
Modi�cation Semantics in Now�Relative
Databases

Kristian Torp Christian S� Jensen Richard T� Snodgrass

September ��� ����

TR���

A TimeCenter Technical Report

Copyright c� ���� Kristian Torp Christian S� Jensen Richard
T� Snodgrass� All rights reserved�

Author�s� Kristian Torp Christian S� Jensen Richard T� Snodgrass

Publication History First version September ��� ����

TIMECENTER Participants

Aalborg University� Denmark

Christian S� Jensen �codirector�� Michael H� B�ohlen� Renato Busatto� Curtis E� Dyreson�

Heidi Gregersen� Dieter Pfoser� Simonas �Saltenis� Janne Skyt� Giedrius Slivinskas�
Kristian Torp

University of Arizona� USA

Richard T� Snodgrass �codirector�� Bongki Moon� Sudha Ram

Individual participants

Anindya Datta� Georgia Institute of Technology� USA
Kwang W� Nam� Chungbuk National University� Korea
Mario A� Nascimento� State University of Campinas and EMBRAPA� Brazil
Keun H� Ryu� Chungbuk National University� Korea
Michael D� Soo� University of South Florida� USA
Andreas Steiner� TimeConsult� Switzerland
Vassilis Tsotras� University of California� Riverside� USA
Jef Wijsen� Vrije Universiteit Brussel� Belgium

For additional information� see The TimeCenter Homepage	
URL	 �http���www�cs�auc�dk�TimeCenter�

Any software made available via TimeCenter is provided �as is� and without any express or im�
plied warranties� including� without limitation� the implied warranty of merchantability and �tness
for a particular purpose�

The TimeCenter icon on the cover combines two
arrows�� These
arrows� are letters in the
so�called Rune alphabet used one millennium ago by the Vikings� as well as by their precedessors
and successors� The Rune alphabet �second phase� has �
 letters� all of which have angular shapes
and lack horizontal lines because the primary storage medium was wood� Runes may also be found
on jewelry� tools� and weapons and were perceived by many as having magic� hidden powers�

The two Rune arrows in the icon denote
T� and
C�� respectively�

Most real�world databases record time�varying information� In such databases� the notion of

�the current time�� or NOW � occurs naturally and prominently� For example� when capturing

the past states of a relation using begin and end time attributes� tuples that are part of the

current state have some past time as their begin time and NOW as their end time� While the

semantics of such variable databases has been described in detail and is well understood� the

modi�cation of variable databases remains unexplored�

This paper de�nes the semantics of modi�cations involving the variable NOW � More specif�

ically� the problems with modi�cations in the presence of NOW are explored� illustrating that

the main problems are with modi�cations and tuples that reach into the future� The paper de�

�nes the semantics of modi�cations�including insertions� deletions� and updates�of databases

without NOW � with NOW � and with values of the type NOW � �� where � is a non�variable

time duration� To accommodate these semantics� three new timestamp values are introduced�

An approximate semantics that does not rely on new timestamp values is also provided� Finally�

implementation is explored�

� Introduction

Most real�world database applications record time�varying information� It is typical to represent
the time to which the fact�s� recorded by a tuple in a relational database apply by a pair of time�
valued attributes� which then encode a time interval� Many of the tuples in a database typically
record facts that apply to a time interval that stretches from some past time to the current time�
prompting a need for a time value that denotes the
current time� in the to�time attribute of these
tuples�

While SQL��� ���� includes the datetime value functions CURRENT DATE� CURRENT TIME� and
CURRENT TIMESTAMP� these functions cannot be stored directly as values of attributes in relations�
In the absence of a
current time� value in SQL�s DATE� TIME� and TIMESTAMP domains or in the
corresponding domains o�ered by database vendors� common ad�hoc solutions are to use either the
null value or the maximum value of the time domain for the value of the to�time attribute�

Noting the de�ciencies of these solutions� the variable NOW that evaluates to the current time
has been introduced as a value of an attribute that may be stored in the database� The semantics
of databases including this variable have been examined in some detail ���� ��� �
� ���� While these
papers have considered NOW in queries� they provide few details on the modi�cation of variable
databases�

In the present paper� we de�ne the semantics of modi�cations of variable databases containing
NOW and NOW ��� and provide means of supporting these semantics� In addition� we show how
modi�cations under this semantics may be implemented within a DBMS and in a user�application�
An approximate semantics that is simpler to implement� but carries with it lower �delity� is also
provided�

The presentation is organized as follows� We �rst give a simple example to indicate the subtleties
and pitfalls inherent in modi�cations on databases containing NOW as well as of the practical im�
portance of such modi�cations� In Section �� the semantics of modi�cations of databases without
NOW is de�ned� Section � de�nes the semantics of modi�cations of databases with NOW as
a consistent extension� Section � extends the approach to also accommodate values of the form
NOW ��� thereby a�ording a general solution� with Section
 providing details on how to imple�
ment the semantics de�ned in the two previous sections� We then provide a simpli�ed� approximate
semantics of modi�cations of variable databases that is easier to implement� in Section �� Related
work is covered in Section �� and Section � concludes the paper�

�

We motivate the problem addressed in this paper with an example that illustrates the utility
of NOW in capturing time�varying information in the database� but also demonstrates that the
semantics of modi�cations of tuples timestamped with NOW is unclear�

When modifying tuples timestamped with intervals not including NOW � the interval a�ected
by the modi�cation is the intersection of the interval associated with the tuple and the interval
speci�ed in the modi�cation ���� To exemplify� in Figure � we have stored the tuple hJoe� Shoe�
�������i� and we want to update all persons in the Shoe department to be in the Toy department
in the interval �������� The result is that Joe will be with the Toy department in the interval
�������� �For simplicity� we assume that all dates are in January during some year� and we utilize
closed�open intervals��

5 10 15 20

Update

Base

Result

25 Time

<Joe, Shoe>

<Joe, Toy>

<Joe, Toy><Joe, Shoe>

5 10 15 20

Update

Base

Result

25 Time

<Joe, Shoe>

<Joe, Toy>

<Joe, Toy><Joe, Shoe>

A B

Figure �	 �A� Updating a Fact Without NOW � �B� Updating a Fact With NOW

When allowing intervals to include the variable NOW � it is still desirable that this intersection
semantics be maintained� However� there are problems rede�ning the intersection operator� as
illustrated in Figure �B� where Joe is with the Shoe department in the interval ���NOW �� �We
denote NOW with ����� We have also indicated an update statement that� at the ��th of January�
updates Joe to be with the Toy department in the interval ��������

We want to determine the outcome of the update� Before the �th of January� Joe is not in
the database� In the interval ������� Joe was with the Shoe department� and this interval is not
a�ected by the update� so Joe remains there� In the interval �������� Joe was also with the Shoe
department� and the department value should be updated for this interval� The semantics of the
update becomes unclear for the interval �������� and it is also unclear what happens after the ��th
of January� This is indicated by the dashed line in Figure �B�

If we use a pessimistic semantics� Joe could be �red tomorrow� and so we cannot update Joe
for the latter interval� Further� with the pessimistic approach Joe is not associated with the Shoe
department after the ��th of January either� We can also apply an optimistic semantics and
assume that Joe is not going to be �red in the near future� We then update Joe to be with the
Toy department for the interval �������� and associate Joe with the Shoe department again after
the ��th of January� A third� intermediate approach would be to bind the value of NOW to the
current time and then execute the update� with the result that Joe�s department is changed over
the interval �������� These three possible outcomes are shown in Table ��

Each result re�ects its underlying assumptions� With the pessimistic semantics in Table �A�
we assume that Joe is �red tomorrow� With the optimistic semantics in Table �B� we assume Joe
is with the company after the ��th of January� Finally� in Table �C� we assume that NOW is the
current time� i�e�� the ��th of January�

� Modi�cations of Ground Databases

As an outset� we de�ne the semantics of modi�cations of databases without the variable NOW �
termed ground databases because they are variable�free� This semantics is used to identify the

�

p g

Joe Shoe � ��

Joe Toy �� ��

Joe Shoe � ��

Joe Toy �� ��

Joe Shoe �� NOW

A B

Name Dept� V�Begin V�End

Joe Shoe � ��

Joe Toy �� ��

Joe Shoe �� NOW

C

Table �	 �A� Optimistic� �B� Pessimistic� and �C� Intermediate Semantics of the Update in Fig�
ure �B

extensions needed to de�ne modi�cations of databases with the variable NOW � termed variable
databases ����� Later we compare the semantics of modi�cations on ground and variable databases�
Most existing temporal data models support intervals without NOW in both queries and modi��
cations� see� e�g�� �
� �
��

We focus on the valid�time aspect of the tuples� i�e�� when the information recorded by the tuples
is true in the miniworld ����� The transaction�time aspect� when tuples are current in the database�
is a simpler special case because transaction times are maintained by the database management
system itself and do not extend into the future� The subtleties examined here thus concern only
valid time�

��� Preliminaries

We �rst de�ne the union of valid�time relations and the interval di�erence and intersection opera�
tors� which are used in the de�nitions of modi�cations�

We utilize the conventional relational model� but partition the attributes into so�called explicit
attributes and two datetime attributes� V�Begin and V�End� denoting an interval in valid time� Let
rvt and svt be two union�compatible valid�time relations with schema hA�� � � � � An�V�Begin�V�Endi�
where the Ai are the explicit attributes and VT � �V�Begin�V�End� record the valid time� The
union operator ��vt� for valid�time relations is de�ned as follows�

rvt �vt svt
�
� ftjt � rvt � t � svtg

The valid�time union operator is identical to the conventional relational algebra union operator
for ground relations� except that the arguments can be valid�time relations� with their valid�time
attribute just carried along�

We assume a time domain T that is isomorphic to a �nite subset of the natural numbers� with
the normal total order� �� We denote the minimum and maximum values of the time domain
beginning and forever � respectively� The meaning of a closed�open interval is de�ned as follows�
where a and b are in T �

�a� b�
�
�

�
ftjt � a � t � bg if a � b

� otherwise

If the interval start value is smaller than the interval end value� the interval consists of the values
between a and b� including a� Otherwise� the interval denotes the empty set�

�

�a� b� � �c� d�
�
�

�
f�a� c�� �d� b�g if a � d � c � b

f�a� b�g otherwise

The �rst line applies when the argument intervals overlap� Zero� one� or two non�empty intervals
may be returned� The second line returns the interval �a�b� unchanged if this interval is before or
after interval �c�d�� The three drawings in Figure � illustrate the interval di�erence operator�

d b

(1) (2) (3)

c d

a b

c d

ca d b

a ba b

c d

(empty interval)Result:

Figure �	 Intervals Returned by the Di�erence Operator

The intersection operator of intervals �	� is de�ned as follows� where min and max are the
conventional minimum and maximum functions returning the smallest and largest argument� re�
spectively�

�a� b� 	 �c� d�
�
� �max�a� c��min�b� d��

Two comments are in order� First� intersection is not strictly needed� because �a� b� 	 �c� d� is
equal to �a� b�� ��a� b�� �c� d��� However� interval intersection is convenient in the later de�nitions�
Second� the union of intervals can also be de�ned in terms of the min and max functions on the
end points� but the union of intervals is not needed in this paper�

��� Semantics of Temporal Modi�cations on Ground Databases

We de�ne insertion� deletion� and update in turn� Insertion into a valid�time relation rvt is de�ned
as follows� where A is used an abbreviation for A�� � � � � An and �vts�vte� is the valid�time interval
to be associated with the inserted tuples�

VALIDTIME PERIOD �vts�vte� INSERT INTO rvt VALUES �A�
�
�

rvt
 rvt �
vt f�A� �vts� vte��g

A tuple is added to the relation� We associate with the tuple the valid�time interval �vts�vte�
speci�ed in the insert statement� If such an interval is not speci�ed� an interval of now to forever
is used� to e�ect temporal upward compatibility ����

Deletion from a valid�time relation rvt is de�ned as next� Again� A abbreviates A�� � � � � An�

VALIDTIME PERIOD �vts�vte� DELETE FROM rvt WHERE cond
�
�

rvt
 ftjt � rvt��cond�t��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� � t�VT� � �s�VT�� �vts� vte�� � t�VT�
� ��g

The �rst line ensures that tuples in rvt not satisfying condition cond are included in the result� In
the second line� tuples satisfying the condition have their time interval reduced by the part that

�

a tuple satis�es the condition� but does not overlap the interval speci�ed in the deletion� the tuple
is included in the result unchanged�

In the de�nition of updates that follows� we assume for brevity that all explicit attributes
change values� This simpli�cation does not restrict the generality of the results of this paper� Up�
dating a valid�time relation rvt is de�ned as follows� where A 	 v abbreviates A� 	 v�� � � � � An 	 vn�

VALIDTIME PERIOD �vts�vte� UPDATE rvt SET A 	 v WHERE cond
�
�

rvt
 ftjt � rvt��cond�t��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� � t�VT� � �s�VT�� �vts� vte�� � t�VT�
� ��g �vt

ftj�s � rvt�cond�s� � t�A� � v � t�VT� � s�VT� 	 �vts� vte� � t�VT�
� ��g

The �rst and second lines are identical to the two lines of the delete statement� The third line adds
tuples with the updated attribute values to the result� The valid�time intervals associated with these
updated tuples are the �non�empty� intersections of the valid�time interval currently associated with
each corresponding argument tuple and the interval speci�ed in the update statement�

��� Examples of Modi�cations on Ground Databases

This section exempli�es the temporal modi�cation statements on ground databases de�ned above�
First� an example of a delete is given� Assume the database contains the tuple hJoe� Shoe� ��� ���i
and that we want to delete Joe in the interval ���� ���� This can be written as follows�

VALIDTIME PERIOD �
��
�� DELETE FROM Emp WHERE Name 	
Joe

The result of the delete is as follows�

� �vt fhJoe�Shoe� f��� ��� � ���� ���gig
� fhJoe�Shoe� ��� ���i� hJoe�Shoe� ���� ���ig

From the single tuple stored in the relation� we remove Joe in the interval ���� ���� which results in
two tuples�

Next� assume again that the database contains the tuple hJoe� Shoe� ��� ���i and that we want
to update Joe to be with the Toy department in the interval ���� ���� This can be written as follows�

VALIDTIME PERIOD �
��
�� UPDATE Emp SET Dept 	
Toy
 WHERE Name 	
Joe

The result of the update is as follows�

� �vt fhJoe�Shoe� f��� ��� � ���� ���gig �vt fhJoe�Toy� f��� ��� 	 ���� ���gig
� fhJoe�Shoe� ��� ���i� hJoe�Toy� ���� ���ig

From the single tuple stored in the relation� we remove Joe in the interval ���� ���� This results
in the tuple hJoe� Shoe� ��� ���i� Further� we update Joe to be with the Toy department in the
intersection of the intervals ��� ��� and ���� ���� so that Joe is with the Shoe department in the
interval ���� ����

�

Ground databases only evolve through the explicit application of user�supplied modi�cation state�
ments� The presence of variable NOW in its tuples permits a database to evolve purely through
the passage of time�

In this section we formally de�ne the semantics of modi�cations of the variable databases that
result from introducing NOW � We �rst list our requirements to the semantics of modi�cations
in the presence of NOW � This is followed by an example that illustrates the desired semantics�
Two necessary extensions are identi�ed and de�ned� namely �a� the extension of the domain of
time values and �b� the extension of the conventional interval di�erence and intersection operators
to handle the extended time domain� Finally� the semantics of modi�cations involving NOW are
de�ned and exempli�ed�

��� The Use of NOW

The use of NOW as an interval end�point helps us to better record information that remains true
from some past time until the increasing current time� With NOW available� we avoid solutions
such as using the maximum value in the time domain as a substitute interval�end time� which� using
our example database� results in the database indicating that Joe is with the Shoe department for
more than ���� years �assuming the standard DATE type� with a maximum value of ������������

In order to accommodate the variable NOW in the database� special support is needed in
both queries and modi�cations� The meaning of databases with NOW and the querying of such
databases has been covered extensively elsewhere ����� However� the impact on modi�cations of
the presence of NOW in the database as well as in the modi�cation statements themselves has not
been covered� even though many temporal data models� e�g�� ���
� �� �� ��� ��� �
� ���� assume that
NOW can be stored in the database�

Before de�ning the semantics of modi�cations on variable databases� we specify three require�
ments to the accommodation of NOW �

Requirement R� The conventional insert� delete� and update statements should be extended to
permit constant intervals� i�e�� �a� b�� as well as now�relative intervals� i�e�� �a�NOW � and
�NOW � b�� as user input�

For example� the last statement in Section ��� used the ground interval ���� ���� it should be
possible to use a now�relative interval in its place�

Requirement R� The semantics of modi�cations on variable databases should reduce to the
semantics of modi�cations on conventional� ground databases� The meaning of a variable�
database modi�cation should be the same as the meaning of a ground�database modi�cation
in the case that the variable database in fact contains no occurrences of NOW �

Requirement R� The database that results from the modi�cations to be de�ned on the variable
database should be representable in the common �rst�normal�form format that employs two
timestamp columns�

The following two extensions are needed to de�ne the semantics of variable�database modi�ca�
tions that meet these requirements�

� The time domain from which the interval end�point values are drawn must be extended to
include NOW and other values� as we shall see�

� The conventional interval di�erence and intersect operators that are used in the de�nition of
the modi�cation semantics must be extended to accommodate the new kinds of end values�

involving NOW �

��� Motivating Example

To convey the intuition for what the semantics of modi�cations involving NOW should be� we
show the desired results of sample updates with and without NOW � We use the two updates in
Figure �� illustrating them using extensionalization diagrams ����� These diagrams are very useful
for illustrating intervals containing NOW � The x�axis denotes reference time� the time when an
interval is observed� The y�axis denotes valid time� The regions in these diagrams then convey
the �possibly� time�varying meanings� or extensionalizations� of intervals in tuples stored in the
database�

For intervals without NOW � extensionalization diagrams convert the illustration of an interval
from a line� as shown in Figure �� to a rectangle� as shown in Figure �A� Figures �A and B illustrate
an update not involving NOW � The region bounded by the solid line representents the tuple stored
in the database� and the region bounded by the dashed line represents the modi�cation� The solid
rectangle in Figure �A indicates that Joe is with the Shoe department in the interval ������� This
information was stored at time � and extends to the right� The dashed rectangle indicates that at
time ��� we update Joe to be with the Toy department in the interval �������� The result is shown
in Figure �B� which shows that Joe is now with the Shoe department in the interval ������ and with
the Toy department in the interval �������� We cannot update Joe for the interval ������� because
there is no information to update in this interval� The update only a�ects the overlap of the two
rectangles�

20

15

10

5

5 10 15 20

VT

Time

Shoe

Toy

20

15

10

5

5 10 15 20

VT

Time

Shoe

Toy

A B

20

15

10

5

5 10 15 20

VT

Time

Shoe

Toy

20

15

10

5

5 10 15 20

VT

Time

Shoe

Shoe

Toy

C D

Figure �	 The Results of Updates Without and With NOW

In Figure �C� we show an update involving NOW � The database contains the tuple hJoe�
Shoe� ���NOW �i� indicated by the solid triangle� The end time of NOW makes the top of the

�

interval is ������ and so on� Again� we update Joe to be with the Toy department in the interval
��������

Figure �D shows the desired result of the update where� as for updates without NOW � we update
only the overlap of the region speci�ed in the update and the region speci�ed by the tuple �as shown
in Figure �C�� By updating exactly the overlap� we avoid basing the semantics on assumptions such
as the optimistic or pessimistic assumptions discussed in the introduction�

Having motivated the desired semantics� the next task is to precisely de�ne the semantics and to
illustrate how these semantics can be accommodated with two new types of time�attribute values�

��� Road Map for Accommodating the New Semantics

The remainder of this section de�nes the semantics of modi�cations involving NOW � The goal is
to de�ne a semantics consistent with the semantics for ground databases de�ned in Section ��� and
to reuse the template used there�

To accommodate intervals containing NOW � as demonstrated in Section ���� we have to extend
the interval intersection �	� and di�erence ��� operators used in the de�nitions of delete and update
in Section ���� As the �rst step in doing so� we must determine the set of values for interval end�
points that we have to store in the database and that the generalized operators must then contend
with� For example� we must determine what interval�end points are needed to accurately store the
intersection of two intervals such as ���NOW � and ������� in the database �see the hJoe� Toyi tuple
in Figure �D��

We extend the domain of interval end�points with two additional types� each of which can be
e�ciently represented �we term such intervals normal form intervals�� We then proceed to de�ne
the extensions of the interval intersection and di�erence operators in Section ��
 and use these new
operators for de�ning the semantics of modi�cations involving NOW in Section ����

��� Auxiliary Functions

So far� we have employed the time domain T that is isomorphic to a subset of the natural numbers
and contains only ground values� We proceed to introduce time domain T� � T � NOW that in�
cludes the variable NOW � While including the variable NOW is convenient for end�users� we need
to provide a semantics for variable databases� We do so by means of a mapping from a variable
database to a fully ground data model� which does not include such variables� A theoretical frame�
work for providing a logical interpretation� or
meaning�� of a variable database� i�e�� a
translation�
from variable to extensional level� may be based on a homomorphic mapping from variable�level
databases to extensional�level databases ���� This mapping is termed an extensionalization� and is
denoted �� ���

The extensionalization of an element of the time domain at a time c �
c� for chronon� denotes
its value on the y�axis of the extensionalization diagram� Returning to Figure �D� the extensional�
ization of the start time for hJoe� Shoei is �� for any time c � �� The extensionalization of the stop
time of hJoe� Shoei is more interesting	 at c � � it is �� at c � ��� ��� at c � ��� it is back to ���

With the domain of a being T�� we de�ne the extensionalization of a time value at time c as
follows�

��a��c
�
�

�
c if a � NOW
a otherwise

As examples� �����
�
� �� �����

��
� �� and ��NOW ��

��
� ��� Note that the extensionalization is always

an element of T � and is thus isomorphic to �and can be represented by� a natural number�

�

cations for variable databases� Therefore� we need generalized minimum and maximum functions�
minv and maxv� respectively� that accommodate the variable NOW �

Let the domain of a and b be de�ned recursively as T� � T�� fminv�a� b�g � fmaxv�a� b�g�
where a and b are elements of T�� T� is a very general domain� consisting of natural numbers and
expressions containing arbitrarily nested applications of minv and maxv� Examples of elements of
T� include �� minv��� ���� and minv�
�maxv���NOW ��� In the next section we will restrict this
domain considerably� However� the exposition is smoother if we start with this general domain�

Elements of T� involving NOW are particularly interesting� We show three such examples in
Figure � using extensionalization diagrams� The examples show that the minv function �A� gives
the time value an upper bound� that the maxv function �C� gives the time value a lower bound�
and that the nesting of a maxv function in a minv function �B� gives the time value both a lower
and an upper bound� Notice that the sloping lines follow the diagonal�

2

4

6

8

2 4 6 8 10

10

Time

A

B

C

VT

Figure �	 �A� minv���NOW �� �B� minv�
�maxv���NOW ��� and �C� maxv���NOW �

We de�ne the meaning of the minv�a� b� and maxv�a� b� functions via their extensionalizations�

��minv�a� b���c
�
� min���a��c� ��b��c�

��maxv�a� b���c
�
� max���a��c� ��b��c�

The minv and maxv functions reduce to their conventional counter�part when the arguments
are from the domain T �

minv�a� b� � min�a� b� if a� b � T

maxv�a� b� � max�a� b� if a� b � T

Note that the extensionalization of each element of T� is also a natural number�
The extensionalization of an interval �a�b� is de�ned as follows�

���a� b���c
�
� ���a��c� ��b��c�

��� Interval Types for Modi�cations Involving NOW

We use a domain of interval end�points given by Tf � T � fminv�a�NOW �� maxv�a�NOW �g�
where a � T � which restricts domain T� from the previous section� It turns out that this domain
of values is su�cient for representing the results of the modi�cations that we are about to de�ne

�

2

4

6

8

2 4 6 8

10

Time10

[3,7)

2

4

6

8

2 4 6 8

10

Time10

v[3, min (7,NOW)) v[max (3,NOW), 7)

2

4

6

8

2 4 6 8

10

Time10

2

4

6

8

2 4 6 8

10

Time10

A� Fixed Interval B� Increasing Interval C� Decreasing Interval

Figure �	 Interval Types Needed for Modi�cations Involving NOW

formally� Intervals using the three types of values in Tf � termed canonical intervals� are shown in
Figure ��

Figure �A exempli�es a conventional �xed interval of type �a� b�� speci�cally� ��� ��� Figure �B
shows an increasing interval of type �a�minv�b�NOW ��� speci�cally ���minv���NOW ��� Note that
the interval in Figure �B may continue to grow� this is speci�ed as �a�minv�forever �NOW ���
Figure �C shows a decreasing interval of type �maxv�a�NOW �� b�� speci�cally� �maxv���NOW �� ���
Note again the special case� speci�ed as �maxv�beginning �NOW �� b�� where the interval starts at
beginning � Also note that as time proceeds� the duration of the interval shrinks� until the interval
is empty�

��� Extending the Interval Di�erence and Intersection Operators

Having established Tf as the domain of interval end points� the next step is to extend the interval
di�erence and intersection operators to apply over such intervals� These operators are used in the
de�nition of conventional modi�cations �Section ���� and will be used in the next section to de�ne
the semantics of modi�cations involving NOW �

The cases we must consider when extending the interval di�erence and intersection operators
are the following� where the domain of a� b� c� and d is T � and int�opr is the extended di�erence
operator ��v� or intersect operator �	v�����

��
�a� b�

�maxv�a�NOW �� b�
�a�minv�b�NOW ��

���
�� int�opr

���
��

�c� d�
�maxv�c�NOW �� d�
�c�minv�d�NOW ��

���
�� ���

Let the domain of �� �� �� and � be Tf � The extended interval di�erence operators ��v� is
de�ned as follows�

��

��� �� �v ��� ��
�
�

��������������������
����������������������

f��� c�� ��� ��� �max��� c�� minv �min��� ���NOW ��g
if ��� �� � � T � � � maxv�c�NOW � � �� � � � c � ���

f��� ��� �d� ��� �maxv �max��� ���NOW ��min��� d��g
if ��� �� � � T � � � minv�d�NOW � � �� � d � � � ���

f�maxv�a�NOW �� c�� �maxv���NOW �� ��g
if ��� � maxv�a�NOW � � �� � � T ��

�� � c � � � maxv�c�NOW �� � �a � � � c � ���
f���minv���NOW ��� �d�minv�b�NOW ��g

if ���� � � T � � � minv�b�NOW ���
�� � d � � � minv�d�NOW �� � �a � d � c � b��

f��� ��g otherwise

The de�nition accommodates all nine cases� Note �rst that the extended di�erence operator reduces
to the conventional di�erence operator if the domain of end points is T � These situations are covered
by the �rst and last cases in the de�nition�

Second� note that the third case in the de�nition takes a constant and an increasing interval as
inputs and returns a decreasing interval� This corresponds to subtracting the shape in Figure �B
from the shape in Figure �A� returning a shape as shown in Figure �C� As an example� Figure

visualizes ��� ���v ���minv�
�NOW ��� illustrating also how the third case can return three intervals�
In Figure
A� the extensionalization of the interval ��� �� is illustrated by the solid lines� and the

v[4, min (6,NOW))

2

4

6

8

2 4 6 8 10

10

Time

VT

[3,7)

2

4

6

8

2 4 6 8

10

Time10

3

2

1

VT

2

4

6

8

2 4 6 8

10

Time10

VT

3

2

1

A B C

Figure
	 Extended Interval Di�erence Example

extensionalization of the interval ���minv�
�NOW �� is given by the dashed line� The three result
intervals are shown in Figure
B� The �rst interval is ��� ��� the second is �
� ��� and the third
is �maxv���NOW ��
�� This corresponds to the order in which the intervals are speci�ed in the
de�nition of �v� �Figure
C will be addressed shortly��

The remaining cases in the de�nition of the di�erence can be understood in a similar way�

��

��� �� 	v ��� ��
�
�����������������

���������������

�max��� ���min��� ���
if ��� �� �� � � T � �� � � � � � ���

�maxv�max�a� c��NOW ��min��� ���
if ��� � a � � � maxv�a�NOW �� � �� � c � � � maxv�c�NOW ���

��� � � T � � �a � � � c � ���
�max��� ���minv�min�b� d��NOW ��

if ���� � � T � � �� � b � � � minv�b�NOW ���
�� � d � � � minv�d�NOW �� � �� � d � � � b��

� otherwise

Note again that the extended intersection operator reduces to the conventional intersection operator
if the argument interval end points are in T � This is handled by the �rst and last cases�

The extensionalization diagrams in Figure � explain the second case in the de�nition of 	v� the
remaining cases may be explained similarly� The example computes ��� �� 	v �maxv���NOW ��
��

v[max (2,NOW), 6)

2

4

6

8

2 4 6 8 10

10

Time

VT

[3,7)

v[max (3,NOW), 6)

2

4

6

8

2 4 6 8 10

10

Time

VT

A B

Figure �	 Extended Interval Intersection Example

In Figure �A� the interval ��� �� is illustrated by the solid lines� and �maxv���NOW ��
� is given
by the dashed line� The resulting interval� �maxv���NOW ��
�� is shown in Figure �B�

We have aimed to make the extended interval di�erence and intersection operators as simi�
lar as possible to their conventional counterparts� This makes the extended operators easier to
understand� Below we summarize the similarities and then the di�erences�

� The extended operators are equivalent to their conventional counterparts if all interval end
points are in T � This was required in Section ����

� The results returned by the extended operators are independent of the time they are evaluated�
as is the case for the conventional operators� This independence follows from the de�nitions�
where no comparisons to the current time occur�

� The intervals returned by the extended di�erence operator are disjoint� For example� the
three result intervals in Figure
B do not overlap�

� The intervals returned by the extended di�erence operators are coalesced ���� so a result
containing� e�g�� ��� �� and ��� �� will not occur� Instead the interval ��� �� would be returned�
Again this is ful�lled by design�

��

intersection operator�

There are three di�erences between the extended and the conventional operators�

� The extended di�erence and intersection operators accommodate intervals de�ned by using
the variable NOW � This was a requirement in Section ����

� The extended di�erence operator returns from zero to three intervals� whereas the conven�
tional di�erence operator returns zero� one� or two intervals� In the example in Figure
� three
intervals are returned� This is unavoidable and happens when �nding the di�erence between
a constant and a non�constant interval� where the non�constant interval is included in the
constant interval� e�g�� ���� ����v ����minv����NOW �� and ���� ����v �maxv����NOW �� ����

� The results of one extended di�erence operation can be combined in several ways� whereas
the result of the conventional di�erence operator is unique� As an example� the result
shown in Figure
B can also be given as the following three intervals	 �maxv���NOW �� ���
���minv���NOW ��� and �
�minv���NOW ��� as shown in Figure
C�

��	 Temporal Modi�cation Semantics

With the de�nitions of the extended di�erence and intersection operators in place� we can de�ne
the semantics of modi�cations involving NOW � Examples follow the de�nitions�

The de�nitions of the insert� delete� and update of intervals involving NOW on a valid�time
relation rvt are identical to those of modi�cations without NOW de�ned in Section ���� except that
the extended versions of the interval di�erence and intersection operators are used� The de�nitions
are shown below�

Insertion into a valid�time relation rvt is de�ned as follows� Again� if the validity interval is not
explicitly provided� a default of �bound� NOW to forever is used�

VALIDTIME PERIOD �vts�vte� INSERT INTO rvt VALUES �A�
�
�

rvt
 rvt �
vt f�A� �vts� vte��g

Deletion from a valid�time relation rvt is de�ned as follows�

VALIDTIME PERIOD �vts�vte� DELETE FROM rvt WHERE cond
�
�

rvt
 ftjt � rvt��cond�t��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� � t�VT� � �s�VT��v �vts� vte�� � t�VT�
� ��g

