
TEMPOS: A Platform for Developing
Temporal Applications on top of Object DBMS

Marlon Dumas and Marie-Christine Fauvet and Pierre-Claude Scholl

January 8, 2001

TR-53

A TIMECENTER Technical Report

����� TEMPOS: A Platform for Developing Temporal Applications on top of
Object DBMS

Copyright c� 2001 Marlon Dumas and Marie-Christine Fauvet and Pierre-
Claude Scholl. All rights reserved.

�����	
�� Marlon Dumas and Marie-Christine Fauvet and Pierre-Claude Scholl

���������� �����	� January 2001. A TIMECENTER Technical Report

�IME�ENTER�	���������

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Heidi Gregersen, Dieter Pfoser,
SimonašSaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon

Individual participants
Curtis E. Dyreson, Bond University, Australia
Fabio Grandi, University of Bologna, Italy
Nick Kline, Microsoft, USA
Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
John F. Roddick, University of South Australia, Australia
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, amazon.com, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, University of Mons-Hainaut, Belgium
Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.
The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

This paper presents TEMPOS 1, a set of models and languages intended to seamlessly extend the
ODMG object database standard with temporal functionalities. The proposed models exploit object-
oriented technology to meet some important, yet traditionally neglected design criteria, related to legacy
code migration and representation independence.

Two complementary ways for accessing temporal data are offered: a query language and a visual
browser. The former one, namely TEMPOQL, is an extension of OQL supporting the manipulation
of histories regardless of their representations, by composition of functional constructs. Thereby, the
abstraction principle of object-orientation is fulfilled, and the functional nature of OQL is enforced.
The visual browser on the other hand, offers operators which support several time-related interactive
navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting
and examining changes within temporal attributes and relationships.

TEMPOSmodels and languages have been fully formalized both at the syntactical and the semantical
level and have been implemented on top of the O2 DBMS. Their suitability with regard to applications’
requirements has been validated through concrete case studies.

Index terms: temporal databases, temporal data models, temporal query languages, time represen-
tation, upward compatibility, object-oriented databases, ODMG.

1 Introduction

Temporal data handling is a pervasive aspect of many applications built on top of Database Management
Systems (DBMS). Accordingly, most of these systems provide datatypes corresponding to the concepts of
date and span. These datatypes are adequate for modeling simple temporal associations such as the date of
birth or the age of a person. However, they are insufficient when it comes to model more complex ones,
such as the history of an employee’s salary, or the sequence of annotations attached to a video. Since no
datatypes dedicated to these kinds of associations are currently provided by DBMS, type constructors such
as “list” and “tuple” should be used instead to encode them. The semantics of this encoding must then be
integrated into the application programs, thereby increasing their complexity. Temporal database systems
aim at overcoming these deficiencies [48, 41, 25, 44].

Research in this area has been quite prolific regarding extension proposals to data models and query lan-
guages. Whereas in the relational framework these works have led to the consensus language TSQL2 [42],
there is no equivalent result in the object-oriented framework. Early attempts to define temporal extensions
of object-oriented data models [41] had a limited impact, essentially due to the absence of a standard under-
lying data model. As the ODMG [11] proposal was released and started to be adopted by the major object
DBMS vendors, a few temporal extensions of it were defined, among which TAU [32], TOOBIS [46] and
T ODMG [5]. However, we argue that these proposals lack at least some of the following four important
features:

� Migration support, as to ensure a seamless transition of applications running on top of a non-temporal
system to a temporal extension of it.

� Encapsulation of temporal types, as to separate the semantics of temporal data from its internal en-
coding.

� Formal semantics, to avoid many ambiguities generated by the richness and complexity of temporal
concepts, and to serve as a basis for efficient implementation.

� Visual interfaces supporting user tasks such as navigating through a collection of temporal objects.

The goal of the TEMPOS project (Temporal Extension Models for Persistent Object Servers) [7, 21,
27, 22, 19], has been to contribute towards a consensus view on how to handle temporality in object-
oriented models, by defining a temporal object database framework integrating the above features. This

1contact:Marie-Christine.Fauvet@imag.fr,http://www-lsr.imag.fr/Les.Personnes/Marie-Christine.Fauvet

1

paper summarizes the results of this effort. The proposed framework is based on a stratified temporal
data model, on top of which two interfaces for retrieving and exploring temporal objects are provided: the
TEMPOQL query language, and the pointwise temporal object browser.

The paper is structured as follows. Section 2 focuses on defining the requirements related to application
migration and representation independence, and shows why existing temporal extensions of ODMG fail to
fulfill them. Section 3, describes the TEMPOS data model, and section 4 presents the query language and
the visual browser. In section 5 we present the prototype that has been developed to validate the feasibility
of our proposal, and enumerate some applications that have been modeled and implemented in TEMPOS.
Finally, in section 6 we end with an overview of the proposal and point some future research directions.

2 Motivations and related works

In this section, we present some of the major requirements that guided the design of TEMPOS. These re-
quirements may be divided into two categories: those which deal with the migration of data and application
programs from a non-temporal to a temporal environment, and those which deal with the abstract modeling
and querying of histories.

2.1 Migration requirements

Most of the temporal data models and languages that have been proposed in the literature, are actually
extensions of “conventional” ones. A common rationale for this design choice is that the resulting models
can be integrated into existing systems, so that applications built on top of these systems may rapidly benefit
from the added technology.

However, the smooth migration of existing data and application programs to temporal database systems
may only be achieved if these latter fulfill some elementary compatibility requirements. Surprisingly, such
requirements have traditionally been neglected by the temporal database community: it is until relatively
recently that notions such astemporal upward compatibility[3, 45], have been seriously considered.

Following [3, 45], we are interested in specifying migration requirements between pairs of data models
defined as follows.
Definition 1 (data model). A data modelM is as a quadruple(D, Q, U, �� ���) composed of a set of database
instancesD, a set of legal query statementsQ, a set of legal update statementsU, and an evaluation function
�� ��� . Given an update statementu � U, a query statementq � Q and a database instancedb � D, ��u(db)���
yields a database instance, and��q(db)��� yields an instance of some data structure.�

Hence, a database instance is seen as an abstract entity, to which it is possible to apply updates (state-
ments whose evaluation map a database instance into another one), and queries (statements whose evalua-
tion over a database yield an instance of some data structure). We suppose that the equality is defined over
instances of data structures.

We successively introduce two levels of migration requirements:upward compatibilityand temporal
transitioning support. The definitions that we provide may be seen as adaptations to the object-oriented
framework, of the notions of upward compatibility and temporal upward compatibility introduced in [3, 45].
Definition 2 (upward compatibility). A data modelM’ = (D’,Q’,U’,�� ��� �) is upward compatible with another
data modelM = (D,Q,U,�� ���), iff:

� D � D’, Q � Q’ and U � U’ (syntactical upward compatibility in [3])
� For anydb in D, for anyq in Q, for anyu1, u2, � � � , un in U and for any instantsd1, � � � dn, dn+1:

��qdn+1(udn
n (� � � ud2

2 (ud1
1 (db))))��� = ��qdn+1(udn

n (� � � ud2
2 (ud1

1 (db))))��� �

�

2

Notice that in this latter expression, updates and queries, are parameterized by the instant at which they
are issued. This is because, in some temporal data models, operations may depend on the instant at which
they are issued as discussed in [14]. Apart from that, the above definition may be applied to any other data
model extension.

In the setting of ODMG, the set of queriesQ not only includes those which are submitted to the OQL
interpreter, but also, all accesses to class extents and object properties via application programs. Similarly,
the update operations include object creations and deletions, as well as updates to object properties.

To illustrate upward compatibility, let’s consider an ODMG compliant DBMS managing a database
about documents and users of a library. Essentially, the database stores information about document loans.
Upward compatibility states that if the ODMG DBMS is replaced by a temporal extension of it, or equiv-
alently, if a temporal cartridge is installed, then the data and the application programs accessing these data
may be left intact. This implies in particular that the set of database instances recognized by the extension
is a super-set of those recognized by the original DBMS, and that the database access and update statements
have identical semantics in the original DBMS and in the temporal extension. Notice that at this stage, no
notion of temporal support has been considered.

Now, suppose that once the legacy applications run on the temporal extension, the database administrator
decides that the history of the loans should be kept, but in such a way that legacy application programs may
continue to be operational (at worst they should be recompiled). New applications, on the other hand, should
perceive the property as being “historical”.

One way of fulfilling this requirement is to offer two different views of the database: a “snapshot view”
and a “temporal view”, letting the applications choose among them. This leads to a notion ofbi-accessible
data model.
Definition 3 (Bi-accessible data model). A bi-accessible data model is a tuple(D, Q, U, �� ���� , �� �� ��) such
that (D, Q, U, �� �� ��) and(D, Q, U, �� �� ��) are data models.�

A bi-accessible data model(D, Q, U, �� ���� , �� �� ��) is said to betemporal, if (D, Q, U, �� ����) is a snapshot
data model and(D, Q, U, �� ����) is a temporal data model, upward compatible with the former.

The second migration requirement that we introduce below, is an answer to the problem raised by the
above scenario. It aims at ensuring the continuity of legacy code after the migration from a snapshot to a
temporal schema.
Definition 4 (temporal transitioning support). Given a function� which partially or totally transforms
a snapshot database instance into a temporal one (i.e.� attaches temporal support to some classes, at-
tributes and/or relationships in the database’s schema), a bi-accessible temporal data modelMT = (DT,QT,UT

�� �� ��T
, �� �� ��T

) is said to offertemporal transitioning support, if for any db � DS, for any q � QS, for any
u1, u2, � � � , un � US and for any instantsd0, d1, � � � dn, dn+1: ��qdn+1(udn

n (� � � ud2
2 (ud1

1 (db))))����
=

��qdn+1(udn
n (� � � ud2

2 (ud1
1 (� d0(db)))))�� ���

�

While upward compatibility can be achieved by simply adding new concepts and constructs to a model
without modifying the existing ones, temporal transitioning support is more difficult to achieve. Indeed,
[3] shows that almost none of the existing temporal extensions to SQL, including TSQL2, satisfy this latter
requirement (calledtemporal upward compatibilityby the authors).

It can be shown that the same remark holds for existing object-oriented temporal extensions, and in
particular for the TODMG [5] temporal object model. For example, consider aDocument class with a
property loaned by defined on it. In the context of TODMG, if some temporal support is attached to
this property, then any subsequent access to it will retrieve not only the current value of the document’s
loaned by property (as in the snapshot version of the database), but also its whole history.

TOOBIS does not exhibit this latter problem. However, in achieving temporal transitioning support,
TOOBIS introduces some burden to temporal applications. Indeed, in TOOBIS TOQL for instance, each

3

reference to a temporal property in a query should be prefixed by either keywordvalid, transaction or bitem-
poral. This leads to rather cumbersome query expressions. Similar remarks apply to TOOBIS C++ binding.
This approach is actually equivalent to duplicating the symbols for accessing data when adding temporal
support, in such a way that for each temporally enhanced propertyx, there are actually two properties rep-
resenting it in the database schema, sayx andtemporal x. In the example of the library database, this means
that when adding temporal support to propertyloaned by, this temporal property is actually not modified
and instead, a new temporal property is added (saytemporal loaned by).

We advocate a different approach: when temporal support is added to some component of a database
schemaS, yielding a new schemaS’, application programs are divided into two categories: those which view
data as if its schema wasS, and those which view it with schemaS’. Therefore, the problem of temporal
transitioning support is seen as a particular case of schema evolution, so that techniques developed in this
context apply. The reason for adopting this approach instead of TOOBIS’s one, may be stated simply: if a
property is modified to add temporal support, temporal applications should perceive this property as being
temporal.

2.2 Representation independence

2.2.1 Point-based vs. interval-based temporal associations

A temporal association is as a piece of data locating a fact in the time-line. Temporal associations may
be classified into point-based or interval-based, depending on whether they associate facts to instants or to
intervals [13]. An interval-based association states that a fact is true during some interval, e.g. “The stock
price raised by 50% between 1995 and 1999”, without entailing that the fact is true at each instant in the
interval, e.g. the above statement does not mean that the stock raised by 50% at each year between 1995 and
1999! On the other hand, a point-based association states that a fact is true at some point in time, observed
with some precision (e.g. “The salary of some employee is 5000 at January 1998”).

Temporal data models may be classified into point-based or interval-based, depending on whether they
manage interval or point-based temporal associations [6]. TSQL2 for instance is point-based: stating that
a tuple belongs to a temporal relation during interval[i1,i2), means that this tuple belongs to the relation at
each instant betweeni1 andi2 (i2 excluded). On the other hand, SQL2 enhanced with an ADT for modeling
intervals may be considered as interval-based: nothing in the semantics of SQL2 indicates that if a tuple
is timestamped with an interval[i1,i2], then the tuple belongs to the relation at each instant betweeni1
andi2. Some data models are hybrid either because they provide functions for transforming interval-based
associations into point-based ones (e.g. IXSQL [33] or SQL/Temporal [45]) or because they distinguish
point-based from interval-based associations (e.g. TOOBIS [50]). It is worth noting that no temporal data
model is actually purely interval-based. This is because point-based associations are prevalent in most
temporal database applications [13]. TEMPOShas been designed as a point-based data model.

2.2.2 Representation of point-based associations

In temporal data models, related temporal associations are grouped into temporal relations (in the relational
framework) or into object or attribute histories (in the object-oriented and the object-relational frameworks).

Point-based temporal relations or histories may be represented in several ways. For instance, it is pos-
sible to associate an instant timestamp to every tuple in a temporal relation at the logical level [49]. An
alternative is to group several value-equivalent tuples into a single one, timestamped either by a tempo-
ral element [29], or by an interval. This latter is the most common approach in existing point-based data
models. Operators on temporal data are then defined over this interval-timestamped representation, which
renders their formalization quite cumbersome. Indeed, in addition to defining the result of the operation
itself, the semantics must also describe the way this result is to be encoded. The same remark applies to

4

query expressions, which leads to some undesirable tensions between query expressions and their intended
semantics [49].

To illustrate this point, let’s consider the queryretrieve all departments where Ed has been since he first
moved from the accounting department, expressed in TOOBIS’s TOQL:

select distinct D2
from Employees as E, valid E.department as D1, valid E.department as D2
where E.Name = “Ed” and D1.name � “Accounting” and valid(D1) before valid(D2)

In this example, there is a clear difference in the level of abstraction between the query expression in
natural language and in TOQL: in the natural language formulation, there is no reference to any maximal
intervals during which Ed was in the accounting department, whereasvalid(D1) andvalid(D2) in TOQL’s
formulation are typical examples of such references. In addition, the notion of “since the first time”, does
not appear in TOQL’s expression. This mismatch reflects some lack of declarativeness in the language, and
more precisely, the need for operators on histories allowing one to reason about succession in time. Instead
of providing such operators, TOQL, as well as most other temporal query languages, relies on an interval-
timestamped representation of histories, together with operators over intervals, for expressing most kinds of
temporal queries.

We advocate that exclusively relying on a fixed representation of temporal data to define the semantics
of temporal operators, or for query expression, is an undesirable feature in a temporal data model, and
especially in an object-oriented one, since it tends to violate some basic principles of object-orientation such
as encapsulation. Instead, specific representation independent operators on histories should be provided,
covering the fundamental temporal reasoning paradigms: succession, simultaneity, granularity change, etc.
In this respect, our approach is different to those adopted in other works such as [40], [42], [32] and [50],
and similar to those adopted in [54] and [30].

Nevertheless, we do not mean that manipulating a representation of histories is never useful for query
expression. Indeed, some queries naturally involve such representations, e.g.which employees had a con-
stant salary during an interval of at least three years[42], so that temporal query languages should also
provide means for directly manipulating a particular representation of histories based either on instants,
intervals or sets of instants.

The above considerations also apply to the modeling of temporal values. For instance, in most temporal
data models, collections of instants are modeled as sets of disjoint non-contiguous intervals, (usually termed
temporal elements). While this representation is probably adequate in many cases, imposing it at the logical
level is useless, and introduces a gap between the modeled concept and the corresponding data model
construct.

To summarize this discussion, we state a “representation independence” requirement on data models
as follows: a temporal data model is said to be representation independent if (i) it defines all operators on
temporal values and associations independently of any representation; (ii) it provides operators accounting
for different kinds of temporal reasoning, so that it does not exclusively relies on the representation of
temporal data for query expression.

3 The TEMPOS data model

The TEMPOS data model is based on a set of datatypes whose behavior is encapsulated into ODMG type
interfaces. ODMG’s distinction between interfaces (abstract type descriptions) and classes (concrete im-
plementations) is exploited to enforce the separation between the semantics of the operators over these
datatypes, and their implementation under some fixed representation.

5

TEMPOSis structured into three increasingly sophisticated levels. This enables a particular implemen-
tation to choose a degree of compliance, according to the requirements of the targeted applications and the
extensibility of the underlying DBMS.

� The first level is composed of a set of datatypes modeling time values (i.e. instants, durations, sets of
instants and intervals), expressed at multiple granularities.

� The second level introduces the concept ofhistory.
� The third level extends the concepts of class, attribute and relationship, as defined in the ODMG

standard. This leads to the concepts oftemporal class, temporal attributeandtemporal relationship.
This level is designed so as to ensure temporal transitioning support, as defined in section 2.1.

3.1 Modeling time values and histories

3.1.1 Time model

Time units We adopt a discrete, linear and bounded time model in which time is structured in amulti-
granular way [15, 53] by means oftime units. A time unit is a partition of the time line into a set of convex
sets: each of the elements of this partition is then seen as an atomicgranuleand every point of the time-line
is approximated by the granule which contains it. Thus a time unit defines the precision at which time is
observed. The granules of a time unit are numbered by natural integers: the order among these integers
defines the notion of succession in time and the distance between them defines the notion of duration.

If a mapping can established between each granule of a time unit u1 and a set of consecutive granules of
another unit u2, u2 is saidfiner thanu1 (�� � ��), or conversely, u1 is saidcoarserthan u2. For instance,
the time unitmonthis finer than the unityear but coarser than the unitday, because each year contains an
integer amount of months and each month contains an integer amount of days. Thefiner thanrelation is a
partial order because some pairs of units are not comparable (e.g. unitsmonthandweek). We assume that
there is a unique finest unit which as usual is called thechronon.

For each pair of time units�u1, u2� such thatu1 � u2, two conversion functions are defined: one for
expandinga granule of the coarser unit (u2) into an interval of granules of the finer one (u1) (noted������),
and the other forapproximatinga granule ofu1 by a granule ofu2 (noted������), as shown in figure 1.
Units u1 andu2 (u1 � u2) are said to beregular if the intervals of granules generated by������ have all the
same cardinality.

x

u1
x

u2
Approximation of x

Expansion of x

(x)

ε u2,u1(x)

αu1,u2

Figure 1: unit expansion and approximation

A unit systemis a a sequence of comparable units in decreasing order according to thefiner thanrelation,
e.g.[Year, Month, Day]. As detailed in the next paragraphs, unit systems are used to express temporal values.
The finest unit of a unit system defines the precision at which temporal values are expressed in this system.

Basic temporal types A duration is a number of granules of a time unit measuring an amount of time at
the precision defined by this unit. Hence, values of type duration are pairs made of an integer and a time
unit. Durations are signed so as to differentiate forward from backward motion of time.Instant relative

6

durations(or relative durationsin short) are expressed according to a unit system as in “1 month and 10
days”. The qualifierrelative points out the fact that the conversion in the finest unit of the unit system
depends on the instant to which the duration is related, unless units are mutually regular as in “1 year and 3
months”, in which case they can be mapped into absolute durations.

An instant is as an approximation of a connected region of the time line by a granule of an unit, called
its observation unit. An instant is a point with respect to its observation unit. However, it may be seen as an
interval with respect to a finer one. As durations, instants may be viewed as pairs composed of an integer
and a unit, but unlike them, their semantics is defined with respect to some origin on the time line.

Several operators are defined on instants and durations: predicates related to the chronological order,
addition and subtraction of durations, distance function between two instants, addition of instants and du-
rations, and conversion from one unit to another. [8, 7] analyze the cases where these operations may deal
with multi-granular arguments.

Input and output of instants and durations are managed through an extensible set offormats. Abstractly,
a format is defined as a mapping from a regular language (i.e. a set of words recognized by a regular
expression) to a set of temporal values at a given granularity. At the concrete level, a format is composed of
a regular expression which describes the syntax of the recognized strings, a unit system which determines the
interpretation of the numerical values or other granule references that appear in the string, and a permutation
which allows to put these granule references in a canonical order. Indeed, the order of the granule references
in the European date format is not the same as in the American one, so that “1/2/1998” means “February the
1st 1998” in Europe and “January the 2nd 1998” in the US. For a more detailed description of the notion of
format, the reader may refer to [8, 7].

Temporal sequences At an abstract level, a temporal sequence (TSequence) is defined as a finite, chrono-
logically ordered sequence of instants observed at some granularity. Since the instants in the sequence are
canonically ordered, this notion models aset of instants. Among the various representations of temporal
sequences, we distinguish two : sequences of instants (ISequences), which are in fact extensional rep-
resentations of temporal sequences, and coalesced sequences of intervals (DSequences). Moreover, we
distinguish two particular kinds of temporal sequences, whose characteristics allow to define specific opera-
tors over them: periodic sequences of instants (PSequences) and intervals. The latters are in fact particular
cases of the formers, since an interval is a periodic sequence of instants with period one.

The specification of these types and their operators may be found in [8, 7]. These operators include
classical set operators, constructors, and comparison operators. Comparison operators on intervals are
defined on the basis of Allen’s interval relations [2]. All these operators are defined independently of
any particular representation so as to fulfill the representation independence requirement stated in section 2.

3.1.2 Historical model

At an abstract level, a history is defined as a function from a finite set of instants to a set of values of a given
type. The domain and the range of a history are respectively called itstemporalandstructuraldomain.

In the sequel, we formally describe the types and operators related to histories. This description uses
functional notations, since most of the operators on histories are higher-order operators (i.e. functions
whose parameters may themselves be functions), and a simple ODMG-like description of them would not
be accurate enough.

The following notations are used:T1 � T2 stands for the type of all functions with domainT1 and
codomainT2. �T� and[T] respectively denote the type of sets ofT and sequences ofT. 	T1, T2, � � � , Tn

designates the the type of tuples whose ith component is of typeTi (� � � � �); tuple components may
be labeled using the notation	L1 : T1, L2 : T2, � � � , Ln : Tn
. T1�T2� denotes an instantiation of the
parameterized typeT1 with typeT2: in particular,History�T� denotes the type of histories with structural

7

values of typeT. 	v1, v2, � � � , vn
 denotes a tuple value whose ith component isvi (� � � � �
. Finally, if
x is an instant or a temporal sequence, thenUnit(x) denotes its observation unit.

The following specification introduces the History ADT and its elementary selectors.

type History�T� = Instant � T
TDomain: History�T�� TSequence /* retrieves the temporal domain */
Unit: History�T�� Unit /* Unit(h) = Unit(TDomain(h)) */
SValue: History�T�, Instant � T /* SValue(H, I) is the structural value at instant I */

/* precondition: I � TDomain(H) */
SDomain: History�T�� � T � /* retrieves the structural domain */

Histories may be represented in several ways, mainly by means of collections of timestamped values,
termedchronicles. Among these representations, some are useful for query expression, so that specific
operators are defined, allowing one to convert a history into a chronicle. Concretely, a history may be
represented by at least three kinds of chronicles:

� Instant-based representation: chronologically ordered list of instant-timestamped values, e.g.[�1, v1�,
�2, v1�, �4, v1�, �5, v2�, �6, v2�, �7, v2�, �8, v3�, �9, v1�, �10, v1�]. Such lists are termedIChronicles.

� Interval-based representation: chronologically ordered, coalesced list of interval-timestamped values,
e.g. [�[1..2], v1�, �[4..4], v1�, �[5..7], v2�, �[8..8], v3�, �[9..10], v1�]. This kind of list is called an
XChronicle.

� TSequence-based representation: set of distinct values timestamped by disjoint temporal sequences,
e.g. � ��1, 2, 4, 9, 10�, v1�, ��5, 6, 7�, v2�, �� 8 �, v3� �, which are termedDChronicles.

The following operators are provided to switch from histories to either of these representations and
vice-versa.

IHistory : [�tvalue : Instant, svalue : T�] � History�T�
/* Precondition: let [IS1, � � � ,ISn] be the parameter of a call to operator IHistory: �k � [1..n�1]
(Unit(ISk.tvalue) = Unit(ISk+1.tvalue) � ISk.tvalue � ISk+1.tvalue) */

XHistory : [�tvalue : Interval, svalue : T�] � History�T�
/* Precondition: let [XS1, � � � ,XSn] be the parameter of a call to operator XHistory: �k � [1..n-1]
(Unit(XSk.tvalue) = Unit(XSk+1.tvalue) � XSk.tvalue � XSk+1.tvalue � (XSk.tvalue meets XSk+1.tvalue
	 XSk.svalue
� XSk+1.svalue)) */

DHistory : � �tvalue : TSequence, svalue : T� � � History�T�
/* Precondition: let SDS be the parameter of a call to DHistory: � DS, DS’ � SDS (DS
� DS’ 	
Unit(DS.tvalue) = Unit(DS’.tvalue) � DS.tvalue � DS’.tvalue � � � DS.svalue
� DS’.svalue) */

IChronicle: History�T�� [�tvalue : Instant, svalue : T�]
/* IHistory(IChronicle(h)) = h */

XChronicle: History�T�� [�tvalue : Interval, svalue : T�]
/* XHistory(XChronicle(h)) = h */

DChronicle: History�T�� ��tvalue : TSequence, svalue : T��
/* DHistory(DChronicle(h)) = h */

3.1.3 Algebraic operators on histories

Algebraic operators on histories are classified into two categories:intra-point andinter-point. An operator
is said intra-point if the structural value of the resulting history at a given instant depends exclusively on the
structural value of the argument histories at that instant, otherwise it is said to be inter-point (see figure 2).
Notice that this classification is closed under composition: the composition of two intra-point operators
yields an intra-point operator and the same is true of inter-point operators.

The semantics of each operator is formally described below by means of a first-order calculus-like
expression defining the graph of the resulting history (a set of pairs	instant, value
) in terms of that of the
argument(s).

8

a given instant depends on the structural
The structural value of the result at

value(s) of the argument(s) at that instant

operators on histories

intra-point
arbitrary subset of the argument
at a given instant depends on an
The structural value of the result

inter-point

grouping

UGroup DGroup

succession in time

AfterFirst BeforeFirstMap

product

internal external

selection

in
Γ Γ

if

aggregation

sum avg ...

...

...

Figure 2: Taxonomy of algebraic operators on histories

Intra-point operators Intra point operators�if and�in restrict the temporal domain of a history to those
instants at which a given condition is true.

�if : History�T�, (T � boolean) � History�T� /* h �ifP � ��I,v� �I,v� � h � P(v)� */
�in : History�T�, TSequence � History�T� /* h �inS � ��I,v� �I,v� � h � I � S� */

The intra-point operatorMap on the other hand, applies a given function to each structural value of a
history.

Map: History�T�, (T � T’) � History�T’� /* Map(h, f) � ��I,f(v)� �I,v� � h � */

A temporal join is a merging of two histories. Since two histories may have different temporal domains,
we distinguish theinner temporal join (��) from theouter one (��), depending on whether the resulting
history’s temporal domain is the intersection or the union of the temporal domains of the arguments

The inner temporal join of two histories (h1��h2) is a history whose structural values are pairs obtained
by combining “synchronous” values ofh1 and h2 (i.e. values attached to the same instant). The outer
temporal join (h1 ��h2), is similar to the corresponding inner temporal join, except that it attaches structural
values of the form�v, Nil� or �Nil, v�, to those instants where one of the argument histories is defined while
the other is not. Here,Nil denotes the neutral element of the history’s structural domain type (e.g.0 for
integers,nil for objects, etc.). More precisely:

�� : History�T1�, History�T2�� History��T1,T2��
/* h1 ��h2 � ��I, �v1, v2�� �I, v1� � h1 � �I, v2� � h2� */
/* precondition: Unit(h1) = Unit(h2) */
�� : History�T1�, History�T2�� History��T1,T2��
/* h1 ��h2 � h1 ��h2 � ��I,�v1, Nil�� �I,v1� � h1 � I �� TDomain(h2) � � ��I,�Nil, v2�� �I,v2� � h2 � I
�� TDomain(h1) � */
/* precondition: Unit(h1) = Unit(h2) */

Among the algebraic operators on sets, the intersection and the difference may be straightforwardly
extended to histories by applying them to their graphs, since the resulting set also describes the graph of
a history. The operators defined thereof are intra-point. The same process is not applicable to the union
operator. Indeed, given two historiesh1 andh2 having different values (v1 andv2) at some instant, what
would be the value ofh1 � h2 at that instant? Choosingv2 in this context yields the asymmetric union
operator defined below.

�� : History�T�, History�T�� History�T�
/* h1 �� h2 = � �I, v� �I, v� � h2 � (�I, v� � h1 � I �� TDomain(h2)) � */
/* precondition: Unit(h1) = Unit(h2) */

9

Inter-point operators Inter-point operators on histories include aggregation, grouping, and operations
dealing with succession in time.

Cumulative aggregate operators on histories compute, for each instant in the temporal domain of the
history, an aggregate over all the structural values attached to instants preceding it. For instance,cumula-
tive sum applied to a history denoting the daily production of a product over a month yields, for each day
in this month, the total amount of items of that product produced between the beginning of the month and
that day. Aggregate operators such assum, avg, max, min andduration may be straightforwardly expressed
using the corresponding cumulative aggregate operators.

There are two grouping operators in TEMPOS: a unit-based grouping (UGroup) and a duration-based
grouping (DGroup).

The unit-based temporal grouping operationUGroup(h, u2), h being at granularityu1 (u1� u2), divides
up h into groups according to unitu2. The result is a history (at granularityu2) of histories (at granularity
u1), whose value at instanti is the temporal restriction ofh to interval expand(i, u1) (see figure 3)2.
Formally :

UGroup: History�T�, Unit � History�History�T��
/* UGroup(h, u) � � �I,subh� � I’ � TDomain(h), approx(I’,u) � I � h �in expand(I,Unit(h)) � subh � */
/* precondition: Unit(h) � u */

On the other hand, the duration-based groupingDGroup(h, d), yields all convex sub-histories ofh having
durationd. The resulting history associates to instanti the restriction ofh to interval[i..i � d], if d is positive,
or to [i � d..i] if d is negative, provided that the corresponding interval is completely included in the temporal
domain ofh. In TSQL2’s terminology one may say that if the duration is positive, then it works as aleading
value, and otherwise it works as atrailing value [42].

DGroup : History�T�, Duration � History�History�T��

/* DGroup(h, d) =
�
� �I, subh� [I..I � d] � h � subh � h �in [I..I � d] � if d positive
� �I, subh� [I..I � d] � h � subh � h �in [I � d..I] � if d negative

*/

/* preconditions: Unit(d) = Unit(h) or Unit(d) and Unit(h) are regular */

This operation is useful to express moving window queries, as in“compute the averagesales for each
seven-day period in the history of daily sales of a store”.

<1/7/98, 5000>,
<2/7/98, 5000>,

<30/6/98, 3000>,

<29/7/98, 3500>,
<30/7/98, 4000>,
<31/7/98, 5000>,

...

...

...
DGroup

(h, #"2 days")
UGroup

(h, Month)

<30/6/98, [<30,6/98, 5000>,
<1/7/98, 5000>]>,

<30/6/98, [<1/7/98, 5000>,
<2/7/98, 5000>]

<30/7/98, 4000>]>,
<29/7/98, [<29/7/98, 3500>,

[<1/6/98, [<1/6/98, 5000>,
<2/6/98, 5500>]>,

<2/6/98, [<2/6/98, 5500>,
<3/6/98, 4000>]>,...

...

...

<2/7/98, 5000>,
[<7/98, <1/7/98, 5000>,

<30/6/98, 3000]>

<29/7/98, 3500>,
<30/7/98, 4000>,
<31/7/98, 5000>]>,

...

...

...

<2/6/98, 5500>,
<3/6/98, 4000>,

[<6/98, [<1/16/98, 5000>,
<2/6/98, 5500>,
<3/6/98, 4000>,

[<1/6/98, 5000>,

h (Unit(h) = Day)

Figure 3: Unit-based and duration-based temporal grouping

To reason about successive values of histories and their correlations, TEMPOSprovides four operators,
which are in fact algebraic versions of the “sometime” operator of temporal logics [24], namelyAfterFirst,

2Operationexpand(i, u1) maps and instanti observed at some unitu2, to an interval at a finer unitu1. This corresponds to
the expansion function������ defined over granules in section 3.1.1

10

BeforeFirst, AfterLast andBeforeLast. AfterFirst(h, P) yields the sub-history ofh starting at the first instant
at which the value ofh satisfies predicateP, or the empty history if such instant does not exist.BeforeFirst(h,
P), on the other hand, restrictsh to those instants preceding the first instant at which the value ofh satisfies
P, or h if such instant does not exist. For any historyh and any predicateP, h is equal to the union of
BeforeFirst(h, P) andAfterFirst(h, P) (which are disjoint). Similar remarks apply toAfterLast andBeforeLast
which are defined symmetrically.

AfterFirst: History�T�, (T � boolean) � History�T�
/* AfterFirst(h, P) = � �I, v� �I, v� � h � � �I’, v’� � h (P(v’) � I � I’) � */

BeforeFirst: History�T�, (T � boolean) � History�T�
/* BeforeFirst(h, P) = � �I, v� �I, v� � h � �� �I’, v’� � h (P(v’) � I � I’) � */

3.1.4 Boolean pattern-matching

Pattern matching queries involve retrieval of data by comparison to a standard of some kind. To some extent,
all query languages, and temporal query languages in particular, allow to express queries based on simple
sequencing patterns:retrieve all employees who have worked in assembly lines L1 and L2. The goal here is
to express more complex sequencing patterns such asretrieve all employees who have worked in assembly
line L1, then in assembly line L2 during at least 3 months and then, in a 1 month delay, have worked in
assembly line L1 again. When applied to histories, such patterns provide a powerful tool for reasoning
about succession in time, which is a fundamental issue in temporal databases.

TEMPOS offers a pattern-matching language [21] that takes into account this structure, therefore pro-
viding a powerful tool for expressing this kind of queries. The syntax and the semantics of this language
are formally described in appendix B. It includes the following operators :

� Sequencing (operator “;”): for example, the pattern “production � 100 ; production � 200” charac-
terizesassembly lines whose production is less than 100 immediatly before being greater than 200.

� Repetition (operator “�”) allows to reason on repetition of a pattern: for example, the pattern “production
� 100; (production � 200 or production = 0)�; production � 100” is used to retrieve assembly lines
whose production was less than 100, then null or greater than 200 and subsequently less than 100
again.

� Duration constrained repetition: for example, the pattern “(production = 0)�2 days” characterizes as-
sembly lines whose production was null during more than 2 days.

The pattern-matching operatorMatches on histories, checks if a given history contains at least one
occurrence of a pattern (see appendix B for its formal definition):

Matches: History (T), Pattern � boolean
/* Matches (h, p) = true � � i, j � TDomain (h), �TDomain (h), � �� �� �� � �� p. */

Intuitively, �TDomain (h), � �� 	� ��
 �� p iff there is an occurrence, inh, of the pattern defined
by p starting ati and ending atj (i and j being in TDomain(h)). More precisely,� is the sequence of
interpretations in which relation symbols and global constant symbols are interpreted as usual, function
symbols are interpreted by the corresponding functions, attributes and methods in the database schema, and
the only local constant symbol appearing in pattern p is interpreted at each instantl � TDomain(T) by the
structural value ofh at instantl. Valuation	 is determined by the context (program or query).

A similar language to the above one has been proposed in [12]. The main originality of TEMPOS’
pattern description language with respect to this latter, lies on the use of regular expression operators, i.e.
sequencing, repetition with or without time constraints, and disjunction. The use of regular expression
operators leads to a declarative semantics, and provides a framework for efficient implementation.

11

3.2 Temporal properties and classes

In this section, we extend the basic abstractions of ODMG’s object model (class, property and their in-
stances) to integrate temporal support. Throughout the presentation, we show how this extension fulfills the
requirements formulated in section 2.

3.2.1 Temporality at the property level

Following the ODMG conventions, a property is defined as an attribute or traversal path of a relation at-
tached to some class. For instance, possible properties of anEmployee class includesalary anddepartment.
Instances of properties are attached to objects, so thatproperty instancesare to objects whatpropertiesare
to classes3.

The following two paragraphs successively describe: (1) how temporal support is attached to properties?
and (2) what is the effect of attaching such support on the values taken by property instances?

Temporal properties In TEMPOS, a property may be eithertemporal, in which case its successive values
are meaningful and thus recorded, orfleeting, if only its most recent value is meaningful. When a property
is temporal, the granularity at which its evolution is observed is determined by a specific characteristic of
the property, namely itsobservation unit.

As in ODMG, a type is attached to a property. In the case of a fleeting property, this type defines the
domain of possible values that an instance of this property may take, whereas for a temporal property, it
models thestructural valuesthat an instance of this property may take at some instant. If the structural type
of a temporal property isT, each of its instances has a history whose type isHistory�T�.

The temporal dimensionof a temporal property determines the semantics of the temporal associations
that it models. It may bevalid-timeor transaction-timedepending on whether the facts are timestamped with
respect to the modeled reality or with respect to the database evolution [43]. TEMPOStherefore distinguishes
valid-timeand transaction-timeproperties. By merging the concepts and operators defined on valid-time
and transaction-time properties, it is possible to model bitemporal properties, although we do not address
this issue in this paper.

Table 1 enumerates the characteristics of temporal properties. The notions of semantic assumption and
padding value referenced on it will be explained in the next paragraph.

characteristics possible values
Observation unit minute / day / month / etc.
Structural type real / instant / Person / etc.
Temporal dimension valid time / transaction time
Semantic assumption discrete / stepwise / linear / etc.
Padding value 0 / nil / etc.

Table 1: characteristics of temporal properties

Instances of temporal properties Thetemporal domainof a temporal property instance models the set of
instants (i.e. theTSequence) during which the property is observed for a given object. Temporal domains
may evolve dynamically according to the system clock.

The history of a temporal property instance is a history reflecting the values taken by the property
instance at all instants when it is observed. The temporal domain of this history is equal to the temporal

3In ODMG’s release 1.2 and subsequent releases, the termproperty instancehas been replaced byobject property value. We
choose however to use the old term since it highlights the fact that a property instance is actually a variable, whose state is described
by a value.

12

domain of the property instance itself. Its structural values, on the other hand, are either defined by some
update, or derived from the inputted values using asemantic assumption.

More precisely, each temporal property instance has aneffective history, corresponding to the inputted
timestamped values attached to it. The effective history is contained in (but not necessarily equal to) the
property instance’s history, and the difference between them is called thepotential history(i.e. the part of
the history calculated using the semantic assumption).

In the sequel, we will refer to the temporal domain of a property instance’s effective history as its
effective temporal domain, or effective domainin short.

[<1990, 0>,
<1991, 100>,

<1993, 110>,
<1992, 110>,

<1994, 110>,
<1995, 170>,
<1996, 170>,
<1997, 170>]

[<1990,0>,
<1991, 100>,
<1992, 110>,
<1993, 0>,
<1994, 0>,
<1995, 170>,
<1996, 0>,
<1997, 170>]

temporal property characteristics

temporal dimension: valid time

observation unit: year

padding value: 0

interpolated

[<1990, 0>,
<1991, 100>,
<1992, 110>,
<1993, 130>,
<1994, 150>,
<1995, 170>,
<1996, 170>,
<1997, 170>]se

m
an

ti
c

as
su

m
pt

io
ns

temporal domain: [1990..1997]

[<1991, 100>,
<1992, 110>,
<1995, 170>,

<1997, 170>]

effective history:

linearly

discrete

stepwise

property instance
characteristics

property instance history

Figure 4: a valid-time property instance’s history is calculated dynamically based on the effective history
and the semantic assumption

We distinguish three particular semantic assumptions depending on the intended calculation mode of
the potential history (see figure 4).

� Discrete: the structural value of the potential history is equal to the neutral value of its structural type
(e.g. 0 for integers,nil for objects). This is the case of the production of some product in a factory:
the period of time during which the production is defined (i.e. its temporal domain) may be known in
advance (e.g. all week-days), but at some days, it may be that there is no inputted value (e.g. due to
a strike), so that the effective history is not defined for those days. Apadding valuemay be attached
to a discrete property, to override the use of the neutral element of the structural type as the structural
value of the potential histories. This facility is similar to that of attaching “initialization” values to
properties in ODMG’s ODL.

� Stepwise: structural values are “stable” between two instants in the effective temporal domain (e.g.
a property instance modeling an employee’s salary). As with discrete properties, a padding value is
attached to a stepwise property to set the structural value of its instances at those instants for which
the stepwise semantic assumption does not provide one (e.g. when the smallest instant in the effective
domain is not equal to the smallest instant in the temporal domain).

� Linearly interpolated: this kind of interpolation applies only to numerically-valued properties. Be-
tween two successive instants in the effective domain, the structural value varies linearly. A padding
value may also be attached to this kind of properties.

Transaction-time properties have a stepwise semantic assumption. In addition, they have the peculiarity
that the temporal domains of their instances may evolve with the system clock. Consequently, each time

13

that a transaction-time property instance is accessed, its temporal domain is computed by replacing its upper
bound by the current instant4. The overall process is depicted in figure 5.

<4/12/99, 100>,

<3/2/00, 170>,
...

<1/3/00, 170>]

...

[<1/11/99, 100>,

<4/12/99, 100>,

<2/11/99, 100>,
...

<5/12/99, 110>,
<6/12/99, 110>,

<2/2/00, 110>,

...

<3/2/00, 170>,

[<31/10/99, 0>,
<1/11/99, 100>,
...

<1/4/00, 170>]

<5/12/99, 110>,
<6/12/99, 110>,
...

<2/2/00, 110>,
<3/2/00, 170>]

<5/12/99, 110>,

effective history

[<1/11/99, 100>,

history at: 1/4/00
property instance

history at: 1/3/00
property instancetemporal dimension: transaction time

granularity: day
type: integer
padding value: 0

creation time: 1/10/99 creation time: 1/11/99

Figure 5: a transaction-time property instance’s history is calculated dynamically based on the effective
history, the creation time and the current time

Temporal binary relationships In the ODMG’s data model, arelationship is defined implicitly by the
declaration of a pair of inverse properties attached to the class(es) participating in the relationship. TEMPOS

extends this notion of inverse properties to modeltemporal relationships. More precisely, ifP1 andP2,
respectively attached to classesC1 andC2 are the inverse properties defining a temporal relationship, then
the constraints listed below hold. The following notations are used:extent(C) is the set of all instances of
classC, ando.P is the history of property instanceP attached to objecto.

� if P1 andP2 are both single-valued then:

(� o1 � extent(C1), � i � TDomain(o1.P1) i � TDomain(SValue(o1.P1, i).P2)
� o1 = SValue(SValue(o1.P1, i).P2, i))

� (� o2 � extent(C2), � i � TDomain(o2.P2) i � TDomain(SValue(o2.P2, i).P1)
� o2 = SValue(SValue(o2.P2, i).P1, i))

� If P1 is single-valued andP2 is multi-valued then:

(� o1 � extent(C1), � i � TDomain(o1.P1) i � TDomain(SValue(o1.P1, i).P2))
� o1 � SValue(SValue(o1.P1, i).P2, i)

� (� o2 � extent(C2), � i � TDomain(o2.P2), � o1 � SValue(o2.P2, i) i � TDomain(o1.P1)
� o2 = SValue(o1.P1, i))

The case whereP1 is multi-valued andP2 is single-valued is symmetric to this latter.
� If P1 andP2 are both multi-valued then:

(� o1 � extent(C1), � i � TDomain(o1.P1), � o2 � SValue(o1.P1, i)
i � TDomain(o2.P2) � o1 � SValue(o2.P2, i))

� (� o2 � extent(C2), � i � TDomain(o2.P2), � o1 � SValue(o2.P2, i) i � TDomain(o1.P1)
� o2 � SValue(o1.P1, i))

3.2.2 Temporality at the class level

As properties, classes may be fleeting or temporal. A temporal class keeps track of its extent, by associating
to each of its instances the set of instants at which it isobserved, either with respect to valid or transaction
time. Instances of temporal classes are calledtemporal objects.

4Unless the property is “turned off” as discussed later.
14

In accordance with ODMG, theextentof a class (whether fleeting or temporal) is defined as the set
of all instances of this class having been created and not deleted. Due to the “append-only” semantics of
transaction-time (i.e. no information may be lost), an object of a transaction-time class may not be deleted
from its extent5. For this reason, the operatordelete is overloaded when applied to transation-time objects
as discussed later.

In addition to the notion of extent, two other notions are introduced that apply to temporal classes and
their instances: observation temporal domain and observed extent.
Definition 5 (Observation temporal domain). A valid-time (respectively transaction-time) object, has a
valid-time (resp. transaction-time)observation temporal domainattached to it, which is an arbitrary set of
instants.�

Definition 6 (Observed extent). Given a temporal class, theobserved extentof this class at an instanti, is
the subset of the extent consisting of all objects whose observation domain containsi. �

Conceptually, the observation temporal domain (orobservation domainin short) of a valid-time or
transaction-time object, is the set of instants at which the information conveyed by this object is observed.
The notion of “observation” may either be defined with respect to transaction-time (when is the information
conveyed by an object observed in the database?), or to valid-time (when is the information about the entity
modeled by an object observed?).

For instance, consider a classProduct modeling the product types produced and sold by a company. If
the class is declared as temporal (either with respect to valid-time or transaction-time), then the observation
domain could be used to model the time when a particular product is produced, or the time when it is sold.
Suppose now that the observation domain models the time when the bottle is produced. If the class is
transaction-time, then the value of the observation domain of an object of this class captures the time when
the database knows that a product is produced, whereas if the class is valid-time, it models the time when
the corresponding product is actually produced in reality.

Temporal support on properties and class extents are orthogonal, i.e., a fleeting class may have transaction-
time or valid-time properties, and reciprocally, a valid-time class or transaction-time class may have fleeting
properties.

3.2.3 Updating and accessing temporal property instances

In ODMG, there is one “access” and one “update” operator for property instances, respectivelyget value,
which retrieves the value of the property instance, andset value which assigns to it the value given as
parameter.

In the context of temporal property instances, the set of updating and accessing operators is more com-
plex, due to the variety of temporal characteristics attached to them and the need to achieve bi-accessibility
(see section 2). These operators are classified depending on whether they are intended to modify the tem-
poral domain or the effective history, and depending on the time dimension (valid-time or transaction-time)
to which they apply.

Evolution of the temporal domain of transaction-time property instances Since transaction-time is in-
tended to model the evolution of the database, the temporal domain of transaction-time properties instances
evolve automatically with respect to the database time (i.e. the system clock). Conceptually, the current in-
stant is added to the temporal domain of a transaction-time property instance at each system clock tick. This
automatic evolution of the temporal domain can be overridden at any time, e.g. to model the fact that the
property instance is not observed during some period of time. This is achieved through the notion ofgrowth

5In fact, the same remark applies to any object participating in a transaction-time relationship or referenced by a transaction-time
attribute

15

status, which takes one of two values:On or Off. If the value of the growth status of a transaction-time
property instance isOn, its temporal domain evolves with the system clock. Otherwise, it does not evolve
at all. Operatorsturn on andturn off on transaction-time property instances, allow to switch between these
two states.

Evolution of the temporal domain of valid-time property instances Unlike transaction-time properties,
the temporal domain of a valid-time property instance does not evolve automatically with the system clock.
Instead, an update operatorset temporal domain is provided, which destructively replaces the temporal
domain of the property instance by theTSequence given as parameter. Since the temporal domain must
always contain the effective domain, this operator may force some modifications on the effective history,
i.e. if the constraint is violated after some update to the temporal domain, the effective history is restricted
to fit inside the temporal domain.

Evolution of the effective history of transaction-time property instances In the case of transaction-
time properties, the effective history of a temporal property instance may only be modified by an overloaded
version of ODMG’sset value operator. More preciselyset value(v) applied to a transaction-time property
instanceTTPI, replaces the effective history ofTTPI by a new history, identical to the old one except that it
maps the current instant to valuev. If necessary, the growth status of the property instance is turned on.

Evolution of the effective history of valid-time property instances The primitive operator for updating
the effective history of a temporal property instance isset effective history which destructively replaces
the effective history of the temporal property by the one given as parameter. In order to achieve temporal
transitioning support, the standardset value operator is also supported, with the following semantics (VTPI
is a valid-time property instance):

VTPI.set value(v) � VTPI.set effective history(
VTPI.get effective history() �� IHistory(bag(tuple(tvalue:current instant(),svalue:v))))

Operatorget effective history retrieves the effective history of a property instance, andcurrent instant
is a function yielding the instant associated to the system clock.

Accessing temporal property instances The primitive access operators for both valid-time and transaction-
time property instances areget effective history andget history. The former simply retrieves the effective
history of the property instance, while the latter builds a history from the temporal domain and the effective
history using the corresponding semantic assumption as depicted in figures 4 and 5.

To achieve temporal transitioning support, the ODMGget value access operator is also supported on
temporal property instances. Its semantics in this context is defined as follows (TPI is a temporal property
instance):

TPI.get value() � SValue(TPI.get history(), current instant())

Figure 6 describes the interfaces of temporal property instances.

3.2.4 Temporal objects’ observation domain evolution

Evolution of transaction-time observation domains The observation domain of transaction-time objects
evolves automatically with the system clock in a similar way as the temporal domains of transaction-time
property instances. More precisely, each transaction-time object has a growth status, which may beOn

16

T get_value()
void set_value(T)

History<T> get_history()
void turn_on()
void turn_off()
enum {On, Off} status()

History<T> get_history()
set_observation_domain(TSequence)
set_effective_history(History<T>)

TTPropertyInstance<T>

PropertyInstance<T>

VTPropertyInstance<T>

Figure 6: interfaces for temporal property instances

or Off. Conceptually, while a transaction-time object is on, the current instant is added to its observation
domain at each system clock tick.

When a transaction-time object is created, its growth status is on. If the operatordelete is called on it,
the growth status turns off, but the object remains in the extent of its class. Subsequently, the growth status
can be turned on again by calling the operatorrevive. There is no operator for suppressing a transaction-time
object from its class extent. This is in line with the append-only semantics of transaction time.

Evolution of valid-time observation domains When a valid-time object is created, its observation do-
main is set to be the interval[current instant()..], that is the interval starting at the current instant, and
extending up to the largest instant recognized by the system. This observation domain can be subsequently
modified using operatorset odomain. This operator destructively sets the observation domain of the object
to be the temporal sequence given as parameter.

The operatordelete, when applied on valid-time objects, does not physically deletes the object from its
extent. Instead, it sets the upper bound of the object’s observation domain, to be the current instant. That is:

O.delete() � O.set odomain(O.get odomain() � [..current instant()]

Whereget odomain is an operator which returns the observation domain of an object, whether valid-
time or transation-time.

The above definition of the operatordelete on valid-time objects is crucial for ensuring temporal transi-
tioning support as discussed in section 3.3.

To enable the physical deletion of a valid-time object, an operator nameddestroy is provided. This
operator simply supresses the valid-time object from its class extent, as does the operatordelete when
applied on non-temporal objects.

void destroy()

void delete()

ISet get_odomain()
void revive()
enum {On, Off} status()

ISet get_odomain()
void set_odomain(TSequence)

VT_Object TT_Object

Object

Figure 7: Interfaces for temporal classes

Figure 7 presents the proposed temporal extensions to ODMG’s predefinedObject interface. Ap-
pendix A, provides two detailed examples of update scenarios, which illustrate the use of the operators
appearing in these interfaces.

17

3.3 Achieving temporal transitioning

After a database schema is modified to add temporal support to some of its classes and/or properties, appli-
cations may either continue to access the database as if there was no temporal component in the schema, or
else, take into account the schema modification.

The following two paragraphs describe how objects are adapted after this kind of schema modification
(i.e. how the schema change is reflected in the instances), and how the temporal and non-temporal “views”
of the database may be accessed by applications.

3.3.1 Database instance adaptation

To specify how a database instance is adapted to a schema modification which adds temporal support to
non-temporal schema components, an object conversion operator is defined. Conceptually, this conversion
operator should be applied to all existing objects in the database instance whenever the schema is modified.

The algorithm below implements the object conversion.
Algorithm 1: Object conversion operator

/* inputs and local variables */
modified classes: set of classes; /* classes to which temporal support is added */
modified properties: set of properties; /* properties to which temporal support is added */
o: object; /* object to be converted */
copy of o: object; /* used to store a copy of o */
/* procedure */
copy of o := o.copy(); /* makes a copy of o */
if classOf(o) in modified classes then

if (temporalDimension(o) = transaction-time) then o.turn on();
else o.set odomain([current instant()..])

for p in (properties(classOf(o))
if (p in modified properties) then �

if (temporalDimension(p) = transaction-time) then o.p.turn on();
else if (semanticAssumption(p) = stepwise) then

o.p.set observation domain([current instant()..])
o.p.set value(copy of o.p.get value())

�
else o.p = copy of p.p /* property remains fleeting */

As shown by this algorithm, temporal migration support is only ensured for transaction-time and valid-
time stepwise properties. This is because the idea behind temporal migration support is that when the
“current” value of a temporal property is modified, the new current value assigned to it should remain
constant. Such a characteristic is proper to stepwise properties.

3.3.2 Access modes

Object-oriented programming and querying languages generally only provide one construct for accessing
property values, and one for updating them. For instance, in C++, the only way of accessing the value of
an attribute is through the “dot” operator, whereas updating is performed through constructs of the formo.p
= v. TEMPOS, on the other hand, provides several update and access primitives for each type of temporal
property instance. The notion ofaccess modethat we introduce in this section, establishes which updating
or accessing operator on temporal properties is to be used depending on the application context. Two access
modes are provided:

� The upward compatible mode: temporal property instances are snapshot-valued: their value is defined
by the structural value of their history at the current instant. In addition, any reference to the extent

18

name of a temporal class (whether valid-time or transaction-time) retrieves the observed extent at the
current instant.

� The temporal mode: temporal property instances are history-valued, and no filtering is performed
when accessing a temporal class extent (i.e. all objects in the extent are retrieved).

Concretely, in the upward compatible mode, whenever a temporal property is accessed either from a
program or from a query, the value associated to this property is retrieved through theget value operator
(see 3.2.3). Similarly, updates in this mode are handled by theset value operator. In the temporal mode,
get history andset effective history are used instead.

In addition, if the operatordelete is applied over a temporal object, this object is still visible by the
temporal applications, since it is still present in the extent of its class. However, it is not visible by the ap-
plications which are in upward compatible mode, since its observation domain does not contain the current
instant, and consequently, it does not appear in the observed extent at the current instant (see section 3.2.4).

Different access modes may be attached to any two applications accessing the same database. As a
result, the access mode should be implemented on a particular system as a parameter of each application
session. The upward-compatible mode is the default in TEMPOS. This design choice is crucial to ensure
temporal migration support.

4 Querying and browsing

4.1 Application example

We consider an application example dealing with a factory’s assembly lines and employees. Each assembly
line is identified by a number and is associated to the history of its daily production (quantity and quality).
An assembly line is under the responsibility of an employee called its supervisor. For each employee, the
application keeps track of its salary, and of the assembly line to which (s)he is assigned.

The schema of the corresponding temporal database is given below. The schema definition language that
we use is TEMPODL, an extension of ODMG’s ODL integrating the concepts of the TEMPOSmodel [18].
Temporal classes and properties are those preceded by the keywordvalid.

valid granularity Day class AssemblyLine (extent TheLines, key lineNumber) �
attribute string lineNumber;
valid stepwise Day relationship Supervisor supervisor inverse Supervisor::supervises;
valid stepwise Day relationship set�Workers� workers inverse Worker::worksIn;
valid stepwise Day attribute short production;
valid stepwise Day attribute float quality;

�
valid granularity Day class Employee (extent TheEmployees, key name) �

attribute string name;
valid stepwise Day attribute float wage;

�
valid granularity Day class Worker extends Employee (extent TheWorkers) �

valid stepwise Day relationship AssemblyLine worksIn inverse AssemblyLine::workers;
�
valid granularity Day class Supervisor extends Employee (extent The Supervisors) �

valid stepwise Day relationship AssemblyLine supervises inverse AssemblyLine::supervisor;
�

4.2 Querying temporal objects

TEMPOQL adds some types to OQL such as time unit, instant, interval and history, together with some
language constructs for manipulating them. In the sequel, we introduce some of the salient constructs on

19

histories provided by TEMPOQL, and illustrate them though examples taken from the application presented
above. Throughout this section, we assume that the application that issues these queries is in the temporal
mode.

4.2.1 Formalization of TEMPOQL

TEMPOQL’s constructs are formalized using a notation similar to that of [39], which provides a complete
formalization of OQL. The formalization of a construct is made up of four parts:

� A contextwhich describes constraints on the types appearing in the typing part, as well as some con-
straints on sub-queries (such as a variable being free in a sub-query). Some of the typing preconditions
will make reference to subtypes ofHistory and Instant, although none of such subtypes are actually
defined by the model. This is to achieve some extensibility, by allowing TEMPOQL constructs to be
applicable to user-defined subtypes ofHistory andInstant.

� A syntaxgiven in a BNF-like notation with terminal symbols typeset in boldface.
� The typing rules for the construct using the notationpremise

implication. The notationq::t means that the query
q has typet, while q[x::t’]::t means that queryq has typet assuming that variablex has typet’.

� Thesemanticsdescribed in terms of expressions involving operators of the TEMPOShistorical model.
The semantics of a query is parametrized by a valuation function which determines the values of
free symbols in the query. The notation	�x � v� denotes the valuation equal to	 except that it
assigns value v to symbol x. The preconditions that apply to the operators defining the semantics of a
construct (in particular those related to the observation units of the argument histories), also apply to
the construct itself.

As an example, the formalization of the restriction operators on histories is given in figure 8. For the
formalization of the other TEMPOQL’s constructs used throughout this section, the reader may refer to
appendix C.

4.2.2 Range and domain restrictions

Theduring construct builds a history, by restricting a given history to those instants lying in a given temporal
sequence, as illustrated in the following query.
Q.1: Domain restriction
For each assembly line, give its number and the history of its production during 1997.

/* type: bag�struct�L: string, P: History�short��� */
select struct (L: li.lineNumber, P: li.production during @“1997”)
from TheLines as li

/* The instant @“1997” is automatically expanded into an interval at the granularity of the day i.e.
[@“1/1/1997”...@“31/12/1997”]. */

As shown in figure 8(a), the semantics of theduring construct is defined in terms of the��� operator on
histories.

The when construct on the other hand, builds a history by restricting a given history to those instants
where its value satisfies a given condition. The semantics of this construct is defined in terms of the���
operator on histories as detailed in figure 8(b). The following query illustrates its use.
Q.2: Range restriction
For each assembly line, retrieve its number and the set of instants when its production is greater than 100.

/* type: bag�struct�L: string, P: TSequence�� */
select struct(L: li.lineNumber, P: tdomain(li.production as p when p � 100)) from TheLines as li

The tdomain operator retrieves the set of instants at which the history given as parameter is defined. In
the above example, this is the set of instants during which the history of the line’s production fulfills the

20

Context:����
�

�� is a subtype of��������
�

��;
�� is a subtype ofTSequence or a subtype ofInstant

Syntax:�query� ::= �query� during �query�

Typing:
�� �� ����

�

��� �� �� ��

�� during �� �� ��������
�

��

Semantics:��q1 during q2�� � =

��
�

��q1�� � ��� ��q2�� � if �� subtype of TSequence
��q1�� � ��� if �� subtype of Instant and
expand(��q2�� � , Unit(��q1�� �)) Unit(��q1�� �) � Unit(��q2�� �)

(a) during: history restriction according to temporal values

Context:���
�

� is a subtype of��������
�

�; variable x is free in��
Syntax:�query�:=�query� as �identifier� when �query�

Typing:
�� � ���

�

�� ���� � �
�

� � �������

�� as x when �� � �������� �

�
Semantics:��q1 as x when q2�� � = ��q1�� � ��� �v � ��q2�� ��x�v�

(b) when: history restriction according to structural value

Figure 8: Semantics of TEMPOQL’s restriction constructs

condition given in thewhen clause. Thewhen construct can be combined with a generalized projection
construct on histories calledmap, in a similar way that thewhere is coupled with theselect in plain OQL.
The semantics of themap/when construct on histories is given in appendix C, figure 14.

4.2.3 Temporal joins

The constructsjoin andojoin correspond to the inner and outer temporal joins on histories. Their syntax is
similar to that of thestruct construct in plain OQL. Figure 15 in appendix C, gives the formal definition of
the join construct (ojoin is defined in a similar way, and its semantics is defined in terms of the��operator
on histories).

Since both of these constructs build pairs of synchronous values taken by two histories, they allow one
to express “simultaneity”. For instance, in the following query, thejoin construct is composed with thewhen
one, so as to express that, at some instant, the production of a assembly line is greater than that of another
assembly line.
Q.3: Restriction on structural values and temporal join
When was the production of assembly line L1 greater than the production of assembly line L2?

/* type: TSequence */
flatten (select tdomain (join (p1: L1.production, p2: L2.production) as j when (j.p1 � j.p2)

from TheLines as L1, TheLines as L2
where L1.lineNumber=“L1” and L2.lineNumber=“L2”)

In the above example query,ojoin could be used to take into account that when L2 has no production,
the production of L1 may be considered as being greater than that of L2 :

21

/* type: TSequence */
flatten (select tdomain (ojoin (p1: L1.production, p2: L2.production)

as oj when oj.p1 != nil and (oj.p2 = nil or (oj.p1 � oj.p2)))
from TheLines as L1, TheLines as L2
where L1.lineNumber =“L1” and L2.lineNumber = “L2”)

4.2.4 Pointwise generalization of OQL constructs

For each OQL construct, TEMPOQL provides a counterpart construct on histories which seamlessly gener-
alizes it. The semantics of the “extended” operator is defined using the followingpointwise generalization
principle6: given an N-ary operator�: ��, � � � �n � �n+1, an operator�: History��1�, � � � History��n��
History��n+1� is defined such that:� i � TDomain (h1 � � � � � hn) SValue (h1 � � � � � hn, i) = SValue (h1,
i) � � � � � SValue (hn, i)

For instance, given two queriesh1 andh2 both retrieving histories of integers, and an arithmetic operator
�, queryh1 � h2 retrieves the history obtained by applying operator� to synchronous values ofh1 andh2
(see annexe C, figure 16). The same holds for comparison and boolean operators.

Using the generalization principle, it is possible to express queryQ.3 in a more concise way:
Q.3: Pointwise generalization of arithmetic operators

element (select tdomain ((L1.production � L2.production) as b when b)
from TheLines as L1, TheLines as L2 where L1.lineNumber = “T1”and L2.lineNumber = “T2”)

Notice that in this query, the expressionL1.production � L2.production retrieves a history of booleans.
This history is then restricted to those instants when its value is “true”.

OQL’s “dot” operator on structured types and objects, is similarly generalized to deal with histories.
More precisely, leth be a query yielding a history whose structural values are objects with some attributea,
then queryh.a yields a history with the same temporal domain ash, obtained by projecting each structural
value ofh over attributea. More precisely, ifq is a query retrieving a history of objects of class C, andP is
a temporal property over classC, then:

�� q.P�� � = � � i, o’ � � i, o � � �� q�� � � � i, o’ � � o.P �

The use of this “temporal navigation” operator is illustrated below.
Q.4: Pointwise generalization of the navigation operator
When did the assembly line supervised by employee X had a quality-weighted production greater than that
of the assembly line supervised by Y?

/* type: TSequence */
element(select domain(supX.supervises.production * supX.supervises.quality

�
supY.supervises.production * supY.supervises.quality
as b when b)

from TheSupervisors as supX, TheSupervisors as supY
where supX.name = “X” and supY.name = “Y”)

The generalization principle applies to collection types as well, i.e. OQL collection expressions (forall,
exists, sum, avg, etc.) are generalized in TempOQL to apply to histories of collections. For instance, let
h be a query retrieving the history of courses followed by a student, then expressionsum (h) retrieves, for
each instant in the temporal domain ofh, the amount of courses followed by the student at that time.

6This principle has been used in dataflow programming languages (e.g. LUSTRE [10]), and in some temporal relational query
languages [45, 31].

22

4.2.5 Aggregations and grouping

All OQL’s aggregation functions on collections are extended to deal with subtypes ofHistory. The only
exception iscount which is actually renamed toduration when applied to a history, i.e.duration(h) yields
the cardinality of the temporal domain of historyh. The semantics of these extensions are obvious from the
definition of the corresponding operators on histories and we therefore omit them.

Themap ... on ... when construct defined on histories is extended with agroup by and ahaving clauses,
accounting for grouping (see appendix C, figure 17). The grouping criteria may be a temporal unit or a
duration. Similar remarks to those formulated for themap ... on ... when construct apply, and thewhen and
the having clauses are optional. Keywordpartition may be used in themap andhaving clauses to refer to
the sub-histories generated by thegroup by clause.
Q.5: Change of granularity
For each assembly line, and for each month when it has a production, retrieve the number of days in those
month, when its production quantity is greater than 100.

/* type: bag�struct�L: AssemblyLine, P: History�Duration��� */
select struct (L: L, P: map duration (partition)

/* partition is a history at the granularity of the day. */
on L.production as p when p � 100
group by month)

from TheLines as L

Q.6: Aggregations and duration-based grouping
For each assembly line, and for each 10-day period during which the total production of this line is greater
than 10000, retrieve its average production on that period.

/* type: bag�struct�L: string, avgP : History�real��� */
select struct(L: L.lineNumber, avgP : map avg(partition) on L.production as p

group by #“10 days”having sum(partition) � 10000)
from TheLines as L
/* The result of the sub-query introduced by the map clause, is a history at the granularity of the day: for
a given day, the average production of the 10-day period starting on that day is retrieved, provided that
the total production on that period is � 10000 */

4.2.6 Reasoning on chronicle-based representations

TEMPOQL allows to set a particular representation of histories. By iterating on the resulting chronicle, it
is then possible to express temporal queries by explicitly referencing the timestamps associated to history
values as in TSQL2 and TOOBIS–TOQL.

Three constructs to cast histories into chronicles are provided:ichronicle, xchronicle and dchronicle.
They respectively yield an ordered list of instant-timestamped values, an ordered list of coalesced interval-
timestamped values, and a set of temporal sequence-timestamped values. In appendix C, figure 18 we
describe the semantics ofxchronicle construct.
Q.7: Reasoning on XChronicle-based representation
For each assembly line, give its number and the longest time period(s) during which its production was
greater than 100.

/* type: set�string, bag�Interval�� */
select struct (L: L.lineNumber, period: xsmax.tvalue)
from TheLines as L, xchronicle (L.production as p when p � 100) as xsmax
where duration (xsmax.tvalue) = max (select duration (xs.tvalue)

from xchronicle (L.production as p when p � 100) as xs)

23

4.2.7 Reasoning about succession in time

The afterfirst beforefirst, afterlast and beforelast constructs are straightforward adaptations of the corre-
sponding operators on histories (see appendix C, figure 19). Their syntax is similar to that of thewhen
construct.
Q.8: Succession in time - splitting histories
For each assembly line give its number and its production history up to the last time its production was
smaller than 100.

/* type: set�L: string, P: History�unsigned long�� */
select struct (L: L.lineNumber, P: L.production as b beforefirst b � 100)
from TheLines as L

4.3 Pattern-matching queries

The constructMatches defined in appendix B, allows to formulate rather complex queries about succession
in time in an elegant way.
Q.9: Pattern-matching
Retrieve the workers who once moved from assembly line L1 to L2 where they stayed for at most 3 months
before moving to L3?

/* type: bag�Workers� */
select w from TheWorkers as w
where w.assemblyLine as u

matches (u.name = “L1”followed by u.name = “L2” during � #“3 months” followed by u.name = “L3”)

4.4 Pointwise temporal object browsing

The pointwise browser is based on an extension of existing object browsing techniques such as PESTO’s
“synchronous” navigation [9]. This extension is designed to specifically address time-related users’ tasks
such as:

� Analyze data about the supervisor and workers of each assembly line at a given date.
� Compare at different dates, a given worker’s wage with respect to that of the supervisor of the assem-

bly line to which he is assigned.
� Find out whether the composition of a given assembly line (equipment plus workers) considerably

changes when its supervisor does.

4.4.1 Overview

The pointwise browser interface (see figure 9) is made up of two parts: atime-line windowand a tree of
snapshot windows. A snapshot window displays either a non-temporal object7 or a snapshot of a temporal
object at a given instant. The instant with respect to which the object snapshots are determined is the same
for all the windows in the tree, and is subsequently called thereference instant. The reference instant is
constrained to reside within a given interval called thetemporal browsing range.

The role of the time-line window is to fix the reference instant. At the beginning of a session, the
reference instant is at the middle of the temporal browsing range. Its position varies thereafter according to
the user interactions with the sliders and buttons composing the time-line window. In its simplest form, the
time-line window is composed of a slider (called themain slider) and four buttons placed at the ends of this

7An object istemporalif it owns at least one temporal property andnon-temporalotherwise.

24

Month DayYear

11990 10

Worker

wage

worksIn

Worker.worksIn.supervisor

wage

Granular sliders

Change instants ...

Main slider 10/1/90

19981984 31112

22/12/84

EXIT

Time-line window

Worker.worksIn

production

supervisor

lineNumber

AssemblyLine

7.10

Daassi name

workers
supervises

U101

Supervisor

2000

set<Worker>
set<AssemblyLine>

8.55

Nigay

Worker.worksIn.supervisor

Main snapshot window

Visualized path

Reference Instant

name

7/2/98

snapshot window 2
snapshot window 3

Figure 9: The pointwise temporal object browser. The schema of the underlying database is the one given
in section 4.1. In particular, propertiesWorker::wage andWorker::worksIn are temporal.

slider. Two of the buttons (labeled by simple arrows), allow the user to move the reference instant forward or
backward by one unit. The other pair of buttons (labeled with double-arrows), allow to move the reference
instant to the next/previous instant where the value of a given navigation path (called thevisualized path)
changes. The instants at which the value of the visualized path changes are calledchange instants. Change
instants are visually represented as vertical marks lying within a horizontal line just beneath the main slider.

In figure 9, the change instants are those when the supervisor of worker “Daassi” changes, whether this
change is due to the fact that this worker is assigned to a new assembly line and that this assembly line has
a different supervisor than the previous one, or to the fact that the supervisor of the assembly line to which
this worker is assigned changes.

In addition to the main slider, the time-line window may additionally contain severalgranular sliders,
which allow the user to move the reference instant with different “steps” according to a given calendar.
For instance, if the reference instant is a date, and that the user specifies the calendar Year/Month/Day (as
in figure 9), three granular sliders appear in the time-line window: the first one allows one to move the
reference instant with a step of a year, the second one with a step of a month, and the third one with a step
of a day (within the limits of a given month).

Snapshot windows are structured as forms containing one line per property of the visualized object or
object snapshot8. Each line is composed of two buttons: the left one labeled with the name of the property,
and the right one labeled with its value at the reference instant9. The value of a non-temporal property is
always the same regardless of the reference instant. The value of a temporal property at a given instant is
equal to the value of its history at that instant, which is itself defined as follows:

� The value at instantI, of a history represented as an instant-timestamped collection of objects, is equal
to the object within this collection whose timestamp is equal toI. If no such object exists, the history’s
value is null.

� The value at instantI, of a history represented as an interval-timestamped collection of objects, is
equal to the object within this collection whose timestamp contains instantI. If no such object exists,
the history’s value is null.

8For the time being, we restrict our examples to snapshot windows displaying single objects or object snapshots. We will
discuss afterwards how collections are accommodated.

9If the value of a property is not printable (i.e. its type is not integer, string, etc.), the name of its class is used as its label.

25

All buttons within a snapshot window are clickable, except those which denote literal values (i.e. inte-
gers, reals, string, and characters). For instance, in figure 9 all the buttons within the snapshot windows are
clickable, except the white-colored ones.

At the beginning of a session, there is a single snapshot window. Other snapshot windows are incremen-
tally added to the tree according to the user interactions with the clickable buttons denoting object references
which appear within existing forms. The object displayed by a given snapshot window other than the main
one, is equal to the object referenced by the button from which this window was opened. For instance,
the configuration shown in figure 9 is obtained by displaying the worker named “Daassi” and successively
clicking on the buttons labeledAssemblyLine andSupervisor.

The user may also click on the buttons labeled with property names (i.e. the buttons on the left column
of a form). The semantics of this interaction is that the selected property becomes the visualized path
expression and the set of “change instants” attached to the time-line window are updated accordingly. For
instance, clicking on the button labeledproduction on window 2 of figure 9, sets the visualized path to be
Worker.worksIn.production instead ofWorker.worksIn.supervisor. The vertical marks drawn on the line just
below the main slider, and the label appearing in the low-right corner of the time-line window are then
modified accordingly.

Worker

name

wage

worksIn

Worker.worksIn.supervisor

wage

Worker.worksIn

production

supervisor

lineNumber

AssemblyLine

6.95

Daassi name

workers
supervises

U112

Supervisor

1600

set<Worker>
set<AssemblyLine>

10.80

Coutaz

Month DayYear

19981988 311

EXIT

22/12/84

Worker.worksIn.supervisor

window 1 window 3
window 2

7/2/9827/12/92

1992 121 27

Figure 10: Modification of the reference instant upon the configuration given in figure 9.

Whenever the user modifies the reference instant, the new reference instant is notified to the main
snapshot window (see Figure 10). Upon receiving this notification, the main window computes the snapshot
at the new reference instant, of the object that it displays, and updates its appearance so as to reflect this
new snapshot. During this process, if the value of a temporal property changes, the new value is transmitted
to its dependent window if any. Finally, the main window propagates the notification of the new reference
instant to all its dependent windows, and the above process is carried out recursively.

As stated before, the reference instant ranges through an interval called the temporal browsing range.
This range is taken to be the smallest interval containing all the instants when at least one of the temporal
properties of the object displayed by the main snapshot window (subsequently called themain object) is
defined. For example, if the main object is a workerW, such that:

W.salary = set(struct(timestamp: [1..4], value: 10.0), struct(timestamp: [6..9], value: 12.0))
and
W.worksIn = set(struct(timestamp: [2..4], value: X), struct(timestamp: [6..8], value: Y)).

(where X and Y are two assembly lines), then the temporal browsing range is taken to be interval [1..9].
Notice that the above definition entails that the main object is temporal, since otherwise, the browsing

range would be empty.

26

4.4.2 Pointwise browsing in the presence of null-valued properties

Heretofore, we have implicitly assumed that all properties displayed within snapshot windows have non-null
values. However, null-valued properties within a snapshot window may arise in two cases:

� The value of the property at the reference instant was actually set to “null” through an update (this
can occur whether the property is temporal or not).

� The history of a temporal property is not defined at the reference instant, in which case we consider
that its value is null. This situation can occur in the middle of a pointwise browsing session, since the
temporal browsing range may include instants in which some of the temporal properties of the main
object are defined while others are not.

Worker

name

wage

worksIn

Worker.worksIn.supervisor

wage

Worker.worksIn

production

supervisor
6.95

Daassi name

workers
supervises

Month DayYear

1988 31112

EXIT

22/12/84

Worker.worksIn.supervisor

window 1 window 3
window 2

7/2/981/5/97

lineNumber

31 51997 1998

Figure 11: Modification of the reference instant upon the configuration given in figure 10. Windows 2 and
3 become inactive as a result of this interaction.

As in O�Look [37], we visually denote a null value through a filled rectangle. However, this does
not solve all the problems arising from nulls. Indeed, suppose that the worker displayed in figure 10 is not
assigned to any assembly line on 1/5/97 (i.e. there is no element in its history whose timestamp contains this
date). If the reference instant is set to this date, the value of propertyworksIn becomes null, and something
has to be done with its dependent forms (i.e. windows 2 and 3 in figure 10).

In our approach, if further a modification of the reference instant, one of the properties displayed by
a snapshot window becomes null, and if this property has a snapshot window attached to it, then all the
windows in the sub-tree stemming from this property becomeinactive. Inactivity of a snapshot window can
be visually rendered in at least two ways:

� Hide the window (and redisplay it when it becomes active again).
� Modify the appearance of some elements within the window, e.g. by graying out the labels denoting

property names and erasing the labels denoting property values. In this case, labels should be restored
as the window becomes active again. Figure 11 illustrates this approach.

We believe that the second approach is to be preferred, since hiding and redisplaying windows violates
the screen stability ergonomic property.

4.4.3 Pointwisely browsing collections of temporal objects

To accommodate collections, we augment the pointwise browser with the concept ofsynchronous naviga-
tion as defined in object browsers such as PESTO [9]. Basically, a collection of temporal objects is displayed

27

in the same way as a single one, except that the corresponding snapshot window contains a couple of arrow-
labeled buttons on top of it. This window displays the snapshot at the reference instant, of one of the objects
within the collection. Clicking on either of the arrows allows one to switch to the next or the previous object
in the collection (see figures 12(a) and 12(b)).

Workers.workIn

Supervisor

U101

production 2000

supervisor

lineNumber

workers set<Worker>

name

wage

worksIn

4/10

Workers.workIn.workers

Dupont

6.40

AssemblyLine

name

wage

worksIn

1/100

Workers

Daassi

7.10

AssemblyLine

22/12/84 7/2/98

Worker.worksIn.supervisor

EXIT

10/1/90

(a) Configuration 1

Workers.workIn

Supervisor

U105

production 2200

supervisor

lineNumber

workers set<Worker>

name

wage

worksIn

1/7

Workers.workIn.workers

Durand

6.60

AssemblyLine

name

wage

worksIn

2/100

Workers

Dumas

7.00

AssemblyLine

15/7/84 15/3/95

Worker.worksIn.supervisor

EXIT

10/1/90

(b) Configuration 2

Figure 12: Pointwisely browsing a collection of temporal objects. Configuration 2 is the result of clicking
on the right arrow of the main snapshot window in configuration 1.

As before, the temporal browsing range is defined with respect to the object visualized by the main
snapshot window. Therefore, when this object changes, the browsing range is recomputed. This is the
reason why the time-line is redrawn when transitioning from configuration 1 (see figure 12(a)) to con-
figuration 2 (see figure 12(b)). Notice also that during this transition, the change instants are also re-
computed. Under some circumstances this computation involves a relatively large amount of data. For
instance, consider the example of figures 12(a) and 12(b) and suppose that the visualized path expression
is Workers.worksIn.supervisor.wage (which means that the pathWorkers.worksIn.supervisor is displayed),
computing the change instants then involves the following histories:

� The history of the employee’s assembly lines.
� The history of the supervisors of each line where the visualized employee has ever worked.

28

� The history of the wages of each supervisor appearing within any of the histories referenced in the
previous item.

In order to ensure an acceptable response time when transitioning from one object to another, a good
history join algorithm should be used, and the involved histories must be well clustered on disk. Studying
these two issues is therefore an interesting perspective to the work reported here.

4.5 Comparison with related works

Data visualization has received little attention within the temporal database research domain10. A notable
exception to this remark is [35], which specifies a 3D interface for browsing temporal relational databases.
In this approach, a temporal relation is represented as a sequence of time-indexed planes, each one display-
ing a table denoting a snapshot of the relation. Although the interface is not detailedly described, it seems
that the interaction devices are limited to two scroll-bars: one for browsing through the records of a relation
snapshot, and the other for navigating across the time dimension.

In the area of information visualization, many techniques for graphically displaying and browsing tem-
poral data have been designed [4, 52]. Most of these techniques are oriented towards quantitative time
series, i.e. periodical series of numerical data items. [36] adapts some concepts developed in these works to
design an interface for visualizing legal and medical personal records involving non-quantitative temporal
data such as histories of texts and of complex objects.

The pointwise temporal object browser is an extension of data browsers such as KIVIEW [34], O�Look [37],
ODEVIEW [16], SUPER [17], and PESTO [9]. In particular, the technique used to navigate through collec-
tions is based on the concept of synchronous navigation proposed in KIVIEW, and refined in ODEVIEW
and PESTO. Nevertheless, the pointwise browser considerably differs from all the above ones, since it treats
time as a dimension per se. Indeed, the pointwise browser allows one to orthogonally navigate through the
following three dimensions :

� Through the objects composing a collection using the arrow-labeled buttons on top of each snapshot
window denoting a collection.

� Through object relationships using the clickable buttons within the right columns of a snapshot win-
dow, whether this snapshot window denotes a single object or a collection of objects.

� Through the time dimension using the components of the time-line window.

Moreover, the pointwise browser takes into account the impacts of null-valued properties during syn-
chronous navigation, whereas this issue is completely neglected in the above proposals.

5 Implementation

TEMPOShas been implemented as a prototype on top of the object-oriented DBMS O2. This prototype has
been used to develop several concrete applications. In particular, we have implemented an application deal-
ing with the management of annotated time series for economical analysis, and an application concerning
the analysis of the behavior of people over time in a ski resort [26]. Furthermore, in another work we have
adapted this implementation to the management of video annotations [23].

10On the contrary, several visual query languages for temporal databases have been proposed (e.g. [28]). We do not discuss them
since the functionalities addressed by these proposals are beyond the scope of the present paper.

29

5.1 Overall architecture

Figure 13 depicts the prototype architecture. It essentially consists of a library of classes corresponding to
the ADT hierarchies defined in the the time and historical models, two preprocessors implementing respec-
tively TEMPODL and TEMPOQL, and a visualization module. A temporal metadata manager accounts for
the communication between the two preprocessors.

Temporal
metadata
manager

RegloPattern matching
Histories

Temporal types

Time units

Formats

TempODL

Administrator

O2

End User

Visualization pre-processor
TempOQL

pre-processor

programs
External

Library of time-related classes

Figure 13: Prototype architecture

The library of time-related classes has been primarily implemented in the O2’s database programming
language O2C (which is translated into C by a preprocessor provided by the O2 system), while the prepro-
cessors and the metadata manager have been implemented in C using code generation tools such as Lex and
Yacc. These classes can be used from C++ and Java programs using the corresponding bindings provided by
the O2 system. One of the modules of the library of time-related classes implements the pattern-matching
operator described in section 3.1.4. We discuss the implementation of this module in section 5.3.

The visualization module implements the pointwise temporal object browser, and some other visualiza-
tion techniques that we are developing as part of an ongoing work on temporal visual data analysis. The
pointwise browser is implemented in C using the XForms toolkit11, and the other techniques are being im-
plemented in Java using JavaSwing. As the preprocessor, this module uses metadata related to the temporal
classes and properties defined in the database’s schema.

5.2 Implementation issues related to the lack of parametric classes in ODMG

Perhaps, the major problems that we faced during the design and implementation of the TEMPOSprototype,
were those related to the lack of parametric classes in the O2 model (which is true of the ODMG object
model as well). Indeed, theHistory datatype could be naturally mapped into a parametric class.

One of the solutions that we envisaged, is to generate a class for each kind of history involved in an
application (e.g. one for histories of integers, another for histories of floats, etc.). However, in realistic
situations, this rapidly leads to a high proliferation of classes. In addition, some operators, such as the
temporal joins, cannot be satisfactorily implemented using this approach, since the structural value type of
the resulting history intrinsically depends on that of the argument histories (see section 3.1.3).

