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Abstract 

For the majority of spatiotemporal applications, we assume that the modeled world 

is precise and bounded. Although this simplification is sufficient for applications 

like the cadastral system, it seems to be unnecessary crude for many other 

applications handling spatial and temporal extents, such as navigational applications. 

In this work, we explore fuzziness and uncertainty, which we subsume under the 

term indeterminacy, in the spatiotemporal context. We first show how the 

fundamental modeling concepts of spatial objects, attributes, relationships, time 

points, time periods, and events are influenced by indeterminacy, and show 

subsequently how these concepts can be combined. Next, we focus on the change of 

spatial objects and their geometry in time. We outline four scenarios, which identify 

discrete and continuous change, and we present how to model indeterminate change. 

We demonstrate the applicability of this proposal by describing the uncertainty 

related to the movement of point objects, such as the recording of the whereabouts 

of taxis. 

 

1. Introduction 

Spatiotemporal applications received a lot of attention over the last years from both the research and 

the application-oriented community. Requirements analysis [22], models [9, 30], data types [15], and 

data structures [28, 32, 24] are some of the main topics in this area. Although considerable research 

effort and valuable results do exist, all the studies and proposed approaches are based on the 

assumption that, in the spatiotemporal mini-world, objects have crisp boundaries, relationships among 

them are precisely defined, and accurate measurements of positions lead to error-free representations. 

 However, reality differs. Very often boundaries do not strictly separate objects but, rather, show a 

transition between them. Consider the example from an environmental system in which the different 

climate zones, such as desert and prairie, are not precisely bounded. We encounter a transition, or 

fuzziness, between them. On the other hand, in a navigational system, the position of a moving vehicle, 

although precise in its nature, might not be exactly known, e.g., car A is in New York. This example is 

characterized by uncertainty (i.e., lack of knowledge or error) about its actual location.  

 In this paper we deal with fuzziness and uncertainty as related to spatiotemporal objects. More 

specifically, we start by pointing out the semantic differences between the two cases that constitute 

spatiotemporal indeterminacy: fuzziness, concerning “blurry” situations, and uncertainty, expressing 

the “not-exactly-known” reality. Our goal is to clarify these terms and study their impact on the spatial 

and temporal domains, as well as the combined effect, spatiotemporal fuzziness and uncertainty. We 

show how the basic spatiotemporal modeling concepts, such as spatial objects, attributes, relationships, 

time points, time periods, events and change are influenced by indeterminacy. The approach presented 

in [13] on indeterminacy in the temporal domain, is used as a vehicle to explore fuzziness and 
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uncertainty in spatial, temporal and spatiotemporal applications as well as to point out their differences 

and similarities. 

The contribution of this work is twofold. First, we explore the semantics of spatial and temporal 

indeterminacy, to better understand their nature and behavior. For the same reason, we further focus on 

the differences and similarities of spatial fuzziness and uncertainty. Next, we explore the nature of 

spatiotemporal indeterminacy; we discuss the fundamental concept of change and the way it is affected 

by uncertainty and fuzziness. We give a formal way to describe it; an example demonstrates the 

applicability of this proposal. 

 To the best of our knowledge, no other work deals with indeterminate change based on the fuzzy 

and uncertain spatiotemporal concepts causing it. There are only few works towards spatiotemporal 

indeterminacy. [27] focuses on simple spatial and temporal uncertainty concepts and integrates them to 

describe spatial updates in a GIS database. However, the presented concepts are rather abstract and 

cannot immediately be applied. [23] discusses spatiotemporal indeterminacy for moving objects data. It 

describes an approach of how to compute and utilize error information of moving objects trajectories. 

The approach, however, is limited to point objects, also, it does not take temporal errors into account. 

[7] aims at describing the change of fuzzy features over time using a raster representation. More work 

exists dealing with indeterminate temporal and spatial information individually. [12] takes a 

probabilistic approach in handling indeterminacy of temporal information. On the other hand, research 

in the geography and surveying domain provides ways to describe and handle spatial indeterminacy. 

[8] introduces the concept of epsilon distances to quantify the cartographic error related to map 

production. [5] and [6] describe spatial uncertainty as related to soil boundaries. These works use fuzzy 

set theory for soil classification. Work on spatial indeterminacy related to resolution can be found in 

[34] and [35]. [33] describes of how to utilize fuzzy measures to better describe spatial relationships 

among determinate spatial objects. [25] and [26] take a more pragmatic approach in that the spatial 

world is modeled in terms of spatial data types, and fuzziness is expressed as related to the data types 

and the operations on them. The works on spatial indeterminacy are many and the ones presented here 

are only exemplary. Further readings can be found in [17]. 

 The rest of the paper is organized as follows. Section 2 briefly presents the fundamental spatial and 

temporal concepts involved in the spatiotemporal application domain. Section 3 explores the semantics 

and gives the mathematical expression of indeterminate temporal concepts. Section 4 deals with 

indeterminate spatial concepts. Section 5 discusses change as the spatiotemporal concept affected by 

indeterminacy. This section also gives a comprehensive example for better illustration and to assess the 

feasibility of these concepts. Finally, Section 6 concludes with the future research plans. The Appendix 

shows the mathematical background used to express fuzziness and uncertainty, fuzzy set and 
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probability theory. It further gives the differences and similarities of when applying these theories in 

the spatial and temporal domain. 

2. Spatial and Temporal Concepts  

To understand spatiotemporal indeterminacy and its concepts, it is important to realize the fundamental 

spatial, temporal and, by combining them, spatiotemporal concepts. Here, we give an overview of the 

spatial and temporal concepts that are involved in geo-referenced time-varying application 

environments. Later, in Sections 3, 4, and 5, we discuss how these concepts are affected by fuzziness 

and uncertainty and how this can be mathematically expressed.  

 Spatiotemporal applications can be categorized based on the type of data they manage: (a) 

applications dealing with moving objects, such as navigational; in these, objects change position in 

time, for example, a moving “car” on a road network, (b) applications involving objects located in 

space, whose characteristics, as well as their position, may change in time; for example, in a cadastral 

information system, “landparcels” change positions by changing shape, but they do not “move,” and 

(c) applications dealing with objects which integrate the above two behaviors; for example, in 

environmental applications, “pollution” is measured as a moving phenomenon which changes 

properties and shape over time. The following modeling concepts are involved in environments like the 

aforementioned.  

• Spatial Objects and their geometry. Objects in real world have a position in space. In specific 

application environments, the objects’ position in space matters. These objects are called 

spatial objects, e.g., a moving “car” in a navigational system is a spatial object. Many times it 

is not only the actual presence of the object’s position that matters, but its geometry as well. 

For example, while in a navigational system only the position of a car matters, indicating its 

actual location, in a cadastral system the exact geometry of a “landparcel” is of importance. 

The geometry of the position of a spatial object can be (of type) point, line, region or any 

combination thereof  [19]. 

• Spatial Relationships. Spatial objects are related in space. A spatial relationship relates spatial 

objects, or more precise, the positions of the related objects. For example, two landparcels are 

neighbors, i.e., they share common borders.  

• Spatial Attributes and their geometry. Objects have attributes, which characterize them. Spatial 

objects have, apart from descriptive attributes, also spatial attributes, e.g., the “vegetation” of a 

“landparcel.” Values of spatial attributes depend on the referenced position and not on the 

object itself. If the spatial object “landparcel” changes position, then the value of “vegetation” 

will also change.  
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 Spatial attributes are also related to geometries in space, as they split space in parts in whose 

extents the values of the spatial attributes remain the same; each part of space has (like, the objects’ 

positions) geometry (of type) point, line, region or any combination thereof. For example, the attribute 

“vegetation” creates partitions of space with constant vegetation values in each partition, such as 

“forest”, and “bushes.” There are two basic types of spatial attributes: (a) those representing functions 

with continuous range e.g., “temperature,” or “erosion.” Here the geometry of the partitions is point. 

(b) Those representing functions with discrete range, e.g., “vegetation” represented as set of regions. In 

case (a), classification techniques are used to create “zones” of average values, for example, “high 

temperature” or “low temperature”. Figure 1 shows spatial objects, spatial attributes and their 

geometry.  

 Note that not all spatial objects have spatial attributes. That depends on the application 

requirements. For example, no spatial attribute is usually assigned to a moving “car”, while various 

ones (e.g., “vegetation”, “soil type”) may be assigned to a “landparcel.” 

low 

medium high 

wood 

desert 

vegetation 

soil type 

landparcel 

geometries 

 

Figure 1: Spatial objects, space-depending attributes and geometries in space. 

• Time. In literature many different models of time are presented. Some authors even propose 

taxonomies of time. In our work we assume a linear ordered time line, isomorphic to a finite 

subset of the natural numbers. The elements of this set are termed chronons.  

• Time points vs. Time period. Two basic models of time are used to record facts and information 

of a database: time points and time period. A time point t1 is located during a chronon, while a 

time period [tk, tm], with tk, tm time points and k ≤ m has a duration and is defined as set of 

chronons.  

• Events and States. These are two basic issues for which we want to record time. An event 

occurs at an exact time point, i.e., an event has no duration. An example event is a “car crash.’’ 

A state is defined for each chronon in a time point. Hence, it has duration, e.g., a “meeting” 

takes place from 9 a.m. until 11a.m. 
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3. Temporal Indeterminacy  

In temporal applications we are interested in events and their occurrence time. However, sometimes we 

only know approximately when an event occurred, e.g., a traffic accident happened between “2 pm and 

4 pm”, “on Friday”, or “sometimes during the last week”. The reason for this is that temporal 

indeterminacy has various sources [12], including dating techniques, i.e., techniques that are inherently 

indeterminate (e.g., Carbon-14 dating), future planning, i.e., projected completion dates are specified 

approximately, unknown and imprecise event times (e.g., the exact birth date of a person) and fuzzy 

event times, i.e., an event does not have a pronounced beginning or end (e.g., the event of Fall as 

judged by the changing of the weather as opposed by the date). All the examples but the fuzzy event 

time are characterized by a lack of knowledge and incomplete or erroneous information. In the case of 

a fuzzy event, the time when an event occurred cannot be stated accurately even if we would have 

“complete” knowledge about it.  

 In the following, we present models of how to represent indeterminacy in the temporal domain by 

adapting the model presented in [13]. 

3.1 Indeterminate Time Points 

A time point is determinate if it is known when, i.e., during which chronon, it is located. Figure 2 

shows the determinate point I1, based on the approach that a chronon is longer than a time point. A 

time point is indeterminate if we do not exactly know when, but approximately during which series of 

chronons it is located. An indeterminate time point is described by a lower support, an upper support, 

and a probability function [12]. The supports are chronons that delimit the location of the time point, 

e.g., for time point I2 in Figure 2, the lower support is chronon 5 and the upper support is chronon 8, 

whereas the probability function tells us about the likelihood where the time point is located within the 

range, e.g., uniform distribution tells us that it is equally likely for the time point to be located at 

chronons 5 to 8.  

chronons 

 1      2      3      4      5      6      7      8 

I 
1 2 

I 

 

Figure 2: Determinate (I1) and indeterminate (I2) time points. 

In the following, we use probability and fuzzy set theory to quantify indeterminacy. For a brief 

introduction to theses concepts refer to the Appendix. The probability mass function, 
x

p , for the 

indeterminate point x is 
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 ( ) [ ] :
x

p i P x i i= = ∈�  (1) 

where [ ]P x i=  is the probability that the time point is located during chronon i. In our example, 

assuming uniform distribution, 
2

[ 6] 0.25P I = = , the probability outside the range lower support–upper 

support is 0. Also, all indeterminate time points are considered to be independent, i.e.,  

 [ ] [ ] [ ]P x i y j P x i P y j= ∧ = = = × =  (2) 

In Appendix A.3, we state that all probability distributions are fuzzy sets. By using the probability 

mass function as basis we obtain the following membership function: 

 ( ) ( )
x x
i p i=µ λ  (3) 

In the formula (3), λ is an arbitrary scale factor relating the membership grade to the probability of a 

point.  

3.2 Indeterminate Time Periods 

A time period is a subset of the time line bounded by two time points. Depending on whether the 

bounding points are determinate or indeterminate, we term the time period accordingly. In Figure 3(a), 

I1 and I2 denote the indeterminate start and end point of the period. Possible periods can range from 

chronon 1 to chronon 8 (max), but at least have to range from 3 to 6 (min). 

chronons 

 1      2      3      4      5      6     7       8 

I 
1 

I 
2 

max 

min 

chronons 

 1      2     3      4      5      6      7      8 

I 
1 

I 
2 

prob. density fct. 
1 

0 
prob. mass fct. 

(a) (b) 

Figure 3: (a) Indeterminate time period, (b) probabilities of bounding time points. 

The time period presented in Figure 3(a) can also be perceived as having a fuzzy boundary. In the 

following we derive a membership function, ( )
T

xµ , returning the degree to which an arbitrary chronon 

x is part of the time period T. From Figure 3(a), we can deduce that chronons 4 and 5 are definitely part 

of the time period T, whereas other chronons might be. Assuming a uniform distribution of the 

chronons within the time points I1 and I2, we can see that if chronon 2 is within the period so has to be 

chronon 3. Further, if chronon 1 is within, so have to be chronons 2 and 3. The same is true for 

chronons 6, 7, and 8 of I2. Thus, in three (all) cases chronon 3, in two cases chronon 2, and in one case 

chronon 1 is within period T. The probability mass function of I1 and I2 as shown in Figure 3(b) gives 

the probability for a chronon to be in T. In summing up the probability from “the outside to the inside,” 

we obtain a step function, the probability density function. 
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To derive the membership function ( )
T

xµ we have to split the time period T into three parts; (1) the 

“core” (chronons 4 and 5), (2) the intervals I1 and I2 , and (3) the outside world. A membership grade of 

1 and 0 indicate definite and no membership in the time period, respectively. All chronons in the core 

have a grade of 1. The grade of the chronons in the intervals is equal to the value of the probability 

density function. The following formula summarizes the membership function. 

21

   1        in core

( ) ( )

   0       otherwise

T

y

x p x y I Iµ




= ∈ ∨



∑  

For the case of arbitrary small chronons, the probability density function for a given subset A X⊆  is 

computed as ( ) ( ) 
A

Q A p x dx=∫ . 

4. Spatial Indeterminacy 

The nature of spatial indeterminacy is an attractive issue in geography and spatial information science. 

[18] states that fuzziness is a property of a geographic entity. Furthermore, fuzziness concerns objects 

that cannot be precisely defined otherwise [16]. On the other hand, uncertainty results from limitations 

of the observation, i.e., the measurement process [18]. 

4.1 Indeterminate Spatial Objects, Relationships and Attributes 

In this section, we point out the differences between spatial fuzziness and spatial uncertainty more 

prominently. Consider the example of the different climate zones, e.g., desert and prairie. Each zone is 

not precisely bound, but, rather, a blurry situation exists around their common boundaries. We can 

identify a location for which we are sure it is within the desert or the prairie, as well as we can find a 

location which is in-between. Consequently, the boundary between the two soil zones is fuzzy.  

However, for a forest divided into separate landparcels, we can clearly say what tree belongs to what 

landparcel. The boundaries between the land parcels are crisp and thus, certain.  

 In contrast, let us consider the position of a moving vehicle whose location is not exactly known, 

e.g., a car is in New York. This example is characterized by a lack of knowledge about the car’s 

location. The fact that the car is somewhere, is precise. However the lack of knowledge we have about 

its position introduces uncertainty. Without further knowledge, we can only give the probable area the 

car is in. 

These examples indicate that the distinguishing element between fuzzy and non-fuzzy facts is a crisp 

boundary, i.e., we cannot clearly say what belongs to what. The concept of boundary introduces the 

interior/exterior notion, i.e., what is within the boundary and what is outside. Spatial fuzziness occurs 

(a) in the relationships among spatial objects and (b) in spatial attributes.  
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 On the other hand, the distinguishing element between uncertain and certain facts is the lack of, or 

the error in our knowledge, i.e., we do not have sufficient knowledge about an otherwise precise fact. 

As a result, spatial uncertainty can refer to the degree of knowledge we have about an object’s position. 

Uncertainty about an object's position leads to uncertainty about the spatial relationship among this 

object and its neighbors, e.g., if the exact boundary of a land parcel is not known, then, the exact spatial 

relationships with its neighboring land parcels are not known either. Furthermore, uncertainty can exist 

for spatial attributes, when knowledge about them is limited. Table 1 summarizes these results.  

Spatial Concepts/Indeterminacy Fuzziness Uncertainty 

Objects' position − √ 

Relationship among objects √ √ 

Spatial attribute √ √ 

Table 1: Spatial concepts and indeterminacy. 

4.2 Indeterminate Geometry 

In this section, we define more closely what indeterminacy means in relation to geometry. Geometry is 

essential in defining the concepts of spatial object and spatial attribute. Further, spatial relationships are 

defined in terms of the positions and thus the geometry of spatial objects. 

 Points and regions are the most commonly met simple geometries in spatial applications, while 

line, the third popular geometry, can be regarded as a special case of a region. For the rest of the paper, 

we only consider cases of simple geometries, i.e., points and regions with no holes and no disconnected 

parts. The goal is to examine in what ways fuzziness and uncertainty affect these geometries. 

Geometry: Point 

• Uncertain point: a point can be crisp and uncertain, e.g., we know the approximate position of 

a car and can give probabilities for its location. 

• Fuzzy point: not applicable, since the concepts of boundary and interior/exterior do not exist 

here.  

Geometry: Region 

• Uncertain region: consider the example of a landparcel with “not-exactly-known” (missing 

data) boundaries.  

• Fuzzy region: since a region is determined by its boundaries (something is inside/outside, or 

left/right), a region can be fuzzy, e.g., consider climate zones, whose boundaries are not crisp, 

but transitional. 
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4.2.1 Indeterminate Points 

Not knowing the position of a car is connected to the lack of information about its position. 

Nevertheless, we still need to describe and to represent its position with any degree of information 

available.  

We conceive Space as a set of points, homeomorphic to 
2

� , the exact position of an object with 

geometry point is determinate, if it can be mapped onto a single point 
2

p∈� . The position is 

indeterminate if it can only be mapped to a set of points, i.e., the exact position is unknown. A 

probability function describes the likelihood for each point to be the position, e.g., uniform distribution 

tells us that there is an equal chance for each point. The probability mass function, 
x

p , for the 

indeterminate point x is 

 ( ) [ ] : { }
x

p i P x i i= = ∈ ×� �  (4) 

where [ ]P x i= is the probability that the position is mapped to point i, with i being a Cartesian 

coordinate.  

As in the case of the time period, the probability that the position is outside the point set is 0. Further, 

all indeterminate positions are considered to be independent (cf. Section 3.1).  

 What applies to time points, (cf. Section 3.1), can also be applied to indeterminate points in the 

spatial context; probability distributions describing positional indeterminacy can always be interpreted 

as fuzziness. 

4.2.2 Indeterminate Regions 

The mathematical notation of indeterminate points can be extended to cover indeterminate regions as 

well. Indeterminate regions comprise uncertain and fuzzy regions.  

 A region is a part of space bounded by a connected set of points, the boundary. A region can be 

determinate if the boundary points are determinate. Consequently, indeterminate points bound an 

indeterminate area. This definition is analogous to Section 3.2, which presented the concept of an 

indeterminate time period. The following example illustrates this point.  

Uncertain Regions. Consider a map made up of two discrete regions, A and B, sharing a common 

boundary. If we repeatedly digitize the map and thus the boundary, assuming that our process 

introduces errors, we obtain a set of points that lie more or less close to the actual boundary line. 

However, there will be more points closer to the actual location of the line than further away from it. 

Due to lack of better knowledge, this distribution might take the form of a normal distribution whose 

mean is centered at the “true” location of the line. In Figure 4(a), we show the normal distribution of a 

particular boundary point. In the continuous case, the probability function will look like in Figure 4(b). 
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 (a) (b) 

Figure 4: Boundary point probability. 

Analogously, we can describe this uncertain region using a membership function. To determine this 

function that returns the grade to which an arbitrary point in space belongs to an area, we use a similar 

approach as in the case of the time period (cf. Section 3.2). We split the underlying space into three 

parts, (i) the core of the area, (ii) the boundary region, and (iii) the outside. Consequently, a 

membership function for area A can be specified as follows. 

 

        1            

( ) ( )

   0        otherwise

A

i A i B

i p x i A Bµ

∈ ∧ ∉


= ∈ ∧



∑  (5) 

In the above formula, area B stands for the outside of area A and ( )p x  is the probability mass function 

of a point for being in area A. The argument of the membership function is a point and it returns a 

grade for the membership of this point in area A. The grade is 1 if the point is a definite member of the 

area and 0 if it is definitely not a member of the area. Otherwise the grade is between 1 and 0 (cf. 

Figure 5(a)). 

 

1
 

1
 
-
 
0

 

0
 

A 

       

 

A B 
d

 a 
d

 b 

 

(a)             (b) 

Figure 5: Boundary point probability. 

Fuzzy Regions. In the above approach, we use the positional probability function of the boundary 

points to devise a membership function. However, this approach is only feasible in case the probability 

function is known and simple, i.e., there is one probability function describing the distribution of all 

points in the boundary. If there were many probability functions, in the worst case a different one for 

each boundary point, the membership function would become too complex to be useful. On the other 
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hand, in some cases, we do not have “any information at all” about the boundary of a region. Consider 

here, the transition between soil zones as described in Section 4.1. The boundary exists because of the 

very nature of a phenomenon is not crisp and, thus, to give a probability function describing it is not 

possible, or does not make sense. This illustrates the critical case for which fuzziness relieves 

uncertainty. We can still derive a valid membership function in assuming a smooth and steady 

transition from one zone to the other. A membership function for soil zones, as shown in Figure 5(b), 

could be characterized by the following formula (cf. [26]), 

 

1      if ( , )          

( , ) 1 if ( , )  ( , )

0      otherwise            

a

A

a b

x y A

d
x y x y A x y B

d d
µ

∈



= − ∉ ∧ ∉
+



 (6) 

where 
a

d  and 
b

d  are the distances from a point (x,y) to the core area of the soil zones A and B. 

A formula for a distance d from an arbitrary point given by its coordinates (x,y) to an area A with the 

boundary 
A

B  is as follows 

 ( )( ) ( ) ( )( ) ( ){ }, , min dist , , , | ,
A A

d x y B x y m n m n B= ∈  (7) 

where dist(p,q) is the Euclidean distance between two points 
2

,p q∈� . 

The underlying assumption above is that the transition between the climate zones is linear. However, 

the effect of other transitions on the membership function would be a change of the formula describing 

the membership grade for positions outside the core. 

 Other examples in this case are the boundary problem as experienced in the context of soil profiles, 

soil maps, and land evaluation classification [5, 6]. 

5. Spatiotemporal Indeterminacy 

After showing the nature of spatial and temporal indeterminacy as well as the way to model it, we aim 

for describing the combined phenomenon, spatiotemporal indeterminacy. We first give some examples 

and subsequently present the concept that is fundamental to spatiotemporal scenarios, namely change. 

We show how to model indeterminate change using probabilities and fuzzy set theory. 

 Consider a moving object whose position is sampled in time, i.e., moving vehicles, persons, 

military units, etc. It is reasonable, for the purposes of the example to assume that the extents of these 

objects do not matter in a given application context, and, thus, can be reduced to points. In order to 

record the movement of a moving object, we would have to know its position at all times, i.e., on a 

continuous basis. However, GPS and telecommunications technologies only allow us to sample an 

object's position, i.e., to obtain the position at discrete instances of time, such as every few seconds. A 
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first approach to represent the movements of such an object would be to store the position samples. 

This would imply that we could not answer queries about the object's movements at times in-between 

sampled positions. Rather, to obtain the entire movement, we have to interpolate the positions. The 

simplest approach is to use linear interpolation, as opposed to other methods such as polynomial 

splines  [2]. 

 For areal objects the change of position includes the change of their centroid and the change of 

their shape, which has to be interpolated as well. Consider here the example of a coastline that bounds 

a landmass, e.g., an island. Two processes influencing the coastline make an island an indeterminate 

region. The tides have (i) a short-term effect, whereas (ii) over a longer period of time a general drift 

affects the shoreline as well. If one is only interested in the general drift, the tidal effect can be 

modeled as a fuzzy boundary that changes with time (general drift).  

 Spatiotemporal indeterminacy can have more than one source, i.e., it can be the result of the 

combined effects of temporal and spatial indeterminacy. In the following we will show possible 

scenarios on the context of spatiotemporal data. 

5.1 Spatiotemporal Scenarios and Indeterminate Change 

As in spatiotemporal applications we are interested in spatial objects, relationships and attributes over 

time, we, in reality, do record their evolution, or change in time. Thus, change is the most important 

concept in the spatiotemporal context, and will in the following serve as the basis to evaluate 

spatiotemporal indeterminacy. As stated in literature [9, 15, 22] change (i) can either occur on a 

discrete or on a continuous basis and (ii) can be recorded in time points or in time periods.  

 Table 2 illustrates the fours change scenarios we encounter in the spatiotemporal context by using 

a 3-dimensional representation of the temporal change of geometry. Space (x- and y-coordinates in the 

horizontal plane) and time (time-coordinate in the vertical direction) are combined to form a three 

dimensional coordinate system. In the change scenarios, the elements that can be indeterminate (with 

respect to an object) are geometry, time point, and time interval.  We use a point geometry to keep the 

illustrations simple. However, the same four change scenarios apply to other geometries. To 

distinguish discrete from continuous changes, a discrete change of geometry from 
i
G  to 

1i
G

+
 is 

indicated by using an arrow in the spatial plane as opposed to a line in case of a continuous change. In 

the following, we examine each of them with respect to indeterminacy. 

 The first case, Scenario 1 in Table 2, is the discrete change of a geometry recorded in time points. 

Here, geometry stays constant for some time and then changes instantly. The geometry is sampled at 

constant time intervals dt. The geometry and/or the time point can be indeterminate.  

 The second case, Scenario 2 in Table 2, is the continuous change of a geometry recorded in time 

points. Here, we sample a constantly changing geometry at time intervals dt. Knowing a geometry only 
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at time points has two implications, (i) recording geometries at time points means assessing a 

momentary situation without inferring anything about the geometry prior or past the time point. 

Consequently, (ii) time and space are independent; not knowing the exact extent of the geometry does 

not affect the time interval and vice versa.  

 In contrast, Scenarios 3 and 4 in Table 2, suggest that a change function of the form :  
x x

C t G→  

exists that determines a geometry 
x

G for a time point 
x

t  in an interval spatially bounded by the two 

geometries 
i
G and 

1i
G

+
 and temporally bound by the time interval 

1
[ , ]

i i i
T t t

+
= . The change function C 

can be different for every time interval.  

 The third case, Scenario 3 in Table 2, is the discrete change of a geometry recorded in time 

intervals. The objective is to “begin” a new time interval when a spatial change occurs, i.e., a new time 

intervals start at the time points t0 through t4. The geometry is constant within a time interval. In this 

Change/ 

Time 
Discrete Continuous 

Point 1) A geometry is recorded at a time point. The 

geometry may or may not differ from the 

previously recorded one. We do not know when 

the change occurred. 

2) A geometry is sampled at time points. In 

between time points we have no knowledge 

about the geometry. 

 

  

Period 3) A geometry is valid for a given time period. 

After a change, a new time period starts. 

4) A geometry is sampled at time points, the 

starting and end points of the time period. 

Further, a time period is assigned a “change” 

function that models the positional change within 

the time period. 

 

  

Table 2: Four change spatiotemporal scenarios. 
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case, spatial and temporal indeterminacy affect each other. Dealing with indeterminate spatial extents, 

e.g., uncertainty induced by measurement errors, implies that the time point at which a change occurs 

cannot be detected precisely. On the other hand, having an indeterminate temporal event, e.g., clock 

errors, introduces spatial indeterminacy. 

 The last and most complex case, Scenario 4 in Table 2, is the continuous change of a geometry 

recorded in time intervals. This case is based on the fact that for a given time interval 
1

[ , ]
i i i
T t t

+
= , 

there exists a change function that models the transformation from geometry 
i
G to 

1i
G

+
. Each of these 

factors, i.e., (i) the time interval, (ii) the geometry, and (iii) the change function, can be subject to 

indeterminacy. 

 In the simplest case, the geometry 
i
G and 

1i
G

+
 and the time interval 

i
T  are determinate, and the 

change function returns a determine geometry 
x

G
 

for a given time point 
x i

t T∈ . Here, we assume that 

the change function returns the geometry coinciding with the actual movement. Is this not the case, the 

change function interpolates in between the geometries 
i
G to 

1i
G

+  

and returns indeterminate geometry. 

An example is to use linear interpolation, i.e., the two geometries 
i
G to 

1i
G

+
 are considered to be the 

endpoints of a line. Section 5.2 gives an elaborate example of a change function for this case. 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Determinate 
:

x x
C t G→ , where 

x
G , depending on the change 

function, is determinate or indeterminate (
x

G� ) 

Indeterminate Determinate 
(a) :

x x
C t G→ � , where 

x
G�  represents either a 

probability function, ( )
x

P i , or a membership 

function, ( )
x

iµ  

(b) ( , )
x

i tµ or ( , )
x

P i t  

Table 3: Change scenarios without temporal indeterminacy. 

If we further allow 
i
G and 

1i
G

+  

to be indeterminate, our change function would in any case return an 

indeterminate 
x
G . In the following, we use the “~” symbol on top of the parameter to denote 

indeterminacy. This means that if geometry is described by a probability or membership function, this 

very function is subject to change in the time interval 
i
T .  

 Following the idea from before, we would have a change function that returns a probability or 

membership function for a given 
x

t  (cf. Table 3(a)). However, by integrating the temporal component, 

we obtain a spatiotemporal probability or membership function, i.e., a function that changes with time 

(cf. Table 3(b)). 
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 Up until now, we always considered time to be determinate. We use time points to determine the 

start and the end of the current time interval 
i
T , and to denote the time point in question, 

x
t . In case 

i
t  

and 
1i

t
+
 are indeterminate, we cannot state the beginning and the end of the time interval precisely. 

Thus, the association of a geometry (indeterminate or not) to a time point becomes indeterminate. 

However, this affects mainly the change function and can be considered in adapting its form. In 

considering an indeterminate time interval, we cannot, for any time point in the time interval, give a 

geometry as it would be unaffected by determinate time, but the indeterminate time contributes some 

additional indeterminacy. Table 4 adapts the approach shown in Table 3 to accommodate temporal 

indeterminacy. 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Indeterminate 
:

x x
C t G→ �

�  

Indeterminate Indeterminate 
(c) :

x x
C t G→ �

� , where 
x

G�  is either a probability 

function, ( )
x

P i , or a membership function, ( )
x

iµ  

(d) ( , )
x

i tµ � or ( , )
x

P i t�  

Table 4: Change scenarios incorporating temporal indeterminacy. 

The central element of spatiotemporal indeterminacy is the change function manipulating geometries. 

Since the geometry of a position can be of type point, line, or region, the change function can be seen 

similar to a morphing algorithm between different instances of geometries. The following section 

illustrates this approach by giving an example. We describe of how to represent the movement of 

vehicles and how to quantify the error associated with such a representation. 

5.2 An Example of Use – Tracking Vehicles 

As mentioned, we can identify areal objects whose extents do not matter in a given application context, 

and, thus, can be reduced to points. Consider, an application scenario in which we track the continuous 

movement of taxis equipped with GPS devices that transmit their positions to a central computer using 

either radio communication links or cellular phones. At the central site, the data is processed and 

utilized. 

5.2.1 Acquiring Movement – Sampling Moving Objects 

To record the movement of an object, we would have to know the position at all times, i.e., on a 

continuous basis. However GPS and telecommunications technologies only allows us to sample an 

object’s position, i.e., to obtain the position at discrete instances of time such as every few seconds.  
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 The solid line in Figure 6(a) represents the movement of a point object. Space (x- and y-axes) and 

time (t-axis) are combined to form one coordinate system. The dashed line shows the projection of the 

movement onto two-dimensional space (x and y coordinates). A first approach to represent the 

movements of objects would be to store the position samples. This would mean that we could not 

answer queries about the objects’ movements at times in-between sampled positions. Rather, to obtain 

the entire movement we have to interpolate. The simplest approach is to use linear interpolation, as 

opposed to other methods such as polynomial splines [2]. The sampled positions become the end points 

of line segments of polylines. The movement of an object is represented by an entire polyline in three-

dimensional space. In geometrical terms, the movement of an object is termed a trajectory (we will use 

“movement” and “trajectory” interchangeably). Figure 6(b) shows the spatiotemporal space (the cube 

in solid lines) and several trajectories (the solid lines). The top of the cube represents the time of the 

most recent position sample. The wavy-dotted lines at the top symbolize the growth of the cube with 

time. 

 
 

(a) (b) 

Figure 6: Movements and space. 

5.2.2 Measurement Error  

An error can be introduced by inaccurate measurements. Using GPS measurements in sampling, the 

error can be described by a probability function, a bivariate normal distribution P1, also visualized in 

Figure 7. 

 

2 2

2
2

1 2

1
( , )  

2

x y

P x y e σ

πσ

+
−

=  (8) 

A typical GPS module used in vehicle navigation systems is the CrossCheck AMPS Cellular from 

Trimble Navigation Ltd., which has an error of 2m (standard deviation σ) [29]. For more details on this 

error measure refer to [23]. 
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Figure 7: Positional error in the GPS. 

5.2.3 Which Scenario? 

In the schema of Section 5.1, the sampling approach to assess the movement of objects is characterized 

by scenario 4. Table 3 and Table 4 establish a foundation for giving a change function in between 

sampled position. Table 4 gives function templates in case the times of sampling are not known 

precisely. However, GPS allows for precise timing and, thus, we neglect the effect of time. In Table 3, 

Scenario 1 (determinate geometry) gives a function template in case the sampled positions are known 

precisely. As we just saw, GPS measurements are accurate but not precise. Thus, Scenario 2 

(indeterminate geometry) seems to be a match for our problem. The following section shows how to 

establish a change function to determine the position of the moving object in between sampling. We 

initially assume precise position samples. 

5.2.4 Sampling Uncertainty  

As mentioned, we capture the movement of an object by sampling its position using a GPS receiver at 

regular time intervals. This introduces uncertainty about the position of the object in-between the 

measurements. In this section, we give a model for the uncertainty introduced by the sampling, based 

on the sampling rate and the maximum speed of the object. 

 The uncertainty of the representation of an object’s movement is affected by the frequency with 

which position samples are taken, the sampling rate. This, in turn, may be set by considering the speed 

of the object and the desired maximum distance between consecutive samples. Let us consider the 

running example, in which we want to record the movements of taxis.  

Example. As a requirement to the application, the distance between two consecutive samples should 

be maximally 10m. If the maximum speed of a taxi is 150km/h, this means that we would need to 

sample the position at least 4.2 times per second. If a taxi moves slower than its maximum speed, the 

distance between samples is less than 10m. How do the position samples resemble the true movement 

of the taxi? Consider the three trajectories shown in Figure 8. Each is possible given the three 

measured positions P1 through P3. However, by just “looking” at the three positions, one would assume 

that the straight line best resembles the actual trajectory of the taxi.� 
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Figure 8: Possible trajectories of a moving object. 

Since we did not have positional measures in-between position samples, the best we can do is to limit 

the possibilities of where the moving object could have been. We constrain the trajectory of the object 

by what we know about the object’s actual movement. Considering the trajectory in a time interval [t1, 

t2], delimited by consecutive samples, we know two positions, P1 and P2, as well as the object’s 

maximum speed, vm (cf. Figure 9). If the object moves at maximum speed vm from P1 and its trajectory 

is a straight line, its position at time tx will be on a circle of radius 1 1
( )

m x
r v t t= +  around P1 (the smaller 

dotted circle in Figure 9). Thus, the points on the circle represent the furthest away from P1 the object 

can gotten at time tx. If the object’s speed is lower than vm, or its trajectory is not a straight line, the 

object’s position at time tx will be somewhere within the area bounded by the circle of radius r1. 

Similar assumptions can be made on the position of the moving object with respect to P2 and t2 to 

obtain a second circle of radius r2. The constraints on the position of the moving object mean that the 

object can be anywhere within the intersection of the two circular areas at time tx. This intersection is 

shown by the shaded area in Figure 9. We use the term lens for this area of intersection. Since we do 

not have any further information, we assume a uniform distribution for the position within the lens, i.e., 

the object is equally likely anywhere within this lens shape.  

 

Figure 9: Uncertainty between samples. 

Thus, the sampling error at time tx for a particular position can be described by the probability function 

shown in Equation (9), where r1 and r2 are the two radii described above, s is the distance between the 

measured positions P1 and P2, and A denotes the area of the intersection of the two circles. 
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2 2 2 2 2 2

1 2

2

1
for ( )

( , )

0 otherwise 

x y r x s y r
P x y A


+ ≤ ∧ − + ≤

= 


 (9) 

To eliminate the radii in favor of the max speed and times, we can substitute 
1

( )
m x

v t t+  and 
2

( )
m x

v t t−  

for the r1 and r2, respectively. This function describes the position of the moving object in between 

position samples. Thus, this function is an instance of the function template as described in Scenario 1 

of Table 3. 

5.2.5 Combination of Error Sources – a Global Change Function 

Table 3 gives a framework change function that incorporates indeterminate positions. In the context of 

this example, this translates into adapting Equation (9) such that the values for x and y are not precise 

but affected by the measurement error as described in Section 5.2.2. Although it seems trivial at first, 

this requires some heavy mathematical manipulation that would be beyond the scope of this work. 

 A general mathematical framework suitable for this problem is Kalman filtering [20], which is a 

method to combine various error prone measurements about the same fact into a single measurement 

with a smaller error. This mathematical framework stipulates a method to combine uncertainty to 

reduce the overall error. Assuming the measurements refer to position samples of a continuous 

movement in time, we can use Kalman smoothing to determine the positions at times that are in 

between the measured ones [1]. Examples of applying Kalman filtering to the domain of vehicle 

navigation are the integration of three independent positioning systems such as dead reckoning, map 

matching, and GPS, to determine the precise position of vehicles [21]. Similar formal frameworks are 

used in commercially available car navigation systems [3]. 

6. Conclusions and Future Work 

The work presented in this paper concerns the spatial, temporal, and spatiotemporal indeterminacy, i.e., 

fuzzy and uncertain phenomena. We first show how the fundamental modeling concepts of spatial 

objects, attributes, relationships, time points, time periods, and events are influenced by indeterminacy, 

and how we can combine them. Next, we focus on the change of spatial objects and their geometry in 

time. We argue that change can occur on a discrete and on a continuous basis, as well as it can be 

recorded in time points and time periods. By combining these concepts we present with four different 

change scenarios, which are affected by indeterminacy to a various degree. The indeterminacy of 

change is formalized and combines the spatial and temporal concepts. Finally, the rather general 

concepts are applied to existing application areas. We discuss uncertainty existing in the context of 

moving-point-object applications. We give a change function to describe the position of moving 

objects in over time based on positional samples. The change function is influenced by measurement 

errors and sampling uncertainty. 
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 Although mentioned, the paper does not discuss, directly, indeterminacy as related to relationships 

among spatial, temporal, or spatiotemporal objects. An extension of this work towards this direction is 

essential. Also, the mathematical models we presented are concrete enough to describe and motivate 

indeterminacy related to the temporal, spatial, and spatiotemporal domain. However, to actually 

implement these concepts, more detailed mathematical formulas are needed. Finally, in a more general 

framework, this work points towards the development of spatiotemporal data types and data structures 

incorporating indeterminacy.  
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Appendix A - An Introduction to Indeterminacy Measures 

This appendix gives some mathematical background on fuzzy set theory and probability theory relevant 

for Sections 3, 4, and 5. Sections A.4 and A.5 show the differences of these two concepts when they 

are applied in a temporal and spatial context. 

A.1. Fuzzy Set Theory 

Fuzzy set theory [36] is an extension and generalization to Boolean set theory. Let X be a classical 

(crisp) set of objects, called the universe. Membership in a classical subset A of X can be described by 

the characteristic function : {0,1}A Xχ → such that for all x X∈ the following holds. 

1    
( )

0    
A

x A
x

x A

∈
χ = 

∉
 

This function discriminates sharply between the members and non-members of the set A. We can 

generalize this function by mapping the elements of set X not to the set {0,1} but rather to the real 

interval [0,1]. Now, elements have no strict membership, but rather have a degree of membership in the 

set in question. Larger values indicate higher grades of membership.  

Let X be the universe, the membership function  

: [0,1]A Xµ →�  

returns for a given element of X the degree it belongs to the fuzzy set  

{( , ( )) | }AA x x x X= µ ∈
�

� . 

All elements of X are evaluated towards a membership in A� . Those elements that do “not at all” belong 

to the set have a degree of membership ( ) 0A xµ =� , whereas the elements that “totally” belong to the 

set have a value of ( ) 1A xµ =� . Although fuzzy set theory seems sound and simple, to actually apply it 

is difficult. The problem arises from the choosing an appropriate membership function. 

A.2. Probability Theory 

Let again X be the universe, then the probability measure P is a mapping 2 [0,1]
X
→  that assigns a 

number P(A) to each subset of X, and satisfies the Kolmogorov axioms (cf. [11]): 

( ) 1; ( ) 0

( ) ( ) ( );    ;

P X P

P A B P A P B iff A B

= ∅ =

∪ = + ∩ =∅

 

P(A) is the probability that an ill-known single-valued variable y ranging on X hits the fixed well-

known set A. Given the case the underlying domain of the universe X is discrete, the probability mass 
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function ( ) ({ })p x P x=  returns the probability for the single element x X∈ . The probability density 

function returns the probability ( ) ( )
A

Q A p x dx=∫ for a given subset A X∈ . 

A.3. General Differences between Fuzzy Set and Probability Theory 

Very often fuzzy values are misunderstood to be probabilities, or fuzzy logic is misunderstood as a new 

way to handle probabilities. This is not true, since a minimum requirement of probabilities is additivity, 

i.e., all probabilities for alternative events have to sum up to one. This is not the case for membership 

grades. In mathematical terms, the membership function ( )
A
xµ

�

is similar to P({x}) = p(x), except for 

the above condition, ( ) 1
x X

p x
∈

∑ = , must hold while this is not true for 
A

µ
�

(cf. [11]). 

 Also, a membership grade is defined only for one element of a set and not for a subset. 

Probabilities can be given for any subset, i.e., also one element. However, all probability distributions 

are fuzzy sets. As fuzzy sets and logic generalize Boolean sets and logic, they also generalize 

probabilities.  

A.4. Differences between Fuzzy Set and Probability Theory in the Temporal Domain 

The phenomenon of whether a point is inside or outside the time period cannot be described by using 

probabilities. The reason is the additivity criterion described in Section A.2. This is violated since all 

membership grades do not add up to 1. Consider here the chronons in the time period that have a 

membership grade of 1. 

 If we revisit the indeterminate time point (cf. Figure 2), we can see that if we want to describe the 

membership grade of a chronon for “belonging” to a particular point, with 1 representing a certain 

membership, each of the chronons would have a membership grade of 1/3, which is equal to the 

probability that each of the chronons is the actual time point. Since the membership grade is equal to 

the probability, they add up to 1. However, in the case of a time period bounded by indeterminate time 

points, we have regions that have a membership grade of 1 as well, i.e., they do not add up to 1. In this 

case, the membership function is not the “same” as the probability function, but the latter is used to 

derive the former.  

A.5. Differences between Fuzzy Set Theory and Probability Theory in the Spatial Domain 

Probability functions are used to describe uncertain positions. Consider here an unknown location, 

whose positional probability is scattered over a region, i.e., a set of points. If we state that the location 

is at one of the points of the region, then this statement is true, since all the probabilities scattered over 

the region add up to one. In other words probability can also be defined for a set of points as opposed 

to only one point (cf. Section A.3). On the other hand, if we, instead of giving a probability for a point, 

devise a membership grade, the sum of all membership grades over all the points in the region has no 
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particular meaning. It is merely an arbitrary number. The membership grade of a point tells us about 

the belief that a point belongs to a particular set, e.g., the soil type desert. In terms of boundary, it does 

not tell us which points in the “fuzzy” region are the most likely ones. Thus, fuzzy concepts are related 

to what belongs to what extent to a given set, i.e., what is “in” and what is “out.” Probabilistic concepts 

are related to what is the most likely position, i.e., where is the border for what is in and what is out. 

Fuzzy concepts refer to relative aspects whereas probabilistic concepts refer to absolute aspects of a 

spatial scenario. 


