Note that this
specification essentially permits arbitrary relational algebra selections.

v = w(R): Ezp

w = pl| kK

Ezp == R | op(Ezp) | (Ezp)

F ;= true|false| FbopF | -F | (F) | TToptt | ttopTT | dop A; | A;opd
tt = t| NOW | tt—tt | tt+tt | (t)

TT == TT" | TT"

bop == V| A

op i= <|>|=|<|2|#

In addition to being syntactically correct, a specification part expression must also satisfy conventional
semantic constraints. It is required thate Dy, A; € Uy, andt € T in the specification above. For
expressions such a§ op d andd op A;, op should be defined for the domainy, of 4; andd € Dy, .

And for or(Ezp), F should only include attributed; in Ezp.

Note that any specification part expression defined here can be rewritten to be on thes{éim:*
op(R;)," using standard equivalence-preserving transformations (e.g., [ASU79b, UlI88a]).

Specification parts having expressions of the fop(,) : Ezp” are removal specification partand
specification parts having expressions of the fom(R,) : Ezp” are keep specification parts=rom our
examplep; andv, are removal specification parts, ands a keep specification part.

4 Specification Semantics

Having defined a data model context for vacuuming and its syntax, we turn to defining the semantics of
a vacuuming specificatiorl/. The semantics o¥ expresses for each relatidg) in the database what
remains inR, with V in effect. This expression was previously denotedbyand is termed thenodified

relation. In defining the modified relation, three issues are considered. First we consider the objectives to
be satisfied by the definition of the semantics. The second issue is how to take into account the pairs of
time values associated with vacuuming specification parts and how to properly accoid? idrrelative
specification parts in the semantics. Third, we define the modified relation itself.

Considering the first issue, the definition of the meaning of a vacuuming specification aims at satisfying
two objectives, namely ease of use and loss protection. The rationale for the former objective is self-
evident; the latter is important because vacuuming is irreversible. It should thus be possible to guard against
unintended removal of data.

With these objectives in mind, the semantics of a vacuuming specification will be defined to be indepen-
dent of the insertion order of the vacuuming specification parts. This is consistent with the formalization of
a vacuuming specification as a relation.

Mainly to guard against unintended removal of data, but also to provide increased ease of use, we have
included keep specification parts that specify what must be kept in the database.

Wanting to express—without the use of keep specification parts—that certain tuples from a relation
are to be retained in the database can be done by making sure that no removal specification part selects
these tuples for removal. But this is only an implicit expression, making it difficult to maintain. Further,
it does not protect against unintended loss of data. With keep specification parts that override the removal
specification parts, it is instead possible to specify in a single specification part the tuples that are to be
retained. This is easier, and new removal specification parts are guaranteed to not inadvertently lead to the
removal of tuples to be kept. In general, specifications may become simpler with both keep and removal
specification parts available.

Having both keep and removal specification parts and an order-independent semantics, where the keep
specification parts override the removal specification parts, improves ease of use and facilitates loss protec-
tion. We thus define vacuuming in this way.

With the semantics decided upon at this abstract level, we turn to the second issue of determining
how the vacuuming specification parts contribute to vacuuming based on their temporal aspects. Being
a temporal relation, each part of a specification is timestamped #Mithand 77 values that indicate
when the part was inserted and subsequently logically deleted. How should these time values be taken into
account in the semantics?

A first thought may be that only current vacuuming specification parts should be taken into account
in the semantics of a specification. However, the semantics must express for each relation what is left in
the relation, independently of when the missing data was removed. Because even non-current (logically
deleted) vacuuming specification parts may be responsible for the absence of tuples from a relation, all
parts, non-current as well as current, must be taken into account in the semantics.

However, thel'T™ andT'T values of a part do affect the semantics. Recall that vacuuming specification
parts may involve the variabl OW that evaluates to the current time, making thaifd W -relative. For
example, specification part in the running example specifies the removal of tuples from relaiopwith
Sexr = F, for which NOW — 4yrs < TT" < NOW — 2yrs. This specification part was inserted on
8/30/1995 and remains current. So at current time the effect of this specification is the removal of tuples
that at some time between 8/30/1995 and the current time have satisfied the specified property, that is tuples
with Sez = F and for which3t (t — 4yrs < TT" < t — 2yrs A 8/30/1995< t < t04).

In general, the expression of a vacuuming specification part is modified to take into account its times-
tamps as follows. All occurrences &fOW in the expression are replaced by an unused varighlee

expression is augmented by the termTT" < ¢ < [[TT*]]tW ., and the resulting expression is existen-
tially quantified byt. Equivalence-preserving transformations may subsequently be applied to the modified
specification parts in order to simplify them. Recalling that each specification part can be rewritten in the
form “w(R,) : op(R;),” modifying a specification part to take its timestamps into account gives a specifi-
cation part in the formd (R,) = o4 (pr o TTFStS[[TTﬂ]tW)(R,;),” where P’ is the predicaté® with NOW
replaced by.

Modifying this way any user-specified vacuuming specification part that follows the syntax defined
in Section 3.2 yields a well-defined expression specifyinganstant termsxactly what is selected by
a NOW -relative specification part from its insertion until the current time. Note that a logical deletion
(which corresponds to replacing vald& W of attribute 77" by a fixed value) fixes the upper bound of
the vacuuming to some time before the current titng,.

ExXAMPLE: The selection predicate in specification partwith 77" = 8/30/1995 and'T"' = NOW)
modified as explained above may be simplified as described next. We assume that the curigpt sme
7/14/1998.

3t (Sex =F A t—dyrs <TT" <t —2yrs A 8130/1995< t < tro A tnow = 7/14/1998
= (Sex = F A 8/30/1995- dyrs < TT™ < tpow — 2yrs A tnow = 7/14/1998
= (Sez = F A 8/30/1991< TT" < 7/14/1996 O

In addition toNO W -relative specification parts, parts that specify vacuuming in the future are meaning-
ful and thus allowed, although they do not appear to be very useful. To understand the issue, consider a re-
moval specification part with predicat&d/OW — 1yrs < TT' < NOW + lyrs.” When this part is deleted,
at some time,,,,,, the upper bound df 7" of tuples to be removed i5,,, + 1yrs, i.e., one year into the
future. So for one year after having deleted the specification part, this part continues to remove tuples; the
deletion does not stop the removals. The removal specification part with predié@td— 1yrs < TT"
would remove exactly the same tuples as the first one above, during the time both are current, and it ceases
to remove tuples when logically deleted. Note that both specification parts result in tuples being removed
immediately upon insertion. This kind of inappropriate specifications are expected to be rejected by an
implementation of vacuuming.

Having considered the various issues, we are able to define the semantics of a vacuuming specifica-
tion in terms of its effect on each relation in turn. To do that, we defirjg as all specification parts
in V' that concernR,, i.e., parts with aVspec value of the form &w(R;) : Exzp.” Now, let V |z, =
{v1,.. ., Uk, V1, - - ., Us }, Wherev; € {v1,..., v} areremovalspecification parts angl € {vy1,...,v,}
arekeepspecification parts. Following the observation in Section 3.2 and taking the timestamps into account
as above, all;’s specifying vacuuming for a relatioRR, can be reduced to the fornrv(R,) : of (Ry),
whereF; is of the form ‘It; (P! ATT" < t; < [[TT*]]tm).” We assume without loss of generality that
eachy; andv; above are of this form.

Holding the assumptions and notation introduced above in mind, we define the modified reld§ion of
at current timeRx, as follows.

5 dy
Rz = O-(_‘Vi-czlFi)V(V;:k+1Fj)(RI) (1)

So, the modified relatiof®,, is the set of tuples fronRk, either not satisfying any predicate of a removal
specification parf;, or, if so, also satisfying the predicate of at least one keep specificatiofy pauples

not satisfying any predicates at all are presetit,inand so are tuples satisfying any number of predicates
from keep specification parts. Also, no tuples satisfying only predicates from removal specification parts
are present itlz,,. This way, keep specification parts override removal specification parts.

EXAMPLE: Let us illustrate vacuuming by creating the expression of the modified reladign from re-
lationsempandV = {v;,v2,v3} presented in Section 4/ contain only well-formed specification parts,
which by equivalence transformations can be rewritten to be onthe fo(® ' : op(R;).” Sincev; anduvy
are NOW -relative specifications, they are rewritten to the foro{R,) : o5, (P//\TT)—<t<[[TT—1L”0w)(Rx)."
Now, from Equation 1 we get the modified relatiemhp = (emp,V) = (on(pvm)vm(emp),) =
(emp, D). Let Fy, F», and F5 be the selection predicate in the rewritten specification parts,, and
vs, respectively. Then the selection predicate= —(F; V F,) V F3 will be:

F' = —[3t, (TT" <t, —4yrs A 5/16/1992< t| < t,0,) V
Tty (ta — dyrs < TT <ty —2yrs A 8/30/1995< to < tpow A Sex =)]
V [Bal < $ — 5,000]
= 2 [TT" < tnow —4yrs V (8/30/1991< TT™ < t,00 — 2yrs A Sex = F)]
V [Bal < $ — 5,000]

Note that the vacuuming-modified relatiefinp can be vacuumed due towithout changing; no additional

tuples will be kept or removed. Finding the vacuuming-modified expression, when vacuuming one more
time, is done using the selection predicates in the same way, and since they are already present in the first
vacuuming-modified expression, they can be left out leaving the same vacuuming-modified expression. In
our example this gives:

(0'—.(F1\/F2)\/F3(emp), V) = (O-—\(Fl\/Fg)VFg (O-ﬁ(F1VF2)\/F3(emp))7®)

= (oamvm)vr, (emp), D) 5

A system that implements vacuuming should obey the semantics defined above. On the other hand, it
is also attractive for the system to not have to actually perform physical removals eagerly to ensure that the
semantics are obeyed. Rather, lazy physical removal is attractive.

In order to both ensure correct semantics and permit lazy removal, the system may use the vacuuming-
modified relation expressions defined above in place of the corresponding relations themselves. The expres-
sions then serve as shields that hide the tuples in the relations that have been vacuumed logically, but may
or may not yet have been physically removed.

5 Querying Vacuumed Databases

Having defined the notion of a database system with vacuuming facilities, we now turn to the querying

of databases in the context of vacuuming. Transaction-time databases without vacuuming retain a perfect
record of past states. When introducing vacuuming, this is no longer guaranteed, and the results of queries
become harder to interpret. For example, a query on a past state may return an empty result either because
this state never contained qualifying data or because all qualifying data has been removed because of vac-
uumed. In this section, we specify the property of faithful history querying, aiming at making queries on
vacuumed databases easier to interpret. Next, we lay out a strategy for satisfying this property, and we
present the details of the solution. Throughout we use the example introduced in Section 2 for illustration.

5.1 Faithful History Encoding and Querying

A transaction-time database without vacuuming retains all previously current states. So a query that retrieves
the current database state at some tifrend the query that at some later time retrieves the database state
recorded as being current at timewill both give the same result. This property, we teaithful history
encoding

To give a precise definition, we need to define the meaning of retrieving the state current as of some
time. For this purpose, we define the timesliggr,) of R, at timet¢ [Sch77]. This operator returns a
non-temporal relation having the explicit attributes®f The relation contains the set of tuples that are
value equivalent to the tuples in relatidf current at time.

7i(Ry) = {u | u' € Ry A=/ AN/ TT™ <t < [u/.TT],}

To definefaithful history encodingwe also need to be able to “rollback” a relation to how it was at
some past time.

For this purpose, letR,], denote relation?, at timet, i.e., the set of tuples present in the relation at
this time. Then[R,], contains the set of tuples inserted into the relation before or at#jmeen if they
were later deleted (i.e., deleted between ttraed the current time); further the timestamps of the resulting
tuples are restored to their original appearance at tinvore formally,[R], is defined as follows.

[Ro], @ {u|3 € Ry (W AuTT" =/ . TT" Au.TT" < tA

(wTT =o' TT A" TT7), < t) Vv
(w.TT = NOW A[W/.TTT], > t)))}
So to obtain the result, we first consider only the subsé} aiiserted no later than time If a tuple was

deleted after time, we replace the deletion time with the value it actually had at tidé0 W; otherwise,
the tuples from our subset are returned unmodified. Note[®@f = R,.

now

ExampLE: To illustrate the definition, consider relati@mpin Table 1. [emp] o, denotes the set
of tuples shown in Table 4. Tuples 6 and 7 where inserteehipafter 10/1/94, so they are not present

S | Empld | Sal | Bal | Sex | TT" | TT™ |
1 234 32k | $—16,015 2/7/93 | 5/10/94
2 128 28k | $ 10,274 8/14/93| NOW
3 234 32k | $—2,015 5/11/94| 6/2/94
4 597 40k | $— 4,652 5/12/94 | 7/2/94
5 597 47k | $—2,576 713194 | NOW

=TI

Table 4: The[emp], ;94 Relation

here. Tuple 2 had a transaction-time en@1/97 and[8/31/97],,, o, = 8/31/97, which is larger that
10/1/94. Thus tuple 2 receives the variabldOWW as its new transaction-time end value. Tuples 1, 3, 4,
and 5 all havﬁTT*]]w/l/04 < 10/1/94, so they retain their transaction-time end values. The tuples in the
table are exactly the tuples @mpat time10/1/94. O

With the two preceeding definitions, we can precisely defithful history encoding
VR, (Vt < tnow (Tt(Rx) = Tt([[RI]]t))) (2)

That is, for all relations and all timesnot exceeding the current time, evaluating the timeslice with
time parametet on the relation as it was at timeversus on the current relation gives the same result. As a
result, all previously current states are retained.

With faithful history encoding, if a query on a past state returns an empty result then this means that
there never were qualifying tuples in this state. However, transaction-time databases with vacuuming are
unable to satisfy the property of faithful history encoding, and this inference cannot be made.

10

Rather than simply giving no guarantees, we instead give a guarantee, farthd history querying
that attempts to get as close to faithful history encoding as possible. This new property states that only
gueries that return the same answers when submitted to the vacuumed database as when submitted to the
corresponding unvacuumed one should be answered. With this property satisfied, misinterpretations of the
answers are prevented.

Formulated precisely, the property f@ithful history queryings satisfied if and only if the following
holds for all querie€) that are answered by the system.

VR, (Q(Rz, V) = Q(R,, 1)) (3)

ExAMPLE: To illustrate faithful history querying, we consider two sample queries based on the running
example.

The first queryQ1 = orr-—now aBar>s0(emp), only selects from the part of relati@mpnot affected
by vacuuming. Therefore, it is unaffected by vacuuming, and a system satisfying faithful history querying
needs not reject this query, but can give the answer, in this{€gse

The second query), = osau>3s:(emp), overlaps with the part aémpaffected by vacuuming. With
this query, it is impossible to say whether the answer will be correct or not, and the system must for safety
reasons deny answering this query. O

Having defined the desirablaithful history queryingproperty, the next step is to consider how to
achieve a system that supports this property. It is essential for the system to be able to detect potential
problematic queries.

5.2 Query Handling

A vacuuming-enhanced system that satisfagthful history queryinganswers only some queries, while
taking other actions for the remaining queries. The four overall steps necessary to achieve this functionality
are as outlined next and are discussed in detail in the remainder of this section.

1. Atvacuuming specification time, create expressions for the vacuuming-modified relations.

2. At query time, create the modified counterpart of the query submitted, obtained by replacing the
relation names in the query with the corresponding vacuuming-modified expressions for the relations.

3. Check if the modified and the original queries are equivalent. If yes, the original query is not affected
by vacuuming.

4. If the result of the previous step is affirmative, the query is evaluated and the answer is returned. The
possible responses to the other outcome will be discussed later in this section.

The first step is to create the vacuuming-modified relation as an expression on the unvacuumed relation.
This was taken care of in Section 4.

ExAMPLE: In Section 4, we obtained the following expressi@n(emp) for the modified version of
relationemp F’ is given by

A [(TT™ < thow — 4yrs) V (8/30/1991< TT™ < t,p0 — 2yrs A Sex = F)]V [Bal < $ — 5,000],

wheret,,,,, denotes the current time. O

11

The second step occurs when a quérys issued and the system must test whether the query violates
faithful history querying. In this step, a vacuuming-modified versipof @ is created. This modified
version is obtained replacing all relation namegjity the expressions for the corresponding vacuuming-
modified relations. The technique used here is knowguesy modificatiorand is the technique tradition-
ally used for implementing integrity constraints and views [Sto75]. For example, an occurrence of a view
name in a query is substituted by the definition of the view so that the resulting query only references the
base relation(s) that are used to define the view.

In the third step, an equivalence test is performedoand (J. Although it has been shown that the
general problem of determining equivalence of relational expressions is NP-complete, efficient algorithms
have also been devised for determining equivalence for an important subset of relational expressions (most
practical SPJ-queries) [ASU79a, ASU79b, PS88]. So, the test employed is one that will never succeed
if, in fact, Q and @' are not equivalent (soundness), but also one that may fail to detect equivalence be-
tween complicated expressions (incompleteness). While a sound and complete procedure is preferable, the
incompleteness is only a minor inconvenience in practice.

ExXAMPLE: In the second example in Section 5.1, we considered two queries. The firaQwas
orri—now aBa>s0(emp). When this query is issued, we replaampwith the expression; (emp) given
in the previous example to obtain the modified versign, Using standard equivalence transformations,
it is straightforward to verify that the original and modified queries are equivalgrt Q). (Note that
occurrences oiVNOW in a query are replaced hby,,, when it is issued to the system.) The system can
therefore evaluat®); and return the answer without violating faithful history querying.

The second query wag, = osau>3s:(emp). Itis easy to see that this query is not equivalent to
Q2 = osu>3sk(or (emp)), again using the definition of” given in the previous example. It will thus
constitute a violation ofaithful history queryingo return an answer for query. |

The fourth step remains. If the outcome of the equivalence test is positive, the system proceeds to
evaluate query) and returns the answer to the user. The result is unaffected by any vacuuming and by
whether any parts of the database selected for removal still remain in the database, e.g., because the system
uses a lazy policy for the physical removal.

If the outcome of the test is negative, the system should not simply evaluate@u&opme other action
should be taken. In the remainder, we explore the options.

Focussing first on application access, the natural approach would be giving an error or a warning. An
error message might be accompanied by reasons for the error and perhaps by alternative queries that do
satisfy faithful history querying. A warning might be accompanied by the answer to the query along with
alternative queries and reasons as well. The application can then use exception-handling, and, depending
on the warning codes, choose how to proceed.

In an interactive situation, the preferences are a bit different. Some users may be closely familiar with
the vacuuming specifications and may want answers even to queries that violate faithful history querying.
Violation of faithful history querying might be preferable for these users. Other users might expect answers
that satisfy faithful history querying and may thus misinterpret answers that do not. For these, receiving an
error message and one or more alternative queries would be appropriate.

Common to the situations is the presentation of one or more alternative queries. But what alternative
queries should be given to the user? One possibility is to return the vacuuming-modified query exgdression
to the user. Given the vacuuming in effect, this query is as similg & possible while also satisfying the
required condition of being equivalent to its own vacuuming-modified version, i.e., satighin@”. Itis
possible to apply equivalence-preserving transformations to expre@siath the purpose of simplifying
it before returning it to the user. For example, the transformations also used during query optimization (e.g.,
[SC75, UlIB8h]) are applicable. This was the option chosen in Section 2 (recall Figure 1).

12

As a further extension, several alternative queries can be derived using techniquesrfogeneraliza-
tion and specializatiofiMot84, Cha90]. Specialized versions @fare more restrictive thafy and return
a smaller result tha). Such queries do thus not violate faithful history querying. Generalized versions
of Q' are less restrictive thafy and return larger results th&#. To make sure that these do not violate
faithful history querying, they must either be constructed carefully, or they should be subjected to and pass
the equivalence test prior to being presented to the user.

6 Modifying Vacuumed Databases

Having defined vacuuming and having also covered the querying of vacuumed databases, database modifi-
cation remains to be covered. We may distinguish between the four cases obtained by combining (i) regular

modification versus (i) vacuuming with (a) regular user-defined relations versus (b) the special félation

that has vacuuming specification parts as tuples. The introduction of vacuuming poses no constraints on

modifications—insertions, updates, and deletions—of regular user-defined relations, leaving three cases.
Because the vacuuming of regular user-defined relations and of the vacuuming relation are achieved by

modifying relationV’, the remaining three cases all reduce to modificatiol .of

Section 6.1 covers modification of relatidn, considering vacuuming specification parts of the form
“w(R,) : Exp” (see Section 3.2), wherg, is any relation, user-defined as well s In this section, we
shall see that the irreversibility of vacuuming poses certain constraints on which modifications are allowed.
For example, it makes no sense to insert a specification part in order to keep tuples that are already selected
by an existing removal specification part.

Section 6.2 proceeds to cover another type of constraint that applies only to the vacuuming of Yelation
itself; a type constraint which is accomplished via vacuuming specification parts of theddin ¢ Exp.”
Specifically, to achieve the functionality described in this paper, it is necessary to retain a complete record
of what has been removed from the database by vacuuming, so not all vacuuming specification parts can
simply be removed.

Throughout we use the vacuuming relatibnin Table 5 for illustration. A summary concludes the
section.

6.1 Irreversibility-Induced Constraints on Vacuuming

When updating the vacuuming of regular relations and the vacuuming relation, it is a challenge—the only
one for vacuuming regular relations—to contend with the irreversibility of vacuuming. For example, once
a tuple has been selected by some removal specification part, keep specification parts that would select the
tuple must be disallowed. The principle “once vacuumed, always vacuumed” must be satisfied.

Stated precisely, we require that the vacuuming specificafitgigrowing which is defined as follows.

growing (V) <d—if> Vt(VRI (Vu (u € ([Rs],,0) Au & ([Ra],, [V],) = V' >t (u & ([Ra]y, [[V]]t')))))

So, a vacuuming specificatidn is growingif and only if all tuplesu being removed from relatioR, at
some time will continue to be removed for all timesaftert. Note that([R,],, [V'],) denotes the relation
R, as it was at time, vacuumed by the vacuuming specificatidras it also was at time To ensuré/ to
be growing, we consider (logical) deletions and insertion$’an turn.

There are no restrictions on deletions of keep specification parts. Deletion of a keep specification part
cannot result in less being removed, but may result in more being removed, and so does not conflict with
the above requirement.

Consider deletion of a general removal specification paattuple of the form{“p(R.) : op(Ry)", tins,

NOW). This part was inserted at timg,;, remains current, and is thus a candidate for deletion. The

13

expression for the corresponding vacuuming-modified relation (atBimalefined as

O[3t (P A tins<t<t')] (Bz), 4)

where P’ is P with occurrences oNOW replaced byt. The valuef in this expression was obtained by
evaluating[T7],, = [NOW],. Deletingv is done by updating th&7™ value ofv to 4, the current time
when the deletion occurs. The expression for the vacuuming-modified relation (at any time) then becomes

O[3t (P A tis <t<tyo)] (Fx)- 6))

To see that the deletion af does not render a growing specification non-growing, it is sufficient to
observe that Expression 5 is at least as restrictive as, i.e., returns no more tuples that, the one it replaces
at the time of the deletion, the time Expression 5 replaces Expression 4. At this time, Expression 4 has
t' = t4.1, making the two expressions equivalent.

Turning to insertions, first observe that any specification part by itself is growing. Inspecting Expres-
sion 4, it can be seen that the range of possible values of variaieeases as time passes. By virtue of the
negation, the selection predicate thus becomes more and more restrictive as time passes. The expression for
a deleted part, given in Expression 5, remains constant. These observations also hold for keep specification
parts.

One problem remains: It is possible for a keep specification part to select a tuple already selected by a
removal specification part, creating an impossible situation where a tuple selected for removal and possibly
already removed must be kept in the database. This situation may occur because of the insertion of either a
removal or a keep specification part. Before stating requirements to insertions that avoid this problem, we
give examples that explore the issues involved.

|| Vspec | 11" | 1T |
v | plemp) : Oppa<Now —ayrs(emp) 5/16/1992 | 7/14/1997
vy | k(emp) : opy<g—5000(emp) 5/16/1992 NOW
v3 | p(emp) UNOWf4yrs<TT4§N0W72yrs/\Sez:F(emp) 7/4/1996 NOW
vy | plemp) : opricnow —6yrs(€MP) 7/15/1997 NOW
vs | k(emp) 0'7/15/39967NOWgTT"§7/15/40007NOW(emp) 7/14/1998 NOW
vr | plemp) - UTT“SNOW—Iyrs/\Sez:M(emp) 7/14/1998 NOW
vg | Kk(emp) : OppsNow—3yrs(€MP) 7/14/1998 NOW

Table 5: Vacuuming Specificatidn at Time 7/14/1998

ExAamMPLE: Table 5 gives the vacuuming specificatitn with the current time being 7/14/98. The speci-
fication parts are ordered and numbered according to their insertion time. Specificationtpagsare to
be inserted at the current time.

Inserting a removal specification part may lead to a conflict with an existing keep specification part, as
we show next. When this occurs, the removal specification part should not be inserted. Now asslime that
consists of only the keep specification pgrtwhich has just been inserted. At tiMeuvs states that tuples
of empsatisfying the following predicate must be retained.

3t (7/15/3996 — t < TT™ < 7/15/4000 — t A 7/14/1998 < ¢ < #/)

14

For example, for’ = 7/14/1998, the predicate id/1/1998 < TT" < 1/1/2002,” and the lower bound
onTT will continue to decrease as time passes.
Now assume that we want to insert specification pafttom Table 5. The semantics of at timet' is

O[3t (TTA<t —1yrs A Sex=M A 7/14/1998<t<t")] (emp).

Fort' = 7/14/1998, the selection predicate becomeld*T" < 7/14/1997A Sex = M],” and the upper
limit on 777 will increase as the current time increases.

Inserting vy will not present a problem at the time of insertion, but after a few months, a situation
will occur where whats says must be kept has already been selected for removal Byor example,
in six months the lower bound ofiT™ in the expression fors is 7/1/1997. Buts selects tuples with
TT < 7/14/1997 (and witlfez = M) for removal already at the current time. In conclusion, insertion of
v7 IS not acceptable.

Note that, going back in time to a prior situation, havivig= {4, v, } at current time 7/4/1996 and
insertingvs or vy at some later time does not present problems the only keep specification part, and it
does not expand to select tuples that are selected by the removal specification parts as time incréases.

Requirering an insertion of a removal specification part tgmwvth assuringgeneralizes the obser-
vations in the example. Assume that removal specification padncerns relatiorz,. When tried for
insertion into specificatiol” at timet, insertion ofy; is growth assuring ifrowRem (v;,t, V'), defined as
follows.

growRem (v, t, V) &,

- (387 (¢ <t <" A3u (u & ([Re]p, [V U{vi]y) A€ ([Ralpr, [V U {0i}]0)]

The definition states that insertion of a removal specification part is growth assuring if no twd times
andt” later than the insertion time exist so that a tuplean be found not being in the vacuumed relation at
time ¢’, but being in the vacuumed relation at the later tifne

Turning to the insertion of keep specification parts, two similar problems can occur. A keep specification
part to be inserted can specify that tuples already selected for removal must be kept, or the keep specification
part can at some future time select tuples for keeping that were selected for removal prior to that time. The
next example illustrates this.

EXAMPLE: Assume thal” = {v;,v9,v3,v4} and that we want to insett (see Table 5).

Atthe current time, 7/14/1998, specificatigrselects tuples satisfying predica&¢30/1991 < TT" <
7/14/1996 A Sex = F for removal. Sincasx currently specifies that tuples satisfying predicaE' >
7/14/1995 should be kept, inserting will create an instant problem and cannot be inserted.

Insertingus; creates a delayed problem. For example, after the date 1/1/200i,specify that tuples
should be kept if (logically) deleted on or after 7/14/1996, patlready selects tuples deleted at that date
for removal. So in time, also inserting will create a problem. O

Assume that keep specification parconcerns relatior,. Then, when tried for insertion into speci-
ficationV at timet, insertion ofv; is growth assuringf growKeep(v;,t, V'), defined as follows.

growKeep(vj,t, V) &,

-3 (@ <t A (W & ([Rely, [V]y) A’ € ([R, TV U {v;3])))]A
= 37 (<t <t ATu (u & ([Raly, [V U{w;) A€ ([Re]pr, [V U {0 }])))]

The first line in the definition states that, at the time of insertion, no tdpleist exist that is selected
for removal byV before that time, but not by the modified specification. The second line has the same
format as the definition of growth assuring for insertions of removal specification parts.

15

6.2 Retention of Vacuuming Information

The vacuuming specification is itself a temporal relation, and so it is possible to also apply vacuuming
to the vacuuming specification itself. However, we must ensure that a complete record is retained of the
vacuuming that is or will be in effect. This section formulates constraints that ensure this.

It should be clear that removal of specification parts being current is problematic. Even parts that have
been deleted may not always be selected for removal. An example illustrates the potential problem.

ExXAMPLE: Consider specification parts and v, in Table 5. Hereuv, takes the place of;, at time
7/15/1997. Now, at the current time 7/14/1998, even thouygk deleted, it is still the reason for the
removal of tuples with'T" < 7/14/1993, andw, still has no tuples to remove, since it selects tuples
deleted before 7/14/1992 for removal. Thysalthough not current is still important if one is to understand
the contents of the database.

Consider alsayg specifying the removal of vacuuming specification parts that have been deleted. This
specification would remove specification part If that happens, it will, for some time, not be possible to
see that original data may have been removed. Due to this, specificationgiatild not be allowed. O

To ensure that relevant information about vacuuming is not lost, we introduce the notiactivefand
passivespecification parts. A specification partof a vacuuming specificatioly is active at timet if it
is responsible for vacuuming at tintie We define this for a specification partspecifying vacuuming for
relationR,.

active(v,t,V) &,

[Fu (u & ([Rey, [V]) Au € ([Ra]y, [V \ {v}],)) A FEzp (v.Vspec = p(Rg) : Ezp)] v
(w e ([Rely, VD) ANu & ([R2],, TV \ {v}],)) A IEzp (v. Vspec = k(Ry) : Exp)]

A removal specification patf specifying vacuuming foR, is active at time if a tuple u exists, with
u being in relation[R,], vacuumed by} excludingw;, and withu not being in[R,], vacuumed by all
of V. In the same way, a keep specification paris active at timet if a tuple v exists, withu being
in [R.], vacuumed by all ofi’, but not being in[R,], being vacuumed by excludingv;. Removal
and keep specification parts are thus active if their presence select additional tuples for removal and keep,
respectively.
Next, a specification part, removal or keep, is passive if it is not active, but will be so at a later time.
passive(v,t,V) &, active(v,t, V) A Ft' >t (active(v,t',V))
Theactiveandpassivespecification parts may at some time be responsible for vacuuming. This makes
these partslive in contrast to the ones that will never be responsible for vacuuming-de¢hdones, see
Figure 2. For all specification partse V' and timet we define these predicates next.
alive(v,t, V) &, active(v,t, V') V passive(v,t,V)
dead (v, t, V) &, alive(v,t, V)
Finally, the sets of active and alive specification parts at timay be defined as follows.

active(V,t) = {v | v € [V], A active(v,t,V)}
alive(V,t) = {v| v € [V], A alive(v,t,V)}

The first set is exactly the specification parts responsible for the vacuuming at thig &intethe second set
is the parts that either are responsible for vacuuming at tiarewill be so at a later time.

16

Figure 2: Migration of Types of Vacuuming Specification Parts

ExamMPLE: Tollustrate, letV’ = {uv;, v, v3,v4} be the current vacuuming specification at time 7/14/1998
as given in Table 5. Theactive(V,7/14/1998) = {v,vs,v3}. At this time, party, selects only tuples
deleted before 7/14/1992 for removal, hutalso selects these and more tuples for removal. So at time
7/14/1998,, is not active. Buty is passive and thus alive because it will be active after time 7/14/1999.
Note also that when, becomesctiveafter time 7/14/1999,, will be dead O

To ensure that no relevant vacuuming information is lost, the system must retain all specification parts
in the set of alive parts. So, when modifying the vacuuming relation at some tati¢hat is necessary is to
check if parts that are inlive(V, t) will be removed. Note that the vacuuming specification must continue
to begrowing

Now, modifying vacuuming on the vacuuming relation corresponds to deleting and inserting tuples in
Viv.

Deleting tuples will not create any problems. Deleting a vacuuming specification part results in a fixed
timestamp end value in the tuple. This only stops the vacuuming, retaining existing vacuuming knowledge.
Thus, no vacuuming knowledge is lost and, for the same reason as above, the vacuuming specification will
continue to begyrowing

However, inserting tuples can create problems, since this will specify removal or keep of vacuuming
specification parts. First of all, it is still a possibility that the part to be inserted will make the vacuum-
ing specification non-growing. This was addressed in the previous subsection. Second, inserting a keep
specification part will not create further problems, but inserting removal specification pa¥fswalk cre-
ate a potential loss of vacuuming knowledge. To ensure that this will not happen, specifying removal of
specification parts beinglive should not be allowed.

So, what makes a removal specification parspecifying vacuuming ol , admissible for insertion into
V'? First, as stated before, the insertion must assure growth, and second it rmfstipation retaining
Insertingy; into V' retains vacuuming information iffRet (v, ¢, V'), defined as follows.
infRet(vi, t, V') PN
-3t (" =t AT (alive(W', ', [V]y) A" € (V] [VDy) Ao & (VD [V U {vid]y)]

The definition says insertion of a removal specification paat the timet retains information about
specification parts being alive, if and only if there at no tihadter¢ exists a vacuuming specification part
being alive att’, and being removed by at that time, i.e., the insertion retains information if only dead
parts will be removed by;.

17

6.3 Summary

So, two major problems can occur when inserting new specification parts. First, the insertion can violate
the principle “once vacuumed, always vacuumed,” and second the insertion can create a loss of vacuuming
knowledge. To secure that none of these problems occur, we have defined the properties for these cases in
the prior subsections. The full definition of admissibility for insertions is given next.

admlInsertion(v,t,V) &,

[infRet(v,t, V) A growRem (v,t, V) A IEzp (v.Vspec = p(V') : Exp)] V
[growRem (v, t, V) A 3Ezp, Ry (v.Vspec = p(Ry) : Exp))] V
[growKeep(v,t, V) A JEzp, Ry (v. Vspec = k(Ry) : Exp V v.Vspec = k(V') : Exp))]

7 Conclusions and Research Directions

A wide range of applications are faced with accountability and trace-ability requirements, in turn yielding
underlying databases that retain their past states. Such databases, termed transaction-time databases, are
ever growing, and even logical deletions result in insertions at the physical level.

This paper presents a semantic framework for the physical removal of data, or vacuuming, from such
databases. While necessary, vacuuming compromises the property that past database states are retained.
The framework defines the semantics of vacuuming specification facilities, and it supports the detection of
queries that, if answered, may vyield results affected by vacuuming. This support provides the foundation
for offering user-friendly query support on vacuumed databases, which is also covered. The detection of
vacuuming-affected queries imposes certain constraints on the modification of the vacuuming specifications
that are in effect; the concepts necessary to capture these constraints as well as the constraints themselves
are given.

The studies reported in this paper point to interesting research directions, some of which are described
next.

In the current framework, vacuuming is an “all-or-nothing” proposition: either data is irreversibly elim-
inated or is retained. Extending the framework to also allow for the specification of off-line (or even “near-
line”) archival in the context of multi-level storage architectures appears to be an interesting and very useful,
but also non-trivial direction.

One of today'’s foci in data warehousing is the bulk-loading of very large amounts of data, but as years
of data are accumulating in data warehouses, vacuuming is likely to become a future focus of attention. The
advanced decision support queries in data warehousing are expected to introduce new challenges.

When a query against a vacuumed database may not return the same result as when issued against
the unvacuumed, but otherwise identical database, a cooperative system may offer alternative queries that
are similar to the original query and that are unaffected by vacuuming. The use of techniques such as
guery generalization and specialization for obtaining simple and easily comprehensible alternative queries
deserves exploration.

Acknowledgements
This research was supported in part by the Danish Research Councils through grants 9700780 and 9701406,

by the CHOROCHRONOS project, funded by the European Commission, contract no. FMRX-CT96-0056,
and by a grant from the Nykredit corporation.

18

References

[ASU79a]

[ASU79b]

[CDI*+97]

[Chag0]

[Cop82]

A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimization of a Class of Relational Expres-
sions.ACM Transactions on Database Syster(g):435-454, December 1979.

A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences Among Relational ExpressiBifsvi
Journal of Computing8(2):218—-246, May 1979.

J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of
“Now” in DatabasesACM Transactions on Database Syste@%(2):171-214, June 1997.

S. Chaudhuri. Generalization as a Framework for Query ModificatioRroeceedings of the
6th Data Engineering Conferencpages 138-145, February 1990.

G. Copeland. What If Mass Storage Were Friee2E Computer Magazind 5(7):27-35, July
1982.

[GMLY98] H. Garcia-Molina, W. Labio, and J. Yang. Expiring Data in a Warehouse. To appdmoin

[Jen95]

[IMOO]

[Mot84]

[MS91]

[PS88]

[RS87]

[SA85]

[SAA+94]

[SC75]

[Sch77]

ceedings of the 24th International Conference on Very Large DatabAsgsist 1998.

C. S. Jensen. Vacuuming. In R. T. Snodgrass, edier,TSQL2 Temporal Query Language
Chapter 23, pages 451-462. Kluwer Academic Publishers, 1995.

C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal Databases. Technical
report, CS-TR-2516, UMIACS-TR-90-105, Department of Computer Science. University of
Maryland, College Park, MD 20742, August 1990.

A. Motro. Query Generalization: A Technique for Handling Query FailurePioceedings of
the 1st International Workshop on Expert Database Systpages 314—-325, October 1984.

E. McKenzie and R. Snodgrass. Evaluation of Relational Algebras Incorporating the Time
Dimension in Database€omputing Survey23(4):501-543, 1991.

J. Park and A. Segev. Using Common Subexpressions to Optimize Multiple Queri&s- In
ceedings ofthe 4th Data Engineering Conferem@mes 311-319, February 1988.

L. A. Rowe and M. R. Stonebraker. The Postgres Papers. Memorandum UCB/ERL M86/85,
Electronics Research Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, June 1987.

R. T. Snodgrass and I. Ahn. A Taxonomy of Time in DatabasesPrateedings of ACM
SIGMOD, pages 236-246, May 1985.

R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F.
Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Specific&iGMOD
Record 1(23):65-86, March 1994.

J. M. Smith and P. Yen-Tang Chang. Optimizing the Performance of a Relational Algebra
Interface.Communications of the ACM8(10):569-579, October 1975.

B. M. Schueler. Update Reconsidered. Poceedings of the IFIP Working Conference on
Modelling in Data Base Management Systepagjes 149-164, 1977.

19

[Sto75] M. R. Stonebraker. Implementation of Integrity Constraints and Views by Query Modification.
Memorandum ERL-M514, Electronics Research Laboratory, College of Engineering, Univer-
sity of California, Berkeley 94720, March 1975.

[UlI88a] J. D. Ullman. Database and Knowledge—Base Systevokime | of Principles of Computer
Science Computer Science Press, Rockville, MD, 1988.

[UlIB8b] J.D. Uliman. Database and Knowledge—Base Systevokime Il of Principles of Computer
Science Computer Science Press, Rockville, MD, 1988.

20

