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Abstract

Recently, there has been a lot of interest intemporal granularity, and its applications in temporal dependency
theory and data mining.Generalization hierarchiesused in multi-dimensional databases and OLAP serve a role
similar to that of time granularity in temporal databases, but they also apply to non-temporal dimensions, like
space.

In this paper, we first generalize temporal functional dependencies for non-temporal dimensions, which leads
to the notion of roll-up dependency (RUD). We show the applicability of RUDs in conceptual modeling and data
mining. We then indicate that the notion of time granularity used in temporal databases is generally more expres-
sive than the generalization hierarchies in multi-dimensional databases,and show how this surplus expressiveness
can be introduced in non-temporal dimensions, which leads to the formalism of RUD with negation (RUD�). A
complete axiomatization for reasoning about RUD� is given.

1 Introduction

Recently, there has been a lot of interest in OLAP and data mining. In these domains,generalization hierarchies
play an important role [5, 8, 10, 14]. A typical example is the time hierarchy, where years are partitioned into
months, months into days, and so on. Nevertheless, many other hierarchies have been exemplified in the literature;
for example, the earth surface can be partitioned into continents, countries, states, and so on. Also recently, there
has been a lot of research focusing almost exclusively ontime granularity[3]. Demonstrably, time granularity has
useful applications in temporal dependency theory [19, 21, 20] and temporal data mining [4, 24].

Clearly, generalization hierarchies in OLAP serve a role similar to that of time granularity in temporal databases.
A natural and important question then is: what precisely are the differences/commonalities (if any) between both
concepts? This basic question has many facets, including the following:

� What properties (if any) are so typical of the temporal dimension that justify its special treatment? To which
extent does temporal dependency theory carry over to multiple dimensions? What is the spatial analog of
time granularity?

� How much dimensional semantics can be captured in the “star” schemas used in ROLAP (see, e.g., [10]),
where all dimensions are basically treated uniformly, and where dimensions and facts share the same repre-
sentation formalism, namely the relational model? In particular, how accurate can time be modeled in this
formalism?

These and similar questions underlie the research presented in this paper. Careful reading of the literature gives a
number of useful hints.

� Jensen et al. [12] study temporal dependencies, and mention [12, page 579] that their work can be generalized
to spatial dimensions. This work, however, does not deal with temporal or spatial granularity.

� Wang et al. [19, page 119] mention an approach where time is treated as a conventional attribute, and the time
hierarchy is captured by FDs likeDATE � MONTH andMONTH � YEAR. They give two concrete examples
where this naive approach falls short. Although the examples are interesting, they are rather intricate and do
not explain under which conditions the naive approach fails.

The outline of the paper is as follows. Section 2 extends temporal functional dependencies (TFDs) to non-
temporal generalization hierarchies, including spatial ones. After a motivating example, the construct of roll-up
is formalized. The notion of roll-up dependency (RUD) is defined, and a sound and complete axiomatization for
reasoning about RUDs is given. Section 3 shows two interesting applications: one in conceptual modeling, and one
in data mining. Section 4 starts by illustrating that the concept of time granularity used in temporal databases is
generally more expressive than the information hierarchies used in OLAP. In simple words, whereas generalization
hierarchies are confined to finer-than relationships (for example, month is finer than year), temporal granularityalso
considers more complex relationships, including disjunctive ones (for example, every week is entirely contained
in a yearor a fiscal year, where a fiscal year runs from July 1 to June 30). We show how this surplus expressiveness
can be generalized for non-temporal dimensions in an elegant way, by allowing negation in RUDs, which leads to
the formalism of RUD�. A sound and complete axiomatization for reasoning about RUD� is given.

1



VORONOI (thick lines) andHEXAGON (background)

YEAR

FISCALYEAR

SEMESTER

MONTH

Figure 1: Spatial and temporal granularity.

2 Roll-Up Dependency

2.1 Motivating Example

Assume we have daily petrol prices fromN petrol stations over a period of multiple years. This information is
stored as a number of tuples over the schema�D � DATE��L � LOCATION��Price � EUROCENT�, where a tuple
�D � x��L � y��Price � z� means that the price of 100 gallons of petrol on dayx at the station located aty amounted
to z Eurocent. Hence, we are faced with a large number of prices, giving such a profusion of detailed information
that direct comparison is impossible. The information has first to be summarized into a few numbers that measure
in some way the various aspects of the large masses of data in which we are interested.

Suppose there are 5 major petrol terminals, and every petrol station is supplied by the nearest petrol terminal.
In Figure 1top, if one thinks of the dots as terminal locations, then the thick lines partition the plane into cells
such that two points within the same cell have the same nearest terminal. Such a partitioning of the plane based
on proximity relations is called a Voronoi diagram [7]. We may find the following rule: if all prices are rounded to
the nearest integral Euro, thereby ignoring price differences below one Euro, then the price of 100 gallons of petrol
does not differ within a week among stations that are supplied by the same terminal. This can be expressed by the
roll-up dependency:

DWEEK LVORONOI � PriceEURO � (1)

That is, if �D � x���L � y���Price � z�� and�D � x���L � y���Price � z�� are two price records, andx� andx�
belong to the same week, andy� andy� are supplied by the same terminal, thenz� andz� are the same if rounded
to the nearest integral Euro. This rule is very useful, because it allows us to reduce the number of price records
with a factor�N

�
(theN stations are supplied by 5 terminals, and there are 7 days in a week). Such generalizations

are significant in data mining [14].

Comparison With TFD RUDs extend temporal functional dependencies (TFDs) [19, 21] to non-temporal di-
mensions. TFDs only support generalization for the temporal dimension. For example, the construct of TFD can
express“The petrol price at a given location does not change within a week,”as follows:

L�WEEK Price �

Note the special position of the time indicatorWEEK. In our formalism this constraint is expressed by the RUD

LLOCATION DWEEK � PriceEUROCENT �
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Figure 2: Partially ordered set of levels.

which can further be abbreviated (becauseLOCATION andEUROCENT are the domains ofL andPrice respectively)
giving

L� DWEEK � Price
� �

The latter formulation makes explicit that only the temporal attribute (D) is subject to roll-up. RUDs, unlike TFDs,
allow to roll up any attribute, as illustrated in the motivating example. In particular, the RUD (1) cannot be ex-
pressed as a TFD. For a more extensive overview of temporal dependencies in databases, see [12, 19, 20].

2.2 Roll-Up

Figure 1 illustrates spatial and temporal granularities. Time can be partitioned into (civil) years, fiscal years,
semesters, and months. We assume that a fiscal year runs from July 1 to June 30 of the next (civil) year. Semesters
run from January 1 to June 30, and from July 1 to December 31. Space can be partitioned by tiling hexagons or a
Voronoi diagram [7], which reflects a proximity relation to a set of given points. Months constitute a finer granu-
larity than years, as every month is properly contained in a year; we say that every month rolls up to its year. This is
denotedMONTH � YEAR, and there is a function mapping every month to the year it belongs to. On the other hand,
in Figure 1, hexagons do not divide evenly into Voronoi cells, nor vice versa. The following definition is adapted
from [5].

Definition 1 We assume the existence of a partially ordered set�L��� of levels. Every levelL ofL has associated
with it a set of values, denotedext�L�.

A roll-up instantiationU is a set of functions as follows: for everyL �� L� � L with L� � L�, there is a total
function, denotedUL�

L�
, from ext�L�� into ext�L��, satisfying the following conditions:

Transitivity: For everyL�� L�� L� � L with L� � L� � L�, U
L�

L�
� UL�

L�
� UL�

L�
, and

Reflexivity: For everyL � L, ULL is the identity onext�L�.

We will write UL�v� instead ofUL
L��v� if L� is clear from the context. IfUL�v� � w, we say thatv rolls up tow

in L, whereU is implicitly understood andL can be omitted if it is clear from the context.

The set�L��� is illustrated in Figure 2. The Transitivity requirement in Definition 1 states that if monthm

rolls up tos in SEMESTER, ands rolls up toy in YEAR, thenm rolls up toy in YEAR.
We are now going to introduce the notion of schema and generalization schema. The schema introduced in Sec-

tion 2.1 is �D � DATE��L � LOCATION��Price � EUROCENT�, which for convenience will be denoted
DDATELLOCATIONPriceEUROCENT . A generalization schema is obtained from a schema by duplicating attributes, by
omitting attributes, or by substituting superlevels for levels (we say thatL is a superlevel ofL � if L� � L). For ex-
ample,DMONTHLHEXAGONLVORONOI is a generalization schema of the schemaDDATELLOCATIONPrice

EUROCENT used earlier:
the attributePrice has been omitted, the attributeL has been duplicated, and superlevels have been substituted for
the levels in the original schema.

3



Definition 2 We assume the existence of a setA of attributes. A schemais a setS � fA�
L� � � � � � An

Lng where
n � �, andA�� � � � � An are pairwise distinct attributes, andL�� � � � � Ln are (not necessarily distinct) levels. We
will write S�A� � L if AL � S. We also writeA�

L�A�
L� � � �An

Ln as a shorthand forfA�
L� � A�

L� � � � � � An
Lng.

A generalization schemaof the schemaS is a setP � fAi�
Li� � � � � � Aim

Lim g whereAi� � � � � � Aim are (not nec-
essarily distinct) attributes offA�� � � � � Ang, andLi� � � � � � Lim are levels satisfying the following condition: if
Aij � Ak thenLk � Lij (j � ���m�, k � ��� n�).

Let P be a generalization schema of the schemaS. If AL � P andAL � S, then we can substituteA� for AL in
P .

We briefly comment on the implementation of levels and roll-up functions. Certain roll-ups will typically be
stored as binary relations in a relational database. The roll-up of cities to states is an example. Other roll-ups, such
as the roll-up from Eurocent to Euro, will typically be defined by a function in some programming language. Such
a function can be seen as a finite representation of an infinite binary relation.

2.3 RUD

The generalization schemaDWEEKLVORONOI induces a partitioning of the set of tuples over the schema
DDATELLOCATIONPriceEUROCENT in the following way: two tuples belong to the same partition if theirD-values roll
up to the same week, and theirL-values roll up to the same Voronoi cell. A RUDP � Q, whereP andQ are
generalization schemas, states that whenever two tuples belong to the sameP -partition, then they must belong to
the sameQ-partition.

Definition 3 Let S � fA�
L� � � � � � An

Lng be a schema. AtupleoverS is a setf�A� � v��� � � � � �An � vn�g where
vi � ext�Li� for eachi � ��� n�. A relationI overS is a finite set of tuples overS.

Let U be a roll-up instantiation. LetP be a generalization schema ofS. Let t�� t� be tuples overS. We write
t� �P�U t� iff for everyAL in P ,

UL�t��A�� � UL�t��A�� �

Obviously, ifI is a relation overS, then the relation�P�U on the tuples ofI is an equivalence relation.

A Roll-Up Dependency(RUD) overS is a statementP � Q whereP andQ are generalization schemas ofS.
Given a roll-up instantiationU , a relationI overS is said tosatisfyP � Q iff for all tuplest �� t� � I, if t� �P�U t�
thent� �Q�U t�.

Logical implication is defined in the classical way. Let� be a set of RUDs and let� be a single RUD (all over the
same schemaS). Let a roll-up instantiationU be given.� is said tologically imply� underU , denoted� j�U

RUD
�,

iff for every relationI overS, if I satisfies every RUD of�, thenI satisfies�.

� is said tologically imply�, denoted� j�RUD �, iff � j�U
RUD

� for every roll-up instantiationU .

2.4 Reasoning About RUDs

Roll-Up Lattice The set of generalization schemas of a given schema can be ordered by a binary relation, denoted
�, capturing the notionof less-general-than between generalization schemas. For example,DMONTHLHEXAGONLVORONOI

� DYEARLHEXAGON , because for every attribute-level pairAL in the second schema, there is a pairAL
�

in the first
schema withL� � L.

Definition 4 LetP andQ be generalization schemas of the schemaS. P is said to beless general thanQ, denoted
P �Q, iff for everyAL in Q, there is someAL

�

in P such thatL� � L.

The generalization schemaP is called irreducible iff whenever P containsAL and AL
�

with L �� L�

thenL k L�. 1

1We writeL k L� iff neitherL � L
� norL� � L.
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Figure 3: The family of generalization schemas ofT WEEKLLOCATION ordered by� .

For example,DMONTHDYEARLVORONOI is not irreducible, becauseMONTH � YEAR; the same partition is defined by
the irreducible generalization schemaDMONTHLVORONOI . The proof of the following theorem can be found in [22]:

Theorem 1 LetS be a schema. The set of all irreducible generalization schemas ofS, ordered by�, is a complete
lattice.

The set of all generalization schemas ofS, ordered by�, will be called theroll-up latticeof S. A roll-up lattice
is shown in Figure 3. It should be stressed that�, unlike � , does not need to be a lattice. Our notion of roll-up
lattice extends and generalizes several earlier proposals found in the literature. Our notion is more general than the
one in [11], because the same attribute can appear more than once in a lattice element, as inLHEXAGONLVORONOI . This
extension is both natural and useful. In an OLAP application, for example, one may want to group data by both
grids simultaneously. Dimensionality reduction [8] is embedded implicitly in our roll-up lattice.

Axiomatization A sound and complete axiomatization for reasoning about RUDs is given next.

Definition 5 The axioms for reasoning about RUDs are as follows (P�Q�R are generalization schemas over a
given schema):

	RUD P � Q if P � Q (2)

P � Q 	RUD PR� QR (3)

P � Q andQ� R 	RUD P � R (4)

In [22], we proved the following result.

Theorem 2 Let� be a set of RUDs and let� be a single RUD (all over the same schema).
� 	RUD � iff � j�RUD �.

The axioms are almost Armstrong’s axioms [1]; the only difference is that axiom (2) refers to� , whereas the
corresponding Armstrong’s axiom uses simple set inclusion. Following an approach stipulated in [19, page 119],
we are now going to “push” the relation� within the RUD formalism. If�L � LOCATION� is part of the database
schema, we add the RUDsLLOCATION � LHEXAGON andLLOCATION � LVORONOI . By Armstrong’s axioms, we can
deriveLLOCATION � LHEXAGONLVORONOI (this is known as the Union rule for FDs). The same RUD is derived in a
different way by using the axioms of Definition 5. In particular,LLOCATION�LHEXAGONLVORONOI and henceLLOCATION �
LHEXAGONLVORONOI follows immediately by axiom (2). Theorem 3 generalizes the above observation.
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Figure 4: Extending cardinality constraints in ER-diagrams.

Definition 6 Let S be a schema. We writeSL for the smallest set of RUDs containingAL� � AL� whenever
AL � S andL � L� � L�.

Theorem 3 Let � be a set of RUDs and let� be a single RUD (all over the same schemaS). � 	RUD � iff
� 
 SL 	A �, where	A denotes derivability using Armstrong’s axioms.

Proof. Both directions can be proved by induction on the derivation of�. �

This means that, after expressing� by RUDs, reasoning about RUDs can be captured by Armstrong’s axioms. It
should be stressed, however, that there is a clear conceptual distinctionbetween database relations and RUDs on the
one hand, and roll-up instantiations and� on the other hand. The RUDs ofSL express certain inherent properties
of the roll-up lattice ofS. Interestingly, along the same lines, RUDs can be used to impose additional properties
on the roll-up lattice, as is shown next.

2.5 Adding Axioms to Capture More Meaning

Note that whenever two days fall within the same year, as well as within the same fiscal year, then these days must
necessarily belong to the same semester. This is expressed by the RUD:

DYEARDFISCALYEAR � DSEMESTER �

It is important to note that the foregoing RUD isnot implied byS L, and really imposes new constraints on the roll-
up lattice. In Section 4, we are going to extend RUDs to capture more complex constraints on the roll-up lattice.
But first we are going to discuss two important applications of RUDs.

3 Applications

3.1 Conceptual Modeling

There have been several proposals to extend the Entity-Relationship (ER) model to capture more temporal and spa-
tial semantics [15]. A recent survey of temporal extensions of ER models is [9]. In [21], we use temporal functional
dependencies (TFDs) to refine the cardinality construct. Tauzovich [18] distinguishes betweensnapshot cardinal-
ity andlifetime cardinality. In [21], we show that TFDs allow to specify cardinality constraints at any granularity
level, snapshot and lifetime being two extremes. In this section, we show that RUDs permit to lift this extension
to any dimension, including the spatial one. We extend the petrol scenario to illustrate our approach.

A marketing firm keeps track of the location of petrol (sales) outlets by oil company. These data may show,
for example, that there is a Shell outlet at locationx � 	
� y � 	�. The following cardinality constraint applies:

6



“Outlets of the same oil company are spread over the country such that no two outlets of the same oil company lie
within the same hexagon cell.”This cardinality constraint is difficult to model by classical ER models. A possible
instance of a relationship between oil companies and outlets is shown in Figure 4top. Note that an oil company can
(and will) have more than one outlet, and that an outlet belongs to one oil company. Hence, a typical relationship
would be one-to-many, and unable to capture the constraint mentioned above. To fix this problem, one could con-
sider incorporating “hexagon cell” as a new entity, and introduce a ternary relationship. However, such solution
tends to be problematic and far from conceptual. Our more elegant solution based on RUDs is shown in Figure 4
bottom. The cardinality constraint “HEXAGON � �” states that no oil company can have two outletswithin the same
hexagon cell:

OilCompany
�
LHEXAGON � Outlet

� �

Remark that the ER diagram shows the strongest cardinality constraint that applies. For example, from the diagram
in Figure 4 it is correct to conclude that the same oil company can have two outlets within the same Voronoi cell;
otherwise the diagram would (also) have shown “VORONOI � �.”

3.2 Data Mining

In Section 2.1, we explained that RUDs can express certain spatio-temporal regularities, which indicate good ab-
straction levels for summarizing data. In particular, for the schemaDDATELLOCATIONPriceEUROCENT we argue that if
petrol prices do not differ much within a week and a Voronoi cell, then it makes sense to roll-upD-values to the
level WEEK, L-values toVORONOI, and to summarizePrice-values by rolling them up toEURO and/or applying a
central tendency measure, like average.

The emerging data mining problem is the following. We fix the right-hand of a RUD, and then we try to find
a left-hand such that the resulting RUD is satisfied by the data. In the example, we fixPriceEURO because we are
interested in finding price regularities; we choosePriceEURO instead ofPriceEUROCENT because we want to abstract
from minor price changes below one Euro. Every generalization schema overDDATELLOCATION is a candidate left-
hand. In general, the number of candidates is exponential in the number of attributes; two candidates in this example
areDMONTHLHEXAGON andDWEEKLVORONOI . The data mining problem is to find good left-hand generalization schemas
that determine the petrol price in Euro. (In this discussion, we assume a roll-up instantiationU is fixed.)

Note that a RUD is falsified by a relationI as soon asI contains two tuples that contradict the RUD, even if a
majority of tuples inI supports the RUD. In data mining, one is generally not only interested in “exact” regularities,
but also in “strong” regularities. To capture the strength of a RUD, we adapted the notion ofconfidencethat is
common in association rule mining [6]. The confidence of a RUDP � Q is the conditional probability that two
tuplest�� t�, which are randomly selected fromI without replacement, satisfyt� �Q�U t�, given they already
satisfyt� �P�U t�. The task then is to mine RUDs that satisfy a certain threshold confidence.

We have finished aC�� implementation for mining RUDs. The first experiments are promising, and are re-
ported in [24]. More details about the complexity of mining RUDs can be found in [22].

4 Adding Inequality

4.1 Introductory Examples

Recall that a fiscal year runs from July 1 to June 30. Clearly, (civil) years and fiscal years are not comparable by�,
i.e.,YEAR k FISCALYEAR. Some weeks span two civil years, and some other weeks span two fiscal years. Hence,
WEEK k YEAR andWEEK k FISCALYEAR. See Figure 2. Assume the schemaS � DDATEPriceEURO , which can be
used to store a time series of prices of a particular product. Consider the following set� of RUDs

� � fDYEAR � Price�� DFISCALYEAR � Price�g �

and the RUD
� � DWEEK � Price� �

The RUDs of� state that two tuples over the schemaS whoseD-values roll up to the same civil year or to the same
fiscal year, must agree onPrice. For a “real-life” roll-up instantiationU , we would have� j�U

RUD
� because two

7
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days of the same week cannot belong to two distinct civil years and to two distinct fiscal years at the same time.
However, Definition 1 permits a roll-up instantiationU � with two valuesd�� d� � ext�DATE� satisfying:

U �WEEK�d�� � U �WEEK�d�� �

U �YEAR�d�� �� U �YEAR�d�� �

U �FISCALYEAR �d�� �� U �FISCALYEAR �d�� �

That is,d� andd� roll up to the same week, but to distinct years and to distinct fiscal years. Then the relation
with two tuplesf�D � d���Price � ���� �D � d���Price � ���g shows that� �j�U �

RUD
�, and hence� �j�RUD �.

AlthoughU � does not correspond to a “real-life” calendar, it satisfies the definition of roll-up instantiation. Clearly,
it is desirable to impose additional constraints so as to excludeU �; therefor we are going to extend RUDs with
negation.

The foregoing example illustrates the conceptcollectively-finer-thanof Wang et al. [19]. We say thatWEEK is
collectively-finer-thanfYEAR� FISCALYEARgmeaning that every week falls entirely within a civil year, or a fiscal
year, or both. This concept turns out very important in temporal reasoning, and is not expressible in our formalism
so far. We could introduce collectively-finer-than at the level of roll-up, as we did with finer-than (�). However,
it is clean to keep our definition of roll-up and extend RUDs so that collectively-finer-than can be expressed. The
following rule expresses that, whenever two dates roll-up to the same week, then they must either roll up to the
same year, or to the same fiscal year, or both:

DWEEK � DYEAR �DFISCALYEAR �

Using propositional calculus, we can eliminate the disjunction at the cost of introducing negation:

�DFISCALYEAR �DYEAR � �DWEEK �

The latter statement is called a RUD�.
It is important to understand that the proposed extension is generic, and in no ways confined to time. Figure 5

shows three different ways of tiling the Euclidean plane. (While the picture only shows twenty tiles for each tiling,
one has to think of each tiling as extending in all directions.) Every point of the Euclidean plane rolls up to a tile
of HORIZONTAL, and to a tile ofHORVERT, and to a tile ofVERTICAL. The poset of levels (Figure 5top) does not
show any relationship between the three ways of tiling. By RUD� we can express that every tile ofHORVERT is
either a tile ofHORIZONTAL or a tile ofVERTICAL (P is an attribute with domainPOINT):

�PHORIZONTAL �PVERTICAL � �PHORVERT �

Clearly, not only can RUD� impose constraints on roll-up instantiations, but also on data in relations. An ex-
ample is

DWEEK�DFISCALYEARLVORONOI � PriceEUROCENT �
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expressing“The petrol price remains constant within a Voronoi cell during weeks in which a new fiscal years
starts.” Hence, RUD� constitutes an expressive formalism, combining functional dependency, roll-up, and nega-
tion.

4.2 RUD�

The following definition extends RUDs by allowing a negation sign in front of any attribute.

Definition 7 Let S be a schema. IfS containsAL andL � L�, thenAL
�

and�AL
�

are literals overS. A term
overS is a set of literals overS. LetP be a term overS. Given a roll-up instantiationU , two tuplest� andt� over
S are said tosatisfyP iff

� for every positive literalAL in P , UL�t��A�� � UL�t��A��, and

� for every negative literal�AL in P , UL�t��A�� �� UL�t��A��.

A Roll-Up Dependency With Negation(RUD�) overS is a statementP � QwhereP andQ are terms overS such
that either (i)P contains a negative literal, or (ii)Q does not contain a negative literal. Given a roll-up instantiation
U , a relationI overS is said tosatisfyP � Q iff for all tuplest�� t� � I, if t� andt� satisfyP , then they satisfy
Q.

j�RUD is extended toj�RUD� in the obvious way.

Note that we disallow expressions likeD YEAR � �PriceEURO , because such an expression could not possibly
be satisfied. This is because the tuplest� andt� in Definition 7 are not required to be distinct, and every individual
tuple becomes a counterexample forDYEAR � �PriceEURO . Similar observations appear in [2, 17]. Note that every
generalization schema ofS is a term overS, but terms, unlike generalization schemas, do not induce a partitioning
of the tuples overS.

4.3 Reasoning About RUD�

Armstrong’s axioms are no longer complete for reasoning about RUD�s. We now give a sound and complete ax-
iomatization for reasoning about RUD�s.

Definition 8 The axioms for reasoning about RUD�s are as follows (P�Q�R are generalization schemas over a
given schema;p is a literal;�p is denotedp):

	PC P � Q iff Q 
 P (5)

P � Q 	PC PR� QR (6)

P � Q andQ� R 	PC P � R (7)

pP � Q andpP � Q 	PC P � Q (8)

	PC pp� P (9)

Figure 6 shows a derivation for the example introduced in Section 4.1. The following theorem expresses that
the axiomatization is sound and complete. It is the analog of Theorem 3, but is much harder to prove.

Theorem 4 Let� be a set of RUD�s, and let� be a single RUD�(all over the same schema).
� j�RUD� � iff � 
 SL 	PC �.

Proof. From Theorem 5 and Theorem 6. See Appendix A. �

The subscript in	PC is chosen because Appendix A also shows an equivalence between RUD� and positive
Propositional Calculus.
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DYEAR � PriceEURO given (a)
DFISCALYEAR � PriceEURO given (b)
�DFISCALYEAR�DYEAR � �DWEEK given (c)
DFISCALYEARDWEEK � PriceEURODWEEK from (b) by (6) (d)
PriceEURODWEEK � PriceEURO by (5) (e)
DFISCALYEARDWEEK � PriceEURO from (d) and (e) by (7) (f)
�DFISCALYEAR�DYEARDWEEK � DWEEK�DWEEK from (c) by (6) (g)
DWEEK�DWEEK � DYEAR by (9) (h)
�DFISCALYEAR�DYEARDWEEK � DYEAR from (g) and (h) by (7) (i)
�DFISCALYEARDYEARDWEEK � DYEAR by (5) (j)
�DFISCALYEARDWEEK � DYEAR from (i) and (j) by (8) (k)
�DFISCALYEARDWEEK � PriceEURO from (k) and (a) by (7) (l)
DWEEK � Price

EURO from (f) and (l) by (8) (m)

Figure 6: Example derivation.

5 Concluding Remarks

The concept of RUD combines functional dependency and roll-up. It has interesting applications in conceptual
modeling and data mining. It allows to express the functional determinacies present in generalization hierarchies,
but cannot express certain complex relationships between levels that have been studied for temporal databases.
To this extent, RUDs have been extended with negation. The concept of RUD� expresses and generalizes these
complex relationships for arbitrary levels, including spatial ones. A sound and complete axiomatization of RUD�

is an interesting and important result.

A Completeness Proof

To simplify the notations, the completeness proof exploits an equivalence between RUD� and positive proposi-
tional calculus. Similar equivalences have appeared in the literature [2, 13, 16, 17].

Definition 9 LetB be a set ofBoolean variables. If p is a Boolean variable, thenp and�p areliterals. For con-
venience,�p can be denotedp. Greek letters� and� are used to denote literals.� equals�. A setT of literals
is called avaluationiff every Boolean variable occurs exactly once inT . Every valuationT extends uniquely to a
map bT from the set of all Boolean formulas tof�� �gwith

� bT �p� � � if p � T ,

� bT �p� � � if p � T , and

� bT ���p�� � � � � pn�� � �� bT �p��� � � � � bT �pn��, where ��p�� � � � � pn� is a Boolean formula, and
�� bT �p��� � � � � bT �pn�� is evaluated overf�� �g using the standard definitions of the operations�, �, �,
and� .

We say thatT satisfies� iff bT ��� � �. A Boolean formula issatisfiableiff there exists a valuationT satisfying�;
otherwise it isunsatisfiable.

A term is a conjunction of literals. ABoolean ruleis a Boolean formula of the formP � Q whereP andQ
are terms. A Boolean ruleP � Q is positiveiff either (i) P contains a negative literal, or (ii)Q does not contain
a negative literal. For convenience, sets of literals will be used for terms. That is, the setf��� � � � � �ng is used for
�� � � � ���n. ThenP is satisfied by a valuationT iff P 
 T . Logical implication is defined in the classical way
and is denotedj�PC .

Let S be the schema under consideration. We let the setB of Boolean variables coincide withfAL
�

j AL �
S andL � L�g.

Theorem 5 � j�RUD� � iff � 
 SL j�PC � .
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Proof. A similar proof appears in [2]. �

Definition 10 Let � be a set of Boolean rules, and letP be a term. Theclosureof P w.r.t.�, denotedP�, is the
smallest term containing the literal� whenever� 	PC P � �.

Lemma 1 P � Q andP � R 	PC P � QR.

Proof. P � PQ can be derived fromP � Q by (6). Likewise,PQ� QR can be derived fromP � R by (6).
By (7),P � QR. �

Lemma 2 Let� be a set of Boolean rules.Q 
 P� iff � 	PC P � Q.

Proof. �. Let � � Q. By the premise,� � P�, hence� 	PC P � �. By repeated application of Lemma 1,
� 	PC P � Q�. Let� � Q. By (5),� 	PC Q� �. By the premise and (7),� 	PC P � �. Hence,� � P�.
�

Lemma 3 Let� be a set of Boolean rules. LetP be a set of literals.P 
 P�.

Proof. By (5),	PC P � P . By Lemma 2,P 
 P�. �

Lemma 4 Let� be a set of Boolean rules.�P��
�

 P�.

Proof. Let � � �P��
�. Hence� 	PC P� � �. We have� 	PC P � P� as a corollary of Lemma 2. By (7),

� 	PC P � �. Hence,� � P�. �

Lemma 5 LetP andQ be terms. IfP is unsatisfiable, then	PC P � Q.

Proof. AssumeP unsatisfiable. Without loss of generality,P containspp. By (5),	PC P � pp. By (9) and (7),
	PC P � Q. �

Lemma 6 Let� be a set of Boolean rules, and letP � � be a Boolean rule. If� �	PC P � � then there exists
a valuationT containingP � such that� � T andT� � T .

Proof. Assume� �	PC P � �. P is satisfiable, or else	PC P � � by Lemma 5, a contradiction. Assume the
desired valuationT does not exist; i.e., for every valuationT containingP �, � � T or T� �� T . � � T implies
� � T� by Lemma 3. AssumeT� �� T . SinceT 
 T� by Lemma 3,T� must contain a literal (say�) not in
T . Since every Boolean variable occurs inT , T contains�, and so doesT� by Lemma 3. Hence,T� contains
��. Hence,	PC T� � � by Lemma 5, and� � �T��

�. By Lemma 4,� � T�. Hence, for every valuationT
containingP�, � 	PC T � �. By repeated application of (8),� 	PC P� � �. Hence,� � �P��

�. Hence,
� � P� by Lemma 4. Consequently,� 	PC P � �, a contradiction. We conclude by contradiction thatT exists.
�

Lemma 7 Let� be a set of Boolean rules, and letP � � be a Boolean rule. If� j�PC P � � then� 	PC
P � �.

Proof. Assume� �	PC P � �. We need to show� �j�PC P � �. By Lemma 6, there exists a valuationT
containingP� such that� � T andT� � T . SinceP 
 P� 
 T and� �� T , T falsifiesP � �. LetR� S be
a Boolean rule in� that is falsified byT . That is,R 
 T andS �
 T . By (5),	PC T � R, hence� 	PC T � S

by (7). Hence,S 
 T� by Lemma 2. But thenS 
 T , a contradiction. We conclude by contradiction thatT

satisfies�. �

Theorem 6 Let� be a set of Boolean rules, and let� be a Boolean rule.� j�PC � iff � 	PC �.

Proof. � (Completeness). Follows from Lemma 7 and Lemma 1.� (Soundness). Straightforward. �
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