
E�cient Computation of Temporal
Aggregates with Range Predicates

Donghui Zhang� Alexander Markowetz� Vassilis Tsotras� Dimitrios Gunopulos�
Bernhard Seeger

December ��� ����

TR���

A T i m e C e n t e r Technical Report

Title E�cient Computation of Temporal Aggregates with Range Predi�
cates

Copyright c� ���� Donghui Zhang� Alexander Markowetz� Vassilis
Tsotras� Dimitrios Gunopulos� Bernhard Seeger� All rights reserved�

Author�s� Donghui Zhang� Alexander Markowetz� Vassilis Tsotras� Dimitrios
Gunopulos� Bernhard Seeger

Publication History December ����� A TimeCenter Technical Report

TIMECENTER Participants

Aalborg University� Denmark
Christian S� Jensen �codirector�� Michael H� B�ohlen� Heidi Gregersen� Dieter Pfoser�
Simonas 	Saltenis� Janne Skyt� Giedrius Slivinskas� Kristian Torp

University of Arizona� USA
Richard T� Snodgrass �codirector�� Bongki Moon

Individual participants
Curtis E� Dyreson� Bond University� Australia
Fabio Grandi� University of Bologna� Italy
Nick Kline� Microsoft� USA
Gerhard Knolmayer� Universty of Bern� Switzerland
Thomas Myrach� Universty of Bern� Switzerland
Kwang W� Nam� Chungbuk National University� Korea
Mario A� Nascimento� University of Alberta� Canada
John F� Roddick� University of South Australia� Australia
Keun H� Ryu� Chungbuk National University� Korea
Michael D� Soo� amazon�com� USA
Andreas Steiner� TimeConsult� Switzerland
Vassilis Tsotras� University of California� Riverside� USA
Jef Wijsen� University of Mons�Hainaut� Belgium
Carlo Zaniolo� University of California� Los Angeles� USA

For additional information� see The TimeCenter Homepage

URL
 �http���www�cs�auc�dk�TimeCenter�

Any software made available via TimeCenter is provided �as is� and without any express or implied
warranties� including� without limitation� the implied warranty of merchantability and �tness for a
particular purpose�

The TimeCenter icon on the cover combines two �arrows�� These �arrows� are letters in the so�
called Rune alphabet used one millennium ago by the Vikings� as well as by their precedessors and
successors� The Rune alphabet �second phase� has � letters� all of which have angular shapes and
lack horizontal lines because the primary storage medium was wood� Runes may also be found on
jewelry� tools� and weapons and were perceived by many as having magic� hidden powers�

The two Rune arrows in the icon denote �T� and �C�� respectively�

Extended Abstract

A temporal aggregation query is an important but costly operation for applications that maintain time�
evolving data �data warehouses� temporal databases� etc��� Due to the large volume of such data� performance
improvements for temporal aggregation queries are critical� In this paper we examine techniques to compute
temporal aggregates that include key�range predicates �range temporal aggregates�� In particular we concen�
trate on SUM� COUNT and AVG aggregates� This problem is novel� to handle arbitrary key ranges� previous
methods would need to keep a separate index for every possible key range� We propose an approach based
on a new index structure called the Multiversion SB�Tree� which incorporates features from both the SB�Tree
and the Multiversion B�Tree� to handle arbitrary key�range temporal SUM� COUNT and AVG queries� We
analyze the performance of our approach and present experimental results that show its e�ciency�

� Introduction

With the rapid increase of historical data in data warehouses� temporal aggregates have become
predominant operators for data analysis� Computing temporal aggregates is a signi�cantly more
intricate problem than traditional aggregation without the time dimension� This is because each
database tuple is accompanied by a time interval during which its attribute values are valid� Con�
sequently� the value of a tuple attribute a�ects the aggregate computation for all those instants
included in the tuple�s time interval�

Many approaches have been recently proposed to address temporal aggregation queries ��Tum���
KS��� YK��� GHR���� MLI��� YW���� However� all previous research has considered the so�called
scalar temporal aggregates� where the temporal aggregates are computed over the whole key range
of the database relation� The most e�cient among the previous approaches is the SB�tree ��YW���
which in addition can restrict temporal aggregation to a given time interval� Here we address the
more general range�temporal aggregation problem �RTA�� In this problem� the temporal aggregate
is restricted by a time interval AND a key range� Since historical warehouses have large sizes� the
RTA query is a very useful and practical operation as it enables the warehouse manager to focus the
aggregation to any time�interval and�or key�range in the warehouse�

The paper concentrates on the SUM� COUNT and AVG aggregates� We �rst reduce the RTA query
into two subproblems� namely the less�key� single�time query and the less�key� less�time query� We
then propose a new index structure called the Multiversion SB�Tree �MVSBT� to solve these queries�
The proposed structure incorporates features from both the SB�Tree ��YW��� and the Multiversion
B�Tree �MVBT� ��BGO������ By using two MVSBTs we can maintain and compute RTA queries
very e�ciently� In particular� computing an RTA takes O�logb n� I�Os� where b is the capacity
of a disk page and n is the number of tuples in the warehouse� Updating the MVSBT is done
incrementally as tuples are updated �an update takes O�logbK� I�Os� where K is the number of
di�erent keys inserted into the warehouse�� The space is bounded by O�n

b
logbK��

We compare the performance of our approach against using a single index that �rst retrieves the
tuples of the warehouse which satisfy the RTA key�range and time�interval predicates� and then
computes the aggregate on the retrieved tuples� Possible choices for this index is a traditional
multidimensional index �like an R��tree �BKS����� or a temporal index �like the MVBT �BGO����
or the TSB�tree �LS����� We use the MVBT since it optimally solves a range�snapshot query ���nd
all tuples with keys in range r that were alive at time t��� Our initial experimental results show that
our approach provides superior performance in computing RTA queries at the expense of a small
space overhead� It should be noted that since the temporal aggregation query can involve arbitrary
key ranges none of the previously proposed scalar methods is applicable� For example� the obvious
approach of having a separate SB�Tree for each possible key range will not be e�cient because of
the large space requirements�

The rest of the paper is organized as follows� Section � discusses background and previous work�
The problem reduction is addressed in section �� The MVSBT index is introduced and analyzed in
section �� Section � discusses results from our experimental comparisons� Finally� section � presents
conclusions and open problems for further research�

� Background

We �rst describe previous research on temporal aggregation queries including the SB�tree� We then
discuss the temporal data model assumed in our work and provide a short description of the MVBT�

��� Previous work on temporal aggregates

We consider four criteria for measuring the e�ciency of a method that supports temporal aggregates�
�� The method should maintain the aggregates incrementally as tuples are inserted�updated� ���
The cost of inserting a new tuple should be independent from the tuple key and from the length
of the tuple�s interval� ��� The method should be disk�based� and� ��� the method should support
not only instantaneous but cumulative temporal aggregates as well ��YW�� MLI����� The result of
an instantaneous temporal aggregate at a given time instant is computed from the tuples valid at
that instant� The value of a cumulative temporal aggregate at instant t is computed from the tuples
whose intervals intersect interval �t� w� t�� for any given window o�set w�

�Tum��� presents a non�incremental two�step approach where each step requires a full database scan�
First the intervals of the aggregate result tuples are found and then each database tuple updates
the values of all result tuples that it a�ects� This approach computes a temporal aggregate in
O�mn� time� where m is the number of result tuples �at worst� m is O�n�� but in practice it is
usually much less than n�� Note that this two�step approach can be used to compute range�temporal
aggregates� however the full database scans makes it ine�cient� �KS��� uses the aggregation�tree� a
main�memory tree �based on the segment tree �PS���� to incrementally compute temporal aggregates�
However the structure can become unbalanced which implies O�n� worst�case time for computing
a scalar temporal aggregate� �KS��� also presents a variant of the aggregation tree� the k�ordered
tree� which is based on the k�orderness of the base table� the worst case behavior though remains
O�n�� �GHR���� YK��� introduce parallel extensions to the approach presented in �KS���� �MLI���
presents an improvement by considering a balanced tree �based on red�black trees�� However� this
method is still main�memory resident� A seminal work on incremental� disk�based� scalar temporal
aggregate computation appears in �YW��� where the SB�tree index is introduced� Since our work
draws from the SB�tree we will discuss its properties below� for more details we refer to �YW���

��� The SB�tree

The SB�tree incorporates properties from both the segment tree ��PS���� and the B�tree� The segment
tree features ensure that the index can be updated e�ciently when tuples with long intervals are
inserted or deleted� The B�tree properties make the structure balanced and disk�based� Conceptually
the SB�tree indexes the time domain of the aggregated tuples� Each interior tree node contains
between b�� and b records� each record representing one contiguous time interval� For each interval�
a special value is also kept in the record that will be used to compute the aggregate over this interval�
Intervals are kept in both interior and leaf nodes� Moreover� the overall interval associated with a
node contains all intervals in the node�s subtrees�

An advantage of �YW�� is that an instantaneous temporal aggregate is computed by recursively
searching the SB�tree �starting from the root� and accumulating the aggregate value along the tree
nodes visited� This results in fast aggregate computation time� namely� O�logb n�� Note that a special
�compaction� algorithm is also presented that merges leaf intervals with equal aggregate values� This
can reduce the height of the tree and hence its aggregate computation to O�logbm��

The second advantage of the SB�tree is its fast update time� which is also logarithmic� The insertion
of a new tuple with interval i and attribute value v is �rst directed into the root node� Each root
record whose time interval is fully contained in i is updated by value v �the kind of update depends
on the aggregate maintained by the SB�tree�� Whenever interval i is partially contained by a root
record� it is recursively inserted in the subtree under this root record� The SB�tree allows physically
deleting tuples from the warehouse� Such a deletion is represented as an insertion of a new tuple
with a negative attribute value v�

To support cumulative SUM� COUNT and AVG aggregates with arbitrary window o�set w� two
SB�trees are used� one maintaining the aggregates of records valid at any given time� while the other
maintaining the aggregates of records valid strict before any given time� To compute the aggregation

�

query� the approach �rst computes the aggregate value at the end of interval w� It then adds the
aggregate value of all records with intervals strictly before the end of w and �nally subtracts the
aggregate value of all records with intervals strictly before the beginning of w� Finally� we note that
a special extension of the SB�tree �the min�max SB�tree� can be used to support MIN and MAX
aggregates� too�

��� Temporal Data Model

For simplicity� we assume that each tuple in the warehouse is stored as a record that contains a key� a
time interval and an attribute whose value is to be aggregated� We follow the First Temporal Normal
Form �	TNF� ��SS���� which speci�es that there are no two tuples with equal keys and intersecting
intervals� Without loss of generality� we assume that both keys and time instants are positive integers�
Let the key space be ��maxkey� and the time space be ��maxtime�� A time interval �or interval in
short� has the form
 �start� end� where � start � end � maxtime� An interval reduces to a time
instant when end � start � � Similarly� a key range �or range in short� has the form �low� high�
where � low � high � maxkey� A range reduces to a key when high � low � � For two ranges
r	� r
 which do not intersect� we say r	 is lower than r
 if r�high � r��low� A record rec is alive at
time t if t � rec�interval� A rectangle R in the key�time space consists of an key range R�range and
a time interval R�interval� A record x is in rectangle R if x�key � R�range and x�interval intersects
with R�interval�

When considering temporal data� it is important to distinguish the time model used by the temporal
application� In the temporal database literature two time dimensions have been proposed� namely
the valid�time and the transaction�time ��J������ The kind of updates supported on the temporal
data depends on whether valid�time or transaction�time �or both� is supported ��KTF����� In a valid�
time environment when a tuple is inserted in the database� its associated interval is fully known�
Moreover� tuples can be added and deleted from the database in any order� After a tuple is deleted
its record is physically removed from the database �and thus cannot be further queried�� The SB�
tree has been designed for the valid�time environment� In contrast� a transaction�time environment
assumes that tuple updates arrive in the database ordered by time� Hence� when a tuple is inserted
at time ti� its record�s interval is initiated as �ti� now� where now is a variable representing the ever
increasing current time �in practice� variable now is stored as maxtime�� However� a tuple deletion
is not physical but logical� For example� if the above tuple is deleted at time tj its record�s interval
end is updated from now to tj� That is� the record is still maintained in the database and can be
queried� Since deletions are logical� in a transaction�time environment we cannot change the past�
Equivalently� the transaction�time model maintains the history of a time�evolving database� The
ability to change the past is useful in cases where errors are discovered in the recorded information�

In this paper we assume that the warehouse follows the transaction�time model� We feel that this is a
practical scenario since in many applications changes arrive in their time order� Furthermore� in our
view� the number of erroneous tuples in a data warehouse is much smaller than the correct ones and�
if needed� any corrections can be kept separately� Moreover� few errors are usually not important
when considering aggregate values over a large number of tuples� Assuming the transaction�time
model has a major in�uence on the index used to support aggregate queries� Since updates arrive in
order� the index does not have to order them�

��� Partially Persistent B�trees

A data structure is called persistent if an update creates a new version of the data structure while
the previous version is still retained and can be accessed� If the old version is discarded� the structure
is called ephemeral� Partial persistence implies that updates are applied only at the latest version
of the data structure� creating a linear version order� Clearly� partial persistence �ts nicely with
the notion of transaction�time� version numbers can be replaced by the ordered sequence of time
instants� As we will show� the MVSBT is a SB�tree made partially persistent� Our approach has
been in�uenced by the MVBT ��BGO����� which is a structure that makes a B��tree partially
persistent�

Conceptually� the MVBT is a graph that maintains the evolution of a B��tree over time� It has
many roots� each responsible for accessing the B��tree as it was during a speci�c time interval� The

�

MVBT partitions the key�time space into rectangles where each rectangle is associated with exactly
one data page� A tuple�s record is stored in all the data pages whose key�time rectangle contains
the tuple�s key and intersects its interval� The page rectangles are created recursively� As records
are inserted into a certain page of a MVBT� this page may over�ow� Then� the page�s alive records
are copied to another page� The kind of copying is based on the number of alive records in the
over�owed page� A time split simply copies all alive records into a new page� If many alive records
exist� the time split is followed by a key split that distributes them into two new pages according to
the median of their key attribute�

Data records are inserted in the MVBT in increasing time order� An important feature of the
MVBT is that it guarantees a minimum key density for every page� In particular� for any time t
in the page�s rectangle� the page contains at least d records that are alive at t� where d is linear to
the page capacity� If after a deletion� the key density of the page drops below the threshold d �weak
under�ow�� the alive records in the page and a sibling page are copied into a new page� To avoid
frequent merge�splits� the number of records in a new page must be between a lower bound and a
higher bound �strong condition��

The MVBT optimally solves �in linear space� the range�snapshot query
 ��nd all tuples with keys
in range r that were alive at time t�� If the query answer has size s� the MVBT �nds this answer in
O�dlogb n� s�be� I�Os�

� Problem Reduction

Since AVG � SUM � COUNT� we focus on SUM and COUNT� Below we reduce an RTA query for
SUM�COUNT� to two subqueries�

De�nition � Given a temporal relation T � key k and time t� a less�key� single�time �LKST�
query �nds the aggregate value of all tuples from T whose keys are less than k and whose intervals
contain t�

De�nition � Given a temporal relation T � key k and time t� a less�key� less�time �LKLT� query
�nds the aggregate value of all tuples from T whose keys are less than k and whose end times are
less than or equal to t�

Intuitively� a tuple with end � t has been alive strictly before t�

Theorem � Solving the RTA query for SUM and COUNT is reduced to solving the LKST and the
LKLT queries�

Proof� We use SUM in the proof since the same discussion holds for COUNT� Let the query rectangle
be �k�� k�� x �t�� t��� Let t� � t�� and let r � �k�� k��� If we only consider tuples with keys in r� the
SUM of the values of tuples whose intervals intersect �t�� t�� is equal to the the SUM of the values
of those tuples alive at t� plus that of those tuples alive strictly before t� minus that of those tuples
alive strictly before t�� This can be described by the following equation

SUM�r� �t�� t��� � SUM�r� t�� � SUM�r� end � t��� SUM�r� end � t���

We now consider all the tuples alive at t�� SUM�r� t�� can be computed as the SUM of the values
of the tuples whose keys are less than k� minus the SUM of the tuples of the records whose keys are
less than k�� Or�

SUM�r� t�� � SUM�key � k�� t��� SUM�key � k�� t�� � LKST �k�� t��� LKST �k�� t��

Similarly� we have

SUM�r� end � t�� � LKLT �k�� t��� LKLT �k�� t��

SUM�r� end � t�� � LKLT �k�� t��� LKLT �k�� t���

Hence� we get

RTA��k�� k��� �t�� t��� � LKST �k�� t�� � LKLT �k�� t�� � LKLT �k�� t��

� LKST �k�� t��� LKLT �k�� t��� LKLT �k�� t�� ���

�

Thus a RTA query is reduced to two LKST queries and four LKLT queries�

In order to support the RTA queries� we will present an access method that combines two index
structures
 one index supporting the LKST queries and the other supporting the LKLT queries�
According to equation above� an RTA aggregation query is transformed to six point queries for
the LKST and LKLT indices� It remains to show how inserting and updating a temporal tuple is
represented by each of the LKST and LKLT indices� Inserting a new tuple a�ects only the LKST
index� In particular� to insert a tuple with key k and value v at time t�� the LKST index should add
v to all the points in �k � �maxkey� x �t��maxtime� ��gure a�� We denote such an operation in
the LKST index as an insertion of hk � � t�i
 v� Logically deleting a tuple a�ects both indices� To
logically delete the above tuple at a later time t�� the LKST index should subtract value v from� or
equivalently� add value �v to� all the points in �k � �maxkey� x �t��maxtime� ��gure b�� This is
denoted as an insertion of hk� � t�i
 �v� This logical deletion is also transformed into an insertion
in the LKLT index
 add value v to all the points in the rectangle �k � �maxkey� x �t��maxtime�
��gure c�� which is denoted as hk � � t�i
 v�

t1 t2 time

+v

k

key

t1 t2 time

k

key

-v

t1 t2 time

k

key

+v

�a� insertion�LKST �b� deletion�LKST �c� deletion�LKLT

Figure
 Transforming the insertion and �logical� deletion operations

Hence both the LKST and LKLT indices can be implemented by the same structure� This structure
should support
 �� E�cient insertion operations of the form
 �given key k� time t and value v�
add v to the values associated with all the points in the rectangle �k� maxkey� x �t� maxtime��� ���
E�cient point queries as in
 �given key k and time t� �nd the value associated with this point in the
key�time space��

Now we focus on designing such a structure� First� let�s assume the time dimension is �xed to
some time instant t and focus on the key dimension� The structure should logically store a value
at every key in the key space� This is expensive� since there are many keys� If adjacent keys store
the same value� the keys can be combined into a key range� So what really should be stored is a
set of non�intersecting key ranges whose union is the key space� where a value is associated with
each range� Now� the insertion operation needs to update all the stored ranges that intersect �k�
maxkey�� Obviously� the smaller k is� the more ranges need to be updated� Our goal is to have an
structure whose insertion time is independent to where k is� This scenario reminds of the SB�tree
which supports e�cient insertions of a time interval independently to where and how long the time
interval is� So� by using an SB�tree for the key dimension� the requirement of e�cient insertion is
satis�ed� The requirement of e�cient point query is also satis�ed� since the SB�tree is e�cient in
�nding the value associated with any given point�

So far we have found the solution for a �xed time instant� To �nd a solution for the whole time space�
a natural extension is to make an SB�tree partially persistent� Logically� the partially�persistent SB�
tree �also called Multiversion SB�tree� is equivalent to a series of SB�trees� one at each time instant�
An insertion operation and a point query involving time t are directed to the SB�tree corresponding
to t� Physically� of course� it is too expensive to store a separate SB�tree at every time instant� The
features from the MVBT can be applied to reduce the space� While logically equivalent to a set of
B��trees� one at each time instant� the MVBT nicely embeds the set of B��trees in such a way that
the overall space is linear ��BGO������ Hence a Multiversion SB�tree satis�es the requirements we
had set for the structure design�

� The Multiversion SB�tree

The MVSBT is a new index that supports e�ciently the insertion operation
 �given key k� time t
and value v� add v to the values associated with all the points in the rectangle �k� maxkey� x �t�

�

maxtime��� and the point query
 �given key k and time t� �nd the value associated with this point
in the key�time space��

��� Basic Idea

The MVSBT is a directed acyclic graph of disk�resident nodes that results from incremental insertions
to an initially empty SB�tree� It has a number of SB�tree root nodes that partition the time space in
such a way that each SB�tree root stands for a disjoint time interval and the union of these intervals
covers the whole time space� A point query for a certain time instant t is directed to the root node
whose time interval contains t� References to the root nodes are maintained in a structure called
root� which can be implemented as a B��tree�

There are two types of pages in a MVSBT
 the index pages and the leaf pages� all having the same
size� An index page contains routers pointing to child pages� while a leaf page does not� For
simplicity� we assume that both a leaf page and an index page have the same maximum capacity
of b records� A leaf record �one stored in a leaf page� has the form hrange� interval� valuei where
range� interval gives a rectangle in the key�time space and value is an aggregate value which is
associated with every point in the rectangle� An index record �one stored in an index page� has the
form hrange� interval� value� childi� Compared with a leaf record� it has a router pointing to some
child page� Each page p also has a rectangle� where p�range is the union of the ranges of all the
records in the page and p�interval is the time interval between the time the page is created and
the time the page is copied� A page is said to be alive if it has not been copied yet� The following
property shows the relationships among the records in a page

Property � All the records in a MVSBT page have non�intersecting rectangles whose union is equal
to this pages rectangle�

Since we assume that insertions come in non�decreasing time order� an insertion only goes into an
alive page and it only a�ects the alive records in the page� Consider an alive page p and all the alive
records in p� Due to property � the key ranges of these records do not intersect and their union
is equal to p�range� For ease of discussion� we de�ne some terms regarding the alive records in p�
Given a key k � p�range� a partly�covered record is one whose key range intersects with� but is not
contained in� �k�maxkey�� a fully�covered record is one whose key range is contained in �k�maxkey��
a �rst fully�covered record is a fully�covered record whose key range is lower than that of any other
fully�covered record� Obviously� for any key k � p�range� there can be at most one partly�covered
record and at most one �rst fully�covered record� If p is an index page� we also call the child page
which is pointed to by the partly�covered record as the partly�covered child page�

Since a record in the MVSBT has a rectangle �and not just a key range as it would be if we had
kept an SB�tree for each time instant�� the insertion algorithm needs to be modi�ed accordingly�
Assume the insertion of key k� time t and value v �represented as hk� ti
 v� goes into page p� All
the fully�covered records in p should be split vertically at t �and by adding v to the value of the
newly copied record�� If there is a partly�covered record� the insertion algorithm should recursively
insert into the partly�covered child page� at the leaf level� the partly�covered record is split into three
�vertically at t and then horizontally at k� adding v to the top�right copy��

If an insertion causes a page to have more than b records� an overflow occurs� All the alive records
in the page is copied to a new page� and the start times of all the copied records are changed to the
current insertion time� We call such an copy operation a time split� After a time split� the newly
generated page may be almost full� In such a case� a few subsequent insertions in the page trigger
a time split again� resulting a space cost of �� block per insertion� To avoid this phenomenon�
we require that after a time split� the new block should have at most f � b records� where constant
f � ��� � is called the strong factor� We call this requirement the strong condition� If a newly
generated page due to a time split strong over�ows �having more than f � b records�� it is key split�
that is� it is split into two �or more� if f is small� by key and the records are distributed evenly
among these pages�

��� Optimizations

In this section we discuss three optimization techniques which apply to the MVSBT�

�

����� Aggregation in a Page

It is expensive to split all the fully�covered records in a page �each insertion introduces �b� records��
We propose an optimization technique which ensures that if there is no over�ow� at most one ��rep�
resentative�� record is split in a page� The idea is that we only split the record with the smallest
key range �the partly�covered record for a data page� or the �rst fully�covered record for an index
page�� This split physically adds a value v to only one record� We refer to this operation as logical
splitting� In order to deliver the correct response to a query� we have to modify the point query
algorithm in the following way� A point query of hk� ti still aggregates the values of all the records
containing the point along a path from root to leaf� but the value for each such record rec in page p
is computed as the sum of all the records in p whose intervals contain t and whose ranges contain k
or are lower than k�

This optimization also a�ects the key�split procedure� Before the key split of page p� the actual value
of an alive record is computed as the sum of the values of all the alive records !below� it �i�e�� records
having a smaller key range�� If we key�split p into two pages� the sum of values of all the records
in the page with the lower range should be added to the lowest record in the page with the higher
range�

����� Record Merging

Record merging� if applicable allows to compact more records in a page and thus leads to less overall
space� Two leaf records lrec�� lrec� in the same page can be merged either horizontally �time
merge� or vertically �key merge�� A time merge can take place if �a� lrec��range � lrec��range� �b�
lrec��end � lrec��start� and �c� lrec��value � lrec��value ��gure �a�� A key merge can take place if
�a� lrec��interval � lrec��interval� �b� lrec��high � lrec��low� and �c� lrec��value � � ��gure �b��

lrec1 lrec2

v v

lrec

v

(a) time merge

v
lrec v

0

lrec1

lrec2

(b) key merge

Figure �
 Time merge and key merge of two records

The index records can be merged similarly� The di�erence of merging index records from merging
leaf records is that two index records can be merged only if they point to the same child page�

����� Page Disposal

Since we allow many insertions at the same time instant we should update the index about the �net�
e�ect of these insertions� However� our algorithms process one update at a time� Hence we introduce
the page�disposal optimization� which spares the index from �indermediate� results� If a page which
is created at time t takes some subsequent insertions also at t and over�ows� after the page is time
split and key split� the page itself as well as the index record pointing to it can be physically removed
from the index� This optimization saves space� too�

��� An Example

In this section� we assume b � � and f � ���� Initially� the MVSBT has one root page� R�� which
is also a leaf� There is one record in it having value � � ��gure �a�� After we insert h��� �i
 � the
record is split ��gure �b�� To insert h�� �i
 � only the partly�covered record is split ��gure �c��
The insertion of h��� �i
 causes an over�ow ��gure �d�� A time split copies all the alive records
into a new page� If the new page satis�ed the strong condition� it would be registered as the new
root and the insertion would be complete� However� it strong over�ows� So a key split takes place
which distributes the records evenly into two pages ��gure �e�� Note how the value of the �rst record
in the page with higher range is modi�ed� The tree after the insertion is shown in �gure �f� We now
consider the insertion of h�� �i
 �� In the alive root R�� the �rst fully�covered record is split� and
the insertion recursively goes to the partly�covered child page A� Since there is no partly�covered
record in A� the �rst fully�covered record is split� The result is shown in �gure �g� Yet another
insertion of h�� �i
 would lead to a time merge in R� and a time merge in R�� The �gure is omitted
due to space limitations�

�

20

maxkey

1

0, B

0, A

A B

1

0

4 maxtime

maxkey

4 maxtime

8010

20

20

1 1

2

R2

maxkey

1
1

R1

32

0

1

0
0

110
20

4

maxtime4

20

maxkey

1 0, A

A B

1

0

4 maxtime

maxkey

4 maxtime

8010

20

20

1

2

R2

maxkey

1
1

R1

32

0

1

0
0

110
20

4

maxtime

0, B -1, B

54

1 0

5

maxtime2

10
20

10
20

maxkey

1
maxtime

maxkey

1
1

R1

0

(a) the initial MVSBT

maxkey

1
1

R1

20 0

1

0

(b) after inserting <20, 2>:1

maxtime

maxkey

1
1

R1

32

0

1

0
0

1

(c) after inserting <10, 3>:1

maxtime1 32

0

0
0

1

180
1

1

4
1

0

4 maxtime

maxkey

4 maxtime

8010

20

20
1+1 = 2

1 1

leads to an overflow
(d) inserting <80, 4>:1 (e) strong overflow leads to a key split

(f) after inserting <80, 4>:1, there are two roots (g) after inserting <10, 5>:-1

Figure �
 An example of insertions in an MVSBT

��� Complexity Analysis

For ease of discussion� we assume the record merging and the page disposal optimizations are not
applied� Though these techniques improve performance� the worst�case bounds presented in the
following also hold without emplying the techniques� Due to space limitations� the proofs of the
lemmas and the theorems are given in Appendix B� Let us discuss the impact of the strong factor
f � Due to the strong condition� there are at most f "b alive records in a page that has been created�
In order to guarantee a fan�out of at least �� f has to be greater than �

b
�

If a page over�ows� the max number of new pages to be generated is given in lemma �

Lemma � If a page over�ows� the time split and possible key split will generate at most d���
f
� �

�
e

new pages�

After a page p is created and before it is copied� the e�ect of an insertion in p may be the addition
of some new records and the logical deletion of some others� The amount of additions and logical
deletions are bounded as shown in lemma ��

Lemma � An insertion in an alive page p which does not over�ow introduces at most d���
f
� �

�
e

additions and at most
 logical deletions�

Lemma � Given time t� any page p which is alive at t �except the root� contains at least df �b
�
e records

alive at t�

Suppose K is the number of di�erent keys ever inserted into the MVSBT� Lemma � gives the upper
bound of the height of a MVSBT in regards to K�

Lemma � The upper bound of the height of any sub�tree in a MVSBT is dlog
d f �b

�
e
�K � �e�

Suppose there are n insertions in a MVSBT� Theorems � states the worst�case insertion cost� point
query cost and the space complexity� respectively�

Theorem � For a MVSBT� the number of disk page accesses is O�logbK� for an insertion and
O�logb n� for a point query� The space complexity is O�n

b
� logbK��

A corollary of theorems and � summarizes the performance of maintaining and computing the
range�temporal aggregates as follows�

Corollary � Using two MVSBTs� a SUM� AVG� COUNT RTA query is answered in O�logb n� I�Os�
The insertion�deletion cost is O�logbK� while the space complexity is O�n

b
� logbK��

The O�logb n� in the RTA query time is due to the time needed identifying the root of the appropriate
SB�tree in the MVSBT graph� In practice� this search can be even faster if all di�erent SB�tree roots

�

created in the evolution are kept in a main�memory array� in which case the query time is reduced
to traversing the appropriate SB�tree� i�e�� O�logbK��

� Performance Results

We present results comparing the performance of our approach with a naive approach where the
temporal records are kept in a traditional temporal index� the MVBT ��BGO������

The algorithms are implemented in C�� using GNU compilers� The programs run on a Sun Enter�
prise ��� Server machine with two ���MHz UltraSPARC�II processors using Solaris ���� The main
memory size is �� MB� To compare the performance of the various algorithms we use the estimated
running time� This estimate is commonly obtained by multiplying the number of I�O�s by the av�
erage disk page read access time� and then adding the measured CPU time� Following the practice
in �APR����� we measure the CPU cost by adding the amounts of time spent in user and system
mode as returned by the getrusage system call� We assume all disk I�Os are random� A random
disk access takes �ms on average� We use a �KB pagesize� For both MVSBT and MVBT we used
LRU bu�ering and the default bu�er size is �� pages� The MVSBT uses a strong factor f � ����

All the datasets we use were initially created using the TimeIT software ��KS���� and then trans�
formed to add record keys� We studied the e�ect of both uniformly distributed and normally dis�
tributed keys� Each dataset has million records� The key� start� end� value attributes of each record
are all � bytes long� The key space is �� ��� and the time space is �� ���� A dataset contains
����� unique keys where on average there are �� di�erent records with the same key� We tested
datasets with mainly long�lived intervals and with mainly short�lived intervals�

Figure �a shows the space requirements for the MVBT and the two�MVSBT approach� for a dataset
with uniformly distributed keys and with mainly long�lived intervals� The two�MVSBT approach
used about ��� times more space than the single MVBT� This is to be expected� since the worst case
space of each MVSBT has a O�logbK� overhead� We observed a similar behavior for the update
time per insertion�deletion as well�

2KB 4KB 8KB

0

20

40

60

80

100

120

140

2MVSBT

naïve

Varying pagesize

R
es

ul
t
si

ze
 (

#M
B

)

0.1% 1% 10% 100.00%

0

50

100

150

200

3

19

151

5053

Varying QRS; R/I ratio = 1

tim

es
 fa

st
er

32 64 128 192 256

0

25

50

75

100

125

150

175

200

2mvsbt

naïve

QRS=1%; R/I ratio=1; varying #buffer pages

T
ot

al
 t

im
e

(#
se

c)

�a� �b� �c�

Figure �
 Space and query performance comparisons

For the query performance we measured the execution time of �� randomly generated query rect�
angles with �xed rectangle shape and size� The shape of a query rectangle is described by the R�I
ratio� where R is the length of the query key range divided by the length of the key space and I is
the length of the query time interval divided by the length of the time space� The query rectangle
size �QRS� is described by the percentage of the area of the query rectangle in the whole key�time
space�

Figure �b shows how much faster the two�MVSBT approach is over the MVBT for the RTA query�
Clearly� the larger the QRS is� the more advantageous the two�MVSBT approach is over the MVBT�
When the query rectangle is the whole key�time space� the two�MVSBT is more than ���� times
faster than the naive approach# This is to be expected� since the query performance of the two�
MVSBT is independent to the QRS� while the naive approach in the worst case scans the whole
dataset� Figure �c compares the query performance of QRS�$ of the key�time space over various
bu�er sizes� Again� the two�MVSBT approach is clearly superior�

�

� Conclusions

Temporal aggregates have become predominant operators in analyzing historical data� This paper
examines temporal aggregation queries in the presence of key�range predicates �RTA queries�� Such
queries allow the warehouse manager to focus on tuples grouped by some key range over a given time
interval� We proposed a new index structure� the Multiversion SB�Tree �MVSBT�� for incrementally
maintaining and e�ciently computing RTAs� The aggregates we considered are SUM� COUNT
and AVG� The MVSBT has very fast �logarithmic� query time and update time� at the expense of a
small space overhead� Initial performance results show the bene�ts of our solution� There are various
interesting problems for further research
 �i� how to optimize the performance of the MVSBT with
factor f � �ii� how to support MIN�MAX temporal aggregate queries with range predicates� and� �iii�
how to extend this work for spatiotemporal �i�e� multidimensional� aggregates�

References

�APR	

� L� Arge� O� Procopiuc� S� Ramaswamy� T� Suel� J� Vahrenhold and J� Vitter� �A Unied Approach For
Indexed and Non�Indexed Spatial Joins�� Proc� of EDBT� pp� �������� �

�

�BGO	��� B� Becker� S� Gschwind� T� Ohler� B� Seeger and P� Widmayer� �An Asymptotically Optimal Multiversion
B�Tree�� VLDB Journal ����� pp� �������� �����

�BKS	�
� N� Bechmann� H� Kriegel� R� Schneider and B� Seeger� �The R� tree� An E�cient and Robust Access
Method for Points and Rectangles�� Proc� of ACM SIGMOD� pp� �������� ���
�

�GHR	��� J� Gendrano� B� Huang� J� Rodrigue� B� Moon and R� Snodgrass� �Parallel Algorithms for Computing
Temporal Aggregates�� Proc� of ICDE� pp� �������� �����

�J	��� C� Jensen� et al� �The Consensus Glossary of Temporal Database Concepts � February ���� Version�� in
Temporal Databases� Research and Practice� �ed�� O� Etzion� S� Jajodia and S� Sripada� Springer� ISBN
����
��������� pp� �����
�� �����

�KS��� N� Kline and R� Snodgrass� �Computing Temporal Aggregates�� Proc� of ICDE� pp� �������� �����

�KS��� N� Kline and M� Soo� �Time�IT� the Time�Integrated Testbed�� ftp���ftp�cs�arizona�edu�timecenter�time�
it�
���tar�gz� Current as of August ��� �����

�KTF��� A� Kumar� V� Tsotras and C� Faloutsos� �Designing Access Methods for Bitemporal Databases�� IEEE
TKDE �
���� pp� ���
� �����

�LS��� D� Lomet and B� Salzberg� �Access Methods for Multiversion Data�� Proc� of ACM SIGMOD� pp� ��������
�����

�MLI

� B� Moon� I� Lopez and V� Immanuel� �Scalable Algorithms for Large Temporal Aggregation�� Proc� of
ICDE� pp� �������� �

�

�PS��� F� Preparata and M� Shamos� Computational Geometry� An Introduction� Springer�Verlag�
Berlin�Heidelberg� Germany� �����

�SS��� A� Segev and A� Shoshani� �The Representation of a Temporal Data Model in the Relational Environment��
Proc� of Int� Conf� on Statistical and Scienti�c Database Management �SSDBM�� pp� ������ �����

�Tum��� P� Tuma� �Implementing Historical Aggregates in TempIS��Master�s thesis� Wayne State University� Michi�
gan� �����

�YK��� X� Ye and J� Keane �Processing temporal aggregates in parallel�� Proc� of Int� Conf� on Systems� Man�
and Cybernetics� pp� ���������� �����

�YW
�� J� Yang and J� Widom� �Incremental Computation and Maintenance of Temporal Aggregates�� to appear
in Proc� of ICDE� �

�� �also available at http���www�db�Stanford�EDU��junyang�research�pubs�html�

�

A Insertion and Query Algorithms for the MVSBT

This appendix formally describes the insertion and point query algorithms for the MVSBT� To be
clear� in the insertion algorithm we omit the details of the optimizations given in section ����

Algorithm PointQuery� Key k� Time t �

�� Find the root page p which is alive at t�

�� Return PagePointQuery� p� k� t ��

Algorithm PagePointQuery� Page p� Key k� Time t �

�� v �
�

�� for every record rec in p do

�� if rec is alive at t and rec�low � k then

�� v � v 	 rec�value�

�� endif

�� endfor

�� if p is a leaf page then

�� return v�

�� else

�
� Find the record rec whose rectangle contains � k� t ��

��� return v 	 PagePointQuery� rec�child� k� t��

��� endif

Algorithm Insert� Key k� Time t� Value v �

�� �� Find the path of nodes containing partly covered records

�� level �
�

�� lowestpage � ReadPage�the latest root�� �� ReadPage reads a page from disk if it is not in memory�

�� while lowestpage is an index page and lowestpage contains a partly�covered record irec� do

�� path�level� � lowestpage�

�� level 		�

�� lowestpage � ReadPage�irec�child��

�� endwhile

�� �� Handle lowestpage

�
� if lowestpage is a leaf page then

��� if lowestpage has enough space then

��� if there is a partly�covered record then

��� Split it in lowestpage�

��� else

��� Split in lowestpage the rst fully�covered record�

��� endif

��� else

��� Copy alive leaf records from lowestpage to buffer�

��� if there is a partly�covered record then

�
� Split it in buffer�

��� else

��� Add v to the rst fully�covered record in buffer�

��� endif

��� Create new leaf pages �from records in buffer� and store their references in toparent�

��� endif

��� else

��� �� lowestpage is an index page that does not have partly�covered record

��� �� similar to the leaf page case� omit�

��� endif

�
� �� Handle the pages which contain partly�covered records bottom�up

��� for x � level� � downto
 do

��� if path�x� has enough space then

��� if toparent is not empty then

��� Insert records from toparent to path�x��

��� endif

��� Split the rst fully�covered record in path�x�� if any�

��� else

��� Copy alive records from path�x� to buffer�

��� Add v to the rst fully�covered record in bu�er� if any�

�
� Copy toparent to buffer if it is not empty�

��� Create new index pages �from records in buffer� and store their references in toparent�

��� endif

��� endfor

��� �� Decide whether to create a new root page

��� if toparent is not empty then

��� Create a new root page from records in toparent�

��� endif

B Lemma and Theorem Proofs

Proof of Lemma � �If a page over�ows� the time split and possilbe key split will generate at most
d���

f
� �

�
e new pages�

If a leaf page over�ows� the max number of alive records to be copied is b� � So the max number
of newly generated pages is d b��

f �b e� Since f � b � �� d b��
f �b e � d �

f
� �

�
e � d���

f
� �

�
e� Suppose the

lemma is true for all the child pages of an index page p� If p over�ows� the max number of alive
records to be copied is b � d���

f
� �

�
e � � So the max number of newly generated pages is given by

d
b�d ���

f
�

�

�
e��

f �b e � d �
f
� �

�
� ����

f
� �

�
�e � d���

f
� �

�
e�

Proof of Lemma � �An insertion in an alive page p which does not over�ow introduces at most
d���

f
� �

�
e additions and at most
 logical deletions�

The reason why there are at most � logical deletions is straightforward
 For a leaf page� there is
only one record to be logically deleted� This is the partly�covered record �if there is one� or the �rst
fully�covered record �otherwise�� For an index page� there can be �� or � logical deletions
 If the
partly�covered child page is time split� the partly�covered record is logically deleted� if there is any
fully�covered record� the �rst fully�covered one is also logically deleted�

We now focus on additions� For a leaf page� there can be or � additions � for a fully�covered
record and � for a partly�covered one�� Since � � d���

f
� �

�
e� the lemma is correct for a leaf page� For

an index page� the possible additions are from splitting the �rst fully�covered record and from the
time split �and then key split� of the partly�covered child page� The maximum number of additions
from splitting the �rst fully�covered record is � The maximum number of additions from splitting
the partly�covered child page is d���

f
� �

�
e �lemma �� The total additions is thus at most d���

f
� �

�
e�

Proof of Lemma � �Given time t� any page p which is alive at t �except the root� contains at least

df �b
�
e records alive at t�

Let p�� p�� � � � � px be the longest successor path to p� i�e� �i � �� x � �� pi�� is a successor of pi and
px � p� Since p is not a root page� somewhere in the path there must be a key split� Let pi be the
result of the last key split which occur in the path� Suppose when pi was about to be generated�
there were x � f � b � y records� where x � � and � � y � f � b� Right after pi was generated� the
number of records in it is at least bx�f �b�y

x
c � bf � b� y

x
c � bf � b� f �b��

�
c � df �b

�
e�

Since in a page� the number of additions is no smaller than the number of deletions� for any time t
before pi�end� there are at least d

f �b
�
e records alive at t� For all j � �i� � x�� when pj is created� it

has at least df �b
�
e records alive at t since there were at least this many to be copied from pj�� and

there is no strong over�ow� For any later time before pj�end� the number of alive records does not
decrease�

�

Proof of Lemma � �The upper bound of the height of any sub�tree in a MVSBT is dlog
d f �b

�
e
�K � �e�

Given a tree in an MVSBT� Consider each time instant t � the lifespan of the tree root� Since there
are at most K di�erent keys ever inserted in the tree� there are at most K � di�erent leaf records
which are alive at t� Since each leaf page alive at t contains at least df �b

�
e records alive at t� there are

at most K��

d f �b
�
e
leaf pages alive at t� This also means that there are at most this many index records

which are alive at t and which point to these pages� So at one level up� there are at most K��

d f �b
�
e�
index

pages alive at t� This argument is true for all levels until the root� where there is only one page alive
at t� So there are at most dlog

d f �b
�
e
�K � �e� levels�

Proof of Theorem � �For a MVSBT� the number of disk page accesses is O�logbK� for an insertion
and O�logb n� for a point query� The space complexity is O�n

b
� logbK��

First� we examine the worst case insertion cost� An insertion operation �rst traverses the tree from
the latest root page to a leaf page� then traverses back� requiring constant number of I�Os per node
along the path� Since the tree height is dlog

d f �b
�
e
�K � �e � O�logbK�� an insertion needs O�logbK�

I�Os�

Second� we examine the cost of a point query� If the root page which is alive at the query time
instant is found� it takes O�logbK� I�Os to answer a point query in the worst case� If the root� is
kept as a B��tree� extra I�Os are needed to locate the root� Since after a root page is generated� it
takes at least O�b� insertions for it to over�ow �lemma ��� there are O�n�b� root pages� So it takes
O�logb n� to locate the root in the worst case� To sum up� a point query needs O�logb n� I�Os in the
worst case�

Last� we examine the worst case space complexity� We consider the total number of occupied slots
in all the SB�trees embedded in the MVSBT �if a record is copied� the two copies are considered to
occupy di�ernt slots�� We will show that each insertion creates O�logbK� new occupied slots� We
partition the occupied slots into two sets
 in the �rst set� the occupied slots are created from copying
existing occupied slots� the rest are in the second set� Each insertion creates O�logbK� slots in the
second set �lemma ���

For the �rst set
 We know that after a page is created� it takes at least O�b� insertions for it to
over�ow �lemma ��� So when a page over�ows� there were at least O�b� insertions that went through
this page after it was created� On the other hand� the over�ow introduces at most O�b� occupied
slots in the �rst set� So we can amortize the O�b� occupied slots to the O�b� insertions� Thus each
insertion creates O�� amortized copied slot for each page it goes through� Since an insertion goes
through at most O�logbK� pages� an insertion creates O�logbK� slots in the �rst set as well�

To sum up� each insertion creates O�logbK� occupied slots� So for n insertions the total number of
occupied slots is O�n � logbK�� Now we consider the minimum occupance of a page� Each non�root

page has at least df �b
�
e � O�b� occupied slots �lemma ��� Clearly� except for the last root� all the

root nodes have a minimum occupance of O�b�� too� So the total number of pages occupied by the
SB�trees in an MVSBT is O�n

b
� logbK��

Now we consider the space occupied by the root�� if it is kept in a B��tree� Since there can be at
most O�n�b� roots� the space occupied by the B��tree is O�n�b��� To add up� the overall space of
the MVSBT is O�n

b
� logbK��

�

