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Abstract

Recently, there has been a lot of interedeimporal granularityand its applications in temporal dependency
theory and data miningseneralization hierarchiegsed in multi-dimensional databases and OLAP serve a role
similar to that of time granularity in temporal databases, but they also apply to non-temporal dimensions, like
space.

In this paper, we first generalize temporal functional dependencies for non-temporal dimensions, which leads
to the notion of roll-up dependency (RUD). We show the applicability of RUDs in conceptual modeling and data
mining. We then indicate that the notion of time granularity used in temporal databases is generally more expres-
sive than the generalization hierarchies in multi-dimensional databases, and show how this surplus expressiveness
can be introduced in non-temporal dimensions, which leads to the formalism of RUD with negationYRAID
complete axiomatization for reasoning about RUB given.

1 Introduction

Recently, there has been a lot of interest in OLAP and data mining. In these dogeiesalization hierarchies
play an important role [5, 8, 10, 14]. A typical example is the time hierarchy, where years are partitioned into
months, months into days, and so on. Nevertheless, many other hierarchies have been exemplified in the literature;
for example, the earth surface can be partitioned into continents, countries, states, and so on. Also recently, there
has been a lot of research focusing almost exclusiveljnoa granularity{3]. Demonstrably, time granularity has
useful applications in temporal dependency theory [19, 21, 20] and temporal data mining [4, 24].

Clearly, generalization hierarchies in OLAP serve arole similar to that of time granularity in temporal databases.
A natural and important question then is: what precisely are the differences/commonalities (if any) between both
concepts? This basic question has many facets, including the following:

o What properties (if any) are so typical of the temporal dimension that justify its special treatment? To which
extent does temporal dependency theory carry over to multiple dimensions? What is the spatial analog of
time granularity?

¢ How much dimensional semantics can be captured in the “star” schemas used in ROLAP (see, e.g., [10]),
where all dimensions are basically treated uniformly, and where dimensions and facts share the same repre-
sentation formalism, namely the relational model? In particular, how accurate can time be modeled in this
formalism?

These and similar questions underlie the research presented in this paper. Careful reading of the literature gives a
number of useful hints.

¢ Jensen etal. [12] study temporal dependencies, and mention [12, page 579] that their work can be generalized
to spatial dimensions. This work, however, does not deal with temporal or spatial granularity.

e Wangetal.[19, page 119] mention an approach where time is treated as a conventional attribute, and the time
hierarchy is captured by FDs [IREATE — MONTH andMONTH — YEAR. They give two concrete examples
where this naive approach falls short. Although the examples are interesting, they are rather intricate and do
not explain under which conditions the naive approach fails.

The outline of the paper is as follows. Section 2 extends temporal functional dependencies (TFDs) to non-
temporal generalization hierarchies, including spatial ones. After a motivating example, the construct of roll-up
is formalized. The notion of roll-up dependency (RUD) is defined, and a sound and complete axiomatization for
reasoning about RUDs is given. Section 3 shows two interesting applications: one in conceptual modeling, and one
in data mining. Section 4 starts by illustrating that the concept of time granularity used in temporal databases is
generally more expressive than the information hierarchies used in OLAP. In simple words, whereas generalization
hierarchies are confined to finer-than relationships (for example, month is finer than year), temporal granularity also
considers more complex relationships, including disjunctive ones (for example, every week is entirely contained
in a yearor a fiscal year, where a fiscal year runs from July 1 to June 30). We show how this surplus expressiveness
can be generalized for non-temporal dimensions in an elegant way, by allowing negation in RUDs, which leads to
the formalism of RUD. A sound and complete axiomatization for reasoning about Riggiven.
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Figure 1: Spatial and temporal granularity.

2 Roall-Up Dependency

2.1 Motivating Example

Assume we have daily petrol prices fraW petrol stations over a period of multiple years. This information is
stored as a number of tuples over the sch¢Ma: DATE)(L : LOCATION)(Price : EUROCENT), where a tuple
(D :2)(L : y)(Price : z) means that the price of 100 gallons of petrol on day the station located gtamounted
to z Eurocent. Hence, we are faced with a large number of prices, giving such a profusion of detailed information
that direct comparison is impossible. The information has first to be summarized into a few numbers that measure
in some way the various aspects of the large masses of data in which we are interested.

Suppose there are 5 major petrol terminals, and every petrol station is supplied by the nearest petrol terminal.
In Figure 1top, if one thinks of the dots as terminal locations, then the thick lines partition the plane into cells
such that two points within the same cell have the same nearest terminal. Such a partitioning of the plane based
on proximity relations is called a Voronoi diagram [7]. We may find the following rule: if all prices are rounded to
the nearest integral Euro, thereby ignoring price differences below one Euro, then the price of 100 gallons of petrol
does not differ within a week among stations that are supplied by the same terminal. This can be expressed by the
roll-up dependency

DWEEK LVURUNUI — PTiC@EURU ) (1)

Thatis, if (D : @1)(L : y1)(Price : z1) and(D : x2)(L : ya2)(Price : z3) are two price records, ang andzs
belong to the same week, apdandy, are supplied by the same terminal, therandz- are the same if rounded
to the nearest integral Euro. This rule is very useful, because it allows us to reduce the number of price records
with a factor% (the N stations are supplied by 5 terminals, and there are 7 days in a week). Such generalizations
are significant in data mining [14].

Comparison With TFD RUDs extend temporal functional dependencies (TFDs) [19, 21] to non-temporal di-
mensions. TFDs only support generalization for the temporal dimension. For example, the construct of TFD can
expressThe petrol price at a given location does not change within a weels, follows:

L —WEEK Price .

Note the special position of the time indica®®EK. In our formalism this constraint is expressed by the RUD

EUROCENT

LLUCATIUN DWEEK — Price ’
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which can further be abbreviated (becauseATION andEUROCENT are the domains of and Price respectively)
giving

L= DY 5 Price= .
The latter formulation makes explicit that only the temporal attribiXgi$ subject to roll-up. RUDs, unlike TFDs,
allow to roll up any attribute, as illustrated in the motivating example. In particular, the RUD (1) cannot be ex-
pressed as a TFD. For a more extensive overview of temporal dependencies in databases, see [12, 19, 20].

2.2 Roll-Up

Figure 1 illustrates spatial and temporal granularities. Time can be partitioned into (civil) years, fiscal years,
semesters, and months. We assume that a fiscal year runs from July 1 to June 30 of the next (civil) year. Semesters
run from January 1 to June 30, and from July 1 to December 31. Space can be partitioned by tiling hexagons or a
Voronoi diagram [7], which reflects a proximity relation to a set of given points. Months constitute a finer granu-
larity than years, as every month is properly contained in a year; we say that every month rolls up to its year. This is
denotediONTH < YEAR, and there is a function mapping every month to the year it belongs to. On the other hand,

in Figure 1, hexagons do not divide evenly into Voronoi cells, nor vice versa. The following definition is adapted
from [5].

Definition 1 We assume the existence of a partially ordered8ek) of levels Every levell of £ has associated
with it a set of values, denoted+(L).

A roll-up instantiationl is a set of functions as follows: for evety,, L, € £ with L; < L, there is a total
function, denote(ﬂ]LLf, from ext(L1) into ext(L-), satisfying the following conditions:

Transitivity: ForeveryL,, Lo, Ls € Lwith L; < Lo < Ls, ULLf = ULL; ) ULLf, and
Reflexivity: For everyL € £, UF is the identity onezt(L).

We will write U *(v) instead ofU L, (v) if L' is clear from the context. W'” (v) = w, we say that rolls up tow
in L, wherel is implicitly understood and. can be omitted if it is clear from the context.

The set(L, <) is illustrated in Figure 2. The Transitivity requirement in Definition 1 states that if month
rolls up tos in SEMESTER, ands rolls up toy in YEAR, thenm rolls up toy in YEAR.

We are now goingto introduce the notion of schema and generalization schema. The schema introduced in Sec-
tion 2.1 is(D : DATE)(L : LOCATION)(Price : EUROCENT), which for convenience will be denoted
[DPATE JLOCATION by EUROCENT A" generalization schema is obtained from a schema by duplicating attributes, by
omitting attributes, or by substituting superlevels for levels (we sayiiligmf superlevel of.’ if L' < L). For ex-
ample, DONTH [HEXAGON 7 VORONOI jg 5 generalization schema of the SCheBR&E LLOCATIN P ERICENT 15ed earlier:
the attributePrice has been omitted, the attributéhas been duplicated, and superlevels have been substituted for
the levels in the original schema.



Definition 2 We assume the existence of a geof attributes A schemds a setS = {4, **, ..., 4,%"} where
n > 0,andAy, ..., A, are pairwise distinct attributes, arid, . . ., L,, are (not necessarily distinct) levels. We
willwrite S(A) = Lif AL € S. We also writed; “* 4,72 ... A, “» as a shorthand fdrA, ©*, Ax™2 ... A, Em ).

A generalization schemaf the schema is a setP = {4;, 71, ..., A; Lim)} where4,,,..., A; are (notnec-
essarily distinct) attributes dfA,, ..., A,}, andL;,,..., L;, are levels satisfying the following condition: if
Aij = A thenLy < Lij (_] S [1,m],k S [1,71])

Let P be a generalization schema of the schetndf A ¢ P andA” € S, then we can substituté= for A" in
P.

We briefly comment on the implementation of levels and roll-up functions. Certain roll-ups will typically be
stored as binary relations in a relational database. The roll-up of cities to states is an example. Other roll-ups, such
as the roll-up from Eurocent to Euro, will typically be defined by a function in some programming language. Such
a function can be seen as a finite representation of an infinite binary relation.

23 RUD

The generalization schem#&"EEk [VORONOL indyces a partitioning of the set of tuples over the schema
DPATE JLOCATION Py o EURDCENT iy the following way: two tuples belong to the same partition if thigivalues roll

up to the same week, and théivalues roll up to the same Voronoi cell. A RUP — @, whereP and(@ are
generalization schemas, states that whenever two tuples belong to thé’saantition, then they must belong to
the same)-partition.

Definition 3 Let S = {A,%*,..., A, %"} be a schema. Aupleover S is aset{(A; : v1),..., (A, : v,)} Where
v; € ext(L;) foreachi € [1, n]. Arelation] overS is a finite set of tuples ove.

Let U be a roll-up instantiation. LeP be a generalization schema $f Let?;, ¢, be tuples oves. We write
ty ~pu ts iff for every AL in P,
U(ti(A) = U*(t2(4)) -

Obviously, if / is a relation overS, then the relatior- p ;; on the tuples of is an equivalence relation.

A Roll-Up DependencyRUD) overS is a statemenf — ) where P and@ are generalization schemas.®f
Given aroll-upinstantiatiofi, a relation/ overS is said tosatisfy” — @ iff for alltuplest ,¢5 € 1, if ¢ty ~py to
thent1 ~Q,U is.

Logical implication is defined in the classical way. Pebe a set of RUDs and letbe a single RUD (all over the
same schems). Let aroll-upinstantiatioff be given.X. is said tdogically implys underU/, denote® %, o,
iff for every relation/ over s, if I satisfies every RUD af, then/ satisfiesr.

¥ is said tdogically imply s, denoted: = rup o, iff & =%, o for every roll-up instantiatiody .

2.4 Reasoning About RUDs

Roll-UpLattice The set of generalization schemas of a given schema can be ordered by a binary relation, denoted
<, capturing the notion of less-general-than between generalization schemas. For ex#PiifygHEracon 7 vorono1

< DYERR THEKAGON hecayse for every attribute-level paiif in the second schema, there is a p#r in the first

schema withl.’ < L.

Definition 4 Let P and@ be generalization schemas of the schem#’ is said to bdess general thary, denoted
P < Q, iff for every AL in @, there is somet” in P suchthat.’ < L.

The generalization schema is called irreducible iff whenever P contains A* and A" with L # L’
thenl || /.1

Iwe write L || L' iff neither L < L' nor L’ < L.
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Figure 3: The family of generalization schemasI@fE* L0110 ordered by< .

For example DHONTH )YEAR FVORONOL 5 notirreducible, becaus#ONTH < YEAR; the same partition is defined by
the irreducible generalization schermd?™ [Y0RONOI " The proof of the following theorem can be found in [22]:

Theorem 1 LetS be aschema. The set of allirreducible generalization schem@saflered by<l, is a complete
lattice.

The set of all generalization schemasSobrdered by, will be called theoll-up latticeof S. Aroll-up lattice
is shown in Figure 3. It should be stressed thaunlike <, does not need to be a lattice. Our notion of roll-up
lattice extends and generalizes several earlier proposals found in the literature. Our notion is more general than the
one in [11], because the same attribute can appear more than once in a lattice elemdHt**4¥'in’or001 | This
extension is both natural and useful. In an OLAP application, for example, one may want to group data by both
grids simultaneously. Dimensionality reduction [8] is embedded implicitly in our roll-up lattice.

Axiomatization A sound and complete axiomatization for reasoning about RUDSs is given next.

Definition 5 The axioms for reasoning about RUDs are as folloRs({, R are generalization schemas over a
given schema):

Frop P —QIif PLQ (2)
P—)Q l_RUD PR—)QR (3)
P—>QandQ—>R Frop P— R (4)

In [22], we proved the following result.

Theorem 2 LetY be a set of RUDs and letbe a single RUD (all over the same schema).
b)) l_RUD oiff 2 ':RUD ag.

The axioms are almost Armstrong’s axioms [1]; the only difference is that axiom (2) refets tehereas the
corresponding Armstrong’s axiom uses simple set inclusion. Following an approach stipulated in [19, page 119],
we are now going to “push” the relatiox within the RUD formalism. If( L : LOCATION) is part of the database
schema, we add the RUD$CATION ., [HEXAGON g FLOCATION . VORONOI = By Armstrong’s axioms, we can
derive [LOCATION _,  JHERAGON FVORONOL (this is known as the Union rule for FDs). The same RUD is derived in a
different way by using the axioms of Definition 5. In particulB?¢AT10N < J HEXAGON FYORONOL gnd hencd OCATION —y
LHEXAGON FVORONOL fg]lows immediately by axiom (2). Theorem 3 generalizes the above observation.
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Definition 6 Let S be a schema. We writg¢ for the smallest set of RUDs containinf: — A2 whenever
Al e SandL < L, < L.

Theorem 3 Let X be a set of RUDs and let be a single RUD (all over the same schefla ¥ Fryp o iff
Y U S* 4 o, wheret4 denotes derivability using Armstrong’s axioms.

Proof. Both directions can be proved by induction on the derivation.of |

This means that, after expressirgoy RUDs, reasoning about RUDs can be captured by Armstrong’s axioms. It
should be stressed, however, that there is a clear conceptual distinction between database relationsand RUDs onthe
one hand, and roll-up instantiations afian the other hand. The RUDs 8 express certain inherent properties

of the roll-up lattice ofS. Interestingly, along the same lines, RUDs can be used to impose additional properties

on the roll-up lattice, as is shown next.

2.5 Adding Axiomsto Capture More Meaning

Note that whenever two days fall within the same year, as well as within the same fiscal year, then these days must
necessarily belong to the same semester. This is expressed by the RUD:

DYEARDFISCALYEAR — DSEMESTER )

Itis important to note that the foregoing RUDristimplied by S, and really imposes new constraints on the roll-
up lattice. In Section 4, we are going to extend RUDSs to capture more complex constraints on the roll-up lattice.
But first we are going to discuss two important applications of RUDs.

3 Applications
3.1 Conceptual Modeling

There have been several proposals to extend the Entity-Relationship (ER) model to capture more temporal and spa-
tial semantics [15]. A recent survey of temporal extensions of ER models is[9]. In[21], we use temporal functional
dependencies (TFDs) to refine the cardinality construct. Tauzovich [18] distinguishes behapshot cardinal-
ity andlifetime cardinality In [21], we show that TFDs allow to specify cardinality constraints at any granularity
level, snapshot and lifetime being two extremes. In this section, we show that RUDs permit to lift this extension
to any dimension, including the spatial one. We extend the petrol scenario to illustrate our approach.

