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Abstract

The ability to model the temporal dimension is essential to many applications. Furthermore, the

rate of increase in database size and stringency of response time requirements has out-paced ad-

vancements in processor and mass storage technology, leading to the need for parallel temporal

database management systems. In this paper, we introduce a variety of parallel temporal aggre-

gation algorithms for shared-nothing architectures; these algorithms are based on the sequential

Aggregation Tree algorithm. Via an empirical study, we found that the number of processing

nodes, the partitioning of the data, the placement of results, and the degree of data reduction

e�ected by the aggregation impacted the performance of the algorithms. For distributed result

placement, we discovered that Greedy Time Division Merge was the obvious choice. For cen-

tralized results and high data reduction, Pairwise Merge was preferred for a large number of

processing nodes; for low data reduction, it only performed well up to 32 nodes. This led us to

a centralized variant of Greedy Time Division Merge, which was best for the remaining cases.

1 Introduction

Aggregate functions are an essential component of data query languages, and are heavily used
in many applications such as data warehousing. Several prominent query benchmarks contain
aggregate operations [15]; all but one of the 17 TPC-D benchmark queries involve aggregates [13].
Hence, e�cient execution of aggregate functions is an important goal.

Unfortunately, aggregate computation is traditionally expensive, especially in a temporal database
where the problem is complicated by having to compute the intervals of time for which the aggre-
gate value holds. Consider the sample table in Table 1(a), listing the salaries of employees and when
these salaries are valid, indicated by closed-open intervals. Finding the (time-varying) number of
employees (Table 1(b)) involves computing the temporal extent of each value, which requires deter-
mining the tuples that overlap each temporal instant. Similarly, �nding the time-varying maximum
salary (Table 1(c)) involves computing the temporal extent of each resulting value.

Name Salary Begin End

Richard 40K 18 1

Karen 45K 8 20
Nathan 35K 7 12
Nathan 37K 18 21

Count Begin End

1 7 8
2 8 12
1 12 18
3 18 20
2 20 21
1 21 1

Max Begin End

35K 7 8
45K 8 20
40K 20 1

(a) Data Tuples (b) Result of Count (c) Result of Max Salary

Table 1: Sample Database and Sample Temporal Aggregations

In this paper, we present several new parallel algorithms for the computation of temporal aggre-
gates on shared-nothing architectures [12]. Speci�cally, we start with the (sequential) Aggregation
Tree algorithm [9] and propose several approaches to parallelize it. The performance of the parallel
algorithms relative to various data set and operational characteristics is our main interest.

This paper is organized as follows. Section 2 gives a review of related work and presents
the sequential algorithm on which we base our parallel algorithms. Our proposed algorithms on
computing parallel temporal aggregates are then described in Section 3. Section 4 presents empirical
results obtained from the experiments performed on a shared-nothing Pentium cluster. Finally,
Section 5 concludes the paper and summarizes future work.
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2 Background and Related Work

Simple algorithms for evaluating scalar aggregates and aggregate functions were introduced by
Epstein [5]. A di�erent approach employing program transformation methods to systematically
generate e�cient iterative programs for aggregate queries has also been suggested [6]. Snodgrass
extended Epstein's algorithms to handle temporal aggregates [11]; these were further extended by
Tuma [14] and by Kline [8, 9]. The resulting algorithms were quite e�ective in a uniprocessor
environment. However, because they are inherently sequential, they all su�er from poor scale-
up performance, which identi�es the need to develop parallel algorithms for computing temporal
aggregates.

Early research on developing parallel algorithms focused on the framework of general-purpose
multiprocessor machines. Bitton et al. proposed two parallel algorithms for processing (conven-
tional) aggregate functions [1]. The Subqueries with a Parallel Merge algorithm computes partial
aggregates on each partition and combines the partial results in a parallel merge stage to obtain
a �nal result. Another algorithm, Project By list, exploits the ability of the parallel system ar-
chitecture to broadcast tuples to multiple processors. The Gamma database machine project [3]
implemented similar scalar aggregates and aggregate functions on a shared-nothing architecture.
More recently, parallel algorithms for handling temporal aggregates were presented [17], but for a
shared-memory architecture.

The parallel temporal aggregation algorithms proposed in this paper are based on the (sequen-
tial) Aggregation Tree algorithm (SEQ) designed by Kline [9]. The aggregation tree is a binary
tree that tracks the number of tuples whose timestamp periods contain an indicated time span.
Each node of the tree contains a start time, an end time, and a count. When an aggregation tree
is initialized, it begins with a single node containing < 0;1; 0> (see the initial tree in Figure 1).

In the example from the previous section, four tuples from the argument relation (Table 1(a))
are inserted into an empty aggregation tree. The start time value, 18, of the �rst entry to be inserted
splits the initial tree, resulting in the updated aggregation tree shown in Figure 1. Because the
original node and the new node share the same end date of 1, a count of 1 is assigned to the new
leaf node < 18;1; 1 >. The aggregation tree after inserting the rest of the records in Table 1(a) is
shown at the bottom of Figure 1.

To compute the number of tuples for the period [8; 12) in this example, we simply take the
count from the leaf node [8; 12) (which is 1), and add its parents' count values. Starting from the
root, the sum of the parents' counts is 0 + 0 + 1 = 1 and adding the leaf count, gives a total of 2.
The six leaf nodes of the aggregation tree correspond to the six tuples in the result of the aggregate
(see Table 1(b)).

Though SEQ correctly computes temporal aggregates, it is still a sequential algorithm, bounded
by the resources of a single processor machine. This makes a parallel method for computing
temporal aggregates desirable.

3 Parallel Processing of Temporal Aggregates

In this section, we propose seven parallel algorithms for the computation of temporal aggregates.
We start with two simple parallel extensions to the SEQ algorithm, the Single Aggregation Tree
(abbreviated SAT) and Single Merge (SM) algorithms. We then go on to introduce the Pairwise
Merge (PM) and Time Division Merge with Centralization (TDM+C) algorithms, which both re-
quire more coordination, but are expected to scale better. After that, we present the Time Division
Merge (TDM) algorithm, a variant of TDM+C, which distributes the resulting relation across the
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0 ∞ 0

18 ∞ 1

Final  Tree after insert ing [8,20) ,  [7,12) ,  [18,21)

0 ∞ 0

Init ial  Tree

After  adding [18,∞)

0 8 0

0 7 0

7 8 1

0 18 0

8 18 1

0 ∞ 0

0 18 0

18 ∞ 1

8 12 1

12 18 0

18 20 2

20 ∞ 0

20 21 1

21 ∞ 0

Figure 1: Example Run of the Sequential(SEQ) Aggregation Tree Algorithm, for Count

processors, as di�erentiated from the centralized results produced by the other algorithms. Fi-
nally, we present Greedy Time Division Merge (GTDM) and Greedy Time Division Merge with
Centralization (GTDM+C), which are improved versions of TDM and TDM+C, respectively, for
minimized communication overhead.

3.1 Single Aggregation Tree (SAT)

The �rst algorithm, SAT, extends the Aggregation Tree algorithm by parallelizing disk I/O. Each
worker node reads its data partition in parallel, constructs the valid-time periods for each tuple,
sends these periods (along with the column being aggregated, if relevant) to the coordinator. The
central coordinator receives the periods from all the worker nodes, builds the complete aggregation
tree, and returns the �nal result to the client. While SAT can exploit disk I/O parallelism, the
entire task of aggregate computation is accomplished solely by the coordinator sequentially.

3.2 Single Merge (SM)

The second parallel algorithm, SM, is more complex than SAT, in that it includes computational
parallelism along with I/O parallelism. Each worker node builds a local aggregation tree, in parallel.
The worker node then traverses its aggregation tree in DFS order, propagating the count values to
the leaf nodes. The leaf nodes now contain the full local count for the periods they represent, and
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Step 1. Client request
Step 2. Build local aggregation trees
Step 3. While not �nal aggregation tree merge between 2 nodes
Step 4. Return results to client

Figure 2: Major Steps for the Pairwise Merge Algorithm

any parent nodes are discarded. The worker nodes sends its leaf nodes to the coordinator.
Unlike the SAT coordinator, which inserts periods into an aggregation tree, the SM coordinator

merges each of the leaves it receives using a variant of merge-sort (no aggregation tree is constructed
at the coordinator). The use of this e�cient merging algorithm is possible since the worker nodes
send their leaves in a temporally sorted order. Finally, after all the worker nodes �nish sending
their leaves, the coordinator returns the �nal result to the client. However, the task of merging
leaves is still carried out by the coordinator sequentially, which will be a limiting factor for the
scalability of the SM algorithm.

3.3 Pairwise Merge (PM)

The third parallel algorithm, Pairwise Merge (see Figure 2), attempts to alleviate the sequential
bottleneck of the SM algorithm by parallelizing the task of merging leaves. Worker nodes are paired
to merge their leaves in each of log2 p local synchronization steps, instead of merging all the leaves
by the coordinator node. Which two worker nodes are paired in each local synchronization step is
determined dynamically by the query coordinator.

Each worker node is available for merging when its local aggregation tree has been built. The
worker node informs the query coordinator that it has completed its aggregation tree. The query
coordinator then arbitrarily picks another worker node that had previously completed its aggrega-
tion tree, thereby allowing the two worker nodes to merge their leaves. Then, the query coordinator
instructs the worker node with the least number of leaf nodes to send the leaves to the other node,
the \buddy worker node", which does the merging of leaves.

Once a worker node �nishes transmitting leaves to its buddy worker node, it is no longer a
participant in the query. This buddying-up continues until the query coordinator ascertains that
only one worker node is left, which contains the completed aggregation tree. The query coordinator
then directs the sole remaining worker node to submit the results directly to the client. Figure 3
provides a conceptual picture of this \buddy" system.

A portion of a PM aggregation tree may be merged multiple times with other aggregation trees.
The merge algorithm is a merge-sort variant operating on two sorted lists as input (the local list
and the received list). This merge is near linear in the number of leaf nodes to be merged.

3.4 Time Division Merge with Centralization (TDM+C)

Like PM, the fourth parallel algorithm, TDM+C, also extends the aggregation tree method to
exploit both computational and I/O parallelism (see Figure 4). Moreover, TDM+C attempts to
achieve even higher degree of parallelism by enabling all the worker nodes to participate in the task
of merging leaves in parallel. The main steps for this algorithm are outlined in Figure 5.
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Figure 3: Pairwise Merge (PM) Algorithm

3.4.1 Global Timeline Division

TDM+C starts when the coordinator receives a temporal aggregate request from a client. Each
worker node builds a local aggregation tree, and propagates the interior counts to the leaf nodes.
The worker nodes then exchange minimum (earliest) start timestamp and maximum (latest) end
timestamp values to ascertain the overall timeline of the query. The timeline then will be divided
into p partitions in a way that the task of merging leaves is evenly distributed across p worker
nodes.

The task of dividing timeline largely relies on the idea of equi-depth histogramming [10], and the
task is performed in two steps. First, each worker node divides its local timeline into p partitions
such that each partition can match almost the same number of local leaves. Of course, for the
reason, the partitions can have di�erent lengths of durations. This timeline division is essentially
an equi-depth histogram for the set of local leaves. Second, the local timeline partitions from each
worker node are sent to the coordinator, which then computes a global timeline division from a
total of p2 local partitions (how this is done is discussed in detail in the next section). The resulting
timeline division is a global p-interval equi-depth histogram across the entire data set.
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Figure 4: Time Division Merge with Centralizing Step (TDM+C) Algorithm

Step 1. Client request
Step 2. Build local aggregation trees
Step 3. Calculate local partition sets
Step 4. Calculate global partition set
Step 5. Exchange data and merge locally
Step 6. Globally merge results
Step 7. Return results to client

Figure 5: Major Steps for the TDM+C Algorithm

After computing the global timeline division, the coordinator broadcasts the global timeline
division to all the worker nodes. Then, the ith worker node will take up the ith partition for the
rest of parallel execution of aggregation. Each worker node uses this information of global timeline
division to decide which local aggregation tree leaves to send, and to which worker nodes to send
them. Note that periods that span more than one global partition are split and each part is assigned
accordingly (split periods do not a�ect the correctness of the result).

Each worker node merges the leaves it receives with the leaves it already has to compute the
temporal aggregate for its assigned global partition. When all the worker nodes �nish merging,
the coordinator polls them for their results in sequential order. The coordinator concatenates the
results and sends the �nal result to the client.

3.4.2 Calculating the Global Partition Set

We examine in more detail the computation of the global partition set by the coordinator. Recall
that the coordinator receives from each worker node a local partition set, consisting of p contiguous
partitions; each partition is associated with a tuple count. The goal is to temporally distribute the
computation of the �nal result, with each node processing roughly the same number of leaf nodes
to evenly distribute the second phase of the computation.
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Figure 6: Timeline divided into p partitions, forming a global partition set

As an example, Figure 7 presents 9 local partitions from 3 worker nodes. The number between
each hash mark segmenting a local timeline represents the number of leaf nodes within that local
partition. The total number of leaf nodes from the 3 nodes is 50 � 3 + 15 � 3 + 30 � 3 = 285.
The best plan is having 285

3
= 95 leaf nodes to be processed by each node. Figure 6 illustrates the

computation of the global partition set.
We modi�ed the SEQ algorithm to compute the global partition set, using the local partition

information sent by the worker nodes. We treat the worker node local partition sets as peri-
ods, inserting them into the modi�ed aggregation tree. From Figure 7, the �rst period to be
inserted is [5,9)(50), the fourth is [0,30)(15), and the seventh is [0,10)(30), and the ninth(last) is
[1000,5000)(30). This use of the aggregation tree is entirely separate from the use of this same
structure in computing the aggregate. Here we are concerned only with determining a division of
the timeline into p contiguous periods, each with approximately the same number of leaves.

0

5 9

10

30 350

800

1000

1500

5000

100000

50 50 50

15 15 15

30 30 30

Figure 7: Local Partition Sets from Three Worker Nodes
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0 ∞ 0

5 ∞ 0

0 5 0

9 800 50

5 9 50

9 ∞ 0 800 ∞ 0

800 1500 50

1500 ∞ 0

Inserted Records [5,9)(50),  [9,800)(50),  and [800,1500)(50)

(a) First 3 Local Partitions

0 ∞ 0

5 ∞ 0

0 5 2

9 800 0

5 9 52

9 ∞ 0 800 ∞ 0 800 1500 50

1500 ∞ 0Inserted Records [5,9)(50), [9,800)(50), [800,1500)(50), and [0,30)(15)

9 30 12

30 800 49

(b) After partition 4 is added

Figure 8: Intermediate Aggregation Tree

There are three main di�erences between our Modi�ed Aggregation Tree algorithm used in this
portion of TDM+C and the original Aggregation Tree [9] used in step 2 of Figure 5. First, the
\count" �eld of this aggregation tree node is incremented by the count value of the local partition
being inserted, rather than by 1. Second, a parent node must have a count value of 0. When a leaf
node is split and becomes a parent node, its count is split proportionally between the two new leaf
nodes based on the durations of their respective time periods. This new parent count becomes 0.
Third, during an insertion traversal for a record, if the search traversal diverges to both subtrees,
the record count is split proportionally between the 2 sub-trees.

As an example, suppose we inserted the �rst three local partitions, and now we are inserting
the fourth one, [0,30)(15). The current modi�ed aggregation tree before inserting the fourth local
partition is shown in Figure 8a. Notice that for leaf node [5,9)(50), the count value is set to 50
instead of 1 (�rst di�erence).

The second and third di�erences are exempli�ed when the fourth local partition is added. At
the root node, we see that the period for this fourth partition overlaps the periods of the left
sub-tree and the right sub-tree. In the original aggregation tree, we simply added 1 to a node's
count in the left sub-tree and the right sub-tree at the appropriate places. Here, we see the third
di�erence. We split this partition count of 30 in proportion to the durations of the left and right
sub-trees. The root left sub-tree contains a period [0,5) for a duration of 5 time units. The fourth
local partition period is [0,30), or 30 time units. We compute the left sub-tree's share of this local

time partition's count as (5�0)

(30�0)
� 15 = 2, while the right sub-tree's share is 15 � 2 = 13. In this

case, the left sub-tree leaf node [0,5) now has a count of 2 (see Figure 8b). We now pass 13 down
the root right sub-tree, increasing its right leaf node count from [5,9)(50) to [5,9)(52) as its share of
the newly added partition's count, 2, is added, by using the same proportion calculation method.
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Count Begin End

17 0 5
64 5 9
3 9 10
12 10 30
44 30 350
43 350 800
21 800 1000
40 1000 1500
32 1500 5000
9 5000 10000

Count Begin End

95 0 28
95 29 866
95 866 1000

(a) Leaf nodes (b) Resulting global partition (p = 3)

Table 2: Leaf node values and resulting global partition in a tabular format once all 9 partitions
from Figure 7 are inserted

At leaf node [9,800)(50), the inserted partition's count is now down to 11, since 2 was taken by
node [5,9)(52).

Now, the second di�erence comes into play. Two new leaf nodes are created by splitting
[9,800)(50). The new leaves are [9,30) and [30,800). Leaf [9,30) receives all the remaining in-
serted partition's count of 11. The count of 50 from [9,800)(50) is now divvied up amongst the two

new leaf nodes. The left leaf node receives (30�9)

(800�9)
� 50 = 1 of the 50, while the right leaf node

receives 49. So the new left leaf node is now [9,30)(12), where 12 comes from 11 + 1, and the new
right leaf node shows as [30,800)(49). Again, see Figure 8b for the result. Table 2 shows the leaf
node values once all 9 local time partitions from Figure 7 are inserted.

Now that the coordinator has the global span leaf counts and the optimal number of leaf nodes
to be processed by each node, it can �gure out the global partition set. For each node (except the
last one), we continue adding the span leaf counts until it matches or surpasses the optimal number
of leaf nodes. When the sum is more than the optimal number, we break up the leaf node that
causes this sum to be greater than the optimal number, such that the leaf node count division is
done in proportion to the period duration.

As an example, refer to Table 2a. We know that the optimal number of periods per global
partition is 95. We add the leaf node counts from the top until we reach node [10,30)(12). The
sum at this point is 96, or 1 more than optimal. We break up [10,30)(12) into two leaf nodes such
that the �rst leaf node period should contain a count of 11, and the newly created leaf node should
contain only 1. Using the same idea of proportional count division, we can see that [10,28)(11)
and [28,30)(1) are the two new leaf nodes. So the �rst global time partition has the period [0,28)
and has a count of 95. The computation for the second global time partition starts at [28,30)(1).
Continuing on, the global time partitions for this example are shown in Table 2b.

It should be noted that this global timeline division algorithm may not be able to achieve perfect
load balance at all times. The reason is that the algorithm relies on approximate information of
local load distributions summed up in equi-depth histograms. When a local partition has 50 leaf
nodes in period [9,800), the global partition scheme assumes a uniform distribution within that
partition, while the actual leaf nodes distribution may be heavily skewed.

We expect better scalability for TDM+C as compared with the SAT, SM and PM algorithms,
provided that an input database is evenly distributed across the worker nodes. This is mainly
attributed to the e�cient computation of global timeline division (that can be implemented in

9



a single all-to-all collective communication) and the e�ectiveness of load balancing based on the
global timeline division.

3.5 Time Division Merge (TDM)

The �fth parallel algorithm, TDM, is identical to TDM+C, except that it has distributed result
placement rather than centralized result placement. This algorithm simply eliminates the �nal
coordinator results collection phase and completes with each worker node having a distinct piece
of the �nal aggregation tree. A distributed result is useful when the temporal aggregate operation
is a subquery in an enclosing distributed query. This allows further localized processing on the
individual node's aggregation sub-result in a distributed and possibly more e�cient manner.

3.6 Greedy Time Division Merge with Centralization (GTDM+C)

This algorithm is another variant of TDM+C, improving the performance by an intelligent global
partition assignment policy that attempts to minimize the number of leaves redistributed. For the
TDM variants, we assign global partitions to worker nodes in a naive manner. This assignment
policy may cause large data movements between worker nodes especially when the partitioning does
not match the way the global time divisions are calculated. For illustration, suppose there are one
data set, which is partitioned into p workers in two di�erent ways. In the �rst partitioning, each
time division i matches exactly the timeline of the data set of worker i. In the second partitioning,
time division i doesn't match the timeline of the data set of worker i. If we run TDM on these two
cases, the performance will be di�erent because of the assignment policy of TDM. There will be no
data movement in the �rst case, but large data movement in the second.

This algorithm assigns each timeline partition to a worker node that owns the maximum number
of leaves in corresponding partition. The performance gap between TDM and GTDM on the two
kinds of partitioning is shown in Figure 9.

3.7 Greedy Time Division Merge (GTDM)

GTDM is identical to GTDM+C except that it doesn't collect �nal results; in this way, it is
analogous to TDM.

4 Empirical Evaluation

For the purposes of our evaluation, we chose the temporal aggregate operation COUNT, though the
results should hold for all SQL aggregates. We performed a variety of performance evaluations on
the seven parallel algorithms presented. In all experiments, we measured wall clock time to �nish.
The aggregation trees for all experiments �t into main memory; no swapping of the aggregation
tree to disk [8] was necessary.

4.1 Experimental Environment

The experiments were conducted on a 64-node shared-nothing cluster of 200MHz Pentium ma-
chines, each with 128MB of main memory and two SCSI disks. Connecting the machines was
a 100Mbps switched Ethernet network, having a point-to-point bandwidth of 100Mbps and an
aggregate bandwidth of 2.4Gbps in all-to-all communication.

Each machine was booted with version 2.0.34 of the Linux kernel. For message passing between
the Pentium nodes, we used the LAM implementation of the MPI communication standard [2].
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With the LAM implementation, we observed an average communication latency of 790 microseconds
and an average transfer rate of about 5 Mbytes/second.

4.2 Experimental Parameters

We utilized synthetic data sets, for full control over various parameters, as well as a data set from
a production application, speci�cally the personnel records system at the University of Arizona [7].

In the synthetic data sets, each tuple had three attributes, an SSN attribute (9 bytes) which
was �lled with random values, a StartDate attribute (16 bytes), and an EndDate attribute (16
bytes). The SSN attribute refers to an entry in a hypothetic employee relation. The StartDate and
EndDate attributes were temporal instants which together construct a valid-time period. The data
generation method varied from one experiment to another and is described later.

The tuple size was �xed at 41 bytes/tuple. The tuple size was intentionally kept small and
unpadded so that the generated data sets could have more tuples before their size made them
di�cult to work with. The total database size for the scale-up experiment at 62 processing nodes
was 62 partitions � 65536 tuples � 41 bytes = 166 Mbytes.

NumProcessors depends on the type of performance measurement. Scale-up experiments used
2, 4, 8, 16, 32 and 62 processing nodes, while the variable reduction experiments used a �xed set of
32 nodes. Two of the 64 processors were experiencing hardware problems, and so were not used.

To see the e�ects of data partitioning on the performance of the temporal algorithms, the syn-
thetic tables were partitioned horizontally either by SSN or by StartDate. The SSN and StartDate
partitioning schemes attempted to model range partitioning based on temporal and non-temporal
attributes [4].

All experiments except the single speed-up test used a �xed database partition size of 65,536
tuples. This was done to facilitate cross-referencing of results between di�erent tests. Because of
this, the 32-node results of the scale-up experiments are directly comparable to the results of the
32-node data reduction experiment.

