
Temporal Dependencies with Order
Constraints

Jef Wijsen

December ��� ����

TR���

A TimeCenter Technical Report

Title Temporal Dependencies with Order Constraints

Copyright c� ���� Jef Wijsen� All rights reserved�

Author�s� Jef Wijsen

Publication History This manuscript has been conditionally accepted for publication in IEEE
Trans� on Knowledge and Data Engineering �
December ����� A TimeCenter Technical Report�

TIMECENTER Participants

Aalborg University� Denmark
Christian S� Jensen �codirector�� Michael H� B�ohlen� Heidi Gregersen� Dieter Pfoser�
Simonas �Saltenis� Janne Skyt� Giedrius Slivinskas� Kristian Torp

University of Arizona� USA
Richard T� Snodgrass �codirector�� Bongki Moon

Individual participants
Curtis E� Dyreson� Bond University� Australia
Fabio Grandi� University of Bologna� Italy
Nick Kline� Microsoft� USA
Gerhard Knolmayer� Universty of Bern� Switzerland
Thomas Myrach� Universty of Bern� Switzerland
Kwang W� Nam� Chungbuk National University� Korea
Mario A� Nascimento� University of Alberta� Canada
John F� Roddick� University of South Australia� Australia
Keun H� Ryu� Chungbuk National University� Korea
Michael D� Soo� amazon�com� USA
Andreas Steiner� TimeConsult� Switzerland
Vassilis Tsotras� University of California� Riverside� USA
Jef Wijsen� University of Mons�Hainaut� Belgium
Carlo Zaniolo� University of California� Los Angeles� USA

For additional information� see The TimeCenter Homepage	
URL	 �http���www�cs�auc�dk�TimeCenter�

Any software made available via TimeCenter is provided �as is� and without any express or implied
warranties� including� without limitation� the implied warranty of merchantability and �tness for a par�
ticular purpose�

The TimeCenter icon on the cover combines two
arrows�� These
arrows� are letters in the so�called
Rune alphabet used one millennium ago by the Vikings� as well as by their precedessors and successors�
The Rune alphabet �second phase� has �� letters� all of which have angular shapes and lack horizontal
lines because the primary storage medium was wood� Runes may also be found on jewelry� tools� and
weapons and were perceived by many as having magic� hidden powers�
The two Rune arrows in the icon denote
T� and
C�� respectively�

Abstract

We propose a temporal dependency� called trend dependency �TD�� which captures a signi�cant
family of data evolution regularities� A simple example of such regularity might be� �Salaries of

employees do not decrease�� TDs compare attributes over time using operators of f���������� ��g�
We de�ne a satis�ability problem that is the dual of the logical implication problem for TDs� and we
investigate the computational complexity of both problems� We provide an axiomatization of logical
implication� As TDs allow expressing meaningful trends� �mining� them from existing databases is
interesting� For the purpose of TD mining� TD satisfaction is characterized by the common notions
of support and con�dence� We study the problem TDMINE� Given a temporal database� mine the
TDs that conform to a given template and whose support and con�dence exceed certain threshold
values� The complexity of TDMINE is studied� as well as algorithms to solve it� A comparison with
related work is provided at the end of the paper� We show that TDs can express several temporal
dependencies found in the literature�

� Introduction

Lately� there has been a growing research interest in temporal database integrity� Temporal constraints
can take di
erent forms� They have been expressed using �rst�order temporal logic �FOTL� ��� ���
Alternatively� one can study restricted classes of FOTL formulas� which may be called temporal depen�
dencies� A comprehensive overview of temporal dependencies has been given by Jensen et al� ����� In
this paper� we introduce a new temporal dependency� called trend dependency �TD�� which captures
a signi�cant class of data evolution constraints� Two examples of such constraints� taken from recent
work� are �Salaries of employees should never decrease� ��� and �A faculty�s rank cannot change during
an academic year� �����
Until now� database integrity has been the single most important motivation for studying temporal

dependencies� Temporal dependencies allow capturing more real�world knowledge in a database schema
by placing restrictions on how the data can change over time� In this paper� we also look at TDs from
a knowledge discovery �or data mining� point of view	 As TDs allow expressing signi�cant real�world
knowledge� discovering them from existing databases is interesting and important�
We brie�y explain the type of logic formulas expressed by TDs� In this study� time is represented

by the set of natural numbers N �� f�� �� �� � � �g�� A temporal relation is viewed as a time series I �
hI�� I�� I�� � � �i of conventional
snapshot� relations� all over the same set of attributes� Intuitively� one
may think of Ii as the family of tuples valid at time i� For example� consider the relation schema
fSS�� Rank� Salg� A tuple fSS� 	 x� Rank 	 y� Sal 	 zg of Ii means that at time i� the employee with
social security number x has rank y and salary z� Employees are uniquely identi�ed by their social
security number�
Checking temporal constraints typically involves comparing tuples that are valid at di
erent points of

time� For example� checking �Salaries of employees should never decrease�� requires comparing employee
records at time i with records at the next time i � �� for each time point i� To relate time points in a
temporal constraint� we make use of binary relations on the set of time points� called time accessibility
relations �TARs�� The TAR emerging in the running example is f�i� i��� j i � Ng� which is called Next �
At this point� the meaning of TDs can be most easily explained by expressing them in a tuple�oriented
relational calculus� We use the predicate emp�s� i� with the meaning that tuple s belongs to Ii� The
constraint under consideration can then be expressed as	

�i�j�s�tf � emp�s� i� � emp�t� j� �

Next�i� j� �

s�SS�� � t�SS�� �� s�Sal� � t�Sal� g

where Next�i� j� means that �i� j� belongs to Next � We will denote this constraint as

�SS�����Next �Sal���

and call it a trend dependency �TD�� TDs generalize functional dependencies �FDs� in two ways	 �rst� by
comparing tuples over time� and second� by comparing attributes with any operator of f���� ������ ��g�

�

TDs can capture several temporal dependencies found in the literature� They seem to be among the �rst
temporal dependencies that compare attributes using operators other than equality� In this paper� we
are going to address some important practical problems that apply to any new type of dependency	

Logical implication problem Given a set � of TDs and a single TD �� if a temporal relation satis�es
�� does it necessarily satisfy � as well�

Satis�ability problem Can a speci�ed set � of TDs be satis�ed in a
non�trivial� way�

The satis�ability problem starts from a speci�ed family � of TDs and looks for a particular temporal
relation satisfying �� The following data mining problem is in some respect the inverse of the satis�ability
problem� It starts from a given temporal relation and looks for TDs satis�ed by it�

TD mining problem Given a temporal relation� which TDs are satis�ed
to a high degree��

At this point� it is not possible to give a precise characterization of the latter problem� but the idea can
be illustrated as follows� Imagine a temporal relation containing salary histories of employees� Assume
that no integrity constraints have been speci�ed concerning the evolution of salaries� Inspecting the data�
one may observe employees with increasing as well as decreasing salaries� The task then is to �nd out
which trend is the
stronger� one	 Do salaries of employees generally increase or decrease� To answer
such question� we need a measure for characterizing the
strength� of a trend� This will be done by
adapting the notions of con�dence and support� which are commonly used in the �eld of data mining �see
for example �����
The outline of the paper is as follows� Section � introduces two components of TDs� namely directed

attribute sets �DASs� for comparing tuples� and time accessibility relations �TARs� to relate time points�
Having de�ned these components� we can formalize the notion of TD in Section �� Section � concerns
the complexity of the logical implication problem and the satis�ability problem� An axiomatization of
logical implication is provided in Section �� Section � concerns mining TDs from temporal databases� The
problem TDMINE is de�ned and its complexity is studied� TDs encompass several previous proposals of
temporal dependencies found in the literature� A comparison with related work is contained in Section ��
Finally� Section � summarizes the most important results�

� Preliminaries

��� Comparing Tuples

A basic assumption in our theoretical framework is that attributes take their values from totally ordered
domains� Examples of such attributes are numerous �e�g�� Rank and Sal�� We note that an attribute
domain can be totally ordered� even though this order does not naturally arise in integrity constraints�
SS� can serve as an example� Administrative procedures typically rely on a particular total order on
social security numbers to locate and list employee records� Nevertheless� it is likely that in practical
database constraints� SS��values are only compared for equality ��� and inequality � ���� Attributes like
SS� �t in our framework as there is no problem in using only equality and inequality constraints for
certain attributes�
The following de�nition introduces a convenient syntactic shorthand for comparing tuples� For ex�

ample� let s and t be
employee� tuples� The formula s�SS�� � t�SS�� � s�Rank� � t�Rank� will be
denoted ���s� t� where � is equal to the set f�SS����� �Rank���g and called a DAS�

De�nition � We assume the existence of a totally ordered� in�nite set �dom��� of constants� We
introduce two special operators � and 	 as follows	 For every d�� d� � dom� d��d� is false and d�	d� is
true� We assume the existence of a set att of attributes� Let U
 att� A tuple over U is a total function
from U to dom� If t is a tuple over U and X
 U � then t�X� denotes the tuple over X obtained by
restricting the function t to X�

As the constraints considered in this paper never induce comparing distinct attributes� a single domain
can be assumed without loss of generality�

�

Operator Syntactic Inverse Reciprocal

� � OP Shorthand � b�
fg � 	 �
f�g � � �
f�g � �� �
f�g � � �
f���g � � �
f�� �g � � �
f���g �� � ��
f���� �g 	 � 	

Figure �	 Operators of OP with shorthand and inverse�

The set OP is de�ned as the powerset of f���� �g� That is� OP � ��f���� �g�� Elements of OP are
called operators� The Greek lowercase letter � will be used to denote operators� We introduce convenient
syntactic shorthands for the elements of OP� as shown in Figure ��

Let � � OP� The inverse of �� denoted �� is equal to f���� �g n �� The reciprocal of �� denoted b�� is
equal to the operator obtained from � by interchanging � and ��

Let U be a set of attributes �i�e�� U
 att�� A directed attribute set �DAS� over U �or simply DAS� if U
is understood� is a total function from U to OP� The Greek uppercase letters ���� �! will be used to
denote DASs�

Let � be a DAS� The domain of � is denoted atts���� That is� atts�f�A�� ���� � � � � �An� �n�g� � fA�� � � � � Ang�

The empty DAS is denoted �� The reciprocal of �� denoted b�� is the DAS over atts��� such that for every
A � atts���� b��A� � b� where � � ��A�� � is called re�exive iff for every A � atts���� ��A� contains the
equality ��� operator�

f�A�� ���� �A�� ���� � � � � �An� �n�g is usually denoted �A�� ����A�� ��� � � � �An� �n��

Let s� t be tuples over U � Let � be a DAS over some subset X of U � We say that the tuple pair �s� t�
satis�es �� denoted ���s� t�� iff for each A � X� s�A� �A t�A� where �A is the shorthand for ��A��

�

Let ��� be DASs� We write � � � for the DAS over atts��� � atts��� satisfying the following
conditions	

 For every A � atts��� � atts���� �A� � ��A� ���A��

 for every A � atts��� n atts��� � �A� � ��A�� and

 for every A � atts��� n atts���� �A� � ��A��

�

Example � Let � be the DAS �SS�����Rank����Sal� ��� The reciprocal of � is equal tob� � �SS�����Rank����Sal� ��� � is not re�exive as ��Sal� does not contain �� We have
� � �Rank� ����Sal�	� � �SS�����Rank� ���Sal� ��� �

It can be easily proved that
�� is commutative� associative� and idempotent� The following lemma
states some properties that will be used later on�

�Note the double use of the symbols �� ���� ������ ����� First� as a shorthand for operators of OP� and second� to
compare elements of dom� This little abuse of notation does not result in any confusion� however�

�

Lemma � Let U be a set of attributes� Let s� t be tuples over U � Let ��� be DASs with atts���� atts���

U � Then

�� ���s� t� 	recall � is the empty DAS
�

�� �� �����s� t� iff ���s� t� and ���s� t��

�� � is re�exive iff ���s� s��

Proof� Straightforward� �

��� Relating Time Points

In this subsection� we �rst de�ne TARs and then we show how TARs can be used to model time
granularities�

����� Time Accessibility Relations �TARs�

In this work� the time line is represented by the set of natural numbers N �� f�� �� �� � � �g�� Trends
typically induce comparing attributes of one tuple s with attributes of another tuple t� where s and t
may belong to di
erent
snapshots�� We now introduce the concept of TAR to indicate which tuples
have to be compared with one another�

De�nition � We de�ne	

Future � f�i� j� j i� j � N and i � jg�

Any computable subset of Future is called a time accessibility relation �TAR��� Current� Next � and
NextOne are special TARs which will be frequently used in the technical treatment later	

Current � f�i� i� j i � Ng�
Next � f�i� i� �� j i � Ng� and
NextOne � f��� ��g�

Greek lowercase letters �� � will be used to denote TARs� The complement of a TAR �� denoted ��� is
given by	 �� � Future n �� �

Note that fg and Future itself are TARs� We emphasize that whenever the pair �i� j� belongs to a
TAR �� then i � j� This restriction simpli�es the technical treatment later on� without decreasing the
expressiveness of TDs� It can be easily seen that Future is recursively enumerable� The requirement that
TARs are computable means that� given a TAR � and some member �i� j� of Future� one is able to tell
whether or not �i� j� belongs to �� TARs need not be �nite� Of course� real systems can only deal with
TARs that have a �nite representation� The representation of TARs will be discussed in Section ��

����� Chronologies

Time granularities� like year� month� and day� play an important role in temporal modeling� We are
going to show that time granularities can be modeled in an elegant way by a restricted class of TARs�
called chronologies�
In nearly all application domains� there is a smallest time unit beyond which measuring time is

impossible or meaningless� For example� railway timetables show departure and arrival times of trains
with a precision of minutes but not seconds� Intuitively� we think of our time line N as representing the
smallest time unit of the application in hand� In most examples throughout this paper� it is appropriate
to think of natural numbers as days	 one represents January �� ����� two represents January �� �����

�Let X� Y be sets with X � Y � We say that X is a computable subset of Y iff there is an algorithm which takes an
arbitrary element y � Y and determines whether or not y is a member of X�

�

and so on� Then the notion of
month� can be captured by the smallest TAR containing the pair
�i� j� � Future whenever i and j represent days of the same month� That is�

Month � f

January�����z �� �
�	� 	�� � � � � �	�
	�� ��� ��� � � � � ���
	�� � � � � �
��
��� �
��
	�� �
	�
	��

February�����z �� �
�
��
��� � � � � �
��
��� �

�

�� � � � � �

�
��� � � � � �
��
��� �
��
��� �
��
���

� � � �

January�����z �� �
�
���
���� � � � � �
���
���� � � �g

Month satis�es some properties that are typical of granularities in general� First� its symmetric closure
is an equivalence relation"every equivalence class represents a single month� And second� months are
not
interleaved�� A TAR satisfying these properties will be called a chronology�

De�nition � We de�ne a relation � on ��N�� Let P�Q
 N�
P is said to be before Q� denoted P � Q� iff for every i � P � for every j � Q� we have i � j� The relation
� on ��N� gives rise to a relation � as follows	 P � Q iff P � Q or P � Q�

Let � be a TAR� We write dom��� for the smallest set of natural numbers containing i and j whenever
�i� j� � �� We write �sym for the symmetric closure of ��

� is called a chronology iff

�� �sym is an equivalence relation on dom���� and�

�� the set of equivalence classes of �sym� ordered by �� is a totally ordered set�

� is called non�chronological if it is not a chronology� �

For example� Month is a chronology� The equivalence classes of Monthsym� ordered by �� are
f�� �� � � � � ��g � f��� ��� � � � � ��g � � � � The notion of chronology captures its intended meaning� namely a
partition of the time line in successive time granules� Later on in Section ���� we show that chronologies
correspond to the notion of temporal type� which is used by Wang et al� ���� to model the granularity of
time�

� Trend Dependency �TD�

Having de�ned the notions of DAS and TAR� we are now ready to introduce the concept of TD� In this
section� we �rst give an impression of the expressiveness of TDs� and then we give a formal de�nition�

��� Motivating Examples

In Section �� we already explained the meaning of a TD� We now give some additional examples� The
constraint �For an employee� an increase of rank cannot imply a decrease of salary�� is expressed by the
TD

�SS�����Rank� ���Next �Sal����

The constraint �Changing an employee�s rank implies changing his
her salary�� is expressed by

�SS�����Rank� ����Next �Sal� ����

�That is�

� �i � dom��� � �sym�i� i� �Re�exivity�

� �i� j� k � dom��� � ��sym�i� j� 	 �sym�j� k��
 �sym�i� k� �Transitivity�

Note that �sym is symmetric by de�nition�

�

TDs encompass the temporal FDs �TFDs� proposed by Wang et al� ����� For example� �An employee
cannot have two distinct salaries within the same month�� is expressed by

�SS�����Month �Sal����

where Month is de�ned as in Section ���� Let MoreThanFiveYearsLater be a TAR containing �i� j�
whenever j represents a day that is more than �ve years later than day i� Then �The salary of an
employee should have increased after �ve years�� is expressed by

�SS�����MoreThanFiveYearsLater �Sal� ���

Let the attribute Sen denote the seniority of employees� The TD

�Rank� ���Sen� ���Current �Sal���

expresses that �If employee x has a lower rank and seniority than employee y� then x cannot earn more
than y 	at any one time
�� TDs encompass classical FDs� For example� the TD

�SS�����Current �Sal���

expresses that no employee can have two distinct salaries at any one time� The TD is satis�ed by a
temporal relation if and only if the functional dependency SS�� Sal is satis�ed by each
timeslice� of
the temporal relation�

The following example is taken from the medical scene� Let I � hI�� I�� � � �i be a temporal relation over
the set of attributes fPatient� Diastolic� Systolicg� storing blood pressure readings from patients� A
tuple fPatient 	 x� Diastolic 	 y� Systolic 	 zg of Ii means that at day i the diastolic blood pressure of
patient x was y� and the systolic blood pressure was z� Normally� an increasing diastolic blood pressure
implies an increasing systolic blood pressure	

�Patient����Diastolic� ���Next �Systolic� ���

Note that TDs do not allow comparing di
erent attributes with one another� For example� let the
inequality Diastolic� Systolic express the fact that the diastolic blood pressure of a person is always
less than his#her systolic blood pressure� This inequality cannot be expressed by a TD� We found that
the combination of such inequalities with TDs raises interesting but non�trivial issues� For example� the
�non�realistic� TDs �Patient��� �Next �Diastolic� �� and �Patient��� �Next �Systolic� �� taken
together express that the diastolic and systolic blood pressure of a patient converge� Then in order to
satisfy Diastolic� Systolic� patients must disappear from the database at some point in time�

��� Syntax and Semantics

We now de�ne the syntax and semantics of TDs� Logical implication captures its classical meaning�

De�nition � The cardinality of a set S is denoted jSj� Let U
 att� A relation over U is a �nite set
of tuples over U � A temporal relation over U is an in�nite sequence I � hI�� I�� � � �i of relations over U
satisfying the following condition	 there is some n � N such that for every i � n� Ii � fg� Each Ii is
called a timeslice of I� The cardinality of a temporal relation I� denoted jIj� is equal to jI�j� jI�j � � � �
It follows that jIj � N� The temporal relation I is called empty iff jIj � ��

A trend dependency �TD� over U �or simply TD� if U is understood� is a statement ��� � where � is
a TAR� and ��� are DASs with atts���� atts���
 U �

Let � be ��� �� We call � the left�hand DAS� and � the right�hand DAS of �$ we say that the TD in
hand involves the TAR �� We write tar��� to denote the TAR involved in �"i�e�� tar��� � ��

�

Let I � hI�� I�� � � �i be a temporal relation and let � �� � be a TD �all over U �� The TD � �� � is
satis�ed by I iff for every �i� j� � �� for every s � Ii� for every t � Ij � if ���s� t� then ���s� t��

A TD � over U is trivial iff it is satis�ed by each temporal relation over U �

Let � be a set of TDs� and let � be a TD �all over U �� We say that the temporal relation I � hI�� I�� � � �i
over U satis�es � iff it satis�es each TD of �� We say that � logically implies �� denoted � j� �� iff
every temporal relation satisfying � also satis�es �� �

De�ning a temporal relation as a time series of snapshot relations is not uncommon in theoretical
research� See for example ��� ���� Also the work on temporal dependency theory of Jensen et al� ����
departs from the idea that temporal relations can be
timesliced�� Of course� more advanced structures
for storing time�related data have been proposed in the literature� See for example ���� ���� However� such
representation issues are somehow peripheral to this study� Intuitively� one may think of our temporal
relations as the result of timeslicing an enhanced representation�

� Logical Implication and Satis�ability Problems

The logical implication and the satis�ability problems for TDs� as for any dependency� are important in
practical applications� The problems are the following	

Logical implication problem Given a set � of TDs and a TD �� determine whether � j� ��

Satis�ability problem Given a set � of TDs� determine whether � can be satis�ed in a
non�trivial�
way�

The above characterization of the satis�ability problem is still imprecise$ a precise formulation will be
given later on� For now� note that every set � of TDs is trivially satis�ed by the empty temporal relation�
Logical implication is illustrated by the following example�

Example � Let � be a set of TDs containing

�Patient����Diastolic� ���Next �Systolic� �� �call it ����

We show that � logically implies

�Patient����Systolic����Next �Diastolic��� �call it ����

Suppose � �j� ��� Then there is a temporal relation I � hI�� I�� � � �i satisfying � such that for some
�i� j� � Next � for some s � Ii� for some t � Ij � s�Patient� � t�Patient� and s�Systolic� � t�Systolic�
and s�Diastolic� � t�Diastolic�� Then by ��� we have s�Systolic� � t�Systolic�� Consequently�
s�Systolic� � t�Systolic�� a contradiction� We conclude by contradiction that � j� ��� �

In this section we �rst de�ne special temporal relations� called witness temporal relations� containing
at most two tuples� We then de�ne the satis�ability problem� and show it is the dual of the logical
implication problem� Finally� we investigate the complexity of both problems�

��� Witness Temporal Relations

Witness temporal relations are temporal relations whose cardinality is either � or �� Lemma � shows that
whenever � �j� �� then there exists a witness temporal relation satisfying � and falsifying �� Lemma �
implies that the number of constants appearing in such a witness temporal relation can be limitedwithout
loss of generality� This is because in our theoretical framework� any two constants c and d can be related
in only three ways	 c � d� c � d� or c � d�

�

De�nition 	 Let �i� j� � Future� Let U be a set of attributes� Let s and t be tuples over U � We write
�i 	 s� j 	 t� for the smallest temporal relation I � hI�� I�� � � �i over U satisfying	 Ii contains s and Ij
contains t�� Any temporal relation that can be written in this way� is called a witness temporal relation�
�

Let I � �i 	 s� j 	 t� be a witness temporal relation� Clearly� if i �� j or s �� t then jIj � �$ otherwise
jIj � ��

Lemma � Let U be a set of attributes� Let � be a set of TDs� and let � be a single TD 	all over U
� If
� �j� �� then there exists a witness temporal relation satisfying � and falsifying ��

Proof� Let � � � �� � and � �j� �� Hence� there is a temporal relation �call it I � hI�� I�� � � �i� that
satis�es � and falsi�es �� That is� for some �i� j� � �� for some s � Ii� for some t � Ij� we have ���s� t�
and not ���s� t�� Let I� be �i	s� j 	t�� I� is the desired witness temporal relation� Obviously� I � falsi�es ��
We still have to show that I� satis�es �� Suppose I � falsi�es some TD �call it ��� of �� Since Ik contains
I�k for every k � N� it follows that I must falsify �

�� a contradiction� We conclude by contradiction that
I� satis�es �� This concludes the proof� �

Lemma � Let c� d be constants 	i�e�� c� d � dom
 with c � d� Let �i� j� � Future� Let U be a set of
attributes� Let s�� t� be tuples over U � There exist tuples s� t over U such that

�� For every TD � over U � �i 	 s� j 	 t� satis�es � iff �i 	 s�� j 	 t�� satis�es � 	i�e�� �i 	 s� j 	 t� and
�i 	 s�� j 	 t�� satisfy exactly the same TDs
� and

�� for each A � U � either 	a
 s�A� � t�A� � c� or 	b
 s�A� � c and t�A� � d� or 	c
 s�A� � d and
t�A� � c�

Proof� Let s� t be tuples over U such that

	a
 s�A� � t�A� � c if s��A� � t��A��

	b
 s�A� � c and t�A� � d if s��A� � t��A�� and

	c
 s�A� � d and t�A� � c if s��A� � t��A��

Obviously� for any TD �� if �i 	 s�� j 	 t�� satis�es � then so does �i 	 s� j 	 t�� and vice versa� This concludes
the proof� �

��� The Satis�ability Problem

We �rst give a precise characterization of the satis�ability problem and then we prove that it is the dual
of the logical implication problem�

De�nition
 Let U be a set of attributes� Let � be a set of TDs over U � Let � be a TAR� We say that
� is ��satis�able iff for some pair �i� j� � �� for some tuples s� t over U � the witness temporal relation
�i 	 s� j 	 t� satis�es �� Otherwise � is called ��unsatis�able�

A TDSAT problem is a triple �U��� �� where U is a set of attributes� � is a set of TDs over U � and � is
a TAR� The answer to the TDSAT problem �U��� �� is
yes� if � is ��satis�able� and
no� otherwise�
�

Note that so far we have not speci�ed how in�nite TARs are to be represented in a �nite way� A �nite
representation is clearly needed if TARs are part of the input of an e
ective procedure solving TDSAT�
For now we just assume the existence of such a representation� The next subsection will concern the
relationship between the representation of TARs and the complexity of TDSAT�We now show the duality
between the logical implication problem and TDSAT�

�A temporal relation I � hI�� I�� � � �i is smaller than a temporal relation J � hJ�� J�� � � �i if jIj � jJj�

�

Example � Suppose we want to decide whether a set � of TDs logically implies the TD �SS�����Next

�Sal��� �call it ���� Let �� be � �Next �SS�����Sal� ��� Assume that � � f��g is Next�satis�able�
That is� for some �i� j� � Next � for some tuples s and t� the witness temporal relation I � �i 	 s� j 	 t�
satis�es � as well as ��� Since ���s� t� is trivial� we have s�SS�� � t�SS�� and s�Sal� � t�Sal�� Then I
is obviously a counterexample for � j� ��� So if � � f��g is Next�satis�able� then � does not logically
imply ��� Conversely� it can be readily seen that if � does not logically imply ��� then � � f��g is
Next�satis�able� �

Theorem � Let U be a set of attributes� Let � be a set of TDs� and let ��� � be a TD 	all over U
�
� j� � �� � iff for every pair �A� �� � �� the answer to the TDSAT problem �U���� �� is �no� where
�� � � � f� �� � � �A� ��g�

Proof� Note that the proof is trivial if � � ��
�� Assume for some �A� �� � �� ��f� �� � � �A� ��g is ��satis�able� Then for some pair �i� j� � �� for
some tuples s� t over U � the witness temporal relation �i 	 s� j 	 t� satis�es � � f� �� � � �A� ��g� Since
���s� t� is trivial� we have ���s� t� and not ���s� t�� So �i 	 s� j 	 t� is a counterexample for � j� ��� ��
�� Conversely� assume � �j� � �� �� By Lemma �� there exists a witness temporal relation� say
�i 	 s� j 	 t�� satisfying � and falsifying ��� �� Clearly� �i� j� � �� and ���s� t�� and not ���s� t�� Hence�
for some �A� �� � �� �i 	 s� j 	 t� satis�es � � f� �� � � �A� ��g� This concludes the proof� �

Conversely� every satis�ability problem is the dual of a logical implication problem� as shown next�

Corollary � Let U be a set of attributes� Let � be a set of TDs over U � Let A � U � The answer to the
TDSAT problem �U��� �� is �yes� iff � �j� � �� �A����

Proof� By Theorem �� � �j� � �� �A��� iff � � f� �� �A�	�g is ��satis�able� Since � �� �A�	� is a
trivial TD� we have � �j� � �� �A��� iff � is ��satis�able� This concludes the proof� �

��� Complexity

The following theorem considers the complexity of the logical implication problem for TDs�

Theorem � The logical implication problem for TDs is coNP�hard�

Proof� TDs encompass typed clausal constraint�generating ��dependencies� proposed by Baudinet et
al� ���� The logical implication problem is coNP�complete for this type of dependencies ��� theorem ����
This concludes the proof� �

As an immediate corollary of Theorem � and Theorem �� TDSAT is NP�hard� We now explore an
upper bound for the complexity of a given TDSAT problem �U��� ��� As one may expect� this complexity
depends on the formalism used to represent TARs� A TAR was de�ned as a possibly in�nite subset of
Future �De�nition ��� Of course� a real system can only deal with TARs that have a �nite representation�
For example� the in�nite TAR Next can be represented in a �nite way by the equality y � x� � where
x and y are interpreted over N� We are now going to study the relationship between the complexity of
TDSAT and the formalism chosen to represent TARs�

Consider a TD �SS���� �Current �Sal� ��� stating that an employee earns less than his#her salary�
Obviously� the only way to satisfy this TD is by the empty temporal relation� This observation is
captured and generalized by the following de�nition�

De�nition � Let U be a set of attributes� Let � be a set of TDs over U � A natural number i � N is
called improper w�r�t� � iff � contains some TD � �� � where � is re�exive� � is not re�exive� and
�i� i� � �$ otherwise i is said to be proper w�r�t� �� We write prop��� for the smallest set containing
�i� j� � Future whenever i and j are proper w�r�t� �� � is called consistent iff prop��� � Future$ otherwise
it is called inconsistent� �

�

It follows that the singleton set f�SS�����Current �Sal� ��g is inconsistent �every natural number
is inconsistent w�r�t� this set�� A similar notion of impropriety is used in ����� The following lemma states
that an inconsistent set of TDs requires certain timeslices to be empty�

Lemma � Let U be a set of attributes� Let � be a set of TDs over U � A natural number i is improper
w�r�t� � iff for every temporal relation I � hI�� I�� � � �i over U that satis�es �� we have Ii � fg�

Proof� �� Let i � N� Assume i is improper w�r�t� �� Hence� � contains some TD � �� � where �
is re�exive� � is not re�exive� and �i� i� � �� Let I � hI�� I�� � � �i be a temporal relation satisfying ��
It su%ces to show that Ii � fg� Suppose the opposite"i�e�� Ii contains a tuple �call it t� over U � By
Lemma �� ���t� t� and not ���t� t�� Since �i� i� � �� I falsi�es ��� �� a contradiction� We conclude by
contradiction that Ii � fg� �� Suppose i is proper� Let t be a tuple over U � Let I � �i 	 t� i 	 t�� It is
easy to see that I satis�es � and Ii � ftg �� fg� This concludes the proof� �

In a �rst naive attempt to solve a TDSAT problem �U��� �� one could try all tuples s� t over U � and
all pairs �i� j� � �� and verify whether �i 	 s� j 	 t� satis�es �� By Lemma �� it su%ces to try at most �jUj

tuple pairs �s� t�� By Lemma �� it su%ces to try only pairs �i� j� of � that also belong to prop���"for if i
or j is improper w�r�t� �� then �i	s� j	t� falsi�es �� That is� the TDSAT problem �U��� �� can be reduced
to the TDSAT problem �U��� �� prop����� Nevertheless� trying all pairs �i� j� of �� prop��� still poses
severe problems� as � � prop��� can be in�nite� or there may be no e
ective method for obtaining all
members of it�
Fortunately� there is no need to try all pairs �i� j� of � � prop���� as we are going to show� This is

because we can partition prop��� into a �nite number of homogeneous subsets� in the sense that whenever
�i� j� and �k� l� belong to the same subset� then �i 	 s� j 	 t� and �k 	 s� l 	 t� either both satisfy �� or both
falsify �� Consequently� in trying pairs �i� j� of �� prop���� we never need to try two pairs belonging to
the same homogeneous subset�

De�nition � Let � be a set of TDs� A TAR � is said to be homogeneous w�r�t� � iff for all tuples s� t
over U � either for all �i� j� � �� �i 	 s� j 	 t� satis�es �� or for all �i� j� � �� �i 	 s� j 	 t� falsi�es ��

Let n � N� We write Fn for the smallest set containing every total function from ����n� to fneg� posg�
Obviously� jFnj � �n���

Let � � f��� � � � � �ng be a list of TDs�� Let f � Fn� The TAR induced by f and �� denoted bbfcc�� is
de�ned as follows	

bbfcc� � prop��� � �� � �� � � � �� �n

where

 �� � Current if f��� � pos and �� � �Current if f��� � neg� and �

 for every i � ����n�� �i � tar��i� if f�i� � pos and �i � �tar��i� if f�i� � neg�

�

The concepts of homogeneity and induced TAR are illustrated by Example �� Lemma � states that
Fn induces a partitioning of prop��� with � � f��� � � � � �ng� More precisely� for every �i� j� � prop����
there is some f � Fn such that �i� j� � bbfcc�� As a corollary� the answer to the TDSAT problem
�U��� �� prop���� is
yes� if and only if the answer to the TDSAT problem �U��� �� bbfcc�� is
yes�
for some f � Fn� So Fn induces a decomposition of the TDSAT problem �U��� �� into a number of new
TDSAT problems� Interestingly� Lemma � states that each TAR bbfcc� is homogeneous w�r�t� ��

�By saying that � is a list� we mean that the left�to�right numbering of the TDs in � is relevant�
�Recall from De�nition 	 that �� � Future n ��

��

Example � Let � � f��� ��g where �� � �SS�����Rank� ���Next �Sal� �� and �� � �Rank� ���Current

�Sal� ��� That is� tar���� � Next and tar���� � Current� F� contains eight functions$ one element of
F� is f��� neg�� ��� pos�� ��� neg�g �call it f�� The TAR induced by f and � is given by

bbfcc� � prop��� � �Current �Next � �Current�

which happens to be equal to Next � Let s� t be two employee tuples� If s�SS�� � t�SS�� and s�Rank� �
t�Rank� and s�Sal� � t�Sal� then �i 	 s� j 	 t� falsi�es � for every pair �i� j� of Next � On the other hand�
if s�SS�� �� t�SS�� or s�Rank� � t�Rank� or s�Sal� � t�Sal� then �i 	 s� j 	 t� satis�es � for every pair
�i� j� of Next � From this� it is correct to conclude that Next is homogeneous w�r�t� �� �

Lemma 	 Let U be a set of attributes� Let � � f��� � � � � �ng be a list of TDs over U � Then prop��� �S
fbbfcc� j f � Fng�

Proof� Straightforward� �

Lemma
 Let U be a set of attributes� Let � � f��� � � � � �ng be a list of TDs over U � Let f � Fn� Then
bbfcc� is homogeneous w�r�t� �� Moreover� for all tuples s� t over U � it can be decided in constant time in
the size of bbfcc� whether for all �k� l� � bbfcc�� �k 	 s� l 	 t� satis�es ��

Proof� The proof is trivial if bbfcc� � fg� Next assume bbfcc� �� fg� Let s� t be two tuples over U � Let
�k� l� � bbfcc�� Let i � ����n�� Let �i be � �� �� Then �k 	 s� l 	 t� satis�es �i if and only if one of the
following conditions is satis�ed	

�� f�i� � neg �i�e�� �k� l� �� ���

�� f�i� � pos and f��� � neg �i�e�� �k� l� � � and k �� l�� and if ���s� t� then ���s� t��

�� f�i� � pos and f��� � pos �i�e�� �k� l� � � and k � l�� and 	a
 if ���s� t� then ���s� t�� and 	b
 if
���t� s� then ���t� s��

One may conjecture that �i could still be falsi�ed by �k	s� l	t� if �k� k� � � and ���s� s� but not ���s� s��
However� in that case k would be improper w�r�t� �� hence �k� l� �� bbfcc�� a contradiction� Clearly� if one
of the above three conditions is satis�ed for some �k� l� � bbfcc�� it is satis�ed for all �k� l� � bbfcc�� Since
�i is an arbitrary TD of �� it is correct to conclude that either for all �k� l� � bbfcc�� �k 	 s� l 	 t� satis�es
�� or for all �k� l� � bbfcc�� �k 	 s� l 	 t� falsi�es �� Since s and t are arbitrary� it is correct to conclude
that bbfcc� is homogeneous w�r�t� �� It can be readily seen that testing conditions ���� ���� and ��� is
independent of the size of bbfcc�� This concludes the proof� �

Suppose we are given the TDSAT problem �U��� ��� where � � f��� � � � � �ng� By Lemmas � and ��
the answer to �U��� �� is
yes� if and only if the answer to the TDSAT problem �U��� �� bbfcc�� is

yes� for some f � Fn� By Lemmas � and �� a non�deterministic polynomial algorithm can guess
f � Fn as well as tuples s and t� and determine in polynomial time whether �k 	 s� l 	 t� satis�es � for all
�k� l� � bbfcc�"and hence for all �k� l� � bbfcc� ��� But remark	 Even if this algorithm successfully ends
by �nding some s� t� and f such that �k 	 s� l 	 t� satis�es � for all �k� l� � bbfcc� � �� then this does not
imply that the answer to �U��� �� is
yes�� This is because we still have to determine whether bbfcc� ��
is non�empty� This is exactly the point where the representation of TARs comes into play� Since we did
not specify the representation of TARs� there is little speci�c we can say about the complexity of deciding
non�emptiness of bbfcc� � �� The following theorem may provide an upper bound of the complexity in
many practical applications� however�

Theorem � Let TARINTERSECT be the following problem� Given a set � � f��� � � � � �ng of TDs� a
TAR �� and some f � Fn� determine whether bbfcc� � � is non�empty� If TARINTERSECT is in P�
then TDSAT is in NP�

��

TD Justi�cation

� �Patient����Diastolic� ���Next �Systolic��� given�
	� �Patient����Diastolic� ���Systolic����Next �Systolic��� from
 by TD
�
�� �Systolic����Future �Diastolic��� by TD��

� �Patient����Diastolic� ���Systolic����Next �Diastolic��� from 	 and � by TD	�
�� �Patient����Systolic����Next �Diastolic��� from
 by TD��

Figure �	 Example derivation�

Proof� Let TARINTERSECT be in P� By Lemmas � and �� the answer to �U��� �� is
yes� if and only
if the answer to the TDSAT problem �U��� �� bbfcc�� is
yes� for some f � Fn� By Lemmas � and ��
a non�deterministic polynomial algorithm can guess f � Fn as well as tuples s and t� and determine in
polynomial time whether bbfcc� �� is non�empty �an instance of TARINTERSECT�� and� if so� whether
�k 	 s� l 	 t� satis�es � for all �k� l� � bbfcc�� �

It is likely that in many practical applications� TARINTERSECT will be in P� This is the case in
situations where there is a �nite number of �xed TARs �time granularities� for example� and solutions
to TARINTERSECT can be tabulated �for example� Month � �Year � fg since two times of the same
month must belong to the same year��

� Axiomatization

In this section� we give a sound and complete axiomatization for logical implication of TDs� The axiom�
atization captures concisely the essential properties of TDs�

De�nition
 Let U be a set of attributes�
Let ���� be DASs with atts���� atts���� atts� �
 U� Let A � U � Let �� � be TARs�

TD� If ��� � then � � �� � � � 	Augmentation

TD� If ��� � and ��� then ����� � 	Transitivity

TD� If ��� � and ��� � then ����� �� 	Upward heredity

TD� ��fg �� 	Emptiness

TD	 If � � �A� ���� �A�
� then ��� �A� � �
�� 	Simpli�cation

TD
 If ��� � then b����Current
b�� 	Reciprocity

TD� �A����Future �� 	False premise

TD� If �
 � and ��� � then ��� �� 	Downward heredity

Let � be a set of TDs over U � Let � be a TD over U � We write � � � to denote that � is provable from
� using the above axiomatization� Here the notion of proof captures its classical meaning ��� page ������
�

Example 	 Figure � illustrates how the TD

�Patient����Systolic����Next �Diastolic���

can be proved from
f�Patient����Diastolic� ���Next �Systolic� ��g�

�

��

I� 	
SS� Rank Sal

A� � ���
B� � ���
C� � ���
D� � ��
E� � ���

I� 	
SS� Rank Sal

A� � ���
B� � ���
C� � ���
D� � ��
E� � ���

Figure �	 Example database�

The following theorem states the soundness and the completeness of the axiomatization for consistent
sets of TDs� The proof is lengthy and constitutes the content of �����

Theorem � Let U be a set of attributes� Let � be a consistent set of TDs over U � and let � be a TD
	all over U
� � j� � iff � � ��

� TD Mining

As TDs allow expressing signi�cant knowledge about the data stored in a database� discovering them
from existing databases is interesting and important� Knowledge discovery in databases� also called data
mining� is currently recognized as a promising research area with a high application potential� The data
mining problem we are going to study can be loosely described as follows	 Given a temporal relation�
�nd the TDs that are satis�ed to
a high degree�� and that conform to a given template� which �xes the
attributes to be used and the TAR involved�
The outline of this section is as follows� The next subsection contains an introductory example� In

Section ���� we give a formal de�nition of the data mining problem TDMINE� Its complexity is studied
in Section ���� and algorithmic aspects are discussed in Section ����

��� Introductory Example

The notion of satisfaction we have used so far is a
black�and�white� concept	 Given a temporal relation
I � hI�� I�� � � �i� a TD � is either satis�ed or falsi�ed by I$ there is no third possibility� Such a black�
and�white approach to satisfaction is not very appropriate for data mining purposes� In data mining�
one is typically not only interested in the rules that are fully satis�ed� but also in those that are
highly�
satis�ed� What we need is a notion of gradual satisfaction� For the purpose of TD mining� we characterize
TD satisfaction by the notions of support and con�dence� which are common in the work on association
rule mining� See for example ��� ����
Consider the temporal relation I � hI�� I�� � � �i shown in Figure �$ it is understood that I�� I�� � � � are

all empty� Assume no temporal constraints have been speci�ed about the evolution of salaries� Consider
the TD

� � �SS�����Rank� ���NextOne �Sal���

expressing that if the rank of an employee increases between time � and �� then his#her salary does not
decrease� Employees A�� D�� and E� support the trend� as their rank increased and their salary did not
decrease� Employee B� gives evidence against the trend� showing a rank increase together with a salary
decrease� Finally� employee C� provides no argument for or against the trend� as his#her rank did not
increase�
We now quantify the above observations� Every tuple pair of I� � I� satisfying the left�hand DAS of

�� gives evidence for or against the TD in hand� The tuple pairs satisfying both the left�hand and the
right�hand DAS are said to support the TD� The con�dence c is obtained by the number of tuple pairs
supporting the TD divided by the number of tuple pairs satisfying the left�hand DAS$ in the example
c � ���� Note that since the con�dence is expressed as a proportion� it can be close to one� even though�
in absolute terms� there are actually few tuple pairs supporting the TD� Therefore an additional measure
is needed to characterize the importance of a given TD� The support s is the number of tuple pairs

��

supporting the TD divided by the cardinality of I� � I�$ in the example s � ����� So � is satis�ed with
support ����� and with con�dence ����
Next consider the TD

�� � �SS�����Rank� ���NextOne �Sal� ��

which expresses the opposite trend that the salary of an employee decreases if his#her rank increases
�Rank could be a measure of malpractice� rather than performance&�� This TD is satis�ed with support
����� and with con�dence ���� During TD mining� � is to be preferred above �� because � is satis�ed
with a higher support and con�dence�

��� The TD Mining Problem

We now de�ne the notions of support and con�dence� The de�nition conforms to the intuition given in
the previous subsection�

De�nition �� Let I � hI�� I�� � � �i be a temporal relation over the set U of attributes� Let ��� � be
a TD over U � Let �i� j� � ��
Let L	i�j
 � f�s� t� � Ii � Ij j ���s� t�g�
Let B	i�j
 � f�s� t� � Ii � Ij j �

��s� t� and ���s� t�g�
Let

p �
X

	i�j
��

jIi � Ijj and l �
X

	i�j
��

jL	i�j
j and b �
X

	i�j
��

jB	i�j
j�

Let

s �

�
b�p if p �� �
� otherwise

and c �

�
b�l if l �� �
� otherwise

Then � �� � is said to be satis�ed by I with support s and con�dence c� denoted I j�s
c � �� �� We

also say that s and c are the support and the con�dence of � �� � respectively �where I is implicitly
understood�� Clearly� � � s � c � �� �

It can be readily seen that if the con�dence of a TD is equal to one� then it is satis�ed in the sense
of De�nition �� We next de�ne the notions of TD template and TD class�

De�nition �� A TD template over the set U of attributes is a statement X �� Y where X�Y
 U and
� is a TAR�

We de�ne op � OP n f��	g� Let ' be a non�empty subset of op� The TD class determined by the TD
template X �� Y and '� denoted ��X �� Y ���� is the smallest set of TDs containing the TD � �� �
whenever

 atts��� � X and for every A � X� ��A� � '� and

 atts��� � Y and for every A � Y � ��A� � '�

The Greek lowercase letter � will be used for TD templates� ��� �� is a shorthand for ��� ��op� �

For example� let A and B be attributes� and let � denote the TD template fAg �� fBg� Then
��� ��f���g contains four TDs� among others� �A��� �� �B���� Remark	 We are no longer interested in
the operators 	 and � for the following reasons� The TD �A��	� � � ��Am�	��� �Am���	� � � ��An�	�
is always satis�ed with support one and con�dence one� Such a TD would not be an interesting outcome
of a data mining process� On the other hand� if a TD � involves �� then it is satis�ed with support zero
and con�dence zero� Again� such a TD is of no interest to data mining�
The data mining problem TDMINE we are going to explore can now be de�ned�

De�nition �� We use ��� �� to denote the set of real numbers r � Rwith � � r � ��

��

Let ' be a non�empty subset of op� A TDMINE� problem is a quintet �U� I� �� ts� tc� where U is a set of
attributes� I � hI�� I�� � � �i is a temporal relation over U � ts � tc � ��� ��� and � is a TD template satisfying
�let � � X �� Y �	

� � f�i�� j��� � � � � �im� jm�g

where m � � and �ik� jk� � Future �k � ����m��� That is� � is given as a �nite set of members of Future�

The solution to the TDMINE� problem �U� I� �� ts� tc� is the smallest set of TDs over U containing � iff
�let s� c � ��� �� such that I j�s

c ��	

 � � ��� ����

 s � ts 	threshold support
� and

 c � tc 	threshold con�dence
�

TDMINE is a shorthand for TDMINEop�

If a TDMINE problem �U� I� �� ts� tc� is implicitly understood from the context� we use the following
syntactic shorthands for characterizing its input size	

 C denotes the cardinality of I� That is� C � jIj�

 N denotes a time �in practice� the smallest time� satisfying Ii � fg for each i � N � So I �
hI�� I�� � � �i is fully determined by hI�� I�� � � � � IN i�

 D �degree� denotes the number of attributes occurring in � � That is� if � � X �� Y � then
D � jXY j��

�

So the TDMINE� problem �U� I� �� ts� tc� is the task of �nding all TDs of ��� ��� that are satis�ed by
I with support � ts and con�dence � tc� Instead of de�ning the solution as the set of all TDs whose
support and con�dence exceed certain threshold values� one could limit the solution to the TDs that
optimize either the support or the con�dence� This alternative de�nition would not a
ect the results
presented in this section�
In Section ���� we indicated that the formalism used to represent TARs determines the complexity of

reasoning about TDs� De�nition �� requires that the TAR � which occurs in a TDMINE� problem� is
given by �nite enumeration� This requirement is not a strong one� as we explain� Let I � hI�� I�� � � �i be a
temporal relation over the set U of attributes� and let N be a natural number such that Ii � fg for each
i � N � Let � be a �possibly in�nite� TAR represented in one formalism or another� Let � � X �� Y be
a TD template over U � Let ts � tc � ��� ��� Let S be the smallest set of TDs containing every TD of ��� ���

that is satis�ed by I with support � ts and con�dence � tc� Assume we are interested in computing S�
Note that the task of computing S di
ers from TDMINE� because � may not be �nite� Nevertheless�
this task can be readily reduced to a TDMINE� problem� as follows� Let
 � f�i� j� � Future j j � Ng�
a �nite TAR� Let
 � � � f�i�� j��� � � � � �im� jm�g �m � ��� Note that
 � � can be easily computed by
an algorithm that generates each member of
 in turn and decides whether or not it belongs to �� Then
the TD ��� � belongs to S if and only if the TD ����� �"with the same left�hand and right�hand
DAS"belongs to the solution of the TDMINE� problem �U� I� �� ts� tc� with � � X ���� Y � This is
because Ii � Ij � fg if �i� j� � � n
� So S can readily be derived from the solution of �U� I� �� ts� tc�� To
conclude� the practical constraint imposed on the input TAR of a TDMINE problem does not decrease
the generality of the problem�
We now de�ne a decision problem� called TDMINE�D�� which is intimately related to TDMINE�

�Concatenation is used for union� That is� XY � X
 Y �

��

De�nition �� Let ' be a non�empty subset of op� A TDMINE�D�� problem is a quintet �U� I� �� ts� tc�
where U � I � hI�� I�� � � �i� � � ts� and tc are as in De�nition ���

The solution to �U� I� �� ts� tc� is
yes� or
no� depending on whether or not there exists some TD
� � ��� ��� such that I j�s

c � for some s � ts and c � tc� TDMINE�D� is a shorthand for TDMINE�D�
op
�

�

So TDMINE�D� asks whether a speci�ed support and con�dence can be attained by some TD of a
given TD class� Obviously� TDMINE� is at least as hard as TDMINE�D��	 If we have a polynomial�
time algorithm for TDMINE�� then we certainly do for TDMINE�D��� However� it turns out that
TDMINE�D�� is NP�complete for certain '� as we show in the next subsection�
TDMINE�D�� can be solved in a brute force manner by an exhaustive algorithm that computes the

support and the con�dence of each TD in ��� ���� The number of TDs in ��� ��� is O�j'jD�� The con�dence
and the support of a given TD � �� � can be computed in quadratic time in C� as follows� For each
�i� j� � �� we compute L	i�j
 and B	i�j
 as de�ned in De�nition �� by comparing all tuples of Ii with all
tuples of Ij � The con�dence and support can be computed from the summation of L	i�j
 and B	i�j
 over
all �i� j� � �� In the worst case� we have to compare every tuple of I with every other tuple of I� or
O�C�� comparisons�

��� Complexity

In this section we explore the complexity of TDMINE�D��� This leads to the following interesting and
important results	

 TDMINE�D� is NP�complete�

 TDMINE�D�f��
��g� on the other hand� is in P�

Algorithmic aspects will be discussed in the next section�

Lemma � Let U be a set of attributes� Let I � hI�� I�� � � �i be a temporal relation over U � Let � ��

�A� �� be a TD over U with � � op� Let s� c � ��� ��� If I j�s
c ��� �A� �� then for some �� � f���� ��g�

for some s� � s and c� � c� we have I j�s�

c� ��� �A� ����

Proof� Straightforward� �

Theorem 	 TDMINE�D� is NP�complete�

Proof� TDMINE�D� can be solved by a non�deterministic polynomial algorithm� one that guesses a
TD of the speci�ed TD class and computes the support and con�dence in polynomial time� and then
checks whether these values exceed the speci�ed minimum thresholds$ hence TDMINE�D� is in NP� We
now prove that �SAT can be reduced to TDMINE�D�� Consider the propositional formula	

(�
�

i
���m

i� �
i� �
i�

where each
ij is either a variable or the negation of one� Let V � fx�� x�� � � � � xvg be the smallest set
containing each variable appearing in (� v � � is assumed without loss of generality� Let U be a set of
attributes� For convenience� we assume U � V � frg where r �� V � We describe the reduction R next�

We assume without loss of generality that � � ��� � � are three constants of dom� Let x � U � We write
tx
a for the tuple t over U satisfying	 t�x� � a� and t�y� � ��� if y �� x� Let I� be a singleton containing
tr
���� Let I�� be the smallest relation over U containing tx
� and tx
� for every x � V �

For every i � ����m� we de�ne three tuples �denoted ti�� ti�� and ti��� with for each x � U � for each
j � f�� �� �g�

��

x� x� x� � � � xv r
I� 	 �� �� �� � � � �� ��
I�� 	 � �� �� � � � �� ��

�� � �� � � � �� ��
�� �� � � � � �� ��

� � �
�� �� �� � � � � ��
� �� �� � � � �� ��
�� � �� � � � �� ��
�� �� � � � � �� ��

� � �
�� �� �� � � � � ��

I�� 	 � � � � � � �� � � tuples
� � � � � � �� �� corresponding to
� � � � � � �� � �x� ��x� � x�

� � �

Figure �	 Construction example�

 tij�x� � � if
i� �
i� �
i� contains the negation of x�

 tij�x� � � if
i� �
i� �
i� contains x non�negated�

 tij�r� � j��� and

 tij�x� � ��� otherwise�

No term of (contains both x and the negation of x� is assumed without loss of generality� Let I�� be
the smallest relation over U containing ti�� ti�� and ti� for every i � ����m�� Let I� � I�� � I���

Let I � hI�� I�� � � �i be a temporal relation with I� and I� as de�ned above� and Ii � fg if i � �� The
construction is illustrated in Figure ��

Let p be the number of tuple pairs of I� � I�� Let

ts �
v

p
and tc � ��

Clearly� ts � �� Let � � V �NextOne frg� a TD template over U � We claim that R is a reduction from
�SAT to TDMINE�D�� To prove our claim� we have to establish two things	 ��� that any formula (
has a satisfying truth assignment iff the answer to the TDMINE�D� problem �U� I� �� ts� tc� is
yes�$ and
��� that R can be computed in space logm�
Assume that for some � �NextOne � of ��� ��� we have I j�s

c � �NextOne � with s � ts and c � tc�
By Lemma �� ��r� � f�� ����g is assumed without loss of generality� We show that (has a satisfying
truth assignment�
Let k be the number of tuple pairs of I� � I�� satisfying �� It can be readily seen that k � v�

Obviously� the number of tuple pairs of I� � I�� satisfying � is a multiple of three"let it be �n� Let �
�kappa� be a number such that

� �

�
� if ��r� �
 �� �
k otherwise

Then I j�s
c ��NextOne � with

s �
� � �n

p
and c �

�� �n

k � �n
�

Note that � and n are not both equal to � since s � ts � �� Then c � tc and s � ts imply

� � k and n � � and k � v�

��

Hence� ��r� is either � or �� and k � v� One can easily check that k � v implies that � �NextOne �
belongs to ��� ��f���g�

We now consider the implications of n � �� For example� a term �x� � �x� � x� in (gives rise to a
tuple fx� 	 �� x� 	 �� x� 	 �� x� 	 ���� � � � � xv 	 ���� r 	 ���g in I� n � � implies that ��x�� �
 � � or
��x�� �
 � � or ��x�� �
 � ��
Let B be a truth assignment to the variables of V satisfying �i � ����v��	

B�xi� �

�
true if ��xi� �
 � �
false if ��xi� �
 � �

n � � implies that B is a truth assignment satisfying (�
Conversely� it can now be easily seen that if (has a satisfying truth assignment� then for some

� �NextOne � � ��� ��� I j�s
c � �NextOne � with s � ts and c � tc� To see that R can be computed in

logm space� note that R�(� can be written directly from (� This concludes the proof� �

Remark	 The TD mined in Theorem � only uses the operators � and �� This leads to the following
corollary�

Corollary � If ' contains � and � then TDMINE�D�� is NP�complete�

Proof� This follows immediately from the fact that in the proof of Theorem �� the TD ��NextOne �
belongs to ��� ��f���g� �

The following theorem states that if one does not consider the
composite� operators �� �� and ��
then the resulting TD mining problem is in P�

Theorem
 TDMINE�D�f��
��g is in P�

Proof� Consider the TDMINE�D�f��
��g problem �U� I� �� ts� tc� with � � X �� Y � For every

�i� j� � �� for every �s� t� � Ii� Ij � one can construct in O�D� time the unique TD ��� � of ��� ��f��
��g

such that �s� t� satis�es both � and �� For each TD so constructed one can compute in polynomial
time the support and the con�dence� and verify whether these values exceed ts and tc respectively� This
concludes the proof� �

��� Algorithmic Aspects

In this section� we discuss algorithms to solve certain TDMINE problems� We �rst give a polynomial time
algorithm for TDMINEf��
��g� and then we discuss a signi�cant variant with fairly reduced time require�
ments� Finally� we discuss the applicability of some existing techniques for increasing the performance
of TD mining�

���� Solving TDMINEf��
��g

Theorem � suggests a naive way to solve a TDMINEf��
��g problem �U� I� �� ts� tc�� We now present a
better approach�

De�nition �� Let U be a set of attributes� A comparator over U is a DAS � over U such that for
each A � U � ��A� is either �� �� or �� Let s� t be tuples over U � The comparator of s with t� denoted
comp�s� t�� is the comparator � over U such that ���s� t�� �

For example� if s � fA 	 �� B 	 �g and t � fA 	 �� B 	 �g then comp�s� t� is the DAS f�A���� �B���g�
Comparators correspond to a notion with the same name in ���� page ����� To solve �U� I� �� ts� tc� with
� � X �� Y � we proceed in three steps�

��

step� For every �i� j� � �� for every s � Ii� for every t � Ij� we store comp�s�XY �� t�XY �� in a list L� In
the worst case� the number of comparators in L is equal to

NX
i
�

�
NX
j
i

jIij � jIj j�$ that is� O�C
���

step� Let X � fA�� � � � � Amg and Y � fAm��� � � � � Ang �� � m � n�� The list L of comparators built
in step� is ordered by ascending A�� � � � � An in O�C� logC� time� We order � before �� and �
before �� Figure � shows an ordered list of comparators over XY with X � fA�� A�� A�g and
Y � fA�� A�� A�g�

step� Finally� the solution to the TDMINEf��
��g problem can be computed in a sequential scan of the
ordered list of O�C�� comparators� This is illustrated by the procedure ThresholdTDs of Figure ��
The procedure delimits
blocks� of comparators that agree onX� and within each such block further
delimits blocks of comparators that also agree on Y � For example� from the �rst seven comparators
in Figure �� it is clear that the con�dence of �A�� ���A�� ���A�� �� �� �A�� ���A�� ���A�� ��
equals ���� and the support equals ��p� where p is equal to

P
	i�j
�� jIi � Ijj�

The above procedure has an overall complexity of O�C� log C� in terms of C� It takes linear time in D�
As any algorithm that takes O�C�� or more time may be very expensive in practical applications� we
next derive an interesting variant with reduced time requirements�

���� Entity Evolution

TDMINE� requires that the operators appearing in the solution TDs belong to '� One could consider
specifying the set of allowed operators on an attribute by attribute basis"rather than for the TD as
a whole� In particular� for certain attributes� such as SS�� equality ��� and inequality ���� are often
the only meaningful operators� We found that many practical TDs compare primary key attributes for
equality� This can be explained as follows� In many applications� tuples represent real�life entities �for
example� employee tuples�� and primary keys represent identi�ers of entities �for example� SS��� Often
one is interested to see how certain properties �for example� Sal� of an entity evolve in time� Tendencies
in entity evolution are typically captured by TDs of the form ��� � where atts��� contains the primary
key K of the relation schema under consideration� and ��A� �
 � � for each A � K� Most example
TDs in this paper have this form� like �SS�����Rank� ���Next �Sal���
Let I � hI�� I�� � � �i be a temporal relation over U � Assume K
 U serves as the primary key�

Formally� for each i � N� for every s� t � Ii� s�K� � t�K� implies s � t� Suppose we want to solve
a TDMINE� problem �U� I� �� ts� tc� where � � KX �� Y � and that we are only interested in TDs
��� � of ��� ��f��
��g satisfying ��A� �
 � � for each A � K� If every Ii is listed in order of ascending
primary key� then the problem can be solved as follows�

step� For every �i� j� � �� for every s � Ii� for every t � Ij� if s�K� � t�K� then we store comp�s�XY �� t�XY ��
in a list L� As Ii and Ij are ordered by K� tuples that agree on K can be found using a merge
algorithm� This is illustrated by the procedure StoreComparators of Figure �� This step considers
at most

NX
i
�

jIij�
N��X
i
�

�
NX

j
i��

jIij� jIjj�

tuple pairs� It can be proved by simple induction on N that the latter expression equals NC�
Hence� L contains at most NC comparators�

step� and step� The further processing does not di
er from the one in Section ������ The list L
of comparators can be sorted in O�NC log�NC�� time� and the solution to the problem under
consideration can be computed from the ordered list in O�NC� time�

��

X Y
A� A� A� A� A� A�

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � � � �

Figure �	 Comparators over XY ordered by A�� A�� � � � � A��

procedure ThresholdTDs
INPUT� Attribute sets X and Y �

List L of comparators over XY � ordered by X�Y �
� L contains jLj comparators�
� L�i��X� denotes the projection on X of the ith comparator�
Threshold support ts�
Threshold con�dence tc�
Support denominator p�

DECLARE� Integer lx � ux � ly �uy �
� Invariant� lx � ly � uy � ux �
Real s� c�
Comparator � over X �
Comparator � over Y �

begin

lx �
� ux �

while ux � jLj

� � L�lx ��X�
while ux � jLj and L�ux��X� � � loop ux � ux �
 endloop
ly � lx � uy � lx
while uy � ux loop

� � L�ly��Y �
while uy � ux and L�uy��Y � � � loop uy � uy �
 endloop
� Every comparator L�i�� lx � i � ux � contains ��
� Every comparator L�j�� ly � j � uy � contains ��
� Next we compute the support and con�dence of ��� ��
s � �uy � ly��p
c � �uy � ly���ux � lx �
if s � ts and c � tc then output ��� � endif

ly � uy
endloop

lx � ux
endloop

end

Figure �	 Procedure ThresholdTDs�

��

procedure StoreComparators
INPUT� Attribute set U �

Attribute sets K�X�Y � U �
� A temporal relation is represented by a list of N �snapshot� relations�
� each �snapshot� relation Ii�
 � i � N � is a list of tuples over U �
� Each Ii contains jIij tuples� Ii�k� denotes the kth tuple of Ii�
Temporal relation hI� � � � � � IN i over U with

for each i � �
��N �� for each k� l � �
��jIij� �let s � Ii�k� and t � Ii�l���
k � l implies s�K� � t�K��i�e�� Ii is ordered by key K�

TAR � with for each �i� j� � �� j � N �
DECLARE� Integer cnt�

List L of comparators over XY �
Tuples s� t over U �

begin

cnt � �
for each �i� j� � � loop

if i � j then
� Every tuple of Ii is compared with itself�
for each k � �
��jIij� loop

cnt � cnt �

L�cnt� � the comparator � over XY with ��A� � � � � for each A � XY

endloop

else � i �� j
� The following loop resembles a �merge� of Ik and Il �
k �
� l �

while k � jIij and l � jIjj loop

s � Ii�k�� t � Ij�l�
if s�K� � t�K� then k � k �

elsif s�K� � t�K� then l � l�

else � s�K� � t�K�

cnt � cnt �

L�cnt� � comp�s�XY �� t�XY ��

endif

endloop

endif

endloop

return L
end

Figure �	 Procedure StoreComparators�

I� 	
SS� Rank Sal

A� � ���
B� � ���
C� � ���
D� � ��
E� � ���

I� 	
SS� Rank Sal

A� � ���
B� � ���
C� � ���
D� � ��
E� � ���

Comparators	
Rank Sal

� �
� �
� �
� �
� �

Ordered	
Rank Sal

� � �
� � �
� � �
� � �
� � �

Figure �	 Entity Evolution�

��

The above procedure is linear in D� It has a worst�case complexity of O�NC log�NC��� We can think
of practical applications where N is relatively small compared to C� and the complexity may become
acceptable� For example� a typical medical experiment may collect daily blood pressure readings from ���
patients during a one year period� The resulting databases has N � ��� and C � ��� ���� We note that
in many situations� the TAR involved in a TDMINE problem will not require comparing every timeslice
with every other timeslice� For example� if the TAR involved is Next then the list L of comparators
constructed in step� will contain not more than �C comparators �instead of NC��

Example
 The algorithm is further illustrated by Figure �� We start from a temporal relation I �
hI�� I�� � � �i over fSS�� Rank� Salg� Suppose Ii � fg if i � �$ that is� N � �� We are interested in mining
TDs of the form �SS�����Rank� ����NextOne �Sal� ��� where �� and �� are operators of f���� �g� The
�gure shows the list of comparators computed in step�� and the ordered list computed in step�� From
the ordered list� it can be readily seen� for example� that the TD �SS�����Rank� �� �NextOne �Sal� ��
has a con�dence of ���� �

���� Other Techniques

TDMINE can be solved in polynomial time when time requirements are expressed as a function of C� If
the input of TDMINE is characterized by D� then it can be solved in polynomial time only if P�NP�
Nevertheless� since C is generally in the order of thousands or millions� the cardinality may still be of
overriding importance compared to the degree� Techniques that have been successfully applied in mining
other rules� may also be applicable to TDs	

 Tuple reduction by generalization ���� or sampling �����

 Attribute reduction techniques �����

 Incremental maintenance of mined rules ����

 Visualization�

Tuple reduction by sampling can be done before starting TD mining� This provides no way to circumvent
the NP�completeness result shown earlier� but increases performance by reducing C� Attribute reduction
and incremental maintenance are fairly new and deserve further investigation� We conclude this section
by a note on visualization�
Visualization techniques are generally considered a useful method for discovering patterns in data

sets� This� of course� relies on some user intervention� The problem here is that it is di%cult to visualize
data spaces with high dimensionality� Every attribute appearing in a TD is a dimension� Moreover�
the time dimension is inherent in every TD� The practicality of visualization therefore depends on the
possibility to solve a given TDMINE problem by only dealing with
short� TDs at a time�
So a question of practical importance is	 Can a given TDMINE problem involving D attributes be

solved by �a� �rst decomposing it in polynomial time into a number of TDMINE subproblems of a speci�ed
visualizable dimension �practically � or ��� �b� then solving the smaller subproblems using visualization
techniques� and �c� �nally merging the solutions in polynomial time so as to obtain a solution for the
original TDMINE problem� It is of interest to note immediately that
shortening� the left�hand DAS
of a TD can result in an increase as well as a decrease of the con�dence� Recall that the con�dence c of
a TD � �� � is equal to a proportion b�l where b is the number of tuple pairs satisfying both � and
�� and l is the number of tuple pairs satisfying �� Replacing � by a proper subset of � will result in
both b and l non�decreasing� So c can increase as well as decrease� More fundamentally� we showed that
TDMINE is NP�complete if the input is characterized by the number of attributes� In the suggested
decomposition strategy� all subproblems are of the same speci�ed dimension and hence the time required
to solve any one subproblem is irrespective of D� But then the decomposition strategy corresponds to a
polynomial�time algorithm� which exists only if P�NP� This is a strong indication that there is no such
decomposition strategy�

��

	 Comparison with Related Work

In this section� we compare our work with related studies� We �rst show that our time model can express
Wang et al�)s temporal types ����� Then we argue that TDs can capture most temporal dependencies
found in the literature� Finally� we compare TD mining with work on the mining of association rules�

��� Temporal Types

The construct of temporal type ���� serves to model time granularity and is a generalization of several
earlier proposals in the literature� We compare our notion of TAR with the construct of temporal type�
In particular� we indicate that temporal types correspond to the restricted class of TARs which we called
chronologies�

De�nition �	 ���� A temporal type is a mapping � from N to ��R� such that for every i� j � N�

�� if i � j then every real number of ��i� is strictly less than every real number of ��j�� and

�� if ��i� � fg and i � j then ��j� � fg�

N is called the index set� and R the absolute time set� �

We now establish a one�to�one mapping between chronologies and temporal types� In particular� we
de�ne an injective function mapping every chronology � to a temporal type� denoted �tt�

De�nition �
 Let � be a chronology and let P�� P�� P�� � � � be the equivalence classes of �sym� Let n
be the number of equivalence classes �possibly n � ��� By the de�nition of chronology �De�nition ���
P� � P� � P� � � � � is assumed without loss of generality� From �� we derive a mapping �tt from N to
��N� as follows	

 �tt�i� � Pi if i � n� and

 �tt�i� � fg if i � n�

�

For example� consider the TAR Month introduced in Section ���� Then Monthtt��� � f�� � � � � ��g�
Monthtt��� � f��� � � � � ��g�� � � � Monthtt���� � f���� � � � � ���g� and so on� It can be easily seen that �tt is
a temporal type� Note incidentally that there are temporal types that cannot be expressed as the result
of applying the above transformation to a chronology� This is only because temporal types are functions
into ��R�� while �tt is a function into ��N�� The concept of temporal type does not critically depend�
however� on Rbeing the absolute time set� Wang et al� ���� page ���� mention that
in fact� any in�nite
set with a total ordering can serve as the absolute time$ reals� rationals and integers are examples��
Moreover� Wang et al� ���� do not rely on properties that hold for R but not for N� such as density�
Wang et al� ���� de�ne a relation is��ner�than on the family of temporal types� Importantly� an

interesting and convenient property of the construct of chronology is that set inclusion �
� captures the
meaning of is��ner�than� For example� one would typically have Month
 Year"a month falls entirely
within a single year"but Week �
 Month"a new month can start in the middle of a week� This is an
interesting property� as well�known properties of set inclusion can be readily used in reasoning about
chronologies� For example� it is relatively easy to show that the set of all chronologies� ordered by
inclusion� is a lattice�
Bettini et al� ��� give more general de�nitions of temporal types� In particular� they allow the index

set to be any chain isomorphic to a subset of the integers endowed with its usual order� and they allow
the absolute time set to be any chain� Also� they consider relaxations of condition ��� in De�nition ���
Such extensions are beyond the scope of TARs�
To conclude� chronologies correspond to temporal types� Importantly� there are many meaningful

TARs� for example Next � which are non�chronological� and which have not been explicitly captured by
previous time models�

��

��� Database Constraints

Temporal Dependencies

Lately� there has been a growing interest in dependencies for temporal databases ���� ���� All temporal
dependencies found in the extensive overview of Jensen et al� ���� compare attributes for equality ���
only� It seems that TDs are among the �rst temporal dependencies that introduce operators other than
equality�
Our treatment of TDs is related to the work on temporal database design of Wang et al� ����� In

Section ���� we already compared our time model with theirs� Wang et al�)s temporal FDs �TFDs�
correspond to a restricted class of TDs where� �rst� equality is the only operator used� and second� the
TAR involved is a chronology� An example is �SS�����Month �Sal����
Jensen et al� ���� essentially extend the notion of satisfaction of FDs for temporal relations� Jensen

et al�)s TFDs correspond to TDs where� �rst� equality is the only operator used� and second� the TAR
involved is Current� An example is �SS�����Current �Sal����
In the work of Vianu ����� a temporal relation is viewed as a sequence of snapshot relations in time"a

view that is also present in our notion of temporal relation� Tuples preserve their identity through time�
The dynamic constraints used in conjunction with the data model are restricted to certain analogs of
FDs� called dynamic FDs �DFDs�� For example� consider a company�wide salary update between times
i and i � �� Each new salary is determined strictly on the basis of the old salary and rank� Hence� two
employees with the same salary and rank receive the same new salary as a result of the salary update� For

each attribute A� let
�
A and

	
A refer to A�values before and after an update respectively� The constraint

pertaining to the salary update is expressed by the DFD	

f
�
Sal�

�
Rankg � f

	
Salg

Two tuples with the same value for Sal and Rank before the update must agree on Sal after the update�
It can be shown that Vianu)s DFDs cannot be expressed by TDs� and vice versa�
Navathe and Ahmed ���� ��� introduce a temporal dependency to express that certain attribute values

always change simultaneously� This notion of synchronism can be expressed in terms of TDs� and hence
is less general� For example� the TDs �SS�����Rank� ��� �Next �Sal� ��� and �SS�����Sal� ��� �Next

�Rank� ��� taken together express that an employee)s rank and salary always change together�
TDs evolved from the dynamic FDs �DFDs� and the temporal FDs �TFDs� of Wijsen ���� ���� by

introducing TARs and by allowing operators other than equality� An extension of TFDs with object�
identity is proposed in �����
Finally it should be mentioned that several researchers have used �rst�order temporal logic �FOTL�

to express temporal database integrity$ among others� Chomicki ���� Chomicki and Niwi*nski ���� Lipeck
and Saake �����

Non�Temporal Dependencies

For non�temporal relational databases� constraints involving order have been proposed in the literature�
The order dependencies proposed by Ginsburg and Hull ���� ��� generalize FDs by comparing attributes
not only for equality ���� but also for order �f�������g�� Inequality ���� is not considered� The order
is not required to be total� The major contribution of TDs compared with order dependencies is the
explicit modeling of the time dimension in TDs�

Constraint�generating dependencies proposed by Baudinet et al� ��� generalize equality�generating
dependencies� which subsume FDs� by replacing equality requirements by constraints on an interpreted
domain� A special type of constraint�generating dependency �xes the language of constraint formulas to
equality ���� inequality ����� and order ����� constraints� Theorem � is directly based on a result of ����
In a recent work� Guo et al� ���� study satis�ability and implication problems for sets of inequalities

of the form X�Y and X�c� where X and Y are variables� c is a constant� and � is an operator of
f���� ������ ��g�

��

��� Data Mining

Recently there has been a growing interest in the mining of di
erent types of association rules from large
relational tables� Association rules can take di
erent forms ��� ��� ���� Most work in association mining
has concentrated on discovering rules of the form

�t��R�t� �C�t��� C��t��

where C and C� are constraint formulas relating certain attribute values of the tuple t with speci�ed
constants� An example is the rule �taken from ����� �Married employees between �� and �� years old
have two cars�� which can be expressed as

�tf�emp�t� � �� � t�Age� � �� � t�Married� � Yes�� t�NumCars� � �g�

and which is commonly abbreviated to

�Age 	 ������� and �Married 	 Yes�� �NumCars 	 ���

The support s of an association rule is the percentage of tuples satisfying both the left�hand and the
right�hand side of the rule� The con�dence is c if c+ of the tuples satisfying the left�hand side of the
rule also satisfy the right�hand side� Clearly� our notions of support and con�dence not only have the
same name� but also the same set�up and intention� Certain studies limit the length of a rule to enable
visualization ���� ����
Note that the association rules just mentioned compare certain attribute values of a tuple with

speci�ed constants� Each individual tuple can give evidence for or against the association� The TDs
proposed in this paper compare attributes in one tuple with the corresponding attributes in another tuple�
That is� TD satisfaction is expressed in terms of tuple pairs"rather than individual tuples� Following
the terminology of Baudinet et al� ���� TDs are constraint�generating ��dependencies� whereas classical
association rules are constraint�generating ��dependencies�
In this study� we assumed a single temporal relation� Other researchers have also considered the

problem of mining rules from relations that are built from multiple base relations using some query
language ����
Most work on data mining concerns in the �rst place the performance of algorithms� Examples are

��� ��� ��� ���� In this study� we have proceeded in a di
erent way and have started with analyzing the
complexity of the TDMINE problem itself"rather than algorithms to solve it� The rationale behind this
approach is that complexity analysis gives us important indications about the tractability of the problem
in hand� which may complement algorithm design techniques�

 Summary

We introduced trend dependencies �TDs�� which allow expressing signi�cant temporal trends� The time
dimension is captured by TDs through the concept of time accessibility relation �TAR�� We showed that
TARs can express time granularities in a simple and elegant way� We provided a characterization of the
satis�ability problem� and we showed it is the dual of the logical implication problem� The satis�ability
problem for TDs turns out NP�hard� An upper bound for the complexity depends on the formalism
used to represent TARs� We provided an axiomatization for reasoning about TDs�
As TDs allow capturing signi�cant knowledge� mining them from existing databases is interesting and

important� We studied the problem TDMINE	 Given a temporal database� mine the TDs of a speci�ed
TD class whose support and con�dence exceed speci�ed minimum thresholds� Time requirements were
expressed in terms of the cardinality C and the number of attributes D� We showed that TDMINE�D�
is NP�complete if time requirements are expressed as a function of D� This implies that TDMINE
cannot be
scaled down� to lower dimensions� which limits the practicality of visualization techniques
for discovering TDs among many attributes� Although solving TDMINE is generally expensive� we
worked out an interesting variant with acceptable time requirements�
We showed that TDs can express several temporal dependencies found in the literature� TDs seem to

be among the �rst temporal dependencies that compare attributes using operators other than equality�

��

References

��� S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases� Addison�Wesley� �����

��� A� Agrawal and R� Srikant� Fast algorithms for mining association rules� In Proc� Int� Conf� Very
Large Data Bases� pages ���,���� Santiago� Chile� �����

��� R� Agrawal� T� Imielinski� and A� Swami� Mining association rules between sets of items in large
databases� In Proc� ACM SIGMOD Int� Conf� Management of Data� pages ���,���� Washington�
D�C�� �����

��� E� Baralis and G� Psaila� Designing templates for mining association rules� Journal of Intelligent
Information Systems� ����	�,��� �����

��� M� Baudinet� J� Chomicki� and P� Wolper� Constraint�generating dependencies� In Proc� �th Int�
Conf� on Database Theory� LNCS ���� pages ���,���� Springer�Verlag� �����

��� C� Bettini� X� Wang� and S� Jajodia� Testing complex temporal relationships involving multiple
granularities and its application to data mining� In Proc� ACM SIGACT�SIGMOD�SIGART Sym�
posium on Principles of Database Systems� pages ��,��� Montreal� Canada� June ����� ACM Press�

��� D� W� Cheung� J� Han� V� T� Ng� and C� Wong� Maintenance of discovered association rules in large
databases	 An incremental updating technique� In Int� Conf� Data Engineering� pages ���,����
New Orleans� Louisiana� �����

��� J� Chomicki� E%cient checking of temporal integrity constraints using bounded history encoding�
ACM Trans� on Database Systems� �����	���,���� June �����

��� J� Chomicki and D� Niwi*nski� On the feasibility of checking temporal integrity constraints� Journal
of Computer and System Sciences� �����	���,���� �����

���� J� Cli
ord� A� Crocker� and A� Tuzhilin� On completeness of historical relational query languages�
ACM Trans� on Database Systems� �����	��,���� �����

���� C� Faloutsos and K� Lin� Fastmap	 A fast algorithm for indexing� data mining and visualization
of traditional and multimedia datasets� In Proc� ACM SIGMOD Int� Conf� Management of Data�
pages ���,���� San Jose� CA� �����

���� T� Fukuda� Y� Morimoto� S� Morishita� and T� Tokuyama� Data mining using two�dimensional
optimized association rules	 Scheme� algorithms� and visualization� In Proc� ACM SIGMOD Int�
Conf� Management of Data� pages ��,��� Montreal� Canada� �����

���� T� Fukuda� Y� Morimoto� S� Morishita� and T� Tokuyama� Mining optimized association rules
for numeric attributes� In Proc� ACM SIGACT�SIGMOD�SIGART Symposium on Principles of
Database Systems� pages ���,���� Montreal� Canada� �����

���� S� Ginsburg and R� Hull� Order dependency in the relational model� Theoretical Computer Science�
��	���,���� �����

���� S� Ginsburg and R� Hull� Sort sets in the relational model� Journal of the ACM� ��	���,���� �����

���� S� Guo� W� Sun� and M� Weiss� Solving satis�ability and implication problems in database systems�
ACM Trans� on Database Systems� �����	���,���� �����

���� J� Han� Y� Cai� and N� Cercone� Data�driven discovery of quantitative rules in relational databases�
IEEE Trans� on Knowledge and Data Engineering� ����	��,��� �����

���� J� Han and Y� Fu� Discovery of multiple�level association rules from large databases� In Proc� Int�
Conf� Very Large Data Bases� pages ���,���� Z�urich� Switzerland� �����

��

���� X� Hu and N� Cercone� Mining knowledge rules from databases	 A rough set approach� In Int� Conf�
Data Engineering� pages ��,���� New Orleans� Louisiana� �����

���� C� Jensen� R� Snodgrass� and M� Soo� Extending existing dependency theory to temporal databases�
IEEE Trans� on Knowledge and Data Engineering� ����	���,���� �����

���� U� Lipeck and G� Saake� Monitoring dynamic integrity constraints based on temporal logic� Infor�
mation Systems� �����	���,���� �����

���� S� Navathe and R� Ahmed� A temporal relational model and a query language� Information Sciences�
��	���,���� �����

���� S� Navathe and R� Ahmed� Temporal extensions to the relational model and SQL� In A� Tansel�
J� Cli
ord� S� Gadia� S� Jajodia� A� Segev� and R� Snodgrass� editors� Temporal Databases� Theory�
Design� and Implementation� chapter �� pages ��,���� Benjamin#Cummings� �����

���� J� Park� M��S� Chen� and P� Yu� An e
ective hash�based algorithm for mining association rules� In
Proc� ACM SIGMOD Int� Conf� Management of Data� pages ���,���� San Jose� CA� �����

���� A� Savasere� E� Omiecinski� and S� Navathe� An e%cient algorithm for mining association rules in
large databases� In Proc� Int� Conf� Very Large Data Bases� pages ���,���� Z�urich� Switzerland�
�����

���� R� Srikant and R� Agrawal� Mining quantitative association rules in large relational tables� In Proc�
ACM SIGMOD Int� Conf� Management of Data� pages �,��� Montreal� Canada� �����

���� A� Tansel� J� Cli
ord� S� Gadia� S� Jajodia� A� Segev� and R� Snodgrass� editors� Temporal
Databases� Theory� Design� and Implementation� Database Systems and Applications Series� Ben�
jamin#Cummings� Redwood City� CA� �����

���� V� Vianu� Dynamic functional dependencies and database aging� Journal of the ACM� �����	��,���
�����

���� X� Wang� C� Bettini� A� Brodsky� and S� Jajodia� Logical design for temporal databases with
multiple granularities� ACM Trans� on Database Systems� �����	���,���� �����

���� J� Wijsen� Design of temporal relational databases based on dynamic and temporal functional
dependencies� In S� Cli
ord and A� Tuzhilin� editors� Recent Advances in Temporal Databases�
Workshops in Computing� pages ��,��� Springer� �����

���� J� Wijsen� Extending Dependency Theory for Temporal Databases� PhD thesis� Katholieke Univer�
siteit Leuven� Belgium� Feb� �����

���� J� Wijsen� Reasoning about qualitative trends in databases� Information Systems� �����	���,����
�����

���� J� Wijsen� Temporal FDs on complex objects� ACM Trans� on Database Systems� �����	���,����
�����

���� S� Yen and A� Chen� The analysis of relationships in databases for rule derivation� Journal of
Intelligent Information Systems� ����	���,���� �����

��

