
Notions of Upward Compatibility of Temporal
Query Languages

John Bair, Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass

April 2, 1997

TR-6

A TIMECENTER Technical Report

Title Notions of Upward Compatibility of Temporal Query Languages

Copyright c 1997 John Bair, Michael H. Böhlen, Christian S. Jensen, and
Richard T. Snodgrass. All rights reserved.

Author(s) John Bair, Michael H. Böhlen, Christian S. Jensen, and Richard T. Snod-
grass

Publication History October 1996. Manuscript.
April 1997. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors, The
Rune alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines because
the primary storage medium was wood. However, runes may also be found on jewelry, tools, and weapons.
Runes were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

Migrating applications from conventional to temporal database management technology has received
scant mention in the research literature. This paper formally defines three increasingly restrictive notions
of upward compatibility which capture properties of a temporal SQL with respect to conventional SQL
that, when satisfied, provide for a smooth migration of legacy applications to a temporal system. The
notions of upward compatibility dictate the semantics of conventional SQL statements and constrain the
semantics of extensions to these statements. The paper evaluates the seven extant temporal extensions to
SQL, all of which are shown to complicate migration through design decisions that violate one or more
of these notions. We then outline how SQL–92 can be systematically extended to become a temporal
query language that satisfies all three notions.

1 Introduction

A wide range of database applications manage time-varying information. These include financial applica-
tions such as portfolio management, accounting, and banking; record-keeping applications, including per-
sonnel, medical-record, and inventory; and travel applications such as airline, train, and hotel reservations
and schedule management. In fact, it is difficult to identify a database application that does not involve time-
varying data.

Currently, such applications typically use conventional relational systems. However, research in tem-
poral data models and query languages [TCG+93, OS95, Sno95] clearly demonstrates that applications that
manage temporal data may benefit substantially from built-in temporal support in the database management
system (DBMS). The potential benefits from such support are several. Application code is substantially sim-
plified. Due to faster development of code, which is also easier to comprehend and thus maintain, higher pro-
grammer productivity results. With built-in support, more data processing may be left to the DBMS, leading
to much better performance.

There is, however, still a chasm between the approaches now used for developing such applications and
the new approaches that have been proposed by the temporal database research community. While 1200
papers on temporal databases have appeared, over 300 during the last two years alone [TK96], legacy systems
and the migration of such systems to new technologies has been almost totally overlooked.

This paper considers upward compatibility, which has been claimed to offer several potential advan-
tages (this is related to the notion of ‘seamless’, as in “the transition from classical databases to [a temporal]
model should be conceptually and literally seamless.” [GN93, p. 51]). In the context of migrating from a
conventional DBMS to a temporal DBMS, upward compatibility offers an evolutionary means of introduc-
ing new technology. It provides a business enterprise with an upgrade path that preserves its investment in
legacy databases. Implementers can incrementally build new features on top of existing products, by grad-
ually learning and incorporating new language elements into their applications.

We assume that the DBMS interface is captured in a data model and thus talk about the migration of
application code using an existing data model to using a new data model. We examine what it means for a
temporal data model and query language to be upwardly compatible with a conventional data model, such
as SQL. While the term has been used informally, we could find no formal definition (the same holds for
the term ‘seamless’). This paper examines the issues behind this intuitive idea, and formalizes several in-
creasingly restrictive notions of upward compatibility, specifically, syntactic upward compatibility, upward
compatibility, and temporal upward compatibility. We evaluate the seven extant temporal extensions to SQL,
including two designed by us. We show that all seven violate one or more of these useful properties. Finally,
we demonstrate how SQL–92 can be extended to a temporal data model while simultaneously satisfying all
three notions of upward compatibility.

1

2 Transitioning from Legacy Systems

We adopt the convention that a data model consists of three components, namely a set of data structures, a set
of constraints on those data structures, and a language for updating and querying the data structures [TL82].
In this paper we emphasize the data structures and the data manipulation language. As we progress, it should
be clear that the definitions and discussions of this section also apply to integrity constraints, although for
simplicity we will not address these explicitly. Notationally, M = (DS, QL) then denotes a data model, M,
consisting of a data structure component, DS, and a query language component, QL. Thus, DS is the set
of all databases, schemas, and associated instances, expressible by M, and QL is the set of all query and
modification statements in M that may be applied to some database in DS. We use db to denote a database;
a statement is denoted by s and is either a query q or a modification m (e.g., in SQL–92, any INSERT,
DELETE, or UPDATE statement).

As the existing model is given, the focus is on formulating requirements to the new data model. The
definitions are conceptually applicable to the transition from any data model to a new data model. However,
we have found it convenient to assume that the transition is from a non-temporal to a temporal data model,
specifically from the SQL–92 standard [MS93] to (some) Temporal SQL.

2.1 Upward Compatibility

Perhaps the most important concern in ensuring a smooth transition of application code from an existing data
model to a new data model is to guarantee that all application code without modification will work with the
new system exactly the same as with the existing system. The next two definitions are intended to capture
what is needed for that to be possible.

We define a data model to be syntactic upward compatible with another data model if all the data struc-
tures and legal query language statements of the latter model are contained in the former model.

DEFINITION: Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models. Model M1 is syntac-
tically upward compatible with model M2 if

� 8db2 2 DS2 (db2 2 DS1) and

� 8s2 2 QL2 (s2 2 QL1). ut

Note that this relationship between the two data models is asymmetric, thus providing credence to the adjec-
tive ‘upward’.

Next, for a data model to be upward compatible with another data model, we add the requirement that
all statements expressible in the existing language must evaluate to the same result in both models.

For a query language expression s and an associated database db, both legal elements of QL and DS of
data model M = (DS;QL), define hhs(db)iiM as the result of applying s to db in data model M . With this
notation, we can precisely describe the requirements to a new model that guarantee uninterrupted operation
of all application code.

DEFINITION: Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models. Model M1 is upward
compatible with model M2 if

� M1 is syntactically upward compatible with M2, and

� 8db2 2 DS2 (8s2 2 QL2 (hhs2(db2)iiM2
= hhs2(db2)iiM1

)). ut

2

Syntactic upward compatibility implies that all existing databases and query language statements in the old
system are also legal in the new system. The second condition guarantees that all existing statements com-
pute the same results in the new system as in the old system. Thus, the bulk of legacy application code is not
affected by the transition to a new system.

Figure 1 illustrates the relationship between Temporal SQL and SQL–92. In the figure, a conventional
table1 is denoted with a rectangle. The current state of this table is the rectangle in the upper-right corner.
Whenever a modification is made to this table, the previous state is discarded; hence, at any time only the
current state is available. The discarded prior states are denoted with dashed rectangles; the right-pointing
arrows denote the modifications that took the table from one state to the next.

m...

Time

q

m m m m

Figure 1: Upward Compatible Queries

When a query q is applied to the current state of a table, a resulting table is computed, shown as the
rectangle in the bottom right corner. While this figure only concerns queries over single tables, the extension
to queries over multiple tables is clear.

