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Abstract

Tuplesof a temporal relation are equippedwith a valid time period. A simple extensionof the SPC (Selection-
Projection-Cross product) algebra for temporal relations is defined, which conforms to primitives in existing tem-
poral query languages. In particular, temporal projection involves coalescing of time intervals, which results in
non-monotonic queries. Also the “select-from-where” normal form is no longer available in this temporal ex-
tension. In view of these temporal peculiarities, it is natural and significant to ask whether query optimization
techniques for the SPC algebra still apply in the temporal case. To this extent, we provide a temporal extension
of the classical tableau formalism, and show its use and limits for temporal query optimization.

1 Introduction

Several algebras for temporal relational databases have been published since the early eighties [3, 8]. In more recent
years, there has been a growing interest inpractical languages for temporal databases. This has led to a number of
temporal extensions of SQL [7, 9, 11]. Thetheoreticalfoundations of these temporal query languages—including
issues like expressiveness, complexity, computability, genericity, and optimization—have not been systematically
explored. In this paper, we study query equivalence and optimization in a temporalSPC algebra, containing tem-
poral extensions of selection, projection, and cross product.

Consider the temporal relationC of celebrities shown in Figure 1. The first row means that Piaf lived in Paris
from 15 to 63 (the twentiethcentury is assumed).FR (from) andTO are special timestamping attributes. To answer
the query:

Which celebrities lived during the entire time period 45–70?

we first perform a temporal projection on the first column, which results in the table���C � of Figure 1. Note
that the two rows about Brel that existed inC , have been “coalesced” into a single one. Next we select the rows
that include the interval���� ���. This selection is denoted������������C �� and retrieves only the row about Brel.
This simple temporal query already shows two fundamental theoretical divergences from the non-temporalSPC
algebra:

� The query������������C �� is non-monotonic in strict sense:C � C � does not imply������������C �� �
������������C

���. For example, forC � � C � fhBrel,London,79,90ig, the answer������������C ��� is the
singleton temporal relationfhBrel,29,90ig, which is not a superset of the temporal relation������������C ��
of Figure 1. Adding a temporal tuple toC results in an extension of the time interval in the answer set from
�	
� ��� to �	
� 
��.

Let SPC� denote the non-temporalSPC algebra extended with inequality selections�A�a��� and�A�B���
where� � f�� ��� �������g. Is ������������C �� expressible inSPC�?1 The answer is “no,” since all
SPC� queries are monotonic, while strictly speaking,������������C �� is non-monotonic. So although coa-
lescing is known to be first order expressible [2], it turns out to be non-monotonic.

� In the subquery������������C ��, we cannot push the selection through the inner projection: The result of the
query���������C � is empty. It is correct to conclude that the normal form��j��F �R� 	 � � �	Rk�� [1, p. 55]
that exists in the non-temporalSPC algebra, is not always attainable in the temporal case.

Figure 1 also illustrates the temporal cross product	. Joining two tuples involves concatenating the non-
temporal values and intersecting the time intervals. The algebra containing the temporal versions of selection, pro-
jection, and cross product will be calledSPCtime. Query equivalence and optimization in theSPCtime algebra is
at the center of this paper. For example, consider the query:

Q�C � � ��������

Q�z �� �
���������	�����Paris�C ���	

Q�z �� �
���������������Paris�C ����� �

The subqueriesQ� andQ� retrieve names of celebrities living in Paris during the first (��–��) and the second (��–
��) world war respectively. So the overall query��������Q� 	Q��� asks for names of celebrities staying in Paris

1To make this question meaningful, we implicitly assume that the columnsFR andTO are addressed by their positions inC , i.e.,� for
FR and� for TO .

1



C 1 2 FR TO

Piaf Paris 15 63
Brel Brussels 29 52
Brel Paris 53 78

������������C �� 1 FR TO

Brel 29 78

���C � 1 FR TO

Piaf 15 63
Brel 29 78

���C �� ���C � 1 2 FR TO

Piaf Piaf 15 63
Piaf Brel 29 63
Brel Piaf 29 63
Brel Brel 29 78

Figure 1: Temporal projection and selection.

during both world wars. Under the given temporal semantics, celebrities in the answer set did not leave Paris during
the interbellum period. So the queryQ happens to be equivalent to the simpler query:

���������������Paris�C ��� �

Which techniques can be used for query optimization in theSPCtime algebra? One may think of the following
approach: First translate the query into an equivalentSPC� query, and then optimize thisSPC� query. This ap-
proach may not be appropriate for two reasons, however. Firstly, the approach clearly fails forSPCtime queries
that are not expressible inSPC�. Such queries exist, as shown above. Secondly, the approach may be needlessly
expensive forSPCtime queries that can be translated intoSPC�. One should know that query optimization in
SPC� is considerably more difficult than inSPC [6, 12]: Query optimization inSPC is based on an elegant Ho-
momorphism Theorem [1], which unfortunately fails when inequalities are added. We may hope, however, that
query optimization inSPCtime is easier than inSPC�, because it can profit from the syntactic restrictions on the
ways in which time points can be compared for inequality. So our approach to query optimization inSPCtime is not
to simply “de-temporalize” queries and then apply non-temporal optimization techniques. Instead, we are going
to “temporalize” the tableau formalism [1] and investigate its use for temporal query optimization. In this way, we
want to take profit of temporal semantics.

Several authors, for example in [11], advocate that timestamping by time points is conceptually cleaner than
timestamping by time intervals. We agree that there are good arguments for using point-based timestampingat
the conceptual level. However, even if point-based timestamping is used at the conceptual level, efficiency con-
siderations may dictate the use of time intervals or constraints at the storage level. Hence, investigating query
optimization for interval-based timestamping is significant.

The organization of the paper is as follows. Sections 2 and 3 formalize the constructs of temporal relation and
SPCtime algebra. Sections 4 through 8 provide the tools that will be used for query optimization in theSPC time al-
gebra. Section 4 introduces the construct of temporal tableau query (ttq). The semantics of ttqs relies on a property
calleddomain independence, which is similar in nature to domain independence in the relational calculus. Domain
independence of ttqs is decidable, as shown in Section 5. Section 6 concerns the composition of ttqs.Dichotomic
temporal tableau queries, introduced in Section 7, are a syntactically restricted class of ttqs with nice properties. In
particular, query containment for dichotomic ttqs can be decided by a small temporal extension of the homomor-
phism technique, as shown in Section 8. Finally, Sections 9 and 10 discuss the transformation ofSPCtime queries
into equivalent ttqs, which can then be simplified by using the tools introduced in earlier sections. Section 11 relates
the main results to existing work.

2 Temporal relation

This section introduces temporal relations and related constructs.

Definition 1 We use the setZof integer numbers to denote time. We defineZ��� � f�p� q� j p� q �Zandp � qg.
We define for eachp� q � Z, the interval �p� q� � fx �Zj p � x � qg. The empty interval is denotedfg. The
set of all intervals is denotedI. Two intervals areunifiableif their set union is again an interval. �

Lemma 1 The setI, ordered by set inclusion, is a lattice satisfying:

Infimum. �p� q�
 �p�� q�� � �p� q�� �p�� q��.
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Supremum. If p � q andp� � q� then�p� q�� and�p�� q� are unifiable and�p� q�� �p�� q�� � �p� q��� �p�� q�.

PROOF. The proof of theinfimumpart is straightforward. For thesupremumpart, assumep � q andp� � q�.
Further assumep � p� without loss of generality.�p� q �� and�p�� q� are unifiable, or elsep� � q�, a contradiction.
�p� q�� �p�� q�� � �p� q��� �p�� q� follows immediately. Since�p� q�� �p�� q�� must necessarily include�p� q�� and�p�� q�,
it follows that�p� q ��� �p�� q� constitutes a least upper bound. This concludes the proof. �

Intervals ofIare used to timestamp tuples; the timestamping attribute is denotedT. A temporal relation is a
coalesced set of temporal tuples with non-empty timestamps. For example, the temporal relationsI� J both of arity
	 (T does not add to the arity):

I � 	 T

a b ��� ��
a b ��� ��
a c �	� ��

and
J � 	 T

a b ��� 
�
a c �	� ��

�

We writeha� b� ��� ��i� J because the temporal tupleha� b� ��� ��i is “contained” in the first tuple ofJ . The rela-
tionship� between a temporal tuple and a temporal relation is extended in a natural way to a relationshipv among
temporal relations. In the above example,I v J .

Definition 2 We assume a countably infinite setdom of constants. Letn � N. A temporal tupleof arity n is an
element ofdomn 	 I. If t is a temporal tuple of arityn, then theith coordinate oft (i � f�� � � � � ng) is denoted
t�i�, and the�n � ��th coordinate is denotedt�T�. t�T� is also called thetimestampof t. Two tuplest ands of
arityn arevalue-equal, denotedt � s, iff t�i� � s�i� for eachi � f�� � � � � ng.

Let t be a temporal tuple andT� S sets of temporal tuples, all of the same arity. We writet�T iff either t�T� �
fg or T contains a temporal tuples with s � t andt�T� � s�T�. We writeT v S iff t� S for every temporal
tuplet� T .

A temporal relationof arityn is a finite setI of temporal tuples of arityn such that for eacht� s � I: (i) t�T� ��
fg, and (ii) if t�T� ands�T� are unifiable andt � s, thent � s.

Let I be a temporal relation of arityn. We define:

aidom�I� �
�
ft�T� j t � Ig� the active interval-domain ofI; and

adom�I� � ft�i� j t � I� i � f�� � � � � ngg� the active domain ofI.

�

We now define the coalescing operatord�e which takes as its argument a setS of temporal tuples, all of the
same arity. The operator turnsS into a temporal relation by removing tuples with empty timestamp and by merging
value-equal temporal tuples with unifiable timestamps..

Definition 3 Let S be a finite set of temporal tuples, all of the same arity. We writedSe for the smallest (w.r.t.v)
temporal relation satisfying: ift � S thent� dSe. S is calledcoalescediff S � dSe. �

3 A temporal SPC algebra

We introduce a basic temporal extension of theSPC algebra; examples were already given in Section 1. The opera-
tors conform to common primitives in existing temporal query languages [9, 10]. A selection of the form��p�q��I�
retrieves each tuple ofI whose timestamp includes the interval�p� q�. A projection automatically performs co-
alescing on the result. Joining two tuples involves concatenating the values for the non-temporal attributes and
intersecting the timestamps.

Definition 4 Let I andJ be temporal relations of arityn andm respectively. Leti� j� j�� j�� � � � � jk � f�� � � � � ng
(k � �), a � dom, and�p� q� �Z���.
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Selection.

� �i�j�I� � ft � I j t�i� � t�j�g,

� �i�a�I� � ft � I j t�i� � ag, and

� ��p�q��I� � ft � I j t�T� � �p� q�g.

Projection.

� �j������jk�I� � dfht�j��� � � � � t�jk�� t�T�i j t � Ige.

Cross product.

� I 	 J � dfht���� � � � � t�n�� s���� � � � � s�m�� t�T� � s�T�i j t � I� s � Jge.

�

The coalescing operator in the definitionof cross product serves to eliminate temporal tuples with empty timestamp.

Definition 5 For everyn � N, we assume the existence of denumerably manyrelation variablesR�R�� R�� � � �
of arityn. SPCtime queries and their associated arities are recursively defined as follows:

Base. Every relation variable of arityn is anSPCtime query of arityn.

Select. If Q is anSPCtime query of arityn, andi� j � f�� � � � � ng, a � dom, and�p� q� � Z���, then�i�j�Q�,
�i�a�Q�, and��p�q��Q� areSPCtime queries of arityn.

Project. If Q is anSPCtime query of arityn andj�� � � � � jk � f�� � � � � ng, then�j������jk�Q� is anSPCtime query
of arity k (k � �).

Cross product. If Q� andQ� areSPCtime queries of aritiesn� andn� respectively, thenQ�	Q� is anSPCtime

query of arityn� � n�.

We writeQ�R�� � � � � Rl�, whereR�� � � � � Rl are distinct relation variables, to indicate thatQ is a query containing
the relation variablesR�� � � � � Rl. The semanticsof Q�R�� � � � � Rl� is relative to an interpretation function that
maps eachRi to a temporal relation of the same arity asRi (i � f�� � � � � lg). This semanticsis defined in the
natural manner (not elaborated here). In the remainder of this paper, we focus onSPCtime queriesQ�R� involving
a single relation variable.

Let Q��R�� Q��R� be queries of the same arity. We writeQ� v Q� iff Q��I� v Q��I� for each temporal
relationI of the same arity asR. Q� andQ� areequivalent, denotedQ� � Q�, iff Q� v Q� andQ� v Q�. An
SPCtime queryQ�R� is unsatisfiableiff Q�I� � fg for each temporal relationI of the same arity asR. �

It can be easily proved that unsatisfiability arises if two constants are required to be equal, as in���a����b�R��.
Henceforth, we will assume that allSPCtime queries considered are satisfiable.

Importantly, as argued in Section 1, we cannot push the selection through the projection in theSPCtime query
��p�q����j�Q��. Nor can we push the cross product throughthe selections in theSPCtime query��p�q��Q��	��r�s��Q��.

As a consequence, the normal form forSPC algebra expressions [1, p. 55] does not apply toSPCtime queries.

4 Temporal tableau query

The notion of temporal tableau is defined exactly as was the notion of temporal relation, except that both variables
and constants may occur. Importantly, only two temporal variables are introduced, and their usage is syntactically
restricted:f (from) can only occur as the left coordinate of an interval, andt (to) only as the right coordinate. No
interval can contain non-temporal variables. A temporal tableau query consists of a temporal tableau followed by
a summary temporal tuple with timestamp�f � t�.
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Definition 6 We assume a setvar of non-temporal variables. We assume twotemporal variablesf andt not in
var. We define:

V� f�p� q� j �p� q� �Z���g � f�f � q� j q �Zg � f�p� t� j p �Zg � f�f � t�g �2

A tableau tupleof arityn (n � �) is an element of�var � dom�n 	V. If t is a tableau tuple of arityn, then the
ith coordinate oft (i � f�� � � � � ng) is denotedt�i�, and the�n� ��th coordinate is denotedt�T�.

A temporal tableauof arity n is a finite set of tableau tuples of arityn. A temporal tableau query(ttq, plural:
ttqs) is a pair�T� t� whereT is a temporal tableau andt is a tableau tuple (calledsummary) such thatt�T� � �f � t�
and each variable int also occurs inT .

Let � � �T� t� be a ttq. Theactive point-domainof � , denotedapdom�� �, is the smallest set of time points
containing allp �Zthat appear as the first or the second coordinate oft�T� for some tableau tuplet of T .

A non-temporal variable that occurs in� is calledfree(w.r.t. � ) if it occurs int; otherwise it isbounded. �

We now define the semantics of ttqs. Let� � �T� t� be a ttq andI a temporal relation of the same arity asT .
The idea is to proceed along the lines of non-temporal tableaux [1, p. 43]: Consider a valuation� for the variables
in � ; if ��T � is contained inI, then��t� belongs to the query answer� �I�.3

Example 1 Consider the ttq� � �T� t� whereT � ft�� t�g:

� � 	 T

Brel x ���� t� �t��
Brel x �f � ��� �t��
x �f � t� �t�

�

The valuation� � f�x�Brussels�� �f � 	
�� �t� �	�g results in:

d��T �e � 	 T

Brel Brussels �	
� �	�
�

Consider the temporal relationC of Figure 1. Sinced��T �e v C , we conclude that��t� � hBrussels� �	
� �	�i is
in the answer set� �C �. It can be verified that the query� renders the city in which Brel stayed during the period
��–��.

Some caution is in order when fixing the domain of interpretation for the variables occurring in a ttq, as shown
by the next example.

Example 2
� � T

x �f � ��
x ��� t�
a �	� ��
x �f � t�

and
I � T

a �	� ��

Consider a valuation� for the variables in� with ��f � � ��t� � �. We obtain:

d��T �e � T

a �	� ��
�

Thend��T �e v I independent of��x�. That is, the non-temporal constants appearing in the answer set� �I� are
not restricted to constants appearing inI, which is unnatural.

Obviously, ifI is a temporal relation andS is set of temporal tuples of the same arity asI, thendSe v I if and
only if S v I. We are now ready to formalize the semantics of a ttq.

2If �p� q� occurs in a temporal tableau, it is considered as an element ofV(Definition 6), i.e., as an ordered pair of time points. On the other
hand, if�p� q� occurs in a temporal relation, it is considered as an element ofI, i.e., as a convex set of time points. This double use does not
result into any confusion.

3A valuationis a mapping from variables to constants extended to be the identity on constants. Asubstitutionis a mapping from variables
to variables and constants, extended to be the identity on constants. [1]
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Definition 7 Let � � �T� t� be a ttq, andI a temporal relation of the same arity asT . Letd � dom andp �Z.
We writeI �� d�ps iff there exists a valuation� for the variables occurring in� such that:

1. for everyv � var, ��v� � adom�I� � d;

2. ���f �� ��t�� �Z��� and���f �� ��t�� � aidom�I� �p;

3. d��T �e v I;4 and

4. ��t� � s.

� is domain independentiff for every temporal relationI, for every paird�d� � dom, for every pairp�p� �Z,
for every temporal tuples, I �� d�ps iff I �� d��p�s. If � is domain independent, we writeI �� s instead ofI �� fg�fgs.
�

Obviously, the ttq� of Example 2 is not domain independent. From now on, ttqs that are not domain indepen-
dent will be considered erroneous. The output of a ttq can now be defined.

Definition 8 Let � � �T� t� be a domain independent ttq, andI a temporal relation of the same arity asT . The
outputof � on inputI, denoted� �I�, is the temporal relation:

� �I� � dfs j I �� sge �

The relationsv and� on ttqs are defined as in Definition 4. �

Note incidentally thats � � �I� or s� � �I� does not implyI �� s, which is illustrated by Example 3 and gives
rise to Definition 9. Inversely,I �� s impliess� � �I�.

Example 3 For the temporal relationC of Figure 1:

� � 	 T

x v �f � t�
x �f � t�

yields
� �C � � T

Piaf ���� ���
Brel �	
� ���

�

The valuation�� � f�x�Brel�� �v�Brussels�� �f � 	
�� �t� �	�g showsC �� hBrel� �	
� �	�i, and the valuation�� �
f�x�Brel�� �v�Paris�� �f � ���� �t� ���gshowsC �� hBrel� ���� ���i. It is correct to concludehBrel� �	
� ���i � � �C �.
However,C ��� hBrel� �	
� ���i. Note incidentally that� is equivalent to theSPCtime query���R�, whereR is a
relation variable of arity	.

Definition 9 Let � � �T� t� be a (domain independent) ttq. We say that� is coalescing-free(cfreefor short) iff for
every temporal relationI of the same arity asT , if s� � �I� thenI �� s. �

So the ttq of Example 3 is not cfree. To conclude this section, we show how a tableau can be viewed as a
temporal relation, and we provide an operatordd�ee which merges tableau tuples in a ttq.

Definition 10 Let � � �T� t� be a ttq, and�p� q� �Z���. LetT � be the temporal tableau obtained fromT by sub-
stitutingp andq for f andt respectively. ThenTf�p�t�q denotes the temporal relationdT �e, where it is understood
that distinct variables are interpreted as new distinct constants.5 We writeTf �t�p as a shorthand forTf�p�t�p.

We writedd�ee for the ttq obtained from� by repeatedly executing one of the following modifications until no
more changes can be made: For all distincts� s� � T such thats � s�,

1. If s�T� ands��T� are unifiable intervals ofI(says�T�� s��T� � �p� q�), then replaces ands� by the single
tableau tuplesT��p�q� .6

4Instead ofd��T �e, we will often simply write��T �, where the coalescing is implicitly understood.
5To be precise, one should introduce a one-to-one valuation� from non-temporal variables to constants, mapping each variablex to a new,

distinct constant, such that������x�� � x. By a little abuse of notation, we assume that distinct variables can be interpreted as new, distinct
constants. Sometimes we make this assumption explicit and write�x for the variablex treated as a constant.

6If f is a function, thenfx�a denotes the function satisfying:fx�a�x� � a andfx�a�y� � f�y� for eachy distinct fromx. Temporal
tuples of arityn are total functions with domainf�� � � � � ng � fTg. SosT��p�q� is the temporal tupleu such thatu � s andu�T� � �p� q�.
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2. If s�T� � �p� t�, s��T� � �p�� t�, andp � p�, then removes� from T (p� p� �Z).

3. If s�T� � �f � q� ands��T� � �f � q��, andq � q�, then removes from T (q� q� �Z).

4. If s�T� � �p� t�,s��T� � �p�� q��, andp � �p�� q� � ��, then replaces bysT��p��t�, while leavings� unaffected
(p� p�� q� �Z).

5. If s�T� � �f � q�,s��T� � �p�� q��, andq � �p�  �� q��, then replaces bysT��f �q��, while leavings� unaffected
(p�� q� q� �Z).

A ttq is calledstretchediff dd�ee � � . �

Example 4 Let � � �T� t� as indicated below. Then:

� � 	 T

x u �f � ��
x u �	� ��
x v �	� ��
x v ��� t�
x �f � t�

and

dd�ee � 	 T

x u �f � ��
x u �	� ��
x v �	� ��
x v �	� t�
x �f � t�

and
Tf���t�� � 	 T

�x �u ��� ��
�x �v �	� ��

�

Lemma 2 For every ttq� , � � dd�ee.

PROOF. Straightforward. �

5 Testing domain independence

We show how to decide domain independence of ttqs.

Lemma 3 A ttq� � �T� t� is domain independent iff for each�p� q� �Z���, (i) �p� q� � aidom�Tf�p�t�q�, and
(ii) every free non-temporal variablex of � occurs inTf�p�t�q.

PROOF. Only-if part. Argumentation by contradiction. Suppose�p� q� �� aidom�Tf�p�t�q�. Let r � �p� q� n
aidom�Tf�p�t�q�. ThenT contains no tableau tuple with timestamp�f � t�; furthermore, wheneverT contains a
tableau tuple with timestamp�f � q��, thenq� � r, and wheneverT contains a tableau tuple with timestamp�p�� t�,
thenp� � r. ThenTf �t�r can be obtained fromT by simply removing tableau tuples that containf or t. Then
obviously,Tf�p�t�q �

�
fg�frgtT��r�r� , butTf�p�t�q ��

�
fg�fgtT��r�r�, hence� is not domain independent.

Next suppose that the free non-temporal variablex of � does not occur inTf�p�t�q. Leta � dombe a constant
not occurring in� . Let t� be the tableau tuple obtained fromt by substitutinga for each occurrence ofx in t. Then
Tf�p�t�q �

�
fag��p�q�t

�
T��p�q�, butTf�p�t�q ��

�
fg��p�q�t

�
T��p�q� , hence� is not domain independent.

If part. Assumed�d� � dom andp�p� �Z. AssumeI �� d�ps. Hence, there exists a valuation� for the variables
in � such that:

1. ��v� � adom�I� � d for every non-temporal variablev,

2. ���f �� ��t�� �Z��� and���f �� ��t�� � aidom�I� �p,

3. ��T � v I, and

4. ��t� � s.

We show thatadom�I� �� fg. Suppose on the contraryadom�I� � fg, henceI � fg. Since���f �� ��t�� �
aidom�Tf��
f ��t��
t�� by the premise, it followsTf��
f ��t��
t� �� fg. But then��T � �v I, a contradiction. We
consider the valuation� for each variable of� in turn.

Temporal variables. By the premise,���f �� ��t�� � aidom�Tf��
f ��t��
t��. From��T � v I, it follows
aidom���T �� � aidom�I�. Obviously,aidom���T �� � aidom�Tf��
f ��t��
t��. It follows ���f �� ��t�� �
aidom�I�. Hence,���f �� ��t�� � aidom�I� � p�.
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Bounded non-temporal variables. Letv be a bounded (w.r.t.� ) non-temporal variable. If��v� � adom�I�, then
��v� � adom�I� � d�. Next assume��v� �� adom�I�. Since��T � v I, v cannot occur inTf��
f ��t��
t�.
Then the value assigned tov by � does not matter. More precisely, the above properties (1) through (4) still
hold after replacing� by �v�a, for anya � adom�I� �� fg.

Free non-temporal variables. Let v be a free non-temporal variable. By the premise,x occurs inTf��
f ��t��
t�.
Since��T � v I, ��v� � adom�I�. Hence,��v� � adom�I� � d�.

It follows I �� d��p�s. It is correct to conclude that� is domain independent. �

It can be easily verified that in order to test condition (i) of Lemma 3, there is no need to try all�p� q� �Z���; it
suffices to verify whether�m�M � � aidom�Tf�m�t�M �, for somem�M �Zwith m strictly smaller than every
time point inapdom�� �, andM strictly greater than every time point inapdom�� �.

For testing condition (ii) of Lemma 3, we consider each free non-temporal variablex of � in turn. If x occurs
in a tableau tuplet with t�T� � �f � t� or t�T� � �p� q� with �p� q� � Z���, then the condition is satisfied forx.
Otherwise, construct a setS of inequalities as follows:

� Add f � t to S.

� For every tableau tuplet � T such thatt containsx andt�T� � �f � q��, addf � q� toS (q� �Z).

� For every tableau tuplet � T such thatt containsx andt�T� � �p�� t�, addt � p� to S (p� �Z).

Obviously, the setS of inequalities has an integer solution inf andt if and only if condition (ii) of Lemma 3 is
falsified forx.

A natural question is whether every ttq is equivalent to someSPCtime query. The answer is “no,” as shown
by Example 5. The inverse question (i.e., is everySPCtime query equivalent to some ttq?) will be thoroughly
addressed from Section 6 on.

Example 5 Consider the domain independent ttq� and the result� �I�:

� � T

a �f � 	�
a ��� t�
b �	� ��

�f � t�

and
I � T

b �	� ��
and

� �I� T

��� ��
�

It can be readily seen (by induction on the structure ofQ) that for everySPCtime queryQ, if s � Q�I�, then
s�T� � �	� ��. It follows that� is equivalent to noSPCtime query.

6 Composition of temporal tableau queries

We now address the following natural question: Given two ttqs� and�, is there a single ttq that is equivalent to�
followed by�?

Definition 11 Let � � �T� t� and� � �S� s� be two ttqs, wheret andS have the same arity. We write� � � for
the query satisfying for every temporal relationI of the same arity asT , �� � � ��I� � ��� �I��. �

Clearly, if� � � is unsatisfiable, i.e.,�� � � ��I� � fg for each temporal relationI, then� � � is equivalent to
no single ttq, as each ttq is obviously satisfiable. Unfortunately, even if� � � is satisfiable, it may not correspond
to a single ttq:

Lemma 4 There exist ttqs� and� such that� � � is satisfiable but equivalent to no ttq.
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PROOF. Let � , � be ttqs, andI, Jk (for eachk �Z) temporal relations, as follows:

� � T

v �f � t�
�f � t�

and

� T

�f � ��
��� t�
�f � t�

and

Jk � T

� ��� ��
� ��� ��

� �����
� � �

k �k� k�
k �k�k�

and
I � T

a ��� ��
a �	� 	�

�

Obviously,��� �Jk�� � � �Jk� � fh�jkj� jkj�ig, wherej�j denotes the absolute value. Furthermore,��� �I�� �
fh��� ��ig. Assume that the ttq	 � �R� h�f � t�i� is equivalent to� � � . Suppose that the tableauR, of arity �,
contains a tableau tupler with r�T� � �p� t�, for somep � Z. Then for no valuation�, �t�p���R� v Jp��,
henceh�p� �� p� ��i �� 	�Jp���, a contradiction. Hence,R cannot contain a tableau tupler with r�T� � �p� t�.
Likewise,R cannot contain a tableau tupler with r�T� � �f � q�, for someq �Z. Sincef andt occur inR, Rmust
contain a tableau tupler with r�T� � �f � t�. If R contains a tableau tupler with r�T� � �p� q�, thenp � q � �,
or else for no valuation�, �f���t���R� v J�, henceh��� ��i �� 	�J��, a contradiction.R cannot contain constants
fromdom for obvious reasons. Since	 �� � , 	 must be equivalent to either:

	� � T

u ��� ��
v �f � t�

�f � t�

or

	� � T

v ��� ��
v �f � t�

�f � t�

�

Then	�I� � fh��� ��i� h�	� 	�ig �� ��� �I��. We conclude by contradiction that for no	, 	 � � � � . �

It is natural to ask under which conditions� � � corresponds to a ttq. In the remainder of this section, we show
how to construct a ttq equivalent to�� � when� is cfree (cfree was defined in Definition 9). The construction uses
composition of ttqs, which generalizes the composition of typed tableaux [1, p. 226]. We assume that the reader is
familiar with the composition of typed tableaux; the composition of ttqs is slightly more complicated, as illustrated
next. Let� and� be the ttqs:

� � 	 T

a x �f � ��
x v ��� t�
a x x �f � t� �t�

and

� � 	 � T

w� y� y� �f � �� �s��
w� w� y ��� t� �s��
y� y� y �f � t�

�

We want to construct the ttq� �� corresponding to the composition of� followed by�. Proceeding along the lines
of typed tableaux, one looks for a substitution mappingt to s�, and another one mappingt to s�. The difficulty is
that there is no substitution that mapst to s�; for such substitution to exist, we must havew� � a andy� � y�.
Likewise, the existence of a substitution that mapst to s�, requiresw� � a andw� � y. Fromw� � a and
w� � y, it follows y � a. Applying these equalities to�, we obtain a new ttq��:

�� � 	 � T

a y� y� �f � �� �s���
a a a ��� t� �s���
y� y� a �f � t�

�

Now there exist substitutions fromt to s��, and fromt to s��.

Definition 12 Let � � �T� t� and� � �S� s� be two ttqs, wheret andS are both of arityn. LetS � fs�� � � � � smg.
A unifierfor t and� is a substitution� defined as follows. Compute�, the equivalence relation onvar�dom�

ff � tg defined as the reflexive, transitive closure of:

1. si�j� � a if t�j� � a for some constanta (for eachi � f�� � � � �mg andj � f�� � � � � ng);

2. si�j� � si�k� if t�j� � t�k�, for eachi � f�� � � � �mg andj� k � f�� � � � � ng.
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The unifier oft and� does not exist if two distinct constants are in the same equivalence class. Otherwise their
unifier is the substitution� such that:

1. if x � a for some constanta, ��x� � a;

2. otherwise��x� � x�, wherex� is the smallest (under a fixed ordering onvar) such thatx � x�.

�

Definition 13 Let� � �T� t� and� � �S� s� be two ttqs, wheretandS are of the same arity. LetS � fs�� � � � � smg.
Assume� is a unifier fort and�; if no such unifier exists, the composition is undefined. For eachi � f�� � � � �mg,
let �i be a substitution that mapst to ��si� and maps each other variable ofT to a new, distinct variable not used
elsewhere in the construction. Then:

� � � � �
m�
i��

�i�T �� ��s�� �

where it is understood that� is extended to be the identity on constants. �

One can easily verify that the unifier oft and� is defined in Definition 13 if and only if� � � is satisfiable.

Example 6 For� and� as introduced at the beginning of this section:

� � � � 	 T

a y� �f � ��
y� v� ��� ��
a a ��� ��
a v� ��� t�
y� y� a �f � t�

�

Theorem 1 Let� � �T� t� and� � �S� s� be two ttqs, wheret andS are of the same arity. If� � � is satisfiable
and� is cfree, then� � � � � � �.

PROOF. Let S � fs�� � � � � smg, � and�i be as in Definition 13 (i � f�� � � � �mg). � � � satisfiable implies that
� �� is defined. We first show� �� v � ��. Assume� �I��� u for some temporal relationI of the same arity asT .
It suffices to showI ���� u. � �I� �� u implies the existence of a valuation� such that��S� v � �I� and��s� � u.
Since� is cfree,I �� ��si� for eachi � f�� � � � �mg. Hence, for eachi � f�� � � � �mg, there exists a valuation
i
such that
i�T � v I and
i�t� � ��si�. Clearly,��si� � ����si�� for (i) if t�j� � t�k� then
i�t�j�� � 
i�t�k��,
hence��si�j�� � ��si�k��, and (ii) if t�j� � a then
i�t�j�� � ��si�j�� � a. Let� be a valuation for the variables
occurring in� � � such that:

1. if v is a new, distinct variable introduced in�i�T �, then��v� � 
i��i
���v��; and

2. if v occurs inS, then��v� � ��v�.

Let � � � be the tableau�R� ��s��. Then��R� v I, henceI ���� ����s�� � u.
We next show� � � v � � � . SupposeI ���� u. Hence, there exists a valuation� such that���i�T �� v I for

eachi � f�� � � � �mg, and����s�� � u. Since���i�T �� v I, it follows ���i�t�� � ����si��� � �I�, for each
i � f�� � � � �mg. Hence,�� � ���S� � ����S�� v � �I�. Consequently,�� � ���s� � ����s�� � u���� �I��. This
concludes the proof. �

7 Dichotomic temporal tableau queries

Definition 9 provides no effective procedure for deciding whether a ttq is cfree. The family of dichotomic ttqs,
as defined next, is a subset of the family of cfree ttqs; moreover, it can be easily verified whether a given ttq is
dichotomic. Dichotomic ttqs possess some interesting properties that will be useful later on.
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Definition 14 Let � � �T� t� be a ttq. Define�, the equivalence relation on the bounded non-temporal variables
of � defined as the reflexive, transitive closure of:

u � v iff some tableau tuple ofT contains bothu andv.

We definefrom�� � as the smallest set containing each bounded non-temporal variableu of � for which there exists
a temporal tableau tuple inT that contains bothf and a variablev � u. The setto�� � of bounded non-temporal
variables is defined similarly (replacef by t).

A ttq � is calleddichotomiciff from�� � � to�� � � fg.7 �

Example 7 Let � be the following ttq:

� � 	 � T

x a u �f � ��
x v w� �	� ��
v a w� �	� t�
z� z� b ��� ��
x �f � t�

�

The bounded non-temporal variables arefu� v� w�� w�� z�� z�g. We havev � w�, v � w�, andz� � z�. Hence, the
equivalence classes of the relation� arefug, fv� w�� w�g, andfz�� z�g. from�� � � fug� to�� � � fv� w�� w�g.
The ttq� is dichotomic.

Lemma 5 Every dichotomic ttq is cfree.

PROOF. Let� � �T� t� be a ttq such thatfrom�� ��to�� � � fg. LetI be a temporal relationsuch thatI �� h�a� �p� q�i
andI �� h�a� �r� s�i, where�p� q� and�r� s� are unifiable. Hence, there exists a valuation�� such that���T � v I and
���t� � h�a� �p� q�i, and there exists a valuation�� such that���T � v I and���t� � h�a� �r� s�i. It suffices to
show thatI �� h�a� �p� q�� �r� s�i. That is, it suffices to show that there exists a valuation
 such that
�T � v I
and
�t� � h�a� �p� q�� �r� s�i. This is obvious if�p� q� � �r� s� or �r� s� � �p� q�. Next assume�p� q� �� �r� s� and
�r� s� �� �p� q�. Then�p� q���r� s�equals either�p� s�or �r� q�. Without loss of generality, assume�p� q���r� s� � �p� s�.
Obviously, for every free non-temporal variablex of � , ���x� � ���x� � 
�x�. For every bounded non-temporal
variablev of � , define
�v� as follows:


�v� �

��
�

���v� if v � from�� �
���v� if v � to�� �
���v� if v � from�� � andv � to�� �

Moreover, let
�f � � p and
�t� � s. Since
�t� � h�a� �p� s�i, it suffices to show that
�T � v I. Consider each
tableau tupleu of T in turn.

u � h�y� �f � t�i. Since� is dichotomic,�y contains no bounded non-temporal variables, thus
��y� � ����y� � ����y�.
Sinceh����y�� �p� q�i� I andh����y�� �r� s�i� I, it follows h
��y�� �p� s�i� I.

u � h�y� �f � l�i. We have
��y� � ����y�. Sinceh����y�� �p� l�i� I, it follows h
��y�� �p� l�i� I.

u � h�y� �k� t�i. Analogous to the previous case.

u � h�y� �k� l�i. Two cases can occur:

1. u contains a variable ofto�� �. We have
��y� � ����y�. Sinceh����y�� �k� l�i� I, it follows h
��y�� �k� l�i� I.

2. u contains no variable ofto�� �. We have
��y� � ����y�. Sinceh����y�� �k� l�i� I, it follows
h
��y�� �k� l�i� I.

This concludes the proof. �

Dichotomy is preserved by ttq composition:

7Note that eitherfrom���� to��� � fg or from���� to��� � from��� � to���.

11



Lemma 6 If � and� are dichotomic ttqs and� � � is defined, then� � � is dichotomic.

PROOF. Let� � �T� t� and� � �S� s� withS � fs�� � � � � smg be as in Definition 13. Assume� and� dichotomic.
Suppose� � � is not dichotomic. Then there is a sequence of tableau tuples of� � �, where each�ij captures its
meaning from Definition 13 (ij � f�� � � � �mg, overbraces added for clarity):

tableau tuples in�i��T �z �� �
�i��t

i�
� ��i� �t

i�
� � � � � �i��t

i�
k�
�

tableau tuples in�i��T �z �� �
�i��t

i�
� ��i��t

i�
� � � � � �i��t

i�
k�
� � � �

tableau tuples in�il �T �z �� �
�il�t

il
� ��il �t

il
� � � � � �il�t

il
kl
�

where:

� l � �,

� i� �� i� �� � � � �� il � f�� � � � �mg,

� ti�� � � � � � t
il
kl

are tableau tuples ofT ,

� every two tuples that are neighbors in the sequence have a bounded (w.r.t.� � �) non-temporal variable in
common, and

� �i��t
i�
� � contains the temporal variablef and�il�t

il
kl
� containst.

Then the temporal tableau tuplesi� of S containsf , sil containst, andsij andsij�� have a bounded (w.r.t.�)
non-temporal variable in common, for eachj � ��� l ��. Two cases can occur.

1. If l � � then� is not dichotomic.

2. If l � � thensi� �T� � �f � t�. If si� contains a bounded non-temporal variable, then� is not dichotomic. If
si� contains no bounded non-temporal variable, then� is not dichotomic.

The desired result follows by contradiction. �

8 Homomorphisms and dichotomic temporal tableau queries

For conjunctive queries, the problem of query containment is settled by an elegant Homomorphism Theorem [1].
When conjunctive queries are extended with inequality [6, 13] or linear [4] constraints, the homomorphism tech-
nique fails and the query containment problem becomes considerably more difficult. In this section, we show that
query containment for dichotomic ttqs can be decided by applying the homomorphism technique a finite number
of times. This finite number is linear in the number of distinct time points occurring in the ttqs under consideration.

Definition 15 Let � � �T� t� and� � �S� s� be two ttqs such thatT andS have the same arity, as well ast ands.
A homomorphismfrom � to � under�p� q� �Z��� is a substitution� for the non-temporal variables inS such that
��Sf�p�t�q� v Tf�p�t�q and��s� � t. �

We now provide a number of lemmas that will be used in the main theorem to follow.

Lemma 7 Let� � �T� t� be a ttq. Let� � �S� s� be a cfree ttq such thatT andS have the same arity, as well as
t ands. Then� v � iff for each�p� q� �Z���, there exists a homomorphism from� to � under�p� q�.

PROOF. Only-if part. Assume� v �. SinceTf�p�t�q �
�
tT��p�q� is obvious,tT��p�q� � ��Tf�p�t�q�. Since� is

cfree,Tf�p�t�q �
� tT��p�q�. Hence, there exists a valuation� such that��S� v Tf�p�t�q and��s� � tT��p�q�. �

restricted to the non-temporal variables inS is a homomorphism from� to � under�p� q�.
If part. AssumeI �� u with u�T� � �p� q�, for some temporal relationI. Hence, there exists a valuation� such

that��T � v I and��t� � u, i.e., ��f � � p and��t� � q. By the premisse, we can assume the existence of a
homomorphism� such that��Sf�p�t�q� v Tf�p�t�q and��s� � t. Then����Sf�p�t�q�� v I and����s�� � u.
It follows I �� u. This concludes the proof. �

The following example shows that, in general, the “homomorphism property” does not hold for ttqs.
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Example 8
� � � 	 T

x u �f � ��
x u �	� �� �t��
x v �	� ��
x v �	� t�
x �f � t�

and

� � 	 T

x u �f � ��
x v �	� ��
x v �	� t�
x �f � t�

Note incidentally that� � � dd�ee where� as in Example 4.� is obtained from� � by removing the tableau tuplet�.
For each�p� q� �Z���, if p � 	 then the identity is a homomorphism from� � to � under�p� q�, and ifp � 	 then
f�x� x�,�u� v�,�v� v�g is a homomorphism from� � to � under�p� q�. Hence, for each�p� q� � Z���, there exists
a homomorphism from� � to � under�p� q�. The “homomorphism property” [6] does not hold: There exists no
substitution� such that for each�p� q� �Z���, � is a homomorphism from� � to� under�p� q�: We must sometimes
mapu to u, and sometimes tov.

We now show that the necessary and sufficient condition for� v � of Lemma 7 can be simplified if� is di-
chotomic.

Lemma 8 Let� � �T� t� be a ttq. Let� � �S� s� be a dichotomic ttq such thatT andS have the same arity, as well
ast ands. If for everyp �Z, there exists a homomorphism from� to � under�p� p�, then for every�p� q� �Z���,
there exists a homomorphism from� to � under�p� q�.

PROOF. The tableau tuples ofS can be partitioned in four disjoint sets:

S�: tableau tuples with timestamp�f � t�.

S�: tableau tuples containing no variable offrom�� � � to�� � � ff � tg.

S: tableau tuples containing at least one variable offrom�� � as well as tableau tuples with timestamp�f � l� con-
taining no bounded non-temporal variables (l �Z).

S�: tableau tuples containing at least one variable ofto�� � as well as tableau tuples with timestamp�k� t� contain-
ing no bounded non-temporal variables (k �Z).

Importantly, since� is dichotomic, the same bounded non-temporal variableu cannot occur in two tableau tuples
that belong to distinct partitions offS �� S�� S� S�g. Let �p� q� �Z���. Assume that for everyp �Z, there exists
a homomorphism from� to � under�p� p�. Consequently,

� All non-temporal variables inS� are free. Let� be a substitutionsuch that��s� � t. Whenever�� is a homo-
morphism from� to � , then for each free non-temporal variablex of �, ���x� � ��x�. Since��S�f �t�r� v
Tf �t�r for everyr �Z, it follows ��S�

f�p�t�q� v Tf�p�t�q.

� There exists a homomorphism�� from � to � under�p� p�. Since neitherf nort appears inS�,
���S�

f�p�t�q� v Tf�p�t�q.

� There exists a homomorphism� from� to � under�p� p�. Sincet does not appear inS, ��S
f�p�t�q� v

Tf�p�t�q.

� There exists a homomorphism�� from� to � under�q� q�. Sincef does not appear inS�, ���S�
f�p�t�q� v

Tf�p�t�q.

Let � be the substitution satisfying for each non-temporal variableu of � :

��u� �

����
���

���u� � ��u� � ���u� if u is a free variable of�
���u� if u is a bounded variable appearing inS�

��u� if u is a bounded variable appearing inS

���u� if u is a bounded variable appearing inS�

Obviously,� is a homomorphism from� to � under�p� q�. This concludes the proof. �
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As a corollary, a necessary and sufficient condition for� v �, with � dichotomic, is the existence of a homo-
morphism from� to � under�p� p�, for eachp � Z. Next it is intuitively clear that it should be sufficient to look
at a finite number of distinguished time points, as captured next.

Definition 16 Let P be a (possibly empty) finite set of time points. We define�P as the equivalence relation on
Zdefined as the reflexive, symmetric, transitive closure of:

p �P q iff p � q and for no pointk � P , p � k � q.

�

For example, ifP � f	� �g then the equivalence classes of�P are: fp � Zj p � 	g, f	g, ��� ��, f�g, and
fp �Zj p � �g.

Lemma 9 Let � and� be two ttqs whose tableaux and summary rows are pairwise of the same arity. LetP �
apdom��� � apdom�� �. Let p� q � Zsuch thatp �P q. Each homomorphism from� to � under�p� p� is a
homomorphism from� to � under�q� q�.

PROOF. Easy. �

Theorem 2 Let� � �T� t� be a ttq. Let� � �S� s� be a dichotomic ttq such thatT andS have the same arity, as
well ast ands. LetP � apdom�� �� apdom���. LetB be a set of time points containing one representative from
each equivalence class of the relation�P . Then� v � iff for eachp � B, there exists a homomorphism from� to
� under�p� p�.

PROOF. Immediate from Lemmas 7, 8, and 9. �

To conclude, a necessary and sufficient condition for� v �, with� dichotomic, is the existence of a homomor-
phism from� to � under�p� p�, for one arbitrarily chosen representativep of each equivalence class of�P , where
P � apdom�� � � apdom���. Note that�P has at most		 jP j� � equivalence classes.

Example 9 Consider the queries� � � �T �� t�� and� � �S� s� of Example 8. LetP � apdom�� ��� apdom��� �
f	� �g. B � f�� 	� �� �� �g contains one time point from each equivalence class of�P . Since� � is dichotomic,
� v � � if and only if for eachp � B, there exists a homomorphism from� � to � under�p� p�. Consider, for
example, the time point�:

T �f �t�� � 	 T

x u �	� ��
x v �	� ��

and
Sf �t�� � 	 T

x v �	� ��
�

Clearly,f�x� x�� �u� v�� �v� v�g is a homomorphism from� � to � under��� ��.

For query optimization reasons, we are interested in the followingproblem: Given a ttq� , find a minimal (w.r.t.
tableau size) ttq equivalent to� . It is natural to ask whether any dichotomic ttq can be minimized by simply re-
moving tableau tuples. This is known to be true for non-temporal conjunctive queries [1], but false for conjunctive
queries containing inequalities [12]. It does not generally hold for dichotomic ttqs, as illustrated by the following
example.

Example 10 The query� of Example 4 is equivalent to both� and	:

� � 	 T

x u �f � ��
x u �	� ��
x v �	� t�
x �f � t�

and

	 � 	 T

x u �f � ��
x u �	� t�
x �f � t�

�

	 is minimal, but not dichotomic, and hence does not possess some nice properties of dichotomic ttqs (Theorems 1
and 2).� cannot be obtained by simply removing tableau tuples from� . It can be obtained, however, by removing
tableau tuples fromdd�ee. We have no examples of minimizationwithin the class of dichotomic ttqsthat do not
amount simply to removing tableau tuples from stretched ttqs (stretched ttqs were defined in Definition 10).
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9 From SPC
time to dichotomic temporal tableau queries

We now apply the results obtained so far in the optimization ofSPCtime queries. The overall strategy proceeds in
two steps: First, translate a givenSPCtime queryQ into an equivalent dichotomic ttq� , and then rely on Theorem 2
to remove redundant rows from� . The first step raises a number of issues:

� In the non-temporal case, the normal form ofSPC queries allows direct mappings betweenSPC and tableau
queries. Recall from Section 1 that this normal form is no longer available inSPCtime, and hence the map-
ping fromSPCtime queries to ttqs will be more complicated.

� Although eachSPCtime query can be easily written as a composition of ttqs������� � ���n (cf. Definition 17
below), this composition may be equivalent to no single ttq (cf. Lemma 4 and Theorem 1).

� The ttq obtained must be dichotomic if we want to rely on Theorem 2 for the detection of redundant tableau
tuples.

We develop an approach that inductively constructs ttqs corresponding to subexpressions of anSPCtime query.

Definition 17 For eachSPCtime queryQ�R�, tab�Q� is recursively defined as follows. AssumeR is a relation
variable of aritym, andQ�R� is anSPCtime query of arityn.

1. tab�R� �
� � � � m T

x� � � � xm �f � t�
x� � � � xm �f � t�

2. tab���p�q��Q�� � tab�Q� �

� � � � n T

x� � � � xn �f � q�
x� � � � xn �p� t�
x� � � � xn �f � t�

3. tab��i�j�Q�� � tab�Q� �
� � � � i  � i i � � � � � n T

x� � � � xi�� xj xi�� � � � xn �f � t�
x� � � � xi�� xj xi�� � � � xn �f � t�

4. tab��i�a�Q�� � tab�Q� �
� � � � i � i i� � � � � n T

x� � � � xi�� a xi�� � � � xn �f � t�
x� � � � xi�� a xi�� � � � xn �f � t�

5. tab��j������jk�Q�� � tab�Q� �
� 	 � � � n T

x� x� � � � xn �f � t�
xj� � � � xjk �f � t�

� provided that the composition results in

a dichotomic ttq; otherwisetab��j������jk�Q�� is undefined. Note thatxi is bounded w.r.t. the right-hand ttq
for everyi � f�� � � � � ng n fj�� � � � � jkg.

6. AssumeQ� andQ� are of arityn� andn� respectively. Lettab�Q�� � �T�� t�� andtab�Q�� � �T�� t��.
Assume without loss of generality thatT� andT� have no variables in common except forf andt. Let t �
ht����� � � � � t��n��� t����� � � � � t��n��� �f � t�i, a tableau tuple of arityn��n�. Thentab�Q� 	Q�� � �T��
T�� t�.

�

Theorem 3 LetQ�R� be anSPCtime query.8 If tab�Q� is defined, thentab�Q� � Q.

PROOF. Assumetab�Q� is defined. We first show by induction on the structure ofQ, thattab�Q� is dichotomic.
This is obvious for the base caseQ � R (item (1) in Definition 17). For the selection, sincetab�Q� is dichotomic by
the induction hypothesis, and since the ttqs introduced in items (2), (3), and (4) of Definition 17 are all dichotomic,
it follows by Lemma 6 that the result is dichotomic. For the cross product (item (6) in Definition 17), sincetab�Q��

8As mentioned in Section 3,Q�R� is assumed to be satisfiable.
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andtab�Q�� are dichotomic by the inductionhypothesis, and have no non-temporal variables in common, it follows
that tab�Q� 	Q�� is dichotomic. Finally, Definition 17 explicitly requires dichotomy in the case of projection
(item (5) in Definition 17).

Next we show by induction on the structure ofQ, thattab�Q� � Q. This is obvious ifQ � R. Next we show
tab���p�q��Q�� � ��p�q��Q�. Let � be the ttq:

� � � � � n T

x� � � � xn �f � q�
x� � � � xn �p� t�
x� � � � xn �f � t�

�

We show� �I� � ��p�q��I� for every temporal relationI of arity n. The inclusion��p�q��I� � � �I� is straightfor-
ward. For the opposite inclusion, assumeI �

�
h�a� �p�� q��i, wherep� � q�. Hence,h�a� �p�� q�i� I andh�a� �p� q��i� I.

By Lemma 1,h�a� �p�� q�� � �p� q�i� I. Obviously,h�a� �p�� q�� � �p� q�i� ��p�q��I�, henceh�a� �p�� q��i���p�q��I�.
Sincetab�Q� is dichotomic, and hence cfree by Lemma 5,tab�Q��� � � �tab�Q� by Theorem 1. By the induction
hypothesis,tab�Q� � Q. It follows tab���p�q��Q�� � ��p�q��Q�. The other forms of selection, as well as projec-
tion (item (5) in Definition 17) are treated analogously. For the cross product, assumetab�Q�� andtab�Q�� are as
in Definition 17. We first showtab�Q� 	 Q�� v Q� 	 Q�. AssumeI �tab
Q��Q�� u for some temporal relation
I. Hence, there exists a valuation� such that��T�� v I, ��T�� v I, andu � ��t�. Hence,I �tab
Q�� ��t�� and
I �tab
Q�� ��t��. By the induction hypothesis,��t���Q��I� and��t���Q��I�, henceu� �Q�	Q���I�. Finally,
we showQ�	Q� v tab�Q� 	 Q��. Letu� �Q�	Q���I�. Hence, there existu� � Q��I� andu� � Q��I� such
that:

u � hu����� � � � � u��n��� u����� � � � � u��n��� u��T� � u��T�i �

Sincetab�Q�� andtab�Q�� are dichotomic,I �tab
Q�� u� andI �tab
Q�� u� by the inductionhypothesis. Hence there
exists valuations�� and�� such that���T�� v I, ���T�� v I, ���t�� � u�, and���t�� � u�. Define� as the val-
uation satisfying��v� � ���v� if v is a non-temporal variable inT�, ��v� � ���v� if v is a non-temporal variable
in T�, and���f �� ��t�� � u�T�. SinceT� andT� have no non-temporal variables in common,� is well-defined.
Obviously,��T� � T�� v I, henceI �tab
Q��Q�� ��t�, and��t� � u. This concludes the proof. �

To conclude this section, we show how the above results can be applied to simplify the queryQ�C � introduced
in Section 1.

Example 11 Consider theSPC queryQ� � ���������	�����Paris�C ��� introduced in Section 1. Using Defini-
tion 17, the ttqtab�������	�����Paris�C ��� is computed (call it� ):

� � 	 T

x Paris �f � ���
x Paris ���� t�
x Paris �f � t�

�

For the projection, we obtain:

tab�Q�� � � �
� 	 T

x v �f � t�
x �f � t�

�

� 	 T

x Paris �f � ���
x Paris ���� t�
x �f � t�

�

which is dichotomic and hence well-defined.

Example 12 Consider the ttqQ�C � introduced in Section 1:

Q�C � � ��������

Q�z �� �
���������	�����Paris�C ���	

Q�z �� �
���������������Paris�C ����� �
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Using a partial result of Example 11, the ttqtab�Q� is computed (call it� ):

� � 	 T

x Paris �f � ���
x Paris ���� t�
x Paris �f � ���
x Paris ���� t�
x �f � t�

�

The outermost projection caused no problem: The result is dichotomic. We then rely on Theorem 2 to verify that
the first and last tableau tuple can be removed without changing the meaning of the query. We finally obtain:

Q �

� 	 T

x Paris ���� t�
x Paris �f � ���
x �f � t�

�

It can be verified (cf. Example 11) that the latter ttq is equivalent to���������������Paris�C ���.

10 Ubiquitousness

In this section, we extend the operatortab��� to certainSPCtime queries left uncaptured by Definition 17. This
extension is motivated by the following example. Suppose we want to buildtab�Q� for a queryQ that contains a
subqueryQ� � ����������R��, whereR has arity	. By Theorem 1:

Q� �

tab��������R�� � 	 T

x y �f � ��
x y �	� t�
x y �f � t�

�
� 	 T

x v �f � t�
x �f � t�

�

� 	 T

x u �f � ��
x u �	� t�
x �f � t�

Unfortunately, the outcome ttq is not dichotomic, and hence may not be cfree. Consequently, the outcome cannot
be used later on in the inductive procedure that constructstab�Q�, as we can no longer rely on Theorem 1, which
tells us that� � � � � � � provided that� is cfree. However, a simple observation can help us to solve this
problem. Whenever a tuplehx� u� �f � t�i belongs to�������R�, then�f � t� must necessarily contain�	� ��. Then in
order to havehx� �f � t�i in ����������R��, it is both necessary and sufficient to havehx� u� �f � ��i andhx� v� �	� t�i in
�������R�, whereu andv may be equal. These tuples will be coalesced inQ�. Hence, it is correct to conclude:

Q� �

tab��������R�� � 	 T

x y �f � ��
x y �	� t�
x y �f � t�

�

� 	 T

x u �f � ��
x v �	� t�
x �f � t�

�

� 	 T

x u �f � ��
x u �	� ��
x v �	� ��
x v �	� t�
x �f � t�

The latter result is dichotomic, and can be used in the inductive procedure that computestab�Q�. Note incidentally
that an optimization consists in removing the second or third row (see Examples 8 and 10).

Definition 18 Let � � �T� t� be a ttq. An interval�p� q� is ubiquitousfor � iff for every temporal relationI of the
same arity asT , s � � �I� impliess�T� � �p� q�.

The proceduretab��� can then be extended as follows: Iftab��j������jk�Q�� remains undefined by Definition 17,
butQ has a non-empty ubiquitous interval (say�p� q�), then:

tab��j������jk�Q�� � tab�Q� �

� 	 � � � ji � � � n T

x� x� � � � xji � � � xn �f � q� �t��
v� v� � � � xji � � � vn �p� t� �t��
xj� � � � xjk �f � t� �t�

�

That is,t��ji� � t��ji� � t�i� for eachi � f�� � � � � kg, and all variables are pairwise distinct otherwise. Note that
the right-hand ttq is dichotomic. �
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It is now straightforward to show that Theorem 3 remains valid under this extended definition oftab���. Def-
inition 18 raises another problem, however: Determine whether a given dichotomic ttq� � tab�Q� has a non-
empty ubiquitous interval. It can be easily verified that ifapdom�� � � fg, then� has no non-empty ubiquitous
interval. Next, assumeapdom�� � �� fg. Let m andM bemin�apdom�� �� andmax�apdom�� �� respectively.
It can be easily seen that if� has a non-empty ubiquitous interval, then it has an ubiquitous interval�p� p� with
p � �m�M �. Hence,� has a non-empty ubiquitous interval if and only if for somep � �m�M �, � v tab���p�p��Q��.
The latter inclusion can be verified using Theorem 2. Finally, it can be verified that ifp� �apdom
�� p�, then
� v tab���p��p���Q�� if and only if � v tab���p��p���Q��. So if p� �apdom
�� p�, it suffices to verify either
� v tab���p��p� ��Q�� or � v tab���p��p���Q��.

11 Contributions to related work

TheSPCtime algebra complies with common primitives in existing temporal query languages [9].SPCtime queries
could be optimized by minimizing an equivalent conjunctive query with inequalities. However, this approach is
expensive [6, 13] and may overlook some simplifications that apply in the temporal case, but not in general. What
is more, theSPC� algebra does not capture coalescing, which is non-monotonic in strict sense.9

Temporal tableau queries (ttqs) extend classical tableau queries with time intervals that can contain two tem-
poral variablesf andt. Interestingly, if� is dichotomic, then� v � coincides with the existence of		N �� (or
less) distinguished homomorphisms from� to � , whereN is the number of distinct time constants occurring in�
or � . Consequently, testing query containment is easier for dichotomic ttqs than inSPC�. The proceduretab���
translatesSPCtime queries into equivalent dichotomic ttqs, which can then be simplified by removing redundant
tableau tuples. An open problem is whether a minimal (w.r.t. tableau size) equivalent dichotomic ttq can always be
achieved by simply removing tableau tuples. Unfortunately,tab��� cannot handle all queries with projection and
associated coalescing. Nevertheless, it can detect and handle some queries that are outside the scope ofSPC�.
For example,Q � ����������R��, whereR has arity 2, is non-monotonic in strict sense, but has an equivalent
dichotomic ttq. An open problem is deciding containment ofSPCtime queries with projections that can result in
an unbounded number of tuples being coalesced into a single one. It is unclear whether such projections can be
captured by finite tableaux.

The use of “homomorphisms” for deciding containment of queries that deal with intervals, is somehow re-
markable. Queries in which each variable is bounded by a constant from only one side (either left or right) have
been called semiinterval queries. The homomorphism property is known to fail for semiinterval queries [5]. Left-
semiinterval queries are queries whereall inequalities are of the formx�c, wherex is a variable,c is a constant,
and� � f�� ���g, i.e., inequalities can express only upper bounds for variables. Right-semiinterval queries are
defined analogously. In [6] it is shown that the homomorphism property holds for left-semiinterval queries and
right-semiinterval queries. Temporal tableau queries are neither left- nor right-semiinterval. IfSPCtime queries
are translated inSPC�, inequalities of the formf � p, f � p, t � p, t � p emerge, together withf � t (p �Z).
For example, a tableau tupleh�x� �f � p�i expresses: Iff � p thenh�x� �f � p�i should be in the argument temporal
relation (up to a substitution of constants for variables in�x), and iff � p thentrue.

The operatortab���mapsSPCtime queries to ttqs. The inverse mapping from ttqs toSPCtime has not been con-
sidered. In this respect, it is interesting to note that the removal of redundant rows intab�Q� does not necessarily
lead to a simplificationof theSPCtime queryQ. For example, the querydd�ee of Example 4 equalstab�����������R���,
whereR is of arity	. The tableau size ofdd�ee can be reduced, as shown in Example 10. However, it is easy to see
that����������R�� is equivalent to noSPCtime query with less operations. Recall incidentally that some ttqs are
equivalent to noSPCtime query, as illustrated by Example 2.

Some limits of our ttq formalism are as follows. The results are presented for queries over a single relation,
but can be generalized for database schemas involving more than one relation. For multiple relations, a rule-based
formalism may be more appropriate than the tableau formalism. We considered only valid time; the extension to
bitemporal relations is an open issue. As already noticed in [14], many of our results rely on the assumption that
time is discrete. It is interesting to investigate how the ttq formalism needs to be adapted to deal with dense time.

Finally, it is important to note that ttqs have been introduced as a tool for query optimization, and by no means
as a query language for end-users. Several temporal query languages for end-users have been proposed in the liter-
ature. Such query languages may use point-based time instead of interval-based time, as in [11]. However, even if

9Monotonic in strict sense means thatI � J impliesQ�I� � Q�J�.
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point-based time is used at the conceptual level, time intervals are likely to emerge at the storage level for efficiency
reasons, and hence optimization of interval-based queries remains significant.
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