Update of a valid�time relation rvt is de�ned as follows�

VALIDTIME PERIOD �vts�vte� UPDATE rvt SET A 	 v WHERE cond
�
�

rvt
 ftjt � rvt��cond�t��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� � t�VT� � �s�VT��v �vts� vte�� � t�VT�
� ��g �vt

ftj�s � rvt�cond�s� � t�A� � v � t�VT� � �s�VT� 	v �vts� vte�� � t�VT�
� ��g

Note that the �rst two lines are identical to the two lines of the delete� Updates are similar to a
delete followed by an insert� this similarity will be exploited in the implementation described in
Section
���

We examine two sample modi�cations� First an example of an update without NOW is given�
Assume the database contains the tuple hJoe� Shoe� ��� ���i and that we want to update Joe to be
with the Toy department in the interval ���� ���� This may be written as follows�

��

The result of the update� also illustrated in Figure �� is as follows�

� �vt fhJoe�Shoe� f��� ��� �v ���� ���gig �vt fhJoe�Toy� f��� ��� 	v ���� ���gig
� fhJoe�Shoe� ��� ���i� hJoe�Shoe� ���� ���i� hJoe�Toy� ���� ���ig

20

15

10

5

5 10 15 20

VT

Time

Toy

Shoe

Shoe

20

15

10

5

5 10 15 20

VT

Time

Shoe

Toy

Shoe

A B

Figure �	 Joe is in the Toy department for the interval from �� to ���

From the single tuple stored in the relation� we remove Joe from the Shoe department in the
interval ���� ���� This results in two tuples� Further� we update Joe to be with the Toy department
in the intersection of the intervals ��� ��� and ���� ���� The result is the same as the result obtained
by using the earlier de�nition of update for ground databases�

The next update involves NOW � We use the update in Figure � and assume that the database
contains the tuple hJoe�Shoe� ���NOW �i� This update may be written as follows�

VALIDTIME PERIOD �
����� UPDATE Emp SET Dept 	
Toy
 WHERE Name 	
Joe

The result of the update is as follows�

� �vt fhJoe�Shoe� f���NOW ��v ���� ���gig �vt fhJoe�Toy� f���NOW � 	v ���� ���gig
� fhJoe�Shoe� ���minv����NOW ��i� hJoe�Shoe� ����minv�forever �NOW ��i�

hJoe�Toy� ����minv����NOW ��ig

The resulting tuples contain minv functions and are easily explained by the diagrams in Figure ��
The solid line denotes the tuple stating that Joe was with the Shoe department in the interval
���NOW �� The dashed rectangle corresponds to the interval ������� for which the update is to be
applied� The update takes e�ect in the region where the solid�line and dashed�line regions overlap�
and the result is given in Figure �B�

This result is the desired one� We only update in the overlap between the temporal scope
speci�ed in the update statement and the data stored in the database� It is still correct that Joe
was with the Shoe department in the interval ���minv����NOW �� and ����minv�forever �NOW ���
Should Joe also have been updated to be with the Toy department in the latter two intervals� a
di�erent temporal scope should have been given in the update statement� e�g� the interval ���NOW ��

��

20

15

10

5

5 10 15 20 Time

Shoe

Toy

20

15

10

5

5 10 15 20 Time

Shoe

Shoe

Toy

A B

Figure �	 Update of a NOW �Relative Database

� Semantics of Modi�cations Involving Now�Relative Values

In some applications� the intervals associated with the tuples do not coincide with the current time�
but still vary with the current time� For example� the hiring and termination of personnel may be
recorded in the database only three days after they are e�ective� For cases like these� now�relative
time values� e�g�� NOW �� days� which track the current time� but with a displacement� and which
generalize NOW � are very useful �����

This section considers the modi�cation of databases in the presence of such values� First�
NOW �relative values are de�ned� and then a new kind of interval� used for accommodating the
more general databases that result from the NOW �relative values� is introduced� and the interval
operations ��v and 	v� are extended to also accommodate these new intervals� On this basis� the
modi�cations are de�ned�

��� De�nition of NOW
Relative Values

NOW �relative values generalize variable NOW by allowing o�sets from NOW to be speci�ed �����
For example� assume that Joe started in the Shoe department on January �� and remains there�
but may be assigned to another department with two days� notice� This may be captured using a
NOW �relative value� as follows	 hJoe� Shoe� ����NOW � ��i� where the �� indicates the two days�
notice�

Formally� the extensionalization at time c of a NOW �relative value� NOW OP n� where OP
� f���g and n belongs to a domain of durations that is isomorphic to a subset of the integers� is
de�ned as follows �����

��NOW OP n��c
�
� ��NOW ��c OP n

��� A New Interval Type

To extend the modi�cations to accommodate NOW �relative intervals� a single new interval type is
needed over the three introduced in Section ���� The extensionalization graph in Figure �� gives an
example of this new type of interval� namely the interval �maxv���NOW � ���minv���NOW �����
The dashed line indicates the diagonal� This interval has a maxv function in its starting point
and a minv function in its ending point� the earlier intervals had at most a function in either the
starting or the ending point� Note also the now�relative o�sets� �� and ��� The �� in the starting
point indicates that the start point is three units below the diagonal� and the �� indicates that
the ending point is two units above the diagonal� In previous sections all o�sets were � and all
non�vertical or non�horizontal lines were on the diagonal�

��

2

4

6

8

2 4 6 8

10

Time10

[max (3,NOW-3),min (7,NOW+2))

Figure ��	 New Interval Type for NOW �Relative Modi�cations

The o�set of the starting point of an interval must be smaller than or equal to the o�set of
its ending point� Otherwise� the interval is unde�ned� For example� the interval �maxv���NOW �
���minv���NOW � ��� is unde�ned�

Formally� we de�ne the meaning of a NOW �relative interval at time c as follows� where a and
b are in T and a o� and b o� are in the domain of durations�

���maxv�a�NOW � a o� ��minv�b�NOW � b o� ����c
�
�

�����
����

�a�minv�b�NOW � b o� �� if a� b o� � c � b� b o�
�a� b� if b� b o� � c � a� a o�
�maxv�a�NOW � a o� �� b� if a� a o� � c � b� a o�
� otherwise

We will show next how the new interval type comes into existence and de�ne also how it is
handled in the interval di�erence and intersection operators�

��� Extending the Interval Operators

The sixteen cases we must consider when extending the interval di�erence and intersection operators
are enumerated below� where the domain of a� b� c� and d is T � a o� � b o� � c o� � and d o� are
signed durations �i�e�� corresponding to positive or negative integers�� and int�opr is the extended
di�erence operator ��v� or intersection operator �	v�������

����
� 	 �a� b�
� 	 �a�minv�b�NOW � b o� ��
� 	 �maxv�a�NOW � a o� �� b�
� 	 �maxv�a�NOW � a o� ��minv�b�NOW � b o� ��

�����
����

int�opr

�����
����

� 	 �c� d�
� 	 �c�minv�d�NOW � d o� ��
� 	 �maxv�c�NOW � c o� �� d�
� 	 �maxv�c�NOW � c o� ��minv�d�NOW � d o� ��

�����
����

���

Note that allowing only ���� but then allowing positive and negative durations is equivalent to the
de�nition of now�relative values in Section ����

The extended interval di�erence operation� ��� �� �v ��� ��� where the argument intervals are
as enumerated above� is de�ned in Table �� The table has seventeen cases� and each of the sixteen
combinations above gives rise to two cases� The �rst case for a combination is identi�ed by the
integers in Formula � and in the second and third columns in the table �the �rst
column� is used

�

be satis�ed for this case to apply� The second case is the last�
otherwise� case in the table� which
applies if the condition in the �rst case is not satis�ed� The result for a case� a set of intervals� is
given in the last column of the table�

Case L R Condition Resulting Rows
� � � � � � � � � � ��� ��� ��� ��
� � � � � d � � � � ��� ��� �d� ��� �maxv �max��� ���NOW � d o� ��min��� d��
	 � � � � � � c � � ��� c�� ��� ��� �max��� c�� minv �min��� ���NOW � c o� ��

 � � � � d � c � �
��� c�� �d� ��� �max��� c��minv �min��� d��NOW � c o� ���
�maxv�max��� c��NOW � d o� ��min��� d��

� � � � � � � � � b ���minv���NOW � b o� ��� ���minv�b�NOW � b o� ��

� � � � � d � � � b
���minv���NOW � b o� ��� �d�minv�b�NOW � b o� ���
�maxv�max��� ���NOW � d o� ��minv�min�b� d��NOW � b o� ��

 � � � � � � c � b
���minv�c�NOW � b o� ��� ���minv�b�NOW � b o� ���
�max��� c��minv�min�b� ���NOW � c o� ��

� � � � � d � c � b

���minv�c�NOW � b o� ��� �d�minv�b�NOW � b o� ���
�max��� c��minv�min�b� d��NOW � c o� ���
�maxv�max��� c��NOW � d o� ��minv�min��� d��NOW � b o� ��

� � � a � � � � � � �maxv�a�NOW � a o� �� ��� �maxv���NOW � a o� �� ��

�� � � a � d � � � �
�maxv�a�NOW � a o� �� ��� �maxv�d�NOW � a o� �� ���
�maxv�max�a� ���NOW � d o� ��min��� d��

�� � � a � � � c � �
�maxv�a�NOW � a o� �� c�� �maxv���NOW � a o� �� ���
�maxv�max�a� c��NOW � a o� ��minv�min��� ���NOW � c o� ��

�� � � a � d � � � b

�maxv�a�NOW � a o� �� c�� �maxv�d�NOW � a o� �� ���
�maxv�max�a� c��NOW �a o� ��minv�min��� d��NOW �c o� ���
�maxv�max�a� c��NOW � d o� ��min��� d��

�	 � � a � � � � � b
�maxv�a�NOW � a o� ��minv���NOW � b o� ���
�maxv���NOW � a o� ��minv�b�NOW � b o� ��

�
 � � a � d � � � b

�maxv�a�NOW � a o� ��minv���NOW � b o� ���
�maxv�d�NOW � a o� ��minv�b�NOW � b o� ���
�maxv�max�a� ���NOW � d o� ��minv�min�b� d��NOW � b o� ��

�� � � a � � � c � b

�maxv�a��NOW � a o� ��minv�c�NOW � b o� ���
�maxv�d�NOW � a o� ��minv�b�NOW � b o� ���
�maxv�max�a� c��NOW � a o� ��minv�min�b� ���NOW � c o� ��

�� � � a � d � c � b

�maxv�a�NOW � a o� ��minv�c�NOW � b o� ���
�maxv�d�NOW � a o� ��minv�b�NOW � b o� ���
�maxv�max�a� c��NOW �a o� ��minv�min�b� d��NOW �c o� ���
�maxv�max�a� c��NOW � d o� ��minv�min�b� d��NOW � b o� ��

�
 otherwise ��� ��

Table �	 The Interval Di�erence Operator Extended for NOW �Relative Values

It may be observed that the extended di�erence operator reduces to the conventional di�erence
operator when the interval end points are in T � These situations are covered by the �rst and last
cases in the de�nition� Next� the operator returns up to four intervals �in cases �� �� ��� and �
��
and the new interval type de�ned in Section ��� is returned in cases
� �� and �� �
�

We motivate the de�nition by considering the four examples illustrated in Figure ��� Figure ��A
illustrates the di�erence ���minv���NOW � ��� �v ��� ��� which is covered by case � in Table ��
The result� ���minv���NOW ����� is illustrated in Figure ��A� The �rst interval in case � is empty
because � � � �� � ���

��

v[5, min (9,NOW+2))

2

4

6

8

2 4 6 8 10

10

Time

[3,7)

v[max (4,NOW+2),8))

v[max (2,NOW-2),6))

2

4

6

8

2 4 6 8 10

10

Time

A B

v[4, min (6,NOW+2))

v[max (2,NOW),8))

2

4

6

8

2 4 6 8 10

10

Time

VT

2

4

6

8

2 4 6 8 10

10

Time

VT

v

v[max (3,NOW-3),min (7,NOW+3))v

[max (4,NOW-1),min (6,NOW+1))v

C D

Figure ��	 NOW �Relative Interval Di�erence Examples

Figure ��B illustrates the di�erence �maxv���NOW � ���
� �v �maxv���NOW � ��� ��� which
is covered by case �� in the de�nition� The result is the two intervals �maxv���NOW � ��� �� and
�maxv���NOW � ���minv�
�NOW � ���� which are shown in Figure ��B� These intervals derive
from the �rst and third intervals in case ��� the second interval is empty because � � � �� �
��
When we compute the di�erence of two decreasing intervals as here� the new type of interval from
Section ��� is results�

Figure ��C illustrates �maxv���NOW �� �� �v ���minv�
�NOW � ���� Here� the o�set of the
�rst interval is �� Finding the di�erence of a decreasing and increasing interval �or vice versa� is
not as simple as when both o�sets are �� where the left argument is the result� Case �� in the
de�nition applies� and the result is the three intervals �maxv���NOW �� ��� �maxv�
�NOW �� ��� and
�maxv���NOW � ���
�� see Figure ��C�

Finally� Figure ��D illustrates �maxv���NOW � ���minv���NOW � ��� �v �maxv���NOW �
���minv�
�NOW����� which is covered by case �
� The result is the four intervals �maxv���NOW�
���minv���NOW � ���� �maxv�
�NOW � ���minv���NOW � ���� �maxv���NOW � ���minv�
�
NOW ����� and �maxv���NOW ����minv�
�NOW � ���� shown in Figure ��D� This example il�
lustrates the overall strategy used in de�ning interval di�erence� We look above� below� to the right�
and to the left of the second argument interval� determining what remains of the �rst argument
interval� Looking to the right and left� we consider only the parts of the �rst argument interval
that have not been covered by looking above and below� This is implemented in the de�nition
using the standard max and min functions� Using this strategy� the di�erence operator returns
non�overlapping regions and does not duplicate information�

��

2

4

6

8

2 4 6 8 10

10

Time

v[7, min (9,NOW+2))

2

4

6

8

2 4 6 8 10

10

Time

v[max (2,NOW-2),4))

v[max (4,NOW-2), min (6,NOW+2))v

A B

v[max (4,NOW+2),6))

v[max (2,NOW),4))

2

4

6

8

2 4 6 8 10

10

Time

VT

v[max (6,NOW),8))

v v[max (6,NOW-3),min (7,NOW+3))

2

4

6

8

2 4 6 8 10

10

Time

VT

v[max (4,NOW+1),min (6,NOW+3))

v v[max (3,NOW-3),min (4,NOW+3))

v v[max (4,NOW-3),min (6,NOW-1))

v

C D

Figure ��	 NOW �Relative Interval Di�erence Results

The extended interval intersection operator �	v� is de�ned below� Like the di�erence operator
above� this operator reduces to the conventional intersection operator if the end points of the argu�
ment intervals are in T � which also here is covered by the �rst and last cases in the de�nition� The
operator operator always returns only one interval� as does the conventional intersection operator�
and the new interval type is returned by case ��

��� �� 	v ��� ��
�
��������������������������

������������������������

�max��� ���min��� ���
if ��� �� �� � � T � �� � � � � � ���

�maxv�max�a� c��NOW �max�a o� � c o� ���min��� ���
if ��� � a � � � maxv�a�NOW � a o� �� � �� � c � � � maxv�c�NOW � c o� ���

�� � � T � a � � � c � ��
�max��� ���minv�min�b� d��NOW �min�b o� � d o� ���

if ��� � b � � � minv�b�NOW � b o� �� � �� � d � � � minv�d�NOW � d o� ���
�� � � T � � � d � � � b�

�maxv�max�a� c��NOW �max�a o� � c o� ���minv�min�b� d��NOW �min�b o� � d o� ���
if ���� � maxv�a�NOW � a o� � � � � minv�b�NOW � b o� ���

�� � maxv�c�NOW � c o� � � � � minv�d�NOW � d o� ��� � a � d � c � b�
max�a o� � c o� � � min�b o� � d o� �

� otherwise

��

de�nition� Figure ��A illustrates the union ���minv���NOW � ��� 	v ��� ��� which is covered by
case �� The result� interval ���minv���NOW � ���� is shown in Figure ��A� Next� Figure ��B
illustrates �maxv���NOW ����
� 	v �maxv���NOW ���� ��� which is covered by case � and results
in �maxv���NOW � ���
� as shown in Figure ��B�

The examples in Figure ��C and Figure ��D are both covered by case � in the de�nition�
Figure ��C illustrates �maxv���NOW �� �� 	v ���minv�
�NOW � ���� which results in the interval
�maxv���NOW ��minv�
�NOW ���� �shown in Figure ��C�� Thus the o�sets cause the intersection
operator to return an interval of the new type introduced in this section� Figure ��D computes
�maxv���NOW � ���minv���NOW ���� 	v �maxv���NOW � ���minv�
�NOW ����� resulting in
the interval �maxv���NOW � ���minv�
�NOW � ���� shown in Figure ��D�

v[5, min (7,NOW+2))

2

4

6

8

2 4 6 8 10

10

Time

VT

v[max (4,NOW+2),6))

2

4

6

8

2 4 6 8 10

10

Time

VT

A B

2

4

6

8

2 4 6 8 10

10

Time

VT

v[max (4,NOW), min (6,NOW+2))v v[max (4,NOW-1),min (6,NOW+1))v

2

4

6

8

2 4 6 8 10

10

Time

VT

C D

Figure ��	 NOW �Relative Interval Intersection Results

��� Temporal Modi�cation Semantics Including NOW
Relative Values

With the new di�erence and intersection operators in place� we can de�ne the semantics of modi�
�cations involving NOW �relative values� These de�nitions may be given by re�using the template
employed for the de�nitions in Section ���� the only di�erence being that the extended di�erence
and intersection operators are to be used� For brevity� we do not repeat the de�nitions� but instead
exemplify the utility of NOW �relative values�

In the following scenario� Joe joins the Shoe department on the �rd� At any time� he can
leave his job with eight days� notice� On the
th� he is told that with two days notice� he can be

��

job �i�e�� his last day is the �
th��
This scenario is captured by the following database modi�cations�

�� �rd� Joe is hired on the �rd with � days notice

VALIDTIME PERIOD ��� NOBIND�CURRENT�DATE � ���

INSERT INTO Emp VALUES �
Joe
�
Shoe
��

�� �th� Plan that Joe can temporarily be in the Toy department

for four days

VALIDTIME PERIOD �NOBIND�CURRENT�DATE � ��� NOBIND�CURRENT�DATE � ���

UPDATE Emp

SET Dept 	
Toy

WHERE Name 	
Joe
�

�� �th� Joe quits his job and has � days
 notice

VALIDTIME PERIOD �
�� FOREVER�

DELETE FROM Emp

WHERE Name 	
Joe
�

The single tuple that results from the �rst statement is hJoe� Shoe� ���NOW���i and is illus�
trated with the solid line in Figure ��A� The result of the �rst update is as follows� and is illustrated
in Figures ��A and B�

� �vt fhJoe�Shoe� f���NOW � ���v �NOW � ��NOW �
�gig �vt

fhJoe�Toy� f���NOW � �� 	v �NOW � ��NOW �
�gig
� fhJoe�Shoe� ���NOW � ��i� hJoe�Shoe� �maxv���NOW �
��NOW � ��i�

hJoe�Toy� �maxv���NOW � ���NOW �
�ig

We plan that Joe may be temporarily in the Toy department in the interval �NOW���NOW�
�
where the �� indicates the two days� notice� This interval can be rewritten as �maxv�beginning �
NOW � ���minv�forever �NOW �
�� and is indicated by the two dashed lines in Figure ��A� The
result is the three tuples indicated by solid lines in Figure ��B�

The result of the deletion is as follows� and is illustrated in Figures ��B and C�

� �vt fhJoe�Shoe� f���NOW � ��i �v ��
� forever �gig �vt

fhJoe�Shoe� f�maxv���NOW �
��NOW � ���v ��
� forever �gig �vt

fhJoe�Toy� f�maxv���NOW � ���NOW �
��v ��
� forever �gig
� fhJoe�Shoe� ���minv��
�NOW � ���i�

hJoe�Shoe� �maxv���NOW �
��minv��
�NOW � ���i�
hJoe�Toy� �maxv���NOW � ���minv��
�NOW �
��ig

From the three tuples stored in the relation at the outset� we delete the interval ��
�forever �� to
indicate that Joe is leaving the company on the �
th� The interval to be deleted is indicated by
the dashed line in Figure ��B� The result of the deletion is the three tuples indicated by solid lines
in Figure ��C� The tuples with end�point values above �
 from Figure ��B are
truncated� here�

Having de�ned the semantics for modi�cations involving NOW � we consider the implementation
of the modi�cations�

��

20

15

10

5

5 10 15 20

VT

Time

Toy

Shoe

20

15

10

5

5 10 15 20

VT

Time

Toy

Shoe

Shoe

20

15

10

5

5 10 15 20

VT

Time

Shoe
Toy

Shoe

A B C

Figure ��	 The Results of Updates With NOW �Relative

� Implementing Modi�cation Statements Involving NOW �Relative

Values

This section considers the implementation of the modi�cations de�ned in the previous two sections�
Implementation using only SQL��� and using the object�relational features provided by some com�
mercial DBMSs are considered�

��� Representing Canonical Intervals

The canonical intervals can be implemented in SQL��� by using four columns� Two columns record
the V�Begin and V�End attributes� and two columns� named V�Begin�Offset and V�End�Offset�
indicate the valid�time begin o�set and the valid�time end o�set� respectively� Our sample relation
may then be declared as follows�

CREATE TABLE Emp �

Name VARCHAR ���� NOT NULL�

Dept VARCHAR ���� NOT NULL�

V�Begin DATE� �� Assuming day granularity

V�Begin�Offset NUMERIC �
�����

V�End DATE� �� Assuming day granularity

V�End�Offset NUMERIC �
�����

Here� a V�Begin�Offset and V�End�Offset value di�erent from NULL indicates a maxv and a minv

function� respectively� The representation of the di�erent shapes is demonstrated below� Recall that
NOW can be written asmaxv�beginning �NOW � in the V�Begin attribute andminv�forever �NOW �
in the V�End attribute�

The valid�time interval can also be implemented as an abstract data type �ADT�� e�g�� in
the Informix and Oracle DBMSs� The main advantage of this is that the valid�time interval is
encapsulated and is treated as a single unit�

��� Implementing Queries

When querying� NOW values must be bound to the current time� We do so with two functions�
BIND B to bind the beginning time� and BIND E to bind the end time�

To illustrate querying� suppose we want to retrieve all tuples with a valid time that overlaps
the interval ������������������������ This can be written in a temporal SQL ���� as follows�

��

SELECT � FROM Emp�

This query formulated in SQL��� is shown below�

SELECT Name� Dept�

BIND�B�V�Begin� V�Begin�Offset� AS V�Begin�

BIND�E�V�End� V�End�Offset� AS V�End

FROM Emp

WHERE BIND�B�V�Begin� V�Begin�Offset� � DATE

�����
�
�
 AND

DATE

�����
���
 � BIND�E�V�End� V�End�Offset� AND

BIND�B�V�Begin� V�Begin�Offset� � BIND�E�V�End� V�End�Offset�

The query checks if the valid time associated with a tuple overlaps with the temporal scope� i�e��
the interval ������������������������ In the last line� it is checked that the V�Begin attribute is
smaller than the V�End attribute� when these attributes are bound to the current date� Note that
a query always returns a ground result�

As an example� the BIND B function can be speci�ed in PSM ���� as follows�

DECLARE FUNCTION BIND�B �Val DATE� Offset NUMERIC �
����� RETURNS DATE

IF Offset IS NULL

THEN RETURN Val

ELSE IF Val � CURRENT�DATE � CAST�Offset AS INTERVAL DAY�

THEN RETURN Val

ELSE RETURN CURRENT�DATE � CAST�Offset AS INTERVAL DAY��

The BIND E function is analogous� These can be implemented similarly in Oracle�s PL!SQL or as
user�de�ned functions in Informix or DB��

If implemented inside the DBMS� rather than with an external translater from temporal SQL
to conventional SQL� the binding functions need not be called multiple times� as in the SQL code
above� Implementing the binding within the DBMS might also enable other simpli�cations�

��� Implementing Modi�cations

Having illustrated querying when representing temporal data using the format with four four extra
attributes� we proceed to consider modi�cation� First� insertions are easy to map to SQL	 we simply
set the o�set columns depending on the presence of NOW �

VALIDTIME PERIOD �DATE

�����
���
� DATE

�����
���
�

INSERT �Joe� Shoe�

may be mapped into

INSERT INTO Emp VALUES

�
Joe
�
Shoe
� DATE

�����
���
� NULL� DATE

�����
���
� NULL��

When the value NOW � speci�ed as NOBIND�CURRENT DATE�� ����� is present� a non�null value
of the o�set is used�

VALIDTIME PERIOD �DATE

�����
���
� NOBIND�CURRENT�DATE��

INSERT �Joe� Shoe�

is mapped into

��

�
Joe
�
Shoe
� DATE

�����
���
� NULL� DATE
�����
���

� ���

Deletions and updates should conform to the semantics presented in Sections ��� and ���� The
main problem when implementing these is that the extended interval di�erence operator that they
make use of may return up to three intervals for the semantics speci�ed in Section ��� and up to
four intervals for the semantics speci�ed in Section ����

To solve this problem we use the idea illustrated by the extended interval di�erence example
in Figure ��D and ��D� To determine the result of a di�erence� e�g�� the di�erence �a� b� �v �c� d��
we look
above��
below��
right�� and
left� of interval �c� d� and determine what remains of
interval �a� b��

As an example� consider the case where the database contains the tuple hJoe� Shoe�
�maxv������������NOW � ���minv������������NOW � ��� i and a temporal deletion statement
causes us to delete Joe from the Shoe department in the interval �maxv������������NOW �
���minv����������
�NOW � ���� This latter interval then is the interval speci�ed in the tem�
poral deletion statement� This is corresponds to the example in Figure ��D�

The following four SQL��� insertions and one SQL��� deletion cover all the cases� Note that
they are similar in form� and that the last three lines of each are identical�

�� Above

INSERT INTO Emp

SELECT Name� Dept�

�����
���
� V�Begin�Offset� V�End� V�End�Offset

FROM Emp

WHERE Name 	
Joe
 AND V�End �

�����
���
 AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

�� Below

INSERT INTO Emp

SELECT Name� Dept� V�Begin� V�Begin�Offset� DATE

�����
���
� V�End�Offset

FROM Emp

WHERE Name 	
Joe
 AND V�Begin �

�����
���
 AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

�� Right

INSERT INTO Emp

SELECT Name� Dept�

GREATEST �V�Begin� DATE

�����
���
�� V�Begin�Offset�

LEAST �V�End�

�����
���
�� �

FROM Emp

WHERE Name 	
Joe
 AND �
 IS NOT NULL AND

GREATEST �V�Begin� DATE

�����
���
� � LEAST �V�End�

�����
���
� AND

�NOT �V�Begin�Offset IS NOT NULL AND V�Begin�Offset � �
�� AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

��

INSERT INTO Emp

SELECT Name� Dept� GREATEST �V�Begin� DATE

�����
���
��
�

LEAST �V�End�

�����
���
�� V�End�Offset

FROM Emp

WHERE Name 	
Joe
 AND
 IS NOT NULL

GREATEST �V�Begin� DATE

�����
���
� � LEAST �V�End�

�����
���
� AND

AND �NOT �V�End�Offset IS NOT NULL AND
 � V�End�Offset�� AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

�� Delete the old tuple

DELETE FROM Emp

WHERE Name 	
Joe
 AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

The SQL��� code above uses the Oracle�speci�c functions GREATEST and LEAST� which corre�
spond the conventional max and min functions used in this paper�

The time overlap predicate �the third�to�last line� and the o�set overlap predicate �the last two
lines� check that the intervals associated with the tuples overlap with the interval speci�ed in the
delete statement� The o�set overlap predicate checks for overlap between the o�sets on the intervals
in the database and the o�set speci�ed in the interval to delete or update� Because these o�sets
can have the value NULL we must for each less than operator� check if either of the operands are
NULL� The ��� in � e�g�� in
 IS NULL is the V�End�O�set of the interval speci�ed in the delete�
Similar� is the ����� e�g�� in �
 � V�End�Offset� is the V�Begin�O�set of the interval speci�ed in
the delete�

In the �rst insert statement the check V�End �

�����
���
 ensures that an
above� tuple is
generated when appropriate� Similarly� the check in the second insertion� V�Begin �

�����
���
�
ensures that a
below� tuple is generated�

The
right� and
left� cases� the third and fourth insert statements� are slightly more compli�
cated because we ensure ��� that a tuple is generated� ��� that it has no overlap with the
above�
and
below� tuples� ��� that its V�Begin value is smaller than its V�End value� and ��� that its
V�Begin�Offset value is smaller than its V�End�Offset value�

In the third insert statement� the �rst check is that �
 IS NOT NULL� A
right� tuple is only
generated if the V�Begin�Offset of the interval speci�ed in the temporal deletion statement is NOT
NULL� The second and third checks are done with the GREATEST and LEAST functions in the select
clause and in the where clause� respectively� The fourth check occurs in the last line� We must
ensure if the V�Begin�Offset attribute is NOT NULL then its value cannot be larger than ��� which
is the V�Begin�Offset of the interval speci�ed in the temporal delete statement�

In the fourth insert statement� the �rst check is that
 IS NOT NULL� A
left� tuple is only
generated if the V�End�Offset of the interval speci�ed in the temporal deletion statement is NOT
NULL� Again the second and third checks are done using GREATEST and LEAST� and the fourth check
occurs in the last line� If the V�End�Offset is NOT NULL then its value cannot be larger than ��
which is the V�End�Offset of the interval speci�ed in the temporal deletion statement�

After the four insertions� all tuples that overlap with the interval speci�ed in the deletion
statement are deleted� This is correct because we have just created up to four tuples that represent
what remains of the ordinal interval�

Note that because the semantics speci�ed in Sections ��� only allows a maxv function in the
V�Begin attribute or a minv function in the V�End attribute� the
right� and
left� tuples are

��

restriction does not apply to the semantics speci�ed in Section ���� in the presence of now�relative
values� as many as four tuples may result�

Updates are implemented similarly to deletes� Assume that we want to update Joe for the
interval ������������maxv����������
�NOW �� to be with the Toy department� In an extended
temporal SQL� this may be written as follows �����

VALIDTIME PERIOD �DATE

�����
���
� NOBIND�CURRENT�DATE��

UPDATE Emp SET Dept 	
Toy

WHERE Name 	
Joe
�

This is written in SQL��� as four insertions and an update� The four insertions are identical to
those displayed for the temporal deletion above� The update statement follows�

�� Update self

UPDATE EmpNow

SET Name� Dept�

V�Begin 	 GREATEST �V�Begin� DATE

�����
���
��

V�End 	 LEAST �V�End� NULL��

V�Begin�Offset 	 GREATEST �V�Begin�Offset� NULL��

V�End�Offset 	 LEAST �V�End�Offset� ��

WHERE Name 	
Joe
 AND

NOT �GREATEST �V�Begin� DATE

�����
���
� IS NOT NULL AND

LEAST �V�End� NULL� IS NOT NULL AND

GREATEST �V�Begin� DATE

�����
���
� �

LEAST �V�End� NULL�� AND

NOT �GREATEST �V�Begin�Offset� NULL� IS NOT NULL AND

LEAST �V�End�Offset� �� IS NOT NULL AND

GREATEST �V�Begin�Offset� NULL� � LEAST �V�End�Offset� ��� AND

V�Begin � DATE

�����
���
 AND DATE

�����
���
 � V�End AND

�V�Begin�Offset �
 OR �V�Begin�Offset IS NULL OR
 IS NULL�� AND

��
 � V�End�Offset OR ��
 IS NULL or V�End�Offset IS NULL���

In line �� the V�Begin attribute is set to the maximum of the start of the interval of the tuple being
updated and the start of the interval speci�ed in the update� In line �� the V�End attribute is set to
the minimum of its current value and the end of the interval in the update� This is done similarly
for the V�Begin�Offset and V�End�Offset attributes in lines � and
� respectively� In the where
clause� it is checked in lines � to �� that the new interval is non�empty� Similarly� lines �� to ��
check that the V�Begin�Offset is smaller than the V�End�Offset� Line �� checks overlap on the
V�Begin and V�End attributes� and the V�Begin�Offset and V�End�Offset attributes� The last
three lines duplicate those of the above insertions�

In this example� the where clause is particularly simple� and the provided mapping works �ne�
For more complex predicates� for example those containing subqueries� care must be taken to ensure
that these are a�orded the correct semantics� following the mapping for queries �����

A full solution includes support for ground interval end points� which is already included in
SQL���� and for NOW and for now�relative values� as provided in this paper� In addition� sup�
port can be provided for indeterminate versions of these values �so�called
don�t know exactly
when� values� ����� Support for indeterminate values can be de�ned in terms of the operations
on determinate values �for example� an indeterminate ground time value can be represented and
manipulated as a pair of determinate ground time values�� As proof of concept� the TimeADT

�

ues	 ground determinate� variable determinate� now�relative determinate� ground indeterminate�
variable indeterminate� and now�relative indeterminate�

Triggers and methods on a new data type for the time intervals considered constitute two al�
ternatives to the SQL��� statements above� Both have associated problems� For example� an
implementation using triggers for the deletions and updates illustrated above is not directly imple�
mentable in Oracle�i because the trigger will result in a mutating table ����� which is not allowed
�this condition occurs when a statement in the trigger body accesses the table that the trigger was
�red on��

De�ning methods on an interval ADT is also quite challenging� The main problem is having
to generate up to four separate tuples when a single tuple is being manipulated� This seems to be
beyond ADTs� Another problem is how to handle the where clauses of temporal modi�cations� The
where predicate can be speci�ed by the user at run�time� making its necessary for the insert� delete�
and update methods on an interval ADT to accept a string argument containing the where clause�
The modi�cation methods must then parse the where clause and dynamically generate appropriate
SQL��� statements that mirror to the temporal modi�cation statement�

� Approximate Modi�cation Semantics

As the previous section showed� representing the new time values requires either an ADT or multiple
physical columns� The present section will explore what semantics may be achieved with just a
single additionalNOW value� which can be denoted with a particular existing value� such as NULL or
DATE
�����
���

 ����� Speci�cally� we de�ne approximate semantics for modi�cations involving
NOW that do not require the use of the minv and maxv functions� This will help indicate precisely
what the rather complex implementation of the previous section buys us�

We �rst introduce a set of auxiliary functions� Then the semantics of insert� delete� and update
are de�ned� followed by examples and a discussion of the di�erences between the accurate and the
approximate semantics�

	�� Possible Approximate Semantics of Temporal Modi�cations

Our de�nitions of modi�cation lead to tuples that contain the minv and maxv functions in their
timestamps� Existing temporal data models do not accommodate these functions� leading to a vio�
lation of Requirement R� in Section ���� We thus explore alternative semantics of modi�cations
that avoid these values�

We use the last example in Section ��� of an update for exploring possible alternative semantics�
The result of that update was illustrated in Figure �B and is also given in Table ��

Name Dept� V�Begin V�End

Joe Shoe � minv����NOW �

Joe Toy �� minv����NOW �

Joe Shoe �� minv�forever �NOW �

Table �	 Result of the Update

The objective is to accomplish this update without using the minv �and maxv� value� We
assume that the current time is ��� The current time� not an issue in the exact semantics� will
be important in the approximate semantics� Three possible� approximate update semantics are
illustrated Figure ���

��

20

15

10

5

5 10 15 20

ShoeShoe

Toy

Missing Information

Time

20

15

10

5

5 10 15 20

Toy

Shoe

ShoeExtra Information

Shoe

Time

20

15

10

5

5 10 15 20

ShoeShoe

Toy

ShoeWrong Information

Time

Shoe

A B C

Figure ��	 Di�erent Approximate Solutions

Figure ��A adopts a pessimistic approach� which was also shown in Table �A� �Note that the
region labeled
Shoe� corresponds to a tuple that was only present in the database until time
���� The drawback is that information is missing in the shaded region� The second approximate
semantics� the result of which is shown in Figure ��B� has the drawback that the information in
the shaded region in Figure ��B has been manufactured and is extraneous� This �gure corresponds
to Table �B� The third approximate update semantics� shown in Figure ��C� is similar to the
optimistic approach� shown in Table �C� There is no extra or missing information� however� wrong
information is created� The department
Shoe� in the shaded region should be
Toy��

Each approximate semantics has drawbacks� but the second semantics appears to be preferable�
The extraneous information is present in the second tuple of Table �B	 hJoe� Toy� ��� ��i� If we
consult this table on January �
 and ask�
what department is �actually� will� Joe work in on
January ��"�� the result will be	 Toy� The result is slightly misleading� as Joe may be �red� On
January �
� all we should know is that Joe started working in the Toy department on January ���
and is still working there� �Table � would return no department for this query� because we do not
know whether he will be working on January ���� If the same question�
what department is Joe
in on January ��"�� is asked on January ��� both Table �B and Table � will reply�
Toy�� because
we now know Joe was not �red�

In summary� the approximate semantics sometimes represents as the case information that will
in fact be true if nothing changes� In defense of this semantics� the current situation� in which data
models� such as that underlying SQL� do not support storing NOW � extra information of a similar
�avor is routinely represented�

We provide an approximate semantics for modi�cations consistent with the second approach
that avoid the two new types of time values and that thus may be stored using the formats proposed
by existing temporal data models� But �rst we introduce some useful functions�

	�� Auxiliary Functions

We de�ne the functions mine and maxe as follows� where a and b are in T � Superscript
e� denotes

eventual�� and the intuition behind the de�nitions is to make the di�erence and intersection
operators produce the results that they would eventually produce� if one waited to apply them long
enough�

mine�a� b�
�
�

�����
����

a if a � T � b � NOW
b if a � NOW � b � T
NOW if a � NOW � b � NOW
min�a� b� otherwise

��

maxe�a� b�
�
�

��
����

b if a � NOW � b � T
NOW if a � NOW � b � NOW
max�a� b� otherwise

If exactly one of the arguments is NOW � the other argument is returned� and if both arguments
are NOW � NOW is returned� The functions reduce to the conventional counterparts if both a and
b are in T �

We de�ne the maximum time of a modi�cation statement� e�g�� �vts�vte� DELETE FROM rvt
WHERE cond as follows� where ct is the current time�

max time��vts� vte�� ct �
�
� max�vts� ��vte��

ct
�

Function max time will be used in the de�nitions of deletion and update in Section ����
We de�ne the eventual di�erence� �e� of intervals as follows� where a and c are in T and b and

d are in T� as follows�

�a� b� �e �c� d�
�
�

�
�a�mine�b� c��� �maxe�a� d�� b� if a � ��d��forever � c � ��b��forever
�a� b� otherwise

The eventual di�erence is identical to the conventional di�erence operator� except that the value
of NOW is bound to forever �

We de�ne the eventual intersection �	e� of two intervals� where a and c again are in T and b

and d are in T � as follows�

�a� b� 	e �c� d�
�
�

�
�maxe�a� c��mine�b� d�� if a � ��d��forever � c � ��b��forever
� otherwise

The eventual intersection is identical to the conventional intersection� except that the value of
NOW is bound to the maximum value in T � Two tuples that do not currently overlap may still
have an eventual intersection� For example� the intervals ����NOW � and ���� ��� do not overlap at
time ��� but if they do not change� they will eventually overlap� and their eventual intersection is
���� ����

	�� Approximate Modi�cation Semantics

We can now de�ne the approximated semantics of modi�cations involving NOW �
Insertion into a valid�time relation rvt is de�ned as follows�

VALIDTIME PERIOD �vts�vte� INSERT INTO rvt VALUES �A�
�
�

rvt
 rvt �
vt f�A� �vts� vte��g

A tuple is added to the relation� We associate with the tuple the valid�time interval �vts�vte�
speci�ed in the insertion statement� This semantics is identical to the accurate semantics�

Deletion from a valid�time relation rvt is de�ned as follows� where mt � max time��vts� vte�� ct �
is the maximum time of the delete statement� and VT� and VTa denote the start and end points
of valid�time interval VT�

VALIDTIME PERIOD �vts�vte� DELETE FROM rvt WHERE cond
�
�

rvt
 ftjt � rvt��cond�t� � �VT� � ��vte��mt � vts � ��VTa��mt��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� �VT� � ��vte��mt � vts � ��VTa��mt �

t�VT� � �s�VT��e �vts� vte�� � t�VT�
� ��g

��

speci�ed in the delete� at the maximum time� are retained unchanged� In the second and third
lines� tuples that both ful�ll the condition and overlap at the maximum time have their valid�time
intervals reduced by the parts that overlap the interval speci�ed in the delete statement�

Update of a valid�time relation rvt is de�ned as follows� where A � v as usual is short for
A� � v�� � � � � An � vn and is the explicit attributes� which are assigned new values� �For brevity�
we assume that all explicit attributes change values��

VALIDTIME PERIOD �vts�vte� UPDATE rvt SET A 	 v WHERE cond
�
�

rvt
 ftjt � rvt��cond�t� � �VT� � ��vte��mt � vts � ��VTa��mt��g �
vt

ftj�s � rvt�cond�s� � t�A� � s�A� �VT� � ��vte��mt � vts � ��VTa��mt �

t�VT� � �s�VT��e �vts� vte�� � t�VT�
� ��g �vt

ftj�s � rvt�cond�s� � t�A� � v �VT� � ��vte��mt � vts � ��VTa��mt �

t�VT� � �s�VT� 	e �vts� vte� � t�VT�
� ��g

The �rst three lines are identical to the three lines for the delete statement� In lines four and �ve�
tuples with the new explicit attribute values are inserted� The intervals associated with the new
tuples are the eventual intersections of the intervals currently associated with each tuple and the
interval speci�ed in the update�

	�� Examples of the Approximate Semantics

From the auxiliary functions de�ned in Section ���� it follows that the approximate semantics for
modi�cations involving NOW reduce to the conventional semantics when only �xed intervals are
considered� For this reason� we only show modi�cation examples involving NOW �

The �rst example is an update of a tuple containing NOW � We use the update in Figure � and
assume the database contains the tuple hJoe�Shoe� ���NOW �i� The update occurs at time ���

VALIDTIME PERIOD �
����� UPDATE Emp SET Dept 	
Toy
 WHERE Name 	
Joe

The result of the update is as follows�

� �vt fhJoe�Shoe� f���NOW ��e ���� ���gig �vt fhJoe�Toy� f���NOW � 	e ���� ���gig
� fhJoe�Shoe� ��� ���i� hJoe�Shoe� ����NOW �i� hJoe�Toy� ���� ���ig

The maximum time of the update is ��� All tuples in the relation are a�ected by the update� which
explains the initial empty set� The two next terms reduce the interval associated with the existing
tuple and update Joe to be with the new department� The result is that shown in Table �B�

The next example is a deletion on a relation with the tuple hJoe�Shoe� ����NOW �i� The deletion
occurs at time ���

VALIDTIME PERIOD �
��NOW� DELETE FROM Emp WHERE Name 	
Joe

The maximum time of the delete statement is ��� Because the interval speci�ed in the delete
statement totally overlaps the tuple in the relation at the maximum time� the result is the empty
relation� Note that if the delete statement had been executed at the time ��� the maximum time
of the delete statement would then be ��� At time ��� the valid�time interval associated with the
tuple and the interval speci�ed in the delete statement do not overlap� The delete statement would
then not have a�ected the tuple�

��

This section describes the main di�erences between the accurate semantics proposed in Section �
and the approximate semantics just proposed�

For the approximate semantics� we are looking at the database as of the maximum time because
if the user is making changes to future data� the user is looking at the current database content as
of a time into the future� This leads to the following di�erences�

� For the approximate semantics� only two types of intervals are stored in the database� namely
constant intervals �a�b� and increasing intervals �a�NOW �� whereas three interval types using
the max v and minv functions are needed to store the results of modi�cations that follow the
accurate semantics�

� The approximate semantics simpli�es the extensionalization of tables referenced in queries�

� The approximate semantics is more easily implementable in an existing temporal data model
or in a layer on top of an existing relational DBMS� e�g�� using a substitute value for NOW ����
����

� The e�ect of a delete or an update depends on when it is executed in the approximated
semantics� whereas modi�cations are time�independent in the accurate semantics�

	 Related Work

Most prominently� this paper proposes de�nitions of modi�cations involving NOW and explores
how the resulting semantics can be accommodated in the database� To the best of our knowledge�
the semantics of modi�cations involvingNOW have not been de�ned previously� Only modi�cations
involving �xed time intervals have been de�ned and implemented�

In the perhaps most closely related paper ����� the semantics of NOW is described in substantial
detail� It proposes a formal framework for the meaning of databases with variables in general�
and it explores the querying of variable databases� but does not consider modi�cation� To be
consistent with that paper�s approach� we borrow its notion of extensionalization of time values
and extensionalization diagrams� We extend that paper by de�ning the semantics of modi�cations
involving NOW �

The approach of timestamping tuples with intervals� as adopted in this paper� generalizes the
timestamping tuples with single time point values� e�g�� as done in time series� With using an
interval representation� we can capture constant� increasing� and decreasing intervals� Had single
time points been used instead� it would only be possible to capture either increasing or decreasing
intervals� by assuming that the recorded time is the start �or stop� time and assuming the �implicit�
stop �or start� time to be NOW �

Lorentzos and Manolopoulos ���� extend SQL��� to handle general interval data� e�g�� intervals
in space or time� The semantics of modi�cations involving intervals is de�ned� and details are
provided for how to retain relations coalesced� However� the use of variables such as NOW is not
considered� The modi�cation semantics therefore cover only the special case when intervals have
their end points in domain T �

Finger and McBrien ���� ��� discuss the semantics of NOW in connection with transactions�
exploring which value to use for NOW when performing updates in a transaction� They showed
that if a value for NOW is not chosen carefully� the correctness of transactions can be violated�
However� the issues of which value to choose for NOW in a transaction are orthogonal to the issues
discussed in this paper� the semantics of modi�cations involving NOW are independent of the
values used for NOW �

��

detail� showing that the commit time of a transaction has to be used as the value assigned to NOW
when a modi�cation statement in the transaction leads to a modi�cation of the database� Again�
the issues of which values to use for NOW are orthogonal to the issues discussed in this paper�

 Summary and Research Directions

The paper�s main contribution is to explore and formally de�ne the semantics of modi�cations in
relational databases� where NOW and NOW � � may be stored in timestamp columns in the
database� In addition� the paper considers the implementation of such modi�cations�

The de�nitions of modi�cations#insertion� deletion� and update#proceed in three steps� First�
the semantics of modi�cations on ground databases� not containing variable NOW are de�ned�
Then the semantics of modi�cations in the presence of NOW are de�ned based on these semantics�
Finally� these semantics are extended to cover also now�relative time values of the form NOW ���

These semantics involve extending the conventional minimum and maximum functions� as well
as the interval intersection and di�erence operators� It is shown that the databases that result from
modi�cations involving NOW can be represented by using three types of intervals with three types
of values	 normal intervals with �xed end points� a new kind of intervals that increase with time�
and another new kind of intervals that decrease as time passes� These intervals involve two new
kinds of time values� By including a fourth kind of interval� now�relative values are accommodated�

The paper also proposes an approximate semantics for modi�cations involving NOW that is
easily implementable in existing temporal data models or on top of a relational DBMS using existing
data types for time�

By de�ning modi�cations� the paper consistently extends past work ���� and completes the
understanding of the semantics� the querying� and the modi�cations of NOW �relative databases�

It is challenging to index intervals containing the two new types of values used in the de�nition
of the accurate semantics� Existing index structures generally support only �xed values� how to
index these new values that change as time progresses remains an open issue� though some work
has been done �e�g�� �����

Acknowledgments

This research was supported in part by the Danish Technical Research Council through grant
�������� by the CHOROCHRONOS project� funded by the European Commission DG XII� con�
tract no� FMRX�CT�
����
� by a grant from the Nykredit corporation� and by grants IRI��
���
�
and IIS�������� from the U�S� National Science Foundation�

References

��� I� Ahn and R� T� Snodgrass� Partitioned Storage for Temporal Databases� Information Systems�
�����	�
� ���� �����

��� J� Bair� M� B�ohlen� C� S� Jensen� and R� T� Snodgrass� Notions of Upward Compatibility of
Temporal Query Languages� Wirtschafts Informatik� �����	�� ��� �����

��� J� Ben�Zvi� The Time Relational Model� Ph�D� thesis� Computer Science Department� UCLA�
�����

��� R� Bliujute� C� S� Jensen� S� Saltenis� and G� Slivinskas� R�Tree Based Indexing of Now�Relative
Bitemporal Data� In Proceedings of the VLDB Conference� pp� ��� ��
� �����

��

Proceedings of the VLDB Conference� pp� ��� ���� ���
�

�
� M� H� B�ohlen and C� S� Jensen� Seamless Integration of Time into SQL� Technical Report
R��
 ����� Aalborg University� Denmark� ���
�

��� J� Cli�ord and A� U� Tansel� On an Algebra for Historical Relational Databases	 Two Views�
In Proceedings of the ACM SIGMOD Conference� pp� ��� �
�� �����

��� J� Cli�ord and A� Croker� The Historical Relational Data Model �HRDM� and Algebra Based
on Lifespans� In Proceedings of ICDE� pp� ��� ���� �����

��� J� Cli�ord and T� Isakowitz� On The Semantics of �Bi�Temporal Variable Databases� In Pro�
ceedings of the Fourth International Conference on Extending Database Technology� pp� ���
���� �����

���� J� Cli�ord� C� E� Dyreson� T� Isakowitz� C� S� Jensen� and R� T� Snodgrass� On the Semantics
of
NOW� in Databases� ACM TODS� �����	��� ���� �����

���� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introductions to Algorithms� MIT Press
�����

���� C� E� Dyreson and R� T� Snodgrass� Supporting Valid�time Indeterminacy� ACM TODS�
�����	� ��� �����

���� O� Etzion� S� Jajodia� and S� Sripada �eds��� Temporal Databases� Research and Practice�
LNCS ����� Springer �����

���� M� Finger and P� McBrien� On the Semantics of �Current�Time� in Temporal Databases� In
Proceedings of the ��th Brazilian Symposium on Databases� pp� ��� ���� ���
�

���� M� Finger and P� McBrien� Concurrency Control for Perceivedly Instantaneous Transactions
in Valid�Time Databases� In Proceedings of the Fourth International Workshop on Temporal
Representation and Reasoning� �����

��
� S� K� Gadia and S� Nair� Temporal Databases� A Prelude to Parametric Data� ���� Ch� ��
pp� ��

��

���� S� K� Gadia� A Homogeneous Relational Model and Query Languages or Temporal Databases�
ACM TODS� �����	��� ���� �����

���� C� S� Jensen and R� T� Snodgrass� Temporal Specialization and Generalization� IEEE TKDE�

�
�	��� ���� �����

���� C� S� Jensen and C� E� Dyreson �eds��� A Consensus Glossary of Temporal Database Concepts#
February ���� Version� ���� pp� �
� �����

���� N� Lorentzos and R� Johnson� Extending Relational Algebra to Manipulate Temporal Data�
Information Systems� �����	��� ��
� �����

���� N� Lorentzos and Y� Manolopoulos� SQL Extension for Interval Data� IEEE TKDE� ����	���
���� �����

���� J� Melton and A� R� Simon� Understanding the New SQL� A Complete Guide� Morgan Kauf�
mann Publishers �����

��

Kaufmann Publishers �����

���� S� Navathe and R� Ahmed� Temporal Extensions to the Relational Model and SQL� ���� Ch� ��
pp� �� �����

���� Oracle� Oracle�i Application Developer�s Guide Oracle Corporation� �����

��
� R� T� Snodgrass� The Temporal Query Language TQuel� ACM TODS� �����	��� ���� �����

���� R� T� Snodgrass� M� H� B�ohlen� C� S� Jensen and A� Steiner� Adding Valid Time to
SQL�Temporal� ANSI X�H���
����r�� ISO!IEC JTC �!SC ��!WG � DBL�MAD���
r��
November ���
�

���� R� T� Snodgrass� C� E� Dyreson� C� S� Jensen� N� Kline� J� Li� W� Li� M� D� Soo� L� So� and
J� Whelan� The TimeADT System� Release �� in progress�

���� A� Tansel� J� Cli�ord� S� Gadia� S� Jajodia� A� Segev� and R� T� Snodgrass� editors� Temporal
Databases� Theory� Design� and Implementation� Benjamin!Cummings �����

���� K� Torp� C� S� Jensen� and M� H� B�ohlen� Layered Implementation of Temporal DBMSs�
Concepts and Techniques� In Proceedings of the DASFAA Conference� pp� ��� ���� �����

���� K� Torp� C� S� Jensen� and R� T� Snodgrass� E�cient Timestamping in Databases� VLDB
Journal� to appear�

���� G� Wiederhold� S� Jajodia� and W� Litwin� Integrating Temporal Data in a Heterogeneous
Environment� ���� Ch� ��� pp� �
� �����

��

