Modification Semantics in Now-Relative
Databases

Kristian Torp Christian S. Jensen Richard T. Snodgrass

September 16, 1999

TR-43

A TIMECENTER Technical Report

Copyright © 1999 Kristian Torp Christian S. Jensen Richard
T. Snodgrass. All rights reserved.

Author(s) Kristian Torp ~ Christian S. Jensen — Richard T. Snodgrass

Publication History First version September 15, 1999

TIMECENTER Participants

Aalborg University, Denmark

Christian S. Jensen (codirector), Michael H. Béhlen, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, Simonas Saltenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon, Sudha Ram

Individual participants

Anindya Datta, Georgia Institute of Technology, USA

Kwang W. Nam, Chungbuk National University, Korea

Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea

Michael D. Soo, University of South Florida, USA

Andreas Steiner, TimeConsult, Switzerland

Vassilis Tsotras, University of California, Riverside, USA

Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or im-
plied warranties, including, without limitation, the implied warranty of merchantability and fitness
for a particular purpose.

The TIMECENTER. icon on the cover combines two “arrows.” These “arrows” are letters in the
so-called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors
and successors. The Rune alphabet (second phase) has 16 letters, all of which have angular shapes
and lack horizontal lines because the primary storage medium was wood. Runes may also be found
on jewelry, tools, and weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Most real-world databases record time-varying information. In such databases, the notion of
“the current time,” or NOW, occurs naturally and prominently. For example, when capturing
the past states of a relation using begin and end time attributes, tuples that are part of the
current state have some past time as their begin time and NOW as their end time. While the
semantics of such wvariable databases has been described in detail and is well understood, the
modification of variable databases remains unexplored.

This paper defines the semantics of modifications involving the variable NOW. More specif-
ically, the problems with modifications in the presence of NOW are explored, illustrating that
the main problems are with modifications and tuples that reach into the future. The paper de-
fines the semantics of modifications—including insertions, deletions, and updates—of databases
without NOW, with NOW, and with values of the type NOW + A, where A is a non-variable
time duration. To accommodate these semantics, three new timestamp values are introduced.
An approximate semantics that does not rely on new timestamp values is also provided. Finally,
implementation is explored.

1 Introduction

Most real-world database applications record time-varying information. It is typical to represent
the time to which the fact(s) recorded by a tuple in a relational database apply by a pair of time-
valued attributes, which then encode a time interval. Many of the tuples in a database typically
record facts that apply to a time interval that stretches from some past time to the current time,
prompting a need for a time value that denotes the “current time” in the to-time attribute of these
tuples.

While SQL-92 [22] includes the datetime value functions CURRENT_DATE, CURRENT_TIME, and
CURRENT_TIMESTAMP, these functions cannot be stored directly as values of attributes in relations.
In the absence of a “current time” value in SQL’s DATE, TIME, and TIMESTAMP domains or in the
corresponding domains offered by database vendors, common ad-hoc solutions are to use either the
null value or the maximum value of the time domain for the value of the to-time attribute.

Noting the deficiencies of these solutions, the variable NOW that evaluates to the current time
has been introduced as a value of an attribute that may be stored in the database. The semantics
of databases including this variable have been examined in some detail [10, 14, 16, 24]. While these
papers have considered NOW in queries, they provide few details on the modification of variable
databases.

In the present paper, we define the semantics of modifications of variable databases containing
NOW and NOW + A, and provide means of supporting these semantics. In addition, we show how
modifications under this semantics may be implemented within a DBMS and in a user-application.
An approximate semantics that is simpler to implement, but carries with it lower fidelity, is also
provided.

The presentation is organized as follows. We first give a simple example to indicate the subtleties
and pitfalls inherent in modifications on databases containing NOW as well as of the practical im-
portance of such modifications. In Section 3, the semantics of modifications of databases without
NOW is defined. Section 4 defines the semantics of modifications of databases with NOW as
a consistent extension. Section 5 extends the approach to also accommodate values of the form
NOW + A, thereby affording a general solution, with Section 6 providing details on how to imple-
ment the semantics defined in the two previous sections. We then provide a simplified, approximate
semantics of modifications of variable databases that is easier to implement, in Section 7. Related
work is covered in Section 8, and Section 9 concludes the paper.

We motivate the problem addressed in this paper with an example that illustrates the utility
of NOW in capturing time-varying information in the database, but also demonstrates that the
semantics of modifications of tuples timestamped with NOW is unclear.

When modifying tuples timestamped with intervals not including NOW, the interval affected
by the modification is the intersection of the interval associated with the tuple and the interval
specified in the modification [1]. To exemplify, in Figure 1 we have stored the tuple (Joe, Shoe,
[10,15)), and we want to update all persons in the Shoe department to be in the Toy department
in the interval [10,20). The result is that Joe will be with the Toy department in the interval
[10,15). (For simplicity, we assume that all dates are in January during some year, and we utilize
closed-open intervals.)

Base , <Joe Shoe> Base , <Joe Shoe>
Update ; <Joe, Toy> Update } <Joe, Toy>
Result <908, Sh09>] <Joe, Toy> Result <08, Shoe)] <Joe, Toy>
5 10 15 20 25 Time 5 10 15 20 25 Time
A B

Figure 1: (A) Updating a Fact Without NOW; (B) Updating a Fact With NOW

When allowing intervals to include the variable NOW | it is still desirable that this intersection
semantics be maintained. However, there are problems redefining the intersection operator, as
illustrated in Figure 1B, where Joe is with the Shoe department in the interval [5,NOW). (We
denote NOW with ‘x’.) We have also indicated an update statement that, at the 15th of January,
updates Joe to be with the Toy department in the interval [10,20).

We want to determine the outcome of the update. Before the 5th of January, Joe is not in
the database. In the interval [5,10), Joe was with the Shoe department, and this interval is not
affected by the update, so Joe remains there. In the interval [10,15), Joe was also with the Shoe
department, and the department value should be updated for this interval. The semantics of the
update becomes unclear for the interval [15,20), and it is also unclear what happens after the 20th
of January. This is indicated by the dashed line in Figure 1B.

If we use a pessimistic semantics, Joe could be fired tomorrow, and so we cannot update Joe
for the latter interval. Further, with the pessimistic approach Joe is not associated with the Shoe
department after the 20th of January either. We can also apply an optimistic semantics and
assume that Joe is not going to be fired in the near future. We then update Joe to be with the
Toy department for the interval [15,20), and associate Joe with the Shoe department again after
the 20th of January. A third, intermediate approach would be to bind the value of NOW to the
current time and then execute the update, with the result that Joe’s department is changed over
the interval [10,15). These three possible outcomes are shown in Table 1.

Each result reflects its underlying assumptions. With the pessimistic semantics in Table 1A,
we assume that Joe is fired tomorrow. With the optimistic semantics in Table 1B, we assume Joe
is with the company after the 20th of January. Finally, in Table 1C, we assume that NOW is the
current time, i.e., the 15th of January.

3 Modifications of Ground Databases

As an outset, we define the semantics of modifications of databases without the variable NOW,
termed ground databases because they are variable-free. This semantics is used to identify the

Joe Shoe 5 10 Joe Shoe 5
3 T 10 5 Joe Toy 10 20
¢ oy Joe Shoe 20 NOW
A B
| Name | Dept. | V-Begin | V-End |

Joe Shoe 5 10

Joe Toy 10 15

Joe Shoe 15 NOW

C

Table 1: (A) Optimistic, (B) Pessimistic, and (C) Intermediate Semantics of the Update in Fig-
ure 1B

extensions needed to define modifications of databases with the variable NOW, termed wvariable
databases [10]. Later we compare the semantics of modifications on ground and variable databases.
Most existing temporal data models support intervals without NOW in both queries and modifi-
cations, see, e.g., [6, 26].

We focus on the valid-time aspect of the tuples, i.e., when the information recorded by the tuples
is true in the miniworld [19]. The transaction-time aspect, when tuples are current in the database,
is a simpler special case because transaction times are maintained by the database management
system itself and do not extend into the future. The subtleties examined here thus concern only
valid time.

3.1 Preliminaries

We first define the union of valid-time relations and the interval difference and intersection opera-
tors, which are used in the definitions of modifications.

We utilize the conventional relational model, but partition the attributes into so-called explicit
attributes and two datetime attributes, V-Begin and V-End, denoting an interval in valid time. Let
ryt and $,; be two union-compatible valid-time relations with schema (A4, ..., A,, V-Begin, V-End),
where the A; are the explicit attributes and VT = [V-Begin, V-End) record the valid time. The
union operator (U") for valid-time relations is defined as follows.

A
Tt th Syt — {t|t ery Vit e S’Ut}

The valid-time union operator is identical to the conventional relational algebra union operator
for ground relations, except that the arguments can be valid-time relations, with their valid-time
attribute just carried along.

We assume a time domain 7 that is isomorphic to a finite subset of the natural numbers, with
the normal total order, <. We denote the minimum and maximum values of the time domain
beginning and forever, respectively. The meaning of a closed-open interval is defined as follows,
where ¢ and b are in T.

[ab)é {tt <ant<b} ifa<b
’ N 0 otherwise

If the interval start value is smaller than the interval end value, the interval consists of the values
between ¢ and b, including a. Otherwise, the interval denotes the empty set.

gy 2 lme) @)} ifa<dac<b
la,0) le;d) { {la,b)} otherwise

The first line applies when the argument intervals overlap. Zero, one, or two non-empty intervals
may be returned. The second line returns the interval [a,b) unchanged if this interval is before or
after interval [c,d). The three drawings in Figure 2 illustrate the interval difference operator.

a b a b a b
— — >
c d c d c d
| | —
_ d b ac db
Result: (empty interval) — > —
) @) ©)

Figure 2: Intervals Returned by the Difference Operator

The intersection operator of intervals (N) is defined as follows, where min and mazx are the
conventional minimum and maximum functions returning the smallest and largest argument, re-
spectively.

[a,b) N [e,d) 2 [maz(a,c), min(b,d))

Two comments are in order. First, intersection is not strictly needed, because [a,b) N [c,d) is
equal to [a,b) — ([a,b) — [c,d)). However, interval intersection is convenient in the later definitions.
Second, the union of intervals can also be defined in terms of the min and maz functions on the
end points, but the union of intervals is not needed in this paper.

3.2 Semantics of Temporal Modifications on Ground Databases

We define insertion, deletion, and update in turn. Insertion into a valid-time relation r,; is defined
as follows, where A is used an abbreviation for Ay,..., A, and [vts,vte) is the valid-time interval
to be associated with the inserted tuples.

A
VALIDTIME PERIOD [vts,vte) INSERT INTO r,; VALUES (A) =
Tt < Ty UV {(4, [vts,vte))}

A tuple is added to the relation. We associate with the tuple the valid-time interval [vts,vte)
specified in the insert statement. If such an interval is not specified, an interval of now to forever
is used, to effect temporal upward compatibility [2].

Deletion from a valid-time relation r,; is defined as next. Again, A abbreviates Aq,..., A,.

VALIDTIME PERIOD [wts,vte) DELETE FROM r,; WHERE cond 2

rot 4 {t|t € ry(—cond(t))} U
{t|3s € rye(cond(s) A t[A] = s[A] At[VT] € (s[VT] — [vts,vte)) At[VT] # 0)}

The first line ensures that tuples in r,; not satisfying condition cond are included in the result. In
the second line, tuples satisfying the condition have their time interval reduced by the part that

a tuple satisties the condition, but does not overlap the interval specified 1n the deletion, the tuple
is included in the result unchanged.

In the definition of updates that follows, we assume for brevity that all explicit attributes
change values. This simplification does not restrict the generality of the results of this paper. Up-
dating a valid-time relation r,; is defined as follows, where A = v abbreviates A; = vy, ..., A, = v,.

A
VALIDTIME PERIOD [wts,vte) UPDATE r,, SET A = v WHERE cond =

rot 4 {t|t € rys(—cond(t))} U
{t|3s € ryi(cond(s) A t[A] = s[A] At[VT] € (s[VT] — [vts,vte)) At[VT] # 0)} U
{t|3s € ryi(cond(s) At[A] = v At[VT] = s[VT| N [vts,vte) At[VT] # 0)}

The first and second lines are identical to the two lines of the delete statement. The third line adds
tuples with the updated attribute values to the result. The valid-time intervals associated with these
updated tuples are the (non-empty) intersections of the valid-time interval currently associated with
each corresponding argument tuple and the interval specified in the update statement.

3.3 Examples of Modifications on Ground Databases

This section exemplifies the temporal modification statements on ground databases defined above.
First, an example of a delete is given. Assume the database contains the tuple (Joe, Shoe, [5,20))
and that we want to delete Joe in the interval [10,15). This can be written as follows.

VALIDTIME PERIOD [10,15) DELETE FROM Emp WHERE Name = °’Joe’

The result of the delete is as follows.

0 uvt {(Joe, Shoe, {[5,20) — [10,15)})}
= {(Joe, Shoe, [5,10)), (Joe, Shoe, [15,20))}

From the single tuple stored in the relation, we remove Joe in the interval [10, 15), which results in
two tuples.

Next, assume again that the database contains the tuple (Joe, Shoe, [5,20)) and that we want
to update Joe to be with the Toy department in the interval [10,30). This can be written as follows.

VALIDTIME PERIOD [10,15) UPDATE Emp SET Dept = ’Toy’ WHERE Name = ’Joe’

The result of the update is as follows.

0 U¥t {(Joe, Shoe, {[5,20) — [10,30)})} U’ {(Joe, Toy, {[5,20) N [10,30)})}
= {(Joe, Shoe, [5,10)), (Joe, Toy,[10,20))}

From the single tuple stored in the relation, we remove Joe in the interval [10,30). This results
in the tuple (Joe, Shoe, [5,10)). Further, we update Joe to be with the Toy department in the
intersection of the intervals [5,20) and [10,30), so that Joe is with the Shoe department in the
interval [10, 20).

Ground databases only evolve through the explicit application of user-supplied modification state-
ments. The presence of variable NOW in its tuples permits a database to evolve purely through
the passage of time.

In this section we formally define the semantics of modifications of the variable databases that
result from introducing NOW. We first list our requirements to the semantics of modifications
in the presence of NOW. This is followed by an example that illustrates the desired semantics.
Two necessary extensions are identified and defined, namely (a) the extension of the domain of
time values and (b) the extension of the conventional interval difference and intersection operators
to handle the extended time domain. Finally, the semantics of modifications involving NOW are
defined and exemplified.

4.1 The Use of NOW

The use of NOW as an interval end-point helps us to better record information that remains true
from some past time until the increasing current time. With NOW available, we avoid solutions
such as using the maximum value in the time domain as a substitute interval-end time, which, using
our example database, results in the database indicating that Joe is with the Shoe department for
more than 7000 years (assuming the standard DATE type, with a maximum value of 9999-12-31).

In order to accommodate the variable NOW in the database, special support is needed in
both queries and modifications. The meaning of databases with NOW and the querying of such
databases has been covered extensively elsewhere [10]. However, the impact on modifications of
the presence of NOW in the database as well as in the modification statements themselves has not
been covered, even though many temporal data models, e.g., [3, 6, 7, 8, 17, 20, 26, 32], assume that
NOW can be stored in the database.

Before defining the semantics of modifications on variable databases, we specify three require-
ments to the accommodation of NOW.

Requirement R1 The conventional insert, delete, and update statements should be extended to
permit constant intervals, i.e., [a,b), as well as now-relative intervals, i.e., [a, NOW) and
[NOW ,b), as user input.

For example, the last statement in Section 3.3 used the ground interval [10, 15); it should be
possible to use a now-relative interval in its place.

Requirement R2 The semantics of modifications on variable databases should reduce to the
semantics of modifications on conventional, ground databases. The meaning of a variable-
database modification should be the same as the meaning of a ground-database modification
in the case that the variable database in fact contains no occurrences of NOW.

Requirement R3 The database that results from the modifications to be defined on the variable
database should be representable in the common first-normal-form format that employs two
timestamp columns.

The following two extensions are needed to define the semantics of variable-database modifica-
tions that meet these requirements.

e The time domain from which the interval end-point values are drawn must be extended to
include NOW and other values, as we shall see.

e The conventional interval difference and intersect operators that are used in the definition of
the modification semantics must be extended to accommodate the new kinds of end values.

mvolving NOW'.

4.2 Motivating Example

To convey the intuition for what the semantics of modifications involving NOW should be, we
show the desired results of sample updates with and without NOW. We use the two updates in
Figure 1, illustrating them using eztensionalization diagrams [10]. These diagrams are very useful
for illustrating intervals containing NOW. The z-axis denotes reference time, the time when an
interval is observed. The y-axis denotes valid time. The regions in these diagrams then convey
the (possibly) time-varying meanings, or extensionalizations, of intervals in tuples stored in the
database.

For intervals without NOW | extensionalization diagrams convert the illustration of an interval
from a line, as shown in Figure 1, to a rectangle, as shown in Figure 3A. Figures 3A and B illustrate
an update not involving NOW . The region bounded by the solid line representents the tuple stored
in the database, and the region bounded by the dashed line represents the modification. The solid
rectangle in Figure 3A indicates that Joe is with the Shoe department in the interval [5,15). This
information was stored at time 5 and extends to the right. The dashed rectangle indicates that at
time 15, we update Joe to be with the Toy department in the interval [10,20). The result is shown
in Figure 3B, which shows that Joe is now with the Shoe department in the interval [5,10) and with
the Toy department in the interval [10,15). We cannot update Joe for the interval [15,20) because
there is no information to update in this interval. The update only affects the overlap of the two
rectangles.

In Figure 3C, we show an update involving NOW. The database contains the tuple (Joe,
Shoe, [5,NOW)), indicated by the solid triangle. The end time of NOW makes the top of the

VT VT
0 1 20 +
To
15+ Y 15+
Toy
10 + Shoe t-----e----- 10 + Shoe
5 5+
10 15 20 Time 10 15 20 Time
A B
VT VT
Shoe
20 + 20 +
15 + 15 + Toy
10 + 10 +
Shoe
5 5+
10 15 20 Time 10 15 20 Time
C D

Figure 3: The Results of Updates Without and With NOW

Interval 1s |0,7), and so on. Agaln, we update Joe to be with the Loy department in the interval
[10,20).

Figure 3D shows the desired result of the update where, as for updates without NOW, we update
only the overlap of the region specified in the update and the region specified by the tuple (as shown
in Figure 3C). By updating exactly the overlap, we avoid basing the semantics on assumptions such
as the optimistic or pessimistic assumptions discussed in the introduction.

Having motivated the desired semantics, the next task is to precisely define the semantics and to
illustrate how these semantics can be accommodated with two new types of time-attribute values.

4.3 Road Map for Accommodating the New Semantics

The remainder of this section defines the semantics of modifications involving NOW. The goal is
to define a semantics consistent with the semantics for ground databases defined in Section 3.2 and
to reuse the template used there.

To accommodate intervals containing NOW, as demonstrated in Section 4.2, we have to extend
the interval intersection (N) and difference (—) operators used in the definitions of delete and update
in Section 3.2. As the first step in doing so, we must determine the set of values for interval end-
points that we have to store in the database and that the generalized operators must then contend
with. For example, we must determine what interval-end points are needed to accurately store the
intersection of two intervals such as [5,NOW) and [10,20) in the database (see the (Joe, Toy) tuple
in Figure 3D).

We extend the domain of interval end-points with two additional types, each of which can be
efficiently represented (we term such intervals normal form intervals). We then proceed to define
the extensions of the interval intersection and difference operators in Section 4.6 and use these new
operators for defining the semantics of modifications involving NOW in Section 4.7.

4.4 Auxiliary Functions

So far, we have employed the time domain 7 that is isomorphic to a subset of the natural numbers
and contains only ground values. We proceed to introduce time domain 77 = 7 U NOW that in-
cludes the variable NOW. While including the variable NOW is convenient for end-users, we need
to provide a semantics for variable databases. We do so by means of a mapping from a variable
database to a fully ground data model, which does not include such variables. A theoretical frame-
work for providing a logical interpretation, or “meaning,” of a variable database, i.e., a “translation”
from variable to extensional level, may be based on a homomorphic mapping from variable-level
databases to extensional-level databases [9]. This mapping is termed an eztensionalization, and is
denoted [].

The extensionalization of an element of the time domain at a time ¢ (“¢” for chronon) denotes
its value on the y-axis of the extensionalization diagram. Returning to Figure 3D, the extensional-
ization of the start time for (Joe, Shoe) is 5, for any time ¢ > 5. The extensionalization of the stop
time of (Joe, Shoe) is more interesting: at ¢ =5 it is 5, at ¢ = 10, 10, at ¢ = 15, it is back to 10.

With the domain of a being 7, we define the extensionalization of a time value at time c as
follows.

a otherwise

Al c ifa=NOW
[a]. :{

As examples, [5]; = 5, [5],; = 5, and [NOW],, = 17. Note that the extensionalization is always
an element of 7, and is thus isomorphic to (and can be represented by) a natural number.

cations for variable databases. lheretore, we need generalized minimum and maximum Ifunctions,
min’ and maz?, respectively, that accommodate the variable NOW.

Let the domain of a and b be defined recursively as 73 = T1U {min"(a,b)} U {maz’(a,b)},
where @ and b are elements of T5. T is a very general domain, consisting of natural numbers and
expressions containing arbitrarily nested applications of min? and max?. Examples of elements of
7> include 5, min®(5,17), and min”(6, maz’ (4, NOW)). In the next section we will restrict this
domain considerably. However, the exposition is smoother if we start with this general domain.

Elements of 75 involving NOW are particularly interesting. We show three such examples in
Figure 4 using extensionalization diagrams. The examples show that the min? function (A) gives
the time value an upper bound, that the maz" function (C) gives the time value a lower bound,
and that the nesting of a maz? function in a min® function (B) gives the time value both a lower
and an upper bound. Notice that the sloping lines follow the diagonal.

VT
10 C
8
6 B
4 I
2 A
2 4 6 8 10 Time

Figure 4: (A) min”(2, NOW), (B) min®(6, max’(4, NOW)), and (C) maz" (8, NOW)

We define the meaning of the min’(a,b) and maz"(a,b) functions via their extensionalizations.

[min”(a,0)], 2 min([a],.[0].)

[maz’(a,0)], = maz([a,, [],)

The min’ and max? functions reduce to their conventional counter-part when the arguments
are from the domain 7.

min’(a,b) = min(a,b) ifa,beT
maz’(a,b) = max(a,b) ifa,beT

Note that the extensionalization of each element of 75 is also a natural number.
The extensionalization of an interval [a,b) is defined as follows.

2

[[a,0)]. = [lal., [0].)

4.5 Interval Types for Modifications Involving NOW

We use a domain of interval end-points given by 7y = T U {min”(a, NOW), maz’(a, NOW)},
where a € T, which restricts domain 75 from the previous section. It turns out that this domain
of values is sufficient for representing the results of the modifications that we are about to define

8 8 [3, min’ (7,NOW)) 8 [max’ (3NOW), 7)
6 6 6
[37)
4 4 4
2 2 2
2 4 6 8 10 Time 2 4 6 8 10 Time 2 4 6 8 10 Time
A: Fixed Interval B: Increasing Interval C: Decreasing Interval

Figure 5: Interval Types Needed for Modifications Involving NOW

formally. Intervals using the three types of values in 7Ty, termed canonical intervals, are shown in
Figure 5.

Figure 5A exemplifies a conventional fixed interval of type [a,b), specifically, [3,7). Figure 5B
shows an increasing interval of type [a, min”(b, NOW)), specifically [3, min"(7, NOW)). Note that
the interval in Figure 5B may continue to grow; this is specified as [a, min"(forever, NOW)).
Figure 5C shows a decreasing interval of type [maz(a, NOW),b), specifically, [max’ (3, NOW),7).
Note again the special case, specified as [maz”(beginning, NOW),b), where the interval starts at
beginning. Also note that as time proceeds, the duration of the interval shrinks, until the interval
is empty.

4.6 Extending the Interval Difference and Intersection Operators

Having established 7y as the domain of interval end points, the next step is to extend the interval
difference and intersection operators to apply over such intervals. These operators are used in the
definition of conventional modifications (Section 3.2) and will be used in the next section to define
the semantics of modifications involving NOW.

The cases we must consider when extending the interval difference and intersection operators
are the following, where the domain of a, b, ¢, and d is T, and int-opr is the extended difference
operator (—") or intersect operator (NY).

[a,b) [c,d)
[maz’(a, NOW),b) int-opr [maz’(c, NOW),d) (1)
[a, min’ (b, NOW)) [e, min®(d, NOW))

Let the domain of «, 3, 7, and 0 be T;. The extended interval difference operators (—") is
defined as follows.

10

114,€),10,0), mar\&, c), min-(min(o,0), NUW))y
if (a, 3,6 € T Ay=maz"(c, NOW)A(a<dAc<f))
([0, [, B), [maz® (maz(e,), NOW), min(8,))}
if (a, B,y €T A =min’(d, NOW)A(a<dAvy<f))
v Ty s {Imaz®(a, NOW),c), [maz® (0, NOW),3)}
@ 8) =¥ [7,9) if ((a = maz’(a, NOW)AB,0 € T)A
(y=cVy=maz"(c, NOW))A(a<dAc<p))
{let, min®(y, NOW)), [d, min” (b, NOW))}
if ((a,y € T AB=min"(b, NOW))A
(0 =dVd=min’(d, NOW)) A (a <dAc<b))
[{[,0)} otherwise

1>

The definition accommodates all nine cases. Note first that the extended difference operator reduces
to the conventional difference operator if the domain of end points is 7. These situations are covered
by the first and last cases in the definition.

Second, note that the third case in the definition takes a constant and an increasing interval as
inputs and returns a decreasing interval. This corresponds to subtracting the shape in Figure 5B
from the shape in Figure 5A, returning a shape as shown in Figure 5C. As an example, Figure 6
visualizes [3,7) =" [4, min" (6, NOW)), illustrating also how the third case can return three intervals.
In Figure 6A, the extensionalization of the interval [3,7) is illustrated by the solid lines, and the

VT VT VT
10 10 10
8 8 8
6 e 6 2 6 3

[37) - [4 min' (6NOW)) 3 1
e 4 i 4 5
2 2 2

2 4 6 8 10 Time 2 4 6 8 10 Time 2 4 6 8 10 Time

A B C

Figure 6: Extended Interval Difference Example

extensionalization of the interval [4, min’(6, NOW)) is given by the dashed line. The three result
intervals are shown in Figure 6B. The first interval is [3,4), the second is [6,7), and the third
is [maz’(4, NOW),6). This corresponds to the order in which the intervals are specified in the
definition of —". (Figure 6C will be addressed shortly.)

The remaining cases in the definition of the difference can be understood in a similar way.

11

1>

(0 8) (" [7,0)
(ma (o), min(8,)
if (a, 8,7, 0 €T A(a<dNy<f))
[mazx’(maz(a,c), NOW),min([3,0))
if (¢ =aVa=maz"(a, NOW)) A (y=cVy=maz’(c, NOW))A
(B0 eT)N(a<dANc<f))
[max(a,y), min®(min(b,d), NOW))
if ((a,y €T)N(B=bV B =min"(b, NOW))A
(6 =dV 8§ =min®(d, NOW)) A (e < d Ay < b))
W otherwise

Note again that the extended intersection operator reduces to the conventional intersection operator
if the argument interval end points are in 7. This is handled by the first and last cases.

The extensionalization diagrams in Figure 7 explain the second case in the definition of N; the
remaining cases may be explained similarly. The example computes [3,7) NV [maz (2, NOW), 6).

VT VT
10 10
[max’ (3,NOW), 6)
6 [6
//// [3!7)
4 4
2 foeee 2
2 4 6 8 10 Time 2 4 6 8 10 Time
A B

Figure 7: Extended Interval Intersection Example

In Figure TA, the interval [3,7) is illustrated by the solid lines, and [maz"(2, NOW), 6) is given
by the dashed line. The resulting interval, [maz" (3, NOW),6), is shown in Figure 7B.

We have aimed to make the extended interval difference and intersection operators as simi-
lar as possible to their conventional counterparts. This makes the extended operators easier to
understand. Below we summarize the similarities and then the differences.

e The extended operators are equivalent to their conventional counterparts if all interval end
points are in 7. This was required in Section 4.1.

e The results returned by the extended operators are independent of the time they are evaluated,
as is the case for the conventional operators. This independence follows from the definitions,
where no comparisons to the current time occur.

e The intervals returned by the extended difference operator are disjoint. For example, the
three result intervals in Figure 6B do not overlap.

e The intervals returned by the extended difference operators are coalesced [5], so a result
containing, e.g., [5,7) and [7,8) will not occur. Instead the interval [5,8) would be returned.
Again this is fulfilled by design.

12

Intersection operator.
There are three differences between the extended and the conventional operators.

e The extended difference and intersection operators accommodate intervals defined by using
the variable NOW. This was a requirement in Section 4.1.

e The extended difference operator returns from zero to three intervals, whereas the conven-
tional difference operator returns zero, one, or two intervals. In the example in Figure 6, three
intervals are returned. This is unavoidable and happens when finding the difference between
a constant and a non-constant interval, where the non-constant interval is included in the

constant interval, e.g., [10, 15) =¥ [12, min" (14, NOW)) and [10, 15) =" [maz" (12, NOW), 14).

e The results of one extended difference operation can be combined in several ways, whereas
the result of the conventional difference operator is unique. As an example, the result
shown in Figure 6B can also be given as the following three intervals: [maxz" (3, NOW),7),
[3, min’(4, NOW)), and [6, min”(7, NOW)), as shown in Figure 6C.

4.7 Temporal Modification Semantics

With the definitions of the extended difference and intersection operators in place, we can define
the semantics of modifications involving NOW . Examples follow the definitions.

The definitions of the insert, delete, and update of intervals involving NOW on a valid-time
relation r,; are identical to those of modifications without NOW defined in Section 3.2, except that
the extended versions of the interval difference and intersection operators are used. The definitions
are shown below.

Insertion into a valid-time relation 7, is defined as follows. Again, if the validity interval is not
explicitly provided, a default of (bound) NOW to forever is used.

VALIDTIME PERIOD [vts,vte) INSERT INTO r, VALUES (A) é
ot 4 Tor U {(A, [vts, vte))}
Deletion from a valid-time relation r,; is defined as follows.
VALIDTIME PERIOD [wts,vte) DELETE FROM 7, WHERE cond é

ror 4 {t|t € ryi(—cond(t))} U
{t|3s € ryi(cond(s) N t[A] = s[A] At[VT] € (s[VT] =" [vts,vte)) ANt[VT] # 0)}

Update of a valid-time relation r,; is defined as follows.
A
VALIDTIME PERIOD [vts,vte) UPDATE r,; SET A = v WHERE cond =

rot 4 {t|t € ry(—cond(t))} U
{t|3s € rys(cond(s) At[A] = s[A] At[VT] € (s[VT] =Y [vts,vte)) A[VT] # 0)} u¥
{t|3s € ry(cond(s) A t[A] = v At[VT] = (s[VT] N [vts,vte)) ANt[VT] # 0)}

Note that the first two lines are identical to the two lines of the delete. Updates are similar to a
delete followed by an insert; this similarity will be exploited in the implementation described in
Section 6.3.

We examine two sample modifications. First an example of an update without NOW is given.
Assume the database contains the tuple (Joe, Shoe, [5,20)) and that we want to update Joe to be
with the Toy department in the interval [10,15). This may be written as follows.

13

The result of the update, also illustrated in Figure 8, is as follows.

0 U¥t {(Joe, Shoe, {[5,20) = [10,15)})} U* {(Joe, Toy, {[5,20) N? [10,15)})}
= {(Joe, Shoe, [5,10)), (Joe, Shoe, [15,20)), (Joe, Toy,[10,15))}

VT VT
20 20
Shoe Shoe
15 4o 15
Toy Toy
0 10
Shoe Shoe
5 5
5 10 15 20 Time 5 10 15 20 Time
A B

Figure 8: Joe is in the Toy department for the interval from 10 to 15.

From the single tuple stored in the relation, we remove Joe from the Shoe department in the
interval [10, 15). This results in two tuples. Further, we update Joe to be with the Toy department
in the intersection of the intervals [5,20) and [10, 15). The result is the same as the result obtained
by using the earlier definition of update for ground databases.

The next update involves NOW. We use the update in Figure 1 and assume that the database
contains the tuple (Joe, Shoe, [5, NOW)). This update may be written as follows.

VALIDTIME PERIOD [10,20) UPDATE Emp SET Dept = ’Toy’ WHERE Name = ’Joe’

The result of the update is as follows.

0 U¥t {(Joe, Shoe, {[5, NOW) =" [10,20)})} U*t {{Joe, Toy, {[5, NOW) N? [10,20)})}
= {(Joe, Shoe, [5, min” (10, NOW))), (Joe, Shoe, [20, min’(forever, NOW))),
(Joe, Toy, [10,min" (20, NOW)))}

The resulting tuples contain min’ functions and are easily explained by the diagrams in Figure 9.
The solid line denotes the tuple stating that Joe was with the Shoe department in the interval
[5, NOW). The dashed rectangle corresponds to the interval [10,20) for which the update is to be
applied. The update takes effect in the region where the solid-line and dashed-line regions overlap,
and the result is given in Figure 9B.

This result is the desired one. We only update in the overlap between the temporal scope
specified in the update statement and the data stored in the database. It is still correct that Joe
was with the Shoe department in the interval [5, min” (10, NOW)) and [20, min”(forever, NOW)).
Should Joe also have been updated to be with the Toy department in the latter two intervals, a
different temporal scope should have been given in the update statement, e.g, the interval [5, NOW).

14

Shoe
20 e 20 +
15+ Toy 15+ Toy
[10 +
Shoe Shoe
5 5+
5 10 15 20 Time 5 10 15 20 Time
A B

Figure 9: Update of a NOW-Relative Database

5 Semantics of Modifications Involving Now-Relative Values

In some applications, the intervals associated with the tuples do not coincide with the current time,
but still vary with the current time. For example, the hiring and termination of personnel may be
recorded in the database only three days after they are effective. For cases like these, now-relative
time values, e.g., NOW — 3 days, which track the current time, but with a displacement, and which
generalize NOW , are very useful [10].

This section considers the modification of databases in the presence of such values. First,
NOW -relative values are defined, and then a new kind of interval, used for accommodating the
more general databases that result from the NOW -relative values, is introduced, and the interval
operations (—" and NY) are extended to also accommodate these new intervals. On this basis, the
modifications are defined.

5.1 Definition of NOW -Relative Values

NOW -relative values generalize variable NOW by allowing offsets from NOW to be specified [10].
For example, assume that Joe started in the Shoe department on January 10 and remains there,
but may be assigned to another department with two days’ notice. This may be captured using a
NOW -relative value, as follows: (Joe, Shoe, [10,NOW + 2)), where the +2 indicates the two days’
notice.

Formally, the extensionalization at time ¢ of a NOW -relative value, NOW OP n, where OP
€ {+,—} and n belongs to a domain of durations that is isomorphic to a subset of the integers, is
defined as follows [10].

[NOW OP n], £ [NOW], OP n

5.2 A New Interval Type

To extend the modifications to accommodate NOW -relative intervals, a single new interval type is
needed over the three introduced in Section 4.5. The extensionalization graph in Figure 10 gives an
example of this new type of interval, namely the interval [max?(3, NOW —3), min”(7, NOW +2)).
The dashed line indicates the diagonal. This interval has a maz” function in its starting point
and a min? function in its ending point; the earlier intervals had at most a function in either the
starting or the ending point. Note also the now-relative offsets, —3 and +2. The —3 in the starting
point indicates that the start point is three units below the diagonal, and the +2 indicates that
the ending point is two units above the diagonal. In previous sections all offsets were 0 and all
non-vertical or non-horizontal lines were on the diagonal.

15

2 4 6 8 10 Time

Figure 10: New Interval Type for NOW -Relative Modifications

The offset of the starting point of an interval must be smaller than or equal to the offset of
its ending point. Otherwise, the interval is undefined. For example, the interval [maz’ (3, NOW +
2),min” (7, NOW — 3)) is undefined.

Formally, we define the meaning of a NOW -relative interval at time c as follows, where a and
b are in T and a_off and b_off are in the domain of durations.

[[maz® (a, NOW + a_off), min” (b, NOW + b_off))], =

[a,min’ (b, NOW + b_off)) ifa— b_off <c <b—b_off

[a, b) ifb—boff <c<a-—a_off
[maz’(a, NOW + a_off),b) ifa— a_off <c<b— a_off
0 otherwise

We will show next how the new interval type comes into existence and define also how it is
handled in the interval difference and intersection operators.

5.3 Extending the Interval Operators

The sixteen cases we must consider when extending the interval difference and intersection operators
are enumerated below, where the domain of a, b, ¢, and d is T, a_off, b_off, c_off, and d_off are
signed durations (i.e., corresponding to positive or negative integers), and int-opr is the extended
difference operator (—") or intersection operator (N”).

a,b)
[a, min® (b, NOW + b_off))
[maz’(a, NOW + a_off),b)
[mazx’(a, NOW + a_off), min" (b, NOW + b_off))
s e, d))
2: [c, min”(d, NOW + d_off))
3: [max’(c, NOW + c_off),d)
4: [maz’(c, NOW + c_off), min"(d, NOW + d_off))

int-opr

= W N =

Note that allowing only ‘+’, but then allowing positive and negative durations is equivalent to the
definition of now-relative values in Section 5.1.

The extended interval difference operation, [a,) —" [v,d), where the argument intervals are
as enumerated above, is defined in Table 2. The table has seventeen cases, and each of the sixteen
combinations above gives rise to two cases. The first case for a combination is identified by the
integers in Formula 2 and in the second and third columns in the table (the first “column” is used

16

be satisfied for this case to apply. 1he seconda case 1s the last, "otherwise” case In the table, which
applies if the condition in the first case is not satisfied. The result for a case, a set of intervals, is
given in the last column of the table.

Case
1

D v AN W

10

11

12

13

14

15

16

17

L | R | Condition Resulting Rows
L1]a<iAy<B |[x%9),00,8)
1|2 |a<dAy<pB | [ay),[d,0),[maz’ (maz(a,y), NOW + d_off), min(5,d))
13 |a<dne<f ||aoc),[0,8),[max(a,c), min’ (min(B,d5), NOW + c_off))
(0,014, B), [maz(a,), min” (min(B, d), NOW ¥ c-off)
Ll dJa<dnre<f mazx’ (maz (o, c), NOW + d_off), min(5,d))
211 |a<dAy<b a,min®(y, NOW + b_off)), [0, min® (b, NOW + b_off))
loe, min”(y, NOW + b_off)), |d, min” (b, NOW + b_off)),
212 ja<dAhy<b mazx’ (maz(co,y), NOW + d_off), min” (min(b,d), NOW + b_off))
ol 3 lacsnced a,min’(c, NOW + b_off)), [0, min” (b, NOW + b_off)),
maz(a, c), min® (min(b,§), NOW + c_off))
a,min’(c, NOW + b_off)), [d, min” (b, NOW + b_off)),
214 |la<dAhc<b | [maz(a,c),min’(min(b,d), NOW + c_off)),
mazx’ (maz (o, c), NOW + d_off), min® (min(8,d), NOW + b_off))
3|1 la<dny<p | [maz’(a, NOW + a_off),7), [maz" (6, NOW + a_off), 5)
[maz®(a, NOW + a_off),), [max’(d, NOW + a_off), B),
3|2 |a<dhy<p mazx’(maz(a,y), NOW + d_off), min(8,d))
3|3 la<onc<p maz’(a, NOW + a_off), c), [maz” (6, NOW + a_off), B),
maz® (maz(a,c), NOW + a_off), min” (min(5,0), NOW + c_off))
maz’(a, NOW + a_off), c), [maz”(d, NOW + a_off), B),
314 |a<dAy<b | [maz’(max(a,c), NOW +a_off), min”(min(5,d), NOW +c_off)),
mangm%néawc) NOJI%I{)—F d- oﬁ(f) %zonlglé,)b) .
max”(a + a-o min” (7, + 00
4|1 je<ony<b maz” (0, NOW + a_off), min" (b, NOW + b_off))
maz’(a, NOW + a_off), min”(y, NOW + b_off)),
412 |a<dAy<b | [maz’(d, NOW + a_off),min’(b, NOW + b_off)),
maz” (maz(a,y), NOW + d_ oﬁ) min” (min(b,d), NOW + b_off))
maz’(a), NOW + a_off), min”(c, NOW + b_off)),
413 |a<dAhc<b [max?(d, NOW + a_off), min" (b, NOW + b_off)),
maz’ (maz(a,c), NOW + a_ oﬁ) min” (min(b,0), NOW + c_off))
maz’(a, NOW + a_off), min"(c, NOW + b_off)),
4l 4 lacdne<d [max’(d, NOW + a_off), min” (b, NOW + b_off)),
[mazx’(maz(a,c), NOW + a_off), min” (min(b,d), NOW + c_off)),
mazx’ (maz(a,c), NOW + d_off), min" (min(b,d), NOW + b_off))
otherwise @, ()

Table 2: The Interval Difference Operator Extended for NOW-Relative Values

It may be observed that the extended difference operator reduces to the conventional difference
operator when the interval end points are in 7. These situations are covered by the first and last
cases in the definition. Next, the operator returns up to four intervals (in cases 4, 8, 12, and 16),
and the new interval type defined in Section 5.2 is returned in cases 6, 8, and 11-16.

We motivate the definition by considering the four examples illustrated in Figure 11. Figure 11A

illustrates the difference [5, min"(

9, NOW + 2)) =" [3,7), which is covered by case 5 in Table 2.

The result, [7,min?(9, NOW +2)), is illustrated in Figure 12A. The first interval in case 5 is empty
because a >y (5 > 3).

17

[5, minY(9,NOWA 2)) [max¥(4,NOW+2),8))
8 8 [
6 6
4 [3,7) 4 f------
2 2
[maxV(2,NOW-2),6))
2 4 6 8 10 Time 2 4 6 8 10 Time
A B
VT VT
10 10
8 8 [max"(3,NOW-3),minY{(7,NOW+ 3))
[max"(2,NOW),8))
6l @ 6|l
4 | A 4\ S \
[4, minY(6,NOW+ 2))
2 2 [max"/(4,NOW-1),minY{(6,NOW+ 1))
2 4 6 8 10 Time 2 4 6 8 10 Time

C D

Figure 11: NOW-Relative Interval Difference Examples

Figure 11B illustrates the difference [maz"(2, NOW —2),6) =" [maz’(4, NOW + 2),8), which
is covered by case 11 in the definition. The result is the two intervals [maz"(2, NOW — 2),4) and
[max’(4, NOW — 2),min" (6, NOW + 2)), which are shown in Figure 12B. These intervals derive
from the first and third intervals in case 11; the second interval is empty because § > 3 (8 > 6).
When we compute the difference of two decreasing intervals as here, the new type of interval from
Section 5.2 is results.

Figure 11C illustrates [maz’(2, NOW),8) =" [4,min"(6, NOW + 2)). Here, the offset of the
first interval is 0. Finding the difference of a decreasing and increasing interval (or vice versa) is
not as simple as when both offsets are 0, where the left argument is the result. Case 10 in the
definition applies, and the result is the three intervals [maxz’ (2, NOW),4), [maz’ (6, NOW),8), and
[mazx’(4, NOW + 2),6), see Figure 12C.

Finally, Figure 11D illustrates [maz’(3, NOW — 3), min"(7, NOW + 3)) =" [maz" (4, NOW —
1), min® (6, NOW +1)), which is covered by case 16. The result is the four intervals [maz (3, NOW —
3),min" (4, NOW + 3)), [maz’(6, NOW — 3),min’(7, NOW + 3)), [maz’(4, NOW — 3),min" (6,
NOW +1)), and [maz’(4, NOW + 1), min"(6, NOW + 3)), shown in Figure 12D. This example il-
lustrates the overall strategy used in defining interval difference. We look above, below, to the right,
and to the left of the second argument interval, determining what remains of the first argument
interval. Looking to the right and left, we consider only the parts of the first argument interval
that have not been covered by looking above and below. This is implemented in the definition
using the standard maz and min functions. Using this strategy, the difference operator returns
non-overlapping regions and does not duplicate information.

18

1V 41U
[7, min¥(9,NOW+2)) [max¥(4,NOW-2), min"(6,NOW+2))
8 i 8

6 6
4 4
2 2
[max¥(2,NOW-2),4))
2 4 6 8 10 Time 2 4 6 8 10 Time
A B
VT VT
10 10
[max"(6,NOW-3),min{7,NOW+ 3))
8 8 [max"(4,NOWH 1), minY(6,NOW+ 3))
[max"(6,NOW),8))
6 6
[max"(4,NOW+2),6))
4 4
[max"(2,NOW),4))
2 2 [max"(4,NOW-3),minY{6,NOW-1))
[max(3,NOW-3),minY(4,NOW+ 3))
2 4 6 8 10 Time 2 4 6 8 10 Time
C D

Figure 12: NOW-Relative Interval Difference Results

The extended interval intersection operator (N”) is defined below. Like the difference operator
above, this operator reduces to the conventional intersection operator if the end points of the argu-
ment intervals are in 7, which also here is covered by the first and last cases in the definition. The
operator operator always returns only one interval, as does the conventional intersection operator,
and the new interval type is returned by case 4.

@, 8) MY [7,6) 2

([mas(a, 7), min(6,)
if (a, 8,7, 0 €T A(a<dANy <))
[maz’(maz(a,c), NOW + maz(a-off , c_off)), min(3,0))
if ((a=aVa=maz"(a, NOW + a_off)) A (v =cV vy =maz"(c, NOW + c_off))A
B0 €T ANa<dNe<pf)
[maz(a,), min® (min(b,d), NOW + min(b-off , d-off)))
if (8=bV 8 =min®(b, NOW + b_off)) A (§ = dV § = min®(d, NOW + d_off))A
a,YET ANa<dAy<bA
[maz’(maz(a,c), NOW + maz(a_off , c_off)), min® (min(b,d), NOW + min(b_off , d_off)))
if (((a = max’(a, NOW + a_off) A B = min” (b, NOW + b_off))V
(v = max®(c, NOW + c_off) A6 = min’(d, NOW + d_off))) Na < d A c < bA
maz(a-off , c_off) < min(b_off, d_off)

[0 otherwise

19

definition. Figure 11A 1llustrates the union |9, mwn" (9, NOW + 2)) N° |3, 7), which 18 covered by
case 3. The result, interval [5,min"(7, NOW + 2)), is shown in Figure 13A. Next, Figure 11B
illustrates [maxz" (2, NOW —2),6) N" [maz’ (4, NOW +2),8), which is covered by case 2 and results
in [maz’ (4, NOW + 2),6) as shown in Figure 13B.

The examples in Figure 11C and Figure 11D are both covered by case 4 in the definition.
Figure 11C illustrates [maz’(2, NOW),8) NV [4, min’ (6, NOW + 2)), which results in the interval
[max’ (4, NOW),min" (6, NOW +2)) (shown in Figure 13C). Thus the offsets cause the intersection
operator to return an interval of the new type introduced in this section. Figure 11D computes
[mazx’ (3, NOW —3),min" (7, NOW +3)) N" [maz’(4, NOW — 1), min”(6, NOW + 1)), resulting in
the interval [maz" (4, NOW — 1), min" (6, NOW + 1)), shown in Figure 13D.

VT VT
10 10
8 [5, minY(7,NOW+2)) 8
[max"(4,NOW+2),6))
6 L
4 4
2 2
2 4 6 8 10 Time 2 4 6 8 10 Time
A B
VT VT
10 10
8 8
[max¥(4,NOW), min¥(6,NOW-2)) [max¥(4,NOW-1),min{(6,NOW 1))
| |
4 4
2 2
2 4 6 8 10 Time 2 4 6 8 10 Time
C D

Figure 13: NOW-Relative Interval Intersection Results

5.4 Temporal Modification Semantics Including NOW-Relative Values

With the new difference and intersection operators in place, we can define the semantics of modi-
fications involving NOW -relative values. These definitions may be given by re-using the template
employed for the definitions in Section 4.7, the only difference being that the extended difference
and intersection operators are to be used. For brevity, we do not repeat the definitions, but instead
exemplify the utility of NOW -relative values.

In the following scenario, Joe joins the Shoe department on the 3rd. At any time, he can
leave his job with eight days’ notice. On the 6th, he is told that with two days notice, he can be

20

Job (1.e., his last day 1s the 16th).
This scenario is captured by the following database modifications.

-- 3rd: Joe is hired on the 3rd with 8 days notice
VALIDTIME PERIOD [3, NOBIND(CURRENT_DATE + 8))
INSERT INTO Emp VALUES (’Joe’, ’Shoe’);

-- 6th: Plan that Joe can temporarily be in the Toy department
for four days
VALIDTIME PERIOD [NOBIND(CURRENT_DATE + 2), NOBIND(CURRENT_DATE + 6))
UPDATE Emp
SET Dept = ’Toy’
WHERE Name = ’Joe’;

-- 8th: Joe quits his job and has 8 days’ notice
VALIDTIME PERIOD [16, FOREVER)

DELETE FROM Emp

WHERE Name = ’Joe’;

The single tuple that results from the first statement is (Joe, Shoe, [3,NOW +8)) and is illus-
trated with the solid line in Figure 14A. The result of the first update is as follows, and is illustrated
in Figures 14A and B.

0 U {(Joe, Shoe, {[3, NOW +8) = [NOW + 2, NOW +6)})} U’
{(Joe, Toy,{[3, NOW +8)N” [NOW + 2, NOW +6)})}
= {(Joe, Shoe, [3, NOW + 2)), (Joe,Shoe,[maz"(3, NOW + 6), NOW + 8)),
(Joe, Toy, [maz’ (3, NOW +2), NOW +6))}

We plan that Joe may be temporarily in the Toy department in the interval [NOW +2,NOW +6)
where the +2 indicates the two days’ notice. This interval can be rewritten as [maz”(beginning,
NOW + 2),min"(forever, NOW + 6)) and is indicated by the two dashed lines in Figure 14A. The
result is the three tuples indicated by solid lines in Figure 14B.

The result of the deletion is as follows, and is illustrated in Figures 14B and C.

0 Ut {(Joe, Shoe, {[3, NOW + 2)) — [16, forever)})} U
{(Joe, Shoe, {[maz®(3, NOW + 6), NOW + 8) =V [16, forever)})} U
{(Joe, Toy, {[maz’ (3, NOW +2), NOW + 6) —" [16, forever)})}
= {(Joe, Shoe, [3, min" (16, NOW + 2))),
(Joe, Shoe, [maz’ (3, NOW + 6), min" (16, NOW + 8))),
(Joe, Toy, [max’ (3, NOW + 2),min" (16, NOW +6)))}

From the three tuples stored in the relation at the outset, we delete the interval [16,forever), to
indicate that Joe is leaving the company on the 16th. The interval to be deleted is indicated by
the dashed line in Figure 14B. The result of the deletion is the three tuples indicated by solid lines
in Figure 14C. The tuples with end-point values above 16 from Figure 14B are “truncated” here.

Having defined the semantics for modifications involving NOW, we consider the implementation
of the modifications.

21

20 + 20 1+
15+ Toy 15+ >°
10 + Shoe 10 + % shoe
5 5 L
5 10 15 20 Time 5 10 15 éo Time 5 10 15 20 Time
A B C

Figure 14: The Results of Updates With NOW -Relative

6 Implementing Modification Statements Involving NOW-Relative
Values

This section considers the implementation of the modifications defined in the previous two sections.
Implementation using only SQL-92 and using the object-relational features provided by some com-
mercial DBMSs are considered.

6.1 Representing Canonical Intervals

The canonical intervals can be implemented in SQL-92 by using four columns. Two columns record
the V-Begin and V-End attributes, and two columns, named V-Begin-0ffset and V-End-0ffset,
indicate the valid-time begin offset and the valid-time end offset, respectively. Our sample relation
may then be declared as follows.

CREATE TABLE Emp (

Name VARCHAR (20) NOT NULL,

Dept VARCHAR (20) NOT NULL,

V-Begin DATE, -- Assuming day granularity
V-Begin-0ffset NUMERIC (10,0),

V-End DATE, —-— Assuming day granularity

V-End-0ffset NUMERIC (10,0))

Here, a V-Begin-0ffset and V-End-0ffset value different from NULL indicates a maz” and a min"
function, respectively. The representation of the different shapes is demonstrated below. Recall that
NOW can be written as maz"(beginning, NOW) in the V-Begin attribute and min” (forever, NOW)
in the V-End attribute.

The valid-time interval can also be implemented as an abstract data type (ADT), e.g., in
the Informix and Oracle DBMSs. The main advantage of this is that the valid-time interval is
encapsulated and is treated as a single unit.

6.2 Implementing Queries

When querying, NOW values must be bound to the current time. We do so with two functions,
BIND B to bind the beginning time, and BIND_E to bind the end time.

To illustrate querying, suppose we want to retrieve all tuples with a valid time that overlaps
the interval [1999-01-05,1999-01-15). This can be written in a temporal SQL [27] as follows.

22

SELECT * FROM Emp;

This query formulated in SQL-92 is shown below.

SELECT Name, Dept,
BIND_B(V-Begin, V-Begin-0ffset) AS V-Begin,
BIND_E(V-End, V-End-0ffset) AS V-End
FROM Emp
WHERE BIND_B(V-Begin, V-Begin-0ffset) < DATE ’1999-01-15’ AND
DATE °1999-01-05’ < BIND_E(V-End, V-End-Offset) AND
BIND_B(V-Begin, V-Begin-Offset) < BIND_E(V-End, V-End-Offset)

The query checks if the valid time associated with a tuple overlaps with the temporal scope, i.e.,
the interval [1999-01-05,1999-01-15). In the last line, it is checked that the V-Begin attribute is
smaller than the V-End attribute, when these attributes are bound to the current date. Note that
a query always returns a ground result.

As an example, the BIND_B function can be specified in PSM [23] as follows.

DECLARE FUNCTION BIND_B (Val DATE, Offset NUMERIC (10,0)) RETURNS DATE
IF Offset IS NULL
THEN RETURN Val
ELSE IF Val > CURRENT_DATE + CAST(Offset AS INTERVAL DAY)
THEN RETURN Val
ELSE RETURN CURRENT_DATE + CAST(Offset AS INTERVAL DAY);

The BIND_E function is analogous. These can be implemented similarly in Oracle’s PL/SQL or as
user-defined functions in Informix or DB2.

If implemented inside the DBMS, rather than with an external translater from temporal SQL
to conventional SQL, the binding functions need not be called multiple times, as in the SQL code
above. Implementing the binding within the DBMS might also enable other simplifications.

6.3 Implementing Modifications

Having illustrated querying when representing temporal data using the format with four four extra
attributes, we proceed to consider modification. First, insertions are easy to map to SQL: we simply
set the offset columns depending on the presence of NOW.

VALIDTIME PERIOD [DATE ’1999-01-05°, DATE ’1999-01-207)
INSERT (Joe, Shoe)

may be mapped into

INSERT INTO Emp VALUES
(’Joe’, ’Shoe’, DATE ’1999-01-05’, NULL, DATE ’1999-01-20’, NULL);

When the value NOW, specified as NOBIND (CURRENT DATE)) [10], is present, a non-null value
of the offset is used.

VALIDTIME PERIOD [DATE ’1999-01-05°, NOBIND(CURRENT_DATE))
INSERT (Joe, Shoe)

is mapped into

23

(’Joe’, ’Shoe’, DATE ’1999-01-05’, NULL, DATE ’9999-12-31°, 0);

Deletions and updates should conform to the semantics presented in Sections 4.7 and 5.4. The
main problem when implementing these is that the extended interval difference operator that they
make use of may return up to three intervals for the semantics specified in Section 4.7 and up to
four intervals for the semantics specified in Section 5.4.

To solve this problem we use the idea illustrated by the extended interval difference example
in Figure 11D and 12D. To determine the result of a difference, e.g., the difference [a,b) —" [c,d),
we look “above,” “below,” “right,” and “left” of interval [c¢,d) and determine what remains of
interval [a, b).

As an example, consider the case where the database contains the tuple (Joe, Shoe,
[mazx’(1999-01-03, NOW — 3),min"(1999-01-07, NOW + 3))) and a temporal deletion statement
causes us to delete Joe from the Shoe department in the interval [maz(1999-01-04, NOW —
1), min’(1999-01-06, NOW + 1)). This latter interval then is the interval specified in the tem-
poral deletion statement. This is corresponds to the example in Figure 11D.

The following four SQL-92 insertions and one SQL-92 deletion cover all the cases. Note that
they are similar in form, and that the last three lines of each are identical.

-— Above

INSERT INTO Emp

SELECT Name, Dept, ’1999-01-06’, V-Begin_Offset, V-End, V-End-Offset

FROM Emp

WHERE Name = ’Joe’ AND V-End > ’1999-01-06’ AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-Offset IS NULL));

-- Below

INSERT INTO Emp

SELECT Name, Dept, V-Begin, V-Begin-Offset, DATE ’1999-01-04’, V-End-Offset

FROM Emp

WHERE Name = ’Joe’ AND V-Begin < ’1999-01-04’ AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-0ffset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-Offset IS NULL));

-- Right

INSERT INTO Emp

SELECT Name, Dept,
GREATEST (V-Begin, DATE ’1999-01-04’), V-Begin-0Offset,
LEAST (V-End, ’1999-01-06), -1

FROM Emp

WHERE Name = ’Joe’ AND -1 IS NOT NULL AND
GREATEST (V-Begin, DATE ’1999-01-04’) < LEAST (V-End, ’1999-01-06’) AND
(NOT (V-Begin-Offset IS NOT NULL AND V-Begin-Offset > -1)) AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-Offset IS NULL));

24

INSERT INTO Emp

SELECT Name, Dept, GREATEST (V-Begin, DATE ’1999-01-04’), 1,
LEAST (V-End, ’1999-01-06’), V-End-Offset

FROM Emp

WHERE Name = ’Joe’ AND 1 IS NOT NULL
GREATEST (V-Begin, DATE ’1999-01-04’) < LEAST (V-End, ’1999-01-06’) AND
AND (NOT (V-End-0Offset IS NOT NULL AND 1 > V-End-Offset)) AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-0ffset IS NULL));

-- Delete the old tuple

DELETE FROM Emp

WHERE Name = ’Joe’ AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-0ffset IS NULL));

The SQL-92 code above uses the Oracle-specific functions GREATEST and LEAST, which corre-
spond the conventional maz and min functions used in this paper.

The time overlap predicate (the third-to-last line) and the offset overlap predicate (the last two
lines) check that the intervals associated with the tuples overlap with the interval specified in the
delete statement. The offset overlap predicate checks for overlap between the offsets on the intervals
in the database and the offset specified in the interval to delete or update. Because these offsets
can have the value NULL we must for each less than operator, check if either of the operands are
NULL. The ’1’ in , e.g., in 1 IS NULL is the V-End-Offset of the interval specified in the delete.
Similar, is the ’-1’, e.g., in -1 < V-End-Offset, is the V-Begin-Offset of the interval specified in
the delete.

In the first insert statement the check V-End > ’1999-01-06" ensures that an “above” tuple is
generated when appropriate. Similarly, the check in the second insertion, V-Begin < ’1999-01-04",
ensures that a “below” tuple is generated.

The “right” and “left” cases, the third and fourth insert statements, are slightly more compli-
cated because we ensure (1) that a tuple is generated, (2) that it has no overlap with the “above”
and “below” tuples, (3) that its V-Begin value is smaller than its V-End value, and (4) that its
V-Begin-0ffset value is smaller than its V-End-0ffset value.

In the third insert statement, the first check is that -1 IS NOT NULL. A “right” tuple is only
generated if the V-Begin-0ffset of the interval specified in the temporal deletion statement is NOT
NULL. The second and third checks are done with the GREATEST and LEAST functions in the select
clause and in the where clause, respectively. The fourth check occurs in the last line. We must
ensure if the V-Begin-0ffset attribute is NOT NULL then its value cannot be larger than —1, which
is the V-Begin-0ffset of the interval specified in the temporal delete statement.

In the fourth insert statement, the first check is that 1 IS NOT NULL. A “left” tuple is only
generated if the V-End-0ffset of the interval specified in the temporal deletion statement is NOT
NULL. Again the second and third checks are done using GREATEST and LEAST, and the fourth check
occurs in the last line. If the V-End-0ffset is NOT NULL then its value cannot be larger than 1,
which is the V-End-0ffset of the interval specified in the temporal deletion statement.

After the four insertions, all tuples that overlap with the interval specified in the deletion
statement are deleted. This is correct because we have just created up to four tuples that represent
what remains of the ordinal interval.

Note that because the semantics specified in Sections 4.7 only allows a maxz? function in the
V-Begin attribute or a min” function in the V-End attribute, the “right” and “left” tuples are

25

restriction does not apply to the semantics specified 1n Section o.4; In the presence ot now-relative
values, as many as four tuples may result.

Updates are implemented similarly to deletes. Assume that we want to update Joe for the
interval [1999-01-04,maz"(1999-01-06, NOW)) to be with the Toy department. In an extended
temporal SQL, this may be written as follows [27].

VALIDTIME PERIOD [DATE ’1999-01-04’, NOBIND(CURRENT_DATE))
UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’;

This is written in SQL-92 as four insertions and an update. The four insertions are identical to
those displayed for the temporal deletion above. The update statement follows.

-- Update self
UPDATE EmpNow
SET Name, Dept,
V-Begin
V-End
V-Begin-Offset
V-End-0ffset
WHERE Name = ’Joe’ AND
NOT (GREATEST (V-Begin, DATE ’1999-01-04’) IS NOT NULL AND
LEAST (V-End, NULL) IS NOT NULL AND
GREATEST (V-Begin, DATE ’1999-01-04’) >
LEAST (V-End, NULL)) AND
NOT (GREATEST (V-Begin-Offset, NULL) IS NOT NULL AND
LEAST (V-End-Offset, 0) IS NOT NULL AND
GREATEST (V-Begin-Offset, NULL) > LEAST (V-End-Offset, 0)) AND
V-Begin < DATE ’1999-01-06’ AND DATE ’1999-01-04’ < V-End AND
(V-Begin-0ffset < 1 OR (V-Begin-0ffset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-0ffset OR (-1 IS NULL or V-End-0Offset IS NULL));

GREATEST (V-Begin, DATE ’1999-01-04’),
LEAST (V-End, NULL),

GREATEST (V-Begin-Offset, NULL),

LEAST (V-End-0ffset, 0)

In line 3, the V-Begin attribute is set to the maximum of the start of the interval of the tuple being
updated and the start of the interval specified in the update. In line 4, the V-End attribute is set to
the minimum of its current value and the end of the interval in the update. This is done similarly
for the V-Begin-0ffset and V-End-0ffset attributes in lines 5 and 6, respectively. In the where
clause, it is checked in lines 8 to 10 that the new interval is non-empty. Similarly, lines 11 to 13
check that the V-Begin-0ffset is smaller than the V-End-0ffset. Line 14 checks overlap on the
V-Begin and V-End attributes, and the V-Begin-0ffset and V-End-0ffset attributes. The last
three lines duplicate those of the above insertions.

In this example, the where clause is particularly simple, and the provided mapping works fine.
For more complex predicates, for example those containing subqueries, care must be taken to ensure
that these are afforded the correct semantics, following the mapping for queries [27].

A full solution includes support for ground interval end points, which is already included in
SQL-92, and for NOW and for now-relative values, as provided in this paper. In addition, sup-
port can be provided for indeterminate versions of these values (so-called “don’t know exactly
when” values) [12]. Support for indeterminate values can be defined in terms of the operations
on determinate values (for example, an indeterminate ground time value can be represented and
manipulated as a pair of determinate ground time values). As proof of concept, the TIMEADT

26

ues: grouna determinate, variable determinate, now-relative determinate, ground indeterminate,
variable indeterminate, and now-relative indeterminate.

Triggers and methods on a new data type for the time intervals considered constitute two al-
ternatives to the SQL-92 statements above. Both have associated problems. For example, an
implementation using triggers for the deletions and updates illustrated above is not directly imple-
mentable in Oracle8i because the trigger will result in a mutating table [25], which is not allowed
(this condition occurs when a statement in the trigger body accesses the table that the trigger was
fired on).

Defining methods on an interval ADT is also quite challenging. The main problem is having
to generate up to four separate tuples when a single tuple is being manipulated. This seems to be
beyond ADTs. Another problem is how to handle the where clauses of temporal modifications. The
where predicate can be specified by the user at run-time, making its necessary for the insert, delete,
and update methods on an interval ADT to accept a string argument containing the where clause.
The modification methods must then parse the where clause and dynamically generate appropriate
SQL-92 statements that mirror to the temporal modification statement.

7 Approximate Modification Semantics

As the previous section showed, representing the new time values requires either an ADT or multiple
physical columns. The present section will explore what semantics may be achieved with just a
single additional NOW value, which can be denoted with a particular existing value, such as NULL or
DATE ’9999-12-31 [31]. Specifically, we define approximate semantics for modifications involving
NOW that do not require the use of the min’ and max’ functions. This will help indicate precisely
what the rather complex implementation of the previous section buys us.

We first introduce a set of auxiliary functions. Then the semantics of insert, delete, and update
are defined, followed by examples and a discussion of the differences between the accurate and the
approximate semantics.

7.1 DPossible Approximate Semantics of Temporal Modifications

Our definitions of modification lead to tuples that contain the min’ and maz® functions in their
timestamps. Existing temporal data models do not accommodate these functions, leading to a vio-
lation of Requirement R3 in Section 4.1. We thus explore alternative semantics of modifications
that avoid these values.

We use the last example in Section 4.7 of an update for exploring possible alternative semantics.
The result of that update was illustrated in Figure 9B and is also given in Table 3.

‘ Name ‘ Dept. ‘ V-Begin ‘ V-End ‘
Joe | Shoe 5 min® (10, NOW)
Joe | Toy 10 min® (20, NOW)

Joe | Shoe 20 min” (forever, NOW)

Table 3: Result of the Update

The objective is to accomplish this update without using the min’ (and max’) value. We
assume that the current time is 15. The current time, not an issue in the exact semantics, will
be important in the approximate semantics. Three possible, approximate update semantics are
illustrated Figure 15.

27

Missing Intormation Extra information rong Information
Shoe Shoe
20 + 4 20 + \4 20 +
Shoe
15 + — 15 + Toy 15 +
Toy Toy

10 + S 10 + S 10 + s

o€ Shoe o€ Shoe 0e Shoe
5 5 5+

5 10 15 20 Time 5 10 15 20 Time 5 10 15 20 Time
A B C

Figure 15: Different Approximate Solutions

Figure 15A adopts a pessimistic approach, which was also shown in Table 1A. (Note that the
region labeled “Shoe” corresponds to a tuple that was only present in the database until time
15.) The drawback is that information is missing in the shaded region. The second approximate
semantics, the result of which is shown in Figure 15B, has the drawback that the information in
the shaded region in Figure 15B has been manufactured and is extraneous. This figure corresponds
to Table 1B. The third approximate update semantics, shown in Figure 15C, is similar to the
optimistic approach, shown in Table 1C. There is no extra or missing information; however, wrong
information is created. The department “Shoe” in the shaded region should be “Toy.”

Each approximate semantics has drawbacks, but the second semantics appears to be preferable.
The extraneous information is present in the second tuple of Table 1B: (Joe, Toy, 10, 20). If we
consult this table on January 16 and ask, “what department is (actually, will) Joe work in on
January 187”7, the result will be: Toy. The result is slightly misleading, as Joe may be fired. On
January 16, all we should know is that Joe started working in the Toy department on January 10,
and is still working there. (Table 3 would return no department for this query, because we do not
know whether he will be working on January 12.) If the same question, “what department is Joe
in on January 187”7, is asked on January 20, both Table 1B and Table 3 will reply, “Toy,” because
we now know Joe was not fired.

In summary, the approximate semantics sometimes represents as the case information that will
in fact be true if nothing changes. In defense of this semantics, the current situation, in which data
models, such as that underlying SQL, do not support storing NOW , extra information of a similar
flavor is routinely represented.

We provide an approximate semantics for modifications consistent with the second approach
that avoid the two new types of time values and that thus may be stored using the formats proposed
by existing temporal data models. But first we introduce some useful functions.

7.2 Auxiliary Functions

We define the functions min€¢ and maz® as follows, where ¢ and b are in 7. Superscript “e” denotes
“eventual,” and the intuition behind the definitions is to make the difference and intersection
operators produce the results that they would eventually produce, if one waited to apply them long
enough.

a ifae TAb=NOW
ifa=NOWAbeT
NOW ifa=NOW Ab=NOW
min(a,b) otherwise

(1>
SH

min®(a, b)

28

mHa—=/NUW N0/
NOW ifa=NOW Ab=NOW

maz(a,b) otherwise

maz(a,b) =

If exactly one of the arguments is NOW, the other argument is returned; and if both arguments
are NOW, NOW is returned. The functions reduce to the conventional counterparts if both ¢ and
b are in T .

We define the maximum time of a modification statement, e.g., [vts,vte) DELETE FROM r,;
WHERE cond as follows, where ct is the current time.

mazx_time([vts, vte), ct) 2 maz(vts, [vte],,)

Function max_time will be used in the definitions of deletion and update in Section 7.3.
We define the eventual difference, —¢, of intervals as follows, where a and ¢ are in 7 and b and
d are in 77 as follows.

b)) —¢ [c.d) A { [a, minf(b, c)), [maz®(a,d),b) ifa< [[d]]forever Ne < [[b]]forever
’ ’ [a, b) otherwise

The eventual difference is identical to the conventional difference operator, except that the value
of NOW is bound to forever.

We define the eventual intersection (N€) of two intervals, where ¢ and ¢ again are in 7 and b
and d are in T, as follows.

a,b) (€ [e,d) A [maz(a, c),min®(b,d)) ifa< [[d]]forever N < [[b]]foreyer
’ ’ 0 otherwise

The eventual intersection is identical to the conventional intersection, except that the value of
NOW is bound to the maximum value in 7. Two tuples that do not currently overlap may still
have an eventual intersection. For example, the intervals [10, NOW) and [20, 30) do not overlap at
time 15, but if they do not change, they will eventually overlap, and their eventual intersection is
20, 30).

7.3 Approximate Modification Semantics
We can now define the approximated semantics of modifications involving NOW.

Insertion into a valid-time relation r,; is defined as follows.

A
VALIDTIME PERIOD [wts,vte) INSERT INTO 7, VALUES (A) =
Tut < Tut uvt {(Aa [’UtS, Ute))}

A tuple is added to the relation. We associate with the tuple the valid-time interval [vits,vte)
specified in the insertion statement. This semantics is identical to the accurate semantics.

Deletion from a valid-time relation r; is defined as follows, where mt = maz_time([vts, vte), ct)
is the maximum time of the delete statement, and VT" and VT denote the start and end points
of valid-time interval VT.

VALIDTIME PERIOD [wts,vte) DELETE FROM r,; WHERE cond =
ror < {t|t € ry(—cond(t) vV (VT™ > [ute],,, V vts > [VTT],)} U
{t|3s € ry(cond(s) At[A] = s[A] AVT" < [ute],,, Avts < [VTT],., A
t[VT] € (s[VT] = [vts,vte)) ANt[VT] # 0)}

)V
) A

29

specified 1n the delete, at the maximum time, are retained unchanged. In the second and third
lines, tuples that both fulfill the condition and overlap at the maximum time have their valid-time
intervals reduced by the parts that overlap the interval specified in the delete statement.

Update of a valid-time relation r,; is defined as follows, where A = v as usual is short for
Ay =wvy,..., A, = v, and is the explicit attributes, which are assigned new values. (For brevity,
we assume that all explicit attributes change values.)

VALIDTIME PERIOD [wts,vte) UPDATE r,; SET A = v WHERE cond 2

ror 4 {t|t € ry(—cond(t) V (VI™ > [vte],,, Vots > [VTT],)} U
{t|3s € ryi(cond(s) At[A] = s[A] AVT™ < [ute],,, Avts < [VTT], ., A
t[VT] € (s[VT] =€ [vts,vte)) A t[VT] #)} U
{t|3s € ryi(cond(s) At[A] = v AVT" < [wte], , Avts < [VTT], , A
t[VT] = (s[VT] N [vts,vte) At[VT] # 0)}

The first three lines are identical to the three lines for the delete statement. In lines four and five,
tuples with the new explicit attribute values are inserted. The intervals associated with the new
tuples are the eventual intersections of the intervals currently associated with each tuple and the
interval specified in the update.

7.4 Examples of the Approximate Semantics

From the auxiliary functions defined in Section 7.2, it follows that the approximate semantics for
modifications involving NOW reduce to the conventional semantics when only fixed intervals are
considered. For this reason, we only show modification examples involving NOW.

The first example is an update of a tuple containing NOW. We use the update in Figure 1 and
assume the database contains the tuple (Joe, Shoe, [5, NOW)). The update occurs at time 15.

VALIDTIME PERIOD [10,20) UPDATE Emp SET Dept = ’Toy’ WHERE Name = ’Joe’
The result of the update is as follows.

0 U¥t {(Joe, Shoe, {[5, NOW) —¢[10,20)})} U** {{Joe, Toy, {[5, NOW) N° [10,20)})}
= {(Joe, Shoe, [5, 10)), (Joe, Shoe, [20, NOW)), (Joe, Toy, [10, 20)) }

The maximum time of the update is 20. All tuples in the relation are affected by the update, which
explains the initial empty set. The two next terms reduce the interval associated with the existing
tuple and update Joe to be with the new department. The result is that shown in Table 1B.

The next example is a deletion on a relation with the tuple (Joe, Shoe, [15, NOW)). The deletion
occurs at time 20.

VALIDTIME PERIOD [10,NOW) DELETE FROM Emp WHERE Name = ’Joe’

The maximum time of the delete statement is 20. Because the interval specified in the delete
statement totally overlaps the tuple in the relation at the maximum time, the result is the empty
relation. Note that if the delete statement had been executed at the time 12, the maximum time
of the delete statement would then be 12. At time 12, the valid-time interval associated with the
tuple and the interval specified in the delete statement do not overlap. The delete statement would
then not have affected the tuple.

30

This section describes the main differences between the accurate semantics proposed in Section 4
and the approximate semantics just proposed.

For the approximate semantics, we are looking at the database as of the maximum time because
if the user is making changes to future data, the user is looking at the current database content as
of a time into the future. This leads to the following differences.

e For the approximate semantics, only two types of intervals are stored in the database, namely
constant intervals [a,b) and increasing intervals [a, NOW), whereas three interval types using
the maz” and min? functions are needed to store the results of modifications that follow the
accurate semantics.

e The approximate semantics simplifies the extensionalization of tables referenced in queries.

e The approximate semantics is more easily implementable in an existing temporal data model
or in a layer on top of an existing relational DBMS, e.g., using a substitute value for NOW [30,
31].

e The effect of a delete or an update depends on when it is executed in the approximated
semantics, whereas modifications are time-independent in the accurate semantics.

8 Related Work

Most prominently, this paper proposes definitions of modifications involving NOW and explores
how the resulting semantics can be accommodated in the database. To the best of our knowledge,
the semantics of modifications involving NOW have not been defined previously. Only modifications
involving fixed time intervals have been defined and implemented.

In the perhaps most closely related paper [10], the semantics of NOW is described in substantial
detail. It proposes a formal framework for the meaning of databases with variables in general,
and it explores the querying of variable databases, but does not consider modification. To be
consistent with that paper’s approach, we borrow its notion of extensionalization of time values
and extensionalization diagrams. We extend that paper by defining the semantics of modifications
involving NOW.

The approach of timestamping tuples with intervals, as adopted in this paper, generalizes the
timestamping tuples with single time point values, e.g., as done in time series. With using an
interval representation, we can capture constant, increasing, and decreasing intervals. Had single
time points been used instead, it would only be possible to capture either increasing or decreasing
intervals, by assuming that the recorded time is the start (or stop) time and assuming the (implicit)
stop (or start) time to be NOW.

Lorentzos and Manolopoulos [21] extend SQL-92 to handle general interval data, e.g., intervals
in space or time. The semantics of modifications involving intervals is defined, and details are
provided for how to retain relations coalesced. However, the use of variables such as NOW is not
considered. The modification semantics therefore cover only the special case when intervals have
their end points in domain 7.

Finger and McBrien [14, 15] discuss the semantics of NOW in connection with transactions,
exploring which value to use for NOW when performing updates in a transaction. They showed
that if a value for NOW is not chosen carefully, the correctness of transactions can be violated.
However, the issues of which value to choose for NOW in a transaction are orthogonal to the issues
discussed in this paper; the semantics of modifications involving NOW are independent of the
values used for NOW.

31

detall, showing that the commit time ot a transaction has to be used as the value assigned to YO W
when a modification statement in the transaction leads to a modification of the database. Again,
the issues of which values to use for NOW are orthogonal to the issues discussed in this paper.

9 Summary and Research Directions

The paper’s main contribution is to explore and formally define the semantics of modifications in
relational databases, where NOW and NOW + A may be stored in timestamp columns in the
database. In addition, the paper considers the implementation of such modifications.

The definitions of modifications—insertion, deletion, and update—proceed in three steps. First,
the semantics of modifications on ground databases, not containing variable NOW are defined.
Then the semantics of modifications in the presence of NOW are defined based on these semantics.
Finally, these semantics are extended to cover also now-relative time values of the form NOW + A.

These semantics involve extending the conventional minimum and maximum functions, as well
as the interval intersection and difference operators. It is shown that the databases that result from
modifications involving NOW can be represented by using three types of intervals with three types
of values: normal intervals with fixed end points, a new kind of intervals that increase with time,
and another new kind of intervals that decrease as time passes. These intervals involve two new
kinds of time values. By including a fourth kind of interval, now-relative values are accommodated.

The paper also proposes an approximate semantics for modifications involving NOW that is
easily implementable in existing temporal data models or on top of a relational DBMS using existing
data types for time.

By defining modifications, the paper consistently extends past work [10] and completes the
understanding of the semantics, the querying, and the modifications of NOW -relative databases.

It is challenging to index intervals containing the two new types of values used in the definition
of the accurate semantics. Existing index structures generally support only fixed values; how to
index these new values that change as time progresses remains an open issue, though some work
has been done (e.g., [4]).

Acknowledgments

This research was supported in part by the Danish Technical Research Council through grant
9700780, by the CHOROCHRONOS project, funded by the European Commission DG XII, con-
tract no. FMRX-CT96-0056, by a grant from the Nykredit corporation, and by grants IRI-9632569
and I1S-9817798 from the U.S. National Science Foundation.

References

[1] I. Ahn and R. T. Snodgrass. Partitioned Storage for Temporal Databases. Information Systems,
13(4):369-391, 1988.

[2] J. Bair, M. Bohlen, C. S. Jensen, and R. T. Snodgrass. Notions of Upward Compatibility of
Temporal Query Languages. Wirtschafts Informatik, 39(1):25-34, 1997.

[3] J. Ben-Zvi. The Time Relational Model. Ph.D. thesis, Computer Science Department, UCLA,
1982.

[4] R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas. R-Tree Based Indexing of Now-Relative
Bitemporal Data. In Proceedings of the VLDB Conference, pp. 345-356, 1998.

32

[20]

[21]

[22]

Proceedings of the VLDE Conference, pp. 1s0-191, 1996.

M. H. Bohlen and C. S. Jensen. Seamless Integration of Time into SQL. Technical Report
R-96-2049, Aalborg University, Denmark, 1996.

J. Clifford and A. U. Tansel. On an Algebra for Historical Relational Databases: Two Views.
In Proceedings of the ACM SIGMOD Conference, pp. 247-265, 1985.

J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and Algebra Based
on Lifespans. In Proceedings of ICDE, pp. 528-537, 1987.

J. Clifford and T. Isakowitz. On The Semantics of (Bi)Temporal Variable Databases. In Pro-
ceedings of the Fourth International Conference on Extending Database Technology, pp. 215—
230, 1994.

J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics
of “NOW?” in Databases. ACM TODS, 22(2):171-214, 1997.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introductions to Algorithms. MIT Press
1990.

C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeterminacy. ACM TODS,
23(1):1-57, 1998.

O. Etzion, S. Jajodia, and S. Sripada (eds.). Temporal Databases: Research and Practice.
LNCS 1399, Springer 1997.

M. Finger and P. McBrien. On the Semantics of ‘Current-Time’ in Temporal Databases. In
Proceedings of the 11th Brazilian Symposium on Databases, pp. 324-337, 1996.

M. Finger and P. McBrien. Concurrency Control for Perceivedly Instantaneous Transactions
in Valid-Time Databases. In Proceedings of the Fourth International Workshop on Temporal
Representation and Reasoning, 1997.

S. K. Gadia and S. Nair. Temporal Databases: A Prelude to Parametric Data. [29, Ch. 2,
pp. 28-66].

S. K. Gadia. A Homogeneous Relational Model and Query Languages or Temporal Databases.
ACM TODS, 13(4):418-448, 1988.

C. S. Jensen and R. T. Snodgrass. Temporal Specialization and Generalization. IEEE TKDE,
6(6):954-974, 1994.

C. S. Jensen and C. E. Dyreson (eds.). A Consensus Glossary of Temporal Database Concepts—
February 1998 Version. [13, pp. 367-405].

N. Lorentzos and R. Johnson. Extending Relational Algebra to Manipulate Temporal Data.
Information Systems, 15(3):289-296, 1988.

N. Lorentzos and Y. Manolopoulos. SQL Extension for Interval Data. IEEE TKDE, 9(3):480—
499, 1997.

J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kauf-
mann Publishers 1993.

33

Kautmann Publishers 1993.

S. Navathe and R. Ahmed. Temporal Eztensions to the Relational Model and SQL. [29, Ch. 4,
pp. 92-109].

Oracle. Oracle8i Application Developer’s Guide Oracle Corporation, 1998.
R. T. Snodgrass. The Temporal Query Language TQuel. ACM TODS, 12(2):247-298, 1987.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen and A. Steiner. Adding Valid Time to
SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC 1/SC 21/WG 3 DBL-MAD-146r2,
November 1996.

R. T. Snodgrass, C. E. Dyreson, C. S. Jensen, N. Kline, J. Li, W. Li, M. D. Soo, L. So, and
J. Whelan. The TIMEADT System, Release 1, in progress.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors. Temporal
Databases: Theory, Design, and Implementation. Benjamin/Cummings 1993.

K. Torp, C. S. Jensen, and M. H. Bohlen. Layered Implementation of Temporal DBMSs—
Concepts and Techniques. In Proceedings of the DASFAA Conference, pp. 371-380, 1997.

K. Torp, C. S. Jensen, and R. T. Snodgrass. Efficient Timestamping in Databases. VLDB
Journal, to appear.

G. Wiederhold, S. Jajodia, and W. Litwin. Integrating Temporal Data in a Heterogeneous
Environment. [29, Ch. 22, pp. 563-579].

34