Instead, we decided to partially simulate parametric classes by exploiting the preprocessors included in
the architecture. In this approach, a single non-parametric classHistory, corresponding to histories whose
structural values are of typeObject (the top of the ODMG’s class hierarchy), is first implemented. Then,
during schema definition, each history-valued attribute is declared as being of typeHistory by the TEMP-
ODL preprocessor, but its exact type specification is stored in the temporal metadata manager. Since this

11http://world.std.com/�xforms

30

metadata manager is accessed by the TEMPOQL preprocessor, this latter knows the exact type of the histo-
ries involved in a query. With this knowledge, the TEMPOQL preprocessor adds explicit downcastings in
the translated query expression, whenever the structural value of a history is involved. In this way, the user
of TEMPOQL manipulates histories as if they were parametrically typed.

The above solution has several drawbacks. First, adding explicit downcastings in the translated queries
introduces a burden during query evaluation, since the OQL interpreter performs a dynamic type checking
whenever an object is downcasted. Second and foremost, the above solution does not take into account that
the database objects (and in particular the histories contained in a temporal database) are not only accessible
through the query language, but also, through any of the programming language bindings. As a result, in
the current TEMPOSimplementation, the typing of histories has to be coded into the application programs
(through downcastings and explicit dynamic type checkings).

The above considerations illustrate the necessity of extending the current ODMG object model to sup-
port user-defined parametric classes, as discussed in [1].

5.3 Implementation of the pattern-matching operator

In the next paragraphs, we describe the algorithm that we have implemented for evaluating the boolean
pattern-matching operatorMatches (see section 3.1.4). Basically, this algorithm proceeds in three steps.

First, the involved pattern is mapped into a regular expression over boolean variables. During, this
translation, a correspondence table between these boolean variables and the atomic formulae appearing in
the pattern is also built.

Second, the resulting regular expression is translated into an automaton whose inputs are boolean
streams. For performing this translation, we chose the technique developed in [38] and materialized in
a tool calledReglo. This technique was chosen over classical automata-generation techniques for three
main reasons:

� This technique assumes that the alphabet of the regular expression is composed of boolean variables
and that the input of the generated automata is a vector of boolean streams (which exactly match our
needs), whereas classical techniques assume that the alphabet of the regular expression is a set of
tokens, and that the input of the generated automaton is a single stream of tokens.

� The size of the generated (non-deterministic) automaton is linear on the size of the involved regu-
lar expression12, and the time complexity of the generation algorithm is also linear. Thereby, the
exponential space and time complexity of classical deterministic automata generation is avoided.

� The technique has been extended to efficiently deal with exponentiation operators (i.e. counters). This
feature is fundamental for implementing the duration-constrained repetition operator of the pattern-
matching language (see section 3.1.4).

Finally, once the automata built up, it is executed by successively providing it as inputs, the boolean val-
ues taken at each instant in the involved history, by the atomic formulae appearing in the pattern. Obviously,
to evaluate these atomic formulae, the structural values of the history need to be accessed. This process ter-
minates either when the automaton outputs true, or when the history has been completely scanned. Notice
that it is not necessary to evaluate the atomic formulae twice for two successive instants, unless the value of
the history changes in between. This remark leads to a straightforward yet important optimization, specially
when the involved history varies stepwisely (e.g. the price of a product).

Taking into account the above optimization, the evaluation of the third step of the algorithm for a tem-
poral pattern comprising� distinct atomic formulae, and whose structural value changes times, involves
at most� � atomic formulae evaluations. Since the complexities of the first two steps are linear on the
size of the pattern, this is also the worst-case complexity of the overall algorithm.

12This is not always true when negations or conjunctions are involved in the pattern

31

6 Conclusion

TEMPOSis a comprehensive temporal database framework which synthesizes and unifies most of the con-
cepts, requirements and functionalities, recognized as necessary to temporally extend existing DBMS. This
framework is composed of a time model, a history model, a temporal object model, a query language, and
a visual browser.

The time model defines a set of abstract datatypes modeling time values expressed with respect to an
extensible set of time units. These types are provided with a rich collection of arithmetic and comparison
operators.

The history model provides an abstract datatype dedicated to the notion of history, and a wide variety of
representation independent operators over it. These operators, together with those defined on the types of
the time model, form the basis for TEMPOQL, the proposed extension of ODMG’s OQL.

The temporal object model, which extends ODMG’s object model, fulfills two important requirements
related to legacy code migration: upward compatibility and temporal transitioning support. The former
states that a database may be transparently migrated from an ODMG system to a temporal extension of
it. The latter allows non-temporal legacy code to remain usable even after a database schema is modified
to add temporal support to some of its components. Temporal transitioning support is ensured by clearly
separating temporal properties from the history of their values: a temporal property may have a historical
value in the context of a temporal application and an “snapshot” value in the context of a non-temporal one.
In addition, update operators on temporal properties are defined in such a way that updates done by non-
temporal applications are compatible with those performed by temporal ones. The concept of “now”, which
has lead to many confusions in previous temporal data models [14], is naturally modeled by dynamically
generating a history from a now-relative temporal property.

The TEMPOQL query language offers facilities to express, in a unified framework, classical temporal
queries such as restriction, join and grouping, together with operators for reasoning about succession in
time. With respect to related proposals, the main originalities of TEMPOQL are :

� It is representation-independent in the sense that histories are primarily manipulated through con-
structs whose semantics is not tight to a particular representation, whereas in [40, 51, 47], queries on
histories are expressed by applying iterators on collections of interval-timestamped values represent-
ing them.

� It integrates some novel temporal query operators such as a boolean pattern-description language,
and two algebraic history grouping operators. While these latter operators are present in most exist-
ing temporal query languages (e.g. TSQL2 [42]), they have never been, to our knowledge, defined
algebraically in this context. The algebraic nature of these operators in TEMPOQL, allows to easily
compose them with the other operators of the algebra.

� By applying the pointwise generalization principle that has been used in the design of some dataflow
programming languages (e.g. LUSTRE [10]), TEMPOQL extends the semantics of standard OQL
constructs to deal with histories.

Regarding data visualization, TEMPOSintegrates a novel technique for browsing temporal object data-
bases. This technique orthogonally supports three kinds of navigation: (i) navigation through time, (ii)
navigation via object relationships, and (iii) navigation within the elements of a collection.

All the above models and languages have been formalized at the syntactical and the semantical level,
and a prototype on top the O2 DBMS has been developed on the basis of this formalization. This prototype
has been used to develop several applications from various contexts (GIS, time series, multimedia).

As a future work, we envisage two main research avenues: designing user interfaces for visually mining
temporal and spatio-temporal data, and modeling moving objects over constrained networks. Regarding the
first issue, a project has already been started in our research team, as reported in [20].

32

References

[1] S. Alagic. The ODMG model: does it makes sense? InProc. of the Int. Conference on Object-Oriented
Programming Systems, Langages and Applications (OOPSLA), Atlanta, GA (USA), October 1997.

[2] J.F. Allen. Maintaining knowledge about temporal intervals.Communications of the ACM, 26(11),
November 1983.

[3] J. Bair, M. Bohlen, C.S. Jensen, and R.T. Snodgrass. Notions of upward compatibility of temporal
query languages. Technical Report TR-6, Time Center, 1997.

[4] J. Bertin.Graphics and Graphic Information Processing. Walter de Gruyter & Co, Berlin, 1981.

[5] E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. Extending the ODMG object model with time.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Brussels,
Belgium, July 1998.

[6] M. Bohlen, R. Busatto, and C.S. Jensen. Point-based versus interval-based temporal data models. In
Proc. of the 14th Int. Conference on Data Engineering, pages 192–200, 1998.

[7] J.-F. Canavaggio. TEMPOS, un mod`ele d’historiques pour un SGBD temporel. Th`ese de doctorat,
Université Joseph Fourier, Grenoble (France), novembre 1997.

[8] J.-F. Canavaggio and M. Dumas. Manipulation de valeurs temporelles dans un SGBD `a objets. In
actes du XV congrès INFORSID, Toulouse, juin 1997. English version atftp://ftp.imag.fr/pub/labo-
LSR/STORM/PUBLICATIONS/1997/mtv.ps.gz.

[9] M. Carey, L. Haas, V. Maganty, and J. Williams. PESTO : an integrated query/browser for object
databases. InProc. of the Int. Conference on Very Large Databases (VLDB), Mumbai, India, August
1996.

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE : a declarative language for programming
synchronous systems. InProc. of the 14th ACM Symposium on Principles of Programming Languages,
Munchen, Germany, 1987.

[11] R.G.G. Cattell and D. Barry, editors.The Object Database Standard: ODMG 3.0. Morgan Kaufmann,
January 2000.

[12] T. Cheng and S. Gadia. A pattern matching language for spatio-temporal databases. InProc. of the
3rd International Conference on Information and Knowledge Management (CIKM), Gaithersburg, MD
(USA), November 1994.

[13] J. Chomicki. Temporal Query Languages: A Survey. InProc. of the International Conference on
Temporal Logic, Bonn, DE, 1994.

[14] J. Clifford, C. Dyreson, T. Isakowitz, C. Jensen, and R. Snodgrass. On the semantics of “Now” in
databases.ACM Transactions on Database Systems, 22(2):171 – 214, June 1997.

[15] J. Clifford and A. Rao. A simple general structure for temporal domains. InConference on Temporal
Aspects in Information Systems, Sophia-Antipolis, May 1987. AFCET.

[16] S. Dar, N.H. Gehani, H.V. Jagadish, and J. Srinivasan. Queries in an object-oriented graphical inter-
face.Journal of Visual Languages and Computing, 6(1):27 – 52, 1995.

33

[17] Y. Dennebouy, M. Andersson, A. Auddino, Y. Dupont, E. Fontana, M. Gentile, and S. Spaccapietra.
SUPER: visual interfaces for object + relationship data models.Journal of Visual Languages and
Computing, 6(1):27 – 52, 1995.

[18] M. Dumas. TEMPOS: une plate-forme pour le d´eveloppement d’applications temporelles au dessus
de SGBDà objets. Th`ese de doctorat, Universit´e Joseph Fourier, Grenoble (France), Juin 2000.

[19] M. Dumas, C. Daassi, M.C. Fauvet, and L. Nigay. Pointwise temporal object database browsing. In
Proc. of the ECOOP Symposium on Objects and Databases, Sophia Antipolis, France, June 2000. 15
pages.

[20] M. Dumas, C. Daassi, M.C. Fauvet, L. Nigay, and P.C. Scholl. Interactively exploring temporal object
databases. InActes des 16e Journées Bases de Données Avanćees (BDA), Blois, Octobre 2000.

[21] M. Dumas, M.-C. Fauvet, and P.-C. Scholl. Handling temporal grouping and pattern-matching queries
in a temporal object model. InProc. of the CIKM International Conference, Bethesda, MD (USA),
November 1998.

[22] M. Dumas, M.-C. Fauvet, and P.-C. Scholl. Updates and application migration support in an ODMG
temporal extension. InProc. of the 1st International Workshop on Evolution and Change in Data
Management, Paris, France, November 1999. Springer-Verlag, LNCS No 1727. 12 pages.

[23] M. Dumas, R. Lozano, M.-C. Fauvet, H. Martin, and P.-C. Scholl. A sequence-based object-oriented
model for video databases.Multimedia Tools and Applications, 2001. To appear.

[24] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical
Computer Science, volume 2. Elsevier Science Publisher, 1990.

[25] O. Etzion, S. Jajodia, and S.M. Sripada, editors.Temporal Databases: Research and Practice.
Springer Verlag, LNCS 1399, 1998.

[26] M.-C. Fauvet, S. Chardonnel, M. Dumas, P.-C. Scholl, and P. Dumolard. Analyse de donn´ees
géographiques : application des bases de donn´ees temporelles.Revue Internationale de Géomatique,
8(1-2), novembre 1998.

[27] M.-C. Fauvet, M. Dumas, and P.-C. Scholl. A representation independent temporal extension of
ODMG’s Object Query Language. Inactes des Journées Bases de Données Avanćees, Bordeaux,
France, Octobre 1999. 20 pages.

[28] S. Fernandes, U. Schiel, and T. Catarci. Visual query operators for temporal databases. InProc. of the
4th Int. Workshop on Temporal Representation and Reasoning (TIME), May 1997.

[29] S. K. Gadia and S. S. Nair. Temporal databases: a prelude to parametric data. In Tansel et al. [48].

[30] I. A. Goralwalla and M. T. Ozsu. Temporal extensions to a uniform behavioral object model. In
Proc. of the 12th International Conference on the Entity-Relationship Approach - ER’93, LNCS 823.
Springer Verlag, 1993.

[31] R. Guting, M. Bohlen, M. Erwig, C. Jensen, N. Lorentzos, M. Schneider, and M. Vazirgianis. A
foundation for representing and querying moving objects. Technical Report 238, FerUniversit¨at das
Hagen (Germany), 1998.

[32] I. Kakoudakis and B. Theodoulidis. The TAU Temporal Object Model. Technical Report TR-96-4,
TimeLab, University of Manchester (UMIST), 1996.

34

[33] N. A. Lorentzos. The Interval-extended Relational Model and its application to valid-time databases.
In Tansel et al. [48].

[34] A. Motro, A. D’Atri, and L. Tarantino. KIVIEW: An object oriented browser. InProc. of the Int.
Conference on Expert Database Systems, Vienna, Virginia (USA), April 1988. Benjamin Cummings.

[35] P. Papapanagiotou and B. Theodoulidis. ERT/vql: A visual environment for querying and manipulating
temporal database applications. Technical Report TR-94-5, Timelab, UMIST, 1994.

[36] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Schneiderman. LifeLines: Visualizing Personal
Histories. Inproc. of the ACM CHI conference, Vancouver, Canada, April 1996.

[37] D. Plateau, P. Borras, D. Leveque, J.C. Mamou, and D. Tallot. Building user interfaces with Looks. In
F. Bancilhon, C. Delobel, and P. Kanellakis, editors,The story of O2. Morgan Kaufmann, 1992.

[38] P. Raymond. Recognizing regular expressions by means of dataflows networks. InProc. of the 23rd
International Colloquium on Automata, Languages, and Programming, (ICALP’96)Paderborn, Ger-
many. LNCS 1099, Springer Verlag, July 1996.

[39] H. Riedel and M.H. Scholl. A formalization of ODMG queries. InProc. of the 7th Int. Conference on
Data Semantics (DS-7), Leysin, Switzerland, October 1997. Chapman & Hall.

[40] E. Rose and A. Segev. TOOSQL - a temporal object-oriented query language. InProc. of the 12th
International Conference on the Entity-Relationship Approach - ER’93, 1993.

[41] R. T. Snodgrass. Temporal object-oriented databases: a critical comparison. In W. Kim, editor,Modern
database systems. The object model, interoperability and beyond, chapter 19. Addison Wesley, 1995.

[42] R. T. Snodgrass, editor.The TSQL2 temporal query language. Kluwer Academic Publishers, 1995.

[43] R. T. Snodgrass and I. Ahn. A taxonomy of time in databases. InProc. of ACM SIGMOD, May 1985.

[44] R.T. Snodgrass.Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann, July
1999.

[45] R.T. Snodgrass, M. Bohlen, C. Jensen, and A. Steiner. Transitioning temporal support in TSQL2 to
SQL3. In Etzion et al. [25].

[46] A. Sotiropoulou, M. Souillard, and C. Vassilakis. Temporal extension to ODMG. InProc. of the
Workshop on Issues and Applications of Database Technology (IADT), Berlin, Germany, July 1998.

[47] A. Steiner and M.C. Norrie. Implementing temporal databases in object-oriented systems. InProc.
of the 5th International Conference on Databases for Advanced Applications, Melbourne, Australia,
April 1997.

[48] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodggrass, editors.Temporal
Databases. The Benjamins/Cummings Publishing Company, 1993.

[49] D. Toman. Point-based temporal extensions of SQL and their efficient implementation. In Etzion et al.
[25].

[50] TOOBIS ESPRIT Project. TODM, specification and design. Deliverable T31TR.1, MATRA CAP
SYSTEMES – O2 Technology, December 1996.

35

[51] TOOBIS ESPRIT Project. TOQL specification. Deliverable T33TR.1, University of Athens, National
Technical University of Athens, 01-PLIFORIKI S.A., O2 Technology, December 1996.

[52] E. Tufte.The visual display of quantitative information. Graphics Press, 1984.

[53] X. S. Wang, S. Jajodia, and V. S. Subrahmanian. Temporal modules : an approach toward federated
temporal databases.Information Systems, 82, 1995.

[54] G.T.J. Wuu and U. Dayal. A uniform model for temporal and versioned object-oriented databases. In
Tansel et al. [48].

A Updating temporal properties

Consider a simple application managing information about products produced and sold by a company.
To model it, a classProduct with a valid-time attributeprice is introduced. This property is observed at
the granularity of the day, has structural typereal, and evolves stepwisely. The valid-time observation of
an object of classProduct models the time when the product is produced (at the granularity of the day),
while the temporal domain of an instance of propertyprice models the time when its price is defined. The
following table illustrates a possible update scenario. The notation[i..] (resp. [..i]) designates the interval
containing all instants having the same granularity asi and greater than (resp. less than) or equal to it.

Event A new assembly line is created on 1/4/98; it is supervised by S1.
Operation L = new AssemblyLine;

L.supervisor.setodomain([1/4/98..]);
L.supervisor.seteffective history(��1/4/98, S1��)

Result L.supervisor.gethistory() =��[1/4/98..], S1��
� i � [1/4/98..] (S1.supervises.gethistory().getvalue(i) = L)

Event From 1/6/98, S2 is the supervisor of L
Operation L.supervisor.seteffective history(L.supervisor.geteffectivehistory()

�� ��1/6/98, S2��)
Result L.supervisorr.gethistory() =��[1/4/98..31/5/98], S1�, �[1/6/98..], S2��

� i � [1/6/98..] (S2.supervises.gethistory().getvalue(i) = L)
� i � [1/6/98..] (S1.supervises.gethistory().getvalue(i) = NULL)

Event From 6/8/98, the assembly line is suspended.
Operation L.set odomain(L.getodomain()� [..5/8/98])
Result L.get odomain() = [1/4/98..5/8/98]

L.supervisor.gethistory() =��[1/4/98..31/5/98], S1�,
�[1/6/98..5/8/98], S2��
� i � [6/8/98..] (S2.supervises.gethistory().getvalue(i) = NULL)

Event From 1/1/99 the assembly line is reintroduced, but it is not in motion.
Operation L.set odomain(L.getodomain()� [1/1/99..])
Result L.get odomain() =�[1/4/98..5/8/98], [1/1/99..]�

L.supervisor.gethistory() unchanged
Event From 1/2/99 to 31/3/99 the assembly is in motion, supervised by S3.
Operation L.supervisor.setodomain (L.supervisor.getodomain()� [1/2/99..31/3/99])

L.supervisor.seteffective history(L.supervisor.gethistory()����1/2/99, S3��)
Result L.get odomain() unchanged

L.supervisor.gethistory() =��[1/4/98..31/5/98], S1�,
�[1/6/98..5/8/98], S2�, �[1/2/99..31/3/99], S3��
� i � [1/2/99..31/3/99] (S3.supervises.gethistory().getvalue(i) = L)

Consider another simplified application dealing with the observation of the courses followed by students
in a School. We choose to model these data by means of a transaction-time classStudent with a transaction-
time propertyfollows whose structural type isset�Course� (the classCourse is not described here). Both

36

the observation domain of objects of classStudent and the temporal domain of instances of propertyfollows,
are observed at the granularity of the day. The following table describes a possible update scenario that may
occur in the context of this application and how it is handled using the operators described bellow.

Date 1/9/98
Event A new student register at the school
Operation S = new Etudiant
Result S.status() = On ; S.follows.status() = On

S.follows.gethistory() =��[1/9/98..1/9/98],� ���
Date 3/9/98
Event The student enrolls in Math and Chemistry courses
Operation S.follows.setvalue(�Math, Chemistry�)
Result S.getodomain() = [1/9/98..3/9/98];

S.follows.gethistory() =��[1/9/98..2/9/98],� ��, �[3/9/98..3/9/98],�Math, Chemistry���
Date 8/10/98
Event The student quits
Operation S.delete ()
Result S.status() = Off; S.follows.status() = Off;

S.getodomain() = [1/9/98..7/10/98]; S.follows.gethistory() =
��[1/9/98..2/9/98],���, �[3/9/98..7/10/98],�Math, Chemistry���

Date 1/2/99
Event The student reinstates; he enrolls in Logics and Databases courses
Operation S.revive (); S.follows.setvalue(�Logics, Databases�)
Result S.status() = On ; S.follows.status() = On;

S.getodomain() =�[1/9/98..3/9/98], [1/2/99..1/2/99]�;
S.follows.gethistory() =��[1/9/98..2/9/98],���, �[3/9/98..8/10/98],�Math, Chemistry��, �[1/2/99..1/2/99],
�Logics, Databases���

B Semantics of the pattern description language

B.1 Abstract syntax and semantics

The syntax of the atomic formulae of the language is defined as in multi-sorted first-order logics, over an
alphabet made up of constants, functions (which model object properties), variables and predefined relations
(�, �, etc.). Other well-formed formulae (wff) are built from atomic formulae by using propositional
operators (�, � and�) and the following temporal operators:

� Sequence: iff1 andf2 are wff thenf1;f2 is a wff.
� Repetition: if f is a wff, � a comparison operator (�, �, etc), n an integer term andd is duration

term, then (f)n, (f)� and (f)�d are wff too. The first two of these operators are counterparts of the
corresponding operators on regular expressions. The third one adds a duration constraint on the
patterns.

The semantics of the language is similar to that of Extended Temporal Logics (ETL) [24]. It is defined
over pairs� �� � �� � made up of a temporal domain� (a set of instants at a given granularity), and a
� -indexed sequence of valuation functions� that assign values to constant, function and relation symbols
for each instant in the temporal domain. Function and relation symbols are global [24], which means that
they have the same interpretation over all valuation functions in�, whereas constants may be either local
(i.e. their interpretation may vary depending on the instant considered) or global. Numerical litterals (e.g.
1, 2, 3,� � �) are treated as global constants whereas constants denoting structural values of a history are
local.

In the following, f, f1 and f2 represent wff. The semantics of wff in a given model�, between two
instantsi and j (j � i) belonging to� and under a valuation	 of variables, is given by the satisfaction

37

relation defined below. Intuitively,�� 	� ��
 � f, iff there is an occurrence of the pattern defined byf
starting ati and ending atj.

� �� 	� �� � � f (for an atomic formulae�) iff ��� 	 � � following the definition of� in first-order
logics

� �� 	� ��
 � �� � �� iff �� 	� ��
 � �� or�� 	� ��
 � ��
� �� 	� ��
 � �� iff not �� 	� ��
 � �

� �� 	� ��
 � ��� �� iff there is a� � � , � � � �
, such that�� 	� �� � � �� and�� 	� � � ��
 � ��
� �� 	� ��
 � 	�
� iff �� 	� ��
 � �

� �� 	� ��
 � 	�
� (� � �) iff there exists a� � � �
� � � � such that�� 	� �� � � � and
�� 	� � � ��
 � 	�
���

� �� 	� ��
 � 	�
� iff there is an� � � such that�� 	� ��
 � 	�
�

� �� 	� ��
 � 	�
�	 iff there is an� � � such that�� 	� ��
 � 	�
� and	��

 � �
� As usual,�� � �� � �	��� � ���)

B.2 Concrete syntax

The pattern description language is embedded into TEMPOQL through the following construct:

<query> ::= <query> as <identifier> matches <pattern>

The semantics of this construct is defined in terms of theMatch boolean operator on histories defined
in section 3.1.4. The non-terminal�pattern� is defined by the following rules, whose relative priorities are
indicated through integers:

<pattern> ::= <query> (0) /* an atomic formula */
<pattern> ::= <pattern> followed by <pattern> (1)
<pattern> ::= several <pattern> (2)
<pattern> ::= <pattern> during [<comparison_operator>] <query> (3)
<pattern> ::= <pattern> or <pattern> (4)
<pattern> ::= <pattern> and <pattern> (5)
<pattern> ::= not <pattern> (6)
<pattern> ::= *
<pattern> ::= (<pattern>)
<comparison_operator> ::= < | <= | ...

The following equivalences define the mapping from this concrete syntax to the abstract syntax.
p1 and p2� �� � �� p1 or p2� �� � �� not p� ��
p1 followed by p2� ��� �� several p� �� p during� d� ��	 (� � ����� � � � �)
p during d� ��	 * � true�

C TEMPOQL’s formalization

Context:����
�

�� is a subtype of��������
�

��; variable x is free in�� and��
Syntax:�query� ::= map �query� on �query� as�identifier� when �query�

Typing:
�� �� ����

�

��� ���� �� �
�

�� �� �� ���� �� �
�

�� �� �������

map �� on �� as x when �� �� ����������
Semantics:
��map q1 on q2 as x when q3�� � = Map(��q2�� � ��� �v � ��q3�� ��x�v�, �w � ��q1�� ��x�w�)

Figure 14: map: history projection

38

Context:����
�

��, � � � ����
�

��, � � � ����
�

�� are respectively subtypes of��������
�

��,
��������

�

��, � � � ��������
�

��; ��, ��, � � � �� are valid labels for structured types.
Syntax:�query�:= join (�identifier� : �query� �,�identifier� : �query� � �

Typing:
�� � ����

�

��� �� � ����
�

��� � � � �� � ����
�

��

join (�� � ��� �� � ��� � � � � �� � ��) � ������������ 	�� � �
�

�� �� � �
�

�� � � � �� � � �

�
�
Semantics:�� join (l1: q1, l2: q2, � � � ln: qn)�� � = ��q1�� � �� ��q2�� � , �� � � � �� ��qn�� �

Figure 15: join: merging histories

Context:����������� and����������� are subtypes of��������������� and
� � � +,�, *, div, mod�
Syntax:�query� ::= �query� � �query�

Typing:
�� �� ������������ �� �� �����������

q� � q� �� ���������������
Semantics:��q1 � q2�� � = Map (��q1�� � �� ��q2�� � , �	v1,v2
 � v1 � v2)

Figure 16: Generalization of the arithmetic operators on integers to two historical arguments

Context:����
�

�� is a subtype of��������
�

��; variablex is free in��;
variablepartition is free in�� and��; �� is a subtype of ��� or!�������

Syntax:�query� ::= map �query� on �query� as �identifier� when�query�
group by �query� having�query�

Typing:

�� �� ����
�

��� ������������ �� ��������
�

��� �� ��� ���� �� �
�

�� �� �������
�� �� ��� ������������ �� ��������

�

��� �� �������

map �� on �� as x when �� group by �� having �� �� ����������

Semantics:��map q1 on q2 as x when q3 group by q4 having q5�� � =������
�����

Map (UGroup (��q2�� � ��� �v � ��q3�� ��x�v�, ��q4�� �)
��� �w � ��q5�� ��partition�w�, �y � ��q1�� ��partition�y�)

if �� subtype of Unit

Map (DGroup (��q2�� � ��� �v � ��q3�� ��x�v�, ��q4 �� �)
��� �w � ��q5�� ��partition�w�, �y � ��q1�� ��partition�y�)

if �� subtype of Duration

Figure 17: group by: temporal grouping

Preconditions:���
�

� is a subtype ofHistory�	
�

�

Syntax:�query�:= xchronicle (�query�)

Typing:
� � ���

�

�

xchronicle (�) � �����������"���� � #����"��� "���� � � �

��
Semantics:�� xchronicle (q)��� = XChronicle (��q�� �)

Figure 18: XChronicle: transforming a history into a collection of interval-timestamped objects

Preconditions:���
�

� is a subtype of��������
�

�; variable x is free in��
Syntax:�query�:=�query� as �identifier� afterfirst �query�

Typing:
�� � ���

�

�� ���� � �
�

� � �������

�� as x afterfirst �� � �������� �

�
Semantics:��q1 as x afterfirst q2�� � = AfterFirst (��q1�� � , �v � ��q2�� ��x�v�)

Figure 19: afterfirst: succession in time - splitting histories

39