Upward compatibility states that (1) all instances of tables in SQL–92 are instances of tables in Temporal
SQL, (2) all SQL–92 modifications to tables in SQL–92 result in the same tables when the modifications are
evaluated according to Temporal SQL semantics, and (3) all SQL–92 queries result in the same tables when
the queries are evaluated according to Temporal SQL.

By requiring that Temporal SQL is a strict superset (i.e., only adding constructs and semantics), it is
relatively easy to ensure that Temporal SQL is upward compatible with SQL–92.

EXAMPLE: A company wishes to computerize its personnel records, so it creates two tables, an Employee
table and a Salary table. Every employee must have a salary. These tables are populated. A high salary
view identifies those employees with a monthly salary greater than $3500. Then employee Therese is given
a 10% raise. Since the salary table is a snapshot table, Therese’s previous salary is lost. These statements
can be easily expressed in SQL–92. Similarly, upward compatibility ensures that these queries and modifi-
cations have precisely the same semantics in Temporal SQL. ut

2.2 Temporal Upward Compatibility

The above minimal requirements are essential to ensure a smooth transition to a new temporal data model,
but they do not address all aspects of migration. Specifically, assume that an existing data model has been

1In this paper, we use the terminology adopted in SQL: table, row, and column, rather than the terminology introduced by Codd
[Cod70]: relation, tuple, and attribute.

3

replaced with a new temporal model. No application code has been modified, and all tables are thus snapshot
tables. Upward compatibility ensures that all applications work as before, under the new temporal model.

Now, an existing or new application needs support for the temporal dimension of the data in one or more
of the existing tables. This is best achieved by changing the snapshot table to become a temporal table (e.g.,
by using a statement of Temporal SQL).

It is undesirable to be forced to change the application code that accesses the snapshot table that is re-
placed by a temporal table. We formulate a requirement that states that the existing applications on snapshot
tables will continue to work with no changes in functionality when the tables they access are altered to be-
come temporal tables. Specifically, temporal upward compatibility requires that each query will return the
same result on an associated snapshot database as on the temporal counterpart of the database. Further, this
property is not affected by modifications to those temporal tables. The precise definition is given next and
is explained in the following.

DEFINITION: Let MT = (DST ; QLT) and MS = (DSS; QLS) be temporal and snapshot data models,
respectively. Also, let T be an operator that changes the type of a snapshot table to the temporal table with
the same explicit columns. Next, let m1;m2; : : : ;mn (n � 0) denote modification operations. With these
definitions, model MT is temporal upward compatible with model MS if

� MT is upward compatible with MS ,

� 8dbS 2 DSS (T (dbS) 2 DST), and

� 8dbS 2 DSS (8m1; : : : ;mn(n � 0) (8qS 2 QLS (

hhqS(mn(mn�1(: : : (m1(dbS) : : :))))iiMS
= (hhqS(mn(mn�1(: : : (m1(T (dbS))))))iiMT

)))). ut

Assume that, when moving to the new system, some of the existing (snapshot) tables are transformed into
temporal tables without changing the existing set of (explicit) columns. This transformation is denoted by T
in the definition. Then the same sequence of modification statements, denoted by the mi in the definition, is
applied to the snapshot and the temporal databases. Next, consider any query in the snapshot model. Such
queries are also allowed in the temporal model, due to upward compatibility being required. The definition
states that any such query evaluated on the resulting temporal database, using the semantics of the temporal
query language, yields the same result as when evaluated on the resulting snapshot database, now using the
semantics of the snapshot query language.

Temporal upward compatibility is illustrated in Figure 2. When temporal support is added to a table, the
history is preserved, and modifications over time are retained. In this figure, the rightmost dashed state was
the current state when the table was made temporal. All subsequent modifications, denoted by the arrows,
result in states that are retained, and thus are solid rectangles. Temporal upward compatibility ensures that
the states will have identical contents to those states resulting from modifications of the snapshot table.

The query q is an SQL–92 query. Due to temporal upward compatibility the semantics of this query
must not change if it is applied to a temporal table. Hence, the query only applies to the current state, and a
snapshot table results.

EXAMPLE: We make both the employee and salary tables temporal. This means that all information cur-
rently in the tables is valid from today on. We add an employee. This modification to the two tables, con-
sisting of two SQL–92 INSERT statements, respects temporal upward compatibility. Queries and views on
these newly-temporal tables work exactly as before. The SQL–92 query to determine who manages the high-
salaried employees returns the current information. Constraints and assertions also work exactly as before,
applying to the current state and checked on database modification. ut

4

m...

Time

q

...m m T m m

Figure 2: Temporal Upward Compatibility

There is one unfortunate ramification to the above definition. Any extension that adds constructs involv-
ing new reserved keywords will violate upward compatibility, as well as temporal upward compatibility. The
reason is that the user may have previously used that keyword as an identifier. Query language statements
that use the keyword as an identifier will, in the extension, be disallowed.

Reserved words are added in all temporal query languages. This phenomenon also holds for non-temporal
query languages. SQL–89 defined some 115 reserved words; SQL–92 added 112 reserved words, and the
draft standard SQL3 adds another 97 reserved words.

To avoid being overly restrictive, we consider upward compatibility and temporal upward compatibility
to be satisfied even when reserved words are added, as long as the semantics of all statements that do not use
the new reserved words is retained in the temporal model.

3 Temporal Database Management Using SQL–92

As an initial application of these notions, we first consider an approach employed frequently to implement a
temporal application: emulating a time-varying table with a conventional table. As we will see, this approach
does not ensure temporal upward compatibility, leading to a number of difficulties.

The underlying model will be SQL–92, that is, QL2 is the set of SQL–92 queries and modifications. Let
us return to the Employee table, which has three columns, Name, Manager, and Dept. In SQL–92, one
can require that all managers be employees, by stating that Manager is a foreign key forEmployee.Name.
We can easily express queries such as “List those employees who are not managers,” as well as modifications,
such as “Change the manager of the tools department to Bob.”

To store historical information, we wish to emulate time-varying information, and so we will use the
same model, SQL–92, that is, QLT will be the set of SQL–92 queries and modifications. We also need an
operator that changes the type of a snapshot table to a ‘temporal’ table. We will define T to be the following
SQL–92 schema modification statements.

ALTER TABLE Employee ADD COLUMN Start DATE
ALTER TABLE Employee ADD COLUMN Stop DATE

The T operator must also initialize the value of the Start column to be the value CURRENT DATE and the
value of theStop column to be the value DATE ’9999-12-31’, the largest DATE value. This transforms
the Employee table into a ‘temporal’ table (in the data model MT , which is SQL–92).

5

Model MT is certainly upward compatible with MS , as all databases in MT = MS = SQL–92. In-
terestingly, though, SQL–92, along with the transformation operator just defined, is not temporally upward
compatible with itself. As but a simple example, let qS be the query “SELECT * FROM Employee”. It
is certainly not the case that hhqS(dbS)iiSQL�92 = hhqS(T (dbS)iiSQL�92. Even the schemas do not match:
the schema for the result of hhqS(dbS)iiSQL�92 has three columns, Name, Manager, and Dept, while the
schema for the result of hhqS(T (dbS)iiSQL�92 has five columns, including Start and Stop.

