Specifying Multiple Calendars, Calendric
Systems, and Field Tables and Functionsin
TimeADT

Nick Kline, Jie Li and Richard Snodgrass

May 28, 1999

TR-41

A TIMECENTER Technical Report

Title

Specifying Multiple Calendars, Calendric Systems, and Field Tables and
Functions in TimeADT

Copyright© 1999 Nick Kline, Jie Li and Richard Snodgrass. All rights
reserved.

Author(s) Nick Kline, Jie Li and Richard Snodgrass

Publication History May 1999. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark

Christian S. Jensen (codirector), Michael HHin, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimoSadtenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon, Sudha Ram

Individual participants

Anindya Datta, Georgia Institute of Technology, USA

Kwang W. Nam, Chungbuk National University, Korea

Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, TimeConsult, Switzerland

Vassilis Tsotras, University of California, Riverside, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see ThaMe CENTER Homepage:

URL: <htt p://ww. cs. auc. dk/ Ti meCent er >

Any software made available viaME CENTER s provided “as is” and without any express or implied war-

ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular

purpose.

The TiIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called

Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons

and were perceived by many as having magic, hidden powers.
The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

TIMEADT provides multiple calendar support for C and C++ applications. We describe here the
TIMEADT automatic generation tool which provides the capability of configuring tive ADT sys-
tem with different calendars, calendric systems, properties. This tool takes calendar specification files
and TIMEADT specification file and generates a C source file and a C header file which contain code
for integrating calendars and calendric systems intoERDT (These generated files can also be used
automatically by C++ classes in TimeADT).

Each calendar has a calendar specification file which defines the temporal granularities within the
calendar and additional field names. Th&EADT specification file defines the calendric systems used
by the application, as well as the location of calendar specification files, initial property values, aliases
for field value functions and tables, renaming and renumbering of granularities, mappings between gran-
ularities from different calendars, and declarations of a operating system time function and a mapping
between operating system time unit and a particular granularity.

1 Introduction

This paper describes theMEADT automatic generation tool and file and data formats used by the tool.
TIMEADT extends traditional relational database systems with support for using multiple calendars. Typ-
ically, only the Gregorian calendar is available within a relational database. Date calculations are complex
with conversion of temporal constants (time-stamps or dates) to other calendar systems (such as the Julian
calendar, the Hebrew calendar, or the Chinese Lunar calendar) complicated and awkward, if possible at all.
Besides allowing multiple calendars to be utilizedMEADT supports the combination of calendars into
calendric systemsavhich allow centralized, controlled processing of dates as well as reuse of calendars.

A calendric system might use a geologic calendar for very old time-stamps (such as dates older than
70 thousand years ago), a carbon-14 calendar for more recent dates (older than three thousand years ago
but less than 70 thousand years old), a tree-ring calendar for more recent historical times (dates from 1000
BC to 1000 AD), the Julian calendar for times from 1000 AD to September 14, 1752, and the Gregorian
calendar for time-stamps from September 14, 1752 into the future.

This tool integrates calendars into the context of thieEIADT system. We assume that the reader is
familiar with the MultiCal System [Soo & Snodgrass 1992]. Calendars are provided in the form of C source
files with a Makefile or binaries for the target machine. Each calendar lkbateadar specification file
used to describe the temporal granularities within the calendar and other information used to communicate
between the Uniform Calendric System (UCS) and calendars. In addition, there is a spraADIT
specification filawhich describes the organization of the system and initial values of system tables, such as
the properties table.

The generation tools take the calendar specifications and calendric system specification and generates a
C source file which contain the C code and C data structures to integrate calendars and calendric systems
into TIMEADT and a C header file which exports a list of granularities. The generated C source and header
files are given in Appendix A.2 and Appendix A.4 respectively, as well as a discussion of their specific
contents.

This paper is intended for DBMS administrators who need to understand how to configure their calendric
system specification file to incorporate the field value tables, functions and calendars they utilize. Calendar
writer's may also be able to make use of this document as an aid to understanding how their calendars will
be utilized in the scope of thelIEADT system. Finally, the appendix will be of use in maintaining the
TIMEADT generator.

2 TheTIMEADT Specification File

In this section we describe the overall configuration of thheelADT System. The TMEADT specification

file contains the configuration information. It contains the location of the various calendar specification
files, the description of the calendric systems (including their component calendars and epochs), the default
calendric system, the default properties, the field value tables and functions, and the mappings between the
granularities of different calendars. It is maintained by the database administrator.

2.1 An Example TIMEADT Specification File

Figure 1 shows an exampleMEADT specification fileexample.spec. This example imports two calendars
(Gregorian andAstronomy), declares a calendric systemmérican), renames the granularity names, gives

the initial property values, defines the field value functions and tables used, declares the mappings between
the granularities of different calendars, renumbers the granularity external value, specifies default plausi-
bility and semantics, declares two distributions, and declares operating system time function and mapping
between granularity second and operating system time unit.

The file begins with a comment line. Any line beginning with a hash m@yks(a comment line. Blank
lines are ignored. Words are case sensitive.

The import statement supplies a local calendar name (use that name subsequently in this file only;
elsewhere use the name given in the calendar specification file), as well as the path to the calendar. The path
may be either relative to the location of teeample.spec file or absolute. The calendar specification files
must be in the directory given by the path and in the formmadfnamespec. In the examplexample.spec,
we require calendar files callegtegorian.spec and astronomy.spec. The temporary calendar name is
required to be a legal C identifier and the file path must be a legal file path under the implementation
machine’s operating system, containing no spaces or control characters.

Right after the import statements are rename statements. The names of granularities from different cal-
endars may be identical. The purpose of this statement is to give each granularity a unique global identifier
and the global identifiers will be used in granularity declaration and renumber statemersartipde.spec
file.

Following after the rename statements aredfis=ndar epoch Statement which specifies the calendar
used to parse the event constants. The calendar can be one of the imported calendaigutl hermat
statement is used to change the format in which these event constants are given. The default input format is
below.

<month_of_year,english month names>|;<day_of _month,arabicnumeral>,

<year,arabic_numeral>

Events are used to specify when a particular calendar is used to process dates within a calendric sys-
tem. The format with which these events are specified is given indhe: format Statement. The input
format should be a valid event property string, parseable by the epoch calendar specifiechiretier
epoch statement [Soo & Snodgrass 1992]. Parsing event constants is done in the initialization routine of
TIMEADT program. Should parsing fails, the program will print out error message and halt. The next
directive is the declaration of the thgerican calendric system. This calendric system is composed of two
epochs. The calendric system uses an Astronomy calendar from the beginning of time to the chronon before
September 14, 1752. Starting with this date the calendric system uses the Gregorian calendar. Implicitly,
the last calendar in a calendar list has an epoch that extends#ever’. The first calendar in a calendar
list must begin with thebeginning’. To allow gaps in a calendric system, we introduce the nonexistent
calendar, calledone to fill the gaps. Immediately following the list of calendars is the input order for the
calendars. This list specifies the order in which the UCS will try to parse temporal constants. A calendric

#Ti meADT specification file fromthe University of Arizona TinmeCenter project

Inport Gregorian from./gregorian
I mport Astronony from./astronony

Renanme Astronony. second as astro_second

Rename Astronony. day_hundredth as astro_day_hundredth
Renanme Astronony. day as astro_day

Renane Astronony.year as astro_year

Renanme Astronony.century as astro_century

Cal endar epoch is Gregorian
Input format is ’'<month_of _year, english_nont h_nanes> <day_of _nont h, arabi c_nuneral >,
<year, ar abi c_nuner al >’
Define cal endric systemanerican as Astronony 'beginning’,
Gregorian ' September 14, 1752’
with default input order Gegorian, Astronony

Property locale is 'Tucson’

Property instant _input_format is '<nonth_of year, english_nont h_names>
<day_of _nmont h, arabi ¢c_nuneral >, <year, ar abi c_nuner al >’

Property instant_output_format is ’<nonth_of_year, engli sh_nont h_names>
<day_of _nmont h, arabi c_nuneral >, <year, ar abi c_nuner al >’

Property interval _input_format is '<nonth, arabic_nuneral > nont hs’
Property interval _output_format is '<nonth, arabi c_nuneral > nont hs’
Property now _separator is ' '’

Property period_i nput_separator is ' -’
Property period_output_separator is ' -
Property period_output_delimtersis '"[)’
Property indeterm nacy_i nput_separator is
Property indeterm nacy_out put_separator is
Property default_input_distribution is 'uniforni

Property missing_distribution is 'mssing

Property distribution_input_format is '<value> with <distribution> distribution’
Property distribution_output_format is '<value> with <distribution> distribution’
Property override_i nput_epoch is 'Gegorian’

Property begi nning is ’beginning’

Property forever is 'forever’

Property now is 'now

Field value function arabic_nuneral is
asci i _arabic_cardinal _synbols fromO to 4294967295
Fi el d val ue tabl e english_nonth_nanes
is ascii_english_gregorian_nmonth_nanes from1l to 12
Fi el d val ue tabl e mandari n_nont h_nanes
is ascii_romani zed_mandarin_gregori an_nonth_names from1 to 12
Fi el d val ue tabl e dani sh_nont h_nanes
i s |atex_dani sh_gregorian_nonth_names from1l to 12

Granularity astro_second is 1 second
Renunber granularity day as 11

Default plausability is 50

Def aul t maxi mum nunber of iterations is 15

Default semantics is finest and cast

Di stribution uniformis based on PM-_uniform function
Distribution pyramd is based on PMF_pyranid function

Operating systemtime function is sys_tinme
Granularity second is irregular operating systemtine unit with function unit_to_sec

3
Figure 1: Examplexample.spec file

system must contain at least one calendar. dit® default input order list must also contain at least
one calendar.

The default calendric system used in the UCS wheneRDT first starts is the first one described in
the example.spec file. In this case, of course, this is thgerican calendric system. A calendar, property,
calendric system, or field value function or table may not be defined or imported more than once in the
calendric system specification file.

Next in the examplexample.spec file is a list of the default properties [Soo & Snodgrass 1992]. These
property values will be in effect when theMEADT system starts. Any property not defined here will have
a default value except propertycale whose initial value of the empty string. Table 1 lists the properties.
Propertyoverride_input_epoch has the effect in the UCS of accepting the order of epochs defined here for
each calendric system.

The formats of period and indeterminate datetime and interval are constructed from determinate date-
time and interval, indeterminacy separator, period delimiter and period separator based on the BNF in
Figure 3. The end granule should be greater than start granule for indeterminate instant or interval. The
grammar for indeterminate instant is ambiguous. The first rule will be applied first.

Following after a list of the default properties are the field value table and field value function declara-
tions. These specify the C structure or function names, and the label used in the calendric system to refer to
them.

Next are granularity declarations which specify mapping and anchor between two granularities from
different calendars. The anchor will be zero if it is not explicitly specified. Each calendar should have its
underlying granularity mapped in terms of other known granularity except the first imported calendar which
contains the base line granularity.

Next is renumber statement which changes the external value of a granularity.

Following after the renumber statement are a list of distributions and default values of plausibility,
maximum number of iterations during the indeterminate rod counting calculation and semantics. The distri-
bution function takes a double and returns a double. The value of plausibility ranges from 1 (even remotely
possible) to 100 (definitely).

The final contend in the specification file are declarations of operating system time function and mapping
between operating system time unit and a granularity. These functions provide support for Now and Now-
relative in database. The operating system time function takes_amtalype as parameter with no return
value. The mapping function between granularity and operating system time unit takes twiatpglye
as parameters and returns an integer. The first parameter is number of operating system time units and the
second parameter is the number of granules with specified granularity (second in this example). If no error
occurs, the function returns 0, otherwise it returns 1.

2.2 Parsingthe TIMEADT Specification File

Figures 2 and 4 give the BNF used to parseeakample.spec file. The details of the specification file are
straightforward. Most of the tokens which must be matched are keyword strings. Any line that begins with
a hash mark#) is a comment line and the contents of the rest of that line should be ignored.

Spaces, tabs, and newlines are not significant, except that they separate tokens. Case is significant in
the parsing of the file, but as discussed above will not necessarily be significant in the generation of C code
to initialize the system. The parsing begins by trying to evaluatédbelef token. One or moréimport
statementappear first in the file, followed byrename statementThe order of other top-level tokens does
not matter.

The (C string token is a regular C string [Kernighan & Ritchie 1988] except that it uses single quote
instead of double quote. It begins with a single quote, followed by some number of characters and is
terminated by a single quote. Single quote can be embedded in the strihg Wyouble quote does not

(cs dej

(import statement
(rename statement
(cs statemeint

calendar epoch list
calendar epoch entry

(
(
(calendar order lit
(property valug

(

property namg

(cs property
(calendar epoch
(field value functiof

(field value table

(epoch input format
(granularity declaration

func declaratiop
renumber statement

(
(
(time func mappiny
(time fung

(

time mapping

(calendar igl

(granid
(SQL id list)

{(import statement; + {(rename statemejt{ (cs statemeit | (property valug

| (field value functioh | (field value tablg | (granularity declaration
| (renumber statement| (time func mapping }
Import (calendariyl from (directory path
Rename (calendarifl.(granid as (granid
Define calendric system (CS id)
as (calendar epoch list (calendar order list
(calendar epoch list* ,’
(calendar igl (C string
with default input order (SQLid list)

Property (property namg is (C string

(calendar epoch ent)“y| (calendar epoch entry

Jocale | instant_input_format | instant_output_format

| interval_input_format | interval output_format

period_input_separator | period_output_separator
| period_output_delimiters | indeterminacy_input_separator
| now_separator | indeterminacy_output_separator
| default_input_distribution | missing distribution
| distribution_input_format | distribution output_format
| override_input_epoch | beginning | forever | now
(calendar epoch | (epoch input format
Calendar epoch is (calendar idl
Field value table (Cid) is (field value namg
from (integel to (integep
Field value function (Cid) is (field value namg
from (integel to (integej
Input format is (C string
Granularity (granid is (integeb (granid [with anchor (integel
(granid 7
| Granularity (granid is irregular (granid with
(func declaratioh
functions (SQLid) *,’ (SQLid) ‘,’ (SQL id)
Renumber granularity (granid as (integej
(time fung (time mapping
Operating system time function is (SQL id)
Granularity (granig is (integel operating system time unit
[with anchor (intege)]
| Granularity (granid is irregular operating system time
unit with function (SQL id)
(SQL id)
(SQL id)
(SQLidlisty *,* (calendar id | (calendar ifl
5

Figure 2: Calendric System BNF

(determinate instajt
(now-relative

(instantinputformab | (beginning | (foreve) | (now) | (now-relative
(now) (now_seperator (determinate interval

(indeterminate instajt (determinate instajpt(indeterminatdénput seperatdr (determinate instajt

| (now) (now_seperator (indeterminate interval

(instan}
(period

(determinate insta}nt| (indeterminate instajt

(left_delimitor) (instan} (periodinputseparatdr (instany
(right.delimitor)
(intervaLinput format)

(determinate interval

(indeterminate interval (determinate interval (indeterminatanput.seperator

(determinate interval

(interval = (determinate interval | (indeterminate interval
(left_delimiter) = C |
(right_delimiten =9 |1

Figure 3: Temporal Instant Format BNF

field value namg
character sét

((character sé¢t(languagg (field namé
(

(languagé

(

(

ascii | gb | hz | Jjis | unicode | Jlatex ...

(written languagp | (romanized spoken langudge

arabic | chinese | danish | english | japanese | russian ...

written languagge

romanized_mandarin | romanized_cantonese

romanized spoken language

| romanized_japanese | romanized russian ...

(field name (calendar field name | ordinal name | cardinal symbol

| ordinal_symbol | cardinal_name

(calenday_(field)_names

gregorian | time_card | magnitude | ua_academic ...

(calendar field name
(calenday
(field)

day_of_week | month | meridiem ...

Figure 4: Field Value Names BNF

Property | Description

Beginning Name for an event preceding any other

Default input distribution Default distribution name

Distribution input format Input format string for temporal instant with
distribution

Distribution output format Output format string for indeterminate temporal
instant

Forever Name for a event following any other

Indeterminacy input separator Input separator for indeterminate instant

interval

Indeterminacy output separator | Output separator for indeterminate instant or

interval
Instant input format Input format string for datetime
Instant output format Output format string for datetime
Interval input format Input format string for interval
Interval output format Output format string for interval
Locale Location for timezone displacement
Missing distribution Missing distribution name
Now Input format string for temporal instant NOW
Now separator Input separator for temporal instant NOW-relative
Override input epoch Epoch to use first for constant translation
Period input separator Input separator for period
Period output separator Output separator for period
Period output delimiters Output delimiters for period

Table 1: Properties

need to be escaped. (& id) is a legal C identifier [Kernighan & Ritchie 1988]. THEQL id) represents
a SQL identifier. A valid SQL identifier is, roughly, a string of not more than eighteen characters, which
begins with a letter, and is followed by a combination of letters, numbers and underscores [Date 1987].

A (directory pathis a directory path on the implementation machine. On a Unix computer, the directory
path would include any specifiable file path.

Any error in the parsing or processing of this file should terminate processing. There are limits on what
tokens evaluate to strings or C identifiers, as the semantic checking phase of parsingxafpée.spec
file must determine. Thécalendar il tokens may only be selected from the list of imported calendars or
the special empty calendaione. The event constant specified by C String in calendar epoch entry clause
must be understandable according to the epoch calendar and epoch input format.

2.3 Fidd Value Names, Table and Functionsin TIMEADT

The (field value namgnon-terminals (given in Figure 4) are not complete. This BNF is intended to be a
representative sampling of different languages that may be supportedADT. This list of different
languages, character sets, and field names is simply a starting point. Each of the different terminals must be
SQL identifiers.

Below we give the first few elements of several different field value tables and functions as examples.
Notice that the names follow the form @tharacter sét(languagé (field namé

° ascii_english_gregorianJiay_of_Week_names=={:Monday, Tuesday, ...}

7

e latex german gregorian month names = { Januar, Februar, M\ "{a}rz (Miarz),...}

® ascii_romanized_japanese_gregorian day_of_week names = { getsuyoobi, kayoobi,

suiyoobi, ... }
e jis_japanese gregorian day of _week names = { JIS representation

® unicode chinese chinese_ lunar month names = { unicode representatio}n

® ascii_romanized russing gregorian month names = { Jinvar, ... }

e hz chinese chinese lunar monthmnames={ R, TB, 6" TB, ... }

® ascii_arabic_cardinal_symbols = { 1, 2, 3, ... }

® ascii_english ordinal_symbols ={ 1st, 2nd, 3rd, ... }

® ascii_romanized mandarin_cardinal names = { yi, er, san, si, ... }

3 The Calendar Specification Files

Each calendar is described by a specification file, the contents of which are provided by the calendar imple-
mentor. The specification file should not be changed by the database administrator. The database adminis-
trator should move the calendar’s specification file and object file to some location and place the “path” to
the calendar in the IMEADT specification file.

3.1 Example Calendar Specification File

Figures 5 and 6 are example specification files for, respectivelgrii@rian andAstronomy calendars.

Every calendar haslang namewhich is prepended to many C identifiers associated with that calendar,
such as function names and certain structures. The long name is required to be a legal C identifier. The name
given in the calendric system specification file, calledghert namds used to refer to the calendar in the
UCS and at the SQL level and it must be a SQL identifier. The other contents of the calendar specification
file are the list of special functions in the calendar and the list of field names used.

Calendar implementors should use a lengthy and specific long nhame, since this is the only distinguish-
ing difference between two calendars. We suggest adding the version to the calendar long name. The
TIMEADT system may not contain two calendars with the same long name. The long name is used to refer
to the calendar, and also as the middle part of function names for calendar regular functions which must be
implemented for each calendar (see Table 2).

After the long name, the next component of a calendar specification file is underlying granularity decla-
ration and granularity declarations. The BNF for granularity declaration is shown in Figures 2. The order of
declarations is important because an integer number fréom — 1 (n is the total number of granularities
in the calendar) will be assigned to each granularity as the local id according to this order.

Next in calendar specification file are additional field names used by a calendar. The field names consist
of granularity names and additional field names. They are used to communicate field values when parsing
and generating temporal constants. The order of additional field names is important. Base on this order,
each additional field name will be assigned an integer number startingrfrbm is the total number of
granularities in the calendar). This number is the index to the array of field values.

#St andard University of Arizona American G egorian Cal endar version
#file: gregorian. spec

Cal endar is standard_gregorian_vl
Ganularity second is underlying granularity

Granularity mnute is irregular second with functions
greg_cast_mnute_to_second, greg cast_second to_m nute,
greg_scal e_minute_to_second

Granularity hour is 60 mnute with anchor O mnute
Granul arity day is 24 hour with anchor 0 hour
Granularity week is 7 day with anchor 0 day

Granularity month is irregular day with functions
greg_cast_nonth_to_day, greg cast_day to_nonth,
greg_scal e_nonth_t o_day

Ganularity year is irregular day with functions
greg_cast_year _to_day, greg cast_day to_year
greg_scal e_year to_day

Addi tional field names are era, century, year_of_century,
decade, year_of decade, day_of week, day_of year
neridiem mlli, mcro, nano,
era2, year2, century2, year_of century2, decade2, year_of decade2,
nont h2, day2, day_of week2, day_of year?2,
neridi en?2, hour2, mnute2, second2, mlli2, mcro2, nano2,
nont h_i nterval 1, nmonth_interval 2,
1st_start, 1st_end, 2nd_start, 2nd_end, open_period,
cl osed_peri od

Figure 5: Gregorian Calendar Specification fieegorian.spec)

#Ast r onony cal endar
Cal endar is standard_astronony_vl
Granul arity second is underlying granularity
Ganularity day_hundredth is 864 second with anchor 0 second
Granul arity day is 100 day_hundredth with anchor 0 day_hundredth
Granul arity year is irregular day with functions
astro_cast_year_to_day, astro_cast_day_to_year,
astro_scal e_det _year _to_day

Granul arity century is 100 year with anchor 0 year

Additional field nanes are day2, year2, century2

Figure 6: Astronomy Calendar Specification Fist¢onomy.spec)

(calendar descriptign::= (calendar nanje { (underlying gran deg! | (granularity declaration }

(field name$

(calendar nampe Calendar is (calendar il
(underlying gran degl::= Granularity (granid is underlying granularity

[with local ID (integei]

(field name} = Additional field names are (field name list | €
(field name lisy = (field namellist *,’ (field namé | (field name
(field name = (SQL id)

Figure 7: BNF Used to Describe Calendar Specification Files

10

3.2 Parsingthe Specification File

Figure 7 is the BNF used to process the calendar.
The parsing of a calendar specification file is similar to ékample.spec file. First, any lines which
begin with a hash mark are comment lines and are ignored. Spaces and newlines are not significant except
that they separate tokens. The parsing begins by trying to evaluatealeedar descriptigrtoken.
The calendar’s long name must be unique across all calendars defined inMBI&D T program. The
token (field name is a list of the valid field names.

4 Listof Errors

Any error in the parsing IMEADT specification file or calendar specification file will terminate the gener-
ation program. The error message of syntactic error has the following foffitatame: error in line (n)
before(word). The semantic errors are listed below.

e The mappings with anchor specification among calendars are not exactly n-1 when there are n calen-
dars.

Error messagefilename>: each calendar should have its underlying granularity mapped
in terms of other known granularity exactly once except <cal_name> calendar.
e The referenced granularity in granularity declaration or additional mapping is not declared.

Error messageifilename> error in line <n> before <word>: granularity not declared.

e Granularity declared more than once.

Error messagexfilename> error in line <n> before <word>: granularity declared more
than once.

e Granularity does not exist in rename statement or renumber statement.

Error messageifilename> error in line <n> before <word>: granularity not declared.

e Calendar does not exist.

Error messageifilename> error in line <n> before <word>: calendar not found.

e Specified number is out of range in renumber statement.

Error messagex<filename> error in line <n>: <num> exceeds the total number of gran-
ularities.

5 Calendar Specifics

Calendars need to provide a certain interface so they may be integrated more easily into the system. Of
course, a calendar must provide a specification file as discussed above. Each calendar must provide two
standard calendar functions (Table 2, in Section A).

Each calendar must also provide an initialization function, the name of which is the combination of
“cal.” plus the calendar’s long name (as given in the specification file) followedibyt (int calen-
dar number). This function takes a single parameter, the calendar’s identification number. This initial-
ization function should allocate any data structures used internally by the calendar’s functions. For exam-
ple, in the Gregorian calendar the initialization function would be declareshBStandard gregorian
_calendar_vi_init(int cal_number). This function is called from the functiomit_calendars() which
is called after the UCS is initialized.

11

6 Summary

We described the contents and construction of the calendar and calendric system specification files. We
discussed the processing of these files, and how to generate C files which integrate the calendars into the
TIMEADT system.

The system described here is comprehensive yet simple, and facilitates easy addition of calendars and
calendric systems.

Acknowledgments

Thanks to Curtis Dyreson and Mike Soo for comments on earlier drafts of this paper. Thanks also to Leo
So for comments and for his work on the format and description of field table entries, and for providing the
BNF descriptions.

Bibliography

[Date 1987] Date, C. J. “A Guide to the SQL Standard.” Addison-Wesley, 1987.

[Kernighan & Ritchie 1988] Kernighan, B.W. and D.M. Ritchie. “The C Programming Language.” Vol.
second edition of Prentic Hall Software Series. Englewood Cliffs, NJ: Prentice Hall, 1988.

[Kline 1993] Kline, N. “The Gregorian Calendar Specification.” TemplS Technical Report 47. Computer
Science Department, University of Arizona. April 1993.

[Soo & Snodgrass 1992] Soo, M. D. and R. Snodgrass. “Mixed Calendar Query Language Support for

Temporal Constants.” TemplS Technical Report 29. Computer Science Department, University of
Arizona. Revised May 1992, 59 pages.

12

A TheGenerated C Files

This section contains the C files generated by the descriptions in the above sections,eramgie.c

and example.h. example.c is given in Section A.2 angxample.h is given in Section A.4.example.c
contains three main functionspit calendars(), init properties() andinit gran graph(). There are
also accompanying data structures, and a section with data structures for the field value tables and func-
tions. At system initialization time,imeadt_init () is called and it in turn calls four initialization functions
init_distribution(),init_gran graph(),ucs_init() andinit_event_constants().init_distribution()
initialize the distributions declared inIEADT specification file. init gran graph will construct the
granularity graph. Withinucs_init() routine, ,init gen() is called, which will call the property rou-
tine initialization routine {nit_property()), and the calendar and calendric system initialization function
(init_calendars()). init_event_constants() initialize the event constants of epochs. The generated C
file is ANSI C compatible [Kernighan & Ritchie 1988].

A.1 The Contentsof example.c

This section and the next few describe the contents of the generatedefitple.c.

At the top of this file is a comment giving the time the file was created and the last date of change of
the calendar and calendric system specification files. Throughout this file are comments that explain its
contents.

A.1.1 Calendar and Calendric System Generation

After the initial contents are several constants which are used to communicate table sizes to the rest of
TIMEADT. NumCalendars andNumber0fCS describe the number of calendars and calendric systems speci-
fied in theexample.spec file. The next two constant$y_max field functions andfv.max field tables

give the number of field value functions and tables, respectively supplied bsx#neple.spec file. The
maximum number of arguments which may be supplied to functions is defingshbft max formal args.

The variableucs_cal number is an internal variable used by the UCS which specifies the current calendar
number.

There are several variables and tables required for the declaration of each calendar, with similar infor-
mation for each calendric system.

The examplexample.spec presented earlier will be used as the basis of the generated C file. As Figure 1
shows, that example used two calendars, the Gregorian and Astronomy calendars. The declarations for the
Gregorian calendar come first, since it was imported first. A function reference to the Gregorian calendar’s
initialization routine is given. Notice that this takes one parameter which is the calendar’s identification
number. Next are function references to the calendar’s functions, each of which is preceded by a comment
which gives the SQL name used in function binding to identify that function. Following this is a sequence
of structures which describe the return types of the calendars.

Next comes the field value names. This is a character array containing the field names the calendar and
UCS will use to communicate with each other. This list must be in the same order that the information was
specified in the calendar’s specification file.

This sequence of structures is repeated for each calendar, based on the information in that calendar’s
specification file. The calendric system structures follow after the calendar structures.

Thecalendar_1ist variables describes the information in each calendar. These are separated once again
to facilitate use by C’s static array initialization rules. The Gregorian calendar is calendar nurhbso
functions, has a pointer to the function structures, has 21 field names, and has a pointer to the field name list.
Each calendar also has a field name list used to communicate field values between a calendar and the UCS.

13

This list is allocated in the routingnit_calendars. Similar information is provided for the Astronomy
calendar. Next is theal epochs_event Structure, an array afeconds type Which gives the start and stop
events for each epoch within a calendric system. These are in the formatfcthfls structure [S00
& Snodgrass 1992]. The end of one epoch is one chronon before the start of the next. After this comes the
cal epochs_calendars list, which defines which calendar is to be used during each epoch defined in the
cal_epochs_events Structure. Finally, we have the list of calendric systemd éndric system list).

Following this information is the routinenit calendars () which does the actual calendar initialization
and combines the structures, filling in information which may not be encoded staticly in them.

First it calls the calendar’s initialization functions. Then, for each calendric system, it creates an epoch
structure. Using the entries from thel epochs_events table it creates intervals for each calendar.

A.1.2 Property Generation

The list of property names follow the calendar structures. Next comes the property structures themselves,
and these are declared just above the property initialization routine. The declarations begin with two vari-
ables which are used to maintain the property list. Next follows the list of initial property values, in the
order defined by theroperty_name_labels defined in the fildh/ucs/property.h.

The rest of the property declarations are boiler plate and do not change. Only the stringcareayr
0_property_init_val Structure changes.

A.1.3 Field Value Generation

Next in theexample.c file is the field value initialization. Static arrays describing both field value functions
and field value tables are all that is needed. These are used at run time to look up functions or tables.

A.1.4 Multiplexing Between the UCSand Calendars

The UCS must multiplex between the different calendar systems when itreglliiar calendar functions
(termed this because they are required to be implemented by all calendars). The code to accomplish this
follows next. As a motivating example, consider a string with datetime format that needs to be converted to
an temporal instant. The UCS first finds an appropriate calendar based on the current datetime input format.
After parsing the string and marking the array of field values, the UCS asks that calendar to convert the
array of field values to an palint type and a granularity by callinggular calendar functiorfvt to poly.
The UCS needs a table of all regular functions to do this.

The UCS uses a two dimensional table of function pointers, with the first dimension the number of
special calendar functions (2) and the second the number of calendars (2 in the case of Figure 1).

Table 2 is a list of the regular calendar functions, broken down into two categories.

| Event and Interval Translation Functions |

‘ error_type poly_to_fvt(poly_int_type, granularity type, int, value_array_typex) ‘

\ Constant Translation Functions \

‘ error_type fvt_to_poly(value_array_type*, poly_int_type, granularity_type*, intx*) ‘

Table 2: Regular Calendar Function Table

The array contains function pointers to each of the regular calendar functions. The function declarations
are formed by taking each function name from the table and replasidar with the long name of each

14

of the defined calendars. For example, since we have two calendars, there are two versions of the function
fvt_to_poly:

cal_standard gregorian vl_fvt_to_poly

cal_standard_astronomy_vl_fvt_to_poly

A.1.5 Mappingsbetween local id and global id of a granularity

Next in theexample.c file are mappings between local id and global id of a granularity. The global id is
also the external value of a granularity used by users. The mappings consist of several arrays and a function
calledget global id. local_id map iS used to find the local id of a granularity given its global id. If the

local id of a granularity and the name of calendar it belongs to are given, fungttogiobal id will return

the global id of the granularity.

A.1.6 Constructing granularity graph

The final part of theexample.c file is the construction of granularity graph. After initializing the lattice,
each granularity is declared exactly once by calling functie€llare granularity with anchor Of de-
clare_granularity except the base line granularity which does not need to be declared. Next are the
mapping declarations. Mappings can be regular, irregular, or congruent. Each granularity should have at
least one mappings except base line granularity. Finally, funeléemare done is called and if no error
occurs, then granularity graph is successfully constructed. Whenever an error occurs, the program will print
an error message and exit right away.

A.2 Example C Source File example.c
The following is the generated C source file from the examples presented in this document.

/***\

*

File: example.c

The Ti meADT Systemis free software in the public domain; you can
redistribute it and/or nodify it as you wish. W ask that you
retain credits referencing the University of Arizona and that you
identify any changes you mnake.

*
*
*
*
*
*
Report problens to rts@s. ari zona. edu *
Direct all inquiries to: The Ti meADT Proj ect *

Departrment of Conputer Science *

Uni versity of Arizona *

Tucson, AZ 85721 *

U S A *
*
/

E I I S R . I SR B S

/*

* exanpl e.c:

* This file contains code which is automatically generated by the

Ti meADT generation facility.

It was generated on Fri My 28 00: 05:31 1999

*
*
*
*
* fromfile exanpl e.spec, |ast changed Wed May 26 21:21:18 1999
*

*

./ gregorian. spec, l|ast changed Thu May 20 22:12:58 1999

15

.l astronony. spec, |ast changed Thu May 20 22:12:58 1999

* This file also contains the code to initialize the properties and
* field value functions and tables.

* |Initialization routine: tineadt_init() do the follow ng

* initialize granularity graph

* initialize UCS

* initialize event constants in the epochs
*

* Externally, call init_gen(), which calls init_cal endars()

* and init_properties.

*/

#i ncl ude <stdio. h>

#i ncl ude "system w de. h"

#include "fv.h"

#i ncl ude "ucs. h"

#i nclude "fv.h"

#i nclude "poly_int.h"

#i ncl ude "gran. h"

#i ncl ude "PMF. h"

#i ncl ude "now. h"

#i ncl ude "exanpl e. h"

/*
* The followi ng are constants used to conmmuni cate the size of generated tables
*/

int NunOFGan = 15;

int NuntCal endars = 2;

int NunberOfCS = 1;

int gen_fv_max_field_functions = 1;
int gen_fv_max_field_tables = 3;
unsi gned char ucs_cal _nunber;

/* semantics default value */
unsi gned char plausability = 50;
unsi gned int nax_iters= 15;

int semantics_finest = 1;

int semantics_coarsest = 0;

int semantics_|l hs = 0;

int semantics_rhs = 0;

int semantics_cast = 1;

* Routine: init_gen

* Description: calls the initialization routines for cal endars and properties
* Arguments: None

* Return Value: Error code

* Errors: None

* Side Effects: None

void init_gen()

16

{

init_cal endars();
init_properties();

}

/* cal endar and calendric systeminitialization */
voi d standard_gregorian_vl init(int);

char *standard_gregorian_vl fn_list[] = {

"nanosecond", "m crosecond", "mllisecond"

"second", "m nute", “hour",

"day", "week", "mont h",

"year", "decade", "era"

"century", “year_of_century", "year_of_decade",

"mont h_of _year", "day_of_year", "day_of_nonth",

"day_of _week", "hour_of_day", "m nute_of_hour",

"second_of _mnute", "mllisecond of second”, "microsecond of mllisecond",

"nanosecond_of _mi crosecond”, };

voi d standard_astronony_vl init(int);

char *standard_astronony_vl fn_list[] = {
"second", "day_hundredt h", "day",

"year", "century", };

cal endar _type calendar_list_0 = {

"Gregorian”,
1
21,
standard_gregorian_vl fn_list,
NULL
s
cal endar _type calendar _list_1 = {
"Astronony"
2,
6,
standard_astronony_v1l fn_list,
NULL
b
cal endar _type *cal endar _array[] = {
&cal endar _|ist_0,
&cal endar |ist 1,
b

char* cal _epochs_events[][2] = {
{
"begi nni ng",
"Sept enber 14, 1752", },
b

cal endar _type *cal _epochs_cal endars[] = {
&cal endar _list_1, &cal endar_Ilist_0};

cal endric_systemtype calendric_systemlist[] ={

{ "anerican",
2,

17

"Gregorian”,

"<nont h_of _year, engl i sh_nont h_nanmes> <day_of _nont h, ar abi c_nuner al >,

<year, ar abi ¢c_nuner al >"

NULL
1}

voi d init_cal endars()

{

}

int i, j;

int cnt; /* used to wal k through system */
epoch_type *ep;

calendar _list_0O.field _values = (value_array_type*)
ucs_mal | oc(sizeof (val ue_array_type)*cal endar _li st_0. numfi el d_namnes);
for (i=0;i<calendar_list_O0.numfield_nanes;i++)
calendar_list_O.field_values[i].value =
(actual _arg_type)ucs_nal | oc(si zeof (actual _arg_type));

calendar_list_1.field _values = (value_array_type*)
ucs_mal | oc(sizeof (val ue_array_type)*cal endar _list_1.numfiel d_namnes);
for (i=0;i<calendar_list_1.numfield_nanes;i++)
calendar_list_1.field_values[i].value =
(actual _arg_type)ucs_mal | oc(si zeof (actual _arg_type));

standard_gregorian_vl init(1l);
standard_astronony_vl init(2);
cnt = 0;

for (i=0; i<NumberOFCS; i++) {
ep = ucs_al |l ocate_epoch_type(cal endric_systemlist[i].numepochs);

for(j=0; j<calendric_systemlist[i].numepochs; j++) {
ep[j].start = cal _epochs_events[i][j];
ep[j].cal endar = cal _epochs_cal endars[cnt];
cnt ++;

}

cal endric_systemlist[i].epochs = ep;

}

ucs_decl are_l ocal _cal endri c_systen(cal endric_system|list[O0].nane);
ucs_decl are_gl obal _cal endric_systen{cal endric_systemlist[0].nane);

bool ean ucs_non_acti vat ed_pr ops=FALSE;
prop_node *initial_property_list[NUM PROPERTI ES] ;
prop_mar ker *ucs_front_properties, *ucs_end_properties;

/* property nanmes, in order*/

char ucs_local e[] = "Local e";

char ucs_instant_input_format[] = "lnstant |nput Format";

char ucs_instant_output_format[] = "lInstant Qutput Format";
char ucs_interval _input_format[] = "Interval |nput Format";
char ucs_interval _output_format[] = "Interval Qutput Format";
char ucs_now_separator[] = "Now Separator";

char ucs_period_i nput_separator[] = "Period | nput Separator";
char ucs_period_out put _separator[] = "Period Qutput Separator";

18

char ucs_period_output_delimters[] = "Period Qutput Delimters"”;

char ucs_indeterm nacy_i nput _separator[] = "Indeterm nacy | nput Separator";
char ucs_i ndeterm nacy_out put _separator[] = "Indeterni nacy Qutput Separator";
char ucs_default_input_distribution[] = "Default Input Distribution”;

char ucs_missing_distribution[] = "Mssing D stribution";

char ucs_distribution_input_format[] = "Distribution Input Format";

char ucs_distribution_output_format[] = "Distribution Qutput Format";

char ucs_override_i nput_epoch[] = "Override | nput Epoch";

char ucs_begi nning[] = "Begi nni ng";

char ucs_forever[] = "Forever"”;

char ucs_now] = "Now';

char *ucs_char_property_nanme[] = {
ucs_| ocal e,
ucs_i nstant _i nput _f ormat,
ucs_i nstant _out put _f or mat,
ucs_i nterval _i nput _format,
ucs_i nterval _out put _f ormat,
ucs_now_separ at or,
ucs_peri od_i nput _separator,
ucs_peri od_out put _separ at or,
ucs_period_output_delimters,
ucs_i ndet er mi nacy_i nput _separ at or,
ucs_i ndet er m nacy_out put _separ at or,
ucs_defaul t _i nput _di stribution,
ucs_m ssing_distribution,
ucs_di stribution_input_format,
ucs_di stri bution_out put _format,
ucs_override_i nput _epoch,
ucs_begi nni ng,
ucs_forever,
ucs_now,

}s

/* Initial property values, in same order as above */
char *ucs_char _property_init_val[] = {

"Tucson",

"<nont h_of _year, engl i sh_nont h_nanmes> <day_of _nont h, ar abi c_nuner al >,
<year, ar abi c_nuner al >",

"<nont h_of _year, engl i sh_nont h_nanmes> <day_of _nont h, ar abi c_nuner al >,
<year, ar abi c_nuner al >",

"<nont h, ar abi c_nuner al > nont hs",

"<nont h, ar abi c_nuner al > nont hs",

non
1

"uni fornt,

"m ssing",

"<value> with <distribution> distribution",
"<value> with <distribution> distribution",
"QGregorian”,

"begi nni ng",

"forever",

"now',

19

/* init properties to their initial value */

void init_properties() {
int i;
/* init enpty prop list to NULL */
ucs_front_properties = ucs_end_properties =
(prop_marker*)ucs_mal | oc(si zeof (prop_marker));
ucs_end_properties->next = ucs_end_properties->prev = NULL;

for(i=0;i<NUM PROPERTI ES; i ++) {
initial _property list[i] =(prop_node*)ucs_nmnall oc(sizeof (prop_node));
initial _property list[i]->prop.num=i;

initial _property_list[i]->prop.val = ucs_char_property_init_val[i];
}
for(i=0;i <NUM PROPERTI ES- 1;i ++)

initial _property_list[i]->next = initial_property_list[i+1];

initial _property_list[i]->next = NULL;
ucs_end_properties->prop_list = initial_property list[O0];
}

char *gen_function_nanes_alias_names[] ={
"arabi c_nuneral ",
"engl i sh_nont h_names",
"mandari n_nont h_nanes",
"dani sh_nmont h_nanes",

}s

char *gen_functi on_nanes_mapped_nanes[] ={
"ascii_arabic_cardi nal _synbol s",
"ascii_english_gregorian_nont h_nanmes",
"ascii _romani zed_mandari n_gregori an_nont h_nanes",
"| at ex_dani sh_gregori an_nont h_nanes",

b
/* cal endar: standard_gregorian_vl */
error_type cal _standard_gregorian_vl poly_to_fvt(void*a);
error_type cal _standard_gregorian_vl fvt_to_pol y(void*a);
/* cal endar: standard_astronony_v1l */
error_type cal _standard_astronony_vl poly_to_fvt(void*a);
error_type cal _standard_astronony_vl fvt_to_pol y(void*a);
function_ptr cal _tabl e[num cal _functi ons*num cal endars] = {
/* cal endar: standard_gregorian_vl */

{cal _standard_gregorian_vl poly_ to_fvt},

{cal _standard_gregorian_vl fvt_to_poly},
/* cal endar: standard_astrononmy_v1l */

{cal _standard_astrononmy_v1l poly to_fvt},
{cal _standard_astrononmy_v1 fvt_to_poly}

20

}s

void init_gran_graph();
void init_distribution();

/* Routi ne: timeadt _init

*

* Descriptioin: the initialization routine for Ti meADT.

*

* Argunents: None

*

* Return val ue: None

*

* Error: If any error occurs in init_gran_graph or init_event_constants,
* the programwi |l print out error nessage and halt.
*

* Side Effects: None
*/

void timeadt _init()

{
init_distribution();
init_gran_graph();
ucs_init();
init_event_constants();
}
/* Routine: init_distribution
*
* Descriptioin: initialize the distribution functions and PMFTrees.
*
* Argunents: None
*
* Return val ue: None
*
* Error: None
*

* Side Effects: None

*/

void init_distribution()

{
int i;
PMF_di sts. num = 2;
for (i=0; i< PMF_dists.num; i++)

PMF_di sts.dists[i] = NULL;

PMF_di sts. funcs[0] = PMF_uniform
PMF_di sts. names[0] = strdup("uniforn');
PMF_di sts. funcs[1] = PM~_pyranmi d;
PMF_di sts. names[1] = strdup("pyramd");
dist_in.format[0] =0;
dist_out.format[0] = O;

}

/* The total nunber of granularities in granularity graph */

21

int max_numgran = 15;
/* The mappi ng between | ocal granualrity id and gl obal granulairty id */

int local _id_map[] = {0, 1, 2, 3, 4, 5, 7, 8, 9, 0, 1, 6, 2, 3, 4},

static int cal _nunber = 2;

static char *cal _names[]= { "Gregorian", "Astronomy"};

static int global _id_map[][24] = { {0, 1, 2, 3, 4, 5, 11, 6, 7, 8}, {9, 10, 12, 13, 14}};

/* Internal function: mapping local id to global id
* Auguments: cal endar nane and | ocal id
* Return value: global id

*/
unsi gned char get_gl obal _id(char *cal _nane, int |ocal _id)
{ . .

int i;

for (i =0; i< cal_nunber; i++) {

if (strcasecnp(cal _name, cal _nanes[i]) == 0)
br eak;

}

return global _id_map[i][local _id];
}

/* cal endar: standard_gregorian_vl */

extern gran_error_type greg_cast_m nute_to_second(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_second_to_minute(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scale_mnute_to_second(int, int, poly_int_type, poly_int_type
poly_int_type);
extern gran_error_type greg_cast_nonth_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_day_to_nonth(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scale_nonth_to_day(int, int, poly_int_type, poly_int_type
poly_int_type);
extern gran_error_type greg_cast_year_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_day_to_year(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scal e_year_to_day(int, int, poly_int_type, poly_int_type
poly_int_type);

/* cal endar: standard_astronony_v1l */

extern gran_error_type astro_cast_year_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type astro_cast_day_to_year(int, int, poly_int_type, poly_int_type);
extern gran_error_type astro_scal e_year_to_day(int, int, poly_int_type, poly_int_type
poly_int_type);

*
/* Rout i ne: init_gran_graph

*

* Description: Constructs granularity graph
*

* Arguments: None

*

* Return val ue: None

.

Error: Results fromerror in initializing lattice, declaring

22

* granul arity or declaring mapping. If error occurs,
* exit right away.

*

* Side Effects: None

*/

void init_gran_graph()

{
poly_int_type anchor;

if (init_lattice() !'= gran_OK) {
fprintf(stderr, "Failed to create LATTICE\n");
exit(1);

}

poly_from.int(anchor, 1, 0);

if (declare_granularity_w th_anchor(astro_second, 1, anchor, second) !=
gran_OK) {
fprintf(stderr, "Error: declare gran astro_second.\n");
exit(1l);

}

/* declare granularity for Gregorian cal endar */
poly_from.int(anchor, 1, 0);
if (declare_granularity_w th_anchor(mcrosecond, 1, anchor, nanosecond) !=

gran_OK) {
fprintf(stderr, "Error: declare gran mcrosecond.\n");
exit(1);
}
poly_from.int(anchor, 1, 0);
if (declare_granularity_w th_anchor(mllisecond, 2, anchor, mcrosecond) != gran_OK){
fprintf(stderr, "Error: declare gran mllisecond.\n");
exit(1);
}
poly_from.int(anchor, 1, 0);
if (declare_granularity_w th_anchor(second, 3, anchor, millisecond) != gran_OK){
fprintf(stderr, "Error: declare gran second.\n");
exit(1l);

}

if (declare_granularity(mnute, 4) != gran_OK){
fprintf(stderr, "Error: declare gran nminute.\n");

exit(1);

}

poly_from.int(anchor, 1, 0);

if (declare_granularity_w th_anchor(hour, 5, anchor, nminute) != gran_OK){
fprintf(stderr, "Error: declare gran hour.\n");
exit(1);

}

poly_from.int(anchor, 1, 0);

if (declare_granularity_w th_anchor(day, 6, anchor, hour) != gran_CK){
fprintf(stderr, "Error: declare gran day.\n");
exit(1);

23

poly_from.int(anchor, 1, 0);

if (declare_granularity_w th_anchor(week, 7, anchor, day) != gran_OK){
fprintf(stderr, "Error: declare gran week.\n");
exit(1);

}

if (declare_granularity(nonth, 8) != gran_OK)({
fprintf(stderr, "Error: declare gran nonth.\n");
exit(1);

}

if (declare_granularity(year, 9) != gran_OK){
fprintf(stderr, "Error: declare gran year.\n");
exit(1l);

}

/* declare granularity for Astronony cal endar */
poly_from.int(anchor, 1, 0);
if (declare_granularity_w th_anchor(astro_day_hundredth, 1, anchor,
astro_second) != gran_OK){
fprintf(stderr, "Error: declare gran astro_day_hundredth.\n");
exit(1);
}

poly_from.int(anchor, 1, 0);
if (declare_granularity_w th_anchor(astro_day, 2, anchor,
astro_day_hundredth) !'= gran_OK){
fprintf(stderr, "Error: declare gran astro_day.\n");

exit(1l);

}

if (declare_granularity(astro_year, 3) != gran_OK){
fprintf(stderr, "Error: declare gran astro_year.\n");
exit(1);

}

poly_from.int(anchor, 1, 0);
if (declare_granularity_wi th_anchor(astro_century, 4, anchor, astro_year) !=

gran_OK) {
fprintf(stderr, "Error: declare gran astro_century.\n");
exit(1);

}

if (declare_regul ar_mappi ng(m crosecond, nanosecond, 1000) != gran_OK) {
fprintf(stderr, "Error: declare regular map from m crosecond to nanosecond.\n");
exit(1l);

}

if (declare_regul ar_nmapping(mllisecond, m crosecond, 1000) != gran_OK) {
fprintf(stderr, "Error: declare regular nmap frommllisecond to mcrosecond.\n");
exit(1);

}

if (declare_regul ar_nmappi ng(second, mllisecond, 1000) != gran_OK) ({
fprintf(stderr, "Error: declare regular nap fromsecond to nmllisecond.\n");
exit(1l);

}

if (declare_irregular_mappi ng(m nute, second,

24

&greg_cast _minute_to_second,
&greg_cast _second_to_mi nute,

&greg_scal e_m nute_to_second) != gran_OK) {
fprintf(stderr, "Error: declare irregular map frommnute to second.\n");
exit(1l);

}

if (declare_regul ar_nmappi ng(hour, mnute, 60) != gran_OK) {
fprintf(stderr, "Error: declare regular map fromhour to mnute.\n");
exit(1);

}

if (declare_regul ar_mappi ng(day, hour, 24) != gran_OK) {
fprintf(stderr, "Error: declare regular map fromday to hour.\n");
exit(1);

}

if (declare_regul ar_nmappi ng(week, day, 7) != gran_CK) {
fprintf(stderr, "Error: declare regular map fromweek to day.\n");
exit(1l);

}

if (declare_irregular_mappi ng(rmonth, day,

&greg_cast _nonth_t o_day,

&greg_cast _day_to_nont h,

&greg_scal e_nonth_to_day) != gran_OK) {
fprintf(stderr, "Error: declare irregular map fromnmonth to day.\n");
exit(1);

}

if (declare_irregul ar_mappi ng(year, day,
&greg_cast _year _t o_day,
&greg_cast _day_to_year,
&greg_scal e_year_to_day) != gran_OK) {
fprintf(stderr, "Error: declare irregular map fromyear to day.\n");

exit(1);
}
if (declare_regul ar_nmappi ng(astro_day_hundredth, astro_second, 864) != gran_OK) ({
fprintf(stderr, "Error: declare regular map fromastro_day_hundredth to
astro_second.\n");
exit(1);
}

if (declare_regul ar_nmappi ng(astro_day, astro_day_hundredth, 100) != gran_OK) {
fprintf(stderr, "Error: declare regular nap fromastro_day to
astro_day_hundredth.\n");
exit(1);
}

if (declare_irregul ar_mappi ng(astro_year, astro_day,

&astro_cast _year_to_day,

&astro_cast _day_to_year,

&astro_scal e_year_to_day) != gran_OK) {
fprintf(stderr, "Error: declare irregular map fromastro_year to astro_day.\n");
exit(1l);

}

if (declare_regul ar_nmappi ng(astro_century, astro_year, 100) != gran_OK) {

25

fprintf(stderr, "Error: declare regular map fromastro_century to
astro_year.\n");

exit(1l);

}

if (declare_congruent(astro_second, second) != gran_OK) {
fprintf(stderr, "Error: declare congruent map fromastro_second to second.\n");
exit(1l);

}

if (declare_done() != gran_OK) {
fprintf(stderr, "Error: Declare done.\n");
exit(1);
}

/* The follow ng functions provide support for now and nowrel ative*/

extern void sys_time(poly_int_type);
extern int unit_to_sec(poly_int_type, poly_int_type);

void (*sys_time_func)(poly_int_type) = sys_tine;
time_nmap_type tine_map = { second, unit_to_sec };

A.3 The Contents of example.h

Theexample.h file contains external values of all granularities. It also exports the main initialization routine
for TIMEADT system calledtimeadt_init Which is defined irexample.c.

A.4 Example C Header Fileexampleh

The following is the generated C header file from the examples presented in this document.

/***\

* *
* File: exanple.h *
* *
* The Ti mreADT Systemis free software in the public domain; you can *
* redistribute it and/or nodify it as you wish. W ask that you *
* retain credits referencing the University of Arizona and that you *
* identify any changes you make. *
* *
* Report problens to rts@s. ari zona. edu *
* Direct all inquiries to: The Ti meADT Proj ect *
* Departnment of Conputer Science *
* Uni versity of Arizona *
* Tucson, AZ 85721 *
* U S A *
* *
***/

/* External granularity id */

#def i ne nanosecond 0
#define mcrosecond 1
#define mllisecond 2
#define second 3

26

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

extern

mnute 4

hour 5

day 11

week 6

nonth 7

year 8
astro_second 9
astro_day_hundredth 10
astro_day 12
astro_year 13
astro_century 14

void tinmeadt _init();

27

