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Abstract

Many data warehouses contain massive amounts of data and grow rapidly. Examples include ware-
houses with retail sales data capturing customer behavior and warehouses with click-stream data cap-
turing user behavior on web sites. The sheer size of these warehouses makes them increasingly hard
to manage and query efficiently. As time passes, old, detailed data in the warehouses tend to become
less interesting. However, higher-level summaries of the data, taking up far less space, continue to be of
interest. Thus, it is possible to perform data reduction in dimensional data warehouses by aggregating
data to higher levels in the dimensions.

This paper presents an effective technique for data reduction that handles the gradual change of the
data from new, detailed data to older, summarized data. The technique enables huge storage gains while
ensuring the retention of essential data. The data reduction is based on formal specifications of when
data should be aggregated to higher levels. Care is taken to ensure that the irreversible data reductions are
without semantic problems. It is defined how queries over the resulting data with varying levels of detail
are handled, and a strategy for implementing the technique using standard data warehouse technology is
described.

Key words and phrases: Data reduction, data warehousing, multidimensional data models, physical
deletion

1 Introduction

Many of today’s data warehouses are very large and continue to be updated almost continuously or bulk-
loaded regularly with new data. Such data warehouses occur in many lines of business, including retail,
finance, telecommunication, and health care, to name but a few.

Recently, the drive to analyze, understand, and react upon user behavior on web sites has led to the
appearance of many very large click-stream warehouses. Common to these is that their sheer size, often on
the order of terabytes, is making it hard to manage and query them with the desired efficiency. Fortunately,
much of the data in these warehouses becomes interesting only at an aggregated level as the data ages, i.e.,
the detailed data gradually loses its value as it gets older. This offers a possibility for huge storage savings,
by storing data only at the desired level of detail.

Data warehouse systems are generally based on a dimensional view of data, in which business facts
with associated measures are characterized by descriptive values drawn from a number of dimensions; and
the values of a dimension are typically organized in a containment-type hierarchy. A prototypical query
applies an aggregate function, such as sum, to a measure associated with some facts that are characterized
by specific values from the dimensions. The level of detail of a fact is then given by the combination of
levels that the fact’s measure is aggregated to in the different dimensions, ranging from bottom levels (the
most detailed) to top levels (aggregated over the whole dimension).

This paper presents a powerful and easy-to-use technique for aggregation-based data reduction that
enable the gradual change of the data from being detailed to being aggregated. The technique provides
the means to realize huge storage gains while still retaining the data that users see as essential. The data
reduction is achieved by specifying criteria for when data should be aggregated to higher levels in the di-
mensions. For example, sums of sales should be aggregated from the daily to the monthly level when
between six months and three years old, and further to the yearly level when more than three years old. Cri-
teria and evaluation mechanisms are given that ensure sound and meaningful data reduction specifications,
so that semantic problems are avoided. It is shown how queries are applied to reduced data, with possibly
varying levels of detail, and a strategy for implementing the technique effectively using standard technology
is described.

We believe this paper to be the first to present techniques for allowing multidimensional data to be grad-
ually and automatically reduced, e.g., over time, by repeatedly aggregating them based on specifications.



We also believe to be the first to consider the issues related to the semantic correctness of a gradual data
reduction process. Additionally, we have found no account in the literature for the querying of multidimen-
sional data that is gradually being aggregated.

Related work exist in several areas. In the context of relational databases with transaction-time support
[14] some work has been reported on the physical deletion of rows based on formal specifications [16].
Another line of work [15], also in the context of the relational model, proposes a kind of view that is un-
affected by deletions on the underlying relations as opposed to materialized views [8, 17], and is sensitive
towards updates as opposed to snapshots [1]. In the context of warehousing Garcia-Molina et al. [6] explore
how to “expire” (delete) data from materialized views so that a set of predefined, regular views on these
materialized views are unaffected and can be maintained consistently with future updates. In comparison,
this paper considers aggregation of data, retaining the essential information in the data warehouse while
reducing the storage requirements considerably. Also, this paper takes into account multidimensional con-
cepts, such as measures and dimensions with hierarchies. The work on dimensionality reduction in data
warehouses [10] considers the removal of entire dimensions from all the data, based on the importance of
the dimensions for the measure values, e.g., the sum of sales. In contrast, our work achieves a reduction in
data volume, while still allowing all dimensions to remain in the warehouse, by offering mechanisms for
selectively aggregating data to higher levels. Previous work has also dealt with general techniques for data
reduction [2] such as wavelets, sampling, and aggregation. These types of work differ in focus from ours,
which offers rule-based specifications for when data reduction, in our case using aggregation, should take
place, allowing the reduction process to be automatic and transparent to the user. The aggregation approach
to data reduction has the advantage that it, in contrast to techniques such as wavelets and sampling, keeps
the exact values for higher-level aggregates, which is likely to be important in a data warehouse.

The remainder of the paper is structured as follows. Section 2 presents a short example, to be used for
illustration throughout the paper. Section 3 formally presents the multidimensional data model. Section 4
defines the syntax and semantics of the data reduction specification, and Section 5 covers the issues that
arise when changing a data reduction specification. Section 6 is devoted to the querying of a reduced data
warehouse, while implementation is the topic of Section 7. Finally, Section 8 concludes and points to future
research topics. Appendix A presents the data and formalism corresponding to the example in Section 2.

2 lllustrating Example

This section presents a multidimensional object to be used for illustration throughout the paper, namely
the database of an Internet Service provider (ISP). This database accumulates click-streams and is used for
analysis of user behavior. In this database, each click entered by a user is registered with its occurrence
time, target_url, and other kinds of information. To keep the illustrations readable, the example considers
only facts (clicks) and two dimensions (URL, Time). In Appendix A we present the tables of example data
as well as the full formalization of the multidimensional object.

In the schema used, the URL and Time dimensions have the following hierarchies of category types.

url <ygrr domain <y, domain_grp <yrr T UrL 1)
day < Time Week <Time T Time ANd day < Time month <rime quarter <Time year <Time T Time (2)

The two orderings indicate containment. For example, day < Time month means that each element
in category type day is contained in an element of category type month. Figure 1 illustrates this contain-
ment using the sample data used throughout the paper. The dimension values are related by bold lines in
tree structures. Note, that the T%Wme-dimension, which has parallel hierarchies, is a graph with multiple
connections from leaf to root.
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Figure 1: Graphical Illustration of Example MO

Each click fact refers to one bottom-level category type for each dimension, i.e., to a day-value and a
url-value. Note, that dotted lines denote relationships between a fact and its dimension values. Also each
click fact refers to the measures Number _of , Dwell _time, Delivery _time, and Datasize. In the figure, this
is captured by the fact signature.

Being typical, our service provider registers a very large number of clicks per day, leading to an ex-
tremely fast growing fact table. As they age, the interest in the individual click facts decreases, one reason
being that they tend to become inaccurate. For example, web pages and URLs change over time, as do
users. Such changes tend to result in facts being related to inaccurate dimension values. This provides the
impetus for applying the type of data reduction proposed in the remainder of this paper.

3 Data Modd

This section defines a prototypical multidimensional data model to be used as the concrete context for
specifying the paper’s data reduction mechanisms. The model precisely and concisely captures core multi-
dimensional concepts such as categories, dimensions, and automatic aggregation.

We consider first the schema of a multidimensional object, then the instances of the schema. An n-
dimensional fact schema is a three-tuple S = (F, D, M), where F isafacttype, D = {T; |i € 1,...,n}
is its corresponding dimension types, and M = {M; | j € 1,...,m} is its measure types. The fact type
and the measure types are names.

ExAMPLE: In our example in Section 2, Click is the fact type and Number of , Dwell time, Datasize
and Delivery_time are the measure types. The dimension types are treated next. O

A dimension type 7 is a four-tuple (C, <7, T, L7), where C = {C; | j € 1,...,k} are the category
types of 7, <7 is a partial order on the C;’s, with T+ € C and L € C being the top and bottom element
of the ordering, respectively. The intuition is that one category type is “greater than” another category type
if each member of the former’s extension logically contains several members of the latter’s extension, i.e.,
they have a larger element size. The top element of the ordering corresponds to the largest possible element
size, that is, there is only one element in its extension, logically containing all other elements. We say that
C; is a category type of 7, written C; € T, if C; € C. We assume a function Anc : C 2€ that gives the



set of immediate ancestors of a category type C;. We say that the hierarchy in a dimension type 7 is linear
if <7 istotal. Otherwise, the hierarchy is non-linear.

ExAMPLE: URLsare contained in domains, which are contained in domain groups. Thus, the URL dimen-
sion type has the following order on its category types: | yrr = url < domain < domain_grp < T yrL,
and, e.g., Anc(domain) = {domain_grp}. Using the formalism, the schema of the multi-dimensional
object in Figure 1 is written as follows. (The fully formalized MO for the example is presented in Ap-
pendix A.)

S =(F,D,M), F = Click, D = {Time, URL}, M = {Number_of , Dwell_time, Delivery_time, Datasize}
Time = ({day, week, month, quarter, year}, < Time, T Time; L Time = day),
day <Time month <Time quarter <Time year <rime T Time aNd day < Time week <Time T Time
URL = ({url, domain, domain_grp}, <vrr, T urL, Lurr = url),
url <grr, domain <ygrr, domain_grp <yri T URL

The hierarchy in the URL dimension type is linear, while the hierarchy in the Time dimension type is
non-linear. O

A category C; of type C; is a set of dimension values v. Adimension D oftype 7 = ({C;}, <7, T7, L7)
is a two-tuple D = (C,<p), where C = {C}} is a set of categories C; such that Type(C;) = C; and <p
is a partial order on U;C}, the union of all dimension values in the individual categories.

The partial order is defined as follows. Given two values v1, v, then vy <p s if v is logically contained
in w9, i.€., vg can be considered as a set containing v;. We say that C'; is a category of D, written C; € D,
if C; € C. For adimension value v, we say that v is a dimension value of D, written v € D, if v € U;C;.

We assume that the partial order <4 can also be used directly on the categories. The category L p in
dimension D contains the values with the smallest value size. The category with the largest value size, T p,
contains exactly one value, denoted T. For all values v of D, v <p T. Value T is similar to the ALL
construct of Gray et al. [7]. We assume that the partial order on category types and the function Anc work
directly on categories, with the order given by the corresponding category types.

We say that the dimension D' = (C’,<p) is a subdimension of the dimension D = (C,<p) if
C'CCand v, <prwve & 3C1,Co € C'(v1 € C1,v9 € Co Avy <p w3), that is, D' is a subset of the set
of categories of D and <p is the restriction of <p to these categories. We note that D is a subdimension
of itself.

EXAMPLE: We obtain a subdimension of the URL dimension from the previous example by removing the
url and domain categories, retaining only the categories domain_grp and T ygy. O

A fact f of type F is an object with a unique identity such that Type(f) = F. Let F be a set of facts,
and D = ({C}}, <p) adimension. A fact-dimension relation between F' and D isaset R = {(f,v) | f €
F ANv e U;Cj}. Thus R links facts to dimension values. We say that fact f is characterized by dimension
value v, written f ~» v, if 3v; € D ((f,v1) € RA vy <p v).

Note that facts can be characterized by dimension values in several dimension categories. The intuition
is that a fact is characterized by all dimension values that are either directly (through a fact-dimension
relation) or indirectly related to it (the value is an ancestor of a directly related value). We require that
Vf e F (v e D((f,v) € R)); thus we do not allow missing values. The reasons for disallowing missing
values are that they complicate the model and often have an unclear meaning. If it is unknown which
dimension value a fact f is characterized by, we add the pair (f, T) to R, thus indicating that we cannot



characterize f within the particular dimension. Also, we require that facts are only mapped to one dimension
value in each dimension, as is standard in multidimensional models. Finally, we require that facts inserted
by users are mapped to dimension values in bottom categories. The more general capability of the model
to accommodate the mapping of facts to dimension values in any category will be exploited by the data
reduction facilities.

Let F' be a set of facts and 7" a domain. A measure M for F' and T, of type M, is a function
M : F — T such that Type(M) = M. A measure M has associated with it a default aggregate function
ap T x T — T (note that we can also naturally use a s on multi-sets). The default aggregate function
must be distributive.

EXAMPLE: In the example we have four measures, Number_of, Dwell time, Delivery_time, and Datasize.
The default aggregation function for all four is SUM. O

A multidimensional object (MO) is a five-tuple O = (S, F, D, R, M), where S = (F,D = {T;}, M =
{M;}) is the fact schema, F' = {f} is a set of facts f where Type(f) =F, D ={D;|i€1,...,n}isa
set of dimensions where Type(D;) = T;, R={R; | i € 1,...,n} is a set of fact-dimension relations, such
thatVi € 1,...,n((f,v) € Ri= f € FAJC; € Di(ve Cj)),and M = {M; | j €1,...,m} isasetof
measures such that Type(M;) = M;.

4 Data Reduction in Multidimensional Objects

This section describes the actual data reduction technique.

When reducing the size of a multidimensional object, the most promising direction is to reduce the
number of facts since facts typically take up 95% of the total data warehouse storage. A reduction in the
number of facts may be accomplished by simply deleting facts. However, we want to support the retention
of useful higher-level information, so instead we propose to selectively aggregate facts to higher levels of
granularity, followed by physical deletion of the lower-level facts. We also allow for progressive aggregation
as time passes. The specification of the reduction is given by a number of reduction actions, each of which
specifies that a certain range of data must be aggregated to certain dimension levels.

A data reduction system has certain natural characteristics. The aggregation of a fact to a certain level is
inherently irreversible, for which reason the set of actions must continue to specify aggregation of the fact to
at least the same level. The actions should be seen as a set, i.e., there is no ordering on the individual actions
and their effect is independent of when they were introduced into the system. Any action is permitted in the
system if it does not violate consistency and irreversibility. As a consequence of this, we allow “useless”
actions that specify aggregation to levels below the levels specified by other actions, as this is sometimes
useful. Also, for any fact in a reduced MO, it is important to be able to determine the specific action that
caused the fact to be aggregated to its current level, e.g., to communicate to users why data is aggregated
the way it is.

4.1 Data Reduction Specification Notation

We proceed to define the notation and pertinent conventions for data reduction actions.

Specifically, we let p denote the action type; data reduction actions are then instances of this type.
An action a; aggregates certain facts to some higher level of granularity, then removes the facts. Auxiliary
function Cat; takes an action specification as argument and returns the category type C;; to which the action
will aggregate facts in the 4’th dimension. Similarly, Cat takes an action as argument and returns the n-tuple
of category types C;;, to which the action will aggregate the facts to in the » dimensions. A data reduction
specification is defined as follows.



DEFINITION 1 Adata reduction specification V' is a two-tuple (A4, <y),where A = {a; |1 € 1,...,k}
is a set of action specifications, and <y, is a partial order on the action specifications, defined as follows.

a1 <y as g Vi € 1, . ,n(Cati(al) S']; Cati(ag)) (3)
O

Next, action specifications must obey the syntax given in Table 1 and must also satisfy usual conven-
tional semantic constraints, to be specified shortly. In the table, o and o denote the aggregation and selection
operators on multidimensional objects (to be defined in Section 6). Also, C 7ime j.... and C;;, are categories
in the Time-dimension and the +’th dimension, respectively, and Obj is a multidimensional object.

a x= p(a[Clist] o[Pezp] (Obj))

Clist = Cij | Cz’ja Clist

Pexp u= PbopP | (P)| -P | P

P 2= CTime jrp,. OP tt | CTime jpim. € {tt,... tt} | Cij; opd | Cij; € {d,...,d} |
true | false

tt n= tt—tt |ttt | () | ¢ s

bop = A|V

op = <|>|=|<|2]4

Table 1: Syntax of Action Specifications

Let S be a finite non-empty set of time spans, i.e., unanchored time intervals (e.g., 2 days, 3 years).
Then it is required that t € T"U {NOW} and s € S, where NOW s the time variable that will allow
dynamic actions [4]. For the expression C'rime jr,,.. 0P tt’ it is required that Type(tt) = CTime jpin.
and that the operator "op’ should be defined for elements of type C ime j,.., Similarly, it is required that
Type(d) = C;;; and that "op’ is defined for elements of this type. Following normal conventions, we allow
ourselves to use expressions that are equivalent to those strictly generated by the grammar. For example,
we will use tt1 < tto < tts instead of tt1 < tta A tto < tt3. We require that selection predicates be in
disjunctive normal form (DNF).

Next, the Clist of an action must contain exactly one category type from each dimension of the MO be-
ing reduced. These denote the granularity achieved by the action. Also, if there is a predicate on dimension
D; in the predicate Pezp, limiting dimension values of the category type C;jp.,,, in this dimension, then the
category type Cij,,,, mentioned in Clist must obey the inequality C;j.,., <7; Cijp.,,- This ensures that, for
each dimension, an action will aggregate to a category not exceeding the one referred in its predicate, which
ensures that the predicate can continuously be evaluated on the aggregated facts.

ExAMPLE: Assume the MO in Figure 1 and the data reduction specification V' = (A4,<y), and A =
{a1,as} where
a1 = p(a[Time.month, URL.domain] c[URL.domain_grp = . comA
NOW — 12 months < Time.month < NOW — 6 months](O))
ay = p(a[Time.quarter, URL.domain)|
o[URL.domain_grp = . comA Time.quarter < NOW — 4 quarters](O))

(4)

©)

For example, action ay specifies aggregation to the granularities Time.quarter and URL.domain.
This means that all facts characterized by the same domain-value in the URL dimension, and by the same
quarter-value in the Time dimension will be aggregated to a single new fact (see Section 6.3 for a speci-
fication of the aggregate formation operator.) Action ay, however, only specifies the aggregation for facts



characterized by a quarter-value in the Time dimension less than or equal to current time minus 4 quarters.
As required, ao selects based on a level of granularity at least as high as the level it aggregates to.

We see that a1 <y aq, since a; aggregates to the granularity of (Time.month, URL.domain), and
since ay aggregates to ( Time.quarter, URL.domain), which is higher. For this specification, the ordering
is total. Had there been a third action that aggregated to Time.week and URL.url, the ordering would be
partial. O

4.2 Auxiliary Functions

In order to define the semantics of data reduction, some auxiliary functions are needed. Specifically, it is
convenient to have auxiliary functions that find the granularity specified by an action, the maximum granu-
larity specified for a fact, and the resulting cell of dimension values for a fact. To define these functions, we
first introduce some notation.

Throughout the section, we assume a multidimensional object O = (S, F, D, R, M) of n dimensions

and a data reduction specification V' = ({a1,...,ax}, <y). A cell is an n-tuple of dimension values
(v1,...,vy), one for each dimension.
The ordering <p of two granularities (Cy,,...,Cpj,) and (Cig,, - --,Cng,) is defined as follows.
d .
(Cljla . ,ann) <p (Clkla ... ,ann) é} Vi € 1, - (C'le S']; Czk:l) (6)

Then, assuming that <p is a total ordering for the input set, the function max <, : 201X XCn s Oy -+ Cpy
returns the maximum granularity.

Let action a be given as “p(a[Cyj,,---,Cij;, - - -, Cnj, Jo[P](0O))” and let ¢ be the time when the predi-
cate is evaluated. The three functions Cat;, Cat, and Pred are then defined as follows.

Cati(a) 9 cy, @)

de
Catla) < (... Cj) ®)

Pred(a,t) < {(v1,...,00) | (w1,...,v5) € D1 X --+ x Dy AP[NOW < #] (v1,...,v3)}  (9)
Thus, Cat;(a) returns the category type in the 7’th dimension to which action a specifies aggregation, and
Cat(a) returns the n-tuple of category types representing the granularity to which a specifies aggregation.

The function invocation Pred(a,t) returns the set of cells (vy,...,v,) of any granularity, such that
any cell in the set satisfies the selection predicate P of action a at time ¢. The definition states that if the
NOW -variable is used in predicate P, then it is replaced by time ¢. Thus, the n-tuples of dimension values
containing the time values v; satisfying this new predicate are in the set of Pred. This way, Pred always
captures the n-tuples of dimension values that currently (at time ¢) satisfy the predicate of action a.

ExAMPLE: Assume the MO presented in Section 2, action az in (5), and let the current time be 2000/11/5.
Then the auxiliary functions above will give the following results.

Cat Time(a2) = Time.quarter, Cat(az) = (Time.quarter, URL.domain),
Pred(a3,2000/11/5) = {(1999/11/23, wwv. cnn. com), (1999/12/4, wwv. cnn. com),
...... ,(1999/11/23, wwv. cnn. com heal th),......, (1999, ww. amazon. com exec/ .. )}

Here, Pred selects the cells with a Time.quarter-value that satisfies “ Time.quarter < 2000Q4 —4” O

Assume a fact f in the MO. Then we define the function Gran that returns the current granularity of the
fact f as an n-tuple of category types, i.e., for all values v; to which f has a relation (f, v;) in R;, Gran(f)
returns the n-tuple of Type(v;)’s. Note that only one such v; exists for each dimension.



Gran(f) e (Type(v1),- - -, Type(vy)) such that Vi € 1,...,n (3v; € D; ((f,v) € R;)) (10)

Function Spec_gran(f,t) returns the set of granularities specified as aggregation levels for f at time t.
Each granularity in this set is restricted to be specified by an action a such that if vy, ..., v, is the cell that
f maps to directly, then v4, ..., v, satisfies the predicate of a at time .

def
Z {(Cijys--->Cnjy) |

Ja € A (3(v,...,v,) €Dy X --- x Dy, ((v1,...,v,) € Pred(a,t) A (11)
Viel,...,n ((f,vi) € Ri A Cati(a) =Csj;)))} U {Gran(f)}

Spec_gran(f,t)

In the definition, the granularity of f is added to the set to ensure that the set is non-empty. For all other
granularities being returned, there must exist an action such that the dimension values mapped to f satisfy
a’s predicate.

Using the functions just defined, we define the function Cell to return the cell of dimension values that
a fact will be aggregated to at time ¢.

celi(f,t) ¢ (v,...,0.) suchthat

N

(12)
Viel,...,n (v; € D; A f~iv;)A(Type(vy),..., Type(vy,)) = Max<,, (Spec_gran(f,t))

it follows that the cell of a fact f is an n-tuple of dimension values v/ (one for each dimension) where f maps
directly or indirectly to each dimension value. Having the granularity of f included in Spec _gran ensures
that the granularity of the cell is the maximum granularity of f’s own granularity and the granularities
specified by actions with predicates satisfied by the dimension values of fact f.

ExAMPLE: Assume the MO in Figure 1 and specification {a1,as} (see specifications (4) and (5)). Then
consider fact_1, which maps to the values 1999/12/4 and www. cnn. cont heal t h, and the time 2000/11/5.
Then the auxiliary functions evaluate as follows.

Gran(fact_1) = (Time.day, URL.url)

Spec_gran(fact_1,2000/11/5) = {(Time.day, URL.url), ( Time.month, URL.url),
(Time.quarter, URL.domain)}

Cell(fact-1,2000/11/5) = (1999Q4,cnn. com)

Note that Spec_gran captures the granularities specified by actions a1 and ao, as well as the current granu-
larity of fact_1. Cell uses the maximum granularity and returns the specific cell of dimension values of this
granularity. O

The final auxiliary function needed is AggLevel;, which returns the maximum aggregation level in the
i’th dimension, given the dimension values of a cell (v1,...,v,) and a time point .
AggLevel;(v1, ... ,vn,t) )

max<,. ({Ci; | Ja € A (Cati(a) = Cij A (v1,...,vn) € Pred(a,t))} U{Ll7}) (13)

The definition states that given the cell of dimension values any action having a predicate satisfied by this
cell at time ¢ a category type C;; is considered. Of these category types, the largest is returned by AggLevel;.
1 7. will be the answer if no reduction is specified for the cell of (v1,...,vy).

8



4.3 Non Crossing and Growing Data Reduction

A data reduction specification must be NonCrossing and Growing to be semantically meaningful. Here,
we define these two properties and explain why they are needed. We assume a multidimensional object
O = (8, F,D, R, M) and a data reduction specification V' = (A, <y) where A = {a1,...,ax}.

First, actions in a specification must be NonCrossing. This means that actions with overlapping predi-
cates cannot be allowed to aggregate to crossing granularities.

NonCrossing (V) &, (14)
Vai,a9 € A (3t € T (Pred(a1,t) N Pred(az,t) # 0) = (a1 <y az Vay <y a1))
Let actions a; and a;, aggregate to granularities (Ci,,--.,Cp;,) and (Cig,, - - - ,Cnk, ), respectively. If there

is a time ¢ where the predicates of a; and a;, have intersecting value sets, one of a; and a;, must be larger
than the other according to <y. This means that there can be no two dimensions = and y such that a;
aggregates higher in the z’th dimension and aj, aggregates higher in the y’th dimension.

There are two main reasons for requiring this property. One is to guarantee that action predicates can
be evaluated. The other is to be able to contend with non-linear hierarchies. These will be explained in
examples next.

EXAMPLE: Using the ongoing example, assume the actions a4 (equation 5) and ag (equation 15, below) at
the current time of 2000/11/5.

a3 = p(a[Time.month, URL.domain_grp)

15
o[URL.url =ww. cnn. cont heal t h A Time.month < 1999/12](0)) (15)

As seen in Figure 1, fact_1 satisfies both predicates at 2000/11/5, making the predicates overlap. However,
the ordering is not well-defined. The resulting problem is that if a5 is effective, the predicate of a3 cannot
be evaluated, since information on URL.url will no longer be available (a similar argument applies in the
other direction). O

The next example illustrates how the NonCrossing property enables supporting non-linear hierarchies.
The potential problem occurs when two actions aggregate into parallel branches in the same dimension.
Then, if there at some time will be an overlap in the facts reduced by these actions, it will be undefined
which one is the largest and thus is the resulting granularity for those facts.

EXAMPLE: Assuming the two actions a- (equation 5) and a4 (equation 16, below), we have actions aggre-
gating into each of the branches in the non-linear hierarchy of the Time-dimension.

ay = p(a[Time.week, URL.url]

. (16)
o[URL.url =ww. cnn. cont heal t h A Time.month < 1999/12](0))

The predicates are identical to those in the previous example, so there is an overlap. Also the two actions
are unordered. The consequence is that it cannot be determined which action aggregates to the highest
granularity and therefore which one should be effective. O

We note that in a NonCrossing specification, a unique lowest available category type always exists for
any set of overlapping actions. Also, since we require that all facts initially have the bottom granularity, any
action a;p; Will initially aggregate to a granularity (C1;,, .- - ,Cpj, ), such that the ordering <p between this
granularity and the granularity of the current fact f is well-defined.

Next, the Growing-property is necessary because actions may use the NOW -variable in their predi-
cates. This variable may render actions either fixed, growing, or shrinking, and as we will illustrate, shrink-
ing actions violate the irreversibility of data reduction.



Fixed - If the predicate refers only to fixed time values, the set of facts selected by an action does not vary
across time.

Growing - If the predicate uses the NOW -variable only to set a growing upper bound and/or a decreasing
lower bound for time values the set of facts selected by an action will grow as time passes.

Shrinking - If the predicate uses the NOW -variable to specify a decreasing upper bound and/or an in-
creasing lower bound for time values, the set of facts selected by an action will be shrinking as time
increases.

As data reduction is irreversible, when an action predicate shrinks and no longer specifies aggregation
of a fact f, then immediately another action must specify at least the same level of aggregation for f. To be
able to precisely ensure this, we define the Growing property as follows.

Growing(V, O) <d—if> V(vi,...,vp) € Lp, X ---x Lp, (Vi1,t2 (t1 <ta A

(17)
Viel,...,n (AggLlevel,(v1,...,vpn,t1) <7; AggLevel;(v1,...,vp,12))))

The definition states that if a cell (v1,...,v,) at time ¢; is reduced in the ¢’th dimension to an aggregation
level, AggLevel;(v1,...,v,,t1), then at any later time ¢o, this particular cell must be aggregated to at least
the same level of aggregation in this dimension. This may be caused by any action within the data reduction
specification.

ExampPLE: Building on the MO presented in Figure 1 assume the data reduction specification ({a1}, <y)
containing only the single action specification a; (equation 4), which aggregates all facts referencing the
. com URL.domain _grp-value older than 6 months and younger than 12 months to the granularity of
(Time.month, URL.domain). Assuming the current time is month 2000/10, all . comfacts referring to
times in the interval [1999/11;2000/4] will be aggregated to the level of Time.month and URL.domain,
i.e., fact 0, fact 12, fact_3, and fact_45. Figure 2 assumes this and shows the situation as of time 2000/10
in the upper-most set of facts (the upper most round-cornered box.) With this starting point, Figure 2 illus-
trates one situation to the left that violates the Growing-property, as well as a valid situation at the bottom.
(In the figure, incomplete lines illustrate references that have not changed.) In the first situation, a violation
is caused as follows. When a month has passed and the current time is 2000/11, only facts referring to
times in the interval [1999/12;2000/5] will be aggregated, meaning that fact_0 will be reclaimed to the
granularity of ( Time.day, URL.url). Such a reclaiming of fact 0 is not possible and violates the Growing
property. One solution is to add action a2 (equation 5).

This action aggregates all facts no longer captured by a; to (Time.quarter, URL.domain). In the
figure, the consequence of adding this action is shown in the lower-most situation. Here, fact 0 and fact 3
are aggregated to fact_03, and fact_12 is aggregated to a higher level. O

Together, these two properties ensure consistency and irreversibility when reducing a multidimensional
object.
4.4 Semantics

We are now able to define the reduction of a multidimensional object.

DEFINITION 2 Assume the multidimensional object O = (S, F, D, R, M), and the data reduction spe-
cification V' = (A, <y) where A = {ay,...,a;}, Growing(V,0), and NonCrossing(V'). Then at time ¢,
the reduced multidimensional object O'(t) = (S8', F', D', R', M) is defined as follows. (Note that the set
of measure values M;(f) is a multi-set.)
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Figure 2: A Growing-Violating Situation and a Valid Data Reduction Situation

s Y s
F'oY 130, 0 €Dy x - x Dy (f' = {f € F | Cell(f,t) = (v),-..,v5)})}
p “ p (18)
R (R |i=1,...,n}where R, = {(f',v) | Vf € f' (Cell(f,t) = (v},...,v.))}
M Y M=, m) where MI(f') = an, {M;(f) | € f'}) and ay; = a,

O

The definition states that the reduced object has the same schema and dimensions as the original object.
Not changing the schema ensures that new facts conforming to the original schema may be inserted. (As an
aside, it is possible to physically remove bottom-level category types if there is no use for them. Then the
values of these category types will be discarded when facts are subsequently inserted.)

The reduced fact set F' is a set of facts f’ where each one is a set of the original facts f having identical
dimension values for all dimensions in the cell they are aggregated to. For each dimension, the relation set
R, contains a relation for each fact to the dimension value of the category type (in this dimension) giving the
granularity of the fact. Finally, the new set of measures has for each measure the value given by the default
aggregation function when evaluated on the set of measure values on the facts aggregated to one new fact

f

11



EXAMPLE: Again assume the MO from the ongoing example in Figure 1 and the data reduction specifi-
cation {a1, a2} (equations (4) and (5)). Then Figure 3 illustrates three snapshots of the reduced MO taken
at three different time points. The first snapshot, at time 2000/4/5, shows how none of the facts satisfy
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Figure 3: Three Snapshots of the MO Reduced by Data Reduction Specification ({a1, a2}, <y)

the predicates; thus, no facts are aggregated. In the second snapshot, at time 2000/6/5, all facts referring
to time values in 1999 satisfy the predicate of a1, so fact_1 and fact_2 are aggregated into fact_12, with
granularity (Time.month, URL.domain), as well as both fact_0 and fact_3. (Facts with incomplete ref-
erence lines have not changed.) Finally, the third snapshot illustrates the situation after 5 more months, at

time 2000/11/5. We notice that fact_0 and fact_3 aggregate to one new fact and that fact 4 and fact 5

aggregate to another. At this time, all data referring 1999 have granularity ( Time.quarter, URL.domain).
0

5 The Dynamics of Data Reduction

We proceed to consider the update of data reduction specifications. First, the necessary operators are de-
fined, then the operational evaluation is considered.
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5.1 Insertion and Deletion

With insertion and deletion operators for actions available, we are able to modify the data reduction as
requirements or needs change. The insert-operator involves testing future consistencies such that the re-
sulting specification stays Growing and NonCrossing. Since these properties depend on the combination
of actions and not on single action properties alone, a set of actions can only be inserted if the consistency
is retained after inserting the full action set.

DEFINITION 3 Let A" = {al,...,al,} be a set of new actions, and let V' = (A4, <y) be the existing
data reduction specification. Then the insert-operator is defined as follows.

V' if Growing(V') A NonCrossing(V') where V' = (AU 4', <y)

. (19
V' otherwise

insert(A', V) «f {

O

The definition states that the updated action set must be Growing and NonCrossing. If these are not
satisfied, the original data reduction specification is left unchanged.

Inserting actions and checking the necessary consistency must be dependent on the action specifications
only—the specific facts present in the MO should not affect the decision of whether or not a set of actions
can be inserted. How this is satisfied is explained in the following two subsections.

Considering next the delete-operator, the wish is to be able to delete a set of actions if they have no effect
on the MO, i.e., if they are not responsible for any aggregations. (An action is responsible for aggregation
if its predicate is satisfied and no other action exists that aggregates the same fact(s) to a higher granularity.)
Opposite to the insert-operator, the delete-operator must depend on the specific facts in the MO. The
reason is as follows. If the responsibility was tested on all possible instances of the MO, there would for a
reasonable action (actions with predicates that are never satisfied are uninteresting) exist an instance such
that its predicate would evaluate to true for some facts. The action would thus be considered responsible for
aggregations unless other actions exist to aggregate the same set of cells to higher granularities. As a result,
very few actions may be deleted from the specification.

Consider a situation were no facts and actions exist and an action is inserted that is subsequently con-
sidered too radical. We then wish to delete this action, instead inserting a less radical action. If we were to
consider all possible instances of the MO, we would not be able to perform the deletion, which is clearly
unsatisfactory. Instead, we check the action against the facts actually in the MO, and the action can be
deleted.

DEFINITION 4 Let A" = {d},...,al,} be a subset of the actions in the data reduction specification
V = (A, <y). Then the delete-operator is defined as follows at time ¢.

delete(A', V) =l

(V! if Growing (V") A NonCrossing(V') A
Va; € A" (Vf € F (3(v1,...,vs) € D1 X +++ x Dy (

Vi€l,....n ((f,vi) € Ri) A(v1,...,vn) € Pred(a},t)] = 20)
S [Cat(a;) <p Gran(f)V (Ja" € A\ A" ((v1,...,vn) € Pred(a”,t) A
Cat(a") =p Cat(ay)))])))
where V! = (A \ 4',<y)

|V otherwise 0
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The definition states that, in addition to maintaining the Growing and Non Crossing-properties for the
updated specification, the deleted actions should have no current effect on the MO. Thus, for all actions
one more property is required for all facts in the MO. If the cell (vq,...,v,), to which the fact maps
directly, is an element in the set of possible cells satisfying the action predicate, i.e., in Pred(a;,t), then
the granularity of the fact must be different from the granularity to which the action specifies aggregation.
If this is satisfied, even though the fact satisfies the action predicate, the action is not responsible for the
granularity (and aggregation) of the fact, and thus the action can be deleted. Note also that the operator
follows the order-independent strategy of deleting all or no actions.

ExampPLE: To illustrate the handling of NOW -relative actions, assume an action set containing only the
action a7 and the MO from the ongoing example.

a7 = p( a[Time.month, URL.domain] o[ Time.month < NOW — 12months](O) ) (21)

Then to stop the action from having an effect on facts with times that are after year 1999, we observe that,
in month 2000/12, the action reduces all facts characterized by the month 1999 /12 or earlier. Therefore, a7
can be deleted and thus stopped after insertion of action ag.

ag = p( a[Time.month, URL.domain] o[ Time.month < 1999/12](0) ) (22)

If the two operations are performed during the month of 2000/12, ag will aggregate the exact same facts
as ar, and since the aggregation level specified by the two actions are identical, {a7,as} is Growing and
NonCrossing. Also, after deleting a~ the properties are maintained. Put differently, for all facts mapping
to values ('UTimea'UURL)v (UTime;'UURL) S Pred(a7, 1999/12) = (('UTime;UURL) € Pred(ag, 1999/12) A
Cat(ag) =p Cat(a7)). |

5.2 Checking The Non-Crossing Property

We now consider how to check the NonCrossing-property in an operational way, i.e., how to check it in
practice. Recall that a set of actions A was NonCrossing if Vaq,a9 € A(Ft € T (Pi(t) A Pa(t) = a1 <y
as Vas <y a1)), where P;(t) is short for Pred(aq,t) (recall Equation (14)). The algorithm below provides
an operational way of checking whether the non-crossing property holds for a given pair of actions. Using
this, checking whether a set A is non-crossing requires | A |2 calls to the algorithm. Given that the number
of actions in a specification is relatively low and that this checking only is necessary when the set of actions
is updated, this algorithm offers ample performance.

1) FUNCTI ON noncr ossi ng (a1,as)

2) IF a1 <y asVas <y a; THEN RETURN true;

3) IF P, and P, are independent of tine THEN RETURN —(P; A P);
4) IF 3teT (P (t) AN Px(t)) THEN RETURN f al se;

5) RETURN true;

The algorithm works as follows. If the two actions a; and a5 are ordered with respect to each other (line
2), which is easily checked syntactically, the property is true. Otherwise, if their predicates P; and P, are
independent of time (again, an easy syntactic check), the formula contains no variables, and P; A P, can
easily be checked using a standard theorem prover such as PVS [12]. In the final case, we need to check
whether the predicates are simultaneously true at any time (line 4), which may again be proved using a
standard theorem prover.
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5.3 Checking The Growing Property

While the definition of the Growing property in equation (17) is intuitive, it is not operational because it
refers to all possible MOs. Thus, we need to come up with operational rules for evaluating the Growing-
property. These rules should allow us to determine whether the property will be maintained for the whole
system, e.g., after inserting a given action. It should be possible to determine this solely on the basis of the
given set of actions. When describing the operational rules in the following, we distinguish between two
distinct situations. In the first case we provide a proof that this by default creates a Growing specification,
and in the second case we provide an algorithmic solution for determining if the result will be Growing
and we argue that the algorithm provides the correct answer. First, however, we need to outline a common
pre-processing step for the two distinct situations, in order to ease the check of the Growing-property.

As mentioned above, we insert a set of actions at the same time. The pre-processing step first transforms
the predicates in the given set of actions into disjunctive normal form [3]. Second, it splits each action into
a number of actions, one for each disjunctive part of the predicate, e.g., the action “a[C1,...,Cylo[A V
BJ(0)” is split into the two actions “a[C4, ..., Cplo[A](O)” and “a[C4, . .., Cylo[B](0).” This normal-
ized set has exactly the same effect as the old set, and the predicate of any action is a conjunction of (range)
predicates on each of the dimensions, i.e., the predicate can be evaluated by evaluating a (range) predicate on
each dimension. For a dimension d with no predicate, the predicate is d. T = T, (always true), is assumed.

The growing property for a set of actions holds if and only if it holds for each action in the context of
the set. Thus, when inserting a set of actions, we only need to check the property for each new action as it
holds by assumption for all existing actions. When deleting a set of actions, we have to check whether the
remaining actions still satisfy the property.

The first of the two cases occurs when an action is itself growing. An action is Growing if any cell
once satisfying the action predicate will continue to do so. In this case, the total set of actions will also be
Growing after the insertion. This is stated by the following theorem.

THEOREM 1  Let a be a growing action and V' = (A, <) be a data reduction specification that satisfies

the Growing-property. Then the specification V' = (A U {a}, <y) is Growing. O
PROOF Let the current time be ¢ and (vy, ..., v,) be any cell. There are three cases:
1. (v1,...,vy) satisfies the predicate of @ at time ¢, i.e., (v1,...,v,) € Pred(a,t)
2. (v1,...,v,) does not satisfy the predicate of a at time ¢, but will do so at a later time ¢y, i.e.,
(v1,-..,v,) & Pred(a,t) A3ty >t ((v1,...,v,) € Pred(a,t1))
3. (v1,...,v,) will never satisfy the predicate of a, i.e., #t ((v1,...,v,) € Pred(a,t))

Incase 1), (v1, - - - , v, ) Will continue to satisfy a’s predicate as a is growing. This means that (v, ..., v,)
will remain to be aggregated to at least the level specified by a. If (v1,...,v,) is aggregated even higher
by an action in A, growing will hold by the assumption on A. Thus, the growing property will always hold.
In case 2), the reasoning is similar as (v1, ..., v,) will continue to satisfy a’s predicate once it has done so
initially. In case 3), (v1, - .-, vy,) Will only be affected by the actions in A which by assumption satisfies the
growing property. As (v1,...,v,) was any cell, the growing property is satisfied for any MO.

Q.E.D.

Growing actions include many of the most common types of actions, and they encompass actions with
predicates that have (A) fixed boundaries, (B) no lower boundary and an increasing upper boundary, (C)
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no upper boundary and a decreasing lower boundary, (D) a fixed lower boundary and an increasing upper
boundary, and (E) a fixed upper boundary and a decreasing lower boundary.

As variables occur in predicates only for the time dimension, all predicates on non-time dimensions fall
in category A, and the possibly moving boundaries always relate to the time dimension. Remembering that
the predicates were reduced to range predicates on each dimension, we observe that the above rules can
easily be syntactically checked for a given predicate.

EXAMPLE: The above cases cover the most likely predicates to be used in a real setting. For example,
the set of rules *““aggregate to month after two years™ and ““aggregate to quarter after four years™ fall in
category B. As a stronger action dominates a weaker one, it is not really necessary to have a lower boundary
on the time dimension. O

The second case, where the action itself is not Growing, appears when the given action has one of the
following types of predicates: (F) an increasing lower boundary, (G) a decreasing upper boundary, and (H)
an increasing lower boundary and a decreasing upper boundary.

To maintain the property for the total set of actions together with an action a of one of these types
requires a set of actions that maintains the aggregation level for all facts once aggregated by the given
action. We proceed to present an algorithmic approach for evaluating if this is satisfied. We only show the
solution for category F. The solution for category G is similar, just reversed, and category H can be handled
by combining the solutions for F and G.

We check the Growing property in three steps. In the first, we create the time function ¢ 5, that specifies
the variable lower boundary (on the Time dimension) of a. Due to the format of the predicates (conjunc-
tions), we always have one unique lower boundary in each dimension.

In the second step, we find the action set A’ = {a; | a <y a;} of actions that can possibly help to make
action a “safe,” by “catching” the cells that over time “fall over” the (increasing) lower boundary of a. As
the lower boundary of a is given by ¢, the first time point where a cell will no longer satisfy the predicate
of a is ty, — 1, where “1” is one unit in the finest time granularity. Thus, there must exist one or more
actions in A’ that can “take over” from a at time ¢y, — 1.

In the third step, we perform the predicate check

P[Time.<cat egory> < ty,] = \/Pj[Tz'me.<cat egory> < (tn, —1)], (23)
J

where P is the predicate of a and the P;’s are the predicates of the a;’s. Here, the reference to the time
dimension in each predicate, Time.<cat egor y>, is replaced by the lower boundary (¢ ,) on the left side
and the lower boundary minus one time unit on the right side. Due to the specification of ¢, the time part
of the predicate on the left side is always true and can thus be removed from the conjunction. This predicate
check can be done by a standard theorem prover as PVS [12].

This three-step algorithmic approach checks the maintenance of the Growing-property in the distinct
situation where the action itself is not growing. This is also illustrated by the following example.

EXAMPLE: Let the set of actions (in a two-dimensional case from the ongoing example) be as follows.

a1 = a|[Time.month, URL.domain ]

o[NOW — 4years < Time.year < NOW A URL.T = T yr)(O) 24)
ay = a|[Time.quarter, URL.domain] (25)
o[ Time.year < NOW — 4years A URL.domain_grp = . conj(O)
a3 = a[Time.quarter, URL.domain_grp] (26)

o[Time.year < NOW — 4years A URL.domain_grp = . edu](O)
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Thus, we aggregate data to month and domain until facts are four years old, then we aggregate facts
to quarter and domain for . comURL-values and to quarter and domain_grp for . edu URL-values. We
now need to check whether this set is growing. The rules a5 and ag are growing in themselves (case B),
so we need only check rule a;. The lower bound is given by ¢y, = NOW — 4years. We find that
A" = {a2, as}. We now need to check the following.

Py [Time.year < NOW — 4years] =

27
Py[Time.year < NOW — 4years — lday] V P3[Time.year < NOW — 4years — 1day] @7)

This is expanded to

NOW —4years < NOW — 4years < NOW A URL.T =T ygr =
(NOW — 4years — 1day < NOW — 4years A URL.domain_grp = . com) V (28)
(NOW — 4years — lday < NOW — 4years A URL.domain_grp = . edu)

A theorem prover capable of simple formula rewriting [12] and the rule about the time part on the left side
can reduce this to

URL.T = Tygr = URL.domain_grp =.comV URL.domain_grp = . edu (29)

as all the predicates on time evaluate to true. This can easily be proved by a theorem prover with knowledge
of the domain of the URL dimension. O

6 Query Language

This section defines an algebraic query language that precisely describes the semantics of queries on reduced
MOs. The language is not computationally complete, but includes only the operators corresponding to
standard OLAP functions, i.e., selection, projection, and aggregation. Additional operators are described
elsewhere [13]. These operators are left out, purposefully, to make sure that the computational power of the
language will not surpass that of any commercial OLAP tool, rendering the results presented here widely
applicable to commercial OLAP tools.

A reduced MO has a set of facts with varying granularities. Specifically, two problems need to be
addressed, one concerning the selection operator, and one concerning the aggregate formation operator,
both related to handling dimension values of varying granularities.

6.1 The Selection Operator

The varying-granularity problem in relation to selection is that the data might not be precise enough to
determine whether the selection predicate holds: the category on which the query predicate is based might
not be available because the data is aggregated to a higher category. For example, if the predicate concerns
days and the data is aggregated to months, great care has to be taken to determine which facts should be
selected.

Generally, three approaches can be taken to handling this problem [13]. The conservative approach re-
turns only the facts that are known to satisfy the predicate, i.e., where the dimension values are totally within
the range asked for. The liberal approach returns all the facts that might satisfy the predicate, i.e., where
the dimension values at least overlaps the range asked for. Finally, the weighted approach returns facts that
might satisfy the predicate, but attaches a weight to the fact based on the certainty of predicate satisfaction.
Which approach to choose depends on the application. In this paper, we assume the conservative approach
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since we believe this to be the most useful for data warehouse applications. The other approaches may be
handled similarly [13].

ExAMPLE: Assume the Time-dimension and the reduced MO presented in the ongoing example, based
on the data reduction specification ({a1, a2}, <y) at time 2000/11/5 (see Figure 3).

The Time-dimension has a parallel hierarchy of category types, and therefore the following queries
illustrate some interesting selection problems.

Q1 = o[Time.quarter < 1999Q3](0) (30)
Qo = o[ Time.month < 1999/10)(0) (31)
Q3 = o[ Time.week < 1999W48)(0) (32)

Query @, is simple and unaffected by data reduction since all data has granularities lower than or equal
to Time.quarter. Query Q2 selects on month 1999/10, and since the facts referring year 1999 has gran-
ularity Time.quarter, the facts mapping to dimension value 1999Q4 satisfies the predicate only partly.
Since we use the conservative approach those facts will not be included in the answer. Finally, query Qs
selects on week 1999W48. Since weeks are not directly related to quarters through the partial ordering
between categories, when evaluating the facts referring to Time.quarter values it is necessary to look at
the Time.day-category which is a category that both categories are directly related to through the ordering.
So, this can be evaluated by comparing the days included in weeks and months, respectively. O

To ensure this behavior when comparing dimension values of two different granularities, we drill down
the values to a common, possibly lower, granularity and compare the resulting values at this common
granularity (as illustrated above). For example, when comparing month values with day values, we can
drill down a month value to its corresponding day values using the dimension hierarchy and compare the
resulting day values to the day values in the predicate. This is non-trivial due to the semantics of the different
comparison operators. Specifically, the non-reflexive inequalities (<, >), the reflexive inequalities (<, >),
the equalities (=, #), and the inclusion (€) needs to be handled differently.

To find a common granularity, and thus to drill down values, we define an auxiliary function GLB; :
2Ci 1 ;. Assuming that the i’th dimension forms a lattice GLB; takes a number of categories and returns
the single category in this dimension that is the greatest lower bound of these input categories, i.e., of all
categories of lower granularity than all input categories, the return category has the highest granularity. For
any set of categories in the i’th dimension, (C;1, ..., Ci), GLB; is defined as follows.

GLBZ'(Cil, ceny Czk) d:ef CZI where (CZI <7 Cia N--- A CZI <7 Czk) A VCZ] e C; (

(33)
(Cij <7: Caa A+ A Cij <7; Cit,) = Cij <. C})

Note, that when the dimension categories do not form a lattice, we still know that there is at least one
lower bound for any two categories C;; and Cj. This is due to the bottom category L;. In this case, it will
not be possible to select the lower bound specifying the highest granularity. This does not pose a problem
since any lower bound will do, so below we can assume a lattice and thus a unique greatest lower bound.

ExAmMPLE: Forthe Time-dimension in our example GLB iy ( Time.week, Time.quarter) = Time.day
since Time.day <rTime Time.week N Time.day <rime Time.quarter and since no other larger category
exists that satisfies this property. O

Using this auxiliary function the semantics of the comparison operators are defined as follows.
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DEFINITION 5 Let f be a fact in F', and let v’ be a dimension value to which f maps directly, i.e., if v’
is a value in the 3’th dimension D; = (C;, <p,) then (f,v") € R;. Letv' belong to the category C.. Also, let
v1, Vs, . . . , U DE values in the domain of D;, and let these values belong to the categories C;1, Cya, - - - , Cig,
respectively. Then the operators are defined as follows.

(V’Ua S GLBZ'(CZ(, Cil) (V’Ub S GLBZ'(CZ(, Cil)
(va <p; v' Ay <p; V1) = va OP Vp
) Yv, € GLBZ'(CZ{,CH) (E|’Ub S GLBZ'(CZ{,CH)

) ifop € {<,>}

~— N N

o opur &y . (34)

(va <p; V' ANy <p, v1) = v, OP vy ) ifop € {<,>}

{’Ua | Vg € GLBZ(CZI,CM) AR SDi ’l)’} op
| {w | v € GLB;(C},Cir) Avy <p, v1} ifop € {=,#}
/ def. ’
S {’Ul, . ,Uk} = Wy, € GLBZ'(Ci, Ci1,Cio, ..., Cik) ( (35)
Jvy € GLB;(C;, Ci1, Cia, - .., Cix) ((va <p; v ATj € 1,...,k (vp <p, vj)) = Vg = p))

O

All operators use GLB; which, assuming a lattice, gives the greatest lower bound which is exactly
the common category of highest granularity, on which the values are successfully compared. Note, if
Type(v') >7; Type(v1) then GLB; will return the category of v; and there will only be one possible v,
satisfying vy, <p, v1, similarly if Type(v') <. Type(v1).

For the strong operators < and > (see Eq. 34) the definition states that to compare one value v; to another
v, all drill-down values created from v1 must compare the same way to all drill-down values created from
V9.

ExAMPLE: Based on the example assume fact_03 and query @3, then the expression P[fact_03] in ques-
tion is 1999004 < 1999W 48. Then both values are drilled down to the greatest lower bound, i.e., days. Then
the definition states that for all days (in the Time-dimension) from 1999Q4, i.e., Vv, € Time.day(ve < Time
1999Q4), if all days in week 1999148 are larger, then the expression evaluates to TRUE. So in the exam-
ple we evaluate the following.

Vo, € {1999/12/4} (1999/11/23 < v1) A
Vo € {1999/12/4} (1999/12/4 < va) A
Vs € {1999/12/4} (1999/12/31 < v3)

Since 1999/12/31 £ 1999/12/4 this example evaluates to FALSE. However had the expression been
1999Q4 < 2000W 1, then the expression would evaluate to TRUE.

Note, since the example does not include all detail values in its dimensions, week 1999148 consists of
only one day, as quarter 1999Q4 consists of only 3 days. O

For the weaker operators < and > (see Eq. 34,) the definition states in a similar way that to compare
one value to another, all the drill-down values created from the one must compare the same way to at least
one drill-down value created from the other.

The equality and in-equality operators are slightly different (see Eq. (34),) since equality between two
values requires the sets of drill-down values created from either of those two values must be identical.
In practice this will usually mean, that equality is only possible when comparing values from the same
category.
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Finally, the c-operator (see Eq. 35) compares one value with a set of values. The definition states that
if for all drill-down values created from the one value there exists a value equal to it drilled down from any
value in the set to compare with, then the expression evaluates to TRUE.

ExAMPLE: Assume the expression 1999Q4 € {1999W39,...,2000W1}. Again, the greatest lower
bound is the day-category. The value 1999()4 drills down to {1999/11/23,1999/12/4,1999/12/31} and
the set {1999W 39, ...2000W 1} drills down to {1999/11/23,1999/12/4,1999/12/31,2000/1/4}, we
need to evaluate the following.

Ju, € {1999/11/23,1999/12/4,1999/12/31,2000/1/4} (1999/11/23 = v1) A
Ju, € {1999/11/23,1999/12/4,1999/12/31,2000/1/4} (1999/12/4 = vy) A
Tvg € {1999/11/23,1999/12/4,1999/12/31,2000/1/4} (1999/12/31 = v3)

This evaluates to TRUE. Similarly, the expression 1999Q4 € {1999W39,...,1999W 51} evaluates to
FALSE. O

Having defined the operators when trying to compare values from both identical and different categories
within the same dimension, the conservative selection-approach is handled. The liberal and weighted ap-
proaches can be handled in similar manners.

Given a predicate p on the dimension types D = {7;}, we define the selection operator, o, as:

ofpl(0) € (8, F, DR, M), (36)
where &' =S, F' ={f € F | Jvy € D1,...,v, € Dy (p(v1,...,0n) Af ~r1 01 Ao A f ~op o)},
D'=D,R ={Rl}, R, ={(f',vi) e R; | f' € F'},and M' = M|p. Thus, we restrict the set of facts to
those characterized by values where p evaluates to true. The fact-dimension relations and the measures are
restricted accordingly, while the dimensions and the schema stay the same.

6.2 The Projection Operator

Defining the projection operator, we assume, without loss of generality, that the projection is over the k
dimensions D1, ..., Dy and the [ measures My, ..., M;.

7[Dr,...,Dyl[Mi, ..., M](0) ¢ (s, F,D' R M, (37)

where 8’ = (F', D'\ M"), F = F, D' = {T1,..., TH}, M' = {My,.... M}, F' = F, D' =
{D1,...,D}, R" = {Ry,...,Ry}, and M' = {My,..., M;}, Thus, we retain only the £ dimensions
and the [ measures, but the set of facts stays the same. Note that we do not remove “duplicate values.” Thus

the same combination of dimension values may be associated with several facts, as is the case in regular star
schemas.

ExAMPLE: Assuming the query «[URL|[ Number _of , Dwell _time](O) on the reduced MO from the run-
ning example at time 2000/11/5, then the resulting MO is illustrated in Figure 4. O
6.3 The Aggregate Formation Operator

The aggregate formation operator « computes aggregate functions on the measures of an MO [9]. Given
an n-dimensional MO O and a set of categories C; € D;, i € 1,...,n, the query o[C1,...,Cy](O)
aggregates the facts in O to the levels C1,...,C,. Before formally defining the operator, we address the
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Fact signature:

—|_URL (ECIick

number_of
dwell_time

amazon.com cnn.com gatech.edu

1 \
1 ,’ \
| ;)
I ;!
[ / '
! / !
/ |

p www.cnn.com/health
WWW.amazon.con/ex... K L WWW.CHIN.COM www.cc.ge}tech.edu

I
/ / f -
/ 7 -
K r

(Efact 03 (Efact 12 (Efact 45 fact 6
689 2489 955

Projection at time 2000/11/5

Figure 4: Result of Query «[ URL][ Number _of , Dwell_time](O) at Time 2000/11/5

varying-granularity problem, that the aggregation level asked for in the query might not be available for all
facts. Assume a query that aggregates the data to the categories C'yj,,...,Cnpj,. If some argument facts
have only dimension values in the i’th dimension of granularity C; 7! Where Cw <7 Gy, ! i.e., dimension
values of a higher granularity than requested, the issue is whether such facts should be reflected in the result.

Four approaches may be envisioned. The strict approach considers only facts characterized by dimen-
sion values of the desired granularity, or lower. This guarantees that facts in the result has the correct, desired
granularity. The Least Upper Bound (LUB) approach returns facts with the finest common granularity that
is greater than or equal to the desired granularity and available for all of argument facts, i.e., the LUB of
the desired granularity and the granularities of the input facts. The availability approach returns facts with a
granularity corresponding to the finest available granularity for each fact that is greater than or equal to the
desired one. The disaggregated approach returns facts with the granularity asked for, i.e., the granularity of
C;j;- To achieve this disaggregation might have to be applied, yielding imprecise answers [5].

Which approach to take depends on the importance of reflecting all available facts in the answer and of
obtaining an answer that has one single granularity or the correct granularity. In the sequel, we assume the
availability approach because this gives the most detailed answer that is still guaranteed to be correct. The
solutions for the strict and LUB approaches are special cases of the solution for the availability approach.

ExampPLE: Assume the reduced MO at time 2000/11/5 as presented in Figure 3. All facts referring
time values in 1999 are aggregated to the granularity of Time.quarter, and all facts referring the url’s
in the domain group of . comare aggregated to the granularity of URL.domain. The queries Q4 =
a[Time.year, URL.domain]| (O) and Q5 = a|Time.month, URL.domain| (O) illustrate the aggrega-
tion problem explained above. These queries aggregate to Time.year and Time.month, respectively. For
Q4, the full answer will have the specified granularity, since both Time.year and URL.domain are avail-
able for all facts. However, for Qs, (Time.month, URL.domain) is the desired aggregation level, and
neither fact_03 nor fact_12 have values of lower granularity than Time.quarter. With the availability ap-
proach, they should be aggregated to this level in this dimension, but to the specified levels in all other
dimensions. All other facts should be aggregated to the specified level of Time.month. O
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To ensure this behavior we define an auxiliary function Group _high that groups facts characterized
by the same set of dimension values above a certain granularity. Also, given a specified granularity it
ensures that for those values of higher granularity in such a set, the facts are not only characterized by
these values, but are mapped to them through relationships in R;. Assume an n-dimensional MO, O =
(S,F,D,R, M), a desired granularity level (Cij,,...,Cp;,) on O, and an n-tuple (vi,...,v,) where
Vi€ 1,...,n (Type(vi) >7; Cij;). Then we define Group_high as follows.

Group _high((v1,...,vn),(Ciji,- -+, Cnj,)) def (38)
The function groups all facts characterized by all values in the n-tuple (v1, . .., v, ) and even mapped directly

to those values v; of a granularity higher than specified, i.e., Type(v;) >7; C;j;. This ensures that all facts
of a lower granularity in those dimensions D; will not be in this group.

EXAMPLE: In the example consider the following based on the reduced MO at time 2000/11/5.

Group_high((1999Q4, amazon. com), ( Time.month, URL.domain)) = {fact 03}
Group_high((1999, anazon. com), (Time.month, URL.domain)) = (
Group_high((2000/1,gat ech. edu), (Time.month, URL.domain)) = {fact_6}

These examples show how facts of low granularity, here fact 6, are aggregated to a higher level, while facts
mapping to higher granularities are aggregated no further in that dimension, i.e., fact 03 is aggregated to its
own granularity Time.quarter, but not to Time.year. O

DEFINITION 6  Assume an n-dimensional MO, O = (S, F, D, R, M) and a set of categories {C1;,, - . .,
Chj, } WhereVi € 1,...,n (Cj;; € D;). Then the aggregate formation operator is defined as

04[01]'1, cee aCan](O) d:ef (Sla Fla D,a Rla Ml)a (39)

where
S, = (flaplaMI)a where fl = 2faDI = {77 |7’ € 1a' .. 7“}7MI = M’EI = (Cé’SIﬂ’LI??’TL/Z)’
Ci = {Cij € Ti | Type(Cij;) <7; Cis}, <7 = <73, L7, = Type(Cij,), T, = T,
F' = {Group_high((v1,-..,vn), (Cij1s---,Cnjn)) | 301]'1 X -+ X Cpjr (
Viel,...,n (Cijg >7. Ciji) N (v1,...,0p) € Clj’1 Koeee X an’n) N

Group_high((v1,...,vn),(Cijy,---,Cnj,)) # 0}
D'={Dj}|ie1l,...,n}, where

D} = (Cl, <lp), Ot = {Cy € Di | Type(CYy) € Cl}, < =<, , o
R ={R}|i€1,...,n}, where l
Ry ={(f,vj) | 3C1j; x -+ x Cyy, (
Viel,...,n (Cy 27 Cij,) AI(v1,...,vn) € Cpjp X -+ X Cpjr (
f' € F' A f' = Group_high((v1,...,vn), (Clji,---,Cnjn)) Avi = v))}
MY = (M} | € 1,...,m}, where M(f") = an, ((M;(£)|f € "})sang = an, -
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In the definition, restrictions on the fact set F and fact-dimension relations R; handle the varying-granularity
issues. For F' the approach is to Group_high on the value combinations of exactly the wanted granularity
and also on the value combinations of higher granularities. This way, the operator catches facts of higher
granularities than the one wanted in the aggregation result. Doing this, the restriction of Type(v;) >7;
Cij; = (f,vi) € R; in Group_high prevents facts from being aggregated to more than one granularity and
thus into more than one new fact. A similar restriction is put on R;.

ExAMPLE: Again considering the ongoing example, the answer to query @5, evaluated at time 2000/11/5,
is given in Figure 5. As the illustration of the Group _high function in the example above, fact 45 and
fact_6 both aggregate to Time.month, while fact_ 03 and fact_12 both are aggregated to granularity

Time.quarter since no lower granularity is available for the two facts. O
Fact signature:
-rTime -rURL Click

number_of

/ \ / \ dwell_time
delivery_time

/1999 2000\ .com .edu datasize
1999Q4-- 2000Q1
\\ B ::::: el oY - amazon.com cnn.com gatech.edu
1999/11 1999/12 2000/1 . Tl , R o

fadt 03 ~~ofadt 12 “ofact 45 o fact 6
2 2 2 1
689 2489 955 32
3 7 10 1
68k 94k 99k 12k

| Aggregation at time 2000/11/5 I

Figure 5: Query a| Time.month, URL.domain|(O) Evaluated on the Reduced MO

Having defined the aggregate formation operator as above solves aggregation for the availability ap-
proach. Both the strict and the LUB approaches can be defined similarly. How aggregation is solved for the
disaggregated approach can be studied in [13].

7 Implementation

We proceed to present a strategy for implementing the data reduction functionality described in the previous
sections.

7.1 Design

The implementation strategy exploits the property that for each fact, at most one action specification, is
responsible for aggregation to the fact’s lowest available category type (see Section 4). Based on this, we
transform the action set into a set of disjoint actions, i.e., a set where no two actions have overlapping
predicates both satisfied for identical facts. Since two disjoint actions can specify aggregation to the same
granularity, we group the disjoint actions on identical granularities and implement the MO using a set
of subcubes, such that each subcube will represent a group of actions and have a fixed granularity. One
additional subcube will have the bottom-level granularity (see Figure 6).
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Figure 6: Architecture Using Subcubes

With this strategy, since the NOW -variable enables the aggregation of facts to higher granularities as
time pases, is that synchronization of the subcubes is necessary. For the subcubes to hold facts of the correct
granularities, data must be migrated between subcubes, as indicated in the figure. Another consequence is
that each query must be processed against all subcubes. How the two are handled is outlined in the following
subsections.

We note some important properties of the subcubes. First, all new data enter into the subcube having
the bottom-level granularity. Second, subcubes only get un-synchronized due to time passing. And finally,
because of the Growing property of the action set, data is always moved directly from one subcube to
another. This creates a natural parent-child relationship, where data is aggregated from the parent to the
child cube.

ExAmMPLE: Considering the data reduction specification ({a},a2,as}, <y) with distinct actions below,
and the MO from the ongoing example. Then each of these three distinct actions define a physical cube con-
taining reduced aggregated data. (The predicate in a/ is a transformation from “.. . A NOW — 12months <
Time.month < NOW — 6months,” i.e., from the predicate in a; from the ongoing example.) a, define a
physical cube for the remaining detail facts having the bottom-level granularity.

a} = p(a[Time.month, URL.domain] o[ URL.domain_grp = . COMA

NOW — 4quarters < Time.quarter A Time.month < NOW — 6months](O)) (41)
as = p(a[Time.quarter, URL.domain) 42)
o[URL.domain_grp = . comA Time.quarter < NOW — 4quarters](0))
ag = p(a[Time.week, URL.domain] “3)
o[URL.domain = gat ech. edu A Time.week < NOW — 36weeks](O))
ay = p(a[Time.day, URL.urllo[-(URL.domain_grp = . comA Time.month < NOW — 6months) A (44)
—(URL.domain = gat ech. edu A Time.week < NOW — 36weeks)](0))
All new data enters into a | which is the parent of both a/ and as, while o’ is the parent of a. |

7.2 Synchronization and Data Flow

We first explain the states of un-synchronization that can be caused by the use of the NOW -variable, then
how to perform the synchronization. We assume that a fact is only out of synchronization for one level in
the parent-child hierarchy. (We later explain why this is a fair assumption.)

24



The most frequent need for synchronization is due to either time changing or new data arriving at the
warehouse. To synchronize the subcubes in these cases, first any new data must be inserted into the top-most
parent subcube. Then for each parent-child combination, data might be present in the parent that satisfies
the child predicate and not the parent predicate. Such data must be aggregated into the child cube. Finally,
if a subcube has more parents, aggregated data can enter from different places, and more facts might exist
for one cell, so that the facts within the subcube must be aggregated one final time.

An infrequent need for synchronization occurs when the data reduction specification is changed. This
may necessitate the creation of new subcubes and the deletion of old ones. To synchronize in this case, first
the new set of disjoint actions must be calculated, which may lead to new subcubes being created. Then
the synchronization explained above can be applied, but now data is moved from all old subcubes, not only
from parent cubes. Finally, all old subcubes no longer available after re-calculating the action set will be
empty and should be deleted.

EXAMPLE: Assume the subcubes K1, K5, and K, in Figure 7, where K1 and K, both contain facts be-

Current time: 2000/12/5

K2 (quarter, domain_grp) K1 (month, domain) K4 (month, url)
fact_1203: 1999Q4, .com fact_45: 2000/1, cnn.com fact_9: 2000/1, http://www.amazon.com/...
After fact_10: 2000/4, cnn.com
1 month
g / Current time: 2001/1/5
K2 (quarter, domain_grp) K1 (month, domain) K4 (month, url)
fact_1203: 1999Q4, .com fact_10: 2000/4, cnn.com
fact_459: 2000Q1, .com
e T ---"fact_45 -

~ - Tadt 9

Figure 7: Synchronization from Subcubes K; and K, into K

tween 6 and 12 months of age, K; having cnn. comfacts and K4 having amazon. comfacts. Since Ky
is the child of both K7 and Ky, facts move from K; and K4 to K5 as time passes. For example, at time
2000/12/5, facts fact_45 and fact_9 are in K and Ky, respectively, and at time 2001/1/5, they are aggre-
gated into K5 as fact_459. O

The most frequent synchronization occurs due either to new data being bulk-loaded into the warehouse
or to the value of the NOW -variable changing. In each action specification, the granularity of the NOW -
variable, e.g., month, limits how frequently a cube may get un-synchronized, e.g., at most once a month.
Bulk-loading is likely to happen more often. This leads to data being inserted into one subcube, so only one
parent must be synchronized in this situation. Also, since insertion occurs in bulk, this synchronization is
not considered a performance bottleneck, and subcubes, can fairly easily be kept synchronized.

We have assumed that the cubes would only be out of synchronization for one parent-child level at the
time of synchronization. This will be true if synchronization is scheduled at the time of insertion and at
least once per significant time period, the second-lowest granularity at which the NOW -variable is used in
an action. For example, if the finest granularity specified is months, and the child cube has a granularity of
quarters, it is sufficient to synchronize once per quarter to satisfy our assumption.

7.3 Querying Subcubes

The querying of a set of physical subcubes is briefly explained, first assuming fully synchronized cubes,
and then allowing the consequences of an un-synchronized state. The idea is to evaluate the query on the
subcubes, separately and in parallel, and then to combine the subresults into the final result.
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In the first case we may assume m disjoint subcubes, each of which represents data with a well-specified
granularity and satisfying a known predicate, and each of which are fully synchronized. A query can then be
evaluated on each of the m subcubes returning up to m subresults that can be combined by an aggregation.
The following example shows the structure of the subresults, and it illustrates how they are combined
following the availability approach for aggregation.

EXAMPLE: We assume 5 synchronized subcubes { Ko, ..., K4} at time 2000/10/20, as illustrated at the
bottom of Figure 8. Compared to the ongoing example, K is now split into K7 and K4, and 4 new facts
appear, one in K1, one in K4, and two in K.

Q: a [month, domain_grp](
0 [1999/6 < Time.month <= 2000/5] (O))

1
1

|

1 fact_0312: 1999Q4, .com
! fact_459: 2000/1, .com

| fact_10: 2000/4, .com

\ fact_7: 2000/5, .com

I fact_6: 2000/1, .edu

\

e ' S5 Q(S0, SL, 3, S4) k

1
1
| fact_459: 2000/1, .com !
e I fact_10: 2000/4, .com X
| fact_7: 2000/5, .com |
, fact_6: 2000/1, .edu I
!

- e — = = -
P TR T T
s - / - a
———— e o Ll e SR e L FTe— oo oo
I I
:52: Q(K2) _: : S1: Q(K1) 1 : A Q(K4) \ : S0: Q(KO0) _: : S3: Q(K3)
___________________________ U —— o —— e = - —
i . i a0 i l
| fact_0312: 1999Q4, .com | |  fact_45:2000/1, .com "\ fact_9:2000/L,.com ! 1  fact _7: 2000/5, .com " fact_6: 20001, .edu !
______________ 'y fact_10: 2000/4, .com e e L
e ! A X K
! A | \ \
1 I | \ \
L . L - | = \
K2 (quarter, domain) K1 (month, domain) | KO (day, url) \
fact_03: 1999Q4, amazon.com fact_45: 2000/1, cnn.com ,’ fact_7: 2000/5/7, http://www.cnn.com/health/ “
fact_12: 1999Q4, cnn.com fact_10: 2000/4, cnn.com | fact_8: 2000/7/8, http://www.cc.gatech.edu/ \
1 \
L 1
K4 (month, url) K3 (week, domain)
fact_9: 2000/1, http://www.amazon.com/... fact_6: 2000W 3, gatech.edu

Figure 8: Evaluation plan for Query @

The query specified in the figure is evaluated separately on each of the 5 subcubes, giving 5 subre-
sults Sp, St1,--.,S4. We note that the granularity of Sy is ( Time.quarter, URL.domain_grp) since the
month-value is no longer available in cube K, and that all other sub-results are aggregated to the desired
granularity, but also that none of them are guaranteed to cover the entire cells of this granularity. Therefore,
a final aggregation step is necessary for Sy, S1, S3, and S4. Doing this, some subresults aggregate into
new facts, e.g., fact_45 and fact_9 will aggregate to fact_459 as shown in subresult Ss. Since all the usual
aggregate functions used in data warehousing are distributive or can be formulated using only distributive
functions, it poses no complications to do the aggregation in two steps as done here. O

Following the strategy illustrated in the example above, one query evaluation consists of m individual
sub-query evaluations that can be done in parallel, and then of only a few additional aggregations and one
union of disjoint answers.

When we allow the subcubes to be un-synchronized, the process becomes a little more complicated. To
“see” only data of the expected granularity and satisfying the specified predicate in a cube, we must select
the data satisfying this predicate from the cube itself and its parent cubes, and we must aggregate the data
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to the correct granularity. Only then we can process the query on the subcube. This approach includes the
synchronization of a subcube in the query process
We will illustrate the consequences on the example in Figure 8 above.

ExAamMPLE: With the current time 2001/1/20 and the un-synchronized subcubes { Ky, ..., K4} from Fig-
ure 8 at this time, we zoom in on cube K; which represents the distinct action a.

a) : p(af Time.month, URL.domain]o[URL.domain = cnn. comA
NOW — 4quarters < Time.quarter A Time.month < NOW — 6months](O))

At the current time of 2001/1/20, fact_45 no longer satisfies the predicate of a/, but is not yet syn-
chronized into the single child-cube of K. Instead both fact_10 and fact_7 satisfies the predicate of a/,
fact 10 is present in cube K4 but fact_7 is not yet synchronized into K. Since K| is the single parent of
K, naturally this is the only cube we need to examine for un-synchronized facts with respect to cube K.
The situation looks like in Figure 9 where dotted lines represent subqueries and the fact sets of relevance to
each subquery.

D A N .. S
S2: Q (K2) | : S1: Q (K1) : : S0: Q (KO)
 fact4s9 VT fao 1020004 com ! Cfacts
fact_0312 /' y fact_7: 2000/5, .com | |
T T -~~~ ST TTTTTTTTTTo """~~~ STt TTTTToT ~ T

! K1 (month, domain) KO (day, url)
fact_7: 2000/5/7, www.cnn.com/health/
fact_10: 2000/4, cnn.com

[N U |

Figure 9: Evaluating the Subquery S; on K in an Un-synchronized State

As we see, querying K1 when this is un-synchronized in one generation forces us to query K, and all its
immediate parents to get the subresult related to the cube K. Similarly when querying all other subcubes,
it is necessary to include all parent subcubes. Note, that this makes a difference when querying subcubes
of higher granularity than asked for, i.e., when querying K9 both fact_45 and fact_9 should be part of the
result having granularity ( Time.quarter, URL.domain_grp). O

This principle is used in the querying strategy handling querying in the un-synchronized state. Instead of
evaluating a query @ un a physical subcube, @ is evaluated on the union of the subcubes achieved by using
the cube specifications on the subcube itself and all parent-subcubes, i.e., instead of evaluating @ on K; in
the synchronized state, then assuming K is specified by granularity GG; and predicate P; and has the parent
subcubes {K}, Q is evaluated on o[G;]o [P} (K;) U (U, e[Gilo[P](K;)) in the un-synchronized state.
Now, as in the synchronized case () is evaluated on the union of all subresults S; that has the granularity as
specified in the query, and finally all subresults are unioned to get the final result.

With this strategy the un-synchronized state only adds the “a[G;]o[P;]”s when querying the single
subcubes. Also, we notice that it will be sufficient to process the “a[G;]o[P;]"s for those subcubes having
a larger granularity than asked for in the query. For all other subcubes only the selection is necessary since
the facts will be aggregated afterwards.

27



With un-synchronized cubes, each sub-query evaluation needs to access facts from its parent subcubes.
As before, this can be done in parallel and leads to disjoint subresults that are easily combined.

8 Summary and Future Research

This paper proposed a powerful and easy-to-use technique for data reduction in dimensional data ware-
houses. The technique is inspired by the many current data warehouses that are containing massive amounts
of data and are growing rapidly, and by the often decreased interest in old, detailed data. By using the pro-
posed technique, huge storage gains are enabled while retaining essential high-level information.

The technique uses aggregation to gradually reduce the detailed data into higher-level summarized data,
taking up much less space. The data reduction is based on specifications of when data is to be aggregated
to certain granularities. Following the specifications, data will progressively and automatically be reduced,
e.g., over time, by repeated aggregation. Great care is taken to ensure the semantic correctness of the data
reduction technique, since aggregation of a fact is inherently irreversible, and to ensure soundness of the
technique. To ensure this, we present rules and properties for updating the specifications together with
considerations on the operational handling of these rules. Also, techniques for the querying of reduced
warehouse and detailed strategies for implementation of the data reduction technique are presented.

We believe this to be the first technique for gradual and automatic reduction of multidimensional data,
e.g., over time. We also believe this paper is the first to consider the issues related to the semantic correctness
of a gradual data reduction process. Additionally, the techniques for querying of multidimensional data that
is gradually being aggregated are believed to be novel.

In future research, two directions are of interest. First, it is interesting to explore the efficient imple-
mentation of the technique using current data warehouse technology. Related to this, issues related to the
scheduling of reduction actions and queries should be investigated. Second, the technique can be extended
to explore reduction in the number of dimensions and measures, as well as to also allow for the deletion of
facts.
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A Formalized Example

Table 2 illustrates the database tables containing the example data for the ISP data warehouse we use
throughout the paper.

Time Dimension
date_id day week month | quarter | year
201 1999/11/23 | 1999W47 | 1999/11 | 1999Q4 | 1999
203 1999/12/4 | 1999W48 | 1999/12 | 1999Q4 | 1999
204 | 1999/12/31 | 1999W52 | 1999/12 | 1999Q4 | 1999
206 2000/1/4 2000W1 | 2000/1 | 2000Q1 | 2000
207 2000/1/20 | 2000W3 | 2000/1 | 2000Q1 | 2000

URL Dimension

url_id url domain domain_grp
601 ht t p: / / www. cc. gat ech. edu/ gat ech. edu .edu
602 http: // ww. cnn. conf cnn. com .com
603 htt p: // www. cnn. con heal th cnn. com .com
http://ww. amazon. com exec/ obi dos/ t g/ br owse/
604 amazon. com .com
-/ 465600/ ref =b_t n_un/ 107- 2047155- 8802158

Click Fact
fact_id | date_id | url_id | number_of | dwell_time | delivery_time | datasize
fact .0 | 201 604 1 677 2 34k
fact_1 203 603 1 2335 5 52k
fact_2 203 602 1 154 2 42k
fact_3 204 604 1 12 1 34k
fact4 | 206 602 1 654 4 47k
fact b 206 603 1 301 6 52k
fact_6 207 601 1 32 1 12k

Table 2: Example Data for an ISP Data Warehouse

Using the formalism presented in Section 3 the example MO based on these data is defined as follows
below and on the following page.

O = (SJ F’DJRJ M)J

S =(F,D,M), F = Click, D = {Time, URL}, M = {Number_of , Dwell_time, Delivery_time, Datasize}
Time = ({day, week, month, quarter, year}, < Time, T Time; L Time = day),
day < Time month <Time quarter < Time year <Time T Time aNd day < Time week <Time T Time
URL = ({url, domain, domain_grp}, <vri, T urL, Lurr = url),
wrl <ygrr domain <ygr domain_grp <yrr T URL

F = {fact 0, fact_1, fact_2, fact_3, fact 4, fact_5, fact_6}
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D = {Time, URL};
Time = ({day, week, month, quarter, year, Ttime}, <Time);
day = {1999/11/23,1999/12/4,1999/12/31,2000/1/4,2000/1/20},
week = {1999W 47,1999 48, 1999 52, 2000 1, 2000W 3}, month = {1999/11, 1999/12,2000/1},
quarter = {1999(4,2000Q1}, year = {1999,2000}, TTime={T}
where
1999/11/23 <ime 1999/11 A 1999/12/4 <1ime 1999/12 A 1999/12/31 <time 1999/12 A
2000/1/4 <Time 2000/1 A 2000/1/20 <Time 2000/1 A 1999/11/23 <1ime 1999W 47 A
1999/12/4 <Time 1999W 48 A 1999/12/31 <Tjme 1999W 52 A 2000/1/4 <Tjme 2000W1 A
2000/1/20 <Time 2000W3 A 1999/11 <Time 1999Q4 A 1999/12 <time 1999Q4 A
2000/1 <Time 2000Q1 A 1999Q4 <Time 1999 A 2000Q1 <Time 2000 A 1999 <Time T A 2000 <Tjme T
URL = ({url,domain, domain_grp, TurL }, <urL);
url = {www. cc. gat ech. edu/ , wwv. cnn. con? ,www. cnn. cond heal t h,www. anmazon. conl ex. . . },
domain = {cnn. comgat ech. edu, amazon. com}, domain_grp = {. com. edu}, TyrL ={T}
where
www. cc. gat ech. edu/ <yrL gat ech. edu A ww. cnn. cont heal t h/ <ygrL cnn. comA
www. cnn. cond <yrL Chn. comA www. amazon. conl ex. .. <yrL anmazon. comA
gat ech. edu <yrL . edu Acnn. com<ygrL . comA amazon. com<yrL - comA . edu <yrL T A
.com<yrL T

R = {RTime7 RURL} where
RTime = {(fact_0,1999/11/23), (fact_1,1999/12/4), (fact 2,1999/12/4), (fact_3,1999/12/31),
(fact_4,2000/1/4), (fact_5,2000/1/4), (fact-6,2000/1/20)}
Rygrr = {(fact_0,www. amazon. cont ex. . . ), (fact_1,www. cnn. com heal t h/), (fact_2,www. cnn. cont ),
(fact_-3,www. amazon. com ex. . .), (fact_4,www. cnn. com ), (fact_5, www. cnn. cont heal t h/),
(fact_6,wwmv. cc. gat ech. edu/ )}

M = {Number_of, Dwell_time, Delivery_time, Datasize}
where

aNumber_of = SUM, apwel time = SU'VlaaDeIivery_time = SUM, apgasize = SUM;
Number_of(fact_0) = 1, Dwell_time(fact_0) = 677, Delivery_time(fact_0) = 2, Datasize(fact_0) = 34k,
Number_of(fact_1) = 1, Dwell_time(fact-1) = 2335, Delivery_time(fact_1) = 5, Datasize(fact_1) = 52k,
Number_of(fact_2) = 1, Dwell_time(fact_2) = 154, Delivery_time(fact_2) = 2, Datasize(fact_2) = 42k,
Number_of(fact_3) = 1, Dwell_time(fact_3) = 12, Delivery_time(fact_3) = 1, Datasize(fact_3) = 34k,
Number_of(fact_4) = 1, Dwell_time(fact_4) = 654, Delivery_time(fact_4) = 4, Datasize(fact_4) = 47k,
Number_of(fact_5) = 1, Dwell_time(fact_5) = 301, Delivery_time(fact_5) = 6, Datasize(fact_5) = 52k,
Number_of(fact_6) = 1, Dwell_time(fact_6) = 32, Delivery_time(fact_6) = 1, Datasize(fact 6) = 12k
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