Temporal Dependencies with Order
Constraints

Jef Wijsen

December 20, 1999

TR-47

A TiIMECENTER Technical Report

Title Temporal Dependencies with Order Constraints
Copyright ©) 1999 Jef Wijsen. All rights reserved.
Author(s) Jef Wijsen

Publication History This manuscript has been conditionally accepted for publication in IEEE
Trans. on Knowledge and Data Engineering.
December 1999. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. Bohlen, Heidi Gregersen, Dieter Pfoser,
Simonas Saltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon

Individual participants

Curtis E. Dyreson, Bond University, Australia

Fabio Grandi, University of Bologna, Italy

Nick Kline, Microsoft, USA

Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland

Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
John F. Roddick, University of South Australia, Australia
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, amazon.com, USA

Andreas Steiner, TimeConsult, Switzerland

Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, University of Mons-Hainaut, Belgium

Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available via TIMECENTER s provided “as is” and without any express or implied
warranties, including, without limitation, the implied warranty of merchantability and fitness for a par-
ticular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal
lines because the primary storage medium was wood. Runes may also be found on jewelry, tools, and
weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

We propose a temporal dependency, called trend dependency (TD), which captures a significant
family of data evolution regularities. A simple example of such regularity might be: “Salaries of
employees do not decrease.” TDs compare attributes over time using operators of {<,=,>, <, >, #}.
We define a satisfiability problem that is the dual of the logical implication problem for TDs, and we
investigate the computational complexity of both problems. We provide an axiomatization of logical
implication. As TDs allow expressing meaningful trends, “mining” them from existing databases is
interesting. For the purpose of TD mining, TD satisfaction is characterized by the common notions
of support and confidence. We study the problem TDMINE: Given a temporal database, mine the
TDs that conform to a given template and whose support and confidence exceed certain threshold
values. The complexity of TDMINE is studied, as well as algorithms to solve it. A comparison with
related work is provided at the end of the paper. We show that TDs can express several temporal
dependencies found in the literature.

1 Introduction

Lately, there has been a growing research interest in temporal database integrity. Temporal constraints
can take different forms. They have been expressed using first-order temporal logic (FOTL) [8, 9].
Alternatively, one can study restricted classes of FOTL formulas, which may be called temporal depen-
dencies. A comprehensive overview of temporal dependencies has been given by Jensen et al. [20]. In
this paper, we introduce a new temporal dependency, called trend dependency (TD), which captures
a significant class of data evolution constraints. Two examples of such constraints, taken from recent
work, are “Salaries of employees should never decrease” [8] and “A facully’s rank cannot change during
an academic year” [29).

Until now, database integrity has been the single most important motivation for studying temporal
dependencies. Temporal dependencies allow capturing more real-world knowledge in a database schema
by placing restrictions on how the data can change over time. In this paper, we also look at TDs from
a knowledge discovery (or data mining) point of view: As TDs allow expressing significant real-world
knowledge, discovering them from existing databases is interesting and important.

We briefly explain the type of logic formulas expressed by TDs. In this study, time is represented
by the set of natural numbers N (= {1,2,3,...}). A temporal relation is viewed as a time series I =
(I, I, Is, . . .} of conventional “snapshot” relations, all over the same set of attributes. Intuitively, one
may think of I; as the family of tuples valid at time i. For example, consider the relation schema
{SS#,Rank,Sal}. A tuple {SS# : 2,Rank : y,Sal : z} of I; means that at time ¢, the employee with
social security number x has rank y and salary z. Employees are uniquely identified by their social
security number.

Checking temporal constraints typically involves comparing tuples that are valid at different points of
time. For example, checking “Salaries of employees should never decrease,” requires comparing employee
records at time ¢ with records at the next time ¢ + 1, for each time point ¢. To relate time points in a
temporal constraint, we make use of binary relations on the set of time points, called time accessibility
relations (TARs). The TAR emerging in the running example is {(¢,4+ 1) | ¢ € N}, which is called Next.
At this point, the meaning of TDs can be most easily explained by expressing them in a tuple-oriented
relational calculus. We use the predicate emp(s,i) with the meaning that tuple s belongs to I;. The
constraint under consideration can then be expressed as:

ViViVsVt{ [emp(s,i) Aemp(t,j) A
Next(i, j) A
s(SS#) = t(SS#) | — s(sal) < t(sal) }

where Next(i, j) means that (¢, j) belongs to Next. We will denote this constraint as
(SS#, :) —> Next (Sala S)

and call it a trend dependency (TD). TDs generalize functional dependencies (FDs) in two ways: first, by
comparing tuples over time, and second, by comparing attributes with any operator of {<, =, >, <, > #}.

TDs can capture several temporal dependencies found in the literature. They seem to be among the first
temporal dependencies that compare attributes using operators other than equality. In this paper, we
are going to address some important practical problems that apply to any new type of dependency:

Logical implication problem Given a set ¥ of TDs and a single TD ¢, if a temporal relation satisfies
Y., does it necessarily satisfy o as well?

Satisfiability problem Can a specified set ¥ of TDs be satisfied in a “non-trivial” way?

The satisfiability problem starts from a specified family ¥ of TDs and looks for a particular temporal
relation satisfying 3. The following data mining problem is in some respect the inverse of the satisfiability
problem. It starts from a given temporal relation and looks for TDs satisfied by it.

TD mining problem Given a temporal relation, which TDs are satisfied “to a high degree”?

At this point, it is not possible to give a precise characterization of the latter problem, but the idea can
be illustrated as follows. Imagine a temporal relation containing salary histories of employees. Assume
that no integrity constraints have been specified concerning the evolution of salaries. Inspecting the data,
one may observe employees with increasing as well as decreasing salaries. The task then is to find out
which trend is the “stronger” one: Do salaries of employees generally increase or decrease? To answer
such question, we need a measure for characterizing the “strength” of a trend. This will be done by
adapting the notions of confidence and support, which are commonly used in the field of data mining (see
for example [3]).

The outline of the paper is as follows. Section 2 introduces two components of TDs, namely directed
attribute sets (DASs) for comparing tuples, and time accessibility relations (TARs) to relate time points.
Having defined these components, we can formalize the notion of TD in Section 3. Section 4 concerns
the complexity of the logical implication problem and the satisfiability problem. An axiomatization of
logical implication is provided in Section 5. Section 6 concerns mining TDs from temporal databases. The
problem TDMINE is defined and its complexity is studied. TDs encompass several previous proposals of
temporal dependencies found in the literature. A comparison with related work 1s contained in Section 7.
Finally, Section 8 summarizes the most important results.

2 Preliminaries

2.1 Comparing Tuples

A basic assumption in our theoretical framework is that attributes take their values from totally ordered
domains. Examples of such attributes are numerous (e.g., Rank and Sal). We note that an attribute
domain can be totally ordered, even though this order does not naturally arise in integrity constraints.
SS# can serve as an example. Administrative procedures typically rely on a particular total order on
social security numbers to locate and list employee records. Nevertheless, it is likely that in practical
database constraints, SS#-values are only compared for equality (=) and inequality (#). Attributes like
SS# fit in our framework as there is no problem in using only equality and inequality constraints for
certain attributes.

The following definition introduces a convenient syntactic shorthand for comparing tuples. For ex-
ample, let s and ¢ be “employee” tuples. The formula s(SS#) = #(SS#) A s(Rank) < ¢(Rank) will be
denoted U*(s,t) where ¥ is equal to the set {(SS#, =), (Rank, <)} and called a DAS.

Definition 1 We assume the existence of a totally ordered, infinite set (dom, <) of constants. We
introduce two special operators 1 and T as follows: For every dy,ds € dom, d; Ld5 1s false and dy Tds 1s
true. We assume the existence of a set att of attributes. Let U C att. A tuple over U is a total function
from U to dom. If ¢ is a tuple over U and X C U, then t[X] denotes the tuple over X obtained by
restricting the function ¢ to X.

As the constraints considered in this paper never induce comparing distinct attributes, a single domain
can be assumed without loss of generality.

Operator | Syntactic | Inverse | Reciprocal
§ € OP | Shorthand | @ 0
{} L T L
{<} < > >
=) = 7 -
{>} > < <
{<,=} < > >
{=>} > < <
{<>} # = #
{<,=,>} T L T

Figure 1: Operators of OP with shorthand and inverse.

The set OP is defined as the powerset of {<,=,>}. That is, OP = p({<,=,>}). Elements of OP are
called operators. The Greek lowercase letter § will be used to denote operators. We introduce convenient
syntactic shorthands for the elements of OP, as shown in Figure 1.

Let @ € OP. The inverse of 0, denoted 0, is equal to {<,=,>}\ 0. The reciprocal of 0, denoted 5, Is
equal to the operator obtained from # by interchanging < and >.

Let U be a set of attributes (i.e., U C att). A directed attribute set (DAS) over U (or simply DAS, if U
is understood) is a total function from U to OP. The Greek uppercase letters ®, ¥, T, Q will be used to
denote DASs.

Let @ be a DAS. The domain of ® is denoted atts(®). That is, atts({(A1,01),..., (An,00)}) = {A1, ..., An}.
The empty DAS is denoted #. The reciprocal of ®, denoted <T>, is the DAS over atts(®) such that for every
A € atts(P), <T>(A) = 0 where 0 = B(A). P is called reflexive iff for every A € atts(®), P(A) contains the
equality (=) operator.

{(A1,01), (A2, 02), ..., (An,0n)} is usually denoted (A1, 01)(Az,02) ... (An,0p).

Let s,t be tuples over U. Let ® be a DAS over some subset X of UU. We say that the tuple pair (s,1)
satisfies ®, denoted ®*(s,t), iff for each A € X, s(A) 04 t(A) where 04 is the shorthand for ®(A).!

Let &, ¥ be DASs. We write ® A ¥ for the DAS T over atts(®) U atts(¥) satisfying the following
conditions:

e For every A € atts(®) N atts(¥), T(A) = B(A) N T(A4),
o for every A € atts(®) \ atts(¥) , T(A) = ®(A), and
o for every A € atts(V) \ atts(P), T(A) = U(A).
O

Example 1 Let & be the DAS (SS#,=)(Rank,<)(Sal,<). The reciprocal of & is equal to
® = (SS#,=)(Rank,>)(Sal,>). & is not reflexive as ®(Sal) does not contain =. We have
® A (Rank, #)(Sal, T) = (SS#, =)(Rank, <)(Sal, <). |

It can be easily proved that “A” is commutative, associative, and idempotent. The following lemma
states some properties that will be used later on.

