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Abstract

Several applications require management of data which is spatially dynamic, e.g., tracking of battle ships or
moving cells in a blood sample. The capability of handling the temporal aspect, i.e., the history of such type of
data, is also important. This paper presents and evaluates three temporal extensions of the R-tree, the 3D R-tree,
the 2+3 R-tree and the HR-tree, which are capable of indexing spatiotemporal data. Our experiments have shown
that the while the HR-tree was the larger structure, its query processing cost was over 50% smaller than the
ones yielded by the 3D R-tree and the 2+3 R-tree. Also compared to the (non-practical) approach of storing one
R-tree for each of the spatial database states it offered the same query processing cost, saving around one third
of storage space.

1 Introduction

The primary goal of a spatiotemporal database is the accurate modeling of the real world; that is a dynamic world,
which involves objects whose position, shape and size change over time [T�98]. Real life examples that need to
handle spatiotemporal data include storage and manipulation of ship and plane trajectories, fire or hurricane front
monitor and weather forecast. Geographical information systems are also a source for spatiotemporal data. For
instance, in the agricultural domain, land owners as well as government agencies must keep track of crop situation
over time to take decision as such to where use pesticides and/or provide financing to farmers. To take another
example, consider a series of snapshots taken from a satellite. This type of data, possibly after some treatment,
is clearly spatiotemporal data. As yet another example domain, consider the problem of video (or multimedia in
general) database management. Objects that appear in each frame can be considered two-dimensional moving
objects, upon which one may want to keep track over time or exploit relationships among them. Summarizing,
“database application must capture the time-varying nature of the phenomena they model” [Z�97, Ch. 5]. Spatial
phenomena, hence spatial databases, are no exception, therefore spatiotemporal databases should florish as current
technology makes it more feasible to obtain and manage such type of data ([Inf98] is a good example of that trend).

Among the many research issues related to spatiotemporal data, e.g., query languages and management of
uncertainty [W�98], we focus on the issue of optimizing access structures, hence speeding up query processing.
Despite the fact that there is much work done on the area of access structures for temporal [TK96, ST97] and
spatial data [GG98], not much has been done regarding spatiotemporal data. This paper deals with this very point.

In [T�98], a set of seven criteria were proposed to characterize spatiotemporal data and access structures:

1. Data types supported: whether it supports points and/or regions;

2. Temporal support: whether the supported temporal dimension is that of valid time, transaction time or both;

3. Database mobility: whether the changes in cardinality or the spatial position of the data items, or both, can
change over time;

4. Data loading: whether the data set evolution is known a priori or not, whether only updates concerning the
current state can be made or whether any state can be updated;

5. Object representation: which abstraction (e.g., MBRs) is used to represent the spatial objects.

6. Temporal treatment: whether it support special actions such as packing or purging (vacuuming) spatial data
as time evolves.

7. Query support: whether it is able to process not only spatial and temporal queries, but also queries which
are spatiotemporal in nature.

After the directions above, and for the purposes of this paper, we assume spatiotemporal data specified as
follows:

� The data set consists of two-dimensional points, which are moving within the unit square;

� For each point its versions’ timestamps grow monotonically following a transaction time pattern, and

� The cardinality of the data set remains fixed as time evolves.
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� Updates are allowed only in the current state of the database;

Hence, according to the terminology in [T�98], this paper considers databases of the point/transaction-time-
/evolving/chronological class.

Regarding the indexing structures, no packing or purging of data is assumed. Finally they must provide support
to process at least two types of queries: (1) containment queries with respect to a time point; and (2) containment
queries with respect to a time interval. By containment query we mean one where given a MBR all points lying
inside such MBR should be retrieved.

For simplicity, throughout the paper we assume the two-dimensional space, although extending the presented
arguments for higher dimension is not problematic. Also, instead of a new access structure, we investigate how to
extend a very well known one, namely the R-tree [Gut84, SRF87, B�90, KF94].

The remainder of the paper is organized as follows. In Section 2 we detail the access structures which we will
compare. Next, in Section 3, the methodology we used to generate spatiotemporal data is discussed. Section 4
presents and discusses the experiments we perform regarding space requirements and query performance. Finally,
the paper is closed with a summary of our findings and directions for future research.

2 Spatiotemporal Access Structures

We are aware of only five access structures that consider both spatial and temporal attributes of objects, namely
MR-trees and RT-trees [XHL90], 3D R-trees [TVS96], and, very recently, HR-trees [NS98] and Overlapping
Linear Quadtrees [TVM98].

In the RT-tree the temporal information is kept inside the R-tree nodes. This is in addition to the traditional
content of the R-tree nodes. On the other hand searching in the RT-tree is only guided by the spatial data, hence
temporal information plays a secondary role. As such queries based solely on the temporal domain cannot be
processed efficiently, as they would require a complete scan of the database. No actual performance analysis was
reported in [XHL90].

The 3D R-trees, as originally proposed in [TVS96], use standard R-trees to index multimedia data. The
scenario investigated is that of images and sound in a multimedia authoring environment. In such a scenario it
is reasonable to admit that the temporal and spatial bounds of the indexed objects are known a priori. Aware
of that fact the authors proposed two approaches, called thesimpleand theunifiedscheme. In the former one,
a two-dimensional R-tree indexes the spatial component of the data set, and a one-dimensional R-tree indexes
the temporal component. Query processing is performed using both trees and performing the needed operations
between the two returned answer sets. The latter approach uses a single three-dimensional R-tree and treats time as
another spatial dimension. The authors conclude that the advantage of using one or the other approach is a matter
of trade-off based on how much often purely spatial or temporal queries are posed relatively to spatiotemporal
ones.

The Overlapping Linear Quadtrees, the MR-trees and the HR-trees are all based on the concept of overlapping
trees [MK90]. The basic idea is that, given two trees where the younger one is an evolution1 of the older one,
the second one is represented incrementally. As such only the modified branches are actually stored, the branches
that do not change are simply re-used (we discuss such an idea in more details shortly). The Overlapping Linear
Quadtrees, as the name implies are based on Quadtrees [Sam90] and as such are not constrained to index only
MBRs. The MR-trees and the HR-trees are very similar in nature and we comment on the HR-tree in more details
shortly. Indeed, next we discuss the three access structures we investigate in the remainder of this paper.

2.1 3D R-tree

The structure we discuss here is based on the 3D R-tree proposed in [TVS96]. The most straightforward way to
index spatiotemporal data is to consider time to be another axis, along with the traditional spatial ones. Using this
rationale, an object which lies initially at�x�� y�� during time�ti� tj� and then lies at�x�� y�� during [tj � tk� can
be modeled by two line segments in the three-dimensional space, namely the lines:��x�� y�� ti�� �x�� y�� tj�� and
��x�� y�� tj�� �x�� y�� tk��, which can be indexed using a three-dimensional R-tree.

1By evolution we mean a further version based on some changes upon the same data set.
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This idea works fine if the end time of all such lines are known. For instance consider in the above example
that the object moves from its initial position to the new one but is to remain there until some time not knowna
priori . All we know is that it lies in its new position untilnow, or until changed, no further knowledge can be
assumed. The very problem of whatnowor until changedmeans is complex enough by itself (refer to [C�97] for
a thorough discussion on the topic). To make things simpler we assume thatnow(or until changed) is a time point
sufficiently far in the future, about which there is no further knowledge.

What matters to our discussion is that standard spatial access structures are not well suited to handle such type
of “open” lines. In fact, one cannot avoid them. It is reasonable to assume that once the position of an spatial
object is known, it is unknown when (and if) it is going to move. As such all current knowledge would yield
such open lines, which would render known spatial access structures, e.g., R-trees, of little use. Recently, [B�98]
investigated that problem and proposed appropriate extensions to R-trees.

One special case where one could overcome such an issue is when all movements are knowna priori. This
would cause only “closed” lines to be input, and thus the above problem would not exist. In the comparisons
we make later in the paper using this structure, which we simply refer to as 3D R-tree, we shall make such an
assumption. One feature that may favor such an approach is that any R-tree derivative could be used.

2.2 2+3 R-tree

One possible way to resolve the above issue is to use two R-trees, one for two-dimensional points, and another
one for three-dimensional lines (hence the name 2+3 R-tree). A similar idea has been proposed in [KTF95] in
the context of bitemporal databases. In that paper bitemporal ranges with open transaction time ranges were kept
under one R-tree (called front R-tree) as a line segment. Whenever a open transaction time range were closed
it would become a closed rectangle, which was to be indexed under another R-tree (called back R-tree), after
removing the previously associated line segment from the front R-tree. In the 2+3 R-tree whenever the end time of
an object’s position is unknown it is indexed under a two-dimensional R-tree, keeping the start time of its position
along with its id. Note that the original R-tree (or any of its derivatives) keep only the object’s id (or a pointer to
the actual data record) and its MBR in the leaf nodes. The two-dimensional R-tree used in this approach is thus
minimaly modified.

Once the end time of an “open” object’s current state (i.e., position) is known, we are able to construct its
three-dimensional line as explained above, insert it into the three-dimensional R-tree and delete the existing entry
from the two-dimensional R-tree.

Using the example above: from timeti until the time point immediately before2 tj the object is indexed
under the two-dimensional R-tree. At timetj , it moves, as such, (1) the point�x�� y�� is deleted from the two-
dimensional R-tree, (2) the line��x�� y�� ti�� �x�� y�� tj�� is input into the three-dimensional R-tree, and, finally,
(3) the point�x�� y�� is input into the two-dimensional R-tree. Keep in mind that the start time of a point position
is also part of the information held along with the remainder of its data.

It is important to note that now, both trees may need to be searched, depending on the time point with respect
to which the queries are posed. Similar to the case of the 3D R-tree any of the proposed R-tree derivatives could
be used, provided that the leaf nodes of the two-dimensional one is minimally modified as discussed above.

A final remark should be done. The 2+3 R-tree is the dynamic version of the 3D R-tree. That is to say that the
two-dimensional R-tree serves the single purpose of holding the current (i.e., open) intervals. Should one know all
movementsa priori the two-dimensional R-tree would not be used at all, hence the 2+3 R-tree would be reduced
to the 3D R-tree presented earlier.

2.3 HR-tree

The two approaches above have drawbacks. The first suffers from the fact that it cannot handle open-ended lines.
The second, while able to overcome that problem, must search two distinct R-trees for a variety of queries. In this
section we present the HR-tree [NS98], which is designed to index spatiotemporal data as classified earlier.

Consider again the example in Section 2.1. At timeti one could obtain the current state (snapshot) of the
indexed points, build and keep the corresponing two-dimensional R-tree, repeating this procedure fort j andtk.
Obviously, it is not practical to keep the R-trees corresponding to all actual previous states of the underlying R-
tree. On the other hand it is reasonable to expect that some (perhaps the vast majority) of the indexed points do not

2We assume, without loss of generality, that the time domain is isomorphic to the rationals.
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move at every timestamp. Consequently R-trees may have some (or many) nodes identical to the previous version.
The HR-tree explores this, by keeping all previous states (snapshots) of the two-dimensional R-tree onlylogically.

As an illustration consider the two consecutive (with respect to their timestamps) R-trees in Figure 1, which
can be represented in a more compact manner as shown in Figure 2. Though it is just a simple example, it is easy
to see that much space could be saved if one could re-use the nodes that did not change from a given state to the
next one. Note that with the addition of an arrayA one can easily access the R-tree he/she desires. Perhaps most
important, is that once the root node of the desired R-tree for a given timestamp is obtained, query processing cost
is thesameas if all R-trees where kept physically.

1 2 3a 4 5 6 7 8 9

R2

A1 B C

1 4 6 7 9832 5

R1

 A B C

(a) R-tree at T0 (b) R-tree at T1

Figure 1: Maintaining, physically, all R-trees.

 A T1T0

1 2 3 4 5 6 7 8 9 3a

R1

CB A

R2

A1

Figure 2: Physical view of the HR-tree logically equivalent to Figure 1.

Notice however that it is desirable to keep the number of newly created branches as low as possible. For that
reason some R-tree variants are not suitable to serve as HR-tree’s framework, notably, the R�-tree [SRF87] and
the R�-tree [B�90]. In the former the MBRs are “clipped” and one single MBR may appear in several internal
nodes, therefore increasing the number of branches to be created in each incremental R-tree. Likewise, the R�-tree,
avoids node splitting by forcing entries re-insertion, which is likely to affect several branches, hence enlarging the
HR-tree.

Among the other alternatives, we have found the Hilbert R-tree [KF94] to be very suitable for our purposes
and use it as HR-tree’s baseline. From now on, unless explicitly mentioned otherwise, we use the term R-tree(s)
to refer to the Hilbert R-tree(s) as originally defined.

Since the original HR-tree proposal [NS98] used Guttman’s (quadratic) R-tree to show its feasibility, its al-
gorithms need be slightly modified (for the sake of completeness the HR-tree’s algorithms are detailed in the

4



Appendix.) The overall idea is that upon insertion of a new point version (i.e., its new location) a new branch has
to be created with all of its nodes are timestamped with the current timestamp, and then the new point is inserted
in this branch’s leaf node. All nodes which were not modified at all from last timestamp are simply re-used. For
instance, Figure 2 representss the resulting HR-tree when a new data point is inserted and which were to fall
within the leaf node 3 of the first R-tree in Figure 1. A similar idea is used to delete a point from the HR-tree.
As commented above, querying the HR-tree is a simple matter of retrieving the appropriate logicall R-tree root
through the arrayA.

3 Data Generation

From the seven issues presented in the introduction of the paper, it is quite clear that the first four are mostly
related to the data sets while the last three are more related to spatiotemporal access structures.

With respect to the first four items, we characterize our data as follows:

� The data type being indexed is that ofpoints.

� The supported temporal dimension is that oftransaction time, the new position of any given point always
has a begin-time greater than the begin-time of the previous position;

� The data points areevolving, i.e., the number of moving points are kept fixed and

� Only thecurrent state(snapshot) can be updated.

The access structures in turn are categorized as:

� Able to index points or regions, the last ones would be abstracted by MBRs;

� No purging or vacuuming of data is assumed and

� Queries based on spatial, temporal or spatiotemporal predicates can be processed, although not all with the
same efficieny in all structures.

For the data generation itself, we have build GSTD, a spatiotemporal data generator where the user can tune
several parameters to obtain data sets which fulfills his/her needs. The two main parameters are the initial data
distribution, and the amount of time a point is going to remain at the same location. For the initial data distribution
we have experimented both the case of uniform and gaussian distributions.

All data is initially generated assuming a two-dimensional unit square. As time evolves the space is assumed
to be toroidal, thus we do not have to worry about a point leaving the initial unit square. We also assume that all
but one of the involved parameters (namely, distance covered and time interval between two successive states of
an object) follow a gaussian distribution. The one exception is the direction of movement, in our study each point
moves to any direction with the same probability. Recall that the distance it moves, though, follows a gaussian
distribution. Further details about the way we generated spatiotemporal data can be obtained in [TN98].

To illustrate how data is generated and how it evolves, Figure 3 shows an initial data set using the gaussian
distribution, and four “snapshots” taken after 25, 50, 75 and 100 timestamps. It is easy to note that after 100
timestamps the initial gaussian distribution became closer a uniform one. This feature will allow us to investigate
how dependent of the initial spatial data distribution the access structures are. Naturally, a sample of data points
which were initially randomly distributed, remains randomly distributed as time evolves.

4 Performance Analysis

As pointed out above our main concern is to investigate the performance yielded by the 3D R-tree, the 2+3 R-tree
and the HR-tree when indexing moving points. Recall that in order to use the 3D R-tree one must know the whole
history in advance. While some applications, such as digital battle field, may usepreviously recorded snapshots,
their online versionsalways involve thenowparameter. To overcome that problem, one may use the 2+3 R-tree
approach discussed in Section 2.2. In any case, we decided to include it as a yardstick. Both the 3D and 2+3
R-trees are Hilbert R-trees in nature (recall that the HR-tree also uses the Hilbert R-tree as its basis).
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Figure 3: Temporal evolution of sample data points in the unit square.

Our experiments were performed on a Pentium II 300 Mhz PC running LINUX with 64 Mbytes of core
memory. The disk pages, i.e., tree nodes, use 1,024 bytes and all programs were coded using GNU’s GCC. The
cardinality of the data set ranged between 25,000 and 100,000 points. All objects timestamps fell within the unit
time interval [0, 1) with a granularity of 0.01, i.e., 100 distinct and equally spaced timestamps could be identified.
Two initial distributions were investigated: the uniform and the gaussian one (see Figure 3). The queries are also
uniformly and gaussianly distributed. The difference in the generation of the queries is that they are not points,
but MBRs. Recall that we are interested in queries of the type “which are the points contained in a given region at
(or during) a time point (interval)”. For the case of containment queries with respect to a time point, the queries
are those shown in Figure 4. The same two-dimensional queries are three-dimensionalized by “adding” a third
temporal axis with length following a uniform distribution (to ensure some controlability when obtaining data
results) to make containment queries with respect to a time interval. For each time point or interval we ran 100
queries and note the averages obtained.

Figure 4: Query MBRs with centers randomly (left) and gaussianly (right) distributed.

Next we show the obtained results regarding storage requirements, and query processing cost (measured in
terms of disk I/O).

4.1 Storage Requirements

Figures 5 and 6 show how large the structures are as a function of the number of indexed points. The reported
sizes are the total number of disk pages consumed after 100 timestamps evolutions. We have not observed any
unexpected correlation between page size and indices sizes.

The obtained results show that, as expected, the HR-tree approach saves space when compared to the extreme
case of physically storing all (100) R-trees. In fact, the average savings amounted to about 33%. We also noted
that the qualitative behavior of either structure does not seem to depend upon the initial distribution of the spatial
data. Quantitatively, however, the gaussian distribution demands more storage space.

More interesting however, is the fact that the 3D R-tree and the 2+3 R-tree use roughly the same storage and
are much smaller than the HR-tree. This is due to the fact that several internal nodes of the “virtual” R-trees are
duplicated in the HR-tree. Indeed, the more dynamic the data points, the smaller the savings in the HR-tree with
respect to storing all R-trees separately. However, as we shall see shortly, the HR-tree retains the same query
processing cost as if all virtual R-trees were stored, which is considerably smaller than the query processing cost
yielded by both 3D R-tree and 2+3 R-tree.
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Figure 5: Indices’ sizes – random initial distribution.

4.2 Index Building Cost

One interesting aspect to consider is the cost (in terms of disk I/Os) need to construct the indices. Figure 7 shows
such an information for the data set initially distributed randomly. The curves shapes observed for the initial
gaussian distribution was quite similar. As expected the 2+3 R-tree is the one which takes more time (i.e., I/Os) to
be built. This is due to the fact that whenever a point moves, there is an insertion (of the new version) and a deletion
(of the previous position) on the two-dimensional R-tree, and one insertion of a line (the previous position history)
on the three dimensional R-tree. The HR-tree also requires more I/Os as at least one complete branch is updated
from one timestamp to another one (assuming at least one point moved). The 3D R-tree on the other hand is the
most economical alternative, given that if all point movements are knowna priori, only one three-dimensional
line is inserted per point movement and no deletions occur.

4.3 Query Processing Cost

There are two cases to consider, one when the query is posed with respect to a specific time point and another
when a time interval is considered. We consider each one in turn. Starting with the case of a fixed reference time
point query, Figures 8 through 11, illustrate the obtained results when the structures were indexing 50,000 and
100,000 data points. Although not shown in this paper, the obtained figures when indexing 25,000 and 75,000
data points just confirm the qualitative trend suggested by the Figures shown next.

The shapes of the obtained curves are very similar because the same sets of (randomly or gaussianly distributed
– Figure 4) queries were used for all the corresponding data sets. Some conclusions we reached for this case are
the following.

Our conjecture that the HR-tree would require much less query processing cost was shown to be true in all
cases. The HR-tree is well suited to address spatiotemporal queries with the temporal part of the query window
being a point. In such a case the tree that corresponds to that timestamp (e.g., the R-tree pointed byA[T1] in
Figure 2) is obtained and the query processing is exactly the same one of a range query in a single standard R-tree.
On the other hand, for both the 3D and 2+3 R-tree the whole structure is involved in the query processing, thus
increasing significantly the query processing cost.

The three structures show an interesting behavior on their performance as time passes. The query processing
cost of the 3D R-tree does not change considerably when the data is initially distributed in a random fashion,
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Figure 6: Indices’ sizes – gaussian initial distribution.

unlike the case when it initially follows a gaussian distribution. The reason for this observation resides in the fact
that as time evolves the (focused) gaussian distribution becomes more “uniform” as already illustrated in Figure 3.
As such the degree of overlap between the R-tree nodes decreases and hence the query processing cost. A similar
behavior stands for the 2+3 R-tree although with a slight modification. The dual nature of the structure causes the
query processing cost to be lower as queries address more “recent” timestamps. In those cases the two-dimensional
tree is much more involved than its three-dimensional partner, which is more expensive to search. On the other
hand, the HR-tree does not behave as mentioned above, i.e., its query processing cost does not change with the
growing “uniformity” of the data set. This means that the HR-tree performance mainly depends on the initial data
distribution rather than its change over time. This is not an unexpected result given that the HR-tree re-uses as
much as possible from the previous (logical) R-tree, hence also inheriting its performance characteristics. Next we
investigate the case where the queries are posed with respect to a time interval, instead of a point as done above.

Figures 12 and 13 illustrate the query processing cost of the structures indexing 100,000 points, again following
initial random and gaussian distributions respectively when varying the average length of the queried time interval.
Such a length is measured in terms of number of consecutive timestamps. That is to say that we measured the
structure’s performance when the time was, in average, up to 8 timestamps, or up 8% of the total (unit) time range.
Note that a time interval of size 1 reduces to querying a specific time point, which we investigated above. Large
intervals were not investigated as the curves shown already presented a clear trend. The results observed are very
interesting. When querying a time interval in the HR-tree one is forced to traverse several logical R-tree as if all
of them were individually stored. In other words, the HR-tree is well suited to search a time point while for time
intervals is has to traverse as many R-trees as many time points are covered by that interval. Again we verified
that the relative HR-tree advantage is larger when indexing points which were spatially distributed randomly. Note
however, that this advantage holds true only for very short time intervals, typically spanning an average of 1 to 5
(3) timestamps when indexing the random (gaussian) data set.

We believe that this shortcoming could be minimized with the use of a carefully designed cache policy. We
plan to investigate such an issue in our future work.
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5 Summary and Future Research

In this paper we raised the issue that despite the fact that applications dealing with spatiotemporal data are gaining
strength, not much has been done regarding implementation and/or extensions of appropriate database manage-
ment systems. Towards that goal our contribution was to propose and investigate access structures for spatiotem-
poral data.

To the best of our knowledge it is the first performance study for spatiotemporal access structures, unlike the
areas of temporal [ST97] and spatial [GG98] indexing methods where an extended experimentation and com-
parison is found in the literature. In the particular field that we discuss in this paper, it was only [TVS96] that
compared alternative schemes based on R-trees with respect to analytical cost models proposed in [TS96].

We investigated three R-tree based structures: the 3D R-tree, the 2+3 R-tree and the HR-tree. We have discov-
ered, after several experiments that:

� The less dynamic the data set, the higher the storage savings yielded by the HR-tree when compared to the
ideal (from the query processing perspective) but impractical (in terms of disk storage demand) solution of
having all logical R-trees physically stored;

� The 3D and 2+3 R-trees tend to be much smaller than the HR-tree;

� Due to the re-use factor, the HR-tree’s performance is more dependent on the initial spatial distribution of
the data set rather than its change over time;

� When querying a specific time point the HR-tree offers a much better query processing time than the 3D
and 2+3 R-trees. In fact, it offers the same performance as if all logical R-trees were physically stored;

� If instead of a time point a time interval is queried, the HR-tree loses its advantage rather quickly with the
increase in the length of the queried time interval.

Considering that with current technology storage is much less of a problem than time to obtain data, we
consider the HR-tree a good candidate access structure for spatiotemporal data when most queries are posed with
respect to a time point or a very short time range.
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Figure 9: Query processing cost, indexing 50k points, initial gaussian distribution.
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Figure 10: Query processing cost, indexing 100k points, initial random distribution.
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Figure 11: Query processing cost, indexing 100k points, initial gaussian distribution.
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Figure 12: Query processing cost, indexing 100k points, initial random distribution.
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Figure 13: Query processing cost, indexing 100k points, initial gaussian distribution.
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The present paper has not dealt specifically with how the above structures behave with respect to movement,
direction and speed. For instance, suppose that instead of spreading in the space, all points move coordinately, how
would each access structure support this ? Also a few points may move much faster than the others (or vice-versa),
is that a feature that will affect the structures’ performance ? These and several other questions are currently being
investigated. An issue which needs further research has to do with the abstraction of the data set. In this paper we
used data points, but it is easy to foresee that several application domains may require the management of spatial
regions. For the particular case of MBRs the structures proposed in this paper could be used. We conjecture that
their strengths and limitations would remain, but further research is needed to confirm such belief.

As a further step, each structure’s performance is planned to be analytically explored, in correspondence with
the R-tree analysis for selection and join queries that appears in [TSS98]. Both directions, extensive experimenta-
tion and analytical work, converge on building a spatiotemporal benchmarking environment consisting of real and
synthetic data sets and access structures for evaluation purposes.
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Appendix

For the sake of completeness, this section shows the algorithms needed to insert a data point at a particular timetk,
this will create a new branch in the HR-tree; the counterpart to remove a data point is also shown. We assume the
reader is familiar with the Hilbert R-tree [KF94] algorithms and re-use them as much as possible. It is important
to stress that we assume a transaction timestamp, that is, if the current timestamp reflect the state of the R-tree
at timeti, all updates must bear a timestamp greater thanti. Moreover, we assume that updates can be made in
batch, i.e., more than one update can have a same timestamp.

Table 1: Notation used in the algorithms.

HR a pointer to the HR-tree
A the HR-tree’s array of time points
R root node of a R-tree
On MBR inserted in the HR-tree
Oo MBR removed from the HR-tree
F an entry in a R-tree node
p pointer associated toF
N.Nt node N’s timestamp
L,LP,N,NR pointers to R-tree nodes
S a set of tree nodes
SW a MBR representing a search window
now current point in time
pt most recent entry inA
t an indexed (time) entry inA
it,et start and end of a time range

TheAdjustTree algorithm is the original Hilbert R-tree AdjustTree Algorithm [KF94]. The Hilbert R-tree
HandleOverflow algorithm should be changed to be used here. When a node is touched by the algorithm and its
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timestamp is less thannow(the current point in time), then it has to be duplicated. The notation used is presented
in Table 1.

Algorithm HR-Insert(On, HR)
1. { create a new state in the HR-tree }

if A[pt] < now
then create a new entry in A indexing now;

2. { create a root NR to insert On }
invoke CreateBranch(On, HR) to create a new logical R-tree rooted at NR.
The new logical R-tree contains a leaf node L in which to place On;

3. { insert On in L }
if L has room for another entry

then insert On in L;
else invoke HandleOverflow(L, On). A new leaf may be created if split

was done.
4. { propagate split upwards }

form a set S that contains L, its cooperating siblings and the new leaf
node, if any.
invoke AdjustTree(S).

5. { grow tree taller }
if node split propagation caused a root split

then create a new root NR whose children are the nodes resulting from
the split;

adjust the entry in A to point to the new root NR;

Algorithm HR-CreateBranch(On, HR)
1. { initialize }

set N to be the root pointed to by A[pt] in HR;
if N.Nt < now

then create a new node L;
copy all entries of N into L;
set L.Nt = now;
set NR = L;

else set NR = N;
set L = N;

2. { leaf check }
if N is a leaf

then return NR and L;
3. { choose subtree }

let F be the entry with the minimum hilbert value grater than the hilbert
value of On

4. { create a new node of the new branch and
descending the tree }

set LP = L;
set N to be the node pointed to by F.p;
if N.Nt < now

then create a new node L;
copy all entries of N into L;
set L.Nt = now;
adjust the pointer F.p in LP to point to L;

else set L = N;
5. { Loop until a leaf is reached }

repeat from step 2;

Algorithm HR-Delete(Oo, HR)
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1. { find the leaf node containing Oo}
set R to be the root pointed to by A[pt];
perform an exact match search to find the leaf node L that contain Oo.
duplicate the branch that contains L if necessary.
set the timestamp of the nodes duplicated as Now;
if L cannot be found

then stop;
2. {create a new state in the HR-tree if necessary }
if the root was duplicated

create a new entry in A with time value equal to now;
Remove Oo from L;

4. if L underflows
then borrow some entries from s cooperating siblings.

duplicate the siblings if their timestamp < now
if all the siblings are ready to underflow

then merge s+1 to s nodes.
duplicate them if their timestamps < now

adjust the resulting nodes.
5. { adjust tree }

form a set S that contains L and its cooperating siblings (if underflow
has occurred).
invoke AdjustTree(S).

6. { shorten tree }
if the root node has only one child after the tree has been adjusted

then make the child the new root R;
adjust A[now] to point to R;

Using the algorithms above it is easy to implement the movement of a given point from its current location to
a new one at a given timestamp. It suffices to remove the point from its current location and the insert it in its new
position. The corresponding algorithm follows:

Algorithm HR-Move(Oo, On, HR)
1. { Delete the current MBR version }

Invoke Delete passing Oo and HR;
2. { Insert the new MBR version }

Invoke Insert passing On and HR;

As for queries we are currently interested in two types of containment queries: those that return all points
which are contained within a given MBR with respect to (1) one specific point in time, and (2) a time interval
(e.g.,�ti� tj �). The algorithms for them, in the above order, are presented next:

Algorithm HR-SearchPoint(S, t, HR)
1. { find the appropriate root R }

if t = now
then set R to be the node pointed to by A[pt];
else set R to be the node pointed to by A[t];

2. { find the MBRs which overlap S }
invoke original Hilbert Search algorithm
passing R;

Algorithm HR-SearchRange(S, it, et, HR)
1. { find the appropriate root R at time it (initial time) }

if it = now
then set R to be the node pointed to by A[pt];
else set R to be the node pointed to by A[it];
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2. { find the MBRs which overlap S }
set t to be it
while (t <= et)
invoke original Hilbert Search algorithm passing R;
set t to be the next time in A[.];
set R to be the node pointed to by A[t];
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