The total database size re
ects the total number of tuples across all the nodes participating in
a particular experiment run. For scale-up tests, the total database size increased with the number
of processing nodes.

Finally, the amount of data reduction is 100 minus the ratio between the number of resulting
leaves in the �nal aggregation tree and the original number of tuples in the data set,

Reduction(%) =

(
100 if U = 2 and A > 2
100(1� U=A) otherwise,

where U � 2 is the number of unique time stamps in input data set and A � 2 is the number
of all time stamps in input data set. A reduction of 100 percent means that a 100-tuple data set
produces 1 leaf in the �nal aggregation tree because all the tuples have identical StartDates and
EndDates. The higher the reduction is, the smaller the size of the aggregation tree is, which means
lower overhead in insertion.

This reduction can take place independently in each node (termed local reduction), or in the
coordinating node (termed global reduction), or both. The degree of local reduction will have
a large impact on the performance of many of the algorithms, because it a�ects the amount of
communication. We conjecture that the degree of global reduction will have a much smaller impact,
as it won't a�ect the local processing, nor communicating information either between processing
nodes or to the central coordinator. For that reason, the global reduction was �xed at 0% (that
is, no reduction), with only the local reduction varied. A local reduction of 0% was achieved by
ensuring that all the timestamps were unique.
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Parameters Actual Values

Partitioning SSN
Number of Processors (p) 2, 4, 8, 16, 32, 62

Tuple Size in bytes 41
Tuples per Processor 65,536

Total Number of Tuples p� 65; 536
Reduction 0 percent

Table 3: Experimental Parameters (Baseline Scale-Up, No Reduction, SSN Partitioning)

4.3 Synthetic Data sets

We set up our �rst experiment to compare the scale-up properties of the proposed algorithms on
a large data set with no reduction. We used the measurements taken from this experiment as a
baseline for later comparisons with subsequent experiments. Table 3 gives the parameters for this
particular experiment.

4.3.1 Baseline Scale-Up Performance: No Reduction/SSN Partitioning

For this experiment, a synthetic data set containing 2M tuples was generated. Each tuple had a
randomized SSN attribute and was associated with distinct periods of unit length (i.e., EndDate =
StartDate + 1). The data set was then sorted by SSN, then distributed to the processing nodes.
Since the SSN �elds were generated randomly, this had the e�ect of randomizing the tuples in terms
of StartDate and EndDate �elds.

To measure the scale-up performance of the proposed algorithms, a series of six runs having 2,
4, 8, 16, 32, and 62 nodes, respectively, were carried out. Note that since we �xed the size of the
data set on each node, increasing the number of processors meant increasing the total database
size. Timing results from this experiment are plotted in Figure 10 and lead us to the following
conclusions.

SM performs better than SAT. Intuitively, since the data set exhibits no reduction, both SM
and SAT send all periods from the worker nodes to the coordinator. The reason behind SM's
performance advantage comes from the computational parallelism provided by building local ag-
gregation trees on each worker node. Aside from potentially reducing the number of leaves passed
on to the coordinator, this process of building local trees sorts the periods in temporal order. The
SM coordinator's use of a merge-sort variant in compiling and constructing the �nal results is more
e�cient than SAT's strategy of having to insert each valid-time period into the �nal aggregation
tree.

SAT exhibits the worst scale-up performance. This result is not surprising, since the only ad-
vantage SAT has over the original sequential algorithm comes from parallelized I/O. This single
advantage does not make up for the additional communication overhead and the coordinator bot-
tleneck, as all the periods are sent to the coordinator which builds a single, but large, aggregation
tree.

The performance di�erence between TDM and TDM+C increases with the number of nodes.

For this observation, it is important to remember that TDM+C is simply TDM plus an additional
result-collection phase that sends all �nal leaves to the coordinator, one worker node at a time. The
performance di�erence increases with the number of nodes because of the non-reducible nature of
the data set and the fact that scale-up experiments work with more data as the number of nodes
increase.

13



0

5

10

15

20

25

30

35

2 4 8 16 32 62

T
im

e 
in

 S
ec

on
ds

Number of Worker Nodes

SAT
SM
PM

TDM+C
TDM

Figure 10: Experimental Results (Baseline Scale-Up, No Reduction, SSN Partitioning)

PM outperforms TDM+C up to 32 nodes. This is attributed to the multiple merge levels needed
by PM. A PM computation needs at least log2 p merge levels. On the other hand, the TDM+C
algorithm only merges local trees once but has three synchronization steps, as described in Section 3
(steps 4, 5 and 6 in Figure 5). With this analysis in mind, we expected PM to perform better or as
well as TDM+C for 2, 4, and 8 nodes, which have 1, 2, and 3 merge levels, respectively. We then
expected TDM+C to outperform PM as more nodes are added, but we were surprised to realize
that PM was still performing better than TDM+C up to 32 nodes.

To �nd out what was going on behind the scenes, we used the LAM XMPI package [2] to
visually track the progression of messages within the various TDM+C and PM runs. This led us to
the reason why TDM+C performed worse than PM for 2 to 32 nodes: TDM+C was slowed more
by increased waiting time due to load-imbalance (computation skew) as compared to PM.

4.3.2 Scale-Up Performance: 100% Reduction/SSN Partitioning

This experiment was designed to measure the e�ect of a signi�cant amount of reduction (100% in
this case) on the scale-up properties of the proposed algorithms. Table 4 gives the parameters for
this experiment. This experiment was modeled after the �rst one but with a synthetic data set
having 100% (local) reduction. This data set was generated by associating all tuples on each with
the same period (for complete local reduction); the SSN attribute values were random.

All algorithms bene�t from the 100% data reduction. Comparing results from the baseline
experiment with results from the current experiment leads us to this observation. Because of the
high degree of data reduction, the aggregation trees do not grow as large as in the �rst experiment.
With smaller trees, insertions of new periods take less time because there are fewer branches to
traverse before reaching the insertion points. Because all of the presented algorithms use aggregation
trees, they all experience increased performance.

On the other hand, PM and TDM+C both bene�t by the high degree of data reduction enough
to make them perform as well as TDM. Because TDM does not transfer local aggregation tree
leaves from one node to another, it does not encounter decreased communication costs due to high
data reduction. PM and TDM+C, on the other hand, extensively pass tree leaves across processing
nodes that communication costs are decreased enough to allow them to perform as well as TDM.
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Parameters Actual Values

Partitioning SSN

Number of Processors (p) 2, 4, 8, 16, 32

Tuple Size in bytes 41

Tuples per Processor 65,536

Total Number of Tuples p� 65; 536

Reduction 100 percent

Table 4: Experimental Parameters (Scale-Up, 100% Reduction, SSN Partitioning)
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Figure 11: Experimental Results (Scale-Up, 100% Reduction, SSN Partitioning)
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Parameters Actual Values

Partitioning SSN
Number of Processors (p) 32

Tuple Size in bytes 41
Tuples per Processor 65,536

Total Number of Tuples p� 65; 536
Reduction 0/10/40/60/80/100 percent

Table 5: Experimental Parameters (Scale-Up, Variable Reduction, SSN Partitioning)
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Figure 12: Experimental Results (Scale-Up, Variable Reduction, SSN Partitioning)

With 100% reduction, PM and TDM+C catch up to TDM. Aside from constructing smaller
aggregation trees, a high degree of data reduction decreases the number of aggregation tree leaves
exchanged between nodes. TDM does not send its leaves to a central node for result collection,
so it does not transfer as many leaves as its peers. Because of this, TDM is not improved by the
amount of data reduction as much as either PM or TDM+C which end up performing as well as
TDM.

4.3.3 Scale-Up Performance: Variable Reduction/SSN Partitioning

This experiment was designed to measure the e�ect of a varying amount of data reduction on
the scale-up properties of the proposed algorithms. Six data sets with di�erent reduction were
generated. The experiment setting is provided in Table 5 and timing results are plotted on Figure 12.
Note that the values plotted for a reduction of 100% correspond to those plotted in Figure 11 for 32
worker nodes and the values plotted for a reduction of 0% correspond to those plotted in Figure 10
for 32 nodes.

As the reduction increases, the performance improves. Since the reduction implies the amount
of tuples with same time stamp in data sets, as the reduction increases, so does the number of
identical tuples. Hence, the aggregation tree does not grow as much and performance improves.
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Parameters Actual Values

Partitioning Time
Number of Processors (p) 2, 4, 8, 16, 32, 62

Tuple Size in bytes 41
Tuples per Processor 65,536

Total Number of Tuples p� 65; 536
Reduction 0 percent

Table 6: Experimental Parameters (Scale-Up, No Reduction, Time Partitioning)
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Figure 13: Experimental Results (Scale-Up, No Reduction, Time Partitioning)

4.3.4 Scale-Up Performance: No Reduction/Time Partitioning

This experiment was designed to measure the e�ect of time partitioning on the scale-up properties
of the proposed algorithms. The data set for this experiment was generated in a manner similar
to the baseline experiment, but with StartDate rather than SSN partitioning. This was done by
sorting the data set by the StartDate attribute and then distributing it to the processing nodes. The
experimental settings are summarized in Table 6 and the timing results are provided in Figure 13.

Time Partitioning did not signi�cantly help any of the algorithms. We originally expected TDM
and TDM+C to bene�t from the time partitioning, but we also realized that for this to happen,
the partitioning must closely match the way the global time divisions are calculated. Because we
randomly assigned partitions to the nodes, TDM did not bene�t from the time partitioning. In
fact, it even performed a little bit poorer in all but the 16-node run (compare with Figure 10). We
attribute the small performance gaps to di�erences in how the partitioning strategies interacting
with the number of nodes made TDM redistribute mildly varying numbers of leaves across the runs.
Section 4.5 will show how much the greedy assignment policy can improve the performance of the
GTDM and GTDM+C algorithms. As for SM and PM, they exhibited no conclusive improvement
because they were simple enough to work without considering how tuples were distributed across
the various partitions.
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Parameters Actual Values

Partitioning Time
Number of Processors 32

Tuple Size in bytes 41
Tuples per Processor 65,536

Total Number of Tuples 32� 65; 536 = 2; 097; 152
Reduction 0/20/40/60/80/100 percent

Table 7: Experimental Parameters (Scale-Up, Variable Reduction, Time Partitioning)
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Figure 14: Experimental Results (Scale-Up, Variable Reduction, Time Partitioning)

4.3.5 Scale-Up Performance: Variable Reduction/Time Partition

For this experiment, six sets of partitions were generated. Each set had 32 partitions, one for each
of the 32 processing nodes participating in the six runs. The partitions were generated having 0,
20, 40, 60, 80 and 100 percent reduction. The settings for this experiment, provided in Table 7,
summarizes the parameters for this experiment. Timing results for this experiment are plotted on
Figure 14.

Increasing the amount of data reduction improved the performance of the proposed algorithms.

Like the second experiment, increasing the amount of reduction improved the performance of the
parallel algorithms. With higher degrees of data reduction, aggregation trees became increasingly
smaller with fewer leaves to exchange between nodes.

Varying data reduction doesn't a�ect TDM much. The low slope of TDM's performance curve in
Figure 14 as compared with Figure 12 shows us that it is the algorithm least a�ected by variations
in local reduction. The reason for this is that, among the presented algorithms, TDM exchanges
the least number of leaves as discussed when we observed that the performance for TDM+C and
PM caught up with TDM in the second experiment.
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Parameters Actual Values

Partitioning SSN
Number of Processors (p) 2, 4, 8, 16, 32

Tuple Size in bytes 93
Tuples per Processors 2,620

Total Number of Tuples p� 2; 620
Reduction 80.76 percent

Table 8: Experimental Parameters (Scale-Up, SSN Partitioning)
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Figure 15: Experimental Results (Scale-Up, SSN Partitioning)

4.4 A Real-World Data set

Tuples in the synthetic data sets used in the experiments to this point have timelines of unit length,
which is not realistic. For this next set of experiments, we applied the count aggregate to a salary
table drawn from the University of Arizona's personnel system, termed the UIS data set [7]. For
this data set, the tuple size, and database size were necessarily �xed, at 83,857 tuples and 7.8
Mbytes. For this reason, we used a maximum of 32 processors. Also, the UIS data set used in this
experiment has tuples with timelines of variable length.

4.4.1 Scale-Up Performance: SSN Partitioning

This experiment was designed to measure the scale-up properties of the proposed algorithms on the
UIS data set partitioned by SSN. The data set was sorted by SSN and distributed to the processing
nodes. A varying number of nodes was used, thus applying the aggregate over a varying database
size. The experimental parameters for this are shown in Table 8, and the results are plotted in
Figure 15.

All the proposed algorithms exhibit similar behavior with the real data set as with synthetic data

set. This experiment shows that the relative order of the algorithms applied to the real data set
is consistent with the results observed previously (compare the relative positions at 32 nodes with
Figure 12 at 80% reduction.)
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Parameters Actual Values

Partitioning SSN
Number of Processors 2, 4, 8, 16, 32

Tuple Size in bytes 93
Tuples per Processor 41,928/20,964/10,482/5,241/2,620

Total Number of Tuples 83,857
Reduction 97.26/95.26/91.94/87.04/80.51

Table 9: Experimental Parameters (Speed-Up, SSN Partitioning)
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Figure 16: Experimental Results (Speed-Up, SSN Partitioning)

4.4.2 Speed-Up Performance: SSN Partitioning

The data set was sorted by SSN then distributed to a varying number of nodes participating
in the experiment. Unlike the scale-up experiment, data size was �xed here. The experimental
parameters for this are shown in Table 9. The local reduction falls as fewer tuples are allocated to
each processor, because the chance that the period of validity of a tuple will match that of another
tuple falls. Timing results from this experiment are plotted in Figure 16.

TDM has better speedup property compared with other algorithms. In fact, the other algorithms
actually slowed down as processors were added. Theoretically speaking, as we increase the number
of processing nodes, the performance should be improved, because the data size is �xed and pro-
cessing power increases. However, if there are many synchronizations among the processing nodes,
then we may not see noticeable improvement. In order to observe such an improvement, a data
set large enough to hide the synchronization overhead is necessary. As we can see in the graph,
however, TDM exhibits better speedup property due to its high scalability, but still su�ered with
more than 16 nodes.

4.4.3 Scale-Up Performance: Time Partitioning

The experimental parameters for this are shown in Table 10, with the results given in Figure 17.
We can observe analogous results to the same experiment on data set partitioned by SSN (cf. Fig-
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Parameters Actual Values

Partitioning Time
Number of Processors (p) 2, 4, 8, 16, 32

Tuple Size in bytes 93
Tuples per Processor 2,620

Total Number of Tuples p� 2; 620
Reduction 80.76 percent

Table 10: Experimental Parameters (Scale-Up, Time Partitioning)
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Figure 17: Experimental Results (Scale-Up, Time Partitioning)
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Parameters Actual Values

Partitioning Time

Number of Processors 2, 4, 8, 16, 32

Tuple Size in bytes 93

Tuples per Processor 41,928/20,964/10,482/5,241/2,620

Total Number of Tuples 83,857

Reduction 97.29/95.32/92.08/87.24/80.76 percent

Table 11: Experimental Parameters (Speed-Up, Time Partitioning)
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Figure 18: Experimental Results (Speed-Up, Time Partitioning)

ure 15). Just like the results of several experiments on synthetic data sets partitioned by time,
these experiments with realistic data continue to show that time partitioning doesn't greatly a�ect
the scale-up of the proposed algorithms.

4.4.4 Speed-Up Performance: Time Partitioning

The experimental parameters for this are shown in Table 11 and results from this experiment are
plotted in Figure 18. The experiment shows a similar result to that of the same experiment on SSN
partitioned data set (cf. Figure 16).

4.5 Performance comparison between GTDM and TDM

In this section, we compare GTDM and TDM, and their centralized counterparts, by performing
the same experiments as those done previously.

4.5.1 Scale-Up Performance: No Reduction/SSN Partitioning/Large Data set

GTDM+C performs slightly better than TDM+C when running on SSN partitioned data. When
data is partitioned by randomly generated SSN, the timeline covered by each worker may overlap
in many places. So, even if we apply the greedy assignment policy, we can't reduce data movements
signi�cantly. However, as shown in Figure 19(a), we can observe slight performance improvement
even in this case because of minimized network tra�c caused by the greedy assignment policy.
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Figure 19: Experimental Results (Synthetic Data set with SSN Partitioning)
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Figure 20: Experimental Results (Synthetic Data set with Variable Reduction)

4.5.2 Scale-Up Performance: 100% Reduction/SSN Partitioning/Large Data set

GTDM also bene�ts from 100% data reduction. Since number of leaves in the aggregation tree in
each worker is small because of 100% reduction, GTDM also takes advantage of this (Figure 19(b)).

4.5.3 Scale-Up Performance: Variable Reduction/SSN Partitioning/Large Data set

As the reduction increases, the performance improves. Since the reduction implies the amount of
tuples with same time stamp in data sets, as the reduction increases, so does the number of identical
tuples (Figure 20).

4.5.4 Scale-Up Performance: No Reduction/Time Partitioning/Large Data set

GTDM can outperform TDM when the data set is Time partitioned. The data set used in this
experiment is partitioned by time and there is no reduction in it. So, there is no overlaps among
timelines of covered by each worker. Since TDM assigned each partition of the data set to each
worker in a random manner, the timeline of worker i is not necessarily equal to the time division
i of global partition. Consequently, a signi�cant amount of data movements among workers were
required in TDM. In GTDM, however, data movements could be minimized because of the greedy
assignment policy (Figure 21(a)).

4.5.5 Scale-Up Performance: Variable Reduction/Time Partition/Large Data set

Varying data reduction doesn't signi�cantly a�ect GTDM. The low slope of GTDM's performance
curve in Figure 21(b) shows us that it is the algorithm less a�ected by variations in local reduction.

4.5.6 Scale-Up Performance: SSN Partitioning/Real World Data set

GTDM outperforms TDM with the real data set. Since it is more probable that data movements
among workers happen in real data set than in synthetic data set, GTDM's greedy assignment
policy will play an important role in reducing such data movements. GTDM performed better
than TDM (Figure 22(a)).
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Figure 21: Experimental Results (Synthetic Data set with Time Partitioning)
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Figure 22: Experimental Results (Real Data set with SSN Partitioning)
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Figure 23: Experimental Results (Real Data set with Time Partitioning)

4.5.7 Speed-Up Performance: SSN Partitioning/Real World Data set

TDM and GTDM show similar speedup property with the real data set. GTDM also has better
speedup property compared with other proposed algorithms. However, since we used a relatively
small-sized data set, we couldn't see any big di�erence in speedup between GTDM and TDM
(Figure 22(b)).

4.5.8 Scale-Up Performance: Time Partitioning/Real World Data set

GTDM outperforms TDM with the real data set. As with the Time partitioned synthetic data set,
GTDM exhibits substantial improvement over TDM for the Time partitioned real world data set,
due to minimized data movements.
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Data Node Distributed Centralized
Reduction Count Results Results

HI Small GTDM GTDM+C

Large GTDM PM

LOW Small GTDM PM

Large GTDM GTDM+C

Table 12: Matrix of Recommendations

4.5.9 Speed-Up Performance: Time Partitioning/Real World Data set

The experiment (Figure 23(b)) shows similar results to that of the same experiment on the SSN
partitioned data set (cf. Figure 16).

4.6 Summary

The empirical observations con�rm that data set partitioning, result placement, data reduction
e�ected by the aggregation, and the number of processing nodes all a�ect the proposed algorithms,
in di�erent ways. SAT and SM, as seen in Figures 10, 11, and 13, were a�ected most by the number
of processing nodes. Figure 14 shows that SM, SAT, PM and TDM+C were signi�cantly slowed by
low data reduction while TDM was the least a�ected. Also, Figures 10, 11, and 13 show that TDM
has the best performance under all situations, but only if distributed result placement is desired.
On the other hand, PM has centralized result placement but is superior to TDM+C only in two
small areas of the parameter space: high reduction and large con�gurations (Figure 11) and low
reduction and small con�gurations (Figures 10 and 13). Data set partitioning only a�ected the
TDM variants, and even then, not substantially (compare Figure 10 with Figure 6). These results
parallel those for the real-world data set (Figures 15{18).

GTDM (and GTDM+C) has virtually the same performance as TDM (and TDM+C) for SSN
partitioning (Figure 19). For time partitioning, GTDM di�ers from TDM only with low reduction.
GTDM+C di�ers from TDM+C only with low reduction and small to medium con�gurations. In
all cases, the greedy variant was superior. GTDM was not sensitive to the data partitioning.

5 Conclusions

Temporal aggregate computations are important operations in a temporal database system. Tradi-
tionally, this has been an expensive operation in sequential database systems, which don't, as yet,
use the aggregation tree. Therefore, the question arises as to whether parallelism is a cost-e�ective
approach for improving the e�ciency of temporal aggregate computations.

The main contribution of this paper is a collection of novel algorithms that parallelize the
computation of temporal aggregates. We ran these algorithms through a series of experiments to
observe how di�erent properties a�ected their performance. From these observations, we provide
the following conclusions which should help in the design of a parallel database system's query
optimizer that selects the right temporal algorithm for a particular situation. Our recommendations
are summarized in the matrix in Table 12.

1. Use GTDM whenever distributed result placement su�ces, regardless of any other param-
eter. (This only applies when the manner in which the result is distributed is appropriate.
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Otherwise, it is probably best to go with a centralized result, which can then be redistributed
as desired.) As discussed in Section 3, distributed result placement is useful for distributed
sub-queries which are parts of larger distributed queries. Also, distributed result placement
su�ces when the aggregation results are not required for the entire time line (e.g., �nding
the (time-varying) salaries of all employees for the last year).

2. For centralized result placement, use PM only when there is a high degree of data reduc-
tion and large con�guration or when there is a relatively low data reduction and a small
con�guration.

3. Otherwise, for centralized result placement, use GTDM+C.

If one were to implement only one algorithm, our recommendation would be to choose GTDM, with
an optional collection step. In the few cases where this was less e�ective than PM, the di�erence
was generally less than 10%.

Our experimental observations lead us to the following issues for future research.

1. Impact of skew. In a temporal aggregate query with tuple placement and/or selection skew,
some worker nodes will complete its local aggregation tree faster than other nodes. We expect
PM to outperform TDM+C in queries with heavy tuple placement skew and/or selection
skew [16]. However, the speci�c impact of skew should be investigated.

2. Load balancing. Uneven computing time on the processing nodes as caused by data set
characteristics and system load make nodes unnecessarily wait idly for more loaded nodes.
Strategies such as the opportunistic merging in PM for balancing the loads among the nodes
would help reduce idle-waiting and improve the performance of the other algorithms. Several
of the algorithms used equi-depth histograms to attempt to estimate the workload at each
processing node; perhaps this estimate can be improved.

3. Disk-paging strategies. Our proposed algorithms rely solely on main memory for storing
runtime information, which include merged lists, aggregation trees and, message queues. A
disk-paging strategy that is aware of how the parallel algorithms work [8] would allow the
algorithms to handle larger data set sizes.

4. Deeper sensitivity analysis to other factors. We have studied the e�ects of di�erent parameters
on the proposed algorithms. Other factors such as long-lived tuples and data distribution may
a�ect the performance of the algorithms.

5. Impact of grouping. We have focused here on scalar aggregates, which return a single result
at each point in time. It would be interesting to extend these approaches to accommodate
grouping, such as \the (time-varying) maximum salary per department."
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