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Extended Abstract

A temporal aggregation query is an important but costly operation for applications that maintain time-
evolving data (data warehouses, temporal databases, etc.). Due to the large volume of such data, performance
improvements for temporal aggregation queries are critical. In this paper we examine techniques to compute
temporal aggregates that include key-range predicates (range temporal aggregates). In particular we concen-
trate on SUM, COUNT and AVG aggregates. This problem is novel; to handle arbitrary key ranges, previous
methods would need to keep a separate index for every possible key range. We propose an approach based
on a new index structure called the Multiversion SB-Tree, which incorporates features from both the SB-Tree
and the Multiversion B-Tree, to handle arbitrary key-range temporal SUM, COUNT and AVG queries. We
analyze the performance of our approach and present experimental results that show its efficiency.

1 Introduction

With the rapid increase of historical data in data warehouses, temporal aggregates have become
predominant operators for data analysis. Computing temporal aggregates is a significantly more
intricate problem than traditional aggregation without the time dimension. This is because each
database tuple is accompanied by a time interval during which its attribute values are valid. Con-
sequently, the value of a tuple attribute affects the aggregate computation for all those instants
included in the tuple’s time interval.

Many approaches have been recently proposed to address temporal aggregation queries ([Tum92,
KS95, YK97, GHR+99, MLI00, YWO01]). However, all previous research has considered the so-called
scalar temporal aggregates, where the temporal aggregates are computed over the whole key range
of the database relation. The most efficient among the previous approaches is the SB-tree ([YWO01])
which in addition can restrict temporal aggregation to a given time interval. Here we address the
more general range-temporal aggregation problem (RTA). In this problem, the temporal aggregate
is restricted by a time interval AND a key range. Since historical warehouses have large sizes, the
RTA query is a very useful and practical operation as it enables the warehouse manager to focus the
aggregation to any time-interval and/or key-range in the warehouse.

The paper concentrates on the SUM, COUNT and AVG aggregates. We first reduce the RTA query
into two subproblems, namely the less-key, single-time query and the less-key, less-time query. We
then propose a new index structure called the Multiversion SB-Tree (MVSBT) to solve these queries.
The proposed structure incorporates features from both the SB-Tree ([YWO01]) and the Multiversion
B-Tree (MVBT) ([BGO+96]). By using two MVSBTs we can maintain and compute RTA queries
very efficiently. In particular, computing an RTA takes O(log,n) I/Os, where b is the capacity
of a disk page and n is the number of tuples in the warehouse. Updating the MVSBT is done
incrementally as tuples are updated (an update takes O(log, K) I/Os, where K is the number of
different keys inserted into the warehouse). The space is bounded by O(% log, K).

We compare the performance of our approach against using a single index that first retrieves the
tuples of the warehouse which satisfy the RTA key-range and time-interval predicates, and then
computes the aggregate on the retrieved tuples. Possible choices for this index is a traditional
multidimensional index (like an R*-tree [BKS+90]) or a temporal index (like the MVBT [BGO+96]
or the TSB-tree [LS89]). We use the MVBT since it optimally solves a range-snapshot query (“find
all tuples with keys in range r that were alive at time ¢”). Our initial experimental results show that
our approach provides superior performance in computing RTA queries at the expense of a small
space overhead. It should be noted that since the temporal aggregation query can involve arbitrary
key ranges none of the previously proposed scalar methods is applicable. For example, the obvious
approach of having a separate SB-Tree for each possible key range will not be efficient because of
the large space requirements.

The rest of the paper is organized as follows. Section 2 discusses background and previous work.
The problem reduction is addressed in section 3. The MVSBT index is introduced and analyzed in
section 4. Section 5 discusses results from our experimental comparisons. Finally, section 6 presents
conclusions and open problems for further research.



2 Background

We first describe previous research on temporal aggregation queries including the SB-tree. We then
discuss the temporal data model assumed in our work and provide a short description of the MVBT.

2.1 Previous work on temporal aggregates

We consider four criteria for measuring the efficiency of a method that supports temporal aggregates.
(1) The method should maintain the aggregates incrementally as tuples are inserted/updated. (2)
The cost of inserting a new tuple should be independent from the tuple key and from the length
of the tuple’s interval. (3) The method should be disk-based, and, (4) the method should support
not only instantaneous but cumulative temporal aggregates as well ([YWO01, MLIOO]). The result of
an instantaneous temporal aggregate at a given time instant is computed from the tuples valid at
that instant. The value of a cumulative temporal aggregate at instant ¢ is computed from the tuples
whose intervals intersect interval [t — w, t], for any given window offset w.

[Tum92] presents a non-incremental two-step approach where each step requires a full database scan.
First the intervals of the aggregate result tuples are found and then each database tuple updates
the values of all result tuples that it affects. This approach computes a temporal aggregate in
O(mn) time, where m is the number of result tuples (at worst, m is O(n); but in practice it is
usually much less than n). Note that this two-step approach can be used to compute range-temporal
aggregates, however the full database scans makes it inefficient. [KS95] uses the aggregation-tree, a
main-memory tree (based on the segment tree [PS85]) to incrementally compute temporal aggregates.
However the structure can become unbalanced which implies O(n) worst-case time for computing
a scalar temporal aggregate. [KS95] also presents a variant of the aggregation tree, the k-ordered
tree, which is based on the k-orderness of the base table; the worst case behavior though remains
O(n). [GHR499, YK97] introduce parallel extensions to the approach presented in [KS95]. [MLI00]
presents an improvement by considering a balanced tree (based on red-black trees). However, this
method is still main-memory resident. A seminal work on incremental, disk-based, scalar temporal
aggregate computation appears in [YWO01], where the SB-tree index is introduced. Since our work
draws from the SB-tree we will discuss its properties below; for more details we refer to [YWO01].

2.2 The SB-tree

The SB-tree incorporates properties from both the segment tree ([PS85]) and the B-tree. The segment
tree features ensure that the index can be updated efficiently when tuples with long intervals are
inserted or deleted. The B-tree properties make the structure balanced and disk-based. Conceptually
the SB-tree indexes the time domain of the aggregated tuples. Each interior tree node contains
between b/2 and b records, each record representing one contiguous time interval. For each interval,
a special value is also kept in the record that will be used to compute the aggregate over this interval.
Intervals are kept in both interior and leaf nodes. Moreover, the overall interval associated with a
node contains all intervals in the node’s subtrees.

An advantage of [YWO01] is that an instantaneous temporal aggregate is computed by recursively
searching the SB-tree (starting from the root) and accumulating the aggregate value along the tree
nodes visited. This results in fast aggregate computation time, namely, O(log, n). Note that a special
“compaction” algorithm is also presented that merges leaf intervals with equal aggregate values. This
can reduce the height of the tree and hence its aggregate computation to O(log, m).

The second advantage of the SB-tree is its fast update time, which is also logarithmic. The insertion
of a new tuple with interval ¢ and attribute value v is first directed into the root node. Each root
record whose time interval is fully contained in 7 is updated by value v (the kind of update depends
on the aggregate maintained by the SB-tree). Whenever interval i is partially contained by a root
record, it is recursively inserted in the subtree under this root record. The SB-tree allows physically
deleting tuples from the warehouse. Such a deletion is represented as an insertion of a new tuple
with a negative attribute value v.

To support cumulative SUM, COUNT and AVG aggregates with arbitrary window offset w, two
SB-trees are used, one maintaining the aggregates of records valid at any given time, while the other
maintaining the aggregates of records valid strict before any given time. To compute the aggregation



query, the approach first computes the aggregate value at the end of interval w. It then adds the
aggregate value of all records with intervals strictly before the end of w and finally subtracts the
aggregate value of all records with intervals strictly before the beginning of w. Finally, we note that
a special extension of the SB-tree (the min/max SB-tree) can be used to support MIN and MAX
aggregates, too.

2.3 Temporal Data Model

For simplicity, we assume that each tuple in the warehouse is stored as a record that contains a key, a
time interval and an attribute whose value is to be aggregated. We follow the First Temporal Normal
Form (1TNF) (]SS88]) which specifies that there are no two tuples with equal keys and intersecting
intervals. Without loss of generality, we assume that both keys and time instants are positive integers.
Let the key space be [1, mazkey) and the time space be [1, maxtime). A time interval (or interval in
short) has the form: [start,end) where 1 < start < end < maztime. An interval reduces to a time
instant when end = start + 1. Similarly, a key range (or range in short) has the form [low, high)
where 1 < low < high < maxkey. A range reduces to a key when high = low + 1. For two ranges
r1, r2 which do not intersect, we say rI is lower than r2 if r1.high < r2.low. A record rec is alive at
time ¢t if ¢ € rec.interval. A rectangle R in the key-time space consists of an key range R.range and
a time interval R.interval. A record z is in rectangle R if z.key € R.range and z.interval intersects
with R.interval.

When considering temporal data, it is important to distinguish the time model used by the temporal
application. In the temporal database literature two time dimensions have been proposed, namely
the valid-time and the transaction-time ([J+98]). The kind of updates supported on the temporal
data depends on whether valid-time or transaction-time (or both) is supported ([KTF98]). In a valid-
time environment when a tuple is inserted in the database, its associated interval is fully known.
Moreover, tuples can be added and deleted from the database in any order. After a tuple is deleted
its record is physically removed from the database (and thus cannot be further queried). The SB-
tree has been designed for the valid-time environment. In contrast, a transaction-time environment
assumes that tuple updates arrive in the database ordered by time. Hence, when a tuple is inserted
at time t;, its record’s interval is initiated as [t;, now) where now is a variable representing the ever
increasing current time (in practice, variable now is stored as maxtime). However, a tuple deletion
is not physical but logical. For example, if the above tuple is deleted at time ¢; its record’s interval
end is updated from now to ;. That is, the record is still maintained in the database and can be
queried. Since deletions are logical, in a transaction-time environment we cannot change the past.
Equivalently, the transaction-time model maintains the history of a time-evolving database. The
ability to change the past is useful in cases where errors are discovered in the recorded information.

In this paper we assume that the warehouse follows the transaction-time model. We feel that this is a
practical scenario since in many applications changes arrive in their time order. Furthermore, in our
view, the number of erroneous tuples in a data warehouse is much smaller than the correct ones and,
if needed, any corrections can be kept separately. Moreover, few errors are usually not important
when considering aggregate values over a large number of tuples. Assuming the transaction-time
model has a major influence on the index used to support aggregate queries. Since updates arrive in
order, the index does not have to order them.

2.4 Partially Persistent B-trees

A data structure is called persistent if an update creates a new version of the data structure while
the previous version is still retained and can be accessed. If the old version is discarded, the structure
is called ephemeral. Partial persistence implies that updates are applied only at the latest version
of the data structure, creating a linear version order. Clearly, partial persistence fits nicely with
the notion of transaction-time; version numbers can be replaced by the ordered sequence of time
instants. As we will show, the MVSBT is a SB-tree made partially persistent. Our approach has
been influenced by the MVBT ([BGO+96]) which is a structure that makes a B+-tree partially
persistent.

Conceptually, the MVBT is a graph that maintains the evolution of a B+-tree over time. It has
many roots, each responsible for accessing the B+-tree as it was during a specific time interval. The



MVBT partitions the key-time space into rectangles where each rectangle is associated with exactly
one data page. A tuple’s record is stored in all the data pages whose key-time rectangle contains
the tuple’s key and intersects its interval. The page rectangles are created recursively. As records
are inserted into a certain page of a MVBT, this page may overflow. Then, the page’s alive records
are copied to another page. The kind of copying is based on the number of alive records in the
overflowed page. A time split simply copies all alive records into a new page. If many alive records
exist, the time split is followed by a key split that distributes them into two new pages according to
the median of their key attribute.

Data records are inserted in the MVBT in increasing time order. An important feature of the
MVBT is that it guarantees a minimum key density for every page. In particular, for any time ¢
in the page’s rectangle, the page contains at least d records that are alive at ¢, where d is linear to
the page capacity. If after a deletion, the key density of the page drops below the threshold d (weak
underflow), the alive records in the page and a sibling page are copied into a new page. To avoid
frequent merge/splits, the number of records in a new page must be between a lower bound and a
higher bound (strong condition).

The MVBT optimally solves (in linear space) the range-snapshot query: “find all tuples with keys
in range r that were alive at time ¢”. If the query answer has size s, the MVBT finds this answer in
O([logyn + s/b]) 1/0s.

3 Problem Reduction

Since AVG = SUM / COUNT, we focus on SUM and COUNT. Below we reduce an RTA query for
SUM(COUNT) to two subqueries.

Definition 1 Given a temporal relation T, key k and time t, a less-key, single-time (LKST)
query finds the aggregate value of all tuples from T whose keys are less than k and whose intervals
contain t.

Definition 2 Given a temporal relation T, key k and time t, o less-key, less-time (LKLT) query
finds the aggregate value of all tuples from T whose keys are less than k and whose end times are
less than or equal to t.

Intuitively, a tuple with end < ¢ has been alive strictly before .

Theorem 1 Solving the RTA query for SUM and COUNT is reduced to solving the LKST and the
LKLT queries.

Proof. We use SUM in the proof since the same discussion holds for COUNT. Let the query rectangle
be [k1,k2) x [t1,12). Let t3 =ty — 1 and let 7 = [k1, k2). If we only consider tuples with keys in r, the
SUM of the values of tuples whose intervals intersect [t1,¢3] is equal to the the SUM of the values
of those tuples alive at t3 plus that of those tuples alive strictly before 3 minus that of those tuples
alive strictly before £;. This can be described by the following equation:

SUM (r,[t1,t3]) = SUM (r,t3) + SUM (r,end < t3) — SUM (r,end < t1).
We now consider all the tuples alive at ¢t3. SUM/(r,t3) can be computed as the SUM of the values
of the tuples whose keys are less than ks minus the SUM of the tuples of the records whose keys are
less than k;. Or,
SUM(T', t3) = SUM(key < k‘z, t3) — SUM(k:ey < k?l, t3) = LKST(ICQ, t3) — LKST(kl, t3)

Similarly, we have:

SUM (r,end < t3)
SUM (r,end < t1)

LKLT (ky, t3) — LKLT (ky, t5)
LKLT (ky,t,) — LKLT (ky, ).

Hence, we get:

RTA([k1, ko), [t1,ts]) = LKST(ks,ts) + LKLT (k,ts) + LKLT (ki,t,)
—  LKST(ki,t;5) — LKLT (ki,t3) — LKLT (ks t1) (1)



Thus a RTA query is reduced to two LKST queries and four LKLT queries. O

In order to support the RTA queries, we will present an access method that combines two index
structures: one index supporting the LKST queries and the other supporting the LKLT queries.
According to equation 1 above, an RTA aggregation query is transformed to six point queries for
the LKST and LKLT indices. It remains to show how inserting and updating a temporal tuple is
represented by each of the LKST and LKLT indices. Inserting a new tuple affects only the LKST
index. In particular, to insert a tuple with key k£ and value v at time ¢;, the LKST index should add
v to all the points in [k + 1, mazkey) x [t1, maxtime) (figure 1la). We denote such an operation in
the LKST index as an insertion of (k 4 1,#;) : v. Logically deleting a tuple affects both indices. To
logically delete the above tuple at a later time ¢9, the LKST index should subtract value v from, or
equivalently, add value —v to, all the points in [k + 1, mazkey) x [to, maxtime) (figure 1b). This is
denoted as an insertion of (k + 1,%2) : —v. This logical deletion is also transformed into an insertion
in the LKLT index: add value v to all the points in the rectangle [k + 1, mazkey) x [t2, maztime)
(figure 1c), which is denoted as (k + 1,2) : v.

key key key

B &l &

k — k —

t1 2 time t1 2 time t1 2 time
(a) insertion:LKST (b) deletion:LKST (c) deletion:LKLT

Figure 1: Transforming the insertion and (logical) deletion operations

Hence both the LKST and LKLT indices can be implemented by the same structure. This structure
should support: (1) Efficient insertion operations of the form: “given key k, time ¢ and value v,
add v to the values associated with all the points in the rectangle [k, mazkey) x [t, maztime)”; (2)
Efficient point queries as in: “given key k and time ¢, find the value associated with this point in the
key-time space”.

Now we focus on designing such a structure. First, let’s assume the time dimension is fixed to
some time instant ¢ and focus on the key dimension. The structure should logically store a value
at every key in the key space. This is expensive, since there are many keys. If adjacent keys store
the same value, the keys can be combined into a key range. So what really should be stored is a
set of non-intersecting key ranges whose union is the key space, where a value is associated with
each range. Now, the insertion operation needs to update all the stored ranges that intersect [k,
mazkey). Obviously, the smaller £ is, the more ranges need to be updated. Our goal is to have an
structure whose insertion time is independent to where k£ is. This scenario reminds of the SB-tree
which supports efficient insertions of a time interval independently to where and how long the time
interval is. So, by using an SB-tree for the key dimension, the requirement of efficient insertion is
satisfied. The requirement of efficient point query is also satisfied, since the SB-tree is efficient in
finding the value associated with any given point.

So far we have found the solution for a fixed time instant. To find a solution for the whole time space,
a natural extension is to make an SB-tree partially persistent. Logically, the partially-persistent SB-
tree (also called Multiversion SB-tree) is equivalent to a series of SB-trees, one at each time instant.
An insertion operation and a point query involving time ¢ are directed to the SB-tree corresponding
to t. Physically, of course, it is too expensive to store a separate SB-tree at every time instant. The
features from the MVBT can be applied to reduce the space. While logically equivalent to a set of
B+-trees, one at each time instant, the MVBT nicely embeds the set of B4-trees in such a way that
the overall space is linear ([BGO+96]). Hence a Multiversion SB-tree satisfies the requirements we
had set for the structure design.

4 The Multiversion SB-tree

The MVSBT is a new index that supports efficiently the insertion operation: “given key k, time ¢
and value v, add v to the values associated with all the points in the rectangle [k, mazkey) x [t,



maxtime)”; and the point query: “given key k and time ¢, find the value associated with this point
in the key-time space”.

4.1 Basic Idea

The MVSBT is a directed acyclic graph of disk-resident nodes that results from incremental insertions
to an initially empty SB-tree. It has a number of SB-tree root nodes that partition the time space in
such a way that each SB-tree root stands for a disjoint time interval and the union of these intervals
covers the whole time space. A point query for a certain time instant ¢ is directed to the root node
whose time interval contains ¢. References to the root nodes are maintained in a structure called
root* which can be implemented as a B+-tree.

There are two types of pages in a MVSBT: the index pages and the leaf pages, all having the same
size. An index page contains routers pointing to child pages, while a leaf page does not. For
simplicity, we assume that both a leaf page and an index page have the same mazimum capacity
of b records. A leaf record (one stored in a leaf page) has the form (range,interval,value) where
range, interval gives a rectangle in the key-time space and value is an aggregate value which is
associated with every point in the rectangle. An indez record (one stored in an index page) has the
form (range,interval,value, child). Compared with a leaf record, it has a router pointing to some
child page. Each page p also has a rectangle, where p.range is the union of the ranges of all the
records in the page and p.interval is the time interval between the time the page is created and
the time the page is copied. A page is said to be alive if it has not been copied yet. The following
property shows the relationships among the records in a page:

Property 1 All the records in a MVSBT page have non-intersecting rectangles whose union is equal
to this page’s rectangle.

Since we assume that insertions come in non-decreasing time order, an insertion only goes into an
alive page and it only affects the alive records in the page. Consider an alive page p and all the alive
records in p. Due to property 1, the key ranges of these records do not intersect and their union
is equal to p.range. For ease of discussion, we define some terms regarding the alive records in p.
Given a key k € p.range, a partly-covered record is one whose key range intersects with, but is not
contained in, [k, mazkey); a fully-covered record is one whose key range is contained in [k, mazkey);
a first fully-covered record is a fully-covered record whose key range is lower than that of any other
fully-covered record. Obviously, for any key k& € p.range, there can be at most one partly-covered
record and at most one first fully-covered record. If p is an index page, we also call the child page
which is pointed to by the partly-covered record as the partly-covered child page.

Since a record in the MVSBT has a rectangle (and not just a key range as it would be if we had
kept an SB-tree for each time instant), the insertion algorithm needs to be modified accordingly.
Assume the insertion of key k, time ¢ and value v (represented as (k,t) : v) goes into page p. All
the fully-covered records in p should be split vertically at ¢ (and by adding v to the value of the
newly copied record). If there is a partly-covered record, the insertion algorithm should recursively
insert into the partly-covered child page; at the leaf level, the partly-covered record is split into three
(vertically at ¢ and then horizontally at k, adding v to the top-right copy).

If an insertion causes a page to have more than b records, an over flow occurs. All the alive records
in the page is copied to a new page, and the start times of all the copied records are changed to the
current insertion time. We call such an copy operation a time split. After a time split, the newly
generated page may be almost full. In such a case, a few subsequent insertions in the page trigger
a time split again, resulting a space cost of ©(1) block per insertion. To avoid this phenomenon,
we require that after a time split, the new block should have at most f - b records, where constant
f € (0,1) is called the strong factor. We call this requirement the strong condition. If a newly
generated page due to a time split strong overflows (having more than f - b records), it is key split,
that is, it is split into two (or more, if f is small) by key and the records are distributed evenly
among these pages.

4.2 Optimizations
In this section we discuss three optimization techniques which apply to the MVSBT.



4.2.1 Aggregation in a Page

It is expensive to split all the fully-covered records in a page (each insertion introduces ©(b) records).
We propose an optimization technique which ensures that if there is no overflow, at most one (“rep-
resentative”) record is split in a page. The idea is that we only split the record with the smallest
key range (the partly-covered record for a data page, or the first fully-covered record for an index
page). This split physically adds a value v to only one record. We refer to this operation as logical
splitting. In order to deliver the correct response to a query, we have to modify the point query
algorithm in the following way. A point query of (k,t) still aggregates the values of all the records
containing the point along a path from root to leaf; but the value for each such record rec in page p
is computed as the sum of all the records in p whose intervals contain ¢ and whose ranges contain k
or are lower than k.

This optimization also affects the key-split procedure. Before the key split of page p, the actual value
of an alive record is computed as the sum of the values of all the alive records ‘below’ it (i.e., records
having a smaller key range). If we key-split p into two pages, the sum of values of all the records
in the page with the lower range should be added to the lowest record in the page with the higher
range.

4.2.2 Record Merging

Record merging, if applicable allows to compact more records in a page and thus leads to less overall
space. Two leaf records Irecy, Irecy in the same page can be merged either horizontally (time
merge) or vertically (key merge). A time merge can take place if (a) lreci.range = lrecg.range; (b)
Irecy.end = lrecy.start; and (c¢) lreci.value = lrecy.value (figure 2a). A key merge can take place if
(a) lrecy.interval = lrecs.interval; (b) Irecy.high = lrece.low; and (c) lreco.value = 0 (figure 2b).

| re‘:cl | rt‘acz | I"BC Irec2
¥ ¥ ¥ —= |rec v
—_— v
v v ‘ v ‘ Irecl

(a) time merge (b) key merge

Figure 2: Time merge and key merge of two records

The index records can be merged similarly. The difference of merging index records from merging
leaf records is that two index records can be merged only if they point to the same child page.

4.2.3 Page Disposal

Since we allow many insertions at the same time instant we should update the index about the “net”
effect of these insertions. However, our algorithms process one update at a time. Hence we introduce
the page-disposal optimization, which spares the index from “indermediate” results. If a page which
is created at time ¢ takes some subsequent insertions also at ¢ and overflows, after the page is time
split and key split, the page itself as well as the index record pointing to it can be physically removed
from the index. This optimization saves space, too.

4.3 An Example

In this section, we assume b = 6 and f = 0.5. Initially, the MVSBT has one root page, R;, which
is also a leaf. There is one record in it having value = 0 (figure 3a). After we insert (20,2) : 1, the
PSRN SPERHS AP 1 iRl vclow PN S R e S eEop el R Th NS foras
into a new page. If the new page satisfied the strong condition, it would be registered as the new
root and the insertion would be complete. However, it strong overflows. So a key split takes place
which distributes the records evenly into two pages (figure 3e). Note how the value of the first record
in the page with higher range is modified. The tree after the insertion is shown in figure 3f. We now
consider the insertion of (10,5) : —1. In the alive root Rp, the first fully-covered record is split, and
the insertion recursively goes to the partly-covered child page A. Since there is no partly-covered
record in A, the first fully-covered record is split. The result is shown in figure 3g. Yet another
insertion of (5,5) : 1 would lead to a time merge in Ry and a time merge in R;. The figure is omitted
due to space limitations.
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(a) theinitid MVSBT  (b) after inserting <20, 2>:1 (c) after inserting <10, 3>:1 (d) inserting <80, 4>:1  (e) strong overflow leads to akey split
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(f) after inserting <80, 4>:1, there are two roots (g) after inserting <10, 5>:-1

Figure 3: An example of insertions in an MVSBT

4.4 Complexity Analysis

For ease of discussion, we assume the record merging and the page disposal optimizations are not
applied. Though these techniques improve performance, the worst-case bounds presented in the
following also hold without emplying the techniques. Due to space limitations, the proofs of the
lemmas and the theorems are given in Appendix B. Let us discuss the impact of the strong factor
f- Due to the strong condition, there are at most fb alive records in a page that has been created.
In order to guarantee a fan-out of at least 2, f has to be greater than %

If a page overflows, the max number of new pages to be generated is given in lemma 1.

Lemma 1 If a page overflows, the time split and possible key split will generate at most [1—f5 + %]
new pages.

After a page p is created and before it is copied, the effect of an insertion in p may be the addition
of some new records and the logical deletion of some others. The amount of additions and logical
deletions are bounded as shown in lemma 2.

Lemma 2 An insertion in an alive page p which does not overflow introduces at most [% + %]
additions and at most 2 logical deletions.

Lemma 3 Given time t, any page p which is alive at t (except the root) contains at least [%] records
alive at t.

Suppose K is the number of different keys ever inserted into the MVSBT. Lemma 4 gives the upper
bound of the height of a MVSBT in regards to K.

Lemma 4 The upper bound of the height of any sub-tree in a MVSBT is [log(ﬂ] (K +1)].

2
Suppose there are n insertions in a MVSBT. Theorems 2 states the worst-case insertion cost, point
query cost and the space complexity, respectively.

Theorem 2 For a MVSBT, the number of disk page accesses is O(log, K) for an insertion and
O(log,n) for a point query. The space complexity is O(% -log, K ).

A corollary of theorems 1 and 2 summarizes the performance of maintaining and computing the
range-temporal aggregates as follows.

Corollary 1 Using two MVSBTs, a SUM, AVG, COUNT RTA query is answered in O(log,n) I/0s.
The insertion/deletion cost is O(log, K ) while the space complezity is O(7 - log, K).

The O(logy n) in the RTA query time is due to the time needed identifying the root of the appropriate
SB-tree in the MVSBT graph. In practice, this search can be even faster if all different SB-tree roots



created in the evolution are kept in a main-memory array, in which case the query time is reduced
to traversing the appropriate SB-tree, i.e., O(log, K).

5 Performance Results

We present results comparing the performance of our approach with a naive approach where the
temporal records are kept in a traditional temporal index, the MVBT ([BGO+96]).

The algorithms are implemented in C++ using GNU compilers. The programs run on a Sun Enter-
prise 250 Server machine with two 300MHz UltraSPARC-IT processors using Solaris 2.8. The main
memory size is 512 MB. To compare the performance of the various algorithms we use the estimated
running time. This estimate is commonly obtained by multiplying the number of 1/O’s by the av-
erage disk page read access time, and then adding the measured CPU time. Following the practice
in [APR+00], we measure the CPU cost by adding the amounts of time spent in user and system
mode as returned by the getrusage system call. We assume all disk I/Os are random. A random
disk access takes 10ms on average. We use a 4KB pagesize. For both MVSBT and MVBT we used
LRU buffering and the default buffer size is 64 pages. The MVSBT uses a strong factor f = 0.9.

All the datasets we use were initially created using the TimelT software ([KS98]) and then trans-
formed to add record keys. We studied the effect of both uniformly distributed and normally dis-
tributed keys. Each dataset has 1 million records. The key, start, end, value attributes of each record
are all 4 bytes long. The key space is [1, 10°) and the time space is [1, 10%). A dataset contains
10,000 unique keys where on average there are 100 different records with the same key. We tested
datasets with mainly long-lived intervals and with mainly short-lived intervals.

Figure 4a shows the space requirements for the MVBT and the two-MVSBT approach, for a dataset
with uniformly distributed keys and with mainly long-lived intervals. The two-MVSBT approach
used about 2.5 times more space than the single MVBT. This is to be expected, since the worst case
space of each MVSBT has a O(log, K) overhead. We observed a similar behavior for the update
time per insertion/deletion as well.
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Figure 4: Space and query performance comparisons

For the query performance we measured the execution time of 100 randomly generated query rect-
angles with fixed rectangle shape and size. The shape of a query rectangle is described by the R/T
ratio, where R is the length of the query key range divided by the length of the key space and I is
the length of the query time interval divided by the length of the time space. The query rectangle
size (QRS) is described by the percentage of the area of the query rectangle in the whole key-time
space.

Figure 4b shows how much faster the two-MVSBT approach is over the MVBT for the RTA query.
Clearly, the larger the QRS is, the more advantageous the two-MVSBT approach is over the MVBT.
When the query rectangle is the whole key-time space, the two-MVSBT is more than 5000 times
faster than the naive approach! This is to be expected, since the query performance of the two-
MVSBT is independent to the QRS, while the naive approach in the worst case scans the whole
dataset. Figure 4c compares the query performance of QRS=1% of the key-time space over various
buffer sizes. Again, the two-MVSBT approach is clearly superior.



6 Conclusions

Temporal aggregates have become predominant operators in analyzing historical data. This paper
examines temporal aggregation queries in the presence of key-range predicates (RTA queries). Such
queries allow the warehouse manager to focus on tuples grouped by some key range over a given time
interval. We proposed a new index structure, the Multiversion SB-Tree (MVSBT), for incrementally
maintaining and efficiently computing RTAs. The aggregates we considered are SUM, COUNT
and AVG. The MVSBT has very fast (logarithmic) query time and update time, at the expense of a
small space overhead. Initial performance results show the benefits of our solution. There are various
interesting problems for further research: (i) how to optimize the performance of the MVSBT with
factor f, (ii) how to support MIN/MAX temporal aggregate queries with range predicates, and, (iii)
how to extend this work for spatiotemporal (i.e. multidimensional) aggregates.
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A Insertion and Query Algorithms for the MVSBT

This appendix formally describes the insertion and point query algorithms for the MVSBT. To be
clear, in the insertion algorithm we omit the details of the optimizations given in section 4.2.

Algorithm PointQuery( Key k, Time ¢ )

1. Find the root page p which is alive at t;
2. Return PagePointQuery( p,k,t ).

Algorithm PagePointQuery( Page p, Key k, Time t )

v = 0;
for every record rec in p do
if rec is alive at ¢t and rec.low < k then
v = v + rec.value;
endif
endfor
if p is a leaf page then
return v;
else

© 0N oE W

—
e

Find the record rec whose rectangle contains < k,t >;
return v + PagePointQuery( rec.child, k, t);
12. endif

[y
[y

Algorithm Insert( Key k, Time t, Value v )

1. // Find the path of nodes containing partly covered records
2. level = 0;
3. lowestpage = ReadPage(the latest root); // ReadPage reads a page from disk if it is not in memory.
4. while lowestpage is an index page and lowestpage contains a partly-covered record irec, do
5. path[level] = lowestpage;
6. level + +;
7. lowestpage = ReadPage(irec.child);
8. endwhile
9. // Handle lowestpage
10. if lowestpage is a leaf page then
11. if lowestpage has enough space then
12. if there is a partly-covered record then
13. Split it in lowestpage;
14. else
15. Split in lowestpage the first fully-covered record;
16. endif
17. else
18. Copy alive leaf records from lowestpage to buf fer;
19. if there is a partly-covered record then
20. Split it in buf fer;
21. else
22. Add v to the first fully-covered record in buf fer;
23. endif
24. Create new leaf pages (from records in buf fer) and store their references in toparent;
25. endif
26. else
27. // lowestpage is an index page that does not have partly-covered record
28. // similar to the leaf page case; omit.
29. endif
30. // Handle the pages which contain partly-covered records bottom-up
31. for z = level — 1 downto 0 do
32. if path[z] has enough space then
33. if toparent is not empty then
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34. Insert records from toparent to pathz];

35. endif

36. Split the first fully-covered record in path[z], if any;

37. else

38. Copy alive records from path[z] to buf fer;

39. Add v to the first fully-covered record in buffer, if any;

40. Copy toparent to buf fer if it is not empty;

41. Create new index pages (from records in buf fer) and store their references in toparent;
42. endif

43. endfor

44. // Decide whether to create a new root page

45. if toparent is not empty then

46. Create a new root page from records in toparent;
47. endif

B Lemma and Theorem Proofs

Proof of Lemma 1 (If a page overflows, the time split and possilbe key split will generate at most
(% + 1] new pages)

If a leaf page overflows, the max number of alive records to be copied is b+ 1. So the max number
of newly generated pages is [”;r—.bl]. Since f - b > 3, [b;“—bl] < [% +1] < [l—f‘r’ + £7]. Suppose the
lemma is true for all the child pages of an index page p. If p overflows, the max number of alive
records to be copied is b+ [ 5 1 11— 1. So the max number of newly generated pages is given by

b+[E24+11-1
[ —1<F+5- R+ DI<[¥+4o
Proof of Lemma 2 (An insertion in an alive page p which does not overflow introduces at most

[1f5 + 3] additions and at most 2 logical deletions)

pag
I
+3

The reason why there are at most 2 logical deletions is straightforward: For a leaf page, there is
only one record to be logically deleted. This is the partly-covered record (if there is one) or the first
fully-covered record (otherwise). For an index page, there can be 0, 1 or 2 logical deletions: If the
partly-covered child page is time split, the partly-covered record is logically deleted; if there is any
fully-covered record, the first fully-covered one is also logically deleted.

We now focus on additions. For a leaf page, there can be 1 or 2 additions (1 for a fully-covered
record and 2 for a partly-covered one). Since 2 < [% + %], the lemma is correct for a leaf page. For
an index page, the possible additions are from splitting the first fully-covered record and from the
time split (and then key split) of the partly-covered child page. The maximum number of additions
from splitting the first fully-covered record is 1. The maximum number of additions from splitting
the partly-covered child page is (1f—5 + 17 (lemma 1). The total additions is thus at most (% +3]. O

Proof of Lemma 3 (Given time t, any page p which is alive at t (except the root) contains at least

[%] records alive at t)

Let p1,po,---,py be the longest successor path to p, i.e. Vi € [1,2 — 1], p;11 is a successor of p; and
pz = p. Since p is not a root page, somewhere in the path there must be a key split. Let p; be the
result of the last key split which occur in the path. Suppose when p; was about to be generated,
there were = - f - b — y records, where x > 2 and 0 < y < f-b. Right after p; was generated, the
number of records in it is at least LWJ =[f-b=L]>[f-b— %J = [%]

Since in a page, the number of additions is no smaller than the number of deletions, for any time #1
before p;.end, there are at least [%] records alive at t1. For all j € [i + 1, x|, when p; is created, it

has at least [%] records alive at ¢1 since there were at least this many to be copied from p; ; and
there is no strong overflow. For any later time before p;.end, the number of alive records does not
decrease. O
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Proof of Lemma 4 ( The upper bound of the height of any sub-tree in a MVSBT is [log[ﬂ1 (K +1)]):
2

Given a tree in an MVSBT. Consider each time instant ¢ € the lifespan of the tree root. Since there
are at most K different keys ever inserted in the tree, there are at most K + 1 different leaf records

which are alive at £. Since each leaf page alive at ¢ contains at least [%] records alive at ¢, there are

at most % leaf pages alive at ¢. This also means that there are at most this many index records
=
which are alive at ¢t and which point to these pages. So at one level up, there are at most [7[‘(—11——_]12 index
=

pages alive at ¢. This argument is true for all levels until the root, where there is only one page alive
at t. So there are at most “Og[M] (K+1)]+1 levels. O
2

Proof of Theorem 2 (For a MVSBT, the number of disk page accesses is O(logy, K ) for an insertion

and O(log,n) for a point query. The space complezity is O(7 -log, K))

First, we examine the worst case insertion cost. An insertion operation first traverses the tree from

the latest root page to a leaf page, then traverses back, requiring constant number of I/Os per node

along the path. Since the tree height is [log(ﬁ] (K +1)] = O(log, K), an insertion needs O(log, K)
2

I/Os.

Second, we examine the cost of a point query. If the root page which is alive at the query time
instant is found, it takes O(log, K) I/Os to answer a point query in the worst case. If the rootx is
kept as a B+-tree, extra I/Os are needed to locate the root. Since after a root page is generated, it
takes at least O(b) insertions for it to overflow (lemma 2), there are O(n/b) root pages. So it takes
O(log, n) to locate the root in the worst case. To sum up, a point query needs O(log,n) I/Os in the
worst case.

Last, we examine the worst case space complexity. We consider the total number of occupied slots
in all the SB-trees embedded in the MVSBT (if a record is copied, the two copies are considered to
occupy differnt slots). We will show that each insertion creates O(log, K) new occupied slots. We
partition the occupied slots into two sets: in the first set, the occupied slots are created from copying
existing occupied slots; the rest are in the second set. Each insertion creates O(log, K) slots in the
second set (lemma 2).

For the first set: We know that after a page is created, it takes at least O(b) insertions for it to
overflow (lemma 2). So when a page overflows, there were at least O(b) insertions that went through
this page after it was created. On the other hand, the overflow introduces at most O(b) occupied
slots in the first set. So we can amortize the O(b) occupied slots to the O(b) insertions. Thus each
insertion creates O(1) amortized copied slot for each page it goes through. Since an insertion goes
through at most O(log, K) pages, an insertion creates O(log, K) slots in the first set as well.

To sum up, each insertion creates O(log, K) occupied slots. So for n insertions the total number of
occupied slots is O(n - log, K). Now we consider the minimum occupance of a page. Each non-root
page has at least [%] = O(b) occupied slots (lemma 3). Clearly, except for the last root, all the
root nodes have a minimum occupance of O(b), too. So the total number of pages occupied by the
SB-trees in an MVSBT is O(7 - log, K).

Now we consider the space occupied by the rootx, if it is kept in a B+-tree. Since there can be at

most O(n/b) roots, the space occupied by the B-+-tree is O(n/b?). To add up, the overall space of
the MVSBT is O(§ - log, K). O
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