A marketing firm keeps track of the location of petrol (sales) outlets by oil company. These data may show,
for example, that there is a Shell outlet at locatios 37, y = 34. The following cardinality constraint applies:



“Outlets of the same oil company are spread over the country such that no two outlets of the same oil company lie
within the same hexagon cellThis cardinality constraint is difficult to model by classical ER models. A possible
instance of a relationship between oil companies and outlets is shown in FigyreNbte that an oil company can
(and will) have more than one outlet, and that an outlet belongs to one oil company. Hence, a typical relationship
would be one-to-many, and unable to capture the constraint mentioned above. To fix this problem, one could con-
sider incorporating “hexagon cell” as a new entity, and introduce a ternary relationship. However, such solution
tends to be problematic and far from conceptual. Our more elegant solution based on RUDs is shown in Figure 4
bottom The cardinality constrainHEXAGON : 1” states that no oil company can have two outieithin the same
hexagon cell

OilCompany™ LM _y Outlet= .

Remark that the ER diagram shows the strongest cardinality constraint that applies. For example, from the diagram
in Figure 4 it is correct to conclude that the same oil company can have two outlets within the same Voronoi cell;
otherwise the diagram would (also) have showorONOT : 1.”

3.2 DataMining

In Section 2.1, we explained that RUDs can express certain spatio-temporal regularities, which indicate good ab-
straction levels for summarizing data. In particular, for the SCh&M&E LLOCATION prjcEURICENT \we argue that if

petrol prices do not differ much within a week and a Voronoi cell, then it makes sense to oHvafues to the

level WEEK, L-values tovORONOI, and to summarizé’ri:ce-values by rolling them up t&UR0 and/or applying a

central tendency measure, like average.

The emerging data mining problem is the following. We fix the right-hand of a RUD, and then we try to find
a left-hand such that the resulting RUD is satisfied by the data. In the example, RediX"*® because we are
interested in finding price regularities; we choddgce®™™ instead ofPrice®" "™ pecause we want to abstract
from minor price changes below one Euro. Every generalization schema)B\EI LTI s g candidate left-
hand. Ingeneral, the number of candidates is exponential in the number of attributes; two candidates in this example
are DMONTH [HEXAGON gnd HHEEK [VORINOI The data mining problem is to find good left-hand generalization schemas
that determine the petrol price in Euro. (In this discussion, we assume a roll-up instartfiasifired.)

Note that a RUD is falsified by a relatidnas soon ag contains two tuples that contradict the RUD, even if a
majority of tuples in/ supports the RUD. In data mining, one is generally not only interested in “exact” regularities,
but also in “strong” regularities. To capture the strength of a RUD, we adapted the notonfafencehat is
common in association rule mining [6]. The confidence of a REB» () is the conditional probability that two
tuplesty, to, which are randomly selected fromwithout replacement, satisty ~¢ v ¢2, given they already
satisfyt; ~p s 2. The task then is to mine RUDs that satisfy a certain threshold confidence.

We have finished &++ implementation for mining RUDs. The first experiments are promising, and are re-
ported in [24]. More details about the complexity of mining RUDs can be found in [22].

4 Adding Inequality

4.1 Introductory Examples

Recall that a fiscal year runs from July 1 to June 30. Clearly, (civil) years and fiscal years are not compaxable by
i.e., YEAR || FISCALYEAR. Some weeks span two civil years, and some other weeks span two fiscal years. Hence,
WEEK || YEAR andWEEK || FISCALYEAR. See Figure 2. Assume the schefa= DP*™8 Price®™*® | which can be

used to store a time series of prices of a particular product. Consider the followigé&UDs

Y= {DYEAR — Price:, DFISCALYEAR — Price:} ’

and the RUD
o = D"EX _y Price™ .

The RUDs of¥: state that two tuples over the schefahoseD-values roll up to the same civil year or to the same
fiscal year, must agree dfvice. For a “real-life” roll-up instantiation’, we would have: =%, ¢ because two
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Figure 5: Tiling grids.

days of the same week cannot belong to two distinct civil years and to two distinct fiscal years at the same time.
However, Definition 1 permits a roll-up instantiatiof with two valuesd;, d» € ext(DATE) satisfying:

U/WEEK(dl) _ U/WEEK(dz) ’
U/YEAR(dl) ” U/YEAR(dz)
U/FISCALYEAR(dl) ” U/FISCALYEAR(dz) .

That is,d; andd, roll up to the same week, but to distinct years and to distinct fiscal years. Then the relation
with two tuples{(D : d,)(Price : 20), (D : ds)(Price : 40)} shows that: £V}, o, and hence& frpp o.
AlthoughU” does not correspond to a “real-life” calendar, it satisfies the definition of roll-up instantiation. Clearly,
it is desirable to impose additional constraints so as to exdlideherefor we are going to extend RUDs with
negation.

The foregoing example illustrates the concegitectively-finer-tharof Wang et al. [19]. We say th&EEK is
collectively-finer-thar{ YEAR, FISCALYEAR} meaning that every week falls entirely within a civil year, or a fiscal
year, or both. This concept turns out very important in temporal reasoning, and is not expressible in our formalism
so far. We could introduce collectively-finer-than at the level of roll-up, as we did with finer-tkarHowever,
it is clean to keep our definition of roll-up and extend RUDs so that collectively-finer-than can be expressed. The
following rule expresses that, whenever two dates roll-up to the same week, then they must either roll up to the
same year, or to the same fiscal year, or both:

DWEEK — DYEAR V] DFISCALYEAR
Using propositional calculus, we can eliminate the disjunction at the cost of introducing negation:

_‘DFISCALYEAR _|DYEAR — _‘DWEEK )

The latter statement is called a RUD

It is important to understand that the proposed extension is generic, and in no ways confined to time. Figure 5
shows three different ways of tiling the Euclidean plane. (While the picture only shows twenty tiles for each tiling,
one has to think of each tiling as extending in all directions.) Every point of the Euclidean plane rolls up to a tile
of HORIZONTAL, and to a tile oHORVERT, and to a tile oVERTICAL. The poset of levels (Figuretbp) does not
show any relationship between the three ways of tiling. By RUie can express that every tile W6RVERT is
either a tile oHORIZONTAL or a tile of VERTICAL (P is an attribute with domaiROINT):

_‘PHURIZUNTAL _|PVERTICAL — _|PHURVERT )

Clearly, not only can RUD impose constraints on roll-up instantiations, but also on data in relations. An ex-

ample is
EUROCENT

DWEEKﬁDFISCALYEAR LVURUNUI — Price ’



expressindgThe petrol price remains constant within a Voronoi cell during weeks in which a new fiscal years
starts.” Hence, RUD constitutes an expressive formalism, combining functional dependency, roll-up, and nega-
tion.

4.2 RUD™

The following definition extends RUDs by allowing a negation sign in front of any attribute.

Definition 7 Let S be a schema. I§ contains4Z andL < I/, thenAL' and—AL" are literals overs. A term
oversS is a set of literals oves. Let P be aterm ovef. Given a roll-up instantiatiof, two tuplest; andt, over
S are said teatisfy P iff

o for every positive literak~ in P, U~ (t1(A)) = U%(t2(A)), and
o for every negative literah AL in P, UL (t1(A)) # UE(t2(A)).

A Roll-Up Dependency With Negati@RUD™) overS is a statemen? — @ whereP and( are terms ovef such
that either (i)P contains a negative literal, or (i) does not contain a negative literal. Given a roll-up instantiation
U, arelation/ overS is said tosatisfyP — (@ iff for all tuplest, ¢, € I, if t; andt, satisfy P, then they satisfy
Q.

Erup is extended td=rp- in the obvious way.

Note that we disallow expressions lik&E* — —Price®* because such an expression could not possibly
be satisfied. This is because the tuplesnd¢- in Definition 7 are not required to be distinct, and every individual
tuple becomes a counterexample f3F** — — Price®"*® . Similar observations appear in [2, 17]. Note that every
generalization schema 6fis a term overs, but terms, unlike generalization schemas, do notinduce a partitioning
of the tuples overt.

4.3 Reasoning About RUD™

Armstrong’s axioms are no longer complete for reasoning about ®UJB/e now give a sound and complete ax-
iomatization for reasoning about RUB.

Definition 8 The axioms for reasoning about ROBare as follows®, @, R are generalization schemas over a
given schemap is a literal;—p is denoted):

Fpe P—=QIiffQCP (5)

P—@ Ftpec PR—QR (6)
P—-QandQ - R Fpec P—R @)
pP = QandpP - Q Fpc P—Q (8)
Fpc pp— P 9)

Figure 6 shows a derivation for the example introduced in Section 4.1. The following theorem expresses that
the axiomatization is sound and complete. Itis the analog of Theorem 3, but is much harder to prove.

Theorem 4 LetY be a set of RUDs, and letr be a single RUD(all over the same schema).
b)) ':RUD“ oiff LU S~ Fpo o.

Proof. From Theorem 5 and Theorem 6. See Appendix A. O

The subscript i p¢- is chosen because Appendix A also shows an equivalence between &lidpositive
Propositional Calculus.



DYEAR N PTiCeEURU given (a)
DFISCALYEAR N PTiC@EURU given (b)
ﬁDFISCALYEAR_‘DYEAR N _|DWEEK given (C)
DFISCALYEAR DWEEK N PriceEURU DWEEK from (b) by (6) (d)
Price®0 DVEEK s PpijceEUR0 by (5) (e)
DFISCALYEAR DWEEK N PriceEURU from (d) and (e) by (7) (f)
ﬁDFISCALYEAR_‘DYEAR DWEEK N DWEEK _|DWEEK from (C) by (6) (g)
DWEEK _|DWEEK N DYEAR by (9) (h)
ﬁDFISCALYEAR_‘DYEAR DWEEK N DYEAR from (g) and (h) by (7) (I)
_|DFISCALYEAR DYEAR DWEEK N DYEAR by (5) (J)
_|DFISCALYEAR DWEEK N DYEAR from (I) and (J) by (8) (k)
_|DFISCALYEAR DWEEK N P?”ZC@EURU from (k) and (a) by (7) (l)
DY — Price™ from (f) and (I) by (8)  (m)

Figure 6: Example derivation.

5 Concluding Remarks

The concept of RUD combines functional dependency and roll-up. It has interesting applications in conceptual
modeling and data mining. It allows to express the functional determinacies present in generalization hierarchies,
but cannot express certain complex relationships between levels that have been studied for temporal databases.
To this extent, RUDs have been extended with negation. The concept of Rklibesses and generalizes these
complex relationships for arbitrary levels, including spatial ones. A sound and complete axiomatization®f RUD

is an interesting and important result.

A Completeness Proof

To simplify the notations, the completeness proof exploits an equivalence between &lidipositive proposi-
tional calculus. Similar equivalences have appeared in the literature [2, 13, 16, 17].

Definition 9 Let B be a set oBoolean variableslf p is a Boolean variable, thegnand—p areliterals. For con-
venience~p can be denotefl. Greek lettersy ands are used to denote literalg. equalsa. A set?” of literals
is called avaluationiff every Boolean variable occurs exactly oncelinEvery valuatiord” extends uniquely to a
map’ from the set of all Boolean formulas {@, 1} with

(
e T(p)=0ifpeT,and
o T(e(pr,....,pn)) = @(T(p1),...,T(pn)), Where o(ps,...,pn) is a Boolean formula, and
o(T(p1),...,T(ps)) is evaluated ovef0, 1} using the standard definitions of the operationsv, —,

We say thafl” satisfiesp iff f(go) = 1. A Boolean formula isatisfiabldff there exists a valuatioi’ satisfyingy;
otherwise it isunsatisfiable

A termis a conjunction of literals. Boolean ruleis a Boolean formula of the forr? — @) whereP and@
are terms. A Boolean rul® — @) is positiveiff either (i) P contains a negative literal, or (i) does not contain
a negative literal. For convenience, sets of literals will be used for terms. That is, the set., a,, } is used for
a1 A ... AN a,. ThenP is satisfied by a valuatiof iff P C T'. Logical implication is defined in the classical way
and is denotetkpc .

Let S be the schema under consideration. We let the3set Boolean variables coincide withd”' | A ¢
SandlL < L'}.

Theorem5 X ':RUD“ oiff LU S* ':pc o .

10



Proof. A similar proof appears in [2]. |

Definition 10 Let X be a set of Boolean rules, and etbe a term. Thelosureof P w.r.t. &, denotedP™, is the
smallest term containing the literalwhenever: -pe P — a.

Lemmal P—- QandP — Rtpc P — QR.

Proof. P — P can be derived fron® — @) by (6). Likewise,PQ — QR can be derived fron® — R by (6).
By (7), P — QR. O

Lemma?2 LetY be a set of Booleanrules) C PTiff S Fpe P — Q.

Proof. =. Leta € Q. By the premiseq € P, henceX po P — «. By repeated application of Lemma 1,
YStpe P— Q<. Leta € Q. By(5),X Fpec @ — «. Bythe premise and (7%, Fpc P — a. Hencep € PT.
O

Lemma3 LetX be a set of Boolean rules. L&tbe a set of literalsP C PT.
Proof. By (5),Fpc P — P. By Lemma 2,P C Pt. 0
Lemma4 LetY. be a set of Boolean rulesP+)" C P+,

Proof. Leta € (P+)+. HenceX Fpe Pt — a. We haveX Fpe P — P1 as a corollary of Lemma 2. By (7),
Y kpe P — a. Hencea € PT. i

Lemmab Let P and(@ be terms. IfP is unsatisfiable, thehpc P — Q.

Proof. AssumeP unsatisfiable. Without loss of generalify,containgp. By (5),Frc P — pp. By (9) and (7),
"pc P — Q a

Lemma6 LetX be a set of Boolean rules, and IBt— « be a Boolean rule. IE /p~ P — « then there exists
a valuation?” containingP * such thatv ¢ T and7t = 7.

Proof. AssumeX t/pc P — a. P is satisfiable, or elsepc P — o by Lemma 5, a contradiction. Assume the
desired valuatiofi’ does not exist; i.e., for every valuatithcontainingP*, o € T orTt # T. o € T implies

a € TT by Lemma 3. Assumé&™* # T. SinceT C T* by Lemma 3,7"" must contain a literal (say) not in

T. Since every Boolean variable occursifin7’ containsi, and so doe§™ by Lemma 3. Hence[™ contains
35. Hencefpo Tt — a by Lemma 5, andv € (T+)+. By Lemma 4,0 € T%. Hence, for every valuatiof
containingP*, ¥ Fpe T — «. By repeated application of (8); Fp- PT — a. Hencea € (P+)+. Hence,

o € Pt by Lemma 4. ConsequentBy,-p- P — «, a contradiction. We conclude by contradiction tiaxists.

O

Lemma7 LetX be a set of Boolean rules, and IBt — « be a Boolean rule. IE =pc P — «a thenX Fpe
P —a.

Proof. AssumeX f/pc P — a. We need to show [rpe P — «. By Lemma 6, there exists a valuati®h
containingP* such thatv € 7'and7't = 7. SinceP C Pt C T'anda ¢ T, T falsifiesP — «o. Let R — S be
a Boolean rule irt that is falsified by/". Thatis,R C 7T'andS € 7. By (5),Fpc T'— R, henceX Fpo T'— S
by (7). Hence,5 C Tt by Lemma 2. Butthert C T, a contradiction. We conclude by contradiction tiiat
satisfies:. a

Theorem 6 LetX be a set of Boolean rules, and letbe a Boolean ruleX =p¢ o iff X Fpe 0.

Proof. = (Completeness)ollows from Lemma 7 and Lemma % (Soundness)Straightforward. O

11
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