This violation of temporal upward compatibility has important practical ramifications. Assume that we
have a 50,000-line application that manages theEmployee table and other tables in a personnel database, al-
lowing employees to be added and dropped, and the information about employees to be modified and queried
in various ways. When this table is extended to store time-varying information, via the transformation T dis-
cussed above, many portions of this application break.

� The constraint that all managers are employees can no longer be expressed via SQL–92’s foreign key
constraint, which fails to take time into account. Instead, this constraint must be replaced with a com-
plex assertion that includes in its predicate the Start and Stop columns.

� All queries must be examined, and most must be modified. Consider the query “List those employees
who are not managers.” A where predicate is now required to extract the current managers. Also, any
query that mentions ‘*’ must be modified, because the Employee table now has a different number
of columns.

� Modifications must also be altered to take into account the Start and Stop columns. The modifi-
cation “Change the manager of the tools department to Bob” is now quite more involved than before.

In contrast, assume that instead of attempting to emulate the time-varying aspect using conventional ta-
bles, we use a temporal data model that is provably temporally upward compatible with SQL–92. We would
be assured that not a single line of our 50,000-line application would have to be altered when transformation
T was applied to render the Employee table time-varying.

4 Temporal Query Languages

As we just saw, the fact that an emulation of temporal tables using SQL–92 is not temporally upward com-
patible has several unfortunate ramifications in practice. We now turn to the temporal extensions to SQL that
have been defined to date. Following an overview of the evaluation, we consider each temporal SQL in turn.

4.1 Overview of Temporally Extended SQL’s

We are aware of seven temporal data models that extend SQL. We consider each of these in turn, starting
with the earliest models, examining whether or not each model satisfies the requirements UC and TUC with
respect to some variant of SQL, e.g., SQL–89, SQL–92, SQL3, or SQL dialects of commercial DBMSs.

Ideally, we prefer to be able to independently prove that a particular temporal data model satisfies or
violates a requirement. However, the available documentation of the models often is not adequately com-
prehensive for this to be possible. With two exceptions, only the integration of the temporal query facilities
with “core” subsets of SQL are documented, and which particular SQL dialect that is being extended is also
not always mentioned. This makes it hard to determine whether models are (temporal) upward compatible
with “the” full SQL or some subset of “an” SQL.

Aspects related to the use of regular SQL statements—modifications, in particular—on temporal tables
or a combination of temporal and non-temporal tables are typically not defined. This makes it hard to verify
temporal upward compatibility.

6

Finally, the definition of the syntax of several of the models is quite informal and incomplete. The se-
mantics of the models are, at best, informal and, at worst, indicated by a few examples.

For the cases where we cannot prove that a temporal data model satisfies or violates a requirement, we
will report the model as satisfying (or violating) a requirement if its designers claim that the property is satisi-
fied and we have not been able to disprove the claim with the available documentation. In addition, we will
report satisfaction simply if we cannot prove dissatisfaction, again given the available documentation. Thus,
we associate the following numbers with our findings, to indicate the confidence in the findings.

1. Neither satisfaction nor violation is claimed, nor can be proven.

2. Satisfaction claimed, but the claim cannot be proven nor invalidated.

3. Independently proven.

Clearly, the highest level of confidence is desired.

Language Reference UC TUC Comments

TOSQL [Ari86] yes2 no3 Extends, however, only a subset of SQL.
TSQL [NA87]

[NA89]
[NA93]

yes2 no3 Not all snapshot tables can be made temporal. Some
SQL views cannot be defined on temporal tables.
Automatic coalescing violates TUC.

HSQL [Sar90b]
[Sar93]

yes2 no3 SQL queries on temporal tables return temporal
tables.

TempSQL [BG93]
[GB93]
[GN93]

yes2 yes3

(classical)
no3

(system)

Only a subset of SQL is considered. TUC is satisfied
only for classical users. Means of specifying user
types and defaults are not given.

IXSQL [Lor93]
[LM96]

yes2 no3 Extension of SQL with a parameterized interval
ADT with accompanying query-language facilities
is proposed.

ChronoSQL [Boe94] yes3 no3 Temporal concepts of Datalog are carried over to
SQL. Does not restrict TUC queries to the current
state.

TSQL2 [Sno95] yes3 no3 Full syntax given. Semantics defined informally in
SQL-standard style.

Table 1: Summary of UC and TUC Compliance

Table 1 gives an overview of our conclusions. The first three models are documented rather sparsely
for our purposes, but their designers emphasize that they satisfy upward compatibility. They do not satisfy
temporal upward compatibility. The next model, TempSQL, introduces a concept of different types of users
that may be used to obtain satisfaction of both compatibilities in certain circumstances. The next model is
different from all the other models in that it does not provide support for implicit time; rather, it adds a param-
eterized abstract interval data type and associated facilities for modification and queries to SQL. ChronoSQL
is one of the newer temporal models. The final model has been documented much more extensively than its
predecessors, but its semantics are still given in an informal SQL-standards format. Note that no language
satisfies both notions of upward compatibility.

7

4.2 TOSQL

TOSQL [Ari86] temporally extends a subset of an early version of SQL [AC75]. The extension is based
on the TODM data model. The syntax of TOSQL is given in a BNF-like format. This syntax does not in-
clude modification statements, integrity constraints, nested queries, and queries involving aggregates using
HAVING, etc. Hence, it appears that TOSQL is upward compatible with a subset of SQL, and is perhaps
upward compatible with the full language.

It appears that the designer had a notion of temporal upward compatibility in mind when he wrote the
following.

“The default options are defined such that a query that omits the temporal portion retains the
standard meaning of the corresponding SQL SELECT statement.” [Ari86, p. 513]

An example two pages later states the interpretation of a conventional SQL SELECT statement “is to specify
that the query relates to current assignments, and uses the most up-to-date data about it.” [Ari86, p. 515].
The “current assignments” refers to now in valid time; the “most up-to-date data” refers to now in transaction
time.

The key phrase though is “that omits the temporal portion”. The timestamp of a table in TOSQL appears
as a column named RT. A non-time-varying table would not have such a column. The conversion operator
T in Definition 2.2 would add this column. The problem is with queries involving ‘*’. Such queries on
T (dbS) would return a different number of columns than queries directly on dbS . Hence, temporal upward
compatibility is not satisfied.

4.3 TSQL

Navathe and Ahmed’s temporal relational model, TSQL, supports, in addition to conventional tables, row
timestamping for valid time by attaching two mandatory timestamp columns, Time-start (Ts) and Time-end
(Te) to every time-varying relational schema [MNA87, NA87, NA89, NA93]. These timestamp columns
correspond to the lower and upper bounds of time intervals in which rows are continuously valid.

It is stated that TSQL is upward compatible with SQL.

“All legal SQL statements are also valid in TSQL, and such statements have identical semantics
in the absence of a reference to time. [...] SQL, a subset of TSQL, remains directly applicable
to non-time-varying relations in 1NF.” [NA93, p. 99].

A simplified, 1.5 page BNF-like syntax is given for TSQL [NA87]. Statements such as updates, inserts,
deletes, and view definitions are not addressed in the syntax or elsewhere in the documentation. Also, the
use of regular SQL queries on temporal tables is not touched upon. While this makes it hard to examine the
satisfaction of TUC, there are several indications that TUC is not satisfied.

In TSQL’s data model, only tables that are in the so-called time normal form are allowed [NA87, p. 116].
Briefly, for a table to be in time normal form, it must be in Boyce-Codd normal form (disregarding the times-
tamp columns), and the non-key, non-timestamp columns must all be synchronous (i.e., they must change
values simultaneously). As there are no such normal form requirements on snapshot tables, it follows that
the T operator that turns a snapshot table into a temporal table is not defined for all snapshot tables. Also,
regular SQL view definitions on temporal tables are not allowed when they lead to views that are not in time
normal form. This is often the case for views that are joins.

Lastly, TSQL performs automatic coalescing of value-equivalent rows (i.e., rows with identical non-
timestamp column values) that have consecutive or overlapping timestamps. This facility leads to a violation
of TUC. For example, assume that we start out with an empty snapshot table, R, and insert two identical

8

rows. Then SELECT * FROM R yields two rows. Now, we simultaneously insert the two rows into T (R).
The most reasonable assumption is that these two rows will be given timestamps that result in them being
coalesced into one row. Now, SELECT * FROM T (R) yields one row.

4.4 HSQL

As the previous data model, Sarda’s HDBMS also supports valid time; however, unlike the data model men-
tioned previously, HDBMS represent valid time in a valid-time table as a single non-atomic, implicit column
[Sar90b, Sar93]. HSQL2 is the query language of HDBMS.

It is emphasized that HSQL is upward compatible with respect to SQL (SQL–89, in fact).

“HSQL is a superset of the popular query language SQL.” [Sar93, p. 123]

“In fact, the standard clauses of SQL have identical meanings in HSQL.” [Sar93, p. 125]

Concerning TUC, the effects of the standard SQL insert, delete, and update statements are consistent with
satisfying this requirement. However, a query SELECT * FROM R where R is a temporal table returns R
and not the current (snapshot) state of R, as would be required in order to satisfy TUC [Sar93, pp. 126–127].

4.5 TempSQL

Gadia’s TempSQL is based on a N1NF temporal data model that is value timestamped [BG93, GB93, GN93].
A column of a row may have more than one (timestamped) value. The union of the timestamps of the values
of each column must be the same for all columns throughout the entire row, resulting in a homogeneous
temporal table.

Conventional tables are seen as temporal tables valid at a single time instant. Thus, each column value
of each row in such a temporal table is timestamped with the same instant. Integration of snapshot tables
into the data model this way is proposed partly in order to obtain upward compatibility.

“By integrating it into our framework, we establish a smooth bridge for industry and its user
community for migrating from classical databases to temporal databases. [...] We provide a
framework for a smooth transition for industry, requiring no loss of investment in application
programs developed by its user community.” [GN93, p. 32]

The particular SQL that is being extended is not identified. No BNF is given. Further, only a subset of
those facilities normally associated with SQL are mentioned, with several important aspects, e.g., advanced
query facilities, integrity and embedded queries, ignored. With these reservations, it is our contention that
TempSQL is upward compatible with SQL. Determining whether temporal upward compatibility is satisfied
is more difficult for this model than any of the other models.

TempSQL supports several types of users, e.g., system users and classical users, of a temporal DBMS.
While system users have unrestricted access to the database, classical users can only access the currently
valid values in the database. Thus, classical users see the current snapshots of temporal tables. Assuming
that T is a temporal table, the query SELECT * FROM T returns T when issued by a system user and the
current snapshot of T when issued by a classical user.

The absence of language syntax for specifying user types at the level of individual statements leads us
to assume that, as indicated by the name, user types are fixed for individual users, and on a per-applications
basis. (No information is given on how the mechanisms for different types of users interact with embedded

2In another paper, Sarda gave this extension to SQL the name TSQL [Sar90a]. We use HSQL because it was used in the most
recent paper.

9

application programs.) Had the intention been to be able to designate individual language statements as clas-
sical or temporal, we feel that the language should have provided syntax for this. We thus think about user
types as being similar to ordinary SQL privileges. This seems reasonable, as user types do restrict access to
data.

The choice of the default user type matters. If all users, and thus applications, are classical by default,
then it is possible to avoid modifying the legacy applications when transitioning to a TempSQL system. Hav-
ing the default user type be system leads to a violation of temporal upward compatibility—legacy applica-
tions then need to be modified to indicate that they are classical.

The next issue to consider is that of the application of legacy SQL modification statements on temporal
tables. As the effects of such statements persist in the current states (i.e., the states of the temporal tables
valid at the (ever-increasing) current time), the statements are consistent with TempSQL satisfying temporal
upward compatibility.

Our conclusion is that for classical users, temporal upward compatibility is ensured. For system users,
the opposite is true. The reason is that, for a system user, a conventional SQL query over a temporal table
will return a temporal table.

TempSQL is thus fine when a non-temporal application is executed on a database that has been migrated
to a temporal DBMS. Where TempSQL falls short is in further migration of that application, to exploit the
very useful temporal constructs of that language. This requires that the user be a system user, because a
classical user is not permitted to use any of the new constructs. As soon as the user transitions from classical
to system, all of the query language statements in the application must be reevaluated, and many must be
substantially rewritten. Had temporal upward compatibility been ensured for all users, this jarring transition
would have been much smoother.

4.6 IXSQL

IXSQL [Lor91, Lor93, LM96] differs from all the other temporal query languages in that it does not provide
support for a special, built-in notion of time. Rather, IXSQL adds the ability to define columns of a parame-
terized interval abstract data type, and it provides special query facilities for manipulating tables with rows
that have such interval values.

Actually, there exists at least two different versions of IXSQL, an early version [Lor91], and a later ver-
sion [LM96]. The initial version was neither upward nor temporally upward compatible with SQL, in part
because it did not permit duplicate rows in tables.

“IXSQL actually differs from the standard SQL [reference to SQL–89], in that a relation may
not contain duplicate tuples.” [Lor91, p. 4]

In the remainder, we consider the later version. This version was designed to be upward compatible with
SQL–92:

“IXSQL is syntactically and semantically upwards consistent with SQL2.” [LM96, p. 1]

Next, we consider temporal upward compatibility. The first step is to decide on what the meaning of
T should be in a model without an implicit notion of time in its tables. To be specific, let us simply as-
sume that T adds an interval-valued column to each snapshot table, with value [CURRENT DATE, DATE
’9999-12-31’] for each row. Other reasonable assumptions seem to lead to the same conclusions. The
result of a legacy query such asSELECT * FROM Rwill differ from the result ofSELECT * FROMT (R).
In addition, legacy modifications to “temporal” tables will generally not be consistent with satisfying tempo-
ral upward compatibility, or they may fail altogether. In summary, legacy applications need to be rewritten
when new columns are added to the tables then access.

10

4.7 ChronoSQL

ChronoSQL was designed and implemented as part of the ChronoLog project [Boe94]. The main purpose
was to illustrate how temporal concepts developed for deductive databases can be carried over to relational
databases. ChronoSQL is tightly coupled with a Datalog based language, which means that users can switch
language any time.

This said it comes as as no surprise that not all language features of ChronoSQL have been worked out
in detail. Specifically, the temporal extension was restricted to query statements; data manipulation state-
ments and integrity constraints were not considered. Moreover, legacy queries over temporal tables are not
restricted to the current state. This clearly violates temporal upward compatibility.

Upward compatibility looks more promising. ChronoSQL adds a couple of non-mandatory syntactic
constructs to SQL. No other syntactic changes are proposed. This ensures syntactic upward compatibility.
Furthermore, the semantics of legacy statements over nontemporal tables remains unchanged [Boe94, p.69]
meaning that upward compatibility is ensured as well.

4.8 TSQL2

TSQL2 [Sno95] is the most comprehensively documented temporal query language. Its syntax was given as
an extension of the syntax of SQL–92 as presented in the official standard, and the semantics of TSQL2 was
also given in the format of the SQL–92 standard. Some 500 pages of technical commentaries accompany
these specifications. Upward compatibility of TSQL2 is studied in [BJS95].

In TSQL2, there are six kinds of tables: snapshot tables, valid-time event tables, valid-time state ta-
bles, transaction-time tables, bitemporal event tables, and bitemporal state tables. The first is the kind of
table found in the relational model; the remaining five are temporal tables. As all the schema specification
statements of SQL–92 are included in TSQL2, it follows that the data structures of TSQL2 include those in
SQL–92.

TSQL2 is also a strict superset of SQL–92 in its query facilities. In particular, if an SQL–92 select state-
ment does not incorporate any of the constructs added in TSQL2, and mentions only snapshot tables in its
from clause(s), then the language specification states explicitly that the semantics of this statement is iden-
tical to its SQL–92 semantics.

It should be noted that the preliminary TSQL2 language specification released in March, 1994 [SAA+94]
did not have that property. In particular, SQL–92INTERVALs were termedSPANs in the preliminary TSQL2
specification, and TSQL2 INTERVALs were not present at all in SQL–92. The final TSQL2 language spec-
ification [Sno95] retained SQL–92 INTERVALs and added the PERIOD data type, which was previously
called INTERVAL in preliminary TSQL2 (confusing, isn’t it?). Additional changes to the datetime literals
were also made to ensure that TSQL2 was a strict superset of SQL–92.

Hence, TSQL2 is upwards compatible with SQL–92. However, TSQL2 is not temporally upward com-
patible with SQL–92, for several reasons.

The two related concepts of value-equivalent rows and duplicates will prove important. The former con-
cept applies only to temporal tables; the latter applies to both temporal tables and to timeslices of temporal
tables. To illustrate the interrelations among these concepts, consider the temporal tables depicted in Fig-
ure 3. Here, we assume rows are timestamped with periods.

Table r1 contains no duplicates and no value-equivalent rows. Thus, no timeslices of r1 will contain
duplicates. Table r2 contains no duplicates, but it does contain value-equivalent rows. However, as the
timestamps of the value-equivalent rows are disjoint, no timeslices will contain duplicates. Table r3, like
r2, contains value-equivalent rows and contains no duplicates. Unlike in r2, the timestamps of the value-
equivalent rows are not disjoint, and thus there are timeslices of r3 that contain duplicates. Finally, table r4
contains duplicates and thus non-disjoint value-equivalent rows, leading again to timeslices with duplicates.

11

r1 r2 r3 r4

A T
a1 [10� 20)
a2 [15� 50)

A T
a1 [10� 17)
a1 [17� 20)
a2 [15� 50)

A T
a1 [10� 20)
a1 [15� 18)
a2 [15� 50)

A T
a1 [10� 20)
a1 [10� 20)
a2 [15� 50)

Figure 3: Illustration of Value-equivalent Rows and Duplicates

Note that allowing value-equivalent rows does not necessarily yield duplicates in timeslices. However, if we
want to have duplicates in timeslices, we must allow (non-disjoint) value-equivalent rows.

One reason that TSQL2 is not temporal upward compatible with SQL–92 is that SQL–92 tables that con-
tain duplicates have no counterparts in TSQL2 where tables with value-equivalent rows (and thus duplicates,
either in a timeslice, or in the temporal table itself) are not allowed. The definition of temporal upward com-
patibility (with SQL–92) requires that for every SQL–92 table r, there must exist an equivalent TSQL2 table
rv = T (r). However, it is not possible to find an rv in TSQL2 for r’s in SQL–92 that contain duplicates.
An example illustrates this.

EXAMPLE: Let a Salary table record (current) monthly incomes of persons. Assume that the person Tom
has three incomes because he has three jobs. In two jobs, he makes 1200, and in one he makes 800. This
can be represented in SQL–92 as follows.

Name Amount
Tom 1200
Tom 1200
Tom 800

No timeslice of a TSQL2 table can yield this SQL–92. The following is a reasonable attempt at adding valid
time to the SQL–92 table to obtain a TSQL2 table.

Name Amount T
Tom 1200 [1994=5� 1995=3)
Tom 1200 [1994=8� 1994=12)
Tom 800 [1994=11� 1995=6)

This table records that from May 1994 to March 1995, Tom was on one payroll and made a monthly salary of
1200; from August 1994 to December 1994 he was on another payroll where he also made 1200 per month;
and from November 1994 to June 1995 he made 800 in a third job. This is not a legal TSQL2 table because
it contains value-equivalent rows. ut

The merit of duplicates has already been discussed heatedly (see, e.g., [Dat95, p. 109]). Doubtless, SQL–
92 would be cleaner in a mathematical sense without duplicates. However, we cannot change SQL–92, so
whether we like it or not, it is necessary to deal with duplicates when designing a temporally upward com-
patible successor to SQL–92. Specifically, for TSQL2 to be temporally upward compatible with respect to
SQL–92, it must support (the equivalent of) tables containing value-equivalent rows with non-disjoint times-
tamps, permitting duplicates in timeslices.

As a reminder, we note that duplicates may significantly impact the results of queries. For example, the
following statement computes a table that associates with every person that person’s total salary.

SELECT Name, SUM(Amount)
FROM Salary
GROUP BY Name

12

Evaluated over the initial nontemporal Salary table, the query computes Tom’s salary to be $3200. Without
duplicates, the result would have been $2000, which is unintended.

A second reason that TSQL2 is not temporally upward compatible with SQL-92 is that when the keyword
SNAPSHOT is not specified in a select statement in TSQL2, a temporal table results. Hence, an SQL–92
query over a temporal table will result not in a conventional table, but rather in a temporal table.

5 Ensuring Temporal Upward Compatibility

This section explains a sequence of steps that lead to a temporal upward compatible SQL–92 extension. Im-
plications to syntax and semantics are discussed and illustrated with examples. Temporal upward compati-
ble extensions allow to independently migrate data structures and application code. Specifically, it permits
migration of data structures without also requiring changes to application code (c.f. Definition 2.2). The ex-
amples that have been stated in prose in Section 2 are reconsidered and formulated in the temporal extension
of SQL–92.

5.1 Syntax of a Temporal Upward Compatible Extension of SQL

Temporal upward compatibility does not put an upper limit on syntactic extensions to a language. It, how-
ever, defines a lower limit. First, all legacy statements must be retained. (This requirement is independently
established by upward compatibility.) Second, a possibility must be provided to migrate nontemporal data
structures to temporal data structures. The first requirement is met by adding (non-mandatory!) syntactic
constructs to the base language. No syntactic constructs may be deleted or changed. Migrating non-temporal
to temporal data structures can be achieved in different ways. We discuss two possibilities to illustrate the
design space and the possible consequences to the data model.

If we want to emphasize different table types (snapshot tables, valid time tables, transaction time tables,
and bitemporal tables) a reasonable syntactic choice is to extend the<alter table action> production of SQL–
92 [MS93, p.511], by adding two options.

<alter table action> ::= <add column definition>
j <alter column definition>
j <drop column definition>
j <add table constraint definition>
j <drop table constraint definition>
j <add time dimension>
j <drop time dimension>

<add time dimension> ::= ADD<time dimension>

<drop time dimension> ::= DROP<time dimension> <drop behavior>

<time dimension> ::= VALID

j TRANSACTION

Adding valid time turns a snapshot table into a valid time table and a transaction time table into a bitem-
poral table. Adding transaction time turns a snapshot table into a transaction time table and a valid time table
into a bitemporal table. This is the approach chosen by TSQL2 [Sno95].

13

If instead we want to emphasize the conventional relational data model with tables that support time
through special-purpose columns, an alternative approach would be to enhance the productions <add column
definition> and <drop column definition> respectively.

<add column definition> ::= ADD [COLUMN] <column definition>
j ADD [COLUMN] <time dimension>

<drop column definition> ::=DROP [COLUMN] <column name> <drop behavior>
j DROP [COLUMN] <time dimension> <drop behavior>

Further syntactic alternatives can also be envisioned. It is, however, critical that all of them support the
semantics discussed in the next section.

5.2 Semantics of a Temporal Upward Compatible Extension of SQL

This section discusses the semantics of various temporally upward compatible statement categories, i.e.,
standard SQL–92 statement categories evaluated over temporal databases. The categories include queries,
views, assertions, column constraints, referential integrity constraints, insertions, deletions, and updates.
This ensures a broad coverage of the functionality of a database system. Nevertheless, there are certain
statement categories that are not considered explicitly, e.g., triggers. These categories do not introduce fun-
damentally new problems with respect to temporal upward compatibility. Instead, semantics and techniques
discussed for other categories can be applied directly.

When we discuss the semantics of legacy statement categories over temporal tables we can differentiate
between non-destructive statements, e.g., queries, views, and integrity constraints, and modification state-
ments, e.g., data manipulation statements. As we will see, these two sets of categories have to be treated
differently.

Below we discuss the semantics for each of the two sets of categories. Within each set all categories are
analyzed and illustrated with an example.

The very first step is of course to migrate the data structures.

ALTER TABLE Employee ADD VALID
ALTER TABLE Salary ADD VALID

Both tables are turned into valid-time tables, such that all information stored in the tables can be annotated
with its valid time (transaction time is discussed at the end of this section).

5.2.1 Non-destructive Statements

Non-destructive statements retrieve from or check parts of the database. They do not change the contents
of the database. To get the exact same semantics that a nontemporal database would provide, we have to
restrict the retrieval and checking to the current state.

Queries are implemented by adding a selection condition to the WHERE clause that selects current rows.
Moreover, defaults, e.g., ‘*’ in the select clause, may not expand to include time. As an example, assume a
query that determines who manages the high-salaried employees. The ‘temporal’ query is straightforward.

SELECT Manager
FROM Salary AS S, Employee AS E
WHERE S.Name = E.Name
AND S.Amount > 3500

14

Whenever the temporal database system identifies one or more temporal in an SQL–92 statement, it must
perform the actions dictated by temporal upward compatibility. In this case, it must restrict the set of rows
to the current ones.

Views are similar to queries. This becomes obvious if we remember that a view is a virtual table defined
by a query. The query that defines the view is enhanced along the lines outlined above. As an example,
consider a view that yields high-salaried employees.

CREATE VIEW High_salary AS
SELECT *
FROM Salary
WHERE Amount > 3500;

A selection condition that limits the query expression to current salaries has to be added. Moreover, the de-
fault used in the select clause has to be extended to SELECT Name, Amount (or an equivalent relational
algebra projection) so that the valid time is not part of the result.

Integrity constraints come in different flavors. The most general form are assertions [MS93, p.211ff].
Consider the assertion that ensures that all employees get a salary, i.e., an assertion that checks that no em-
ployees without a salary exist.

CREATE ASSERTION CONSTRAINT Emp_has_sal CHECK
NOT EXISTS (SELECT *

FROM Employee AS E
WHERE NOT EXISTS (SELECT *

FROM Salary AS S
WHERE E.Name = S.Name))

The general approach to check an assertion is to negate it and to execute it as a query, i.e.,

SELECT *
FROM Employee AS E
WHERE NOT EXISTS (SELECT *

FROM Salary AS S
WHERE E.Name = S.Name)

If the query result is empty, i.e., if no rows are returned, the assertion is respected; otherwise it is violated.
With this background, temporal upward compatible assertions can be achieved easily, because we showed
above how to do so with queries.

5.2.2 Modification Statements

Modification statements change the contents of the database. An obvious (but naive) approach is to carry
over the semantics from the previous section and to modify the current state. Imagine the insertion of an
employee into the database.

INSERT INTO Employee VALUES (’Liliane’, ’Brandt’, ’Tools’)
INSERT INTO Salary VALUES (’Liliane’, 1000)

If we inserted Liliane only in the current state, subsequent queries would not return this row. When we later
issue a query, time will have progressed and Liliane will no longer be in the (new) current state. Of course this
is not the behavior we expect from a nontemporal database. In order to get the expected behavior, we have
to make sure that Liliane remains in the changing current state. This may be achieved by using the period

15

from CURRENT DATE to 9999-12-31 (the largest DATE value) as the timestamp of Liliane’s tuples. But
it may also be achieved using as the end point NOBIND(CURRENT DATE), where NOBIND has the effect
of storing in the timestamp a variable that evaluates to CURRENT DATE when accessed, rather than storing
the current value of CURRENT DATE. Indeed, any now-relative variable [CDI+94] that evaluates to a time
between these two end points may be used. We will adopt the simplest choice, the date 9999-12-31.

An equivalent observation holds for delete and update statements. Assume that we want to change the
manager of the tools department to Bob.

UPDATE Employee
SET Manager = ’Bob’
WHERE Dept = ’Tools’

If we only updated the current state, subsequent queries would not access the corrected database state. Again,
we have to ensure that the update persists in the changing current state to get the exact same behavior a
nontemporal database provides.

Achieving temporal upward compatibility for modification statements is slightly more complicated than
achieving temporal upward compatibility for non-modification statements. The reason is that certain rows
may be valid from some point in the past until some point in the future, i.e., they overlap the current time.
Because temporal upward compatible statements only affect the current and future times, the modifications
must not change the row during the entire time range. Let us consider each type of modification statement
in turn.

Insert statements have to set the valid-time start to the current time and the valid-time end to DATE
’9999-12-31’, as discussed above. This ensures that, until the row is deleted or modified, it will be
valid.

Next we consider delete statements. Historical data, i.e., qualifying rows with a valid time end before
the current time, is left untouched. Current data, i.e., qualifying rows with a valid-time start after the current
time (including a valid time end equal to DATE ’9999-12-31’), has to be deleted as of the current time.
This is done by changing valid time end to the current time. For future knowledge two choices exist. If we
decide not to delete it, today’s future knowledge will become valid eventually. This behavior can be quite
surprising for applications employing temporal upward compatibility exclusively. An alternative is to delete
qualifying future knowledge. This ensures a more intuitive behavior of legacy applications, but it might not
be the semantics temporal applications envision.

The most complex statements are update statements. First, rows with a valid-time start before the current
time and a valid-time end after the current time (including a valid-time end equal toDATE ’9999-12-31’)
are duplicated. The valid-time end of the original row and the valid-time start of the duplicated row are set
to the current time. Then the update statement is applied to all rows with a valid time start that is equal or
after the current time. Again we have the choice not to update future knowledge (c.f. previous paragraph).

5.2.3 Transaction Time

With respect to temporal upward compatibility, transaction time behaves almost identically to valid time.
Exactly the same semantics applies to transaction-time tables and valid-time tables.

Even bitemporal tables behave quite similarly. In non-destructive statements and insertions, both time
dimensions inherit the unitemporal semantics. Deletions and updates are somewhat more complicated, due
to the nature of transaction time which guarantees that at each point in time, it is possible to reconstruct
previous database states. A temporal upward compatible deletion of a bitemporal row triggers the following
steps.

16

1. Qualifying rows with a transaction-time end equal to 9999-12-31 are duplicated. The transaction-
time end of the original row and the transaction-time start of the duplicated row are set to the current
time.

2. The valid-time deletion is applied to qualifying rows with a transaction-time end equal to9999-12-31.

The first step saves the current state and thus ensures reconstructability, whereas the second step performs
the valid-time deletion. Update follows a similar pattern.

5.3 Implementing Temporal Upward Compatibility

Annotating information with time leaves us with several well-known possibilities at the physical level, most
prominently row and column-value timestamping. It is important that, after a sequence of modifications, the
current state of the database is equivalent to the state of a corresponding nontemporal database after the same
sequence of modifications. We assume row timestamping and extend both tables with a VALID column of
type PERIOD.

SQL–92 queries over temporal tables must restrict the set of rows to the current ones, and then must
eliminate the timestamps from their results. This can be done at different levels. The highest level is SQL,
which is widely accessible. The downsides are restricted optimization possibilities and limited expressive
power. A lower level is the algebra level which permits more control. For example we could rewrite

�employee:name;city(employeesalary:name=employee:name(�amount>3500(salary)))

to

�employee:name;city(�V ALID overlaps CURRENT TIMESTAMP (employee)

salary:name=employee:name(�amount>3500(�V ALID overlaps CURRENT TIMESTAMP (salary))))

The selection condition V ALID overlaps CURRENT TIMESTAMP checks whether the valid time
overlaps the current time.

We showed how integrity constraints can be mapped to queries, with the above implementation options
applicable. However, in general database systems have to improve the sketched integrity checking mech-
anism to achieve acceptable performance. Well-known techniques are incremental consistency checking,
simplification of assertions, and special-purpose checking algorithms for, e.g., column constraints and ref-
erential integrity constraints.

6 Applicability

It is instructive to consider the applicability of temporal upward compatibility in more detail. When de-
signing larger information systems, two general approaches have been advocated. In the first approach, the
system design is based on the function of the enterprise that the system is intended for (the “Yourdon” ap-
proach [You82]); in the second, the design is based on the structure of the reality that the system is about
(the “Jackson” approach [Jac83]). It has been argued that the latter approach is superior because structure
may remain stable when the function changes while the opposite is more often not possible. Thus, a more
stable system design, needing less maintenance, is achieved when adopting the second design principle. This
suggests that the data needs of an enterprise are relatively stable and only change when the actual business
of the enterprise changes.

Enterprises currently use non-temporal database systems for database management, but that does not
mean that enterprises manage only non-temporal data. Indeed, temporal databases are currently being man-
aged in a wide range of applications, including, e.g., academic, accounting, budgeting, financial, insurance,

17

inventory, legal, medical, payroll, planning, reservation, and scientific applications. Temporal data may be
accommodated by non-temporal database systems in several ways. For example, a pair of explicit time
columns may encode a valid-time interval associated with a row.

Temporal database systems offer increased user-friendliness and productivity, as well as better perfor-
mance, when managing temporal data. The typical situation, when replacing an underlying non-temporal
DBMS with a temporal DBMS, is one where the enterprise is not changing its business, but wants the extra
support offered by the temporal system for managing its temporal data. Thus, it is atypical for an enterprise
to suddenly desire to record temporal information where it previously recorded only snapshot information.
Such a change would be motivated by a change in the business.

The typical situation is rather more complicated. The non-temporal database system is likely to already
manage some temporal data, which is encoded using snapshot tables, in an ad hoc manner. Other data will
be non-temporal, recording the current state, again using snapshot tables. When adopting the new temporal
DBMS, upward compatibility guarantees that it is not necessary to change the database schema or application
programs. However, without changes, the benefits of the added temporal support are also limited. Only
when defining new tables or modifying existing applications, can the new temporal support be exploited.
The enterprise then gradually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several reasons. First,
it provides an appealing intuitive notion of a temporal table: the semantics of queries and modification are
retained from snapshot tables; the only difference is that intermediate states are also retained. Second, in
those cases where the snapshot table contained no historical information, temporal upward compatibility
affords a natural means of migrating to temporal support. In such cases, not a single line of the application
need be changed when the table is altered to be temporal. Third, snapshot tables that do contain temporal
information and that have been converted to temporal tables can still be queried and modified by conventional
SQL–92 statements in a consistent manner.

7 Conclusion

Upward compatibility aids in the smooth migration of applications from a conventional to a temporal data
model. The definitions introduced here allow a specific temporal language to be evaluated as to the degree
that it ensures upward compatibility. The extant temporal extensions to SQL are all deficient in one or more
ways, rendering migration more difficult. We subsequently showed how SQL–92 can be extended to yield
a temporal data model satisfying all three notions of upward compatibility. Applications can be much more
easily migrated to this new data model.

The notion of temporal upward compatibility can be viewed as a form of logical data independence.
In the same way that an external schema can ensure that applications are not impacted by changes to the
logical schema, temporal upward compatibility ensures that applications are not impacted by a specific kind
of change to the logical schema: adding or removing temporal support. Logical data independence is an
important benefit provided by modern data models, in particular by the relational data model, and the specific
kind discussed here provides similar advantages.

The approach we espouse here to providing temporal upward compatibility relative to SQL was adopted
in the SQL/Temporal proposals [SBJS96a, SBJS96b]. These language constructs were explicitly designed
to ensure upward compatibility and temporal upward compatibility with the entire SQL–92 standard. The
constructs have been proposed to the American ANSI and international ISO SQL committees for inclusion
into the next ISO SQL standard.

Several directions for further research are promising. First, there is a need for exploring different imple-
mentation alternatives for upward compatible temporal SQL extensions. Alternatives range from stand-alone
implementations to implementations that maximally reuse the functionality offered by existing DBMS’s with

18

an SQL interface. Second, it is felt that much could be learned from conducting actual case studies of the mi-
gration of legacy applications to temporal platforms. Third, the transition from explicit to implicit temporal
knowledge should be investigated. Strategies must be designed to assist the user in migrating nontemporal
tables with explicit time columns to temporal tables. This is essential to maximally exploit the capabilities
of temporal database systems.

8 Acknowledgments

Christian S. Jensen was supported in part by the Danish Natural Science Research Council, grants 11–0089–
1, and 9400911. Richard Snodgrass was supported in part by NSF grants ISI-9202244 and ISI-9632569 and
by a grant from DuPont.

References

[AC75] M.M. Astrahan and D.D. Chamberlin. Implementation of a structured English query language.
Communications of the ACM, 18(10):580–588, October 1975.

[Ari86] G. Ariav. A temporally oriented data model. ACM Transactions on Database Systems,
11(4):499–527, December 1986.

[BG93] G. Bhargava and S. K. Gadia. Relational database systems with zero information loss. IEEE
Transactions on Knowledge and Data Engineering, 5(1):76–87, feb 1993.

[BJS95] M. H. Bohlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the completeness of TSQL2. In
S. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal Databases, pages 153–174,
Zurich, Switzerland, September 1995. Proceedings of the International Workshop on Temporal
Databases, Springer Verlag.

[Boe94] M. H. Boehlen. The Temporal Deductive Database System Chronolog. PhD thesis, Departement
Informatik, ETH Zurich, 1994.

[CDI+94] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the semantics of
“now” in temporal databases. Technical Report R-94–2047, Aalborg University, Department of
Mathematics and Computer Science, Aalborg, Denmark, November 1994.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377–387, June 1970.

[Dat95] C. J. Date. Relational Database Writings 1991–1994. Addison-Wesley Publishing Company,
1995.

[GB93] S. K. Gadia and G. Bhargava. SQL-like seamless query of temporal data. In R. T. Snodgrass,
editor, Proceedings of the International Workshop on an Infrastructure for Temporal Databases,
Arlington, TX, June 1993.

[GN93] S. K. Gadia and S. Nair. Temporal Databases: A Prelude to Parametric Data, chapter 2, pages
28–66 of [TCG+93].

[Jac83] Michael A. Jackson. System Development. Prentice-Hall International Series in Computer Sci-
ence. Prentice-Hall International, Inc., 1983.

19

[LM96] N.A. Lorentzos and Y.G. Mitsopoulos. SQL extension for interval data. IEEE Transactions on
Knowledge and Data Engineering, 1996. To appear.

[Lor91] N. A. Lorentzos. Query language for the management of interval and temporal data. TR 52,
Agricultural University of Athens, Greece, 1991.

[Lor93] N. Lorentzos. The Interval-extended Relational Model and Its Application to Valid-time
Databases, chapter 3, pages 67–91 of [TCG+93].

[MNA87] N. G. Martin, S. B. Navathe, and R. Ahmed. Dealing with temporal schema anomalies in history
databases. In P. Hammersley, editor, Proceedings of the Conference on Very Large Databases,
pages 177–184, Brighton, England, September 1987.

[MS93] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1993.

[NA87] S. B. Navathe and R. Ahmed. TSQL–a language interface for history databases. In Proceedings
of the Conference on Temporal Aspects in Information Systems, pages 113–128, France, may
1987. AFCET.

[NA89] S. B. Navathe and R. Ahmed. A temporal relational model and a query language. Information
Sciences, 49:147–175, 1989.

[NA93] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL, chapter 4,
pages 92–109 of [TCG+93].

[OS95] G. Özsoyoǧlu and R. Snodgrass. Temporal and real-time databases: A survey. IEEE Transac-
tions on Knowledge and Data Engineering, 7(4), August 1995.

[SAA+94] R. T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. Elmasri, F. Grandi,
C. S. Jensen, W. Kafer, N. Kline, K. Kulkarni, T.Y.C. Leung, N. Lorentzos, J.F. Roddick,
A. Segev, M.D. Soo, and S.M. Sripada. TSQL2 language specification. ACM SIGMOD Record,
23(1):65–86, March 1994.

[Sar90a] N. Sarda. Algebra and query language for a historical data model. The Computer Journal,
33(1):11–18, February 1990.

[Sar90b] N. Sarda. Extensions to SQL for historical databases. IEEE Transactions on Knowledge and
Data Engineering, 2(2):220–230, June 1990.

[Sar93] N. Sarda. HSQL: A Historical Query Language, chapter 5, pages 110–140 of [TCG+93].

[SBJS96a] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding valid time to SQL/Temporal.
Change Proposal ANSI X3H2-96-151r1, ISO/IEC JTC1/SC21/WG3 DBL MCI-142, ISO, May
1996.

[SBJS96b] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding transaction time to
SQL/Temporal. Change Proposal ANSI X3H2-96-152r1, ISO/IEC JTC1/SC21/WG3 DBL
MCI-143, ISO, May 1996.

[Sno95] R. T. Snodgrass (editor), I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulkanri, T.Y.C. Leung, N. Lorentzos, J.F. Rod-
dick, A. Segev, M.D. Soo, and S.M. Sripada. The Temporal Query Language TSQL2. Kluwer
Academic Pub., 1995.

20

[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.). Temporal
Databases: Theory, Design, and Implementation. Database Systems and Applications Series.
Benjamin/Cummings, Redwood City, CA, 1993.

[TK96] V. J. Tsotras and A. Kumar. Temporal database bibliography update. SIGMOD Record, 25(1):11,
March 1996.

[TL82] D.C. Tsichritzis and F.H. Lochovsky. Data Models. Software Series. Prentice-Hall, 1982.

[You82] E. Yourdon. Managing the System Life Cycle. Yourdon Press, 1982.

21

