
Specifying Multiple Calendars, Calendric
Systems, and Field Tables and Functions in

TimeADT

Nick Kline, Jie Li and Richard Snodgrass

May 28, 1999

TR-41

A TIMECENTER Technical Report

Title Specifying Multiple Calendars, Calendric Systems, and Field Tables and
Functions in TimeADT

Copyright c� 1999 Nick Kline, Jie Li and Richard Snodgrass. All rights
reserved.

Author�s� Nick Kline, Jie Li and Richard Snodgrass

Publication History May 1999. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon, Sudha Ram

Individual participants
Anindya Datta, Georgia Institute of Technology, USA
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

TIMEADT provides multiple calendar support for C and C++ applications. We describe here the
TIMEADT automatic generation tool which provides the capability of configuring the TIMEADT sys-
tem with different calendars, calendric systems, properties. This tool takes calendar specification files
and TIMEADT specification file and generates a C source file and a C header file which contain code
for integrating calendars and calendric systems into TIMEADT (These generated files can also be used
automatically by C++ classes in TimeADT).

Each calendar has a calendar specification file which defines the temporal granularities within the
calendar and additional field names. The TIMEADT specification file defines the calendric systems used
by the application, as well as the location of calendar specification files, initial property values, aliases
for field value functions and tables, renaming and renumbering of granularities, mappings between gran-
ularities from different calendars, and declarations of a operating system time function and a mapping
between operating system time unit and a particular granularity.

1 Introduction

This paper describes the TIMEADT automatic generation tool and file and data formats used by the tool.
TIMEADT extends traditional relational database systems with support for using multiple calendars. Typ-
ically, only the Gregorian calendar is available within a relational database. Date calculations are complex
with conversion of temporal constants (time-stamps or dates) to other calendar systems (such as the Julian
calendar, the Hebrew calendar, or the Chinese Lunar calendar) complicated and awkward, if possible at all.
Besides allowing multiple calendars to be utilized, TIMEADT supports the combination of calendars into
calendric systems, which allow centralized, controlled processing of dates as well as reuse of calendars.

A calendric system might use a geologic calendar for very old time-stamps (such as dates older than
70 thousand years ago), a carbon-14 calendar for more recent dates (older than three thousand years ago
but less than 70 thousand years old), a tree-ring calendar for more recent historical times (dates from 1000
BC to 1000 AD), the Julian calendar for times from 1000 AD to September 14, 1752, and the Gregorian
calendar for time-stamps from September 14, 1752 into the future.

This tool integrates calendars into the context of the TIMEADT system. We assume that the reader is
familiar with the MultiCal System [Soo & Snodgrass 1992]. Calendars are provided in the form of C source
files with a Makefile or binaries for the target machine. Each calendar has acalendar specification file,
used to describe the temporal granularities within the calendar and other information used to communicate
between the Uniform Calendric System (UCS) and calendars. In addition, there is a special TIMEADT
specification filewhich describes the organization of the system and initial values of system tables, such as
the properties table.

The generation tools take the calendar specifications and calendric system specification and generates a
C source file which contain the C code and C data structures to integrate calendars and calendric systems
into TIMEADT and a C header file which exports a list of granularities. The generated C source and header
files are given in Appendix A.2 and Appendix A.4 respectively, as well as a discussion of their specific
contents.

This paper is intended for DBMS administrators who need to understand how to configure their calendric
system specification file to incorporate the field value tables, functions and calendars they utilize. Calendar
writer’s may also be able to make use of this document as an aid to understanding how their calendars will
be utilized in the scope of the TIMEADT system. Finally, the appendix will be of use in maintaining the
TIMEADT generator.

1

2 The TIMEADT Specification File

In this section we describe the overall configuration of the TIMEADT System. The TIMEADT specification
file contains the configuration information. It contains the location of the various calendar specification
files, the description of the calendric systems (including their component calendars and epochs), the default
calendric system, the default properties, the field value tables and functions, and the mappings between the
granularities of different calendars. It is maintained by the database administrator.

2.1 An Example TIMEADT Specification File

Figure 1 shows an example TIMEADT specification fileexample.spec. This example imports two calendars
(Gregorian andAstronomy), declares a calendric system (american), renames the granularity names, gives
the initial property values, defines the field value functions and tables used, declares the mappings between
the granularities of different calendars, renumbers the granularity external value, specifies default plausi-
bility and semantics, declares two distributions, and declares operating system time function and mapping
between granularity second and operating system time unit.

The file begins with a comment line. Any line beginning with a hash mark (#) is a comment line. Blank
lines are ignored. Words are case sensitive.

The import statement supplies a local calendar name (use that name subsequently in this file only;
elsewhere use the name given in the calendar specification file), as well as the path to the calendar. The path
may be either relative to the location of theexample.spec file or absolute. The calendar specification files
must be in the directory given by the path and in the form ofcal name.spec. In the exampleexample.spec,
we require calendar files calledgregorian.spec and astronomy.spec. The temporary calendar name is
required to be a legal C identifier and the file path must be a legal file path under the implementation
machine’s operating system, containing no spaces or control characters.

Right after the import statements are rename statements. The names of granularities from different cal-
endars may be identical. The purpose of this statement is to give each granularity a unique global identifier
and the global identifiers will be used in granularity declaration and renumber statement in theexample.spec
file.

Following after the rename statements are theCalendar epoch statement which specifies the calendar
used to parse the event constants. The calendar can be one of the imported calendars. TheInput format

statement is used to change the format in which these event constants are given. The default input format is
below.

�month of year�english month names�t�day of month�arabic numeral��t

�year�arabic numeral�

Events are used to specify when a particular calendar is used to process dates within a calendric sys-
tem. The format with which these events are specified is given in theinput format statement. The input
format should be a valid event property string, parseable by the epoch calendar specified in thecalendar

epoch statement [Soo & Snodgrass 1992]. Parsing event constants is done in the initialization routine of
TIMEADT program. Should parsing fails, the program will print out error message and halt. The next
directive is the declaration of the theamerican calendric system. This calendric system is composed of two
epochs. The calendric system uses an Astronomy calendar from the beginning of time to the chronon before
September 14, 1752. Starting with this date the calendric system uses the Gregorian calendar. Implicitly,
the last calendar in a calendar list has an epoch that extends to�forever�. The first calendar in a calendar
list must begin with the�beginning�. To allow gaps in a calendric system, we introduce the nonexistent
calendar, callednone to fill the gaps. Immediately following the list of calendars is the input order for the
calendars. This list specifies the order in which the UCS will try to parse temporal constants. A calendric

2

#TimeADT specification file from the University of Arizona TimeCenter project

Import Gregorian from ./gregorian
Import Astronomy from ./astronomy

Rename Astronomy.second as astro_second
Rename Astronomy.day_hundredth as astro_day_hundredth
Rename Astronomy.day as astro_day
Rename Astronomy.year as astro_year
Rename Astronomy.century as astro_century

Calendar epoch is Gregorian
Input format is ’<month_of_year,english_month_names> <day_of_month,arabic_numeral>,
<year,arabic_numeral>’
Define calendric system american as Astronomy ’beginning’,

Gregorian ’September 14, 1752’
with default input order Gregorian, Astronomy

Property locale is ’Tucson’
Property instant_input_format is ’<month_of_year,english_month_names>
<day_of_month,arabic_numeral>, <year,arabic_numeral>’
Property instant_output_format is ’<month_of_year,english_month_names>
<day_of_month,arabic_numeral>, <year,arabic_numeral>’
Property interval_input_format is ’<month,arabic_numeral> months’
Property interval_output_format is ’<month,arabic_numeral> months’
Property now_separator is ’ ’
Property period_input_separator is ’ - ’
Property period_output_separator is ’ - ’
Property period_output_delimiters is ’[)’
Property indeterminacy_input_separator is ’ ˜ ’
Property indeterminacy_output_separator is ’ ˜ ’
Property default_input_distribution is ’uniform’
Property missing_distribution is ’missing’
Property distribution_input_format is ’<value> with <distribution> distribution’
Property distribution_output_format is ’<value> with <distribution> distribution’
Property override_input_epoch is ’Gregorian’
Property beginning is ’beginning’
Property forever is ’forever’
Property now is ’now’

Field value function arabic_numeral is
ascii_arabic_cardinal_symbols from 0 to 4294967295

Field value table english_month_names
is ascii_english_gregorian_month_names from 1 to 12

Field value table mandarin_month_names
is ascii_romanized_mandarin_gregorian_month_names from 1 to 12
Field value table danish_month_names

is latex_danish_gregorian_month_names from 1 to 12

Granularity astro_second is 1 second
Renumber granularity day as 11

Default plausability is 50
Default maximum number of iterations is 15
Default semantics is finest and cast
Distribution uniform is based on PMF_uniform function
Distribution pyramid is based on PMF_pyramid function

Operating system time function is sys_time
Granularity second is irregular operating system time unit with function unit_to_sec

Figure 1: Exampleexample.spec file
3

system must contain at least one calendar. Thewith default input order list must also contain at least
one calendar.

The default calendric system used in the UCS when TIMEADT first starts is the first one described in
theexample.spec file. In this case, of course, this is theamerican calendric system. A calendar, property,
calendric system, or field value function or table may not be defined or imported more than once in the
calendric system specification file.

Next in the exampleexample.spec file is a list of the default properties [Soo & Snodgrass 1992]. These
property values will be in effect when the TIMEADT system starts. Any property not defined here will have
a default value except propertyLocale whose initial value of the empty string. Table 1 lists the properties.
Propertyoverride input epoch has the effect in the UCS of accepting the order of epochs defined here for
each calendric system.

The formats of period and indeterminate datetime and interval are constructed from determinate date-
time and interval, indeterminacy separator, period delimiter and period separator based on the BNF in
Figure 3. The end granule should be greater than start granule for indeterminate instant or interval. The
grammar for indeterminate instant is ambiguous. The first rule will be applied first.

Following after a list of the default properties are the field value table and field value function declara-
tions. These specify the C structure or function names, and the label used in the calendric system to refer to
them.

Next are granularity declarations which specify mapping and anchor between two granularities from
different calendars. The anchor will be zero if it is not explicitly specified. Each calendar should have its
underlying granularity mapped in terms of other known granularity except the first imported calendar which
contains the base line granularity.

Next is renumber statement which changes the external value of a granularity.
Following after the renumber statement are a list of distributions and default values of plausibility,

maximum number of iterations during the indeterminate rod counting calculation and semantics. The distri-
bution function takes a double and returns a double. The value of plausibility ranges from 1 (even remotely
possible) to 100 (definitely).

The final contend in the specification file are declarations of operating system time function and mapping
between operating system time unit and a granularity. These functions provide support for Now and Now-
relative in database. The operating system time function takes a polyint type as parameter with no return
value. The mapping function between granularity and operating system time unit takes two polyint type
as parameters and returns an integer. The first parameter is number of operating system time units and the
second parameter is the number of granules with specified granularity (second in this example). If no error
occurs, the function returns 0, otherwise it returns 1.

2.2 Parsing the TIMEADT Specification File

Figures 2 and 4 give the BNF used to parse theexample.spec file. The details of the specification file are
straightforward. Most of the tokens which must be matched are keyword strings. Any line that begins with
a hash mark (#) is a comment line and the contents of the rest of that line should be ignored.

Spaces, tabs, and newlines are not significant, except that they separate tokens. Case is significant in
the parsing of the file, but as discussed above will not necessarily be significant in the generation of C code
to initialize the system. The parsing begins by trying to evaluate thehcs defi token. One or morehimport
statementi appear first in the file, followed byhrename statementi. The order of other top-level tokens does
not matter.

The hC stringi token is a regular C string [Kernighan & Ritchie 1988] except that it uses single quote
instead of double quote. It begins with a single quote, followed by some number of characters and is
terminated by a single quote. Single quote can be embedded in the string by ‘\’. Double quote does not

4

hcs defi ::=
�
himport statementi

�
�

�
hrename statementi

��
hcs statementi

�
� hproperty valuei

�
� hfield value functioni

�
� hfield value tablei

�
� hgranularity declarationi

�
� hrenumber statementi

�
� htime func mappingi

�

himport statementi ::= Import hcalendar idi from hdirectory pathi

hrename statementi ::= Rename hcalendar idi�hgran idi as hgran idi

hcs statementi ::= Define calendric system hcs idi

as hcalendar epoch listi hcalendar order listi

hcalendar epoch listi ::= hcalendar epoch listi ‘ � ’ hcalendar epoch entryi
�
� hcalendar epoch entryi

hcalendar epoch entryi ::= hcalendar idi hC stringi

hcalendar order listi ::= with default input order hSQL id listi

hproperty valuei ::= Property hproperty namei is hC stringi

hproperty namei ::= locale
�
� instant input format

�
� instant output format

�� interval input format
�� interval output format

�
� period input separator

�
� period output separator

�
� period output delimiters

�
� indeterminacy input separator

�
� now separator

�
� indeterminacy output separator

�
� default input distribution

�
� missing distribution

�
� distribution input format

�
� distribution output format

�� override input epoch
�� beginning

�� forever
�� now

hcs propertyi ::= hcalendar epochi
�
� hepoch input formati

hcalendar epochi ::= Calendar epoch is hcalendar idi

hfield value functioni ::= Field value table hC idi is hfield value namei

from hintegeri to hintegeri

hfield value tablei ::= Field value function hC idi is hfield value namei

from hintegeri to hintegeri

hepoch input formati ::= Input format is hC stringi

hgranularity declarationi ::= Granularity hgran idi is hintegeri hgran idi � with anchor hintegeri

hgran idi �
�
� Granularity hgran idi is irregular hgran idi with

hfunc declarationi

hfunc declarationi ::= functions hSQL idi ‘ � ’ hSQL idi ‘ � ’ hSQL idi

hrenumber statementi ::= Renumber granularity hgran idi as hintegeri

htime func mappingi ::= htime funci htime mappingi

htime funci ::= Operating system time function is hSQL idi

htime mappingi ::= Granularity hgran idi is hintegeri operating system time unit

�with anchor hintegeri �
�� Granularity hgran idi is irregular operating system time

unit with function hSQL idi

hcalendar idi ::= hSQL idi

hgran idi ::= hSQL idi

hSQL id listi ::= hSQL id listi ‘ � ’ hcalendar idi
�
� hcalendar idi

Figure 2: Calendric System BNF

5

hdeterminate instanti ::= hinstantinput formati
�
� hbeginningi

�
� hforeveri

�
� hnowi

�
� hnow-relativei

hnow-relativei ::= hnowi hnow seperatori hdeterminate intervali

hindeterminate instanti ::= hdeterminate instanti hindeterminateinput seperatori hdeterminate instanti
�
� hnowi hnow seperatori hindeterminate intervali

hinstanti ::= hdeterminate instanti
�
� hindeterminate instanti

hperiodi ::= hleft delimitori hinstanti hperiod input separatori hinstanti

hright delimitori

hdeterminate intervali ::= hinterval input formati

hindeterminate intervali ::= hdeterminate intervali hindeterminateinput seperatori

hdeterminate intervali

hintervali ::= hdeterminate intervali
�
� hindeterminate intervali

hleft delimiteri ::= ‘ � ’
�
� ‘ � ’

hright delimiteri ::= ‘ � ’
�
� ‘ � ’

Figure 3: Temporal Instant Format BNF

hfield value namei ::= hcharacter seti hlanguagei hfield namei

hcharacter seti ::= ascii
�
� gb

�
� hz

�
� jis

�
� unicode

�
� latex � � �

hlanguagei ::= hwritten languagei
�� hromanized spoken languagei

hwritten languagei ::= arabic
�� chinese

�� danish
�� english

�� japanese
�� russian � � �

hromanized spoken languagei ::= romanized mandarin
�
� romanized cantonese

�
� romanized japanese

�
� romanized russian � � �

hfield namei ::= hcalendar field namei
�
� ordinal name

�
� cardinal symbol

�
� ordinal symbol

�
� cardinal name

hcalendar field namei ::= hcalendari hfieldi names

hcalendari ::= gregorian
�� time card

�� magnitude
�� ua academic � � �

hfieldi ::= day of week
�
� month

�
� meridiem � � �

Figure 4: Field Value Names BNF

6

Property Description

Beginning Name for an event preceding any other

Default input distribution Default distribution name

Distribution input format Input format string for temporal instant with

distribution

Distribution output format Output format string for indeterminate temporal

instant

Forever Name for a event following any other

Indeterminacy input separator Input separator for indeterminate instant

interval

Indeterminacy output separator Output separator for indeterminate instant or

interval

Instant input format Input format string for datetime

Instant output format Output format string for datetime

Interval input format Input format string for interval

Interval output format Output format string for interval

Locale Location for timezone displacement

Missing distribution Missing distribution name

Now Input format string for temporal instant NOW

Now separator Input separator for temporal instant NOW�relative

Override input epoch Epoch to use first for constant translation

Period input separator Input separator for period

Period output separator Output separator for period

Period output delimiters Output delimiters for period

Table 1: Properties

need to be escaped. AhC idi is a legal C identifier [Kernighan & Ritchie 1988]. ThehSQL idi represents
a SQL identifier. A valid SQL identifier is, roughly, a string of not more than eighteen characters, which
begins with a letter, and is followed by a combination of letters, numbers and underscores [Date 1987].

A hdirectory pathi is a directory path on the implementation machine. On a Unix computer, the directory
path would include any specifiable file path.

Any error in the parsing or processing of this file should terminate processing. There are limits on what
tokens evaluate to strings or C identifiers, as the semantic checking phase of parsing of theexample.spec
file must determine. Thehcalendar idi tokens may only be selected from the list of imported calendars or
the special empty calendar,none. The event constant specified by C String in calendar epoch entry clause
must be understandable according to the epoch calendar and epoch input format.

2.3 Field Value Names, Table and Functions in TIMEADT

The hfield value namei non-terminals (given in Figure 4) are not complete. This BNF is intended to be a
representative sampling of different languages that may be supported by TIMEADT. This list of different
languages, character sets, and field names is simply a starting point. Each of the different terminals must be
SQL identifiers.

Below we give the first few elements of several different field value tables and functions as examples.
Notice that the names follow the form ofhcharacter seti hlanguagei hfield namei

� ascii english gregorian day of week names = f Monday� Tuesday� � � � g

7

� latex german gregorian month names = f Januar� Februar� Mi\"{a}rz (Mi ärz),� � � g

� ascii romanized japanese gregorian day of week names = f getsuyoobi� kayoobi�

suiyoobi� � � � g

� jis japanese gregorian day of week names = f JIS representationg

� unicode chinese chinese lunar month names = f unicode representationg

� ascii romanized russing gregorian month names = f Jinvar� � � � g

� hz chinese chinese lunar month names = f R;TB� 6˜TB� � � � g

� ascii arabic cardinal symbols = f �� �� 	� � � � g

� ascii english ordinal symbols = f �st� �nd� 	rd� � � � g

� ascii romanized mandarin cardinal names = f yi� er� san� si� � � � g

3 The Calendar Specification Files

Each calendar is described by a specification file, the contents of which are provided by the calendar imple-
mentor. The specification file should not be changed by the database administrator. The database adminis-
trator should move the calendar’s specification file and object file to some location and place the “path” to
the calendar in the TIMEADT specification file.

3.1 Example Calendar Specification File

Figures 5 and 6 are example specification files for, respectively, theGregorian andAstronomy calendars.
Every calendar has along name, which is prepended to many C identifiers associated with that calendar,

such as function names and certain structures. The long name is required to be a legal C identifier. The name
given in the calendric system specification file, called theshort nameis used to refer to the calendar in the
UCS and at the SQL level and it must be a SQL identifier. The other contents of the calendar specification
file are the list of special functions in the calendar and the list of field names used.

Calendar implementors should use a lengthy and specific long name, since this is the only distinguish-
ing difference between two calendars. We suggest adding the version to the calendar long name. The
TIMEADT system may not contain two calendars with the same long name. The long name is used to refer
to the calendar, and also as the middle part of function names for calendar regular functions which must be
implemented for each calendar (see Table 2).

After the long name, the next component of a calendar specification file is underlying granularity decla-
ration and granularity declarations. The BNF for granularity declaration is shown in Figures 2. The order of
declarations is important because an integer number from� to n� � (n is the total number of granularities
in the calendar) will be assigned to each granularity as the local id according to this order.

Next in calendar specification file are additional field names used by a calendar. The field names consist
of granularity names and additional field names. They are used to communicate field values when parsing
and generating temporal constants. The order of additional field names is important. Base on this order,
each additional field name will be assigned an integer number starting fromn (n is the total number of
granularities in the calendar). This number is the index to the array of field values.

8

#Standard University of Arizona American Gregorian Calendar version 1
#file: gregorian.spec

Calendar is standard_gregorian_v1

Granularity second is underlying granularity

Granularity minute is irregular second with functions
greg_cast_minute_to_second, greg_cast_second_to_minute,
greg_scale_minute_to_second

Granularity hour is 60 minute with anchor 0 minute

Granularity day is 24 hour with anchor 0 hour

Granularity week is 7 day with anchor 0 day

Granularity month is irregular day with functions
greg_cast_month_to_day, greg_cast_day_to_month,
greg_scale_month_to_day

Granularity year is irregular day with functions
greg_cast_year_to_day, greg_cast_day_to_year,
greg_scale_year_to_day

Additional field names are era, century, year_of_century,
decade, year_of_decade, day_of_week, day_of_year,
meridiem, milli, micro, nano,
era2, year2, century2, year_of_century2, decade2, year_of_decade2,
month2, day2, day_of_week2, day_of_year2,
meridiem2, hour2, minute2, second2, milli2, micro2, nano2,
month_interval1, month_interval2,
1st_start, 1st_end, 2nd_start, 2nd_end, open_period,
closed_period

Figure 5: Gregorian Calendar Specification file (gregorian.spec)

9

#Astronomy calendar

Calendar is standard_astronomy_v1

Granularity second is underlying granularity

Granularity day_hundredth is 864 second with anchor 0 second

Granularity day is 100 day_hundredth with anchor 0 day_hundredth

Granularity year is irregular day with functions
astro_cast_year_to_day, astro_cast_day_to_year,
astro_scale_det_year_to_day

Granularity century is 100 year with anchor 0 year

Additional field names are day2, year2, century2

Figure 6: Astronomy Calendar Specification File (astronomy.spec)

hcalendar descriptioni ::= hcalendar namei
�

hunderlying gran decli
�
� hgranularity declarationi

�

hfield namesi

hcalendar namei ::= Calendar is hcalendar idi

hunderlying gran decli ::= Granularity hgran idi is underlying granularity

� with local ID hintegeri �

hfield namesi ::= Additional field names are hfield name listi
�
�

�

hfield name listi ::= hfield name listi ‘ � ’ hfield namei
�
� hfield namei

hfield namei ::= hSQL idi

Figure 7: BNF Used to Describe Calendar Specification Files

10

3.2 Parsing the Specification File

Figure 7 is the BNF used to process the calendar.
The parsing of a calendar specification file is similar to theexample.spec file. First, any lines which

begin with a hash mark are comment lines and are ignored. Spaces and newlines are not significant except
that they separate tokens. The parsing begins by trying to evaluate thehcalendar descriptioni token.

The calendar’s long name must be unique across all calendars defined in this TIMEADT program. The
tokenhfield namei is a list of the valid field names.

4 List of Errors

Any error in the parsing TIMEADT specification file or calendar specification file will terminate the gener-
ation program. The error message of syntactic error has the following format:hfilenamei: error in linehni
beforehwordi. The semantic errors are listed below.

� The mappings with anchor specification among calendars are not exactly n-1 when there are n calen-
dars.

Error message:
filename�� each calendar should have its underlying granularity mapped

in terms of other known granularity exactly once except
cal name� calendar

� The referenced granularity in granularity declaration or additional mapping is not declared.

Error message:
filename� error in line
n� before
word�� granularity not declared

� Granularity declared more than once.

Error message:
filename� error in line
n� before
word�� granularity declared more

than once

� Granularity does not exist in rename statement or renumber statement.

Error message:
filename� error in line
n� before
word�� granularity not declared

� Calendar does not exist.

Error message:
filename� error in line
n� before
word�� calendar not found

� Specified number is out of range in renumber statement.

Error message:
filename� error in line
n��
num� exceeds the total number of gran�

ularities

5 Calendar Specifics

Calendars need to provide a certain interface so they may be integrated more easily into the system. Of
course, a calendar must provide a specification file as discussed above. Each calendar must provide two
standard calendar functions (Table 2, in Section A).

Each calendar must also provide an initialization function, the name of which is the combination of
“cal ” plus the calendar’s long name (as given in the specification file) followed byinit�int calen�

dar number�. This function takes a single parameter, the calendar’s identification number. This initial-
ization function should allocate any data structures used internally by the calendar’s functions. For exam-
ple, in the Gregorian calendar the initialization function would be declared ascal standard gregorian

calendar v� init�int cal number�. This function is called from the functioninit calendars�� which
is called after the UCS is initialized.

11

6 Summary

We described the contents and construction of the calendar and calendric system specification files. We
discussed the processing of these files, and how to generate C files which integrate the calendars into the
TIMEADT system.

The system described here is comprehensive yet simple, and facilitates easy addition of calendars and
calendric systems.

Acknowledgments

Thanks to Curtis Dyreson and Mike Soo for comments on earlier drafts of this paper. Thanks also to Leo
So for comments and for his work on the format and description of field table entries, and for providing the
BNF descriptions.

Bibliography

[Date 1987] Date, C. J. “A Guide to the SQL Standard.” Addison-Wesley, 1987.

[Kernighan & Ritchie 1988] Kernighan, B.W. and D.M. Ritchie. “The C Programming Language.” Vol.
second edition of Prentic Hall Software Series. Englewood Cliffs, NJ: Prentice Hall, 1988.

[Kline 1993] Kline, N. “The Gregorian Calendar Specification.” TempIS Technical Report 47. Computer
Science Department, University of Arizona. April 1993.

[Soo & Snodgrass 1992] Soo, M. D. and R. Snodgrass. “Mixed Calendar Query Language Support for
Temporal Constants.” TempIS Technical Report 29. Computer Science Department, University of
Arizona. Revised May 1992, 59 pages.

12

A The Generated C Files

This section contains the C files generated by the descriptions in the above sections, namedexample.c
and example.h. example.c is given in Section A.2 andexample.h is given in Section A.4.example.c
contains three main functions,init calendars��, init properties�� andinit gran graph��. There are
also accompanying data structures, and a section with data structures for the field value tables and func-
tions. At system initialization time,timeadt init�� is called and it in turn calls four initialization functions
init distribution��,init gran graph��, ucs init��andinit event constants��. init distribution��

initialize the distributions declared in TIMEADT specification file. init gran graph will construct the
granularity graph. Withinucs init�� routine, ,init gen�� is called, which will call the property rou-
tine initialization routine (init property��), and the calendar and calendric system initialization function
(init calendars��). init event constants�� initialize the event constants of epochs. The generated C
file is ANSI C compatible [Kernighan & Ritchie 1988].

A.1 The Contents of example.c

This section and the next few describe the contents of the generated C fileexample.c.
At the top of this file is a comment giving the time the file was created and the last date of change of

the calendar and calendric system specification files. Throughout this file are comments that explain its
contents.

A.1.1 Calendar and Calendric System Generation

After the initial contents are several constants which are used to communicate table sizes to the rest of
TIMEADT. NumCalendars andNumberOfCS describe the number of calendars and calendric systems speci-
fied in theexample.spec file. The next two constants,fv max field functions andfv max field tables

give the number of field value functions and tables, respectively supplied by theexample.spec file. The
maximum number of arguments which may be supplied to functions is defined bygen fv max formal args.
The variableucs cal number is an internal variable used by the UCS which specifies the current calendar
number.

There are several variables and tables required for the declaration of each calendar, with similar infor-
mation for each calendric system.

The exampleexample.spec presented earlier will be used as the basis of the generated C file. As Figure 1
shows, that example used two calendars, the Gregorian and Astronomy calendars. The declarations for the
Gregorian calendar come first, since it was imported first. A function reference to the Gregorian calendar’s
initialization routine is given. Notice that this takes one parameter which is the calendar’s identification
number. Next are function references to the calendar’s functions, each of which is preceded by a comment
which gives the SQL name used in function binding to identify that function. Following this is a sequence
of structures which describe the return types of the calendars.

Next comes the field value names. This is a character array containing the field names the calendar and
UCS will use to communicate with each other. This list must be in the same order that the information was
specified in the calendar’s specification file.

This sequence of structures is repeated for each calendar, based on the information in that calendar’s
specification file. The calendric system structures follow after the calendar structures.

Thecalendar list variables describes the information in each calendar. These are separated once again
to facilitate use by C’s static array initialization rules. The Gregorian calendar is calendar number�, has�
functions, has a pointer to the function structures, has 21 field names, and has a pointer to the field name list.
Each calendar also has a field name list used to communicate field values between a calendar and the UCS.

13

This list is allocated in the routineinit calendars. Similar information is provided for the Astronomy
calendar. Next is thecal epochs event structure, an array ofseconds type which gives the start and stop
events for each epoch within a calendric system. These are in the format of theseconds structure [Soo
& Snodgrass 1992]. The end of one epoch is one chronon before the start of the next. After this comes the
cal epochs calendars list, which defines which calendar is to be used during each epoch defined in the
cal epochs events structure. Finally, we have the list of calendric systems (calendric system list).

Following this information is the routineinit calendars��which does the actual calendar initialization
and combines the structures, filling in information which may not be encoded staticly in them.

First it calls the calendar’s initialization functions. Then, for each calendric system, it creates an epoch
structure. Using the entries from thecal epochs events table it creates intervals for each calendar.

A.1.2 Property Generation

The list of property names follow the calendar structures. Next comes the property structures themselves,
and these are declared just above the property initialization routine. The declarations begin with two vari-
ables which are used to maintain the property list. Next follows the list of initial property values, in the
order defined by theproperty name labels defined in the fileh/ucs/property.h.

The rest of the property declarations are boiler plate and do not change. Only the string arrayucs char

� property init val structure changes.

A.1.3 Field Value Generation

Next in theexample.c file is the field value initialization. Static arrays describing both field value functions
and field value tables are all that is needed. These are used at run time to look up functions or tables.

A.1.4 Multiplexing Between the UCS and Calendars

The UCS must multiplex between the different calendar systems when it callsregular calendar functions
(termed this because they are required to be implemented by all calendars). The code to accomplish this
follows next. As a motivating example, consider a string with datetime format that needs to be converted to
an temporal instant. The UCS first finds an appropriate calendar based on the current datetime input format.
After parsing the string and marking the array of field values, the UCS asks that calendar to convert the
array of field values to an polyint type and a granularity by callingregular calendar functionfvt to poly.
The UCS needs a table of all regular functions to do this.

The UCS uses a two dimensional table of function pointers, with the first dimension the number of
special calendar functions (2) and the second the number of calendars (2 in the case of Figure 1).

Table 2 is a list of the regular calendar functions, broken down into two categories.

Event and Interval Translation Functions

error type poly to fvt�poly int type� granularity type� int� value array type��

Constant Translation Functions

error type fvt to poly�value array type�� poly int type� granularity type�� int��

Table 2: Regular Calendar Function Table

The array contains function pointers to each of the regular calendar functions. The function declarations
are formed by taking each function name from the table and replacingcalendarwith the long name of each

14

of the defined calendars. For example, since we have two calendars, there are two versions of the function
fvt to poly:

cal standard gregorian v� fvt to poly

cal standard astronomy v� fvt to poly

A.1.5 Mappings between local id and global id of a granularity

Next in theexample.c file are mappings between local id and global id of a granularity. The global id is
also the external value of a granularity used by users. The mappings consist of several arrays and a function
calledget global id. local id map is used to find the local id of a granularity given its global id. If the
local id of a granularity and the name of calendar it belongs to are given, functionget global id will return
the global id of the granularity.

A.1.6 Constructing granularity graph

The final part of theexample.c file is the construction of granularity graph. After initializing the lattice,
each granularity is declared exactly once by calling functiondeclare granularity with anchor or de�
clare granularity except the base line granularity which does not need to be declared. Next are the
mapping declarations. Mappings can be regular, irregular, or congruent. Each granularity should have at
least one mappings except base line granularity. Finally, functiondeclare done is called and if no error
occurs, then granularity graph is successfully constructed. Whenever an error occurs, the program will print
an error message and exit right away.

A.2 Example C Source File example.c

The following is the generated C source file from the examples presented in this document.

/***\
* *
* File: example.c
* *
* The TimeADT System is free software in the public domain; you can *
* redistribute it and/or modify it as you wish. We ask that you *
* retain credits referencing the University of Arizona and that you *
* identify any changes you make. *
* *
* Report problems to rts@cs.arizona.edu *
* Direct all inquiries to: The TimeADT Project *
* Department of Computer Science *
* University of Arizona *
* Tucson, AZ 85721 *
* U.S.A. *
* *
***/
/*
* example.c:
* This file contains code which is automatically generated by the
* TimeADT generation facility.
*
* It was generated on Fri May 28 00:05:31 1999
*
* from file example.spec, last changed Wed May 26 21:21:18 1999
*
* ./gregorian.spec, last changed Thu May 20 22:12:58 1999

15

* ./astronomy.spec, last changed Thu May 20 22:12:58 1999
*
* This file also contains the code to initialize the properties and
* field value functions and tables.
*
* Initialization routine: timeadt_init() do the following
* initialize granularity graph
* initialize UCS
* initialize event constants in the epochs
*
* Externally, call init_gen(), which calls init_calendars()
* and init_properties.
*/

#include <stdio.h>
#include "system_wide.h"
#include "fv.h"
#include "ucs.h"
#include "fv.h"
#include "poly_int.h"
#include "gran.h"
#include "PMF.h"
#include "now.h"
#include "example.h"
/*
* The following are constants used to communicate the size of generated tables
*/

int NumOfGran = 15;
int NumCalendars = 2;
int NumberOfCS = 1;
int gen_fv_max_field_functions = 1;
int gen_fv_max_field_tables = 3;
unsigned char ucs_cal_number;

/* semantics default value */
unsigned char plausability = 50;
unsigned int max_iters= 15;
int semantics_finest = 1;
int semantics_coarsest = 0;
int semantics_lhs = 0;
int semantics_rhs = 0;
int semantics_cast = 1;

/*
* Routine: init_gen
*
* Description: calls the initialization routines for calendars and properties
*
* Arguments: None
*
* Return Value: Error code
*
* Errors: None
*
* Side Effects: None
*/

void init_gen()

16

{
init_calendars();
init_properties();

}

/* calendar and calendric system initialization */

void standard_gregorian_v1_init(int);

char *standard_gregorian_v1_fn_list[] = {
"nanosecond", "microsecond", "millisecond",
"second", "minute", "hour",
"day", "week", "month",
"year", "decade", "era",
"century", "year_of_century", "year_of_decade",
"month_of_year", "day_of_year", "day_of_month",
"day_of_week", "hour_of_day", "minute_of_hour",
"second_of_minute", "millisecond_of_second", "microsecond_of_millisecond",
"nanosecond_of_microsecond",};

void standard_astronomy_v1_init(int);

char *standard_astronomy_v1_fn_list[] = {
"second", "day_hundredth", "day",
"year", "century", };

calendar_type calendar_list_0 = {
"Gregorian",
1,
21,
standard_gregorian_v1_fn_list,
NULL

};

calendar_type calendar_list_1 = {
"Astronomy",
2,
6,
standard_astronomy_v1_fn_list,
NULL

};

calendar_type *calendar_array[] = {
&calendar_list_0,
&calendar_list_1,

};

char* cal_epochs_events[][2] = {
{

"beginning",
"September 14, 1752", },

};

calendar_type *cal_epochs_calendars[] = {
&calendar_list_1, &calendar_list_0};

calendric_system_type calendric_system_list[] ={
{ "american",

2,

17

"Gregorian",
"<month_of_year,english_month_names> <day_of_month,arabic_numeral>,

<year,arabic_numeral>",
NULL

}};

void init_calendars()
{

int i, j;

int cnt; /* used to walk through system */
epoch_type *ep;

calendar_list_0.field_values = (value_array_type*)
ucs_malloc(sizeof(value_array_type)*calendar_list_0.num_field_names);
for (i=0;i<calendar_list_0.num_field_names;i++)
calendar_list_0.field_values[i].value =

(actual_arg_type)ucs_malloc(sizeof(actual_arg_type));

calendar_list_1.field_values = (value_array_type*)
ucs_malloc(sizeof(value_array_type)*calendar_list_1.num_field_names);
for (i=0;i<calendar_list_1.num_field_names;i++)
calendar_list_1.field_values[i].value =

(actual_arg_type)ucs_malloc(sizeof(actual_arg_type));

standard_gregorian_v1_init(1);
standard_astronomy_v1_init(2);
cnt = 0;

for (i=0; i<NumberOfCS; i++) {
ep = ucs_allocate_epoch_type(calendric_system_list[i].num_epochs);

for(j=0; j<calendric_system_list[i].num_epochs; j++) {
ep[j].start = cal_epochs_events[i][j];
ep[j].calendar = cal_epochs_calendars[cnt];
cnt++;

}
calendric_system_list[i].epochs = ep;

}

ucs_declare_local_calendric_system(calendric_system_list[0].name);
ucs_declare_global_calendric_system(calendric_system_list[0].name);

}

boolean ucs_non_activated_props=FALSE;
prop_node *initial_property_list[NUM_PROPERTIES];
prop_marker *ucs_front_properties, *ucs_end_properties;

/* property names, in order*/

char ucs_locale[] = "Locale";
char ucs_instant_input_format[] = "Instant Input Format";
char ucs_instant_output_format[] = "Instant Output Format";
char ucs_interval_input_format[] = "Interval Input Format";
char ucs_interval_output_format[] = "Interval Output Format";
char ucs_now_separator[] = "Now Separator";
char ucs_period_input_separator[] = "Period Input Separator";
char ucs_period_output_separator[] = "Period Output Separator";

18

char ucs_period_output_delimiters[] = "Period Output Delimiters";
char ucs_indeterminacy_input_separator[] = "Indeterminacy Input Separator";
char ucs_indeterminacy_output_separator[] = "Indeterminacy Output Separator";
char ucs_default_input_distribution[] = "Default Input Distribution";
char ucs_missing_distribution[] = "Missing Distribution";
char ucs_distribution_input_format[] = "Distribution Input Format";
char ucs_distribution_output_format[] = "Distribution Output Format";
char ucs_override_input_epoch[] = "Override Input Epoch";
char ucs_beginning[] = "Beginning";
char ucs_forever[] = "Forever";
char ucs_now[] = "Now";

char *ucs_char_property_name[] = {
ucs_locale,
ucs_instant_input_format,
ucs_instant_output_format,
ucs_interval_input_format,
ucs_interval_output_format,
ucs_now_separator,
ucs_period_input_separator,
ucs_period_output_separator,
ucs_period_output_delimiters,
ucs_indeterminacy_input_separator,
ucs_indeterminacy_output_separator,
ucs_default_input_distribution,
ucs_missing_distribution,
ucs_distribution_input_format,
ucs_distribution_output_format,
ucs_override_input_epoch,
ucs_beginning,
ucs_forever,
ucs_now,

};

/* Initial property values, in same order as above */
char *ucs_char_property_init_val[] = {

"Tucson",
"<month_of_year,english_month_names> <day_of_month,arabic_numeral>,

<year,arabic_numeral>",
"<month_of_year,english_month_names> <day_of_month,arabic_numeral>,

<year,arabic_numeral>",
"<month,arabic_numeral> months",
"<month,arabic_numeral> months",
" ",
" - ",
" - ",
"[)",
" ˜ ",
" ˜ ",
"uniform",
"missing",
"<value> with <distribution> distribution",
"<value> with <distribution> distribution",
"Gregorian",
"beginning",
"forever",
"now",

};

19

/* init properties to their initial value */

void init_properties() {
int i;
/* init empty prop list to NULL */
ucs_front_properties = ucs_end_properties =

(prop_marker*)ucs_malloc(sizeof(prop_marker));
ucs_end_properties->next = ucs_end_properties->prev = NULL;

for(i=0;i<NUM_PROPERTIES;i++) {
initial_property_list[i] =(prop_node*)ucs_malloc(sizeof(prop_node));
initial_property_list[i]->prop.num = i;
initial_property_list[i]->prop.val = ucs_char_property_init_val[i];

}

for(i=0;i<NUM_PROPERTIES-1;i++)
initial_property_list[i]->next = initial_property_list[i+1];

initial_property_list[i]->next = NULL;

ucs_end_properties->prop_list = initial_property_list[0];

}

char *gen_function_names_alias_names[]={
"arabic_numeral",
"english_month_names",
"mandarin_month_names",
"danish_month_names",

};

char *gen_function_names_mapped_names[]={
"ascii_arabic_cardinal_symbols",
"ascii_english_gregorian_month_names",
"ascii_romanized_mandarin_gregorian_month_names",
"latex_danish_gregorian_month_names",

};

/* calendar: standard_gregorian_v1 */

error_type cal_standard_gregorian_v1_poly_to_fvt(void*a);
error_type cal_standard_gregorian_v1_fvt_to_poly(void*a);

/* calendar: standard_astronomy_v1 */

error_type cal_standard_astronomy_v1_poly_to_fvt(void*a);
error_type cal_standard_astronomy_v1_fvt_to_poly(void*a);

function_ptr cal_table[num_cal_functions*num_calendars] = {

/* calendar: standard_gregorian_v1 */
{cal_standard_gregorian_v1_poly_to_fvt},
{cal_standard_gregorian_v1_fvt_to_poly},

/* calendar: standard_astronomy_v1 */
{cal_standard_astronomy_v1_poly_to_fvt},
{cal_standard_astronomy_v1_fvt_to_poly}

20

};

void init_gran_graph();
void init_distribution();

/* Routine: timeadt_init
*
* Descriptioin: the initialization routine for TimeADT.
*
* Arguments: None
*
* Return value: None
*
* Error: If any error occurs in init_gran_graph or init_event_constants,
* the program will print out error message and halt.
*
* Side Effects: None
*/

void timeadt_init()
{

init_distribution();
init_gran_graph();
ucs_init();
init_event_constants();

}

/* Routine: init_distribution
*
* Descriptioin: initialize the distribution functions and PMFTrees.
*
* Arguments: None
*
* Return value: None
*
* Error: None
*
* Side Effects: None
*/

void init_distribution()
{

int i;

PMF_dists.num = 2;
for (i= 0; i< PMF_dists.num ; i++)

PMF_dists.dists[i] = NULL;

PMF_dists.funcs[0] = PMF_uniform;
PMF_dists.names[0] = strdup("uniform");
PMF_dists.funcs[1] = PMF_pyramid;
PMF_dists.names[1] = strdup("pyramid");

dist_in.format[0] =0;
dist_out.format[0] = 0;

}

/* The total number of granularities in granularity graph */

21

int max_num_gran = 15;

/* The mapping between local granualrity id and global granulairty id */

int local_id_map[] = {0, 1, 2, 3, 4, 5, 7, 8, 9, 0, 1, 6, 2, 3, 4};
static int cal_number = 2;
static char *cal_names[]= { "Gregorian", "Astronomy"};
static int global_id_map[][24] = { {0, 1, 2, 3, 4, 5, 11, 6, 7, 8}, {9, 10, 12, 13, 14}};

/* Internal function: mapping local id to global id
* Auguments: calendar name and local id
* Return value: global id
*/

unsigned char get_global_id(char *cal_name, int local_id)
{

int i;
for (i =0; i< cal_number; i++) {

if (strcasecmp(cal_name, cal_names[i]) == 0)
break;

}

return global_id_map[i][local_id];
}

/* calendar: standard_gregorian_v1 */

extern gran_error_type greg_cast_minute_to_second(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_second_to_minute(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scale_minute_to_second(int, int, poly_int_type, poly_int_type,

poly_int_type);
extern gran_error_type greg_cast_month_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_day_to_month(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scale_month_to_day(int, int, poly_int_type, poly_int_type,

poly_int_type);
extern gran_error_type greg_cast_year_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_cast_day_to_year(int, int, poly_int_type, poly_int_type);
extern gran_error_type greg_scale_year_to_day(int, int, poly_int_type, poly_int_type,

poly_int_type);

/* calendar: standard_astronomy_v1 */

extern gran_error_type astro_cast_year_to_day(int, int, poly_int_type, poly_int_type);
extern gran_error_type astro_cast_day_to_year(int, int, poly_int_type, poly_int_type);
extern gran_error_type astro_scale_year_to_day(int, int, poly_int_type, poly_int_type,
poly_int_type);

/*
* Routine: init_gran_graph
*
* Description: Constructs granularity graph
*
* Arguments: None
*
* Return value: None
*
* Error: Results from error in initializing lattice, declaring

22

* granularity or declaring mapping. If error occurs,
* exit right away.
*
* Side Effects: None
*/

void init_gran_graph()
{

poly_int_type anchor;

if (init_lattice() != gran_OK) {
fprintf(stderr, "Failed to create LATTICE\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(astro_second, 1, anchor, second) !=

gran_OK){
fprintf(stderr, "Error: declare gran astro_second.\n");
exit(1);

}

/* declare granularity for Gregorian calendar */
poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(microsecond, 1, anchor, nanosecond) !=

gran_OK){
fprintf(stderr, "Error: declare gran microsecond.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(millisecond, 2, anchor, microsecond) != gran_OK){

fprintf(stderr, "Error: declare gran millisecond.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(second, 3, anchor, millisecond) != gran_OK){

fprintf(stderr, "Error: declare gran second.\n");
exit(1);

}

if (declare_granularity(minute, 4) != gran_OK){
fprintf(stderr, "Error: declare gran minute.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(hour, 5, anchor, minute) != gran_OK){

fprintf(stderr, "Error: declare gran hour.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(day, 6, anchor, hour) != gran_OK){

fprintf(stderr, "Error: declare gran day.\n");
exit(1);

}

23

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(week, 7, anchor, day) != gran_OK){

fprintf(stderr, "Error: declare gran week.\n");
exit(1);

}

if (declare_granularity(month, 8) != gran_OK){
fprintf(stderr, "Error: declare gran month.\n");
exit(1);

}

if (declare_granularity(year, 9) != gran_OK){
fprintf(stderr, "Error: declare gran year.\n");
exit(1);

}

/* declare granularity for Astronomy calendar */
poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(astro_day_hundredth, 1, anchor,

astro_second) != gran_OK){
fprintf(stderr, "Error: declare gran astro_day_hundredth.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(astro_day, 2, anchor,

astro_day_hundredth) != gran_OK){
fprintf(stderr, "Error: declare gran astro_day.\n");
exit(1);

}

if (declare_granularity(astro_year, 3) != gran_OK){
fprintf(stderr, "Error: declare gran astro_year.\n");
exit(1);

}

poly_from_int(anchor, 1, 0);
if (declare_granularity_with_anchor(astro_century, 4, anchor, astro_year) !=

gran_OK){
fprintf(stderr, "Error: declare gran astro_century.\n");
exit(1);

}

if (declare_regular_mapping(microsecond, nanosecond, 1000) != gran_OK) {
fprintf(stderr, "Error: declare regular map from microsecond to nanosecond.\n");
exit(1);

}

if (declare_regular_mapping(millisecond, microsecond, 1000) != gran_OK) {
fprintf(stderr, "Error: declare regular map from millisecond to microsecond.\n");
exit(1);

}

if (declare_regular_mapping(second, millisecond, 1000) != gran_OK) {
fprintf(stderr, "Error: declare regular map from second to millisecond.\n");
exit(1);

}

if (declare_irregular_mapping(minute, second,

24

&greg_cast_minute_to_second,
&greg_cast_second_to_minute,
&greg_scale_minute_to_second) != gran_OK) {

fprintf(stderr, "Error: declare irregular map from minute to second.\n");
exit(1);

}

if (declare_regular_mapping(hour, minute, 60) != gran_OK) {
fprintf(stderr, "Error: declare regular map from hour to minute.\n");
exit(1);

}

if (declare_regular_mapping(day, hour, 24) != gran_OK) {
fprintf(stderr, "Error: declare regular map from day to hour.\n");
exit(1);

}

if (declare_regular_mapping(week, day, 7) != gran_OK) {
fprintf(stderr, "Error: declare regular map from week to day.\n");
exit(1);

}

if (declare_irregular_mapping(month, day,
&greg_cast_month_to_day,
&greg_cast_day_to_month,
&greg_scale_month_to_day) != gran_OK) {

fprintf(stderr, "Error: declare irregular map from month to day.\n");
exit(1);

}

if (declare_irregular_mapping(year, day,
&greg_cast_year_to_day,
&greg_cast_day_to_year,
&greg_scale_year_to_day) != gran_OK) {

fprintf(stderr, "Error: declare irregular map from year to day.\n");
exit(1);

}

if (declare_regular_mapping(astro_day_hundredth, astro_second, 864) != gran_OK) {
fprintf(stderr, "Error: declare regular map from astro_day_hundredth to

astro_second.\n");
exit(1);

}

if (declare_regular_mapping(astro_day, astro_day_hundredth, 100) != gran_OK) {
fprintf(stderr, "Error: declare regular map from astro_day to

astro_day_hundredth.\n");
exit(1);

}

if (declare_irregular_mapping(astro_year, astro_day,
&astro_cast_year_to_day,
&astro_cast_day_to_year,
&astro_scale_year_to_day) != gran_OK) {

fprintf(stderr, "Error: declare irregular map from astro_year to astro_day.\n");
exit(1);

}

if (declare_regular_mapping(astro_century, astro_year, 100) != gran_OK) {

25

fprintf(stderr, "Error: declare regular map from astro_century to
astro_year.\n");

exit(1);
}

if (declare_congruent(astro_second, second) != gran_OK) {
fprintf(stderr, "Error: declare congruent map from astro_second to second.\n");
exit(1);

}

if (declare_done() != gran_OK) {
fprintf(stderr, "Error: Declare done.\n");
exit(1);

}
}

/* The following functions provide support for now and now-relative*/

extern void sys_time(poly_int_type);
extern int unit_to_sec(poly_int_type, poly_int_type);

void (*sys_time_func)(poly_int_type) = sys_time;
time_map_type time_map = { second, unit_to_sec };

A.3 The Contents of example.h

Theexample.h file contains external values of all granularities. It also exports the main initialization routine
for TIMEADT system calledtimeadt init which is defined inexample.c.

A.4 Example C Header File example.h

The following is the generated C header file from the examples presented in this document.

/***\
* *
* File: example.h *
* *
* The TimeADT System is free software in the public domain; you can *
* redistribute it and/or modify it as you wish. We ask that you *
* retain credits referencing the University of Arizona and that you *
* identify any changes you make. *
* *
* Report problems to rts@cs.arizona.edu *
* Direct all inquiries to: The TimeADT Project *
* Department of Computer Science *
* University of Arizona *
* Tucson, AZ 85721 *
* U.S.A. *
* *
***/

/* External granularity id */

#define nanosecond 0
#define microsecond 1
#define millisecond 2
#define second 3

26

#define minute 4
#define hour 5
#define day 11
#define week 6
#define month 7
#define year 8
#define astro_second 9
#define astro_day_hundredth 10
#define astro_day 12
#define astro_year 13
#define astro_century 14

extern void timeadt_init();

27