INote the double use of the symbols L, <,=,>,<,>,#, T: First, as a shorthand for operators of OP, and second, to
compare elements of dom. This little abuse of notation does not result in any confusion, however.

Lemma 1 LetU be a set of attributes. Let s,t be tuples over U. Let ®, W be DASs with atts(®), atts(¥) C
U. Then

1. 0*(s,t) (recall B is the empty DAS).
2. (DAY (s,1) toff ®*(s,1) and ¥*(s,t).
3. ® is reflexive iff *(s,s).

Proor. Straightforward. i

2.2 Relating Time Points

In this subsection, we first define TARs and then we show how TARs can be used to model time
granularities.

2.2.1 Time Accessibility Relations (TARs)

In this work, the time line is represented by the set of natural numbers N (= {1,2,3,...}). Trends
typically induce comparing attributes of one tuple s with attributes of another tuple ¢, where s and ¢
may belong to different “snapshots.” We now introduce the concept of TAR to indicate which tuples
have to be compared with one another.

Definition 2 We define:
Future = {(i,7) | 4,j e Nand ¢ < j}.

Any computable subset of Future is called a time accessibility relation (TAR).? Current, Next, and
NezxtOne are special TARs which will be frequently used in the technical treatment later:

Current = {(i,4) | { € N},
Next = {(i,i+ 1) | { € N}, and
NextOne = {(1,2)}.

Greek lowercase letters «, # will be used to denote TARs. The complement of a TAR «, denoted —a, 1s
given by: —a = Future \ «. O

Note that {} and Future itself are TARs. We emphasize that whenever the pair (¢, j) belongs to a
TAR «, then ¢ < j. This restriction simplifies the technical treatment later on, without decreasing the
expressiveness of TDs. It can be easily seen that Future is recursively enumerable. The requirement that
TARs are computable means that, given a TAR a and some member (4, j) of Future, one is able to tell
whether or not (7, j) belongs to . TARs need not be finite. Of course, real systems can only deal with
TARs that have a finite representation. The representation of TARs will be discussed in Section 4.

2.2.2 Chronologies

Time granularities, like year, month, and day, play an important role in temporal modeling. We are
going to show that time granularities can be modeled in an elegant way by a restricted class of TARs,
called chronologies.

In nearly all application domains, there is a smallest time unit beyond which measuring time is
impossible or meaningless. For example, railway timetables show departure and arrival times of trains
with a precision of minutes but not seconds. Intuitively, we think of our time line IN as representing the
smallest time unit of the application in hand. In most examples throughout this paper, it is appropriate
to think of natural numbers as days: one represents January 1, 1950, two represents January 2, 1950,

?Let X,Y be sets with X C Y. We say that X is a computable subset of Y iff there is an algorithm which takes an
arbitrary element y € Y and determines whether or not y is a member of X.

and so on. Then the notion of “month” can be captured by the smallest TAR containing the pair
(,7) € Future whenever i and j represent days of the same month. That is,

January,1950

Month ={ (1,1),...,(1,31),(2,2),...,(2,31),...,(30,30),(30,31), (31,31)
February,1950
(32,32),...,(32,59),(33,33),...,(33,59),..., (58, 58), (58, 59), (59, 59),
January,1951

..., (366,366),...,(396,39),...}

Month satisfies some properties that are typical of granularities in general. First, its symmetric closure
i1s an equivalence relation—every equivalence class represents a single month. And second, months are
not “interleaved.” A TAR satisfying these properties will be called a chronology.

Definition 3 We define a relation < on p(N). Let P,@ C N.
P is said to be before (), denoted P < @, iff for every i € P, for every j € (), we have ¢ < j. The relation
=< on p(N) gives rise to a relation < as follows: P < Q iff P < Q or P = Q.

Let o be a TAR. We write dom(a) for the smallest set of natural numbers containing ¢ and j whenever
(i,7) € av. We write a®¥™ for the symmetric closure of a.

a 1s called a chronology iff
1. a®™ is an equivalence relation on dom(a), and?
2. the set of equivalence classes of a®¥™ ordered by =, is a totally ordered set.

a 1s called non-chronological if 1t is not a chronology. a

For example, Month is a chronology. The equivalence classes of Month®¥™ ordered by =<, are
{1,2,...,31} < {32,33,...,59} < ... The notion of chronology captures its intended meaning, namely a
partition of the time line in successive time granules. Later on in Section 7.1, we show that chronologies
correspond to the notion of temporal type, which is used by Wang et al. [29] to model the granularity of
time.

3 Trend Dependency (TD)

Having defined the notions of DAS and TAR, we are now ready to introduce the concept of TD. In this
section, we first give an impression of the expressiveness of TDs, and then we give a formal definition.

3.1 Motivating Examples

In Section 1, we already explained the meaning of a TD. We now give some additional examples. The
constraint “For an employee, an increase of rank cannot imply a decrease of salary,” is expressed by the

TD
(SS#’ :)(Rank, <) —> Neat (Sala S)

The constraint “Changing an employee’s rank implies changing his/her salary,” is expressed by

(SS#, =)(Rank, #) = nest (Sal, #).

3That is,
o Vi€ dom(a): a®¥™(4,1) (Reflewivity)
o Vi, 5.k € dom(a): (o™ (7,7) A a®¥™ (5, k)) = o®¥™ (i, k) (Transitivity)

Note that o®¥™ is symmetric by definition.

TDs encompass the temporal FDs (TFDs) proposed by Wang et al. [29]. For example, “An employee
cannot have two distinct salaries within the same month,” is expressed by

(SS#, :) —7Month (Sala :)’

where Month is defined as in Section 2.2. Let MoreThanFiveYearsLater be a TAR containing (i, j)
whenever j represents a day that is more than five years later than day ¢. Then “The salary of an
employee should have increased after five years,” is expressed by

(SS#, :) —MoreThanFiveYearsLater (Sala <)'

Let the attribute Sen denote the seniority of employees. The TD
(Rank, <)(Sen, <) — cuyrrent (Sal, <)

expresses that “If employee x has a lower rank and seniority than employee y, then x cannot earn more
than y (at any one time).” TDs encompass classical FDs. For example, the TD

(SS#, :) —7 Current (Sala :)

expresses that no employee can have two distinct salaries at any one time. The TD is satisfied by a
temporal relation if and only if the functional dependency SS# — Sal is satisfied by each “timeslice” of
the temporal relation.

The following example is taken from the medical scene. Let T = (I}, I5,...) be a temporal relation over
the set of attributes {Patient,Diastolic,Systolic}, storing blood pressure readings from patients. A
tuple {Patient : #,Diastolic: y, Systolic: z} of I; means that at day i the diastolic blood pressure of
patient z was y, and the systolic blood pressure was z. Normally, an increasing diastolic blood pressure
implies an increasing systolic blood pressure:

(Patient,=)(Diastolic, <) — eyt (Systolic, <).

Note that TDs do not allow comparing different attributes with one another. For example, let the
inequality Diastolic < Systolic express the fact that the diastolic blood pressure of a person 1s always
less than his/her systolic blood pressure. This inequality cannot be expressed by a TD. We found that
the combination of such inequalities with TDs raises interesting but non-trivial issues. For example, the
(non-realistic) TDs (Patient, =) — e (Diastolic, <) and (Patient,=) — yen (Systolic, >) taken
together express that the diastolic and systolic blood pressure of a patient converge. Then in order to
satisfy Diastolic < Systolic, patients must disappear from the database at some point in time.

3.2 Syntax and Semantics

We now define the syntax and semantics of TDs. Logical implication captures its classical meaning.

Definition 4 The cardinality of a set S is denoted |S|. Let U C att. A relation over U is a finite set
of tuples over U. A temporal relation over U is an infinite sequence I = (I, I2,...) of relations over U
satisfying the following condition: there is some n € N such that for every i > n, I; = {}. Each [; is
called a timeslice of I. The cardinality of a temporal relation I, denoted |I|, is equal to |I1| + |I2] + ...
It follows that |I| € N. The temporal relation I is called empty iff |I| = 0.

A trend dependency (TD) over U (or simply TD, if U is understood) is a statement ® —, ¥ where « is
a TAR, and @, ¥ are DASs with atts(®), atts(¥) C U.

Let 0 be ® —, ¥. We call ® the left-hand DAS, and ¥ the right-hand DAS of o; we say that the TD in
hand involves the TAR a. We write tar(o) to denote the TAR involved in o—i.e., tar(o) = .

Let I = (I1,Is,...) be a temporal relation and let ® —, ¥ be a TD (all over U). The TD & —, ¥ is
satisfied by I iff for every (i, j) € «, for every s € I;, for every t € I;, if ®*(s,t) then U*(s,1).

A TD o over U is trwial iff it 1s satisfied by each temporal relation over U.

Let X be a set of TDs, and let ¢ be a TD (all over U). We say that the temporal relation I = (I;, I»,...)
over U satisfies X iff it satisfies each TD of X. We say that ¥ logically implies o, denoted ¥ | o, iff
every temporal relation satisfying ¥ also satisfies o. a

Defining a temporal relation as a time series of snapshot relations is not uncommon in theoretical
research. See for example [8, 28]. Also the work on temporal dependency theory of Jensen et al. [20]
departs from the idea that temporal relations can be “timesliced.” Of course, more advanced structures
for storing time-related data have been proposed in the literature. See for example [27, 10]. However, such
representation issues are somehow peripheral to this study. Intuitively, one may think of our temporal
relations as the result of fimeslicing an enhanced representation.

4 Logical Implication and Satisfiability Problems

The logical implication and the satisfiability problems for TDs, as for any dependency, are important in
practical applications. The problems are the following:

Logical implication problem Given a set ¥ of TDs and a TD ¢, determine whether ¥ |= o.

Satisfiability problem Given a set 3 of TDs, determine whether X can be satisfied in a “non-trivial”
way.

The above characterization of the satisfiability problem is still imprecise; a precise formulation will be
given later on. For now, note that every set X of TDs is trivially satisfied by the empty temporal relation.
Logical implication is illustrated by the following example.

Example 2 Let X be a set of TDs containing

(Patient, =)(Diastolic, <) = yeyt (Systolic, <) (call it oy).
We show that X logically implies

(Patient, =)(Systolic, =) = s (Diastolic,>) (call it o2).

Suppose ¥ [~ o2. Then there is a temporal relation I = (I1,Is,...) satisfying X such that for some
(4,7) € Nezt, for some s € I;, for some t € I;, s(Patient) = t(Patient) and s(Systolic) = ¢(Systolic)
and s(Diastolic) < t(Diastolic). Then by o1, we have s(Systolic) < #(Systolic). Consequently,
s(Systolic) L t(Systolic), a contradiction. We conclude by contradiction that ¥ |= os. O

In this section we first define special temporal relations, called witness temporal relations, containing
at most two tuples. We then define the satisfiability problem, and show it is the dual of the logical
implication problem. Finally, we investigate the complexity of both problems.

4.1 Witness Temporal Relations

Witness temporal relations are temporal relations whose cardinality is either 1 or 2. Lemma 2 shows that
whenever ¥ [£ o, then there exists a witness temporal relation satisfying ¥ and falsifying o. Lemma 3
implies that the number of constants appearing in such a witness temporal relation can be limited without
loss of generality. This is because in our theoretical framework, any two constants ¢ and d can be related
in only three ways: ¢ < d, c=d, or ¢ > d.

Definition 5 Let (é,j) € Future. Let U be a set of attributes. Let s and ¢ be tuples over U. We write
[> s,j > t] for the smallest temporal relation I = (I, I,...) over U satisfying: I; contains s and I;
contains t.* Any temporal relation that can be written in this way, is called a witness temporal relation.
O

Let I = [i>s,j > 1] be a witness temporal relation. Clearly, if i # j or s # ¢ then |I| = 2; otherwise
7] = 1.

Lemma 2 Let U be a set of attributes. Let & be a set of TDs, and let o be a single TD (all over U). If
Y £ o, then there exists a wiltness temporal relation satisfying ¥ and falsifying o.

PrROOF. Let 0 = ® —, ¥ and X [0. Hence, there is a temporal relation (call it T = (I1, I5,...)) that
satisfles ¥ and falsifies 0. That is, for some (7, j) € «, for some s € I;, for some t € I;, we have ®*(s,1)
and not U*(s,t). Let I' be [i>s, jot]. I’ is the desired witness temporal relation. Obviously, I’ falsifies o.
We still have to show that I’ satisfies . Suppose I’ falsifies some TD (call it /) of T. Since Ij; contains
I, for every k € N, it follows that I must falsify ¢, a contradiction. We conclude by contradiction that
I’ satisfies X. This concludes the proof. a

Lemma 3 Let ¢,d be constants (i.e., ¢,d € dom) with ¢ < d. Let (i,j) € FPuture. Let U be a set of
attributes. Let s’ t' be tuples over U. There exist tuples s,t over U such that

1. For every TD o over U, [i>s,j>t] satisfies o iff [i>s',j > 1] satisfies o (i.e., [iv s, jot] and
[iv s, jot'] satisfy exactly the same TDs), and

2. for each A € U, either (a) s(A) = t(A) = ¢, or (b) s(A) = ¢ and t(A) = d, or (c) s(A) = d and
t(A) =c.

PrOOF. Let s,t be tuples over U such that

(a) s(A) =t(A) = cif s'(A) =t'(4),

(b) s(A) = cand t(A) = d if s'(A) < ¥'(4), and
(c) s(A) =d and t(4) = cif s'(A) > t/(A).

Obviously, for any TD o, if [i>s', j>t'] satisfies o then so does [i> s, j>1], and vice versa. This concludes
the proof. a

4.2 The Satisfiability Problem

We first give a precise characterization of the satisfiability problem and then we prove that it is the dual
of the logical implication problem.

Definition 6 Let U be a set of attributes. Let X be a set of TDs over U. Let « be a TAR. We say that
¥ is a-satisfiable iff for some pair (4, j) € «, for some tuples s,¢ over U, the witness temporal relation
[s, j>t] satisfies X. Otherwise X is called a-unsatisfiable.

A TDSAT problem is a triple (U, X, &) where U is a set of attributes, X is a set of TDs over U, and « is
a TAR. The answer to the TDSAT problem (U, X, «) is “yes” if ¥ is a-satisfiable, and “no” otherwise.
O

Note that so far we have not specified how infinite TARs are to be represented in a finite way. A finite
representation is clearly needed if TARs are part of the input of an effective procedure solving TDSAT.
For now we just assume the existence of such a representation. The next subsection will concern the
relationship between the representation of TARs and the complexity of TDSAT. We now show the duality
between the logical implication problem and TDSAT.

4A temporal relation I = (I, I, ...) is smaller than a temporal relation J = (Jy, Ja,...} if |I| < |J|.

Example 3 Suppose we want to decide whether a set ¥ of TDs logically implies the TD (SS#, =) — Nest
(sal, <) (call it o1). Let o2 be B — yey (SS#,=)(Sal,>). Assume that ¥ U {o2} is Next-satisfiable.
That is, for some (i, j) € Neat, for some tuples s and ¢, the witness temporal relation 7 = [i > s, j >]
satisfies X as well as 0. Since (*(s,?) is trivial, we have s(SS#) = ¢(SS#) and s(Sal) > ¢(Sal). Then /
is obviously a counterexample for ¥ = oy. So if ¥ U {02} is Nexi-satisfiable, then ¥ does not logically
imply o1. Conversely, it can be readily seen that if ¥ does not logically imply &y, then X U {c3} is
Next-satisfiable. ad

Theorem 1 Let U be a set of attributes. Let ¥ be a set of TDs, and let & —, ¥ be a TD (all over U).
Y @ =, Viff for every pair (A,0) € ¥, the answer to the TDSAT problem (U, X', o) is “no” where
Y=XU{l—,PA(A0)}.

ProoF. Note that the proof is trivial if ¥ = §.

=. Assume for some (A, 60) € ¥, SU{l -, ® A (4,0)} is a-satisfiable. Then for some pair (i, j) € a, for
some tuples s,t over U, the witness temporal relation [i > s, j & t] satisfies & U {f} —, ® A (A, 60)}. Since
(* (s, 1) is trivial, we have ®*(s,¢) and not ¥*(s,?). So [i>s,j 1] is a counterexample for ¥ |= & —, V.
<. Conversely, assume ¥ £ & —, ¥. By Lemma 2, there exists a witness temporal relation, say
[s, j>1], satisfying ¥ and falsifying & —, ¥. Clearly, (¢, j) € o, and ®*(s,1), and not ¥*(s,?). Hence,
for some (A, 0) € U, [i> s, j>1] satisfies £ U{} —, ® A (A,0)}. This concludes the proof. a

Conversely, every satisfiability problem is the dual of a logical implication problem, as shown next.

Corollary 1 Let U be a set of attributes. Let . be a set of TDs over U. Let A € U. The answer to the
TDSAT problem (U, X,) is “yes” iff B =D —4 (A, L).

Proor. By Theorem 1, X £ 0 —, (A, L) iff BU{l —, (4, T)} is a-satisfiable. Since f —, (A, T) is a
trivial TD, we have X £ § —, (A, 1) iff ¥ is a-satisfiable. This concludes the proof. a

4.3 Complexity

The following theorem considers the complexity of the logical implication problem for TDs.
Theorem 2 The logical implication problem for TDs is coNP-hard.

ProOOF. TDs encompass typed clausal constraint-generating 2-dependencies, proposed by Baudinet et
al. [5]. The logical implication problem is coNP-complete for this type of dependencies [5, theorem 10].
This concludes the proof. a

As an immediate corollary of Theorem 1 and Theorem 2, TDSAT is NP-hard. We now explore an
upper bound for the complexity of a given TDSAT problem (U, X,). As one may expect, this complexity
depends on the formalism used to represent TARs. A TAR was defined as a possibly infinite subset of
Future (Definition 2). Of course, a real system can only deal with TARs that have a finite representation.
For example, the infinite TAR Nezt can be represented in a finite way by the equality y = + 1 where
z and y are interpreted over N. We are now going to study the relationship between the complexity of
TDSAT and the formalism chosen to represent TARs.

Consider a TD (SS#,=) —current (Sal, <), stating that an employee earns less than his/her salary.
Obviously, the only way to satisfy this TD is by the empty temporal relation. This observation is
captured and generalized by the following definition.

Definition 7 Let U be a set of attributes. Let X be a set of TDs over U. A natural number ¢ € N is
called tmproper w.r.t. X iff ¥ contains some TD & —, ¥ where ® 1s reflexive, ¥ is not reflexive, and
(i,7) € a; otherwise i is said to be proper w.r.t. X. We write prop(X) for the smallest set containing
(,7) € Future whenever ¢ and j are proper w.r.t. X. X is called consistent iff prop(X) = Future; otherwise
it 1s called inconsistent. ad

It follows that the singleton set {(SS#,=) — current (Sal, <)} is inconsistent (every natural number
is inconsistent w.r.t. this set). A similar notion of impropriety is used in [14]. The following lemma states
that an inconsistent set of TDs requires certain timeslices to be empty.

Lemma 4 Let U be a set of attributes. Let ¥ be a set of TDs over U. A natural number ¢ s improper
w.r.t. X iff for every temporal relation I = (I, I>,...) over U that satisfies X, we have I; = {}.

PrOOF. =. Let ¢ € N. Assume ¢ is improper w.r.t. .. Hence, 3 contains some TD & —, ¥ where &
is reflexive, ¥ is not reflexive, and (¢,¢) € a. Let T = (I3, Ia,...) be a temporal relation satisfying X.
It suffices to show that I; = {}. Suppose the opposite—i.e., I; contains a tuple (call it ¢) over U. By
Lemma 1, ®*(¢,¢) and not ¥*(¢,¢). Since (i,4) € a, I falsifies ® —, ¥, a contradiction. We conclude by
contradiction that I; = {}. <. Suppose i is proper. Let ¢ be a tuple over U. Let I = [i>t,i>1]. Tt is
easy to see that [satisfies ¥ and I; = {t} # {}. This concludes the proof. O

In a first naive attempt to solve a TDSAT problem (U, X, «) one could try all tuples s,¢ over U, and
all pairs (4, 7) € a, and verify whether [i® s, j > 1] satisfies ¥©. By Lemma 3, it suffices to try at most 3V
tuple pairs (s,t). By Lemma 4, it suffices to try only pairs (¢, j) of o that also belong to prop(X)—for if ¢
or j is improper w.r.t. X, then [i>s, jot] falsifies . That is, the TDSAT problem (U, ¥, &) can be reduced
to the TDSAT problem (U, X, o N prop(X)). Nevertheless, trying all pairs (¢, j) of e prop(X) still poses
severe problems, as o N prop(X) can be infinite, or there may be no effective method for obtaining all
members of it.

Fortunately, there is no need to try all pairs (7, j) of a N prop(X), as we are going to show. This is
because we can partition prop(X) into a finite number of homogeneous subsets, in the sense that whenever
(4,7) and (k,l) belong to the same subset, then [i> s, j>¢] and [k s,[>1] either both satisfy X, or both
falsify X. Consequently, in trying pairs (¢, j) of o prop(X), we never need to try two pairs belonging to
the same homogeneous subset.

Definition 8 Let X be a set of TDs. A TAR « is said to be homogeneous w.r.t. X iff for all tuples s,
over U, either for all (4, j) € a, [i> s, j >] satisfies &, or for all (4, j) € a, [i > s, j >] falsifies 2.

Let n € N. We write F,, for the smallest set containing every total function from [0..n] to {neg, pos}.
Obviously, |F,| = 2n+L,

Let ¥ = {o1,...,0,} be a list of TDs.® Let f € F,. The TAR induced by f and X, denoted | f], is

defined as follows:
Lfls = prop(E) N BN B0 ... B,

where
e By = Current if f(0) = pos and By = = Current if f(0) = neg, and °
o for every ¢ € [1..n], B; = tar(o;) if f(i) = pos and §; = —tar(c;) if f({) = neg.

O

The concepts of homogeneity and induced TAR are illustrated by Example 4. Lemma 5 states that
Fn induces a partitioning of prop(X) with ¥ = {o1,...,0,}. More precisely, for every (i,7) € prop(Z),
there is some f € F, such that (i,j) € [f]y. As a corollary, the answer to the TDSAT problem
(U, X, aNprop(X)) is “yes” if and only if the answer to the TDSAT problem (U, X, aN | f]y) is “yes”
for some f € F,,. So F, induces a decomposition of the TDSAT problem (U, X, &) into a number of new
TDSAT problems. Interestingly, Lemma 6 states that each TAR | f |y, is homogeneous w.r.t. .

5By saying that ¥ is a list, we mean that the left-to-right numbering of the TDs in ¥ is relevant.
8Recall from Definition 2 that —~a = Future \ a.

10

Example 4 Let ¥ = {0, 02} where o1 = (SS#, =)(Rank, <) = yext (Sal, <) and o2 = (Rank, <) = cyrrent
(sal,<). That is, tar(c1) = Next and tar(oz) = Current. Fy contains eight functions; one element of

Fy is {(0,neg), (1, pos), (2,neg)} (call it f). The TAR induced by f and X is given by
L fls, = prop(X) N = Current N Next N —~Current,

which happens to be equal to Next. Let s,t be two employee tuples. If s(SS#) = ¢(SS#) and s(Rank) <
t(Rank) and s(Sal) > ¢(Sal) then [i> s, j > 1] falsifies ¥ for every pair (4, j) of Next. On the other hand,
if s(SS#) # t(SS#) or s(Rank) > ¢{(Rank) or s(Sal) < #(Sal) then [i> s,j > 1] satisfies X for every pair
(,7) of Next. From this, it is correct to conclude that Nezt is homogeneous w.r.t. X. a

Lemma 5 Let U be a set of attributes. Let ¥ = {o1,...,0n} be a list of TDs over U. Then prop(X) =

Ul s 1 f € Fal

Proor. Straightforward. i

Lemma 6 Let U be a set of attributes. Let ¥ = {o1,...,0,} be a list of TDs over U. Let f € F,. Then
| s is homogeneous w.r.t. ©. Moreover, for all tuples s, t over U, it can be decided in constant time in

the size of | f|s, whether for all (k1) € | fls, [k>s,l>1t] satisfies 3.

ProOF. The proof is trivial if | f|s, = {}. Next assume | f|s # {}. Let s,t be two tuples over U. Let
(k1) € | f]s. Let i € [1.n]. Let 0; be & -, . Then [kv s,{ 1] satisfies o; if and only if one of the
following conditions is satisfied:

. f@) eg (i.e., (k1) & a).
(i) = pos and f(0) = neg (i.e., (k,]) € @ and k # 1), and if ®*(s,t) then ¥*(s,1).
) =

S
3. f(@ pos and f(0) = pos (i.e., (k,]) € o and k =), and (a) if ®*(s,t) then ¥*(s,t), and (b) if
®*(t, s) then ¥*(¢,s).

—

o

One may conjecture that o; could still be falsified by [k s, [>t] if (k, k) € o and ®*(s, s) but not ¥*(s, s).
However, in that case k would be improper w.r.t. ¥, hence (k,{) ¢ | f]s, a contradiction. Clearly, if one
of the above three conditions is satisfied for some (k,{) € | f|y, it is satisfied for all (k,{) € | f]. Since
o; is an arbitrary TD of X, it is correct to conclude that either for all (k,1) € | f]y, [k > s,{ > 1] satisfies
X, orfor all (k,{) € | fls, [k>s,{>t] falsifies ¥. Since s and ¢ are arbitrary, it is correct to conclude
that | f]y is homogeneous w.r.t. X. It can be readily seen that testing conditions (1), (2), and (3) is
independent of the size of | f]5,. This concludes the proof. a

Suppose we are given the TDSAT problem (U, X, &), where ¥ = {o1,...,0,}. By Lemmas 4 and 5,
the answer to (U, X, a) is “yes” if and only if the answer to the TDSAT problem (U, X, aN | f]y) is
yes” for some f € F,. By Lemmas 6 and 3, a non-deterministic polynomial algorithm can guess
| € F, as well as tuples s and ¢, and determine in polynomial time whether [k s, (>] satisfies X for all
(k1) € | f]s—and hence for all (k,1) € | f]s, Na. But remark: Even if this algorithm successfully ends
by finding some s,t, and f such that [k > s,{] satisfies ¥ for all (k,!) € | f]x N «, then this does not
imply that the answer to (U, X, «) is “yes.” This is because we still have to determine whether | f|y N
is non-empty. This is exactly the point where the representation of TARs comes into play. Since we did
not specify the representation of TARs, there is little specific we can say about the complexity of deciding
non-emptiness of | |5, N a. The following theorem may provide an upper bound of the complexity in
many practical applications, however.

Theorem 3 Let TARINTERSECT be the following problem: Given a set ¥ = {oy,...,0,} of TDs, a
TAR «, and some f € F,, determine whether | f|s N« is non-empty. If TARINTERSECT is in P,
then TDSAT s in NP.

11

TD Justification

1. (Patient,=)(Diastolic, <) —Nest (Systolic, <) given.

2. (Patient,=)(Diastolic, <)(Systolic,=) — ezt (Systolic, 1) from 1 by TD1.

3. (Systolic, L) — puture (Diastolic, 1) by TD7.

4. (Patient,=)(Diastolic,<)(Systolic,=) — eyt (Diastolic, L) from 2 and 3 by TD2.
5. (Patient,=)(Systolic, =) — ezt (Diastolic,>) from 4 by TD5.

Figure 2: Example derivation.

ProoF. Let TARINTERSECT be in P. By Lemmas 4 and 5, the answer to (U, X,) is “yes” if and only
if the answer to the TDSAT problem (U, X, aN | f]y) is “yes” for some f € F,. By Lemmas 6 and 3,
a non-deterministic polynomial algorithm can guess f € F,, as well as tuples s and ¢, and determine in
polynomial time whether | f| 5 N« is non-empty (an instance of TARINTERSECT), and, if so, whether
[k > s, 1> 1] satisfies X for all (k,1) € | f]y- a

It is likely that in many practical applications, TARINTERSECT will be in P. This is the case in
situations where there is a finite number of fixed TARs (time granularities, for example) and solutions
to TARINTERSECT can be tabulated (for example, Month N ~Year = {} since two times of the same
month must belong to the same year).

5 Axiomatization

In this section, we give a sound and complete axiomatization for logical implication of TDs. The axiom-
atization captures concisely the essential properties of TDs.

Definition 9 Let U be a set of attributes.
Let @, ¥, T be DASs with atts(®), atts(¥), atts(T) C U. Let A € U. Let «, 5 be TARs.

TD1 If ® =, ¥ then DAY =, U AY. (Augmentation)

TD2 If & 5, ¥ and ¥ —3 Y then ® —,n5 Y. (Transitivity)
TD3 If ® 5, ¥ and ® —3 U then & —,up V. (Upward heredity)
TD4 & - V. (Emptiness)

TD5 If ® A (A,0) =, (A, n) then ® —, (A,0Un). (Simplification)
TD6 If & —, ¥ then d — an Current . (Reciprocity)

TDT7 (A, L) = puture ©. (False premise)

TD8 If « C § and & —3 U then & -, V. (Downward heredity)

Let X be a set of TDs over U. Let ¢ be a TD over U. We write X = ¢ to denote that o is provable from
¥ using the above axiomatization. Here the notion of proof captures its classical meaning [1, page 167]).
O

Example 5 Figure 2 illustrates how the TD
(Patient,=)(Systolic, =) —yes (Diastolic,>)

can be proved from
{(Patient,=)(Diastolic, <) — eyt (Systolic,<)}.

12

11: 121

SS# Rank Sal SS# Rank Sal
Al 1 100 Al 2 110
B2 1 120 B2 2 110
C3 3 140 C3 2 130
D4 2 80 D4 3 90
E5 2 120 E5 3 120

Figure 3: Example database.

The following theorem states the soundness and the completeness of the axiomatization for consistent
sets of TDs. The proof is lengthy and constitutes the content of [32].

Theorem 4 Let U be a set of attributes. Let 3 be a consistent set of TDs over U, and let o be a TD
(dllover U). S E o iff S F 0.

6 TD Mining

As TDs allow expressing significant knowledge about the data stored in a database, discovering them
from existing databases is interesting and important. Knowledge discovery in databases, also called data
mining, is currently recognized as a promising research area with a high application potential. The data
mining problem we are going to study can be loosely described as follows: Given a temporal relation,
find the TDs that are satisfied to “a high degree,” and that conform to a given template, which fixes the
attributes to be used and the TAR involved.

The outline of this section is as follows. The next subsection contains an introductory example. In
Section 6.2, we give a formal definition of the data mining problem TDMINE. Its complexity is studied
in Section 6.3, and algorithmic aspects are discussed in Section 6.4.

6.1 Introductory Example

The notion of satisfaction we have used so far is a “black-and-white” concept: Given a temporal relation
I =(I1,I5,...), aTD o is either satisfied or falsified by I; there is no third possibility. Such a black-
and-white approach to satisfaction is not very appropriate for data mining purposes. In data mining,
one is typically not only interested in the rules that are fully satisfied, but also in those that are “highly”
satisfied. What we need is a notion of gradual satisfaction. For the purpose of TD mining, we characterize
TD satisfaction by the notions of support and confidence, which are common in the work on association
rule mining. See for example [3, 34].

Consider the temporal relation I = (I, I», . ..) shown in Figure 3; it is understood that I3, I, ... are
all empty. Assume no temporal constraints have been specified about the evolution of salaries. Consider
the TD

o = (SS#,=)(Rank, <) = Negtone (Sal, <)

expressing that if the rank of an employee increases between time 1 and 2, then his/her salary does not
decrease. Employees A1, D4, and Eb support the trend, as their rank increased and their salary did not
decrease. Employee B2 gives evidence against the trend, showing a rank increase together with a salary
decrease. Finally, employee C3 provides no argument for or against the trend, as his/her rank did not
increase.

We now quantify the above observations. Every tuple pair of I; x I satisfying the left-hand DAS of
o, gives evidence for or against the TD in hand. The tuple pairs satisfying both the left-hand and the
right-hand DAS are said to support the TD. The confidence ¢ is obtained by the number of tuple pairs
supporting the TD divided by the number of tuple pairs satisfying the left-hand DAS; in the example
¢ = 3/4. Note that since the confidence is expressed as a proportion, it can be close to one, even though,
in absolute terms, there are actually few tuple pairs supporting the TD. Therefore an additional measure
is needed to characterize the importance of a given TD. The support s is the number of tuple pairs

13

supporting the TD divided by the cardinality of I; x Is; in the example s = 3/25. So o is satisfied with
support 3/25, and with confidence 3/4.
Next consider the TD
o’ = (SS#, =) (Rank, <) — yestone (Sal,>)

which expresses the opposite trend that the salary of an employee decreases if his/her rank increases
(Rank could be a measure of malpractice, rather than performance!). This TD is satisfied with support
1/25, and with confidence 1/4. During TD mining, o is to be preferred above ¢’ because ¢ is satisfied
with a higher support and confidence.

6.2 The TD Mining Problem

We now define the notions of support and confidence. The definition conforms to the intuition given in
the previous subsection.

Definition 10 Let 7 = (I}, I2,...) be a temporal relation over the set U of attributes. Let & —, ¥ be
a TD over U. Let (7,j) € a.

Let Ly 4y = {(s,t) € ; x I; | @*(s,1)}.
Let B gy = {(s,t) € i x I; | ®*(s,t) and ¥ (s,1)}.
Let
p= Y ixLlandl= > [Lipland b= > |Bgjl.
(i,j)€a (i,j)€a (i,j)€a
Let

[b/p ifp#0 b/l il #£0
B { 0 otherwise and ¢ = 0 otherwise

Then ® —, ¥ is said to be satisfied by I with support s and confidence ¢, denoted I 2 & —, ¥. We
also say that s and ¢ are the support and the confidence of ® —, ¥ respectively (where I is implicitly
understood). Clearly, 0 < s <e < 1. a

It can be readily seen that if the confidence of a TD is equal to one, then it is satisfied in the sense
of Definition 4. We next define the notions of TD template and TD class.

Definition 11 A TD template over the set U of attributes is a statement X —, Y where XY C U and
a is a TAR.

We define op = OP\ {L, T}. Let © be a non-empty subset of op. The TD class determined by the TD
template X —, Y and ©, denoted [X —, Y]®, is the smallest set of TDs containing the TD & —, ¥
whenever

o atts(®) = X and for every A € X, ®(A4) € ©, and
o atts(¥) =Y and for every A €Y, ¥(A) € 6.
The Greek lowercase letter 7 will be used for TD templates. [7] is a shorthand for [r]°P. O

For example, let A and B be attributes, and let 7 denote the TD template {A} —, {B}. Then
[7]{=:2} contains four TDs, among others, (A,>) —, (B, <). Remark: We are no longer interested in
the operators T and L for the following reasons. The TD (A1, T)...(Am, T) 2o (Amt1, T) ... (4n, T)
1s always satisfied with support one and confidence one. Such a TD would not be an interesting outcome
of a data mining process. On the other hand, if a TD ¢ involves L, then it is satisfied with support zero
and confidence zero. Again, such a TD is of no interest to data mining.

The data mining problem TDMINE we are going to explore can now be defined.

Definition 12 We use (0, 1) to denote the set of real numbers » € R with 0 < r < 1.

14

Let © be a non-empty subset of op. A TDMINEg problem is a quintet (U, I, 7, ts, t¢) where U is a set of
attributes, I = (I, I, ...) is a temporal relation over U, ts, tc € (0, 1), and 7 is a TD template satisfying
(let 7=X =4 Y):

a={01,71), -, (Im, jm)}

where m > 0 and (4, ji) € Future (k € [1..m]). That is, « is given as a finite set of members of Future.

The solution to the TDMINEg problem (U, I, 7, ts, te) is the smallest set of TDs over U containing o iff
(let s,¢ € (0,1) such that T =5 o):

o o €[r]°
e s> ts (threshold support), and
e ¢ > tc (threshold confidence).

TDMINE is a shorthand for TDMINE.

If a TDMINE problem (U, I, T, ts, tc) is implicitly understood from the context, we use the following
syntactic shorthands for characterizing its input size:

e C denotes the cardinality of 7. That is, C = |I|.

o N denotes a time (in practice, the smallest time) satisfying I; = {} for each i > AN. So I =
(I, I, ...y is fully determined by {I1, I», ..., Iy).

e D (degree) denotes the number of attributes occurring in 7. That is, if 7 = X —, YV, then
D=|XY|"

O

So the TDMINEg problem (U, I, 7, ts, tc) is the task of finding all TDs of [7]® that are satisfied by
I with support > ts and confidence > fc. Instead of defining the solution as the set of all TDs whose
support and confidence exceed certain threshold values, one could limit the solution to the TDs that
optimize either the support or the confidence. This alternative definition would not affect the results
presented in this section.

In Section 4.3, we indicated that the formalism used to represent TARs determines the complexity of
reasoning about TDs. Definition 12 requires that the TAR « which occurs in a TDMINEg problem, is
given by finite enumeration. This requirement is not a strong one, as we explain. Let I = (I3, [5,...) be a
temporal relation over the set U of attributes, and let A" be a natural number such that I; = {} for each
i > N. Let 8 be a (possibly infinite) TAR represented in one formalism or another. Let 7= X —3 Y be
a TD template over U. Let ts,tc € (0,1). Let S be the smallest set of TDs containing every TD of [7]®
that is satisfied by I with support > ts and confidence > tc. Assume we are interested in computing S.
Note that the task of computing S differs from TDMINEg because § may not be finite. Nevertheless,
this task can be readily reduced to a TDMINEg problem, as follows. Let n = {(¢, j) € Future | j < N},
a finite TAR. Let n N 3 = {(é1,41),-- -, (4m,Jm)} (m > 0). Note that n N 3 can be easily computed by
an algorithm that generates each member of 7 in turn and decides whether or not it belongs to 8. Then
the TD ® —5 W belongs to S if and only if the TD ® —, a3 ¥—with the same left-hand and right-hand
DAS—Dbelongs to the solution of the TDMINEg problem (U, I, 7, ts, te) with 7 = X —,ns Y. This is
because I; x I; = {} if (4,j) € B\ n. So S can readily be derived from the solution of (U, I, 7, s, tc). To
conclude, the practical constraint imposed on the input TAR of a TDMINE problem does not decrease
the generality of the problem.

We now define a decision problem, called TDMINE(D), which is intimately related to TDMINE.

7 Concatenation is used for union. That is, XY = X U Y.

15

Definition 13 Let © be a non-empty subset of op. A TDMINE(D)g problem is a quintet (U, I, 7, ts, tc)
where U, I = (I1,I2,...), 7, ts, and tc are as in Definition 12.

The solution to (U, I, 1, ts,tc) is “yes” or “no” depending on whether or not there exists some TD
o € [r]® such that I =% o for some s > ts and ¢ > tc. TDMINE(D) is a shorthand for TDMINE(D),,.
O

So TDMINE(D) asks whether a specified support and confidence can be attained by some TD of a
given TD class. Obviously, TDMINEg is at least as hard as TDMINE(D)g: If we have a polynomial-
time algorithm for TDMINEg, then we certainly do for TDMINE(D)g. However, it turns out that
TDMINE(D)g is NP-complete for certain ©, as we show in the next subsection.

TDMINE(D)g can be solved in a brute force manner by an exhaustive algorithm that computes the
support and the confidence of each TD in [7]®. The number of TDs in [r]® is O(|©|P). The confidence
and the support of a given TD & —, ¥ can be computed in quadratic time in C, as follows. For each
(¢,J) € a, we compute L; ;) and By ;) as defined in Definition 10 by comparing all tuples of /; with all
tuples of I;. The confidence and support can be computed from the summation of L; ; and By; ;) over
all (7,7) € a. In the worst case, we have to compare every tuple of I with every other tuple of I, or
O(C?) comparisons.

6.3 Complexity

In this section we explore the complexity of TDMINE(D)g. This leads to the following interesting and
important results:

e TDMINE(D) is NP-complete.

e TDMINE(D) on the other hand, is in P.

{<7:7>}’

Algorithmic aspects will be discussed in the next section.

Lemma 7 Let U be a set of attributes. Let I = (I1,Is,...) be a temporal relation over U. Let & —,
(A,0) be a TD over U with € op. Let s,c € (0,1). If I | ® —, (A,0) then for some 6" € {<, >, #},
for some s’ > s and ¢’ > ¢, we have I |:2: S —, (A 0).

Proor. Straightforward. i

Theorem 5 TDMINE(D) is NP-complete.

Proor. TDMINE(D) can be solved by a non-deterministic polynomial algorithm, one that guesses a
TD of the specified TD class and computes the support and confidence in polynomial time, and then
checks whether these values exceed the specified minimum thresholds; hence TDMINE(D) is in NP. We
now prove that 3SAT can be reduced to TDMINE(D). Consider the propositional formula:

A= /\ X1V Xiz2 V Xi3

i=1l..m

where each x;; is either a variable or the negation of one. Let V = {®1,25,...,2,} be the smallest set
containing each variable appearing in A. v > 3 is assumed without loss of generality. Let U be a set of
attributes. For convenience, we assume U = V U {r} where r € V. We describe the reduction R next.

We assume without loss of generality that 0 < 0.5 < 1 are three constants of dom. Let z € U. We write
ty=q for the tuple ¢ over U satisfying: ¢(x) = a, and #(y) = 0.5 if y # ». Let I; be a singleton containing

tr=0.5. Let I3; be the smallest relation over U containing ¢,—g and t;—; for every & € V.

For every i € [1..m] we define three tuples (denoted #;0, t;1, and ¢;3), with for each » € U, for each
j E {0’ 1’ 2}’

16

sl o I3 Ly r
L: 5 5 5 5 5
Iay 0 5 b 5 5
DS 0 5 5 5
H o5 0 5 5
RS TN N 0 5
1 5 5 5 5
S5 1 5 5 5
S5 o5 1 5 5
5 T S 1 5
1o 0 0 1 b5 0 3 tuples
0 0 1 .5 .5 corresponding to
0 0 1 b 1 —ry vV —r2 vV xr3

Figure 4: Construction example.

) =0 if xi1 V x42 V x43 contains the negation of x,
z) = 1if x31 V x42 V i3 contains & non-negated,
) =7/2, and

o Li(r

i
i
(
(

o t;;(x) = 0.5 otherwise.

No term of A contains both z and the negation of , is assumed without loss of generality. Let I35 be
the smallest relation over U containing ¢;o, t;1, and ¢;2 for every i € [1..m]. Let Iy = I U Ias.

Let I = (I, Ia,...) be a temporal relation with I; and I as defined above, and I; = {} if i > 2. The
construction is illustrated in Figure 4.

Let p be the number of tuple pairs of 11 x I5. Let

ts = L and tc = 1.
P
Clearly, ts > 0. Let 7 =V —newtone {7}, a TD template over U. We claim that R is a reduction from
3SAT to TDMINE(D). To prove our claim, we have to establish two things: (1) that any formula A
has a satisfying truth assignment iff the answer to the TDMINE(D) problem (U, I, 7, ts, tc) is “yes”; and
(2) that R can be computed in space logm.

Assume that for some & — yegtone ¥ of [7], we have I |E2 @ — yestone ¥ with s > &s and ¢ > fc.
By Lemma 7, ¥(r) € {<, #,>} is assumed without loss of generality. We show that A has a satisfying
truth assignment.

Let k& be the number of tuple pairs of I; x [s; satisfying ®. It can be readily seen that & < wv.
Obviously, the number of tuple pairs of I; x Iso satisfying @ is a multiple of three—Ilet it be 3n. Let &

(kappa) be a number such that
K_{ 0 if¥(r)=“2"

k otherwise

Then I =5 & — yegtone ¥ with

K+ 2n K+ 2n
and ¢ = .
p k+3n

Note that x and n are not both equal to 0 since s > ts > 0. Then ¢ > tc and s > ts imply

5§ =

k=kand n=0and k > v.

17

Hence, ¥(r) is either < or >, and & = v. One can easily check that & = v implies that ® — yegtone ¥
belongs to [r]1<:2}.

We now consider the implications of n = 0. For example, a term —z; V —zs V 23 in A gives rise to a
tuple {z1 : 0,22 : 0,23 : 1,24 : 0.5,... ;2 : 05,7 : 0.5} in I. n = 0 implies that ®(x;) = “ < ” or
@(xz): ((S” or @(xS):“Z”,

Let B be a truth assignment to the variables of V satisfying (¢ € [1..v]):

L _ [true if ®(x;)=“>"
B(l‘z) - { false if @(l‘Z) _ o« < »”

n = 0 implies that B is a truth assignment satisfying A.

Conversely, it can now be easily seen that if A has a satisfying truth assignment, then for some
D — Negtone ¥ € [7], [ES @ = newtone ¥ with s > ts and ¢ > te. To see that R can be computed in
log m space, note that R(A) can be written directly from A. This concludes the proof. a

Remark: The TD mined in Theorem 5 only uses the operators < and >. This leads to the following
corollary.

Corollary 2 If O contains < and > then TDMINE(D)g is NP-complete.

Proor. This follows immediately from the fact that in the proof of Theorem 5, the TD ® — yextone ¥
belongs to [r]1<:2}. O

The following theorem states that if one does not consider the “composite” operators <, >, and #
then the resulting TD mining problem is in P.

Theorem 6 TDMINE(D){< -5 is in P.

Proor. Consider the TDMINE(D),_ _ .,

(4,7) € a, for every (s,t) € I; x I;, one can construct in O(D) time the unique TD & —, ¥ of [r]i<=>1
such that (s,t) satisfies both & and ¥. For each TD so constructed one can compute in polynomial
time the support and the confidence, and verify whether these values exceed ts and te respectively. This
concludes the proof. a

problem (U, I, 7 ts,tc) with 7 = X —, Y. TFor every

6.4 Algorithmic Aspects

In this section, we discuss algorithms to solve certain TDMINE problems. We first give a polynomial time
algorithm for TDMINE, . — -y, and then we discuss a significant variant with fairly reduced time require-
ments. Finally, we discuss the applicability of some existing techniques for increasing the performance
of TD mining.

6.4.1 Solving TDMINE . -+,

Theorem 6 suggests a naive way to solve a TDMINE . — 5y problem (U, I, 7, ts, tc). We now present a
better approach.

Definition 14 Let U be a set of attributes. A comparator over U is a DAS ® over U such that for
each A € U, ®(A) is either <, =, or >. Let s,t be tuples over U. The comparator of s with t, denoted
comp(s,t), is the comparator ® over U such that ®(s,1). a

For example,if s = {A:0,B:0} and t = {4 : 1, B : 0} then comp(s,t) is the DAS {(4, <), (B,=)}.
Comparators correspond to a notion with the same name in [14, page 161]. To solve (U, I, 1, ts, tc) with
T=X —, Y, we proceed in three steps.

18

stepl For every (i,j) € a, for every s € I;, for every t € I;, we store comp(s[XY],¢[XY])in alist L. In
the worst case, the number of comparators in L 1s equal to

N N

S Ol -11;]); that is, 0(C?).

i=1 j=¢

step2 Let X = {A;,...,Antand Y = {An41,..., An} (1 < m < n). The list L of comparators built
in stepl is ordered by ascending Ay, ..., A, in O(C%*logC) time. We order < before =, and =
before >. Figure 5 shows an ordered list of comparators over XY with X = {4, A5, A3} and
Y = {A4, A5, A6}

step3 Finally, the solution to the TDMINE, . — - problem can be computed in a sequential scan of the
ordered list of @(C?) comparators. This is illustrated by the procedure ThresholdTDs of Figure 6.
The procedure delimits “blocks” of comparators that agree on X | and within each such block further
delimits blocks of comparators that also agree on Y. For example, from the first seven comparators
in Figure 5, it is clear that the confidence of (A1, <)(A2, <)(A3,<) —a (A4, <) (A5, <) (46,<)
equals 3/7, and the support equals 7/p, where p is equal to Z(M)Ea |I; % I;].

The above procedure has an overall complexity of O(C?logC) in terms of C. It takes linear time in D.
As any algorithm that takes O(C?) or more time may be very expensive in practical applications, we
next derive an interesting variant with reduced time requirements.

6.4.2 Entity Evolution

TDMINEg requires that the operators appearing in the solution TDs belong to ©. One could consider
specifying the set of allowed operators on an attribute by attribute basis—rather than for the TD as
a whole. In particular, for certain attributes, such as SS#, equality (=) and inequality (#) are often
the only meaningful operators. We found that many practical TDs compare primary key attributes for
equality. This can be explained as follows. In many applications, tuples represent real-life entities (for
example, employee tuples), and primary keys represent identifiers of entities (for example, SS#). Often
one is interested to see how certain properties (for example, Sal) of an entity evolve in time. Tendencies
in entity evolution are typically captured by TDs of the form ® —, ¥ where atts(®) contains the primary
key K of the relation schema under consideration, and ®(A) = “ =7 for each A € K. Most example
TDs in this paper have this form, like (SS#, =)(Rank, <) = ezt (Sal, <)

Let I = (I1,I5,...) be a temporal relation over U. Assume K C U serves as the primary key.
Formally, for each i € N, for every s,t € I;, s[K] = {[K] implies s = {. Suppose we want to solve
a TDMINEg problem (U,I, 7, ts,tc) where 1 = KX —, Y, and that we are only interested in TDs
® —o U of [r]1<=>} satisfying ®(A) = “=" for each A € K. If every I, is listed in order of ascending
primary key, then the problem can be solved as follows.

stepl Forevery (7,j) € o, forevery s € I;, for every t € I;, if s{[K] = t[K] then we store comp(s[XY],t[XY])
in a list L. As [; and [; are ordered by K, tuples that agree on K can be found using a merge
algorithm. This is illustrated by the procedure StoreComparators of Figure 7. This step considers

at most
N N-1 N
ST+ DD 1Ll +150)
i=1

i=1 j=i+1
tuple pairs. It can be proved by simple induction on N that the latter expression equals NC.

Hence, L contains at most N'C comparators.

step2 and step3 The further processing does not differ from the one in Section 6.4.1. The list L
of comparators can be sorted in O(NClog(AC)) time, and the solution to the problem under
consideration can be computed from the ordered list in O(NC) time.

19

X Y

A Ay Az | Ay As As
1< < <|< < <
2 | < < < |< < <
31l < < << < <
4 1< < < [< > >
5 1< < < | < > >
6|l < < <|= < <
T < < <= < <
8 | < < =1]1= < <

Figure 5: Comparators over XY ordered by A;, Ao, ...

procedure ThresholdTDs

INPUT:

DECLARE:

begin

Attribute sets X and Y.

List L of comparators over XY, ordered by X,Y.
% L contains |L| comparators;

% L(i)[X] denotes the projection on X of the i** comparator.
Threshold support ¢s.

Threshold confidence tc.

Support denominator p.

Integer lz, uz, ly, uy.

% Invariant: lz < ly < uy < uz.

Real s, c.

Comparator ¢ over X.

Comparator ¥ over Y.

e =1;ur =1
while uz < |L|
¢ = L(lz)[X]
while uz < |L| and L(uz)[X] = ® loop uz = uz + 1 endloop
ly =lz; uy = lz
while uy < uz loop
W = L(ly)[Y]
while uy < uz and L(uy)[Y] = U loop uy = uy + 1 endloop
% Every comparator L(7),lr < ¢ < uz, contains .
% Every comparator L(j),ly < j < uy, contains U.
% Next we compute the support and confidence of & —, .
s=(uy—ly)/p
c = (uy — ly)/ (v — Iz)
if s > ts and ¢ > tc then output ® —, ¥ endif
ly = uy
endloop

lz = uz
endloop

end

Figure 6: Procedure ThresholdTDs.

20

aA6~

procedure StoreComparators
INPUT: Attribute set U.

Attribute sets K, X,Y C U.
% A temporal relation is represented by a list of A/ “snapshot” relations;
% each “snapshot” relation I;, 1 <1 < N, is a list of tuples over U.
% Each I; contains |I;| tuples. I;(k) denotes the k% tuple of I;.
Temporal relation (I, ..., Ix) over U with
for each ¢ € [1..N], for each k,{ € [1..|L;]] (let s = I;(k) and ¢ = I, (1)),
k < ! implies s[K] < t[K]—i.e., I; is ordered by key K.
TAR o with for each (¢,7) € o, 7 < N.

DECLARE: Integer cnt.

List L of comparators over XY .
Tuples s, t over U.

begin

ent =0

for each (7,5) € o loop
if 1 = 7 then

% Every tuple of I; is compared with itself.
for each k € [1..|I;|] loop
cnt = cent+ 1
L(cnt) = the comparator ® over XY with ®(A4) = “ =" for each A € XY
endloop
else % 1 # 5
% The following loop resembles a “merge” of I}, and I;.
k=1;1=1
while k& < |I;| and | < |I;| loop
s=IL(k); t=1;()
if s[K] < t[K]then k=Fk+1
elsif s[K] > ¢[K] then [=+ 1
else % s[K] = t[K]

cnt = cnt + 1
L(cnt) = comp(s[XY],t[XY])
endif
endloop
endif
endloop
return L
end
Figure 7: Procedure StoreComparators.
I 1> : Comparators:
SS# Rank Sal SS# Rank Sal Rank Sal
Al 1 100 Al 2 110 < <
B2 1 120 B2 2 110 < >
C3 3 140 C3 2 130 > >
D4 2 80 D4 3 90 < <
E5 2 120 E5 3 120 < =

Figure 8: Entity Evolution.

21

O QO N =

Ordered:
Rank | Sal
< <
< <
< =
< >
> >

The above procedure is linear in D. It has a worst-case complexity of O(NClog(NC)). We can think
of practical applications where N is relatively small compared to C, and the complexity may become
acceptable. For example, a typical medical experiment may collect daily blood pressure readings from 100
patients during a one year period. The resulting databases has A" = 365 and C = 36,500. We note that
in many situations, the TAR involved in a TDMINE problem will not require comparing every timeslice
with every other timeslice. For example, if the TAR involved is Next then the list L of comparators
constructed in stepl will contain not more than 2C comparators (instead of A'C).

Example 6 The algorithm is further illustrated by Figure 8. We start from a temporal relation I =
(I1, Is, .. .) over {SS#,Rank,Sal}. Suppose I; = {} if i > 2; that is, N = 2. We are interested in mining
TDs of the form (SS#, =)(Rank, 1) — neztone (Sal, fl2) where 61 and @5 are operators of {<,=,>}. The
figure shows the list of comparators computed in stepl, and the ordered list computed in step2. From
the ordered list, it can be readily seen, for example, that the TD (SS#, =)(Rank, <) — yertone (Sal, <)
has a confidence of 2/4. O

6.4.3 Other Techniques

TDMINE can be solved in polynomial time when time requirements are expressed as a function of C. If
the input of TDMINE is characterized by D, then it can be solved in polynomial time only if P=NP.
Nevertheless, since C is generally in the order of thousands or millions, the cardinality may still be of
overriding importance compared to the degree. Techniques that have been successfully applied in mining
other rules, may also be applicable to TDs:

e Tuple reduction by generalization [17] or sampling [13].
o Attribute reduction techniques [19].

e Incremental maintenance of mined rules [7].

¢ Visualization.

Tuple reduction by sampling can be done before starting TD mining. This provides no way to circumvent
the NP-completeness result shown earlier, but increases performance by reducing C. Attribute reduction
and incremental maintenance are fairly new and deserve further investigation. We conclude this section
by a note on visualization.

Visualization techniques are generally considered a useful method for discovering patterns in data
sets. This, of course, relies on some user intervention. The problem here is that it is difficult to visualize
data spaces with high dimensionality. Every attribute appearing in a TD 1s a dimension. Moreover,
the time dimension is inherent in every TD. The practicality of visualization therefore depends on the
possibility to solve a given TDMINE problem by only dealing with “short” TDs at a time.

So a question of practical importance is: Can a given TDMINE problem involving D attributes be
solved by (a) first decomposing it in polynomial time into a number of TDMINE subproblems of a specified
visualizable dimension (practically 2 or 3), (b) then solving the smaller subproblems using visualization
techniques, and (c) finally merging the solutions in polynomial time so as to obtain a solution for the
original TDMINE problem? It is of interest to note immediately that “shortening” the left-hand DAS
of a TD can result in an increase as well as a decrease of the confidence. Recall that the confidence ¢ of
aTD ® —, ¥ is equal to a proportion b/ where b is the number of tuple pairs satisfying both ® and
W, and [1s the number of tuple pairs satisfying ®. Replacing ® by a proper subset of ® will result in
both b and ! non-decreasing. So ¢ can increase as well as decrease. More fundamentally, we showed that
TDMINE is NP-complete if the input i1s characterized by the number of attributes. In the suggested
decomposition strategy, all subproblems are of the same specified dimension and hence the time required
to solve any one subproblem is irrespective of D. But then the decomposition strategy corresponds to a
polynomial-time algorithm, which exists only if P=NP. This is a strong indication that there is no such
decomposition strategy.

22

7 Comparison with Related Work

In this section, we compare our work with related studies. We first show that our time model can express
Wang et al.’s temporal types [29]. Then we argue that TDs can capture most temporal dependencies
found in the literature. Finally, we compare TD mining with work on the mining of association rules.

7.1 Temporal Types

The construct of temporal type [29] serves to model time granularity and is a generalization of several
earlier proposals in the literature. We compare our notion of TAR with the construct of temporal type.
In particular, we indicate that temporal types correspond to the restricted class of TARs which we called
chronologies.

Definition 15 [29] A temporal type is a mapping p from N to p(IR) such that for every ¢,j € N,

1. if ¢ < j then every real number of u(7) is strictly less than every real number of u(j), and

2. if p(é) = {} and i < j then u(j) = {}.

N is called the index set, and R the absolute time set. a

We now establish a one-to-one mapping between chronologies and temporal types. In particular, we
define an injective function mapping every chronology « to a temporal type, denoted a®t.

Definition 16 Let a be a chronology and let Py, Po, Ps, ... be the equivalence classes of o®¥™. Let n
be the number of equivalence classes (possibly n = c0). By the definition of chronology (Definition 3),
Py < Py < P3 < ... 1is assumed without loss of generality. From «, we derive a mapping o** from N to

p(N) as follows:
e o' (i) = P if i < n, and
o ot () ={}ifi>n.
O

For example, consider the TAR Month introduced in Section 2.2. Then Month**(1) = {1,...,31},
Month®*(2) = {32,...,59},..., Month**(13) = {366,...,396}, and so on. It can be easily seen that a** is
a temporal type. Note incidentally that there are temporal types that cannot be expressed as the result
of applying the above transformation to a chronology. This is only because temporal types are functions
into p(R), while a** is a function into p(IN). The concept of temporal type does not critically depend,
however, on R being the absolute time set. Wang et al. [29, page 123] mention that “in fact, any infinite
set with a total ordering can serve as the absolute time; reals, rationals and integers are examples.”
Moreover, Wang et al. [29] do not rely on properties that hold for R but not for N, such as density.

Wang et al. [29] define a relation is-finer-than on the family of temporal types. Importantly, an
interesting and convenient property of the construct of chronology is that set inclusion (C) captures the
meaning of is-finer-than. For example, one would typically have Month C Year—a month falls entirely
within a single year—but Week ¢ Month—a new month can start in the middle of a week. This is an
interesting property, as well-known properties of set inclusion can be readily used in reasoning about
chronologies. For example, it is relatively easy to show that the set of all chronologies, ordered by
inclusion, is a lattice.

Bettini et al. [6] give more general definitions of temporal types. In particular, they allow the index
set to be any chain isomorphic to a subset of the integers endowed with its usual order, and they allow
the absolute time set to be any chain. Also, they consider relaxations of condition (2) in Definition 15.
Such extensions are beyond the scope of TARs.

To conclude, chronologies correspond to temporal types. Importantly, there are many meaningful
TARs, for example Next, which are non-chronological, and which have not been explicitly captured by
previous time models.

23

7.2 Database Constraints
Temporal Dependencies

Lately, there has been a growing interest in dependencies for temporal databases [20, 29]. All temporal
dependencies found in the extensive overview of Jensen et al. [20] compare attributes for equality (=)
only. It seems that TDs are among the first temporal dependencies that introduce operators other than
equality.

Our treatment of TDs is related to the work on temporal database design of Wang et al. [29]. In
Section 7.1, we already compared our time model with theirs. Wang et al.’s temporal FDs (TFDs)
correspond to a restricted class of TDs where, first, equality is the only operator used, and second, the
TAR involved is a chronology. An example is (SS#,=) —uontn (Sal,=).

Jensen et al. [20] essentially extend the notion of satisfaction of FDs for temporal relations. Jensen
et al.’s TFDs correspond to TDs where, first, equality 1s the only operator used, and second, the TAR
involved is Current. An example is (SS#, =) = current (Sal,=).

In the work of Vianu [28], a temporal relation is viewed as a sequence of snapshot relations in time—a
view that is also present in our notion of temporal relation. Tuples preserve their identity through time.
The dynamic constraints used in conjunction with the data model are restricted to certain analogs of
FDs, called dynamic FDs (DFDs). For example, consider a company-wide salary update between times
¢ and ¢ + 1. Each new salary is determined strictly on the basis of the old salary and rank. Hence, two
employees with the same salary and rank receive the same new salary as a result of the salary update. For

v A
each attribute A, let A and A refer to A-values before and after an update respectively. The constraint
pertaining to the salary update is expressed by the DFD:

vV A
{Sal,Rank} — {Sal}

Two tuples with the same value for Sal and Rank before the update must agree on Sal after the update.
It can be shown that Vianu’s DFDs cannot be expressed by TDs, and vice versa.

Navathe and Ahmed [22, 23] introduce a temporal dependency to express that certain attribute values
always change simultaneously. This notion of synchronism can be expressed in terms of TDs, and hence
is less general. For example, the TDs (SS#, =)(Rank, #) —nere (Sal,#) and (SS#,=)(Sal,#) — Next
(Rank, #) taken together express that an employee’s rank and salary always change together.

TDs evolved from the dynamic FDs (DFDs) and the temporal FDs (TFDs) of Wijsen [31, 30], by
introducing TARs and by allowing operators other than equality. An extension of TFDs with object-
identity is proposed in [33].

Finally it should be mentioned that several researchers have used first-order temporal logic (FOTL)
to express temporal database integrity; among others; Chomicki [8], Chomicki and Niwinski [9], Lipeck
and Saake [21].

Non-Temporal Dependencies

For non-temporal relational databases, constraints involving order have been proposed in the literature.
The order dependencies proposed by Ginsburg and Hull [14, 15] generalize FDs by comparing attributes
not only for equality (=), but also for order ({<, >, <,>}). Inequality (#) is not considered. The order
1s not required to be total. The major contribution of TDs compared with order dependencies is the
explicit modeling of the time dimension in TDs.

Constraint-generating dependencies proposed by Baudinet et al. [5] generalize equality-generating
dependencies, which subsume FDs, by replacing equality requirements by constraints on an interpreted
domain. A special type of constraint-generating dependency fixes the language of constraint formulas to
equality (=), inequality (#), and order (<, <) constraints. Theorem 2 is directly based on a result of [5].

In a recent work, Guo et al. [16] study satisfiability and implication problems for sets of inequalities
of the form X0Y and Xfc, where X and Y are variables, ¢ is a constant, and # is an operator of
{<’ :’ >’ S’ Z’ #}'

24

7.3 Data Mining

Recently there has been a growing interest in the mining of different types of association rules from large
relational tables. Association rules can take different forms [3, 18, 26]. Most work in association mining
has concentrated on discovering rules of the form

VI[(R(E) A C (1)) — C'(1)]

where C' and C’ are constraint formulas relating certain attribute values of the tuple ¢ with specified
constants. An example is the rule (taken from [26]) “Married employees between 30 and 49 years old
have two cars,” which can be expressed as

Vi{[emp(t) A 30 < t(Age) < 49 At(Married) = Yes] — ¢(NumCars) = 2},
and which is commonly abbreviated to
(Age : 30..49) and (Married: Yes) = (NumCars : 2).

The support s of an association rule is the percentage of tuples satisfying both the left-hand and the
right-hand side of the rule. The confidence is ¢ if ¢% of the tuples satisfying the left-hand side of the
rule also satisfy the right-hand side. Clearly, our notions of support and confidence not only have the
same name, but also the same set-up and intention. Certain studies limit the length of a rule to enable
visualization [12, 13].

Note that the association rules just mentioned compare certain attribute values of a tuple with
specified constants. Each individual tuple can give evidence for or against the association. The TDs
proposed in this paper compare attributes in one tuple with the corresponding attributes in another tuple.
That 1s, TD satisfaction is expressed in terms of tuple pairs—rather than individual tuples. Following
the terminology of Baudinet et al. [5], TDs are constraint-generating 2-dependencies, whereas classical
association rules are constraint-generating 1-dependencies.

In this study, we assumed a single temporal relation. Other researchers have also considered the
problem of mining rules from relations that are built from multiple base relations using some query
language [4].

Most work on data mining concerns in the first place the performance of algorithms. Examples are
[2, 11, 24, 25]. In this study, we have proceeded in a different way and have started with analyzing the
complexity of the TDMINE problem itself—rather than algorithms to solve it. The rationale behind this
approach is that complexity analysis gives us important indications about the tractability of the problem
in hand, which may complement algorithm design techniques.

8 Summary

We introduced trend dependencies (TDs), which allow expressing significant temporal trends. The time
dimension is captured by TDs through the concept of time accessibility relation (TAR). We showed that
TARs can express time granularities in a simple and elegant way. We provided a characterization of the
satisfiability problem, and we showed it is the dual of the logical implication problem. The satisfiability
problem for TDs turns out NP-hard. An upper bound for the complexity depends on the formalism
used to represent TARs. We provided an axiomatization for reasoning about TDs.

As TDs allow capturing significant knowledge, mining them from existing databases is interesting and
important. We studied the problem TDMINE: Given a temporal database, mine the TDs of a specified
TD class whose support and confidence exceed specified minimum thresholds. Time requirements were
expressed in terms of the cardinality C and the number of attributes D. We showed that TDMINE(D)
is NP-complete if time requirements are expressed as a function of D. This implies that TDMINE
cannot be “scaled down” to lower dimensions, which limits the practicality of visualization techniques
for discovering TDs among many attributes. Although solving TDMINE is generally expensive, we
worked out an interesting variant with acceptable time requirements.

We showed that TDs can express several temporal dependencies found in the literature. TDs seem to
be among the first temporal dependencies that compare attributes using operators other than equality.

25

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] A. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. Int. Conf. Very
Large Data Bases, pages 487-499, Santiago, Chile, 1994.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 207-216, Washington,
D.C., 1993.

[4] E. Baralis and G. Psaila. Designing templates for mining association rules. Journal of Intelligent
Information Systems, 9(1):7-32, 1997.

[6] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating dependencies. In Proc. 5th Int.
Conf. on Database Theory, LNCS 893, pages 322-337. Springer-Verlag, 1995.

[6] C. Bettini, X. Wang, and S. Jajodia. Testing complex temporal relationships involving multiple
granularities and its application to data mining. In Proc. ACM SIGACT-SIGMOD-SIGART Sym-
postum on Principles of Database Systems, pages 68-78, Montreal, Canada, June 1996. ACM Press.

[7] D. W. Cheung, J. Han, V. T. Ng, and C. Wong. Maintenance of discovered association rules in large
databases: An incremental updating technique. In Int. Conf. Data Engineering, pages 106-114,
New Orleans, Louisiana, 1996.

[8] J. Chomicki. Efficient checking of temporal integrity constraints using bounded history encoding.
ACM Trans. on Database Systems, 20(2):148-186, June 1995.

[9] J. Chomicki and D. Niwinski. On the feasibility of checking temporal integrity constraints. Journal
of Computer and System Sciences, 51(3):523-535, 1995.

[10] J. Clifford, A. Crocker, and A. Tuzhilin. On completeness of historical relational query languages.
ACM Trans. on Database Systems, 19(1):64-116, 1994.

[11] C. Faloutsos and K. Lin. Fastmap: A fast algorithm for indexing, data mining and visualization
of traditional and multimedia datasets. In Proc. ACM SIGMOD Int. Conf. Management of Data,
pages 163-174, San Jose, CA, 1995.

[12] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional
optimized association rules: Scheme, algorithms, and visualization. In Proc. ACM SIGMOD Int.
Conf. Management of Data, pages 13-23, Montreal, Canada, 1996.

[13] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized association rules
for numeric attributes. In Proc. ACM SIGACT-SIGMOD-SIGART Symposiwum on Principles of
Database Systems, pages 182-191, Montreal, Canada, 1996.

[14] S. Ginsburg and R. Hull. Order dependency in the relational model. Theoretical Computer Science,
26:149-195, 1983.

[15] S. Ginsburg and R. Hull. Sort sets in the relational model. Journal of the ACM, 33:465-488, 1986.

[16] S. Guo, W. Sun, and M. Weiss. Solving satisfiability and implication problems in database systems.
ACM Trans. on Database Systems, 21(2):270-293, 1996.

[17] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases.
IEEE Trans. on Knowledge and Data Engineering, 5(1):29-40, 1993.

[18] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In Proc. Int.
Conf. Very Large Data Bases, pages 420-431, Zurich, Switzerland, 1995.

26

[19] X. Hu and N. Cercone. Mining knowledge rules from databases: A rough set approach. In Int. Conf.
Data Engineering, pages 96-105, New Orleans, Louisiana, 1996.

[20] C. Jensen, R. Snodgrass, and M. Soo. Extending existing dependency theory to temporal databases.
IEEE Trans. on Knowledge and Data Engineering, 8(4):563-582, 1996.

[21] U. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on temporal logic. Infor-
mation Systems, 12(3):255-269, 1987.

[22] S. Navathe and R. Ahmed. A temporal relational model and a query language. Information Sciences,
49:147-175, 1989.

[23] S. Navathe and R. Ahmed. Temporal extensions to the relational model and SQL. In A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory,
Design, and Implementation, chapter 4, pages 92-109. Benjamin/Cummings, 1993.

[24] J. Park, M.-S. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In
Proc. ACM SIGMOD Int. Conf. Management of Data, pages 175-186, San Jose, CA, 1995.

[25] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in
large databases. In Proc. Int. Conf. Very Large Data Bases, pages 432-443, Zurich, Switzerland,
1995.

[26] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proc.
ACM SIGMOD Int. Conf. Management of Data, pages 1-12, Montreal, Canada, 1996.

[27] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. Temporal
Databases: Theory, Design, and Implementation. Database Systems and Applications Series. Ben-
Jjamin/Cummings, Redwood City, CA, 1993.

[28] V. Vianu. Dynamic functional dependencies and database aging. Journal of the ACM, 34(1):28-59,
1987.

[29] X. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical design for temporal databases with
multiple granularities. ACM Trans. on Database Systems, 22(2):115-170, 1997.

[30] J. Wijsen. Design of temporal relational databases based on dynamic and temporal functional
dependencies. In S. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal Databases,
Workshops in Computing, pages 61-76. Springer, 1995.

[31] J. Wijsen. Eztending Dependency Theory for Temporal Databases. PhD thesis, Katholieke Univer-
siteit Leuven, Belgium, Feb. 1995.

[32] J. Wijsen. Reasoning about qualitative trends in databases. Information Systems, 23(7):469-493,
1998.

[33] J. Wijsen. Temporal FDs on complex objects. ACM Trans. on Database Systems, 24(1):127-176,
1999.

[34] S. Yen and A. Chen. The analysis of relationships in databases for rule derivation. Journal of
Intelligent Information Systems, 7(3):235-259, 1996.

27

