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Abstract

An efficient benchmarking environment for spatiotemporal access methods should at

least include modules for: generating synthetic datasets, storing datasets (real

datasets included), collecting and running access structures, and visualizing

experimental results. Focusing on the dataset repository module, a collection of

synthetic data that would simulate a variety of real life scenarios is required. Several

algorithms have been implemented in the past to generate static spatial (point or

rectangular) data, for instance, following a predefined distribution in the workspace.

However, by introducing motion, and thus temporal evolution in spatial object

definition, generating synthetic data tends to be a complex problem. In this paper, we

discuss the parameters to be considered by a generator for such type of data, propose

an algorithm, called “Generate_Spatio_Temporal_Data” (GSTD), which generates

sets of moving point or rectangular data that follow an extended set of distributions.

Some actual generated datasets are also presented. The GSTD source code and

several illustrative examples are currently available in the Internet1.

Keywords: spatiotemporal databases, benchmarking, data generators, indexing,
access structures, query performance

1. Introduction

A field of ongoing research in the area of spatial databases and Geographical Information Systems (GIS)

involves the accurate modeling of real geographical applications, i.e., applications that involve objects

whose position, shape and size change over time. Real world examples include storage and manipulation

of trajectories, fire or hurricane front monitor, simulators (e.g. flight simulators), weather forecast, etc.

Database Management Systems (DBMS) should be extended towards the efficient modeling and

support of such applications. Towards this goal, recent research efforts have aimed at:

• modeling and querying time-evolving spatial objects (e.g. [SWCD97, EGSV98, T98]),

• designing index structures and access methods (e.g. [NS98, TVM98]),

• implementing appropriate architectures and systems (e.g. [WXCJ98]).

In the recent literature, one can find work on formalization and modeling of spatiotemporal

databases and a wide set of definitions about spatiotemporal objects. In the rest of the paper, we adopt the

discrete definition for spatiotemporal objects that appears in [TSPM98]:

Definition: A spatiotemporal object, identified by its o_id, is a time-evolving spatial object, i.e., its

evolution (or ‘history’) is represented by a set of instances (o_id, si, ti), where si is the location of object o

at instant ti (si and ti are called spacestamp and timestamp, respectively).

According to the above definition, a two-dimensional time-evolving point (region) is represented by

a line (solid) in three-dimensional space. Figure 1 illustrates two examples: (a) a moving point and (b) a

                                                          
1 URLs: http://www.dblab.ece.ntua.gr/~theodor/GSTD  and http://www.dcc.unicamp.br/~mario/GSTD .
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moving region, according to the terminology proposed in [EGSV98]. Although in the rest of the paper,

we consider objects of dimensionality d = 2, extension to higher dimensions is straightforward2.

x

y

t

x

y

t

(a) moving point (b) moving region

Figure 1: Two-dimensional time-evolving spatial objects

One of the tasks that a SpatioTemporal Database Management System (STDBMS) should definitely

support includes the efficient indexing and retrieval of spatiotemporal objects. This task demands robust

indexing techniques and fast access methods for a wide set of possible queries on spatiotemporal data.

Either extensions of existing spatial access methods [XHL90, TVS96, NS98, TVM98] or new 'from-the-

scratch' methods could be reasonable candidates. All proposals, however, should be evaluated under

extensive experimentation on real and synthetic data. For instance, query processing and/or index

building time (either real wall-clock time, or number of disk I/Os), space requirements and combinations

thereof are all possible parameters against which one may want to evaluate a given index proposal.

 Overall, there is a lack of consistent performance comparison among the proposed approaches, with

respect to the space occupied, the construction time, and the response time in order to answer a variety of

spatial, temporal, and spatiotemporal queries. Moreover, [ZMR96] suggests that "experiments of

indexing techniques should be based on benchmarks such as standard sets of data and queries".

 Following that, the general architecture of a benchmarking environment for spatiotemporal access

methods (STAMs) that is currently under design includes the following:

(a) a module that generates synthetic data and query sets, which would cover a variety of real life

examples,

(b) a repository of real datasets (such as TIGER files for - static - spatial data),

(c) a collection of access structures for experimentation purposes,

(d) a database of experimental results, and

(e) a visualization tool that could be able to visualize datasets and structures, for illustrative purposes.

Our study continues an attempt towards a specification and classification scheme for STAMs

initiated in [TSPM98]. Within the above framework, in this paper we concentrate on module (a) and, in

particular:

• discuss parameters that have to be taken into consideration for generating spatiotemporal datasets,

and

• propose an algorithm that generates datasets simulating a variety of scenarios with respect to user

requirements.

                                                          
2 Popular examples of spatial datasets with dimensionality d > 2 include, among others, virtual reality worlds (d =
3) and feature-based image databases (usually d ≤ 256).
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The rest of the paper is organized as follows: In Section 2 we discuss the motivation for this study.

Section 3 discusses the parameters that need to be taken into consideration. An appropriate algorithm is

presented in Section 4 together with example results and applications. Section 5 discusses several issues

that arise and surveys related work. Finally, Section 6 concludes by also giving directions for future

work.

2. Motivation

In the literature, several access methods have been proposed for spatial data without, however, taking the

time aspect into consideration. Those methods are capable of manipulating geometric objects, such as

points, rectangles, or even arbitrary shaped objects (e.g. polygons). An exhaustive survey is found in

[GG98]. On the other hand, temporal access methods have been proposed to index valid and/or

transaction time, where space is not considered at all. A large family of access methods has been

proposed to support multiversion / temporal data, by keeping track of data evolution over time (e.g.

assume a database consisting of medical records, or employees’ salaries, or bank transactions, etc.). For a

survey on temporal access methods see [ST98].

To the best of our knowledge, there is a very limited number of proposals that consider both spatial

and temporal attributes of objects. In particular, MR-trees and RT-trees [XHL90], 3D R-trees [TVS96],

and HR-trees [NS98] are based on the R-tree family [Gut84, BKSS90, KF94] while Overlapping Linear

Quadtrees [TVM98] are based on the Quadtree structure [Sam84]. These approaches have the following

characteristics:

• 3D R-trees treat time as another dimension using a 'state-of-the-art' spatial indexing method, namely

the R-tree,

• MR-trees and HR-trees (Overlapping Linear Quadtrees) embed the concept of overlapping trees

[MK90] into R-trees (Quadtrees) in order to represent successive states of the database, and

• RT-trees couple time intervals with spatial ranges in each node of the tree structure by adopting ideas

from TSB trees [LS89].

 The majority of proposed spatiotemporal access structures are based on the R-tree (one exception is

[TVM98]), as such we focus on such structures and a short survey of the R-tree based approaches

follows.

Assuming time to be another dimension is a simple idea, since several tools for handling

multidimensional data are already available [GG98]. The 3D R-tree implemented in [TVS96] considers

time as an extra dimension in the original two-dimensional space and transforms two-dimensional

rectangles in three-dimensional boxes. Since the particular application considered in [TVS96] (i.e.,

multimedia objects in an authoring environment) involves Minimum Bounding Rectangles (MBRs) that

do not change their location through time, no dead space is introduced by their three-dimensional

representation. However, if the above approach were used for moving objects, a lot of empty space

would be introduced (Figure 2).
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 Figure 2: The MBR of a moving object occupies a large portion of the data space

 The approach followed by the RT-tree [XHL90] only partially solves that problem. Time

information is incorporated, by means of time intervals, inside the (two-dimensional) R-tree structure.

Each entry, either in a leaf or a non-leaf RT-tree node, contains entries of the form (S, T, P), where S is

the spatial information (MBR), T is the temporal information (interval), and P is a pointer to a subtree or

the detailed description of the object. Let T = (ti, tj), i ≤ j, tj be the current timestamp and tj+1 be the

consecutive one. If an object does not change its spatial location from tj to tj+1, then its spatial information

S remains the same, whereas the temporal information T is updated to T', by increasing the interval upper

bound, i.e., T' = (ti, tj+1). However, as soon as an object changes its spatial location, a new entry with

temporal information T = (tj+1, tj+1) is created and inserted into the RT-tree. This insertion strategy makes

the structure mostly efficient for databases of low mobility; evidently, if we assume that the number of

objects that change is large, then many entries are created and the RT-tree grows considerably. An

additional criticism is based on the fact that R-tree node construction depends on spatial information S

while T plays a complementary role. Hence the RT-tree is not able to support temporal queries (e.g. "find

all objects that exist in the database within a given time interval").

 On the other hand, MR-trees and HR-trees are influenced by the work on overlapping B-trees

[MK90]. Both methods support the following approach: different index instances are created for different

transaction timestamps. However, in order to save disk space, common paths are maintained only once,

since they are shared among the structures. The collection of structures can be viewed as an acyclic

graph, rather than a collection of independent tree structures. The concept of overlapping tree structures

is simple to understand and implement. Moreover, when the objects that have changed their location in

space are relatively few, then this approach is very space efficient. However, if the number of moving

objects from one time instant to another is large, this approach degenerates to independent tree structures,

since no common paths are likely to be found. Figure 3 illustrates an example of overlapping trees for

two different time instants t0 and t1. The dotted lines represent links to common paths / subpaths.

 

Time t0 Time t1

 Figure 3: Overlapping trees for two different time instants t0 and t1.

Among the aforementioned proposals, the 3D R-tree has been implemented and experimentally
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tested [TVS96] using synthetic (uniform) datasets. The retrieval cost for several pure temporal, pure

spatial and spatiotemporal operators was measured and appropriate guidelines were extracted. Recently,

[NST98] compares the HR-tree with the 3D R-tree and another structure, called 2+3 R-tree, using two R-

trees and a rationale similar to the 2R approach presented in [KTF98]. The basic conclusion is that the

HR-tree is far more efficient in terms of query processing for time point queries while that is not true for

time interval queries. Also, the HR-tree may result in a rather large structure.

 3. A set of operations and parameters

 [TSPM98] discusses a list of specifications to be considered when designing and evaluating efficient

STAMs with respect to: (i) data types and datasets supported, (ii) issues on index construction, and (iii)

issues on query processing. While the second and third ones mainly address the internal structure of a

method and hence should be considered by STAM designers, the first group of specifications highly

affect the design of an efficient benchmarking environment since they focus on database characteristics

for evaluation purposes. In particular, the specifications that are addressed in [TSPM98] with respect to

type (i) are the following:

- Spec 1: on the data type(s) supported. Appropriate STAMs could support either point or non-point

spatial objects. In some cases, point objects could be considered as special cases of non-point objects

but this depends on the underlying modeling.

- Spec 2: on the time dimension(s) supported. A second classification concerns the time dimension(s)

supported, i.e., valid and/or transaction time. Since at least one time dimension should be supported,

spatiotemporal databases are classified in valid-time, transaction-time, and bitemporal ones.

- Spec 3: on the dataset mobility. Three cases are addressed, with respect to the motion of objects and

the cardinality of the dataset through time, namely evolving (i.e., moving objects of a fixed

cardinality through time), growing (i.e., static objects of varying cardinality through time), and full-

dynamic (i.e., moving objects of varying cardinality through time) databases.

- Spec 4: on the timestamp features. Whether future instances could refer to past timestamps or not

leads to a distinction between chronological and dynamic databases, i.e., collections of objects'

instances (o_id, si, ti) that either have or not to obey the rule of consecutive timestamps: ti+1 > ti.

 In the rest of the paper we study the case of temporally degenerate databases that obey the rule of

consecutive timestamps, i.e., for each object in the database, the following inequality exists between the

timestamp of the current instance ti and that of the next instance ti+1 to be inserted into the database: ti+1 >

ti. The term degenerate refers to the characteristic that the valid time of object instances is identical to

their transaction time. That is, an object is valid as long as it exists in the database. The problem that

arises when no such rule exists3 is clarified through the following example: Consider that two instances

(o_id, si, ti) and (o_id, sj, tj) of an object o have been inserted into the database (without a loss of

generality, we assume that ti < tj) and no instance (o_id, sk, tk) exists, such that ti < tk < tj. Hence [ti , tj) is

the valid (and transaction) time of instance i. Let now assume that a new instance (o_id, sl, tl) is inserted

into the database, such that ti < tl < tj. Due to that action, (a) the valid time of instance i has to be changed

from [ti , tj) to [ti , tl) and (b) the validity interval of the new instance l has to be set to [tl , tj). No

straightforward support for those operations exists in current STAMs and, therefore, we currently leave

                                                          
 3 Applicable to valid-time only since transaction-time always obeys that rule.
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that case out of study. Note however, that this assumption is not made in the area of bitemporal databases

[ST98]. Indeed in bitemporal access structures the rule is that, by definition, only transaction is

monotonically increasing as discussed above. However, adding spatial features to bitemporal data is still

an open area for research.

 3.1. User requirements

 Three (Spec1 to Spec3) out of the above four specifications are orthogonal to each other. On the other

hand, only the chronological case of Spec4 is supported in this study, as declared earlier, and, as a result

of that, we currently treat transaction- and valid- time under a uniform platform. Hence, we distinguish

among 12 different database families (e.g. a point plus transaction-time plus evolving plus chronological

database) according to the following options:

- Spec1: point vs. region database,

- Spec2: transaction- (or valid-) vs. bitemporal database,

- Spec3: evolving vs. growing vs. full-dynamic database,

- Spec4: chronological database.

In order for the user of a benchmarking environment to generate a synthetic dataset, he/she should

be able to (a) select one among the above database options and, then (b) tune the cardinality of the

dataset and an appropriate set of parameters and distributions.

A fundamental issue on generating synthetic spatiotemporal datasets is the definition of a complete

set of parameters that control the evolution of spatial objects. Towards this goal, we first address the

following three operations:

• duration of an object instance, which involves change of timestamps between consecutive instances,

• shift of an object, which involves change of spatial location (in terms of center point shift), and

• resizing of an object, involves change of an object’s size (only applicable to non-point objects).

 In a more general case, the latter one could be regarded as reshaping of an object, as not only size

but also shape could change. However, as the MBR is the most common approximation used by indices,

we only consider that case, and thus shape changes are not an issue.

 A description of each operation follows. In particular, the goal to be reached is the calculation of the

consecutive instances (o_id, si, ti) of an object o (recall the definition in Section 1) starting from an initial

instance (o_id, s1, t1). We also assume that the spatial workspace of interest is the unit square [0,1)2 and

time varies from 0 to 1 (i.e., the unit interval). For illustration reasons, in Figure 4 we visualize four

instances of a time-evolving two-dimensional region object o and the corresponding projections on

spatial plane and temporal axis, respectively.
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 Figure 4: Consecutive instances of a time-evolving object o and the corresponding projections

 3.2. Parameters involved

 The shift, the duration, and the resizing of an object's instance are represented by the functions:

 duration (o_id,interval,current_timestamp,new_timestamp)

 shift (o_id, ∆center[],current_spacestamp_center,new_spacestamp_center)

 resizing (o_id, ∆extent[],current_spacestamp_extent[],new_spacestamp_extent[])

 which calculate new_timestamp  (a numeric value), new_spacestamp_center  (a 2-dimensional

point), and new_spacestamp_extent[]  (an array of 2 intervals), respectively, of an object o_id , as

functions of the respective current values and three parameters, namely interval , ∆center[] , and

∆extent[] , respectively.

 As an example, consider the object illustrated in Figure 4 and its initial position (o_id, s1, t1). Each

consecutive spacestamp si and timestamp ti (i = 2, 3, 4) depends on the previous one, si-1 and ti-1

respectively, with respect to the following formulae: ti = ti-1 + interval i, si.center.x = si-1.center.x +

∆center i. x, and si.extent.x = si-1.extent.x + ∆extent i. x

 In summary, Table 1 lists the parameters of interest and their corresponding domains. All

parameters should follow a (user-defined) distribution, such as the ones we discuss in the following

subsection.

 Parameter  Type  Domain

 interval  number  (0 … 1)

 ∆center[]  2-dimensional vector  (-1 … 1)2

 ∆extent[]  2-dimensional vector  (-1 … 1) 2

 Table 1: Parameters for generating time-evolving objects
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 3.3. Distributions

 A benchmarking environment should support a wide set of well-established initial data distributions.

Figure 5 illustrates three two-dimensional initial distributions, namely the uniform, the gaussian, and the

skewed one.

   

 (a) uniform  (b) gaussian  (c) skewed

 Figure 5: Basic statistical distributions in two-dimensional space

 In addition to the initial spatial distributions, there are several other parameters that require some

kind of statistical distribution, especially those mentioned above (∆center[] , interval , and

∆extent[] ). Through careful use of, possibly different, distributions for the above parameters one may

simulate several interesting scenarios, for instance, using a random distribution for the ∆center[i]  as

well as for the interval , all objects would move equally fast (or slow) and uniformly on the map;

whereas using a skewed distribution for the interval  one would obtain a relatively large number of

slow objects moving randomly, and so on. Also, by properly adjusting the distributions for each

∆center[i] , one may control the direction of the objects movement. For instance, by setting

∆center[i]  = Uniform(0,1) ∀i , one would obtain a scenario where the set of objects eventually

converge to the upper-right corner of the unit workspace, irrespectively from the initial distributions, but

using the “adjustment” approach (see subsection 4.1). Similarly, if one wants the objects moving towards

some specific direction (e.g. East), he/she can adjust ∆center and put lower and upper bounds for the

center’s generated value, as will be discussed in detail in the following section.

Among the distributions supported and illustrated in Figure 5, the uniform distribution only requires

the minimum / maximum values while the other ones require extra parameters to be tuned by the user. In

particular, the gaussian distribution needs mean and variance parameters as input and the skewed

distribution needs a parameter to be declared, which controls the “skewedness” of the distribution.

 In the following section, we adopt the issues discussed earlier in order to present an algorithm that

generates synthetic spatiotemporal datasets for benchmarking purposes.

 4. The GSTD algorithm

 We propose an algorithm, called Generate_Spatio_Temporal_Data (GSTD), for generating time-

evolving (i.e., moving) point or rectangular objects. For each object o_id, GSTD generates tuples of the

format: (o_id, t, pl, pu), where t is the timestamp and pl (pu) is the lower (upper) coordinate point of the

spacestamp. The GSTD algorithm is illustrated in Figure 6.



9

 4.1. Description of the algorithm

 GSTD gets several user-defined parameters as input:

• N and D correspond to the initial cardinality and density (i.e., the ratio of the sum of the areas of data

rectangles over the workspace area) of the dataset,

• starting_id corresponds to the initial id number of the objects,

• numsnapshots corresponds to the time resolution of the workspace,

• min_t  and max_t  correspond to the domain of the interval  parameter,

• min_c[]  and max_c[]  correspond to the domain of the ∆center[]  parameter,

• min_ext[]  and max_ext[]  correspond to the domain of the ∆extent[]  parameter,

 and generates several tuples for each object, according to the following procedure:

"Each object is initially active and, for each one, new instances are generated as long

as their timestamp t < 1; when all objects become inactive, the algorithm ends".

 During the initialization phase (lines 01-04), all objects' instances are initialized, such that their

center points are randomly distributed in the workspace, based on the distr_init()  distribution, and

their extensions are either set to zero (in case of point datasets) or calculated according to extent(N,D)

routine with respect to the input N and D parameters (in case of non-point datasets)4.

 During the main loop phase (lines 06-27), each new instance of an object is generated as a function

of the existing one and the three parameters (interval , ∆center[] , ∆extent[] ). Then, invalid

instances (i.e., those with coordinates located outside the predefined workspace) can be manipulated in

three alternative ways as described below. In order for a new instance to be generated, the interval ,

∆center[]  and ∆extent[]  values are calculated by calling an RNG(distr(),min,max)  routine, i.e.,

a random number generator that generates random numbers between min  and max following a predefined

distr , which is a statistical distribution, such as the ones discussed in subsection 3.3.

The print_instance  function checks whether the current instance of an object has a timestamp

value greater than or equal to the value in next_snapshot . If so, the coordinates of the instance (given

by the old_instance  variable) before the current instance are printed, using the apropriated timestamp

(which depends on the next_snapshot  variable). In addition, the value of the next_snapshot

variable is properly adjusted. Otherwise, the current instance is not output.

                                                          
 4 In other words, an appropriate k=extent(N,D)  value is set to achieve an initial density D of the dataset with
respect to initial cardinality N.
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 Generate_Spatio_Temporal_Data  algorithm

 Input : values N, starting_id, numsnapshots, D, min_t, max_t

 arrays min_c[], max_c[], min_ext[], max_ext[]

 distributions distr_init(), distr_t(), distr_c(), distr_ext()

 Output : instance (id, t, lower_left_point, upper_right_point), validity_flag

 
 begin

 01 for  each  id in range  [starting_id .. N+starting_id] do //initialization phase

 02 Set  t = 0, center[] = RNG(distr_init(), 0, 1), extent[] = extent(N, D)

 03 Set active = TRUE

04  end-for

 05 Set  step = 1 / numsnapshots

 06 for  each  id in range  [starting_id .. N+starting_id]  do  /* loop phase */

 07  Set  next_snapshot = step

 08 while active do

 /* calculate delta-values and new instances */

 09 Set  interval = RNG(distr_t(), min_t, max_t)

 10 Set  ∆center[] = RNG(distr_c(), min_c[], max_c[])

 11 Set  ∆extent[] = RNG(distr_ext(), min_ext[], max_ext[])

 12 Set  old_instance = instance

 13 update_instance(instance)

 /* check instances and output */

 14 if  t > 1  then

 15 active = FALSE

 16 print_instance(old_instance,current[i],next_snapshot)

 17 else  //check instance validity and output

 18 Set  validity_flag = valid(instance)

 19 if  validity_flag = FALSE and  approach ≠ 'radar' then

 20  adjust_coords(instance, approach)

 21 end-if

 22 if  t > next_snapshot then

 23 print_instance(old_instance,current[i],next_snapshot)

 24 end-if

 25 end-if

 26 end-while

 27 end-for

 end.

 

 Figure 6: The GSTD algorithm

Obviously, it is possible that a coordinate may fall outside the workspace; GSTD manipulates

invalid instances according to one among three alternative approaches:

• the 'radar' approach, where coordinates remain unchanged, although falling beyond the workspace,

• the 'adjustment' approach, where coordinates are adjusted (according to linear interpolation) to fit the

workspace, and

• the ‘toroid’ approach, where the workspace is assumed to be toroidal, as such once an object

traverses one edge of the workspace, it enters back in the “opposite” edge.

In the first case, the output instance is appropriately flagged to denote that invalidity but the next

generated instance is based on that. On the other hand, in the other two cases, it is the modified instance

that is stored in the resulting data file and used for the generation of the next one. Notice that in the
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‘ radar’ approach, the number of objects present at each time instance may vary.

The three alternative approaches are illustrated in Figure 7 for the example of Figure 4. For

simplicity, only the centers are illustrated; black (grey) locations represent valid (invalid) instances. In

the example of Figure 7a, the ‘radar’ fails to detect s3, hence it is not stored but the next location s4 is

based on that. Unlike ‘radar’, the other two approaches calculate a valid instance s3’ to be stored in the

data file which, in turn, is used by GSTD for the generation of s4. It is interesting to watch the behavior

of s4 in Figure 7c, where the calculated location finally stored (s4’) is actually identical to that in Figure

7a, as the effect of two consecutive calculations for s3’ and s4’.

 

s1

s2
s4

s3

y

x

 

s1

s2

s4

s3

s3'

y

x

 (a) ‘radar’  (b) ‘adjustment’
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s2
s4'

s3

s4

s3' y

x

 (c) ‘toroid’

 Figure 7: GSTD manipulation of invalid instances

 4.2. Examples of generated datasets

 As mentioned earlier, real world examples of (point or region) spatiotemporal datasets include

trajectories of humans, animals, or vehicles, e.g. detected by a global positioning system (GPS), digital

simulations of flights or battles, weather forecast and monitoring of fire or hurricane fronts. For instance,

detecting vehicle motion by GPS and storing the whole trajectory in a database is a typical every day life

example. However, different motion scenarios correspond to different datasets which an efficient

structure should be evaluated on. Random versus biased direction, fast versus slow motion are some of

the parameters that result to totally different applications.

In this subsection, in order to simulate some of those scenarios, we present six example datasets

consisting of point or rectangle objects generated by GSTD. For all files the following parameters were

set: N = 1000, D = 0 or 0.5 (for points or rectangles, respectively), numsnapshots  = 100. Illustrated

snapshots correspond to t = 0, 0.25, 0.50, 0.75, and 1. Table 3 presents the non-fixed input parameters

and the generated snapshots for each file. Scenarios 1 and 2 follow the 'toroid' and 'radar' approach,

respectively, to manipulate invalid instances, while scenarios 3 through 6 follow the 'adjustment'

approach.
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 Distributions of Parameters Snapshots

 distr_init = Gaussian(0.5,0.1)

 interval = Gaussian(0,0.5)

 ∆center[x] = Uniform(0,0.3)

 ∆center[y] = Uniform(0,0)

 ∆extent[x] = Uniform(0,0)

 ∆extent[y] = Uniform(0,0)

scenario 1: points moving from center to East ('toroid' approach)

 distr_init = Gaussian(0.5,0.1)

 interval = Gaussian(0,0.5)

 ∆center[x] = Uniform(0,0.4)

 ∆center[y] = Uniform(0,0.4)

 ∆extent[x] = Uniform(0,0)

 ∆extent[y] = Uniform(0,0)

scenario 2: points moving from center to NorthEast ('radar' approach)

 distr_init = Skewed(1)

 interval = Gaussian(0,0.2)

 ∆center[x] = Uniform(0,0.3)

 ∆center[y] = Uniform(0,0.3)

 ∆extent[x] = Uniform(0,0)

 ∆extent[y] = Uniform(0,0)

scenario 3: points moving from SouthWest to NorthEast

 distr_init = Gaussian(0.5,0.1)

 interval = Gaussian(0,0.5)

 ∆center[x] = Uniform(-0.2,0.2)

 ∆center[y] = Uniform(-0.2,0.2)

 ∆extent[x] =Uniform(-0.01,0.01)

 ∆extent[y] =Uniform(-0.01,0.01)

scenario 4: rectangles moving (and resizing) randomly

 distr_init = Gaussian(0.5,0.1)

 interval = Gaussian(0,0.5)

 ∆center[x] = Uniform(-0.2,0.2)

 ∆center[y] = Uniform(-0.2,0.2)

 ∆extent[x] = Uniform(0,0)

 ∆extent[y] = Uniform(0,0)

scenario 5: points moving randomly (low speed)

 distr_init = Gaussian(0.5,0.1)

 interval = Gaussian(0,0.5)

 ∆center[x] = Uniform(-0.4,0.4)

 ∆center[y] = Uniform(-0.4,0.4)

 ∆extent[x] = Uniform(0,0)

 ∆extent[y] = Uniform(0,0)

scenario 6: points moving randomly (high speed)

 Table 3: Example files generated by GSTD
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Scenarios 1 and 2 illustrate points with initial gaussian distribution moving towards East and

NorthEast, respectively. In the former case, where the toroidal world model was used, when the points

traverse the right edge, they enter back in the left side of the map. Notice that to force the points moving

to the East, ∆center[y]  = 0 and ∆center[x]  > 0. In the latter case, where the 'radar' approach is

simulated, the points move towards NorthEast and some of them fall beyond the upper-right corner

(some quite early due to their speed), in fact some points move beyond the map. Notice that since

∆center[]  is always > 0, those points will never reappear in the map.

Scenario 3 illustrates the initially skewed distribution of points and the movement towards

NorthEast. As the 'adjustment' approach was used, the points concentrate around the upper-right corner.

Scenario 4 includes rectangles initially located around the middle point of the workspace, which are

moving and resizing randomly. The randomness of shift and resizing is guaranteed by the

Uniform(min,max)  distribution used for ∆center[]  and ∆extent[] , where abs(min)=abs(max)

> 0.

Finally, scenarios 5 and 6 exploit the speed parameter of a moving dataset as a function of the

GSTD input parameters. By increasing (in absolute values) the min  and max values of ∆center[] , a

user can achieve 'faster' objects while the same could happen by decreasing the max_t  value that affects

interval . Thus, the speed of the dataset is considered to be a meta-information since it could be

derived by the knowledge of the primitive parameters. Similarly, the direction of the dataset can be

controlled, as presented in scenarios 1 through 3.

Alternatively, if the user's application makes necessary the conjunction of two (or more) scenarios,

as for instance, a population of MBRs with only a small percentage of them moving towards some

direction and the rest ones being static, two individual scenarios can be generated according to the above

by properly setting the two starting_id  input parameters and then merged, which is a straightforward

task. Bottomline, by properly adjusting the parameters of Table 1, one can yield a scenario that fits

his/her needs.

 5. Discussion and Related Work

An alternative straightforward algorithm for generating N time-evolving objects would include the

calculation of the spacestamp of each object at each snapshot, thus leading to an output consisting of T =

N ⋅ numsnapshots  tuples. Our approach outperforms that since it outputs a limited number T' of tuples

(T' << T), i.e., the necessary ones in order to reproduce the dataset motion.

However, a fundamental question arises: based on the knowledge of two instances (o_id, si, ti) and

(o_id, si+1, ti+1) that correspond to consecutive timestamps, what is the location of an object at a time tj,

such that ti < tj < ti+1 ? As an example, recall the instances of the object o illustrated in Figure 4. The

status of its spacestamp between e.g. ti and ti+1 is a ‘fuzzy’ issue. Two alternatives may be followed:

• projection: the spacestamp is considered to be static and equal to the one at time ti,

• linear interpolation: the spacestamp is considered to be moving with respect to a start- (at time ti)

and an end- (at time ti+1) position.

 Both alternatives find applications in real world; cadastral systems, on the one hand, versus
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navigational systems, on the other hand, are popular examples5. Figure 8 illustrates the two alternative

scenarios for the example of Figure 4.
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 (a) projection  (b) linear interpolation

 Figure 8: Alternative scenarios for the location of an object between two timestamps

 In any case, detecting the status of object o at a time instance during (t1, t2) is an open issue. We

argue that the GSTD algorithm proposed earlier is independent of that issue. Actually, it generates a

series of instances regardless of such an issue. On the other hand, it is a visualization tool or a STAM

construction algorithm that needs to support one or both alternative scenarios. Since in this study we are

interested in spatiotemporal databases that follow the rule of consecutive timestamps, the knowledge of

both the current and the new instances of an object, as supported by GSTD (line 13), are sufficient to

deal with both alternatives.

The need for independent platforms for benchmarking purposes or, in general, experiment

management has been already addressed in the past [SFGM93, ILGP96]. Such a need arises when a

researcher aims to make a 'fair' performance study or experimentation without the dilemma of building

his/her own datasets for this purpose. Although extended related work is found in traditional database

benchmarks and data generators (e.g. [BDT83, GSE+94]), in the field of spatial databases it is very

limited [SFD93, Pat97, GOP+98]. Moreover, when motion is introduced to support spatiotemporal

databases, to our knowledge, no related work exists.

 The most relevant to our work is the 'A La Carte' benchmark [GOP+98]. It is a WWW-based tool

consisting of a rectangle generator that builds datasets based on user defined parameters (cardinality,

coverage, coordinates' distributions) and an experimentation module that runs experiments on either user

built or stored sample datasets (including parts of the Sequoia 2000 storage benchmark [SFGM93]). The

module is actually a spatial join performance evaluator that supports several spatial join strategies.

 6. Conclusion and Future Work

STDBMS require appropriate indexing techniques on spatiotemporal data. Although conceptually the

problem seems to be easy to solve, several issues arise when one attempts to adopt a spatial indexing

method to organize time-evolving objects by just adding an extra dimension for time. Therefore, a

                                                          
 5 Linear interpolation assumes that a linear function represents boundary points' motion, i.e., intermediate locations
are linear to the start- and end- points. Higher-order polynomial problems are hardly modeled.
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limited number of STAMs have been proposed in the literature as briefly surveyed in Section 2.

 The effort towards the design and implementation of a benchmarking environment in order to

provide performance comparison of STAMs leads to the need of collecting a variety of appropriate

synthetic and real spatiotemporal datasets. However, in accordance to the design of efficient methods,

generating efficient synthetic datasets is not a straightforward extension of generating spatial data, such

as the ones that have been thoroughly used for experimental purposes in the spatial database literature. At

a first step, several specifications that identify the type of the dataset have to be addressed and, at a

second step, a set of parameters and corresponding distributions have to be tuned by the user. More

specifically, we have discussed three operations, namely duration of an object instance, shift and resizing

of an object (the latter one applicable to non-point objects) and derived a set of three parameters, namely

interval , ∆center , and ∆extent , which control the evolution of a spatial object through time in

satisfactory terms.

 Based on those parameters, we have designed and implemented the GSTD algorithm that generates

sets of moving points or rectangles according to users' requirements, thus providing a tool that simulates

a variety of possible scenarios. Some of those scenarios have been illustrated and discussed in Section 4.

GSTD also includes alternative methodologies to support invalid instances, i.e., those with coordinates

falling outside the workspace.

 This study continues the work initiated in [TSPM98] towards a full and interactive support tool for

designing, implementing, and evaluating access methods for the purposes of STDBMS. We are currently

working on a WWW environment to make GSTD available to all researchers through the Internet (mirror

sites: http://www.dblab.ece.ntua.gr/~theodor/GSTD/  and http://www.dcc.unicamp.br/

~mario/GSTD/ ). We are also investigating some additional functionality on GSTD. For example, users

may want to specify a movement flow to a specific point p in the workspace. Although, given the target

p, it is not a complicate task, it is a specific implementation to a specific scenario. We currently study the

parameterization of such specific scenarios by permitting GSTD input parameters to be (user-defined)

functions rather than fixed values. Such an extension will enhance GSTD flexibility to simulate a variety

of real applications.
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