
E�ective Timestamping in Databases

Kristian Torp� Christian S� Jensen� and Richard T� Snodgrass

October �� ����

TR��rev

A TimeCenter Technical Report

Copyright c� ���� Kristian Torp� Christian S� Jensen� and Richard
T� Snodgrass� All rights reserved�

Author�s� Kristian Torp� Christian S� Jensen� and Richard T� Snodgrass

Publication History First version March ��� ����
Revised October ����

TIMECENTER Participants

Aalborg University� Denmark

Christian S� Jensen �codirector�� Michael H� B	ohlen� Renato Busatto� Curtis E� Dyreson�

Heidi Gregersen� Dieter Pfoser� Simonas
Saltenis� Janne Skyt� Giedrius Slivinskas�
Kristian Torp

University of Arizona� USA

Richard T� Snodgrass �codirector�� Sudha Ram

Individual participants

Anindya Datta� Georgia Institute of Technology� USA
Kwang W� Nam� Chungbuk National University� Korea
Mario A� Nascimento� State University of Campinas and EMBRAPA� Brazil
Keun H� Ryu� Chungbuk National University� Korea
Michael D� Soo� University of South Florida� USA
Andreas Steiner� TimeConsult� Switzerland
Vassilis Tsotras� Polytechnic University� USA
Jef Wijsen� Vrije Universiteit Brussel� Belgium

For additional information� see The TimeCenter Homepage�
URL� �http���www�cs�auc�dk�research�DBS�tdb�TimeCenter��

Any software made available via TimeCenter is provided �as is� and without any express or implied
warranties� including� without limitation� the implied warranty of merchantability and �tness for a
particular purpose�

The TimeCenter icon on the cover combines two �arrows�
 These �arrows
 are letters in the so�called
Rune alphabet used one millennium ago by the Vikings� as well as by their precedessors and successors�
The Rune alphabet �second phase� has �� letters� all of which have angular shapes and lack horizontal
lines because the primary storage medium was wood� Runes may also be found on jewelry� tools� and
weapons and were perceived by many as having magic� hidden powers�

The two Rune arrows in the icon denote �T
 and �C�
 respectively�

Many existing database applications place various timestamps on their data� rendering temporal
values such as dates and times prevalent in database tables� During the past two decades� several
dozen temporal data models have appeared� all with timestamps being integral components� The
models have used timestamps for encoding two speci�c temporal aspects of database facts� namely
transaction time� when the facts are current in the database� and valid time� when the facts are true
in the modeled reality� However� with few exceptions� the assignment of timestamp values has been
considered only in the context of individual modi�cation statements�

This paper takes the next logical step� It considers the use of timestamping for capturing transac�
tion and valid time in the context of transactions� The paper initially identi�es and analyzes several
problems with straightforward timestamping� then proceeds to propose a variety of techniques aimed
at solving these problems� Timestamping the results of a transaction with the commit time of the
transaction is a promising approach� The paper studies how this timestamping may be done using a
spectrum of techniques� While many database facts are valid until now� the current time� this value
is absent from the existing temporal types� Techniques that address this problem using di�erent
substitute values are presented� Using a stratum architecture� the performance of the di�erent pro�
posed techniques are studied� Although querying and modifying time�varying data is accompanied
by a number of subtle problems� we present a comprehensive approach that provides application
programmers with simple� consistent� and e�cient support for modifying bitemporal databases in
the context of user transactions�

� Introduction

In a wide range of database applications� accountability and traceability are important� such applications
manage transaction�time databases� where all previous database states are retained� In addition� many
database applications require the times when the facts stored in the database are true to be stored with
these facts� Such applications manage valid�time databases� A database recording both transaction and
valid time is a bitemporal database �����

The goal of this paper is to provide an e�ective approach to timestamping of data that may be
used directly by application developers as well as may be employed within a stratum� which is a layer
on top of a database management system �DBMS� that translates statements in a temporal query
language into conventional SQL� The stratum should ensure ACID properties on the user transactions�
by exploiting the transaction and concurrency control facilities of the underlying DBMS� speci�cally
SQL�s COMMIT and ROLLBACK statements� In particular� we do not allow any modi�cations to the
DBMS itself� rendering the approach relevant also to non�DBMS vendors�

Designing a mapping of user transactions to SQL that provides the desired semantics turns out to be
a challenging task� We shall see that oft�proposed approach of using the commit time of a transaction
as the timestamp value of its database modi�cations is di�cult to realize in practice� especially from the
outside of the DBMS� One problem is that the commit time only becomes known when a transaction
has exhausted all its statements� and so the commit time cannot be used in those statements� Conse�
quently� a �single� temporary� transaction�internal transaction time� no later than the time of the �rst
modi�cation statement� must be used in order to make the results of modi�cation statements visible
within the transaction itself� This raises the concern of what value should be used for this temporary
time value� and how and when it should be replaced with the permanent value�

This paper analyzes the implications of supporting transaction time in the presence of transactions
and in the context of a stratum architecture� The paper proposes and studies the properties� including
performance� of a range of techniques for updating database records resulting from a transaction�s
modi�cations to re�ect the permanent commit time that only becomes available at commit time�

As a next step the paper also considers valid time� whose characteristics di�er from those of transac�
tion time� Valid times are user�speci�ed or given by the system using default values�transaction times
are always system�speci�ed� The user may use the variable time value now that denotes the current

�

domain from �beginning
 to �forever
�transaction�time values never exceed the current time�

The paper shows that when the systems assigns default valid�time values� valid time must be handled
identically to transaction time� Otherwise� the user can extract database states that are inconsistent�
When the CURRENT DATE function �as well as the associated CURRENT TIME and CURRENT TIMESTAMP

functions ����� is present� we show that the value returned must be the commit time of the transaction�
It turns out that the use of the commit time may lead to �illegal� periods that start after they end�
When this occurs� the intermediate result of a modi�cation� computed during the execution of the
transaction� is di�erent from the �nal result� computed at the commit time of the transaction� While
this phenomenon cannot be eliminated� we show that it can be detected and subsequently handled via
transaction abortion�

The performance of timestamping during modi�cations is a major concern� A performance study
shows that the solutions suggested in the paper have e�cient implementations� both for applications
handling time�varying data explicitly in applications and in temporal databases handling time�varying
data implicitly�

We conclude that although querying and modifying time�varying data is accompanied by a number of
problems of surprising subtlety� it is possible to provide application programmers with simple� consistent�
and e�cient support for bitemporal databases in the context of user transactions� without requiring
any changes to the underlying DBMS�

The paper is organized as follows� The next section introduces the stratum approach to implementing
temporal databases� Requirements for correctly supporting transactions handling time�varying data are
listed in Section �� We then outline a new approach in Section �� Sections � and � provide the details
for e�ecting correct timestamping of the transaction�time and the valid�time dimensions� respectively�
Di�erent approaches for timestamping both valid time and transaction time are compared in Section ��
A performance study of design alternatives is presented in Section �� Related work is discussed in
Section �� and Section �� summarizes and points to directions for future research�

� Temporal Databases and Stratum Architecture

As a �rst step in introducing the topic of the paper� we brie�y describe bitemporal data� This type
of data has associated a valid time� indicating when the data was true in the modeled reality� and
a transaction time� indicating when the data along with its valid time was stored as current in the
database�

The valid time of a tuple� a period� may be recorded using the two attributes V�Begin and V�End�
and similarly� the transaction�time period of a tuple� also a period� may be recorded using attributes
T�Start and T�Stop� We use half�open time periods�

A sample bitemporal table is shown in Table �� The �rst tuple was recorded in the database on
January �� ����� stating that Joe was with the Shoe department from that day onward� The variables
nobind now and until changed will be explained in detail shortly� for now� assume they both mean �until
we learn more�
 The three next tuples record that Bob is with the Outdoor department in the period
����������� � ������������ Jim is with the Toy Department in the period ����������� � ������������
and Jill is with the Shoe department in the period ����������� � ������������ This was all recorded
on the �nd of January� The information regarding Joe was believed correct until January ��� when it
was discovered that Joe was only in the Shoe department until January �� at which time he had been
transferred to the Toy department� As a result� the initial information was logically deleted� by placing
���������� in the T�Stop attribute of the �rst tuple� and by inserting the second tuple� A tuple �the
third� was inserted during that same transaction� on January ��� to re�ect that Joe had been in the
Toy department since January �� Finally� on January ��� we learned that this was incorrect� in reality
Joe had been transferred to the Outdoor department� rather than the Toy department� on January ��
This led us to logically delete the third tuple for Joe and insert the �nal tuple� As can be seen� the

�

changes to that history�

Name Dept V�Begin V�End T�Start T�Stop

Joe Shoe ���������� nobind now ���������� ����������

Bob Outdoor ���������� ���������� ���������� until changed

Jim Toy ���������� ���������� ���������� until changed

Jill Shoe ���������� ���������� ���������� until changed

Joe Shoe ���������� ���������� ���������� until changed

Joe Toy ���������� nobind now ���������� ����������

Joe Outdoor ���������� nobind now ���������� until changed

Table �� The Bitemporal Table� Emp

A number of quite di�erent and more or less temporally enhanced query languages exist that permit
an application programmer to modify and query bitemporal tables ����� For example� SQL��� ���� and
SQL� provide little built�in support� leaving more work to the application programmer� Other languages
such as TSQL� ���� and ATSQL ��� extend SQL��� and provide advanced support� making application
development easier�

Using an integrated DBMS architecture to implement a temporal data model that extends SQL
with temporal support is a costly task� which only the major DBMS vendors can accomplish� The fact
that existing DBMSs already manage large quantities of temporal data suggests that a better approach
is available� providing built�in temporal support to applications by interposing a stratum between an
existing DBMS and the application�

The stratum exploits the services already provided by the DBMS to o�er temporal support to the
application� Indeed� to be cost�e�ective� this approach is used by some vendors to enhance their own
systems ���� ���� By adopting a stratum approach� it is possible to maximally reuse existing technology
and relatively quickly make a temporal DBMS available to the application programmers so they will
bene�t from the built�in temporal support of a temporal query language� Among the disadvantages
of using a stratum approach is the inapplicability of well�known temporal storage structures� temporal
indices� and algorithms that implement temporal operations such as temporal join� coalescing� and
timeslicing algorithms�

In this paper� we assume a stratum architecture and thus aim to reuse the services provided by an
existing DBMS� which is itself considered a black box� The consequence is that the techniques and
results presented here are relevant for the layered implementation of a temporal DBMS� as well as for
application programmers who do not have built�in temporal support available� but must handle the
temporal aspects directly in their applications� The stratum architecture is illustrated in Figure ��
where the downward arrows denote �ows of queries� the upward arrows denote �ows of data� and the
boxes are software components�

In this �gure� the user �rst enters a temporal statement� The stratum converts the temporal
statement to an SQL��� statement that is executed in the underlying conventional DBMS� The DBMS
sends the result back to the stratum� which then displays the result of the statement to the user� The
user cannot see that the data is actually stored in a conventional DBMS�the stratum encapsulates the
DBMS from the user�s point of view�

The stratum approach is similar in some ways to the related area of mediators ���� ��� and� more
generally� of integration architectures� Broadly speaking� a mediator o�ers a consistent data model and
accessing mechanism to a range of disparate data sources� The two approaches share an emphasis on
interposing a layer� termed the mediator �also called a wrapper ����� that changes the data model of
the data� or allows new query facilities for accessing the data� A stratum di�ers from a mediator in
that it is fully cognizant of the particular characteristics of the underlying DBMS and can exploit the
constructs and facilities that the DBMS provides�

�

Underlying
DBMS

Stratum

SQL-92 Statement

Code Generator

Parser

Scanner

Output ProcesserManagement
Metadata

Figure �� The Stratum Architecture

In the approach for timestamping advocated here� only few assumptions need be made about the
temporal data model implemented using the stratum architecture� In particular� the speci�cs of the
built�in support for querying are not important� only the facilities for database modi�cation are of
interest� So we now describe precisely how temporal modi�cation statements are translated into SQL���
modi�cation statements�

We examine two simple types of modi�cation statements� The �rst comprises the ones allowed in
SQL� INSERT� DELETE� and UPDATE� Here the syntax is exactly that speci�ed in SQL� with the stratum
automatically supplying the valid�time and transaction�time timestamps� consistent with the semantics
expected of these timestamps� As an example� the following is a valid SQL��� statement�

UPDATE Emp

SET Dept � 	Toy	

WHERE Name � 	Joe	

As Emp is a bitemporal table� the semantics of this statement� consistent with the snapshot semantics
of SQL���� is to change Joe�s department now� and in the future�

For queries� we use the traditional SQL��� SELECT statement� perhaps with explicit reference to the
timestamp attributes�

Table � shows how the modi�cation statements may be mapped to SQL���� The left column gives
temporal query language statements for insertion and deletion �updates are combinations of deletions
and insertions�� Here we use the syntax proposed for SQL� ����� though we emphasize that the speci�c
syntax is not important� The right column provides the translation to SQL��� e�ected by the stratum
and thus de�nes the semantics of the temporal statements� We elaborate on each translation below� The
translation is preliminary because the representations of now � nobind now � until changed � start value�
and stop value using values of SQL��� data types are not speci�ed� Later sections will study the issues
involved in providing such values� resulting in a fully speci�ed de�nition of the modi�cation statements�

When we insert a tuple �the mapping for such an insertion appears as the second row of Table ���
it is timestamped with the period �now � nobind now� in the valid�time dimension� This states that
the fact is valid from the current time until we learn more� In the transaction�time dimension� it is
timestamped with the period �start value � until changed�� denoting that it was present in the database
starting at start value and persists to now� that is� until a future transaction� or a future statement in
the current transaction deletes or updates the tuple�

A deletion of a tuple �the fourth row of Table �� is e�ected by updating the T�Stop attribute to
the stop value� indicating that our old belief no longer holds� and inserting a tuple to record our new
belief that the tuple was valid in the modeled reality from the old V�Begin time to the current time
�now �� Note that all explicit attributes are copied� Because the insertion uses a SELECT� it must appear

�

CREATE TABLE Emp �Name VARCHAR ���� CREATE TABLE Emp �

Dept VARCHAR ����� Name VARCHAR ����� Dept VARCHAR �����

AS VALIDTIME PERIOD�DATE� V�Begin DATE� V�End DATE�

AND TRANSACTIONTIME T�Start DATE� T�End DATE�

INSERT INTO Emp VALUES INSERT INTO Emp VALUES �new name� new dept�

�new name� new dept� now� nobind now� start value� until changed�

VALIDTIME PERIOD �Start � Stop� INSERT INTO Emp VALUES �new name� new dept�

INSERT INTO Emp VALUES Start� Stop� start value� until changed�

�new name� new dept�

DELETE FROM Emp INSERT INTO Emp SELECT Name� Dept�

WHERE Predicate V�Begin� now� start value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � now AND now � V�End	

UPDATE Emp SET T�Stop � stop value

WHERE Predicate AND T�Stop � until changed AND

V�Begin � now AND now � V�End

Table �� Initial Translation of Temporal Modi�cation Statements

before the update statement� Note also that the inserted tuple will not be later changed by the update
statement� because now � V�End will not hold for the inserted tuple�

Not shown in the above table is the translation of an SQL��� update statement �with an implicit
valid�time period of �now
 to �forever
�� Such an update can be stated as a temporal deletion of the
old values� coupled with a temporal insertion of the new values�

� Correct Transactions

This section concerns the correctness of transactions� We �rst review the notion of correct transactions
in snapshot databases� Next� we turn to discuss the correctness of temporal transactions and illustrate
several subtle problems that arise when the correctness criteria of transactions on snapshot databases
are generalized to temporal databases� The discussion of correct temporal transactions in this section
is independent of implementation techniques� e�g�� for concurrency control� recovery� and temporal
attribute visibility�

��� Correct Snapshot Transactions

We de�ne snapshot transactions and temporal transactions as database transactions on snapshot tables
and temporal tables� respectively� Note that we do not di�erentiate time values stored in explicit
attributes �handled in an ad�hoc fashion by applications� from time values stored in implicit attributes
�handled by a temporal DBMS��

The correctness criteria for snapshot transactions running at isolation level SERIALIZABLE ����
are the ACID properties ����� These properties� guaranteed by the DBMS� state that the transaction
is an atomic unit of execution� it commits or it aborts in its entirety� After the transaction has
either committed or aborted� the database will be in a consistent state according to� e�g�� primary key
constraints� referential integrity constraints� and CHECK statements� The execution of a transaction is
isolated from the execution of other transactions� Finally� the database�state changes caused by the
transaction are made durable�

�

In the transition from snapshot transactions to temporal transactions� the novel aspect is that we apply
special semantics to the timestamp attributes� The three di�erences between snapshot transactions
and temporal transactions are as follows� ��� For snapshot transactions we store modi�cations made to
tuples� for temporal transactions we store in addition when the modi�cations took place� ��� The time
when tuples were modi�ed can be queried in a temporal transaction� ��� In temporal transactions� the
semantics of CURRENT DATE must be consistent with the timestamps stored in the database�

For temporal transactions to be upwards compatible ��� with snapshot transactions and because
temporal transactions are not fundamentally di�erent from snapshot transactions� we want to retain
the ACID properties as correctness criteria� In particular� we wish to retain the view that transactions
logically have no duration �i�e�� that they appear to execute instantaneously� and that this execution
corresponds to a serial execution in commit order� The transaction timestamp should be consistent
both with the commit order and with the clock time when the transaction committed�

One might assume that as a DBMS has the necessary mechanisms for providing the ACID properties
for snapshot transactions� the DBMS will automatically also retain the ACID properties for temporal
transactions� However� we will show that the timestamp attributes have to be handled carefully to
avoid violating the ACID properties�

����� Problems Occuring in Temporal Transactions

To motivate the need for additional requirements to temporal transactions� we illustrate the new prob�
lems that may occur in temporal transactions by Table � and the example in Figure �� For convenience�
all timestamps on the �gure are dates during the month of January� ����� and we make the transac�
tions arti�cially long to emphasize the semantic problems that may occur� Note that the problems we
illustrate may occur in DBMSs using two�phase locking�

Although our emphasis is on database modi�cation statements� we occasionally need the ability to
observe the contents of the database being modi�ed� For this purpose� we use the SQL��� query given
below� denoted Q�t�� that retrieves the snapshot state of Table � �the Emp table� as of a time instant t�

SELECT Name
 Dept

FROM Emp

WHERE V�Begin �� t AND t � V�End AND

T�Start �� t AND t � T�Stop

Above the time�line in Figure �� we show the contents of the Emp table on day � for Bob and
Jim� Bob is with the Outdoor department in the period ����������� � ����������� and Jim is with
the Toy department in the period ����������� � ������������ Below the time�line we have shown two
transactions� T� and T�� On days � and ��� T� updates Bob to be with the Toy department and updates
Jim to be with the Outdoor department� respectively� Further� T� retrieves the current state of the
database� using Q�t� on day ��� On day �� T� updates Jim to be with the Sports department� T� starts
on day � and commits on day ��� T� starts on day � and commits two days later� Hence� T� starts after
T� starts and commits before T� commits�

First consider only transaction T� in Figure � and assume that the statements are evaluated using
the translations outlined in Table � and the obvious approach of using CURRENT DATE for the variables
now and start value and the maximum value of the time domain for nobind now and until changed �in
SQL���� this is ������������ The following two problems may occur�

The �rst problem is that a query may see that the actual executions of transactions have durations
in time� This makes it possible to perform a timeslice to an intra�transaction state obtaining a result
that may violate the consistency requirements of the database� As an example� Bob and Jim exchanged
departments during T�� however� when we are using CURRENT DATE for now � Q��� executed in a separate
transaction at day �� is able to detect that Bob and Jim are with the same department� This is due
to �Bob� Toy� having a V�Begin of January � and �Jim� Toy� having a V�End of January ��� clearly
missing our goal of transactions appearing to execute instantaneously�

�

1T

T2

Update
(Jim, Sports)

Update
(Bob, Toy)

Update
(Jim, Outdoor)

����������

�� ����

�� ��

Emp

1110 12 13 145 6 8 94 7

10 11 12

Time3

4 6

7 8 9

Q(11)

(Jim, Toy)

Figure �� Problems Occuring in Temporal Transactions

The second problem is that a query� executed twice in a transaction and with no intermediate
modi�cations� may return di�erent results� Returning di�erent results is similar to a non�repeatable
read ����� which violates the isolation of transactions� As an example using Table �� the execution of
Q�CURRENT DATE� in a separate transaction on day �� would not include Jill in its result set� however
the execution of Q�CURRENT DATE� on day �� in the same transaction will return Jill in its result set�
because Jill is recorded being in the Sports department in the period ����������� � ������������ Again�
this breaks the logical illusion of the transaction being instantaneous�

The two problems mentioned above can be solved by using a single �xed value for now � start value�
and CURRENT DATE within a transaction� Assume we use the start times of the transactions and consider
transactions T� and T� in Figure �� While our new approach solves the �rst two problems� it also
introduces two new problems�

The �rst problem is that the outcome of temporal transactions is inconsistent with the outcome
for equivalent SQL��� transactions� This violates temporal upwards compatibility ���� which requires
that nontemporal transactions and queries should return the same results when applied to tables with
temporal support as when applied to non�temporal tables� As an example� Q���� in T� will return the
two tuples �Bob� Toy� and �Jim� Sports�� whereas the equivalent �nontemporal� SQL��� transaction
will result in �Bob� Toy� and �Jim� Outdoors�� To understand why this occurs� look at the content of
the Emp table when T� is ready to make the update at day ��� The content of the Emp table for Bob and
Jim is shown in Table �� In this table� only two current tuples are currently valid� �Bob� Toy� �tuple ��
and �Jim� Sports� �tuple ���

Name Dept V�Begin V�End T�Start T�Stop

Bob Outdoor ���������� ���������� ���������� ����������

Jim Toy ���������� ���������� ���������� ����������

Bob Outdoor ���������� ���������� ���������� until changed

Bob Toy ���������� nobind now ���������� until changed

Jim Toy ���������� ���������� ���������� ����������

Jim Sports ���������� nobind now ���������� until changed

Table �� Part of Table Emp on Day �� before the Update of Jim in T�

The update at day �� in transaction T� should update the last tuple in Table �� because this is the
tuple with current and currently valid information for Jim� However� we are using the start time of a

�

Because transaction T� is executed during T�� the predicate for a translated delete �the fourth tuple in
Table �� will fail on the last tuple in Table � because day � is not between the values of V�Begin �day
�� and V�End �nobind now �� Recall that an update is a combination of a delete and an insert�

The second problem using the start time for now is what may be termed history correction� which
undermines the accountability of a temporal database� As an example the execution of Q��� at day � in
a separate transaction will return �Bob� Outdoor� and �Jim� Toy�� because T� had not yet committed�
However� the execution of Q��� at day �� in another separate transaction will return �Bob� Toy� and
�Jim� Toy��

To solve the two problems using the start�time of transactions for now � we can extend the WHERE

clauses for the delete in the fourth row of Table � to include a check of whether the V�End attribute
is equal to nobind now � The predicate for the valid�time dimension is thus extended from �V�Begin �

now AND now � V�End
 to ��V�Begin � now AND �now � V�End OR V�End � nobind now�
� All
prior SQL��� statements of the transaction are guaranteed not a�ect tuples with V�End � nobind now �
With this extension� the outcome of T� and T� is as shown in Table ��

Name Dept V�Begin V�End T�Start T�Stop

Bob Outdoor ���������� ���������� ���������� ����������

Jim Toy ���������� ���������� ���������� ����������

Bob Outdoor ���������� ���������� ���������� until changed

Bob Toy ���������� nobind now ���������� until changed

Jim Toy ���������� ���������� ���������� ����������

Jim Sports ���������� nobind now ���������� ����������

Jim Sports ���������� ���������� ���������� until changed

Jim Outdoor ���������� nobind now ���������� until changed

Table �� Part of Table Emp after the Execution of T�

Query Q���� in transaction T� now returns the same result as the equivalent SQL��� transaction�
Further� we no longer see Bob and Jim in the same department when executing Q��� at day �� in a
separate transaction� However� this approach introduces yet another problem� the start time of a period
recorded in a temporal table can be after the stop time� This is obviously a violation of the properties
of a period� The new problem is shown in the sixth and seventh tupls in Table � that shows the result
after executing T� and T� from Figure � with the predicate changed for the valid�time dimension�

The fundamental problem of using the start time of a transaction for now is retroactive modi�cations
of exposed tuples� That is� a transaction with start time ta can modify a tuple also modi�ed by a
transaction with start time tb� and tb � ta� The problem was illustrated by transactions T� and T� in
Figure �� These both update the tuple for Jim� T� starts at day � and T� starts at day �� However� T�
modi�es and commits before T� modi�es Jim� causing the problems described above�

To avoid the problems associated with using the start time for now � we will �nally use the commit
times of the transactions as their values for now and for CURRENT DATE� When the value of either is
needed� we postpone applying the value until the transaction is ready to commit� This approach solves
all of the above problems� but again introduces a new problem� We cannot return a result of Q����
in transaction T� because the we do not know the value for now for the tuples modi�ed during the
transaction until the transaction actually commits at time ���

The central question is� what the semantics should be for the transactions shown in Figure � and
indeed� for any transaction applied to a temporal database� Once the appropriate semantics has been
determined� one can then consider how to implement that semantics in a stratum architecture�

�

Starting with the ACID properties and considering the problems illustrated in the previous section� we
now enumerate a set of requirements for a consistent� logical semantics for temporal transactions�

Requirement � All of the tuples modi�ed by a single transaction must be given the same timestamp
value in the database� Otherwise� we have shown the problem of being able to timeslice and see intra�
transaction states� thus violating the consistency of the database�

Requirement � The value of CURRENT DATE must be �xed within a transaction� If CURRENT DATE

changes in a single transaction� we have shown that the query Q�CURRENT DATE� on Table � on days
�� and �� in the same transaction return di�erent results� Fixing the value of CURRENT DATE in a
transaction is a re�nement of the SQL��� semantics� in which the value of CURRENT DATE is �xed only
within a statement� but may change within a transaction��

Requirement � The start time of a time period assigned to a tuple must be smaller than or equal
to the stop time of the period� Otherwise� we violate the properties of a period�

Requirement � The timestamp used for a transaction should not be after the commit time of the
transaction� Using a timestamp after the commit time� e�g�� by adding two days to the start time of
the transaction and aborting all transactions running for more than two days� results in an inaccuracy
where a tuple is not visible for query Q�CURRENT DATE� from the time the transaction actually commits
until the time chosen as the commit time of the transaction�

Requirement � The result of Q�t�� at time t� should the same as the result of Q�t�� at time t� where
t� � t� and t� � t�� As discussed above� Q��� on day � in a separate transaction will return Bob as
being with the Outdoor department� However� if we use the start time for timestamping� Q��� on day
�� in another transaction will return Bob as being in the Toy department�

Requirement � Temporal transactions must be able to see their own modi�cations� e�g�� after a
transaction has updated a tuple� all explicit attributes of the updated tuple must be visible to a query
immediately following the update in the transaction�

Requirement � A transaction must be able to see the values of timestamp attributes of tuples it had
previously modi�ed�

Requirement 	 The level of concurrency in a database should not be lowered signi�cantly when
temporal support is added� such as by requiring that all transactions be executed sequentially�

Requirement
 The timestamping approach should not restrict the temporal query language� As
an example� a very e�cient timestamping approach that disallows valid�time periods into the future is
not appealing� Such a restriction would reduce the bene�ts of a temporal database�

�While the value is �xed within a statement� which �xed value to use is left entirely to the implementor� General Rule
� of Subclause ��� �datetime value function� of the SQL��� standard states 	If an SQL�statement generally contains
more than one reference to one or more �datetime value function�s� then all such references are e
ectively evaluated
simultaneously� The time of evaluation of the �datetime value function� during the execution of the SQL�statement is
implementation�dependent�� �
�� p�

���

�

and valid�time tables� Unfortunately� some of these requirements are mutually exclusive or may a�ect
each other� We discuss this in the following� but discuss �rst the implications of assuming a stratum
architecture�

We want to implement the timestamping approach using a stratum architecture� The rationale
for building on top of a conventional DBMS is to be able to reuse its functionality� Most of the major
DBMSs use locking as a concurrency control mechanism ���� We therefore assume that two�phase locking
is used to provide the isolation property of the ACID properties� The use of two�phase locking has some
impacts on timestamping in the stratum� as explained next�

Salzberg has shown that to achieve a transaction�consistent view of previous database states �Re�
quirement R��� it is necessary to use the same timestamp for all modi�cations within a transaction
����� The timestamp must be after the time at which all locks have been acquired� Otherwise� the
timestamps will not properly re�ect the serialization order of transactions �����

To make it possible for transactions to see their own modi�cations �Requirement R��� it may be
necessary to associate timestamps with tuples before all locks have been acquired ����� Speci�cally� at
the time of the �rst modi�cation in a transaction� we may not have all locks� but we must associate
a timestamp with the modi�ed tuples because a query follows the modi�cation� However� it is not
possible to get the permanent timestamp�

The two requirements to temporal transactions discussed above� retaining a transaction�consistent
view of previous database states �Requirement R�� and that transactions should be able to see their own
modi�cations �Requirement R��� can be ful�lled by using timestamping after commit ����� However�
timestamping after commit does not make it possible for a temporal transaction to see the values of
timestamp attributes it has previously modi�ed �Requirement R��� Hence� Requirements R� and R�

are mutual exclusive� The �rst requires that we use a value for now after all locks are acquired� whereas
the second requires that we use a value before the �rst lock is acquired�

Retaining transaction�consistent previous database states �Requirement R�� is more important than
seeing permanent timestamps within transactions �Requirement R��� We therefore focus on how to
make previous states transaction�consistent� The unavoidable consequence is that the value of T�Start
or T�Stop for tuples modi�ed by a transaction are not known during the transaction�

The use of the commit time for timestamping modi�cations is dictated by Requirement R� and
a�ects Requirement R
� As an example� had the query Q���� in transaction T� in Figure � selected
the T�Start and T�Stop attributes� this would have to result in an error or a warning� Minimizing the
e�ect on the temporal query language is discussed in Section ��

Note that the use of the commit time for now does not result in signi�cantly lowering the level
of concurrency in a database �Requirement R	�� However� locks must be held slightly longer� this is
examined in Section ����

� A New Approach

We now show how the problem of not knowing the permanent timestamp of modi�ed tuples within
a transaction can be minimized� and� when it occurs� how it can be easily detected� Speci�cally� we
propose using a temporary value for the timestamp and then revisit tuples after all locks have been
acquired� to replace the temporary value with the �now�known� permanent timestamp�

There are three major di�erences between the approach presented here and previous approach to
timestamping ���� ���� First� we consider both valid�time and transaction�time compared to transaction�
time only� Second� we consider an entire temporal query language and do not restrict ourselves to
timeslice ��as�of
� queries� In particular� we consider the display of the temporal attributes� Third�
we assume a stratum architecture� meaning that we reuse the services of� but also cannot change� an
underlying DBMS�

��

it has acquired all locks� and when it commits� The shaded strip indicates the time period� from the
time when all locks have been acquired to the time when the transaction commits� where it is possible
to revisit and update tuples with their permanent timestamp� Tuples modi�ed between the time the
transaction started and the time when all locks were acquired must be revisited�

In a conventional DBMS� typically using strict two phase locking ���� it is not known that all locks
have been acquired until when the transaction�s �nal statement is reached� i�e�� at user�commit� Further�
a stratum has no access to the internals of the underlying DBMS� We therefore postpone reading the
timestamp until after user�commit and then revisit the tuples modi�ed by the transaction� to apply the
permanent timestamp� the transaction then actually commits by having the stratum issue a commit to
the underlying DBMS� This sequence of events is illustrated in Figure �B�

Transaction
Start

User
Commit

System
CommitTransaction

Start Acquired
All Locks

CommitAcquired
All Locks

Time

A

B

Time
and Revisit

Read Timestamp

Read Timestamp
and Revisit

Figure �� A� Temporal Transaction B� Mapping a Temporal Transaction to SQL���

Using the approach shown in Figure �B� we read the timestamp after user�commit� referred to as the
commit time� Because we do not yet know the commit time when a transaction modi�es a tuple� we set
the appropriate transaction�time attribute to a temporary value and store in the tuple the transaction�id
of the transaction modifying it� After user�commit� we read the system clock and save the transaction�id
and the timestamp in a CommitTime table� which has the schema �TID INTEGER
 Commit�Time DATE��
We subsequently revisit all tuples modi�ed by the transaction and apply the timestamp stored in the
CommitTime table� We remove the transaction�ids from tuples and delete the entry in the CommitTime

table� This extra step is similar in some ways to the revisit step in Postgres ����� We term our approach
Timestamping after Commit with Revisitation�

The use of timestamping after commit with revisitation adds two additional requirements to tem�
poral transactions� First� timestamps that eventually are identical �i�e�� are associated with tuples
modi�ed by the same transaction� must not appear temporarily to be di�erent� Otherwise� the wrong
result will be returned when timestamps are compared� Second� the e�ect of temporal modi�cations
within a transaction should be easily understandable to the user writing the transaction�

The speci�cs of how to implement the timestamping after commit with revisitation in a stratum
is discussed in detail in the next two sections� First� we discuss timestamping the transaction�time
dimension� then examine the consequences of introducing also the valid�time dimension�

� Transaction Timestamping

In this section we describe how timestamping in a transaction�time table can be achieved� Where there
are obvious choices� we identify a particular approach� Where there are several possibilities� we list

��

timestamping�

We �rst give an example that raises four design issues with respect to transaction timestamping�
The issues are discussed in turn� thus providing the details of how to implement timestamping after
commit for transaction time�

��� An Example

As an example of timestamping a transaction�time table� consider the Emp table from before that stores
the names and departments of employees� To create Emp as a transaction�time table� we issue the tempo�
ral statement CREATE TABLE Emp �Name VARCHAR��
�
 Dept VARCHAR��
�� AS TRANSACTIONTIME��
As three separate transactions� we issue an insertion� an update� and an update and a query� as indicated
in Figure �� The modi�cations are expressed in plain SQL���� the temporal semantics automatically
supplies values for the tuple timestamps� as discussed informally in Section ��

�� on �����
��
��

INSERT INTO Emp VALUES �	Joe	
 	Shoe	�� COMMIT�

�� on �����
�����

UPDATE Emp SET Dept � 	Sports	 WHERE Name � 	Joe	� COMMIT�

�� on �����
�����

UPDATE Emp SET Dept � 	Outdoor	 WHERE Name � 	Joe	�

SELECT Name
 Dept
 T�Start
 T�Stop
 FROM Emp� COMMIT�

Figure �� Using the Transaction�Time Table Emp

Table � shows the Emp table after the three transactions commit� As can be seen from Table � we
add two time attributes� T�Start and T�Stop� The time attributes are called implicit attributes� and
Name and Dept are called explicit attributes� The implicit attributes capture the time evolution of the
table� We emphasize that Emp is a transaction�time table� and hence captures the state stored in the
database over time�

Name Dept T�Start T�Stop

Joe Shoe �����
��
� �����
����

Joe Sports �����
���� �����
����

Joe Outdoor �����
���� until changed

Table �� The Transaction�Time Table� Emp

Table � shows how temporal statements are mapped to SQL��� statements by the stratum� This
table is a simpli�cation of Table �� considering only transaction time and utilizing timestamping af�
ter commit with revisitation� For simplicity� we assume that all explicit attributes occur in modi��
cation statements� When we insert a tuple� it is timestamped with the period �temporary value �

until changed�� A deletion of a tuple is mapped to an update of the T�Stop attribute of the tuple to
temporary value� A tuple quali�es for deletion if it satis�es Predicate and is current� An update� not
shown in Table �� is implemented as a temporal delete of the old tuple followed by a temporal insert
of the new tuple� We do not show the mapping of insertions and deletions with user�supplied times
because such statements are permitted only for tables with valid�time support�

When a user commits� we record the transaction�id and CURRENT DATE in the CommitTime table�
All tuples modi�ed by the transaction are then revisited� Tuples inserted by the transaction have the

�Again� the details of the temporal extensions are not important� We use a particular syntax ���� only to provide a
speci�c example for expository purposes�

��

INSERT INTO Emp VALUES INSERT INTO Emp VALUES

�new name� new dept� �new name� new dept� temporary value� until changed�

DELETE FROM Emp UPDATE Emp SET T�Stop � temporary value

WHERE Predicate WHERE Predicate AND T�Stop � until changed

COMMIT c � CURRENT DATE	

INSERT INTO CommitTime VALUES �transaction�id� c�	

UPDATE Emp SET T�Start � c

WHERE tuple inserted by transaction�id	

UPDATE Emp SET T�Stop � c

WHERE tuple deleted by transaction�id	

DELETE FROM CommitTime WHERE TID � transaction�id	

COMMIT

Table �� Mapping Statements on Transaction�Time Tables into Equivalent SQL��� Statements

T�Start attribute updated to the commit time of the transaction� Similarly� tuples deleted by the
transaction have their T�Stop attribute updated� For the two UPDATE statements� the WHERE clause is
deliberately vague� how to identify tuples modi�ed by a transaction is described in Section �� After
cleaning up the CommitTime table� the transaction actually commits� If the modi�cation statements in
Figure � are translated as indicated in Table �� the result is Table ��

Studying this example raises four questions� which we address in turn in the following sections�

� What is the temporary value of the transaction�time attributes for tuples modi�ed within a trans�
action� As an example� the selection in Figure � is executed before the transaction is committed�
The T�Stop attribute of the second tuple and the T�Start attribute of the third tuple of Table �
will then have a temporary value� Which value should be displayed for these attributes�

� When a transaction commits� the modi�ed tuples must be revisited� In a multi�user system� how
do we guarantee that tuples are updated with the appropriate commit time during the revisit
phase�

� How should until changed be represented� e�g�� in the SELECT in Figure ��

� Must modi�ed tuples be revisited before the transaction actually commits�

��� Finding a Temporary Timestamp Value

If tuples are to be timestamped with the commit time� tuple modi�cation must be deferred until
the transaction commits ����� rendering it impossible for a transaction to see its own modi�cations�
Timestamping tuples with a temporary value before the commit time makes it possible for a transaction
to see its own modi�cations�

Permanent transaction timestamps are �rst applied after user commit� A potential problem therefore
occurs when a transaction �rst modi�es the database and then queries it� referring to the transaction
timestamps� For example� this problem occurs in the last transaction in Figure �� In general� many
temporal queries may refer to the tuples� timestamps� There are several possible responses to this
situation� ��� We can disallow queries that access the timestamps� ��� We can treat it as a semantic
error when a transaction modi�es a tuple and subsequently queries the transaction time of that tuple� ���
We can warn the user during query analysis when a statement referencing a transaction time attribute
is encountered after a modi�cation statement� ��� We can simply return the temporary value stored�

Disallowing references to timestamps restricts the query language� which we prefer not doing �cf� re�
quirement R
�� Simply returning the temporary value can be a great surprise to users and may lead to

��

indeed be surprised that the tuple appeared to be inserted in � A�D���� This leaves us with the choice of
making it a semantic error or issuing a warning� We �nd the warning more appropriate because allowing
reference to transaction time after modi�cations within the same transaction is then a decision made
by the user� rather than by the system� The warning is of the form� the transaction times displayed
may change after the transaction commits�

The temporary value must ful�ll two requirements� First� it must make the tuple qualify for the
current transaction�time state when the transaction�time attributes are referenced in a WHERE clause�
Second� it must be a sensible value to return when the transaction�time attributes are used in a SELECT

clause� The possible choices for the temporary value are as follows�

� Use the start time of the transaction�

� Use the time when the temporary value is �rst needed� e�g�� the time of the �rst modi�cation�

� Use multiple values within a transaction� e�g�� CURRENT DATE�

The �rst two alternatives will make the modi�ed tuple qualify for the current state and are sensible
values to display to the user� along with a warning that the values change when the transaction commits�
We rule out using multiple values of two reasons� First� as discussed in Section �� this can lead to non�
repeatable reads when the same query is executed twice in a transaction� e�g�� displaying the timestamps
of a tuple inserted by the transaction� Second� it makes tuples temporarily have di�erent timestamps
values for timestamps that eventually get the same value� which we do not allow �cf� requirement R�
and the discussion in Section ���

��� Associating Transaction�ids With Tuples

We use a transaction�id when revisiting tuples to identify the tuples being modi�ed� There are several
ways to associate a transaction�id with tuples� First� we can store the transaction�ids directly in the
tuples� In such an approach� the stratum adds an extra attribute when it passes a CREATE TABLE

statement to the underlying DBMS� Storing the transactions�ids in the tuples can be done in two ways�
in an extra attribute or encoded in the timestamp attributes themselves�

Using an extra attribute is straightforward� we simply store the transaction�id in this attribute�
Postgres uses this approach ����� In contrast� storing the transaction�id in a transaction�time attribute
requires type conversion� because the domain of transaction�time attributes di�ers from the domain of
transaction�ids �typically TIMESTAMP versus INTEGER�� Collision between the encoded transaction�ids
and actual timestamps can be avoided because transaction timestamps are larger than the time when
the database was created� Thus the transaction�ids can be relative to the smallest timestamp �typically
������������ the �rst transaction�id is mapped to the smallest value in the time domain� the second
transaction�id is mapped to the second smallest value in the time domain� and so on� When storing the
transaction�ids in the transaction�time attributes� we must in addition store the temporary value for
the tuple in an auxiliary data structure�

The choice of using an extra attribute versus converting transaction�ids in order to associate a
transaction�id within tuples represents a space�time trade�o�� The conversion may be useful� but is not
very elegant in SQL��� where the conversion between INTEGER and TIMESTAMP is via an INTERVAL �����
This means we �rst have to convert a transaction�id to an INTERVAL and next have to add the interval
to the smallest value in the time domain� This manipulation would be done in the �rst and second
rows of Table � before the insert and update in the second column� A reverse� two�step expression is
needed to decode a transaction�id again when identifying the tuples to update in the second column of
the third row in Table ��

As another alternative� we may store the transaction�ids separately from the tuples� Here� the
stratum de�nes for each explicit table a new table that stores the tuple�id� the transaction�id� and

��

tables must be updated for each modi�cation� compared with one table when storing the transaction�ids
directly in the tuples�

��� Representation of until changed

Another and separate issue is the representation of until changed � All tuples not logically deleted
are timestamped with until changed in the T�Stop attribute as shown in Table �� The value for
until changed cannot be between the time the database was created and the current time� using a
value in the near future is also not a safe option� These representations are ambiguous because we even�
tually will not be able to distinguish until changed from the value with which it is represented� Even
avoiding these possibilities� several values are still available for representing until changed � Speci�cally�
three possible values remain�

� Any time before the database was created�

� The largest value in the domain ����������� in SQL�����

� The value NULL�

Using a value before the database was created implies that the transaction�time stop value may
be smaller than the transaction�time start value� which we do not allows �cf� requirement R��� The
requirement can be ful�lled by using the largest value in the domain� The last alternative� using
NULL for until changed � is also possible because the transaction�time stop cannot be NULL� we can thus
�reuse
 NULL without overloading it� Further� NULL often requires less space in a database than other
timestamps�

��� Strategies for Revisiting Tuples

Yet another issue is when to update temporary timestamps to the permanent commit times� or to
be speci�c� when to execute the two updates and the delete for the translated commit statement in
Figure �� We prefer �exibility in scheduling these database modi�cations�

Because revisiting tuples adds to the system load� to be discussed further in Section ���� we �rst
identify which modi�cations and queries need permanent timestamps� Second� we explore di�erent
approaches for updating the temporary timestamps to the permanent values� the purpose being to �nd
the most e�cient approach�

In Section ���� we described a scenario where the temporary values of the transaction�time attributes
are updated to the commit time right after user�commit� Examining which modi�cations and queries
that need to know the permanent transaction timestamps� we see that no modi�cations and queries
on the current state depend on the permanent transaction timestamps� the current states are the
tuples with until changed in the T�Stop attribute� Only modi�cations and queries on previous states
depend on the permanent transaction timestamps for their correct execution� As queries on previous
states are often syntactically identi�able �e�g�� ��� ����� syntactic analysis can decide when permanent
transaction timestamps are required for reasons of correctness of query processing� As an example�
selecting all tuples �with their transaction�timestamps� can be expressed as TRANSACTIONTIME SELECT

� FROM Emp in an SQL� proposal ����� Selecting the current transaction�time state �without transaction�
timestamps� is expressed simply as SELECT � FROM Emp� The keyword TRANSACTIONTIME makes it
possible to determine when correct� permanent timestamps are needed and not needed�

��

to the revisiting of tuples to apply the permanent timestamping�

� Eager� For each transaction� the permanent timestamp is applied immediately� at user�commit�

� Low�system�usage� On low system load� e�g�� during lunch breaks or late at night� the tuples are
revisited�

� Piggy�backing� On pages brought into the bu�er� check if any tuples need to be revisited� and
then do so�

� Explicitly scheduled revisiting� Revisit tuples at times of expected low system load� e�g�� at � a�m�
every night�

� Lazy� Revisit only tuples with the temporary timestamps when a query refers to the timestamps
and the permanent values are needed to process the query correctly�

� Never� If a query needs the permanent timestamp of a tuple� extract it from the CommitTime

table�

The eager approach was implicitly assumed in Section ���� It can be implemented by using after�
triggers� The approach is attractive if timestamps are often referenced in queries and modi�cations�
However� the approach is less cost�e�cient if timestamps are rarely referenced�

The �low�system�usage
 approach is used in Postgres ����� it is appropriate for an integrated ar�
chitecture� However� the approach is not well�suited in a stratum because it requires scheduling of an
asynchronous process based on the system load� It is hard to get this �ne�level degree of control of the
underlying DBMS from the stratum�

The �piggy�backing
 approach is also not possible in a stratum� as the movement of pages in and
out of the bu�er is transparent to and cannot be controlled by the stratum�

Explicit scheduling of the revisit is a good choice if there are only current�state queries� The approach
is not su�cient if there is a mixture of current�state and past�state queries within a transaction� Such
queries may not execute correctly if a revisit has not yet occurred� because queries assume that the
permanent timestamp values are already in place for committed tuples� The approach will have to be
used in combination with the lazy approach� or the never approach� both of which are now described�

The lazy approach takes advantage of the fact that queries requiring permanent transaction times�
tamps can be identi�ed by the stratum� which will then �rst update the transaction timestamps� This
may be very cost�e�cient if few queries depend on the permanent transaction timestamps for their
correctness�

The never approach does not apply the timestamps from the CommitTime table to the temporal tables
at all� but rather is applicable only if the timestamps are retained in a separate table� In the never
approach� the CommitTime table is joined with the temporal table when referring to the transaction�time
attributes� This will be expensive for large temporal tables� and is mostly useful if the transaction�time
attributes are rarely referenced� say no more than two or three times in the lifetime of a tuple �����

For the user�speci�ed and lazy approaches to revisiting tuples� the revisiting can be done with
di�erent granularities� We see the following granularities�

� On a per�tuple basis�

� Up to a certain time�

� On a per�table basis�

� On a per�database basis�

��

to be timestamped� and do so if needed� The drawback of this approach is that it is not general� For
example� it is not always possible to identify which tuples qualify for a query without �rst timestamping
them� This happens if a query compares a timestamp to a time constant� as in ��nd all employees
inserted after October �� �����
 SELECT � FROM Emp WHERE T�Start �� 	������
�
�	�

With the up�to�a�certain�time approach we look at the query� If it implies comparisons of the
transaction time of tuples to time constants� we can �nd the largest time constant in the query and
revisit tuples that were inserted up to that point in time in all tables used by the query� This approach is
also not general� For example� a query may reference transaction time without containing a comparison
with a time constant� The following query compares the transaction�time attribute of di�erent tuples�
SELECT � FROM Emp E�
 E� WHERE E��T�Stop � E��T�Stop�

With the per�table approach� we bring the tables referred to by the query up�to�date with respect to
transaction timestamping before the query is executed� This is a general approach� However� it has the
drawback of yielding non�uniform response times if the tables used in some queries have been updated
frequently� but have not been revisited for a long time�

The per�database approach is similar to the per�table approach� except that it brings all tables
up�to�date when a query references transaction time� This is also a general approach� but with a more
non�uniform response time than the per�table approach� A query accessing but one table would be
deferred until all tables are updated� the same query evaluated shortly thereafter would be much faster�
This seemingly randomness in execution times is an undesirable system property�

� Adding Valid Timestamping

In this section we discuss how the valid�time dimension is timestamped� The valid�time dimension is
di�erent from the transaction�time dimension in that the valid�time periods associated with tuples may
be user�supplied� Further� for the valid�time dimension an additional special valid�time value is de�ned�
nobind now ����

��� An Example

We describe the general idea of adding valid time by rede�ning the Emp table from Section ��� to be a
bitemporal table� The example will raise two questions on how to timestamp the valid�time dimension�
which we then address�

To change Emp to a bitemporal table we issue the temporal statement ���� ALTER TABLE Emp ADD

VALIDTIME PERIOD�DATE� on the �st of February� The tuples already in the table are timestamped
with the valid�time period ����������� � nobind now�� where nobind now has a semantics similar to
until changed for the transaction�time dimension and means �until we learn more�

We also consider a new type of modi�cation� which is a variation on that already provided by
SQL���� in this augmented statement� the user speci�es the valid�time extent of the modi�cation�

VALIDTIME PERIOD 	������
��
� � �����
��
��	

UPDATE Emp

SET Dept � 	Toy	

WHERE Name � 	Joe	

This update refelects that Joe was in the Toy department during the month of February� ����� We
allow the temporal extent to be speci�ed for all three types of modi�cation statements�

To add more tuples to the bitemporal Emp table� we execute the temporal statements in Figure �� On
the �st of February� we insert Kim in the Sports department� On the �nd of February� we insert that Jill
will be in the Sports department in the period ����������� � ������������ In the SQL� proposal� this is
indicated by pre�xing a query with VALIDTIME �period specification�� On the ��th of February�

��

on the ��th of February� we record that John has and always will be in the Toy department�

�� on �����
��
��

INSERT INTO Emp VALUES �	Kim	
 	Sports	�� COMMIT�

�� on �����
��
��

VALIDTIME PERIOD ������
��
� � �����
�����

INSERT INTO Emp VALUES �	Jill	
 	Sports	�� COMMIT�

�� on �����
�����

UPDATE Emp SET Dept � 	Toy	 WHERE Name � 	Kim	� COMMIT�

�� on �����
�����

DELETE FROM Emp WHERE NAME � 	Kim	� COMMIT�

�� on �����
�����

VALIDTIME PERIOD �

��
��
� � �����������

INSERT INTO Emp VALUES�	John	
 	Toy	�� COMMIT�

Figure �� Modifying the Bitemporal Table� Emp

Table � shows the Emp table resulting from the execution of these transactions� As can be seen� we
include four special attributes in bitemporal tables� V�Begin and V�End for valid time� and T�Start

and T�Stop for transaction time�

Name Dept V�Begin V�End T�Start T�Stop

Joe Shoe ���������� nobind now ���������� ����������

Joe Sports ���������� nobind now ���������� ����������

Joe Outdoor ���������� nobind now ���������� until changed

Kim Sports ���������� nobind now ���������� ����������

Jill Sports ���������� ���������� ���������� until changed

Kim Sports ���������� ���������� ���������� until changed

Kim Toy ���������� nobind now ���������� ����������

Kim Toy ���������� ���������� ���������� until changed

John Toy ���������� ���������� ���������� until changed

Table �� The Bitemporal Table� Emp

We next turn to how the stratum converts modi�cations in a temporal query language on bitemporal
tables to SQL��� modi�cations on SQL��� tables� The conversion is shown in Table ��

When we insert a tuple without a user�speci�ed valid�time period� it is timestamped with the
period �now � nobind now� in the valid�time dimension� This states that the tuple is valid from the
current time until we learn more� In the transaction�time dimension� it is timestamped with the period
�temporary value � until changed�� For an insertion with a user�speci�ed valid�time period� the user�
speci�ed V�Begin and V�End attributes are simply inserted into the database� The transaction�time
dimension is timestamped as before�

Deletions of tuples are mapped to logical deletions of currently valid tuples� A tuple is logically
deleted by updating the T�Stop attribute to temporary value� The update is followed by an insertion
that records the new belief that the tuple was valid in the modeled reality from the old V�Begin to the
current�time �now �� All explicit attribute values are copied�

For a delete statement with a user�speci�ed valid�time period� two insertions are needed� one for the
portion of the original tuple�s valid�time that is before the user�speci�ed period� and one for the portion
after the user�speci�ed period� The last statement� the update� terminates the original tuple�

��

Temporal statement SQL��� statement	s

INSERT INTO Emp VALUES INSERT INTO Emp VALUES �new name� new dept�

�new name� new dept� now� nobind now�

temporary value� until changed�

VALIDTIME PERIOD �Start � Stop� INSERT INTO Emp VALUES �new name� new dept�

INSERT INTO Emp VALUES Start� Stop� start value� until changed�

�new name� new dept�

DELETE FROM Emp WHERE Predicate INSERT INTO Emp SELECT Name� Dept�

V�Begin� now� temporary value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � now AND now � V�End	

UPDATE Emp SET T�Stop � temporary value

WHERE Predicate AND T�Stop � until changed AND

V�Begin � now AND now � V�End

VALIDTIME PERIOD �Start � Stop� INSERT INTO Emp SELECT Name� Dept�

DELETE FROM Emp WHERE Predicate V�Begin� Start� start value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Start AND Start � V�End	

INSERT INTO Emp SELECT A�� � � �� An�

Stop� V�End� start value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Stop AND Stop � V�End	

UPDATE Emp SET T�Stop � stop value

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Stop AND Start � V�End

COMMIT c � CURRENT DATE	

INSERT INTO Time VALUES �transaction�id� c�

UPDATE Emp SET T�Start � c

WHERE tuple inserted by transaction�id	

UPDATE Emp SET T�Stop � c

WHERE tuple inserted by transaction�id	

DELETE FROM Time WHERE TID � transaction�id	

COMMIT

Table �� Mapping Statements on Bitemporal Tables into Equivalent SQL��� Statements

��

delete of the old values followed by a temporal insert of the new values� Similarly� an update with a
user�speci�ed valid�time period is a delete with a user�speci�ed valid�time period followed by an insert
with a user�speci�ed valid�time period�

When the user enters commit �the �fth row of Table ��� the appropriate T�Start and T�Stop

attributes are updated� similarly to what occurred in Table ��

If the statements described in Table � are applied to the transactions in Figure �� Table � results�

We now address in turn three questions with respect to timestamping the valid�time dimension� How
is now represented� what should CURRENT DATE be mapped to� and how is nobind now represented�

��� Handling now

Section � illustrated that a single value for now must be used throughout a transaction in order to
avoid violating the consistency property� The question is� then� which value to use for now � We see the
following possibilities�

� The start time of the transaction�

� The time of the �rst modi�cation in the transaction�

� The commit time of the transaction�

It has been shown that using the start time of the transaction can lead to the current time appearing
to move backwards ����� It has also been shown that using the time of the �rst update can cause a
violation of the isolation property� even when two�phase locking is used ����� Both problems occur
because neither the start times nor the times of the �rst updates in transactions re�ect the commit
order of the transactions�

It is also the case that using the start time of the transaction can result in the violation of the ACID
properties� because the transactions are no longer serializable� Consider Figure � again� Transaction T�
starts on the �th of January and commits on the ��th of January� On the ��th of January� T� updates
Jim to be in the Outdoor department� Transaction T� starts after T�� on the �th of January� and
commits before T�� on the �th of January� On the �th of February� T� updates Jim to be in the Sports
department� Assume Jim was inserted in the Shoe department on the �nd of January and we are using
the start time of the transaction for now � The tuples relating to Jim after the execution of T� and T�
are then as shown in Table ��

Name Dept V�Begin V�End T�Start T�Stop

Jim Toy ���������� ���������� ���������� until changed

Jim Toy ���������� ���������� ���������� ����������

Jim Sports ���������� nobind now ���������� ����������

Jim Sports ���������� ���������� ���������� until changed

Jim Outdoor ���������� nobind now ���������� until changed

Table �� Tuples for Jim in the Bitemporal Table� Emp

First� notice that the fourth tuple is timestamped with the valid�time period ����������� � �����
������� the value of V�Begin is larger than the value of V�End� Second� notice that the second and the
�fth tuples are both in the current transaction�time state �the current time is ����������� and have
overlapping valid�time periods� ����������� � ����������� and ����������� � nobind now�� respectively�
even though Figure � shows that Jim was only in a single department at any point in time�

��

transactions� In a serial execution� the two problems discussed above cannot occur because the start
times will re�ect the commit order of the transactions�

Because using the start time as well as using the time of the �rst modi�cation for now can lead
to violation of the isolation property of transactions� we elect to use the commit time for now � For
transactions to be able to see their own modi�cations to the valid�time dimension� modi�ed tuples are
given a temporary value and are revisited� to update the temporary value� after user commit� We use
the same temporary value for now as for until changed �

Using the commit time eliminates both the problem of current time moving backwards and the
violation of the isolation property� The drawback is that modi�ed tuples must be revisited� which
requires extra resources� However� in the case of bitemporal tables� the tuples must be revisited anyhow�
to apply the permanent transaction�time timestamps� Thus� the number of tuples that are to be revisited
is not increased�

However� for valid time revisitation raises a new problem� Consider the example in Figure ��
This transaction inserts James in the Shoe department and then deletes James from the the Sports

�� on �����
���
�

INSERT INTO Emp VALUES �	James	
 	Shoe	��

VALIDTIME PERIOD ������
��
� � �����
�����

DELETE FROM Emp WHERE Name � 	James	�

COMMIT�

Figure �� A Race Condition in a Delete Transaction

department in the period ����������� � ������������ This leads to a race condition� If the transaction
commits on the ��th of February� the delete will have an e�ect on the inserted tuple� If the clock ticks
and the transaction actually commits on the ��st of February� the update has no e�ect on the inserted
tuple because the valid�time period associated with the insertion no longer overlaps with the valid�time
period speci�ed in the delete� When the delete is actually executed� the commit time is not known� and
we cannot determine what to do�

The general problem is illustrated in Figure �� Here� the circles ��lled or non��lled� represent
timestamp values given explicitly in a modi�cation statement� and �� represents the temporary value
of now used in modi�cations� The sequence of modi�cations within a transaction that can cause the
problem is an insertion �or an update� of one or more tuples using now �indicated by the two �a
�s in
Figure ��� followed by a deletion �or an update� of the same tuples� using an explicitly given period
that overlaps with the temporary value of now �indicated by the two �b
�s in Figure ���

Time

T2T1

a

b

a

bDel

Ins Ins

Del

Figure �� The General Problem Using the Commit Time for now

Syntactic analysis may be applied to detect when the problem may occur� We have to store the
smallest explicit timestamp value for any period �now � explicit timestamp� within a transaction� If
the smallest explicit timestamp value is smaller than the commit time� the problem is present� We have
not found any way of solving the problem and getting a clear semantics� Therefore� when this situation
occurs� the transaction is declared illegal and is rolled back�

��

The presence of CURRENT DATE �and CURRENT TIME and CURRENT TIMESTAMP� in queries and in modi��
cation statements causes some problems� Users expect that this value is identical to teh value of now
that is stored in tuples� yet that latter value is the commit time for the transaction� So� we must map
usages of CURRENT DATE into expressions consistent with the value of now �

We will address the handling of CURRENT DATE in two steps� First� we handle this function in the
context of modi�cations� discussing implications of several alternative approaches� Second� we consider
the function in queries and again discuss implications of various approaches�

����� CURRENT DATE in Modi�cations

A user may specify arbitrary valid�time periods in modi�cation statements� The combination of using
the commit time for both now and CURRENT DATE and the constraint that V�Begin must be smaller
than V�End can cause problems in transactions� as shown in Figure �� Here we use a period constructor�
which takes two SQL��� datetime expressions as arguments�

�� on �����
���
�

VALIDTIME PERIOD �CURRENT�DATE
 DATE 	�����
����	�

INSERT INTO Emp Values �	James	
 	Shoe	��

COMMIT�

Figure �� A Race Condition in an Insert Transaction

The transaction inserts a tuple and timestamps it with the period �now � ������������ This leads
to a race condition� If the transaction commits on the ��th of February� no anomalies occur� However�
if the transaction does not commit before the ��th of February� the V�Begin will be larger than the
V�End value� which is not allowed�

A possible approach to addressing this problem is for the revisit step to remove tuples with erroneous
valid�time periods� However� this does not work because subsequent statements in the transaction might
reference these tuples in the meantime� corrupting the result of the transaction� Instead� we adopt the
solution of the previous section� of identifying the smallest explicit timestamp value for any period �now
� explicit timestamp� within the transaction �here� the explicit timestamp is ������������ If that value
is smaller than the commit time� the transaction is considered illegal and is rolled back�

We next examine the consequences of using a single value for CURRENT DATE and show it impacts
the query rewriting performed in the stratum to retain the semantics of SQL��� queries�

In Figure �� transaction T� inserts Joe in the Shoe Department on the �th of February� On the ��th

of February� T� executes the modi�cation M that deletes all employees in the Shoe Department� DELETE
FROM Emp WHERE Dept � 	Shoe	� Transaction T� inserts Tim in the Shoe Department and transaction
T� inserts Lee in the Shoe department for the period ����������� � ������������ The question is� what
e�ect does M have on the insertions made by T� and T��

The content of the Emp table on the ��th of February� when M is ready to execute� is shown in
Table ��� Remember� T� has not committed yet� which means V�Begin and T�Start of the �rst tuple
have a temporary value� ����������� because this is when the value is �rst needed in T�� To emphasize
this� these temporary values are shown in italics�

T� now executes the modi�cation M � Referring to the delete in Table � and assuming nobind now
has a reasonable value� the �rst tuple is deleted because V�Begin is smaller than or equal to the value
of now � The second tuple has a V�Begin larger than the value of now � However� it must be deleted to
ful�ll the SQL����query requirement� The tuple is inserted by a transaction that commits before the
deletion is applied� The third tuple is also inserted by a transaction that commits before the deletion
is applied� and the tuple is in the current bitemporal state when T� commits� This could indicate that

��

T1

T2

T3

������������������������������
�
�
�
�

�
�
�
�

��

����

�������������
�
�
�

Time

MInsert(Joe, Shoe)

Insert(Tim, Shoe)

Insert(Lee, Shoe, 15, 25)

Figure �� Using a Single Value for CURRENT DATE in Queries

Name Dept� V�Begin V�End T�Start T�Stop

Joe Shoe �����	
�	� nobind now �����	
�	� until changed

Tim Shoe ���������� nobind now ���������� until changed

Lee Shoe ���������� ���������� ���������� until changed

Table ��� The Bitemporal Table Emp at ����������

the third tuple should also be deleted� However� the valid�time period associated with the tuple does
not overlap with the value of now �

The impact of using one value for now in transactions can be summarized as follows� Tuples that
have a V�End value of nobind now will be a�ected by modi�cations in a transaction� even if the value
of now used in the transaction is smaller than the V�Begin attribute values of the tuples� This ensures
that SQL��� like modi�cations on temporal tables have the expected results� For tuples with an explicit
value in V�End� read�level consistency within a transaction is provided�

It is important that the valid�time periods associated with tuples are checked for whether the V�End

is equal to nobind now or the valid�time periods overlap with the value of now used in queries� Doing
just the latter� which may seem su�cient� can violate the requirement of temporal upward compatibility�
stating that SQL��� queries should have the same e�ect on snapshot as on bitemporal tables�

����� CURRENT DATE in Queries

Timestamping after commit with revisitation presents the same problem for the valid�time dimension
as for the transaction�time dimension when the user modi�es the database and then queries it with
explicit reference to valid time� The handling of CURRENT DATE in queries is further complicated by the
user being allowed to insert tuples with valid�time attributes in the future�

There are two approaches for using CURRENT DATE in queries� �a� We can use the same value in
the entire transaction� e�g�� the time when a value of CURRENT DATE is �rst needed� �b� We can permit
the use of di�erent values for CURRENT DATE in di�erent queries in the same transaction� which may be
obtained simply by leaving invocations of CURRENT DATE as are in queries�

When using a single value for CURRENT DATE in queries� we cannot use the same value as for modi��
cation� because this time is the commit time� which is unknown until the transaction actually commits�
Instead assume we use the time when CURRENT DATE is �rst needed� which can be determined syntacti�
cally� and consider the transaction in Figure ���

This transaction starts on the ��th of January and commits on the ��nd of January� The database
includes a tuple recording Jim is in the Shoe department in the period ����������� � ������������
Now assume that query Q�� executed at the ��th of January� asks for all the employees currently in
the Toy department� Q� must use a value for CURRENT DATE and this is the time� it is �rst needed� so
CURRENT DATE will be instantiated to the ��th of January� On the ��th of January� query Q� asks for

��

10 11 12 13 14 15 16 17 18 19 20 Time2221

Q1 Q2

Figure ��� CURRENT DATE in Queries

all the employees currently in the Shoe department� Because we use only one value for CURRENT DATE

in a transaction� we return the ��th of January� and Q� will return that Jim is in the Shoe department�
even though the query is executed at the ��th of January� and we have recorded that Jim is in the Shoe
department only during the period ����������� � ������������

Next� we consider the alternative of using multiple values for CURRENT DATE in queries within a
transaction� For each statement within a query� we retain CURRENT DATE as is� with each invocation
possibly yielding a di�erent value� Consider Figure �� again� This approach evaluates CURRENT DATE

to the ��th of January and the ��th of January in queries Q� and Q�� respectively� This also causes
problems� For example� if Q� and Q� are the same query retrieving all employees currently in the Shoe
department� On the ��th of January� the query will return that Jill is in the Shoe department� and
at the ��th of January� the query will return there are no employees in the Shoe department� Two
identical queries with no intermediate modi�cations within the same transaction should not return
di�erent results� The disappearance of the tuple recording Jill in the Shoe department is similar to
the non�repeatable read problem ���� pp� ���� and constitutes a violation of the isolation property of
transactions� Non�repeatable reads is a multi�user problem in conventional database systems� here� a
non�repeatable read can also appear in a single�user system�

The problems using a single value or multiple values for CURRENT DATE in a transaction are caused
by the possibility of inserting tuples with a valid time into the future� this is not allowed for transaction�
time� We have to choose between disallow insertion of tuples with valid�times into the future or use one
of the approaches mention above�

Disallowing valid�times into the future is a serious restriction on temporal databases� it will make
them useless for many applications such as� e�g�� planing applications� This option is therefore ruled
out� We must then choose to use one value or multiple values for CURRENT DATE in queries� We chose
the former alternative� because using multiple values can cause non�repeatable reads to occur in SQL���
queries on temporal tables�

��� Handling nobind now

As discussed in Section ���� there is also the special value nobind now in the valid�time dimension�
Because this value is not part of the SQL��� timestamp domain� an SQL��� value for representing it
must be identi�ed�

We can use NULL or a value from the time domain� The problem with using NULL for nobind now
is that it is then not possible to store �real
 NULL values in the valid�time dimension� Problems with
picking a value from the time domain are that this restricts the time domain and that we must handle
the representative value specially�

��

This section motivates and presents an overall approach to timestamping the valid�time and transaction�
time dimensions� The proposal is based on two assumptions� We are focusing on the stratum approach
to implement a temporal DBMS� and to be speci�c� we are using Oracle � as the underlying DBMS in
the stratum approach�

For timestamping the transaction�time dimension� we use timestamping after commit with revisi�
tation� For the temporary value of the commit time� we use one value throughout a transaction� We
choose to use the time of the �rst modi�cation statement or the time of the �rst statement that refer�
ences CURRENT DATE� whichever comes �rst� This is the constant value closest to the commit time we
can use within a transaction� For the value of until changed � we choose the largest value in the time
domain� We could also use NULL� However� this may invalidate the use of indexes in Oracle ����

For the valid�time dimension� we use the commit time as the value of now in modi�cations� When
using the commit time� we again need a temporary value for now within the transaction� The temporary
value for now is the same as the temporary value used for transaction time� We also use this value for
CURRENT DATE in queries and modi�cation statements�

Again� because Oracle handles NULL badly in connection with indexes� we do not use NULL as the
value of nobind now � Instead� we use the second largest value in the time domain� as the largest value
in the time domain is commonly used to represent forever � The representations of the special temporal
values can be seen in Table ���

Special Value Representation

nobind now ����������
beginning ����������
forever ����������
until changed ����������

Table ��� Representation of the Special Temporal Values

When the timestamp attributes occur in a SELECT or a WHERE clause� a CASE statement is introduced
to ensure that the special temporal values nobind now and until changed are interpreted correctly and
to ensure that their representations remain hidden from the user� As an example� WHERE V�End �

	�����
���
	 is converted to WHERE CASE WHEN V�End � 	���������
	 THEN CURRENT TIME ELSE

V�End END � 	�����
���
	� This approach is consistent with the recommendations by Cli�ord et
al� ����

In the following three tables� we provide the speci�cs for mapping temporal statements� We use the
Emp table as an example�

Table �� shows the mapping of the CREATE TABLE and INSERT statements� The �rst row shows the
mapping of a CREATE TABLE statement� For a bitemporal table� four attributes are added �as an aside�
more attributes are added in Section ��� The second row shows that at the time of the �rst modi�cation
or the �rst use of CURRENT DATE� we �x the value of temporary value within a transaction� The value
of temporary value is used in the third row� which gives the mapping of an INSERT statement and uses
several of the special temporal values� The fourth row shows the mapping of an INSERT statement with
a user�speci�ed period� The IF statement is used to �nd the smallest explicit timestamp in periods
of the form �now � explicit timestamp� within a transaction� The value smallest explicit timestamp is
used to detect race conditions� as discussed in Section ����

Table �� covers DELETE statements� In the �rst row� a DELETE statement without a user�speci�ed
period is shown� The statement is mapped to an INSERT of a new tuple followed by an UPDATE of the
existing tuple� The last line in the WHERE clauses for the INSERT and UPDATE statements is used to
identify the tuples inserted by other transactions that must be logically deleted to ful�ll the temporal

��

CREATE TABLE Emp �Name VARCHAR����� CREATE TABLE Emp �

Dept VARCHAR����� Name VARCHAR����� Dept VARCHAR�����

AS VALIDTIME PERIOD�DATE� V�Begin DATE� V�End DATE�

AND TRANSACTIONTIME T�Start DATE� T�Stop DATE�

�rst modi�cation or use of CURRENT DATE temporary value � CURRENT DATE

INSERT INTO Emp VALUES INSERT INTO Emp VALUES

�new name� new dept� �new name� new dept�

temporary value� nobind now�

temporary value� until changed�

VALIDTIME PERIOD �Start � Stop� IF �Start is now AND Stop is an explicit timestamp AND

INSERT INTO Emp VALUES smallest explicit timestamp � Stop�

�new name� new dept� smallest explicit timestamp � Stop

INSERT INTO Emp VALUES �new name� new dept�

Start� Stop� temporary value� until changed�

Table ��� Mapping Create Table and Insert Statements on Bitemporal Tables

upwards compatibility requirement� as discussed in Section ������ The second row in the table gives
the mapping of a DELETE statement with a user�speci�ed period� As for insertions with user�speci�ed
periods� the IF statement keeps track �within a transaction� of the smallest explicit timestamp used in
periods of the form �now � explicit timestamp�� Note that the DELETE with a user�speci�ed period may
result in two new tuples being added to the table and a single tuple being updated� This happens if�
for example� the period ��� � ��� is deleted from a tuple timestamped with the valid period ��� � ����

In the implementation used in the performance evaluation presented in Section �� both DELETE

statements in Table �� are accomplished using cursors� This is done for e�ciency reasons� when using
cursors� all tuples to delete can be retrieved by evaluating a single WHERE clause� instead of the two and
three WHERE clauses used in Table ���

Finally� Table �� shows the mapping of transaction start and eager and lazy commit� When a
transaction starts� we initialize the variable smallest explicit timestamp to the maximum value in the
time domain �the variable is local to each transaction�� For both eager and lazy timestamping� the
variable is used to determine if any race conditions occurred� requiring that the transaction be rolled
back� as indicated by the IF statements in Table ���

When a transaction commits and we are using eager timestamping and no race conditions occur� we
�nd the value of now � and all tuples modi�ed by the transaction are revisited� For lazy timestamping�
this is a two�stage process� First� when the transaction commits� the commit time is stored in the table
CommitTime� Second� the revisit step is scheduled in a separate transaction� shown in the fourth row of
Table ��� When the revisit step is executed� all tuples modi�ed since the last revisit are updated with
the permanent timestamps for now by using the commit times stored the CommitTime table� When the
timestamps have been applied� the CommitTime table is cleaned up�

As for the DELETE statement� the COMMIT statements used in the performance study are implemented
using cursors�

The WHERE clauses for the mapping of the COMMIT statements in Table �� are deliberately vague�
This is because two open issues remain� ��� how to associate transaction�id�s with tuples �discussed in
Section ����� and ��� which of the revisiting approaches identi�ed in Section ��� is the most cost�e�cient
and thus should be adopted� We now conduct a performance study resolving these issues�

��

DELETE FROM Emp INSERT INTO Emp SELECT Name� Dept�

WHERE Predicate V�Begin� temporary value� temporary value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

��V�Begin �� temporary value AND temporary value � V�End� OR

�V�Begin �� T�Start AND V�End � nobind now��	

UPDATE Emp SET T�Stop � temporary value

WHERE Predicate AND T�Stop � until changed AND

��V�Begin �� temporary value AND temporary value � V�End� OR

�V�Begin � T�Start AND V�End � nobind now��	

VALIDTIME PERIOD IF �Start is now AND Stop � is an explicit timestamp AND

�Start � Stop� smallest explicit timestamp � Stop�

DELETE FROM Emp smallest explicit timestamp � Stop

WHERE Predicate INSERT INTO Emp SELECT Name� Dept�

V�Begin� Start� temporary value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Start AND Start � V�End	

INSERT INTO Emp SELECT Name� Dept�

Stop� V�End� temporary value� until changed

FROM Emp

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Stop AND Stop � V�End	

UPDATE Emp SET T�Stop � temporary value

WHERE Predicate AND T�Stop � until changed AND

V�Begin � Stop AND Start � V�End	

Table ��� Mapping Delete Statement on Bitemporal Tables

� Performance Evaluation

Section ��� discussed how transaction�ids can be associated with tuples� and in Section ��� we presented
a spectrum of approaches for scheduling the revisiting step� Some of these approaches are viable only
within the DBMS� others apply equally well to situations with applications directly handling time�
varying data or with temporal support being implemented in a stratum� After having stated the
objectives of the performance study and described the experimental setup in Sections ��� and ����
Section ��� proceeds to evaluate the performance of the various approaches to associating transaction�
ids with tuples� We then evaluate the two revisiting approaches anchoring the spectrum� the eager and
lazy approaches� both are well�suited for implementation in a stratum� This is done in Sections ���
and ����

��� Objectives of the Performance Evaluation

We �rst attempt to determine how transaction�ids should be associated with tuples to make revisiting
e�cient� The transaction�ids identify which tuples must be revisited to apply correct� permanent
timestamps� It is therefore essential for the performance of the revisiting step that given a transaction�id�
it is easy to identify exactly which tuples to timestamp� Because the issue of associating transaction�ids
with tuples is orthogonal to the choice of revisiting approach� we simply use the eager approach�

��

start transaction smallest explicit timestamp � ����������

COMMIT 	eager
 now � CURRENT DATE	

IF �smallest explicit timestamp � now� ROLLBACK	

ELSE

UPDATE Emp SET V�Begin � now

WHERE tuple modi�ed by this transaction	

UPDATE Emp SET V�End � now

WHERE tuple modi�ed by this transaction	

UPDATE Emp SET T�Start � now

WHERE tuple modi�ed by this transaction	

UPDATE Emp SET T�Stop � now

WHERE tuple modi�ed by this transaction	

COMMIT	

COMMIT 	lazy
 now � CURRENT DATE	

IF smallest explicit timestamp � now ROLLBACK	

ELSE INSERT INTO CommitTime VALUES �transaction�id� now�	

timestamp table UPDATE Emp SET V�Begin �

SELECT Commit�Time FROM CommitTime WHERE TID � TID modified V�Begin

WHERE V�Begin needs revisiting

UPDATE Emp SET V�End �

SELECT Commit�Time FROM CommitTime WHERE TID � TID modified V�End

WHERE V�End needs revisiting

UPDATE Emp SET T�Start �

SELECT Commit�Time FROM CommitTime WHERE TID � TID modified T�Start

WHERE T�Start needs revisiting

UPDATE Emp SET T�Stop �

SELECT Commit�Time FROM CommitTime WHERE TID � TID modified T�Stop

WHERE T�Stop needs revisiting

DELETE FROM CommitTime	

Table ��� Mapping Start and Commit of Transactions on Bitemporal Tables

With the performance study of revisiting approaches� also presented in this section� we want to
answer the following two questions�

�� For di�erent transaction sizes� which revisiting approach is most cost e�cient� the eager or the
lazy approach�

�� How expensive is the revisiting step compared to the actual execution of the transaction�

The answer to the �rst question is important because it a�ects temporal DBMS implementation
and transaction design� It is more complicated to implement and schedule the revisiting of modi�ed
tuples in the lazy approach� compared to the straightforward revisiting of tuples in the eager approach�
If lazy revisitation does not perform better than eager revisitation� e�g�� by allowing us to postpone the
revisiting step to be done during o� hours� there is no reason to add the extra complexity of the lazy
approach to the temporal DBMS implementation�

Further� the answer to the �rst question is important for the transaction designer to be able to tune
applications� If one revisitation approach is superior for certain transaction sizes and the other approach
is superior for other transaction sizes then for a given transaction size� the designer can determine which
approach is the most cost�e�cient in a particular situation�

The second question is important for transaction performance reasons� Using timestamping after
commit adds the revisiting step to the cost of executing a transaction�

��

in Section �� This architecture is well�suited for the evaluation because we can use an existing commercial
relational DBMS� thus obtaining a realistic picture of transaction performance�

��� Performance Evaluation Setup

We use the Oracle ����� DBMS running on a SUN UltraSparc��� Our test database contains a single
bitemporal table Emp that has two explicit attributes� NameId and DeptId� of type INTEGER� recording
which employees are a�liated with which departments� The four timestamp attributes V BEGIN� V END�
T START� and T STOP capture valid and transaction time�

There are ����� tuples in the current state of the Emp table� this number is constant� We simulate
the update activity of an application over a number of months� For each simulated month� we insert
�!� delete �!� and update ��! of the current state� We run our experiments starting with an ���month
old table� This table contains approximately ������� tuples� which occupy approximately ��MB� Our
page size is �KB� and the bu�er size of the database is ��� MB� The entire current state does not �t in
the bu�er because the table is stored in T�Start order and tuples in the current state can have T�Start

values within the entire transaction�time period ��� months� of the table�

The tests are performed by executing a total of ���� modi�cations as a series of transactions where we
vary the transaction size �m� the number of modi�cations in each transaction�� For the lazy approach�
we also vary the inter�visitation interval � that is� the number �n� of transactions between revisiting
tuples� The elapsed time is measured using Oracle�s DBMS UTILITY�GET TIME function ��� before the
�rst transaction starts and then after each user commit and system commit for the eager approach� For
the lazy approach� we also measure the time before a revisit� As is customary for �non�simulation based�
performance measurements on database systems ��� ���� we only report on the elapsed�time usage� The
numbers we report here are the averages of our measurements for a single test series� i�e�� execution of
the ���� modi�cations with �xed values for n and m� Repeated executions of the test series showed
little variation�

Note that only one table is needed for the test setup because we are examining modi�cations� A
modi�cation statement� by its very nature� concerns only a single table�

��� Number of Transaction�id Attributes on Bitemporal Tables

Section ��� described how transaction�ids can be associated with tuples� Two overall approaches were
discussed� namely storing the transaction�ids in the timestamp attributes by encoding the transaction�
ids as the smallest values in the time domain� versus storing the transaction�ids in separate attributes�

We proceed to evaluate the performance of the following three approaches for associating transaction�
ids with tuples�

� Storing the transaction�ids in the timestamp attributes�

� Storing all transaction�ids in a single� separate attribute�

� Storing each transaction�id in a separate attribute�

The �rst approach adds no extra attributes to a bitemporal table� The second and third approaches
add one and four extra transaction�ids attributes to a bitemporal table� respectively� Due to the number
of attributes added� we refer to the three approaches as the zero�tid� the one�tid� and the four�tids
approaches� The schemas of the tables used in the performance study are shown below�

��

TABLE Emp�� �NameId
 DeptId
 V�BEGIN
 V�END
 T�START
 T�STOP
 TIDS�

TABLE Emp�� �NameId
 DeptId
 V�BEGIN
 V�END
 T�START
 T�STOP

V�BEGIN�TID
 V�END�TID
 T�START�TID
 T�STOP�TID�

Although we are only concerned with modi�cations in this performance study� we have chosen to
use an indexing scheme that is suitable when both queries and modi�cations are considered� For all
three approaches� we used a composite B��tree index on the NameId� V BEGIN� and V END attributes�
This index speeds up modi�cations and queries�

To be able to identify which tuples to timestamp� we add for the zero�tid approach two B��tree
indexes� on the T START and T STOP attributes� respectively� An index on both of these attributes is
needed because we must check both the T START and T STOP attributes for the smallest values in the
time domain� Tests without indexes on both the T START and T STOP attributes show results orders of
magnitude slower because full table scans are performed� For the one�tid approach� we add a B��tree
index on the TIDS attribute� and for the four�tids approach� we add a B��tree index on each of the
T START TID and T STOP TID attributes� Test show that also for the four�tids approach� indexes on
both the T START TID and T STOP TID attributes are needed to avoid full table scans�

To perform the tests� we load the ������� tuples into each of the tables and execute ���� modi�ca�
tions for each table in each test series� After a test series is executed� all three tables are restored to
the initial state� In a test series� the transaction size �m� is �xed� and to avoid arti�cially high bu�er
hit rates� we interleave the transactions so that �rst a transaction is executed on the Emp
 table� then
one on the Emp � table� then on on the Emp � table� and so on�

Figure �� shows the average elapsed�time per transaction for various transaction sizes� for the three
approaches to associating transaction�ids with tuples�

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Number of Modifications

zero-tid
four-tids
one-tid

Figure ��� The Number of Transaction�ids on Tables

As shown in Figure ��� the one�tid approach is always faster than the two other approaches� For
transactions of size larger than or equal to four� the one�tid approach is approximately ��! faster than
the zero�tid approach and approximately ��! faster than the four�tids approach� The one�tid approach
becomes percent�wise slightly better with increasing transaction size�

These results can be explained as follows� For the actual execution of the modi�cations� the one�tid
and the four�tids approaches are equally fast because the data content� indexes used� and modi�cation

��

makes the cost of modifying tuples higher because the modi�cation logic becomes more complicated�
if timestamp values that occur in tuples identify transactions �and are not �real
 values�� special han�
dling is necessary in the predicates involving the timestamp values� However� the major di�erences in
performance are caused by the revisiting and timestamping costs� The one�tid approach is the fastest
because tuples to timestamp can be e�ciently identi�ed by the index on the TIDS attribute� This index
only indexes tuples that must be timestamped� The four�tids approach is slower because two di�erent
indexes must be used� Again these two indexes only index tuples that must be timestamped� Finally�
storing the transaction�ids in the timestamp attributes results in the slowest timestamping because
identifying the tuples to timestamp requires using two larger indexes� over all tuples in the table�

With respect to the storage usage of the tables �not including storage used for indexes� the Emp

table is the smallest because no extra attributes are added� The Emp � and Emp � tables are ���! and
���! larger than the Emp
 table� respectively�

Based on this performance study� we will in the following use the one�tid approach for associating
transaction�ids with tuples�

��� Eager versus Lazy Revisitation

The next experiment measures the cost of executing transactions using eager versus lazy revisitation
strategies� To be able to compare the cost for various transaction sizes and inter�visitation intervals�
we report the cost on a per�modi�cation basis�

We use the one�tid approach discussed in the previous section with the accompanying indexing
scheme described there� To verify this indexing scheme we ran a set of six test queries and six test
modi�cations on �ve di�erent indexing schemes� The chosen indexes provided the best overall response
time� The �rst index was needed to speed up queries� the latter index sped up modi�cations�

Figure �� shows the total elapsed time per modi�cation for the eager and lazy approaches� The
elapsed time is shown for varying transaction sizes �m�� For the lazy approach� we also vary the inter�
visitation interval �n�� The time taken to revisit tuples in the lazy approaches have been divided equally
among the transactions executed since the last revisit� For example� if the inter�visitation interval is
�ve� we have added to each transaction�s total elapsed�time one �fth of the elapsed time for revisiting�
Note that this is possible because the transaction size is �xed within a test series�

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Transaction Size (m)

lazy n = 1
lazy n = 2
lazy n = 5

lazy n = 10
lazy n = 50

eager

Figure ��� Elapsed time Per Modi�cation for Eager and Lazy Revisitation

��

modi�cation is approximately ��! more expensive than eager revisitation for the same transaction size�
Lazy revisitation is more expensive because the revisiting is done using a separate transaction� whereas
eager revisitation is done in the transaction that also did the modi�cations� However� for n larger than
two� lazy timestamping is more e�cient�

In general� Figure �� shows that the combination of small transactions and revisiting often is ex�
pensive on a per modi�cation basis� This is due to the extra transaction executed for lazy revisitation�
However� if a transaction contains more than just �ve modi�cations� then lazy revisitation is less than
��! cheaper than eager revisitation� independently of the inter�visitation interval� For larger transaction
sizes and larger inter�visitation intervals� the costs of eager and lazy revisitation are almost identical�

We also ran experiments with inter�visitation intervals �n� of up to ��� transactions for transaction
sizes �m� of up to � modi�cations� and we experimented with the inter�visitation intervals of up to ��
transactions for transaction sizes of up to ��� modi�cations� These experiments were consistent with
the trend illustrated by Figure �� and showed that the elapsed time per modi�cation converges towards
approximately �� milliseconds�

That lazy revisitation becomes cost�e�cient already for inter�visitation interval �n� larger than two�
and almost independent of transaction size �m� is surprising� However� that the elapsed time converges
towards the same value was expected because both approaches have to do almost the same work� for
the lazy approach there is an extra overhead in saving the commit times of transactions� administrating
which tables should be timestamped� and executing an extra transaction� However� unlike for eager
timestamping� more tuples can be timestamped in a single revisit step during lazy timestamping�

��� The Cost of Revisiting

We next look at the cost of performing the revisiting step compared to the cost of the actual execution
of the transaction� Because neither approach proved superior in the previous study� we look at the
revisiting cost for both eager and lazy revisitation�

Figure �� shows the relative cost of executing the transactions and revisiting the modi�ed tuples for
eager revisitation� For small transaction sizes �m � ���� the revisiting step accounts for ��! to ��!
of the total elapsed�time� For larger transaction sizes� the revisiting cost stabilizes at approximately
��! of the total elapsed�time� We have measured the elapsed�time for transaction sizes of up to ����
modi�cations� The study shows the revisiting cost to converge towards ��! of the elapsed time�

For larger transaction sizes� the overhead of revisiting is very stable because approximately half the
tuples to revisit are clustered at the end of the table �the table is stored in transaction�time start order��
The other half of tuples to revisit can be found very e�ciently using the index on the TIDS attribute�
The revisiting step is relatively more expensive at smaller transaction sizes because the same number
of tuples modi�ed during the actual modi�cation must be revisited� and the clustering of half of the
tuples to revisit provides no substantial bene�ts because only very few tuples are involved�

We now turn to lazy revisitation� Figure �� shows the relative costs of transaction execution� saving
the commit time� and revisiting the modi�ed tuples� We use an inter�visitation interval of �ve �n����
Experiments using n��� n���� and n���� �and otherwise identical� showed the same behavior as that
reported in Figure ���

The revisit step in Figure �� is to be compared with the combination of the save and revisit steps in
Figure ��� The total cost of these latter two for the lazy approach is relatively higher than the revisit
step for the eager approach because the lazy approaches perform the same tasks as the eager approach�
but have extra administration costs for timestamping and use separate transactions for the revisiting�

Figure �� also shows this administrative cost becomes relatively lower for larger transactions� This
is because the save step only stores the TID and timestamp of the transaction� and then commits� The
size of this step is independent of the transaction size� making the elapsed time for this step only vary
little in absolute numbers�

��

Figure ��� Relative Cost of Transaction Execution Versus Revisiting Using Eager Revisitation

The relative cost of the revisiting step is constant� at approximately ��!� for various transaction
sizes� Although not clear from Figure �� alone� this indicates that the cost of revisiting grows linearly
with the transaction size� The revisiting consists of two parts� �a� timestamping new tuples inserted at
the end of the table and �b� timestamping modi�ed tuples that were already present in the table� The
�rst part is nearly independent of the transaction size �or� equivalently� the number of tuples to revisit�
because the tuples are clustered on a few disk pages� The cost of the second part grows linearly with
the transaction size� The linear growth occurs because the index on the TIDS attribute is used to locate
the modi�ed tuples� When the tuples are spread evenly over the table� the timestamping of each tuple
will consist of an index look�up and the assignment of the permanent timestamp�

Figure �� indicates that the relative cost of transaction execution versus the revisiting using lazy
revisitation is largely independent of the inter�visitation interval �n� and the transaction sizes �m��
That is� for varying m� n� and m � n� there is a relatively �xed overhead for revisiting tuples� Thus
if we can postpone the revisiting step of transactions� e�g�� to do it once per night� the number of
transactions executed per time unit can be increased by approximately ��! for lazy revisitation� In
absolute numbers� this will make lazy revisitation more e�cient than eager revisitation� as shown in
Figure ��� This �gure shows the elapsed�time per modi�cation for eager and lazy revisitation without
the revisiting cost� Because the revisiting cost is not included� the time to execute a transaction of size
m is independent of n for the lazy approach� This is the reason why the lazy revisitation curves are are
almost identical�

	 Related Work

Timestamping after commit of time�varying data in local and distributed environments was previously
studied by Salzberg ����� As outlined in Section �� the present paper extends and re�nes that study in
several respects� While Salzberg is concerned with timestamping the transaction�time dimension� this
paper considers also valid time and transaction and valid time together� In Salzberg�s study� timeslice
queries are considered� this paper proceeds to consider general queries in a temporal SQL� Finally�
Salzberg assumes an integrated DBMS architecture� which may may be extended to incorporate a new
recovery algorithm and as well as multi�dimensional temporal indexes� in contrast� this paper describes
how timestamping after commit may be achieved in a layer� without necessitating any changes to the
underlying DBMS�

��

Figure ��� Relative Cost of Transaction Execution Versus Revisiting Using Lazy Revisitation� n��

Finger and McBrien ���� studied timestamping� including the use of the valid�time variable now �
They take into consideration that the actual execution of a transaction has a duration in time� and
they argue that the value for now should remain constant within a transaction� However� they rule
out using the commit time for timestamping the valid�time dimension and instead suggest using the
start time or the time of the �rst update for now � They showed that using the start time can lead
to now appearing to be moving backwards in time and�in the case of using the time of the �rst
update�that the serialization of transactions can be violated� They suggest ignoring the problem of
time moving backwards or making transactions serializable on their start�times� This paper takes the
opposite approach� ruling out using any value for now other than the commit time� We show �rst
that the problem of now moving backwards cannot be ignored because it may also violate the isolation
principle� Second� we argue that transaction executions cannot be serializable in the order of their
start times� if concurrency is allowed� Finally� we show that using the commit time� can solve the two
problems identi�ed by Finger and McBrien�

An alternative to a stratum approach to building a temporal DBMS is the integrated architecture
where the DBMS is built from scratch and the implementation incorporates temporal support� The
Postgres DBMS ���� ��� is the best�known system with an integrated architecture� Postgres supports
transaction time only and uses timestamping after commit� Commit times of transactions are stored
in a special Time table� To associate transactions�ids and timestamps with tuples� Postgres adds eight
extra attributes to each table� To support both valid time and transaction time� we add �ve attributes�
There is no discussion of temporary values of the timestamp attributes in Postgres� The transaction�time
values are left unassigned when a tuple is stored in the database ����� With respect to revisiting tuples
for applying the permanent timestamps� Postgres uses either the �never
 or the lazy approach� The
integrated architecture of Postgres also permits experimentation with �asynchronous� low�system�usage
approach to revisiting tuples �����

�
 Summary and Research Directions

This paper provides a comprehensive approach to timestamping in temporal databases with transaction
support as well as support for both the valid�time and transaction�time dimensions�

��

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Transaction Size (m)

lazy n = 1
lazy n = 2
lazy n = 5

lazy n = 10
lazy n = 50

eager

Figure ��� Elapsed Time Per Modi�cation for the Eager and Lazy Approaches Without Revisiting

We show that the straightforward approach to timestamping modi�cations may lead to violations of
the consistency and isolation properties of transactions� To avoid these violations� we formulate a set of
requirements for timestamping database modi�cations� The most important requirements being to pre�
serve of the ACID properties of transaction and to retain a non�reduced level of interleaved transaction
execution� The requirements are independent of the underlying temporal database architecture�

For the transaction�time dimension� we use timestamping after commit with revisitation� where
permanent timestamps are assigned to the results of the modi�cations in a transaction only after all
statements in the transaction are exhausted and the transaction is ready to commit� The paper provides
the details necessary for implementing this timestamping approach in a stratum architecture� where an
temporal database management system �DBMS� is built via a layer on top of an existing DBMS� In
particular� the paper investigates a spectrum of revisiting strategies� ranging from eager to lazy�

The paper also considers the timestamping of the valid�time dimension� In contrast to previous
work� the paper illustrates that the default timestamp values for the valid�time dimension must be
identical to values used for the transaction�time dimension� i�e�� timestamping after commit must also
be used for valid time� This use of timestamping after commit causes problems for the valid�time
dimension because of the notion of now �the current time� and because users may supply valid times in
the future� It is shown that when using the default value for valid�time� isolation level SERIALIZABLE
can be obtained� however� for used�supplied valid times in the future� only read�level consistency can
be archived�

A performance study demonstrated that for transactions containing few modi�cations� eager revis�
itation is the most cost�e�cient� For transactions containing more than ten modi�cations� the eager
and lazy approaches are almost equally e�cient�

Overall� we have shown how to provide users with simple� consistent� and e�cient support for
modifying bitemporal databases in the context of user transactions� This can done while ful�lling
our requirements� perhaps most notably without lowering the level of concurrency of transactions and
without violating the ACID properties�

An interesting topic for future research is the use of more advanced revisitation approaches� e�g�� low�
system�usage revisitation� in an integrated DBMS architecture� Also the partitioning of the temporal
tables� e�g�� into old� current� and future data is a topic of future research� partitioning may speed up
the revisiting and should be investigated�

��

��� J� Bair� M� H� B	ohlen� C� S� Jensen� and R� T� Snodgrass� Notions of Upward Compatibility of
Temporal Query Languages� Business Informatics �Wirtschaftsinformatik�� ��������"��� February
�����

��� P� A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in Database
Systems� Addison�Wesley Publishing Company� �����

��� M� H� B	ohlen and C� S� Jensen� A Seamless Integration of Time into SQL� Technical Report
R���"����� Aalborg University� Denmark� �����

��� C� J� Bontempo and C� M� Saracco� Database Management Principles and Products� Prentice Hall�
�����

��� J� Cli�ord� C� E� Dyreson� T� Isakowitz� C� S� Jensen and R� T� Snodgrass� On the Semantics of
�Now� in Databases� ACM Transactions on Database Systems� ���������"���� June �����

��� P� Corrigan and M� Gurry� Oracle Performance Tuning� O�Reilly # Associates� �����

��� D� J� DeWitt� The Wisconsin Benchmark
 Past� Present� and Future� In ����� Chapter �� pp� ���"
���� �����

��� O� Etzion� S� Jajodia� and S� Sripada �eds�� Temporal Databases
 Research and Pratice� LNCS
����� Springer Verlag� �����

��� S� Feuerstein� Oracle PL�SQL Programming� O�Reilly # Associates� Inc�� �����

���� M� Finger and P� McBrien� On the Semantics of �Current�Time� in Temporal Databases� In ��th
Brazilian Symposium on Databases� pp� ���"���� �����

���� J� Gray �ed�� The Benchmark Handbook for Database and Transaction Processing Systems� Morgan
Kaufmann Publishers� �����

���� J� Gray and A� Reuter� Transaction Processing
 Concepts and Techniques� Morgan Kaufmann
Publishers� �����

���� C� S� Jensen and C� E� Dyreson �eds�� The Consensus Glossary of Temporal Database Concepts�
In ���� pp� ���"���� �����

���� J� Melton� Database Language�SQL� ANSI X����������� �����

���� J� Melton and A� R� Simon� Understanding the New SQL
 A Complete Guide� Morgan Kaufmann
Publishers� �����

���� G� 	Ozsoyo
glu and R� T� Snodgrass� Temporal and Real�Time Databases
 A Survey� IEEE Trans�
action on Knowledge and Data Engineering� ��������"���� August �����

���� F� Raab� Overview of the TPC Benchmark C
 A Complex OLTP Benchmark� In ���� Chapter ��
pp� ���"���� �����

���� M� T� Roth and P� M� Schwarz� Don�t Scrap it� Wrap It� A Wrapper Architecture for Legacy Data
Sources� In Proceedings of the VLDB Conference� Athens� Greece� pp� ���"���� August �����

���� B� Salzberg� Timestamping After Commit� In Proceedings of the Conference on Parallel and
Distributed Information Systems� pp� ���"���� �����

��

���������"���� June �����

���� R� T� Snodgrass �ed�� The TSQL
 Temporal Query Language� Kluwer Academic Publishers� �����

���� R� T� Snodgrass� M� H� B	ohlen� C� S� Jensen and A� Steiner� Adding Valid Time to SQL�Temporal�
ANSI X�H��������r�� ISO$IEC JTC �$SC ��$WG � DBL�MAD����r�� November �����

���� M� Stonebraker� The Design of the Postgres Storage System� In Proceedings of VLDB Conference�
pp� ���"���� �����

���� M� Stonebraker� L� A� Rowe� and M� Hirohama� The Implementation of Postgres� IEEE Transaction
on Knowledge and Data Engineering� ��������"���� March �����

���� K� Torp� C� S� Jensen� and M� B	ohlen� Layered Implementation of Temporal DBMSs�Concepts and
Techniques� Proceeding of the Fifth International Conference On Database Systems for Advanced
Applications� pp� ���"���� �����

���� K� Torp� C� S� Jensen� and R� T� Snodgrass� Stratum Approaches To Temporal Database Implemen�
tation� Proceeding of the International Database Engineering # Application Symposium� pp� �"���
�����

���� G� Wiederhold� Mediators in the Architecture of Future Information Systems� IEEE Computer
��������"��� March �����

���� G� Wiederhold� Mediation in Information Systems� ACM Computing Surveys ���������"���� June
�����

���� Y� Wu� S� Jajodia� and X� S� Wang� Temporal Database Bibliography Update In ���� pp� ���"����
�����

��

