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Abstract

Tuples of atemporal relation are equipped with a valid time period. A simple extension of the SPC (Selection-
Projection-Cross product) algebra for temporal relations is defined, which conforms to primitives in existing tem-
poral query languages. In particular, temporal projection involves coalescing of time intervals, which results in
non-monotonic queries. Also the “select-from-where” normal form is no longer available in this temporal ex-
tension. In view of these temporal peculiarities, it is natural and significant to ask whether query optimization
techniques for the SPC algebra still apply in the temporal case. To this extent, we provide a temporal extension
of the classical tableau formalism, and show its use and limits for temporal query optimization.

1 Introduction

Several algebras for temporal relational databases have been published since the early eighties[3, 8]. In more recent
years, there has been a growing interegtractical languages for temporal databases. This has led to a number of
temporal extensions of SQL [7, 9, 11]. Ttieeoreticalfoundations of these temporal query languages—including
issues like expressiveness, complexity, computability, genericity, and optimization—have not been systematically
explored. In this paper, we study query equivalence and optimization in a terBp@radlgebra, containing tem-
poral extensions of selection, projection, and cross product.

Consider the temporal relatiari of celebrities shown in Figure 1. The first row means that Piaf lived in Paris
from 15to 63 (the twentieth century is assumed (from) and7'O are special timestamping attributes. To answer
the query:

Which celebrities lived during the entire time period 45-70?

we first perform a temporal projection on the first column, which results in the tal§l€) of Figure 1. Note

that the two rows about Brel that existeddh have been “coalesced” into a single one. Next we select the rows
that include the intervgh5, 70]. This selection is denotet}ss 7q)(71(C')) and retrieves only the row about Brel.
This simple temporal query already shows two fundamental theoretical divergences from the non-teéigoral
algebra:

e The queryops 701(71(C)) is non-monotonic in strict sense&X C ¢’ does not implyopss 7g(71(C)) C
oas,70(m1(C’)). For example, folC" = C' U {(Brel,London, 79,90}, the answetr s 7o1(71(C")) is the
singleton temporal relatiofyBrel,29,90}, which is not a superset of the temporal relaiggy 7o) (71 (C))
of Figure 1. Adding a temporal tuple @ results in an extension of the time interval in the answer set from
[29, 78] to [29, 90].

Let SPCS denote the non-temporaPC algebra extended with inequality selections () ando g 5(-)
wherefd € {=,#,<,>,<,>}. Isops,70(m1(C)) expressible iPCS? The answer is “no,” since all
SPCS queries are monotonic, while strictly speakingy; 7o (71 (C)) is non-monotonic. So although coa-
lescing is known to be first order expressible [2], it turns out to be non-monotonic.

o Inthe subqueryss 701(71(C)), we cannot push the selection throughthe inner projection: The result of the
queryayss 70)( C') is empty. Itis correct to conclude that the normal for;r@aF(Rl X ... X Rg))[1, p. 55]
that exists in the non-temporaP C algebra, is not always attainable in the temporal case.

Figure 1 also illustrates the temporal cross productJoining two tuples involves concatenating the non-
temporal values and intersecting the time intervals. The algebra containing the temporal versions of selection, pro-
jection, and cross product will be call&®C"™ ™. Query equivalence and optimization in thBC "™ algebra is
at the center of this paper. For example, consider the query:

Q1 Q2
Q(C) = 7T1(0'1:2(7T1(0'[14,18](0'2:Paris(C))) X 7T1(0'[40,45](0'2:Paris(C))))) .

The subquerie§, and@)- retrieve names of celebrities living in Paris during the fitdt{ 8) and the secondi(—
45) world war respectively. So the overall query(c1-2(@1 x Q2)) asks for names of celebrities staying in Paris

1To make this question meaningful, we implicitly assume that the colufitheind TO are addressed by their positionsdh i.e., 3 for
FR and4 for TO.



cl 1 2 FR TO
Piaf Paris 15 63 ous,7o)(m(C)) | 1 FR TO
Brel Brussels 29 52 | Brel 29 78
Brel Paris 53 78

() xm(C) | 1 2 FR TO

w1 (C) | 1 FR TO Piaf  Piaf 15 63
Piaf 15 63 Piaf  Brel 29 63
Brel 29 78 Brel  Piaf 29 63

Brel  Brel 29 78

Figure 1: Temporal projection and selection.

during both world wars. Under the given temporal semantics, celebrities in the answer set did not leave Paris during
the interbellum period. So the quefyhappens to be equivalent to the simpler query:

™ (0’[14745] (UzzParis(C))) :

Which techniques can be used for query optimization inth€'™¢ algebra? One may think of the following
approach: First translate the query into an equivaiént < query, and then optimize thi#PC< query. This ap-

proach may not be appropriate for two reasons, however. Firstly, the approach clearly falf8f° queries

that are not expressible #PC<. Such queries exist, as shown above. Secondly, the approach may be needlessly
expensive folSPC"™ queries that can be translated iISt8BC<. One should know that query optimization in
SPCS is considerably more difficult than $PC [6, 12]: Query optimization it PC is based on an elegant Ho-
momorphism Theorem [1], which unfortunately fails when inequalities are added. We may hope, however, that
query optimization isPC"™¢ s easier than iSPC<, because it can profit from the syntactic restrictions on the
ways in which time points can be compared for inequality. So our approach to query optimiz&#mH' is not

to simply “de-temporalize” queries and then apply non-temporal optimization techniques. Instead, we are going
to “temporalize” the tableau formalism [1] and investigate its use for temporal query optimization. In this way, we
want to take profit of temporal semantics.

Several authors, for example in [11], advocate that timestamping by time points is conceptually cleaner than
timestamping by time intervals. We agree that there are good arguments for using point-based timestamping
the conceptual levelHowever, even if point-based timestamping is used at the conceptual level, efficiency con-
siderations may dictate the use of time intervals or constraints at the storage level. Hence, investigating query
optimization for interval-based timestamping is significant.

The organization of the paper is as follows. Sections 2 and 3 formalize the constructs of temporal relation and
SPC™™¢ algebra. Sections 4 through 8 provide the tools that will be used for query optimizatiorsib¢h&d™ al-
gebra. Section 4 introduces the construct of temporal tableau query (ttq). The semantics of ttgs relies on a property
calleddomain independencehich is similar in nature to domain independence in the relational calculus. Domain
independence of ttgs is decidable, as shown in Section 5. Section 6 concerns the compositioDizhtbdgmic
temporal tableau queries, introduced in Section 7, are a syntactically restricted class of ttgs with nice properties. In
particular, query containment for dichotomic ttgs can be decided by a small temporal extension of the homomor-
phism technique, as shown in Section 8. Finally, Sections 9 and 10 discuss the transfornfioh'8f queries
into equivalent ttgs, which can then be simplified by using the tools introduced in earlier sections. Section 11 relates
the main results to existing work.

2 Temporal relation

This section introduces temporal relations and related constructs.

Definition 1 We use the sét of integer numbers to denote time. We defiies := {(p, q) | p,¢ € Z andp < ¢}.
We define for eacly, ¢ € Z, theinterval[p,q] := {# € Z | p < # < ¢}. The empty interval is denoted. The
set of all intervals is denoted Two intervals areunifiableif their set union is again an interval. O

Lemmal The setl, ordered by set inclusion, is a lattice satisfying:

Infimum. [p, gAY, ¢l =Ip, ¢l NP, ¢].



Supremum. If p < g andp’ < ¢’ then[p, ¢'] and[p’, ] are unifiable andp, ¢] V [p’, ¢'] = [p, '] U [P, q].

PrRooFk The proof of theinfimumpart is straightforward. For theupremunpart, assume < ¢ andp’ < ¢'.
Further assumg < p’ without loss of generalitylp, ¢'] and[p’, q] are unifiable, or elsg’ > ¢’, a contradiction.
[p,q], [, 4] C Ip, ¢'1U[Y, q] follows immediately. Sincép, ¢] Vv [p’, ¢'] must necessarily include, ¢'] and[p’, q],
it follows that[p, ¢'] U [p’, ¢] constitutes a least upper bound. This concludes the proof. O

Intervals ofll are used to timestamp tuples; the timestamping attribute is defiotédtemporal relation is a
coalesced set of temporal tuples with non-empty timestamps. For example, the temporal reldtlooth of arity
2 (T does not add to the arity):

We write (a, b, [1, 3]) E J because the temporal tugle, b, [1, 3]) is “contained” in the first tuple of . The rela-
tionshipe between atemporal tuple and a temporal relation is extended in a natural way to a relafivastupg
temporal relations. In the above example, J.

Definition 2 We assume a countably infinite shtm of constantsLetn € N. A temporal tupleof arity n is an

element ofdom” x I. If ¢ is a temporal tuple of arity, then thei*® coordinate of (i € {1,...,n}) is denoted
t(i), and the(n + 1) coordinate is denotetT). ¢(T) is also called théimestampf ¢. Two tuplest ands of
arity n arevalue-equaldenoted = s, iff ¢(:) = s(i) for eachi € {1,...,n}.

Let? be atemporal tuple aril S sets of temporal tuples, all of the same arity. We writeT iff either¢(T) =
{} or T contains a temporal tuplewith s < ¢ and¢(T) C s(T). We writeT C S iff ¢t £ S for every temporal
tuplete T

A temporal relatiorof arity  is a finite set’ of temporal tuples of arity such that foreach s € I: (i) t(T) #
{}, and (ii) if¢(T) ands(T) are unifiable and = s, thent = s.

Let / be a temporal relation of arity. We define:

aidom (1)
adom (1)

(J{#(T) | € I}, the active interval-domain df, and
{t(i) |tel,ie{l,...,n}}, the active domain of.

O

We now define the coalescing operafof which takes as its argument a sebf temporal tuples, all of the
same arity. The operator turfdnto a temporal relation by removing tuples with empty timestamp and by merging
value-equal temporal tuples with unifiable timestamps..

Definition 3 Let S be a finite set of temporal tuples, all of the same arity. We wistefor the smallest (w.r.t2)
temporal relation satisfying: if € S thent £ [S]. S is calledcoalescedff S = [S]. O

3 Atemporal SPC algebra

We introduce a basic temporal extension of$ii¢_ algebra; examples were already given in Section 1. The opera-
tors conform to common primitives in existing temporal query languages [9, 10]. A selection of thefogtv)

retrieves each tuple df whose timestamp includes the interyalg]. A projection automatically performs co-
alescing on the result. Joining two tuples involves concatenating the values for the non-temporal attributes and
intersecting the timestamps.

Definition 4 Let I andJ be temporal relations of arity andm respectively. Let, j, ji, ja, ..., js € {1, ..., n}
(k > 0),a € dom, and(p, ¢) € 7%,



Selection.
o oizj () :={t el |t(i
o oi=o(l):={t el |t(i
o ap () ={tel|HT) 2 [pq}
Projection.

o mj g (D) = [{&G), - t0k), H(T)) [t € 1}].
Cross product.
o I x J :=[{{(1),...;t(n),s(1),...,s(m), {(T)Ns(T)) |t €1,s € J}].

O
The coalescing operator in the definition of cross product serves to eliminate temporal tuples with empty timestamp.

Definition 5 For everyn € N, we assume the existence of denumerably nretation variablesi, Ry, Ro, . ..
of arity n. SPC™™¢ queries and their associated arities are recursively defined as follows:

Base. Every relation variable of arity is anSPC''"™¢ query of arityn.

Select. If @ is anSPC™™ query of arityn, andi, j € {1,...,n}, a € dom, and(p, q) € Z><, thens;—;(Q),
ci=a(Q), andoy, ,1(Q) areSPC™* queries of arity.

Project. If @ isanSPC"™ query of arityn andjy, ..., jx € {1,...,n}, thenz;, _;, (Q) is anSPC"™ query
of arity & (£ > 0).

Crossproduct. If Q; andQ- areSPC'™ queries of arities; andn respectively, the); x Q- is anSPC™e
query of arityn; + ns.

We write@Q (R, ..., R;), whereRy, ..., R; are distinct relation variables, to indicate tiiats a query containing
the relation variable®?,, ..., R;. Thesemanticof Q(R, ..., R;) is relative to an interpretation function that
maps each; to a temporal relation of the same arity As (i € {1,...,/}). Thissemanticds defined in the
natural manner (not elaborated here). In the remainder of this paper, we fa$B€BH° queriesQ(R) involving
a single relation variable.

Let Q1 (R), Q2(R) be queries of the same arity. We wrifg C Q- iff @1(I) C Q2(I) for each temporal
relation/ of the same arity a&. Q1 and()» areequivalentdenotedy; = @, iff @1 T @2 and@2 C Q1. An
SPC"™ queryQ(R) is unsatisfiabléff Q(I) = {} for each temporal relatiohof the same arity ag. ]

It can be easily proved that unsatisfiability arises if two constants are required to be equal; as(in—,(12)).

Henceforth, we will assume that &IPC"™¢ queries considered are satisfiable. .
Importantly, as argued in Section 1, we cannot push the selection through the projectiofMCHE® query

a1p,q1(77(@)). Nor can we push the cross productthroughthe selectionsHPHE™ queryoy, ,1(Q1) x o 5(Q2).

As a consequence, the normal form §&C algebra expressions [1, p. 55] does not applyR6" ™ queries.

4 Temporal tableau query

The notion of temporal tableau is defined exactly as was the notion of temporal relation, except that both variables
and constants may occur. Importantly, only two temporal variables are introduced, and their usage is syntactically
restricted:f (from) can only occur as the left coordinate of an interval, &td) only as the right coordinate. No
interval can contain non-temporal variables. A temporal tableau query consists of a temporal tableau followed by
a summary temporal tuple with timestarfpt].



Definition 6 We assume a setr of non-temporal variablesWe assume twtemporal variabled andt not in
var. We define:

Vi=Alp,dl | (p,q) € Z2S}U{[f, a) | g € ZY U{[p,t] | p € Z} U {[E, t]} 2

A tableau tupleof arity n (n > 0) is an element ofvar U dom)” x V. If ¢ is a tableau tuple of arity, then the
i*® coordinate of (i € {1,...,n})is denoted (i), and the(n + 1)** coordinate is denotedT).

A temporal tableawf arity n is a finite set of tableau tuples of arity A temporal tableau querfttq, plural:
ttqs) is a pai(T,t) whereT is a temporal tableau arids a tableau tuple (callesummarysuch that(T) = [f, t]
and each variable ihalso occurs iff".

Let r = (7,t) be a ttq. Thective point-domaiwf =, denotedapdom (7), is the smallest set of time points
containing allp € Z that appear as the first or the second coordinatéDf for some tableau tupleof 7.

A non-temporal variable that occursris calledfree (w.r.t. 7) if it occurs int; otherwise itisbounded O

We now define the semantics of ttgs. ket= (7, ¢) be a ttq and a temporal relation of the same arity&s
The idea is to proceed along the lines of non-temporal tableaux [1, p. 43]: Consider a valfatidme variables
in r; if v(7T) is contained in/, thenv () belongs to the query answe(/).3

Examplel Consider the ttqr = (7, ¢) whereT = {t1,t5}:

T 1 2 T

Brel =z [40,t] (t1)

Brel =z [f,45] (1)
x f£.¢] (1)

The valuations = {(x, Brussel, (f, 29), (t, 52)} results in:

[ 1 2 T
| Brel Brussels [29, 52]

Consider the temporal relatiati of Figure 1. Sincdv(7)] E C, we conclude that(t) = (Brussels[29, 52]) is
in the answer set(C). It can be verified that the queryrenders the city in which Brel stayed during the period
4045.

Some caution is in order when fixing the domain of interpretation for the variables occurring in a ttg, as shown
by the next example.

Example 2
{1 T
e [f,4]
v [6.6] and || [QTS]
a [2,8] '
z  [f,¢]
Consider a valuation for the variables im with ¢(f) = v(t) = 5. We obtain:
[v(T)]|1 T

[2,8]

Then[v(T')] C I independent of (z). That is, the non-temporal constants appearing in the answe( Beare
not restricted to constants appearing jiwhich is unnatural.

Obviously, if I is a temporal relation anflis set of temporal tuples of the same arity/athen[.S| C 7 ifand
only if S C /. We are now ready to formalize the semantics of a ttq.

2|f [p, q] occurs in a temporal tableau, it is considered as an eleméh(Définition 6), i.e., as an ordered pair of time points. On the other
hand, if[p, q] occurs in a temporal relation, it is considered as an elemehti@f., as a convex set of time points. This double use does not
result into any confusion.

3A valuationis a mapping from variables to constants extended to be the identity on constauisstiutioris a mapping from variables
to variables and constants, extended to be the identity on constants. [1]



Definition 7 Let r = (T, ¢) be a ttq, and a temporal relation of the same arity’AsLetd C dom andp C Z.
We write ] 4 s iff there exists a valuation for the variables occurring in such that:

1. foreveryv € var, v(v) € adom(I) Ud;

2. (v(f),v(t)) € Z°< and[v(f), v(t)] C aidom(I) Up;
3. [v(T)]CI;*and

4. v(t) = s.

7 is domain independeiriff for every temporal relatiod, for every paird, d’ C dom, for every paip, p’ C Z,
for every temporal tuple, 7V g s iff 7+ 4/ 5. If 7 is domain independent, we wrifé” s instead off 3 fys.
O

Obviously, the ttg- of Example 2 is not domain independent. From now on, ttgs that are not domain indepen-
dent will be considered erroneous. The output of a ttq can now be defined.

Definition 8 Let 7 = (7,¢) be a domain independent ttq, ah@ temporal relation of the same arity’As The
outputof 7 on input/, denoted-(7), is the temporal relation:

r(I):=[{s| IFs}] .
The relationsC and= on ttgs are defined as in Definition 4. |

Note incidentally that € () or s £ 7(/) does notimply/ " s, which is illustrated by Example 3 and gives
rise to Definition 9. Inversely; F s impliess £ 7(1).

Example 3 For the temporal relatiod’ of Figure 1:

|11 2 T r(Cy| 1 T
z v [f,t] yields Piaf [15,63]
T f t Brel [29,78]

The valuation/; = {(z, Brel), (v, Brussels, (f, 29), (t,52)} showsC * (Brel, [29, 52]), and the valuatiom, =
{(z, Brel), (v, Parig, (f, 53), (t, 78)} showsC * (Brel, [53, 78]). Itis correct to concludéBrel, [29, 78]) € 7(C).
However, C 7 (Brel, [29, 78]). Note incidentally that is equivalent to th& PC"™ queryr (R), whereR is a
relation variable of arity.

Definition 9 LetT = (7, t) be a (domain independent) ttq. We say thatcoalescing-fregcfreefor short) iff for
every temporal relation of the same arity ¥/, if s £ 7(/) then/ ¥ s. ]

So the ttq of Example 3 is not cfree. To conclude this section, we show how a tableau can be viewed as a
temporal relation, and we provide an operdtdr which merges tableau tuples in a ttq.

Definition 10 Let = (7', ¢) be a ttq, andp, ¢) € Z>=. LetT" be the temporal tableau obtained frdfby sub-
stitutingp andg for f andt respectively. Thefiy_,, ¢, denotes the temporal relatif’ |, where it is understood
that distinct variables are interpreted as new distinct constams write 7t ¢, as a shorthand fdfy_, ¢—.

We write [ 7] for the ttq obtained fromr by repeatedly executing one of the following modifications until no
more changes can be made: For all distipet € 7" such that =< s,

1. If s(T) ands'(T) are unifiable intervals df (says(T) U s'(T) = [p, ¢]), then replace ands’ by the single
tableau tupler_,, 4.°

“4Instead of[v(T)], we will often simply writev ('), where the coalescing is implicitly understood.

5To be precise, one should introduce a one-to-one valuatfasm non-temporal variables to constants, mapping each vatiaiole new,
distinct constant, such that™! (v(x)) = =. By a little abuse of notation, we assume that distinct variables can be interpreted as new, distinct
constants. Sometimes we make this assumption explicit andafidethe variabler treated as a constant.

61f f is a function, therf._, . denotes the function satisfyingz -« (=) = a andf.—« (y) = f(y) for eachy distinct fromz. Temporal
tuples of arityn are total functions with domaifil, . . ., n} U {T}. S0sT_,[p ¢ is the temporal tuple such that: < s andu(T) = [p, q].



2. If s(T) = [p,t], §(T) = [p, t],andp < p/, then remove’ from T" (p,p’ € Z).
f

)
3. If s(T) = [f,¢q]ands’(T) = [f, ¢'], andg < ¢’, then remove from T (¢, ¢’ € 7).
4. Its(T) = [p,t],s'(T) = [/, ¢'], andp € [¢', ¢’ + 1], thenreplace by st_,[,/ ¢}, while leavings’ unaffected
(p,p'. ¢ €Z).
5. Ifs(T) =[f,q],s(T) =[¢',¢'],andg € [p’ — 1,¢'], thenreplace by st_¢ .17, while leavings’ unaffected
(', 9.9 € 7).
Attq is calledstretchedff [r] = . ]

Example4 Letr = (T,t) as indicated below. Then:

~—

|1 2 T [111 2 T
z u |[f,3] z u [f,6] Trotenr|1 2 T
r u [2,6] r u [2,6] —
and and z a [1,6]

r v [2,6] r v [2,6] Pov 2]

z v [bt] r v [2,t] ’

x [f,t] x [f,t]
Lemmaz2 For every ttar, 7 = [ 7].
PROOF Straightforward. |

5 Testing domain independence
We show how to decide domain independence of ttgs.

Lemma3 Attqr = (7)) is domain independent iff for eadh, ¢) € Z><, (i) [p, q] C aidom(T¢—p t—q), and
(i) every free non-temporal variable of 7 occurs inZ¢_,p ¢—4.

PROOFR Only-if part. Argumentation by contradiction. Suppogeq] ¢ aidom (Tr—p ¢—q). Letr € [p,q] \
aidom(T¢_p ¢—q). ThenT contains no tableau tuple with timestanfipt]; furthermore, whenever contains a
tableau tuple with timestamf, ¢'], thenq’ < r, and whenevet" contains a tableau tuple with timestaipf t],
thenp’ > r. ThenZ; ¢, can be obtained frorfi" by simply removing tableau tuples that contéiior t. Then
obviously,Ts ;¢4 13, {r}tT—[r0]s DUtTR Sy 5 I 3 (370, hENCET IS NOt domain independent.

Next suppose that the free non-temporal variatiér does notoccur iffy_,, 4. Leta € dom be a constant
not occurring inr. Lett’ be the tableau tuple obtained frarby substituting: for each occurrence afin¢. Then
Tesp bt {a) lp.all' T lp.als PUTEsp 607 {3 [p.g T—[p.q» NENCET IS NOt domain independent.

If part. Assumed, d’ C dom andp, p’ C Z. Assumel I* 4 ,5. Hence, there exists a valuatiefior the variables
in 7 such that:

1. v(v) € adom(I) U d for every non-temporal variable
2. (v(f),v(t)) € Z*< and[v(f), v(t)] C aidom (1) Up,
3. v(T)C I, and

4. v(t) =s.

We show thatzdom (I) # {}. Suppose on the contranylom (/) = {}, hencel = {}. Since[v(f),v(t)] C
aidom (T (£),6—u(¢)) Dy the premise, it followS_,, £y ¢ (¢) # {}. Butthenv(7') Z 1, a contradiction. We
consider the valuation for each variable of in turn.

Temporal variables. By the premisejv(f), v(t)] C aidom(Ti—.(£)4—u(r)). Fromuy(T) C 1, it follows
aidom(v(1')) C aidom(I). Obviously,aidom (v (7)) = aidom(Ty 5. (£),t—u(v))- Itfollows [v(f), v(t)] C
aidom(I). Hence[v(f), v(t)] C aidom(I) Up'.



Bounded non-temporal variables. Letv be a bounded (w.r.t) non-temporal variable. if(v) € adom(I), then
v(v) € adom(I) Ud'. Nextassume (v) & adom([). Sincev(1") C I, v cannot occur iffg_,, (¢) - (¢)-
Then the value assigned tdy » does not matter. More precisely, the above properties (1) through (4) still
hold after replacing by v, _, 4, for anya € adom(I) # {}.

Free non-temporal variables. Letv be a free non-temporal variable. By the premiseccurs inlg_, ,(¢) ¢ (¢)-
Sincev(T) E I, v(v) € adom(I). Hencey(v) € adom(I) U d'.

It follows I'F 4 5. Itis correct to conclude thatis domain independent. o

It can be easily verified that in order to test condition (i) of Lemma 3, there is no need to(wyalle 7S it
suffices to verify whethelm, M| C aidom (T¢_m t—ar), fOr somem, M € Z with m strictly smaller than every
time pointinapdom(7), andM strictly greater than every time pointapdom (7).

For testing condition (ii) of Lemma 3, we consider each free non-temporal variaifle in turn. If  occurs
in a tableau tuple with ¢(T) = [f, t] ort(T) = [p, ¢] with (p,¢q) € Z><, then the condition is satisfied for
Otherwise, construct a sgtof inequalities as follows:

e Addf < ttoSs.
o For every tableau tuplec 7 such that containse and¢(T) = [f, ¢], addf > ¢’ t0 S (¢’ € 7).
e For every tableau tuplec 7' such that containsz and¢(T) = [p/, t], addt < p' to S (p’ € 7).

Obviously, the seb of inequalities has an integer solutionfimndt if and only if condition (ii) of Lemma 3 is
falsified forz.

A natural question is whether every ttq is equivalent to s6E '™ query. The answer is “no,” as shown
by Example 5. The inverse question (i.e., is evBBC"™° query equivalent to some ttq?) will be thoroughly
addressed from Section 6 on.

Example5 Consider the domain independenttt@nd the result(I):

7|1 T
o [0 g | T
Z g,g and b .8 and 5.7]

GG

It can be readily seen (by induction on the structuréfthat for everySPC'™¢ query@, if s € Q(I), then
s(T) = [2, 8]. Itfollows thatr is equivalent to nGPC™™ query.

6 Composition of temporal tableau queries

We now address the following natural question: Given twottgedo, is there a single ttq that is equivalentto
followed byo?

Definition 11 Letr = (7,t) ando = (S, s) be two ttgs, where and S have the same arity. We writeo 7 for
the query satisfying for every temporal relatibof the same arity a8', (o o 7)(I) = o(7()). 0

Clearly, if o o 7 is unsatisfiable, i.e(o o 7)(I) = {} for each temporal relatioh, theno o 7 is equivalent to
no single ttq, as each ttq is obviously satisfiable. Unfortunately, even if is satisfiable, it may not correspond
to a single ttq:

Lemma4 There exist ttqs ando such thatr o 7 is satisfiable but equivalent to no ttq.



PrROOF Letr, o be ttgs, and, J;, (for eachk € 7Z) temporal relations, as follows:

Je | 1

0

rl1 T 7 [fTO] 1
v [f,t] and [0’ ] and -1
.4 1) \

—k

Obviously,a(r(Jx)) = 7(Ji) = {{[—|k|, |k]])}, where|-| denotes the absolute value. Furthermerie;(/)) =
{([0,0])}. Assume that the ttg = (R, {[f,t])) is equivalent tor o 7. Suppose that the tabled of arity 1,
contains a tableau tuptewith »(T) = [p, t], for somep € Z. Then for no valuatiow, v¢_,+1(R) T Jpy1,
hence([p + 1, p + 1]) & p(J»+1), a contradiction. Hence® cannot contain a tableau tuptevith »(T) = [p, t].
Likewise, R cannot contain a tableau tuplevith »(T) = [f, ], for someg € Z. Sincef andt occur inR, R must
contain a tableau tuplewith »(T) = [f, t]. If R contains a tableau tuptewith »(T) = [p, ¢], thenp = ¢ = 0,
or else for no valuation, v¢_,q t—o(R) C Jo, hence([0, 0]) & p(Jo), a contradiction R cannot contain constants
from dom for obvious reasons. Singe# T, p must be equivalent to either:

p|l T pa | 1 T
u [0,0] [0, 0]
v v [f ]
[f, t] [f, t]
Thenp(I) = {{[0,0]),([2,2])} # o((I)). We conclude by contradiction that for pop = o o 7. ]

Itis natural to ask under which conditioms r corresponds to a ttg. In the remainder of this section, we show
how to construct a ttq equivalent&a  whenr is cfree (cfree was defined in Definition 9). The construction uses
composition of ttqs, which generalizes the composition of typed tableaux [1, p. 226]. We assume that the reader is
familiar with the composition of typed tableaux; the composition of ttgs is slightly more complicated, as illustrated
next. Letr ande be the ttgs:

|11 2 T ol 1 2 3 T
a x [f,4] and wi oy y2 [, 4] (s1)
r v [1,¢] wy wi ys [L,t] (s2)
a = x [£t] (1) yi Y2 ys [f,t]

We want to construct the ttge o corresponding to the compositionofollowed bys. Proceeding along the lines
of typed tableaux, one looks for a substitution mapgit@s;, and another one mappindo s,. The difficulty is
that there is no substitution that map® s ; for such substitution to exist, we must have = ¢ andy; = y».
Likewise, the existence of a substitution that maps s», requiresws = a andw; = ys. Fromw; = a and
w1 = ys, it follows y3 = a. Applying these equalities i@, we obtain a new ttg’:

|1 2 3 T

Now there exist substitutions frotrto s/, and fromt to s,.

Definition 12 Letr = (7, t) ande = (S, s) be two ttgs, wheréandsS are both of arityr. Let.S = {s1,...,sn}.
A unifierfor ¢ ande is a substitutioft defined as follows. Compute, the equivalence relation earUdomU
{f, t} defined as the reflexive, transitive closure of:

1. si(j) = aif t(j) = a for some constant (for eachi € {1,...,m}andj € {1,...,n});
2. 5i(j) = si(k) if t(j) = t(k), foreachi € {1,...,m}andj k€ {1,...,n}.



The unifier oft ande does not exist if two distinct constants are in the same equivalence class. Otherwise their
unifier is the substitutiof such that:

1. if z = a for some constant, §(z) = «;
2. otherwisd/(x) = «', wherez' is the smallest (under a fixed orderingaar) such that: = «'.

O

Definition 13 Letr = (7', t) ando = (S, s) be twottgs, wheréands are ofthe same arity. Lét= {s1,...,sm }.
Assumé/ is a unifier fort ande; if no such unifier exists, the composition is undefined. For éagl{1, ..., m},
let #; be a substitution that mapgo #(s; ) and maps each other variable®to a new, distinct variable not used
elsewhere in the construction. Then:

reo:=({J6:i(T),0(s))
i=1
where it is understood thétis extended to be the identity on constants. i
One can easily verify that the unifier bhnde is defined in Definition 13 if and only if o 7 is satisfiable.

Example6 Forr ando as introduced at the beginning of this section:

Teo | 1 2 T
a Yy [f,4]
Y1 U1 [1, 4]
a [1,4]
a v [1,¢]
yoy oa [ft]

Theorem 1 Letr = (T,¢) ando = (95, s) be two ttgs, wheréand S are of the same arity. i o 7 is satisfiable
andriscfree, thewor =710 0.

PrROOF LetS = {s1,...,sm}, 0 andé; be as in Definition 13i(c {1,...,m}). o o 7 satisfiable implies that
re o is defined. We first showo r C e . Assumer(]) I u for some temporal relatiohof the same arity ag.

It suffices to show F*7 w. 7(I) ¥ u implies the existence of a valuatiersuch that/(S) C r(I) andv(s) = u.
Sincer is cfree,I " v(s;) for eachi € {1,...,m}. Hence, for each € {1,...,m}, there exists a valuation
such thay; (7') C T andp; (t) = v(s;). Clearly,v(s;) = v(0(s;)) for (i) if t(j) = t(k) thenp; (¢(5)) = ps (2 (%)),
hencev(s;(j)) = v(si(k)), and (i) if¢(j) = athenu; (t(j)) = v(si(j)) = a. Lety be avaluation for the variables
occurring inT e ¢ such that:

1. if v is a new, distinct variable introduceddn(T’), thens(v) = u; (6;~*(v)); and
2. if v occurs inS, theny(v) = v(v).

Let 7 o o be the tableaR, d(s)). Thenn(R) C I, hencel *7 5(d(s)) = u.

We next showr e ¢ C o o 7. Supposd *? u. Hence, there exists a valuatiorsuch that(6;(7)) C I for
eachi € {1,...,m}, andv(6(s)) = u. Sincev(6;(T)) C I, it follows v(8;(t)) = v(8(s;)) E 7(I), for each
ie{l,...,m}. Hence,(v o #)(S) = v(0(S)) C r(I). Consequently o 0)(s) = v(6(s)) = uE o(r(I)). This
concludes the proof. O

7 Dichotomictemporal tableau queries
Definition 9 provides no effective procedure for deciding whether a ttq is cfree. The family of dichotomic ttgs,

as defined next, is a subset of the family of cfree ttgs; moreover, it can be easily verified whether a given ttq is
dichotomic. Dichotomic ttgs possess some interesting properties that will be useful later on.
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Definition 14 Let r = (7,t) be a ttq. Define-, the equivalence relation on the bounded non-temporal variables
of r defined as the reflexive, transitive closure of:

u ~ v iff some tableau tuple df’ contains both: andv.

We definefrom(7) as the smallest set containing each bounded non-temporal variabtefor which there exists
a temporal tableau tuple ifi that contains botki and a variable ~ «. The setto(r) of bounded non-temporal
variables is defined similarly (replaééy t).

A ttq 7 is calleddichotomidff from(7) Nto(r) = {}.” O

Example7 Let T be the following ttq:

|1 2 3 T
r a [f, 4]
r v o w [2,4]
vooa wy [2,¢]
Z1 z2 b [3, 6]
x [f,t]

The bounded non-temporal variables @ngv, wq, ws, 21, 22 }. We havey ~ wy, v ~ ws, andz; ~ z2. Hence, the
equivalence classes of the relatiorare {u}, {v, wi, w2}, and{z1, z2}. from(r) = {u},to(r) = {v, wy, wa}.
The ttqr is dichotomic.

Lemmab Every dichotomic ttq is cfree.

PROOF. Letr = (T,¢) be attqsuch thdrom(7)Nto(7) = {}. Let] be atemporal relationsuch that (@, [p, ¢])
andI ¥ (d,[r, s]), where[p, q] and[r, s] are unifiable. Hence, there exists a valuatipsuch that, (T') C I and
vi(t) = {d,[p,q]), and there exists a valuation such that»(7T) C I andwa(t) = (@, [r,s]). It suffices to
show th t[I—T (@, [p,q)U[r, s]). Thatis, it suffices to show that there exists a valuatisuch thatu(7) C
andu(t) = (@, [p,q] U[r, s]). This is obvious iflp, ¢] C [r,s] or[r,s] C [p,¢]. Next assumép, q] £ [r, s] and
[r,s] € [p,q]. Then[p, ¢q]U[r, s] equals eithelp, s] or[r, ¢q]. Withoutloss of generality, assure ¢]U[r, s] = [p, s].
Obviously, for every free non-temporal variald®f r, 14 (z) = v»(x) = u(x). For every bounded non-temporal
variablev of , defineu(v) as follows:

vi(v) if v € from(r)
p(v) =< wva(v) ifv e to(r)
vi(v) if v ¢ from(r) andv ¢ to(r)
Moreover, letu(f) = p andu(t) = s. Sinceu(t) = (@, [p, s]), it suffices to show that(7") C /. Consider each

tableau tuple: of 7" in turn.

= (y, [f, t]). Sincer is dichotomic g contains no bounded non-temporal variables, tHg§ = v1(y) = v2(¥).
Since(v1 (#), [p, q) E I and(v2(¥), [r, s]) E I, itfollows {u(¥), [p, s]) E I.

(v
(7, [f,1]). We haveu(7) = n(¥). Since(r1 (), [p,!]) E I, itfollows (u(F), [p, ) E T

(7, [k, t]). Analogous to the previous case.

(7, [k,{]). Two cases can occur:

1. ucontainsavariable @lo(7). We haveu(y) = (7). Since(r»(y), [k, ]) £ I, itfollows (u(y), [k, {]) E I.

2. u contains no variable dfo(7). We haveu(y) = 11 (). Since{r (¥), [k, 1]) E I, it follows
(n(@), [k, MHET

This concludes the proof. O

Dichotomy is preserved by ttq composition:

"Note that eithefrom(7) N to(7) = {} orfrom(7) N to(7) = from(7) = to(r).

11



Lemma6 If r andeo are dichotomic ttgs ane e o is defined, them e & is dichotomic.

PROOF Letr = (T,t) ande = (S, s) with S = {s1, ..., s, } be as in Definition 13. Assumeands dichotomic.
Supposer ¢ o is not dichotomic. Then there is a sequence of tableau tuples of, where eaclt;; captures its
meaning from Definition 13i¢ € {1, ..., m}, overbraces added for clarity):

tableau tuples if;, (7' tableau tuples iff;, (7' tableau tuples ifl;, (1)

05, (1), (15) - 05, (1) 6i, (12)00, (12) .00, (62) .05, ()0, (1) .60, (1))

where:
o l>1,
o ivFindt. . Aic{l,. .. m)
o 1}',..., 1}l are tableau tuples df,

e every two tuples that are neighbors in the sequence have a bounded-(w#}.non-temporal variable in
common, and

e 0; (t") contains the temporal variabfeandé;, (tf;l) containst.

Then the temporal tableau tuplg of S containsf, s;, containst, ands;, ands;,,, have a bounded (w.r.t:)
non-temporal variable in common, for eatk [1,/ — 1]. Two cases can occur.

1. If{ > 1 thene is not dichotomic.

2. Ifl = 1thens;, (T) = [f, t]. If s;, contains a bounded non-temporal variable, thés not dichotomic. If
s;, contains no bounded non-temporal variable, thénnot dichotomic.

The desired result follows by contradiction. O

8 Homomorphismsand dichotomictemporal tableau queries

For conjunctive queries, the problem of query containment is settled by an elegant Homomorphism Theorem [1].
When conjunctive queries are extended with inequality [6, 13] or linear [4] constraints, the homomorphism tech-
nigue fails and the query containment problem becomes considerably more difficult. In this section, we show that
qguery containment for dichotomic ttqs can be decided by applying the homomorphism technique a finite number
of times. This finite number is linear in the number of distinct time points occurring in the ttqs under consideration.

Definition 15 Letr = (7,t) ande = (S, s) be two ttgs such th&f andS have the same arity, as well aands.
A homomorphisrfrom ¢ to r under(p, ¢) € Z>< is a substitutiort for the non-temporal variables fsuch that
H(Sf_}pyt_).q) E Tf—>p,t—>q andﬁ(s) =1. O

We now provide a humber of lemmas that will be used in the main theorem to follow.

Lemma? Letr = (7,t) be attg. Letr = (5, s) be a cfree ttq such th&t and S have the same arity, as well as
t ands. Thenr C o iff for each(p, q) € Z*<, there exists a homomorphism frano 7 under(p, g).

PROOF. Only-if part. Assumer C . Sincels_, t—qt tr_s[p,q) IS ObViOUSET [ 4] E 0(T¥p t—q). SiNCEr iS
cfree, T¢p t—q I tr_[p,q- Hence, there exists a valuatiorsuch thaw () C T¢_,p ¢ q andv(s) = topp g v
restricted to the non-temporal variablesSis a homomorphism frorm to = under(p, ¢).

If part. Assumel - u with u(T) = [p, ¢], for some temporal relatioh Hence, there exists a valuatiorsuch
thaty(7) C T andv(t) = u, i.e,v(f) = pandv(t) = ¢. By the premisse, we can assume the existence of a
homomorphisnd such that!(S¢_p ¢—4¢) C Tr—p t—q andfd(s) = t. Thenv(8(Sep t—q)) C I andv(6(s)) = wu.

It follows 7 +° u. This concludes the proof. |

The following example shows that, in general, the “homomorphism property” does not hold for ttgs.

12



Example 8

711 2 T
z u [f,6] ol 2 fT6
v ou [2,6] (t2) z u [f,6]
¢ v [2.6] and r v [2,6]
R [Q’t] r v [2,t]
. [f:t] x [f,t]

Note incidentally that’ = [r] wherer as in Example 4¢ is obtained fromy’ by removing the tableau tupie.

For each(p, q) € Z*<, if p < 2 then the identity is a homomorphism frarhto ¢ under(p, ¢), and ifp > 2 then
{(x,2),(u, v),(v,v)} is a homomorphism from’ to o under(p, ¢). Hence, for eactp, ¢) € 7><, there exists

a homomorphism from’ to ¢ under(p, ¢). The “homomorphism property” [6] does not hold: There exists no
substitutiord such that for eacty, ¢) € Z*<, 6 is a homomorphism from’ to o under(p, ¢): We must sometimes
mapu to u, and sometimes to.

We now show that the necessary and sufficient conditiom far o of Lemma 7 can be simplified i is di-
chotomic.

Lemma8 Letr = (7,¢) be attq. Letr = (S, s) be a dichotomic ttq such th@tand.S have the same arity, as well
ast ands. If for everyp € 7, there exists a homomorphism frento = under(p, p), then for everyp, ¢) € 75<,
there exists a homomorphism fremo = under(p, ¢).

PrROOF The tableau tuples &f can be partitioned in four disjoint sets:
St tableau tuples with timestanif, t].
S?: tableau tuples containing no variablefobm(7) U to(r) U {f, t}.

S3: tableau tuples containing at least one variablrofn(r) as well as tableau tuples with timestaffip/] con-
taining no bounded non-temporal variableg (7).

S%: tableau tuples containing at least one variableogf) as well as tableau tuples with timestaphpt] contain-
ing no bounded non-temporal variablésdq 7).

Importantly, sincer is dichotomic, the same bounded non-temporal variatdannot occur in two tableau tuples
that belong to distinct partitions g5 *, S?, 53, 5}. Let(p, q) € Z><. Assume that for every € Z, there exists
a homomorphism fromr to = under(p, p). Consequently,

e Allnon-temporal variables in* are free. Let! be a substitution such théts) = ¢. Wheneve¥ is a homo-
morphism froms to , then for each free non-temporal variablef o, ¢'(z) = 6(x). Sinced(S'¢ ¢—,,) C
Tk +—r foreveryr € Z, itfollows (S ¢y t—¢) C Tep t—q-

e There exists a homomorphistn from ¢ to = under(p, p). Since neithef nort appears irt?,
HZ(Szf—m,t—H]) E Tf—>p,t—>q-

e There exists a homomorphigifrom o to 7 under(p, p). Sincet does not appear if®, f5(S%¢—, ¢—¢) C
Tf—>p,t—>q-

e There exists a homomorphiginfrom o to 7 under(q, ¢). Sincef does not appear ifi*, 64(S*¢—, ¢—¢) T

Tf—>p,t—>q-

Let 6 be the substitution satisfying for each non-temporal varialdér:

02 (u) = b3(u) = 04(u) if uis a free variable of
O(u) = 02(u) if uis a bounded variable appearingdf
T ] 0s3(u) if uis abounded variable appearingdf
04(u) if uis a bounded variable appearingdf
Obviously,? is a homomorphism frora to = under(p, ¢). This concludes the proof. |
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As a corollary, a necessary and sufficient conditionf& ¢, with & dichotomic, is the existence of a homo-
morphism froms to = under(p, p), for eachp € Z. Next it is intuitively clear that it should be sufficient to look
at a finite number of distinguished time points, as captured next.

Definition 16 Let P be a (possibly empty) finite set of time points. We define as the equivalence relation on
Z defined as the reflexive, symmetric, transitive closure of:

prep qiff p < qandfornopoink € P,p <k <q.
O

For example, if? = {2,6} then the equivalence classesaf are: {p € Z | p < 2}, {2}, [3,5], {6}, and
{peZ|p>6}.

Lemma9 Lets andr be two ttqs whose tableaux and summary rows are pairwise of the same arity. et
apdom (o) U apdom (7). Letp,¢ € Z such thatp ~p ¢. Each homomorphism from to = under(p, p) is a
homomorphism from to = under(q, ¢).

PROOF. Easy. a

Theorem 2 Letr = (7,t) be attg. Letr = (5, s) be a dichotomic ttq such th&t and S have the same arity, as
well ast ands. Let P = apdom(r) U apdom (o). Let B be a set of time points containing one representative from
each equivalence class of the relatisp. Thenr C ¢ iff for eachp € B, there exists a homomorphism frento

7 under(p, p).

ProoF Immediate from Lemmas 7, 8, and 9. a

To conclude, a necessary and sufficient conditiornrfor o, with o dichotomic, is the existence of a homomor-
phism frome to = under(p, p), for one arbitrarily chosen representatjvef each equivalence class®sp, where
P = apdom(7) U apdom (o). Note thatzp has at most x |P| + 1 equivalence classes.

Example9 Consider the queries = (17,¢') ando = (5, s) of Example 8. LetP = apdom (1) U apdom (o) =

{2,6}. B = {1,2,4,6,7} contains one time point from each equivalence classof Sincer’ is dichotomic,
o C ' ifand only if for eachp € B, there exists a homomorphism fromto ¢ under(p, p). Consider, for
example, the time point

Clearly,{(z, ), (u, v), (v, v)} is a homomorphism from’ to ¢ under(7, 7).

For query optimization reasons, we are interested in the following problem: Given,dittd a minimal (w.r.t.
tableau size) ttq equivalent to It is natural to ask whether any dichotomic ttq can be minimized by simply re-
moving tableau tuples. This is known to be true for non-temporal conjunctive queries [1], but false for conjunctive
gueries containing inequalities [12]. It does not generally hold for dichotomic ttgs, as illustrated by the following
example.

Example10 The queryr of Example 4 is equivalent to bothand p:

o

gle Z [, 6] pll 2 T

z u [2,6] and v [2’6]
r v [2,t] v v [2¢]
- I7.6] x [f,t]

p is minimal, but not dichotomic, and hence does not possess some nice properties of dichotomic ttqs (Theorems 1
and 2).0 cannot be obtained by simply removing tableau tuples fromhcan be obtained, however, by removing
tableau tuples fronfr]. We have no examples of minimizatiavithin the class of dichotomic ttgbat do not

amount simply to removing tableau tuples from stretched ttgs (stretched ttqs were defined in Definition 10).
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9 From SPC'™ to dichotomic temporal tableau queries

We now apply the results obtained so far in the optimizatiohisf: ™ queries. The overall strategy proceeds in
two steps: First, translate a giveRC™™¢ query(@ into an equivalent dichotomic ttg and then rely on Theorem 2
to remove redundant rows from The first step raises a number of issues:

¢ Inthe non-temporal case, the normal forns&fC queries allows direct mappings betwedhC and tableau
queries. Recall from Section 1 that this normal form is no longer availal® @™, and hence the map-
ping fromSPC™™* queries to ttgs will be more complicated.

o Although eactsPC''™¢ query can be easily written as a composition of #gsr; o . . .o 7, (cf. Definition 17
below), this composition may be equivalent to no single ttq (cf. Lemma 4 and Theorem 1).

¢ The ttq obtained must be dichotomic if we want to rely on Theorem 2 for the detection of redundant tableau

tuples.

We develop an approach that inductively constructs ttqs corresponding to subexpressiosB@F&f query.

Definition 17 For eachSPC!™e queryQ(R), tab(Q) is recursively defined as follows. Assurfieis a relation
variable of aritym, and@(R) is anSPC"™* query of arityn.

1 m T
1. tab(R) := | 23 zm  [f,t]
T Tm [fa t]
1 n T
2. tablog, 1(Q)) = tab(@) e | *! ]
: [p,ql : T on [p,t]
x z, [f,t
1 i—1 ¢ 141 n T
3. tab(0;=;(Q)) := tab(Q) e x1 Ti_1 X Tigl z, |[f,t]
x i1 Ty gl z, |[f,t]
1 i—1 2 1+1 n T
4. tab(o;=4(Q)) := tab(Q) @ x Ti1 @ iy z, [f,t]
x Ti1 @ iy z, [f,t]
1 2 n T
5. tab(m, . ;. (Q)) := tab(Q) Tl T z, [f,t] , provided that the composition results in
Zj, Lip [f’ t]

a dichotomic ttq; otherwiseub(w;, . ;, (Q)) is undefined. Note that; is bounded w.r.t. the right-hand ttq

foreveryi € {1,...,n}\{j1, ..., Jx}.

. Assume); and()- are of arityn, andn, respectively. Letab(Q1) = (11,t1) andtab(Q2) = (In,t2).

Assume without loss of generality thH&at and7: have no variables in common except faandt. Lett :=
(t1(1), .. t1(ng),t2(1), ..., t2(n2), [f, t]), a tableau tuple of arity, + n2. Thentab(@1 x Q2) := (T1 U

T, 1).

Theorem 3 LetQ(R) be anSPC' ™ query? If tab(Q) is defined, therab(Q) = Q.

PROOFR Assumetab(()) is defined. We first show by induction on the structuré&othattab(() is dichotomic.
This is obvious for the base cage= R (item (1) in Definition 17). For the selection, sinté () is dichotomic by

the induction hypothesis, and since the ttgs introduced in items (2), (3), and (4) of Definition 17 are all dichotomic,

it follows by Lemma 6 that the resultis dichotomic. For the cross product (item (6) in Definition 17) tsirf¢g; )

8As mentioned in Section & ( R) is assumed to be satisfiable.
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andtab () are dichotomic by the induction hypothesis, and have no non-temporal variables in common, it follows
thattab((), x @2) is dichotomic. Finally, Definition 17 explicitly requires dichotomy in the case of projection
(item (5) in Definition 17).

Next we show by induction on the structure@fthattab(Q) = Q. This is obvious ifg = R. Next we show
tab(O'[pyq](Q)) = O'[p,q](Q)- Let r be the ttq:

|1 ... =n T
zy ... z, |f,q]
r1 ... z, [pt]
z1 ... z, [ft]

We showr (1) = oy, (1) for every temporal relatiod of arity n. The inclusiorvy, ,(/) C (/) is straightfor-
ward. For the opposite inclusion, assuié (a@, [p’, ¢']), wherep’ < ¢'. Hence(d, [p/, q]) € I and(@, [p, ¢']) E 1.
By Lemma 1,(a, [¢, ¢'] V [p, ¢]) £ 1. Obviously(@, [¢’, ¢'] V [p, q]) E o1, q(I), hence(@, [/, ¢']) & opp,q(I)-
Sincetab(() is dichotomic, and hence cfree by Lemmadh(Q)er = rotab(Q) by Theorem 1. By the induction
hypothesis{ab(Q) = Q. It follows tab(op, 41(Q)) = opp,4(Q). The other forms of selection, as well as projec-
tion (item (5) in Definition 17) are treated analogously. For the cross product, agstiffia ) andtab(()2) are as
in Definition 17. We first showab(Q, x Q») C Q1 x Q2. Assumel £**(92%@2) y, for some temporal relation
I. Hence, there exists a valuatiorsuch that/(7}) C 1, v(T3) C I, andu = v(t). Hence,I £*9") u(t;) and
TH(Q2) (¢, By the induction hypothesis(t1) E Q1 (1) andv(t2) E Q2(I), henceu £ (Q1 x Qs)(1). Finally,
we show); x @2 C tab(@Q1 x Q2). LetuE (@1 x Q2)(]). Hence, there existy € Q1 (I) andus € Q2(7) such
that:

wi=(ur(1),...,ur(n1),uz(l), ..., uz(na), ur(T) Nus(T)) .

Sincetab(Q: ) andtab(Q-) are dichotomic] £**(%V) y; andr £*(92) y, by the induction hypothesis. Hence there
exists valuations; andw, such thav, (71) C I, v2(13) C 1, vi(t1) = u1, andus(tz) = us. Definer as the val-
uation satisfying/(v) = v+ (v) if v is a non-temporal variable Iy, v(v) = v»(v) if v is a non-temporal variable
in Ty, and[v(f), v(t)] = «(T). SinceT; andZ: have no non-temporal variables in commaoris well-defined.
Obviously,» (71 UT3) C I, hencel Hab(@1xQ2) v(t), andr(t) = u. This concludes the proof. ]

To conclude this section, we show how the above results can be applied to simplify thé&xjdarintroduced
in Section 1.

Example11l Consider thesPC queryQ: = m1(0[14,18(02=Paris(C))) introduced in Section 1. Using Defini-
tion 17, the ttofab(o(14,15)(02=paris (C))) is computed (call itr):

7|1 2 T
z Paris [f,18]
z Paris [14,t]
z Paris [f,t]
For the projection, we obtain:
1 2 T
1 2 T -
z Paris [f,18
tab(@)=re 1z v Bt] = | pys %14 t% ’
x [f,t] - fi ’t]
which is dichotomic and hence well-defined.
Example 12 Consider the ttg( C') introduced in Section 1:
Q1 Q2

Q(C) = 7T1(0'1:2(7T1(0'[14,18](0'2:Paris(C))) X 7T1(0'[40,45](0'2:Paris(C))))) .
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Using a partial result of Example 11, the tigh () is computed (call it):

T|1 2 T
z Paris [f,18]
z Paris [14,t]
z Paris [f,45]
z Paris [40,t]
x [f,t]

The outermost projection caused no problem: The result is dichotomic. We then rely on Theorem 2 to verify that
the first and last tableau tuple can be removed without changing the meaning of the query. We finally obtain:

2 T
Paris [14, t]
Paris [f,45]

[f, t]

@

B(&R 8|~

It can be verified (cf. Example 11) that the latter ttq is equivalemt{@; 4 45)(c2=paris (C))).

10 Ubiquitousness

In this section, we extend the operatab(-) to certainSPC"™ queries left uncaptured by Definition 17. This
extension is motivated by the following example. Suppose we want to kuild)) for a query@ that contains a
subquen@; = w1 (a2,6)(R)), whereR has arity2. By Theorem 1:

tab(op(R) |1 2 T NP 12 T
Q1= vy [f,0] o |z v [fit] = v u [f,0]
1= r y [2,t] . f’t - r u [2,t]
v oy [f¢] ’ x £, t]

Unfortunately, the outcome ttq is not dichotomic, and hence may not be cfree. Consequently, the outcome cannot
be used later on in the inductive procedure that construé(s?), as we can no longer rely on Theorem 1, which

tells us thatr ¢ ¢ = ¢ o 7 provided thatr is cfree However, a simple observation can help us to solve this
problem. Whenever a tuple, u, [f, t]) belongs tar, ¢(R), then[f, t] must necessarily contaa, 6]. Then in

order to havez, [f, t]) in 71 (072,61 (12)), itis both necessary and sufficient to hgwew, [f, 6]) and(z, v, [2, t]) in

o72,6](12), whereu andv may be equal. These tuples will be coalesce@iinHence, it is correct to conclude:

1 2 T
tab(ope(R)) |1 2 T 1 2 7T z u |[f,6]
0, = z y |[f,6] . |7 f,6] r u [2,6]
1= r y [2,t] r v [2,8] |z v [2,6]
z y [f¢] x [f,t] r v [2,t]
x [f,t]

The latter resultis dichotomic, and can be used in the inductive procedure that cotap(fgls Note incidentally
that an optimization consists in removing the second or third row (see Examples 8 and 10).

Definition 18 Let r = (7, ¢) be a ttq. An intervalp, ¢] is ubiquitousfor 7 iff for every temporal relatiorT of the
same arity ag’, s € 7(I) impliess(T) 2 [p, q].

The procedureab(-) can then be extended as followstdb (7;, . ;. (@) remains undefined by Definition 17,
but@ has a non-empty ubiquitous interval (Jayg¢]), then:

1 2 ... 4 ... n T
' ' o £ x2 ... x5, ... zp [f.q] (1)
tab(mjy,..j+ (Q)) = tab(Q) ¢ vi vy ...z, ... U [p,t] (t2)
Tjy e Ty [f,¢] (2)
Thatis,t1 (j;) = t2(js) = t(4) foreachi € {1, ..., k}, and all variables are pairwise distinct otherwise. Note that
the right-hand ttq is dichotomic. O
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Itis now straightforward to show that Theorem 3 remains valid under this extended definitidgr{ of Def-
inition 18 raises another problem, however: Determine whether a given dichotomicttdab(Q) has a non-
empty ubiquitous interval. It can be easily verified thagjiflom () = {}, thenr has no non-empty ubiquitous
interval. Next, assumepdom(r) # {}. Letm andM bemin(apdom (7)) andmax(apdom(r)) respectively.
It can be easily seen thatifhas a non-empty ubiquitous interval, then it has an ubiquitous int@rygl with
p € [m, M]. Hence has a non-empty ubiquitousinterval if and only if for some [m, M], 7 T tab(oy, ,)(Q)).
The latter inclusion can be verified using Theorem 2. Finally, it can be verified thataf ,,q,m(-) p2, then
T C tab(op, »,)(Q)) ifand only if 7 T tab(opy, p.1(Q)). SO ifp1 Rapdom(r) P2, it suffices to verify either
T C tab(opp, p,1(Q)) or 7 C tab(opp, p,1(Q)).

11 Contributionsto related work

TheSPC'™ algebra complies with common primitives in existing temporal query languagesH]' ™ queries

could be optimized by minimizing an equivalent conjunctive query with inequalities. However, this approach is
expensive [6, 13] and may overlook some simplifications that apply in the temporal case, but notin general. What
is more, theSPC< algebra does not capture coalescing, which is non-monotonic in strict$ense.

Temporal tableau queries (ttqs) extend classical tableau queries with time intervals that can contain two tem-
poral variabled andt. Interestingly, ife is dichotomic, then C o coincides with the existence 8fx N + 1 (or
less) distinguished homomorphisms frento , whereN is the number of distinct time constants occurringin
or 7. Consequently, testing query containment is easier for dichotomic ttqs tisar(if. The procedureéab(-)
translate$PC"™ queries into equivalent dichotomic ttgs, which can then be simplified by removing redundant
tableau tuples. An open problem is whether a minimal (w.r.t. tableau size) equivalent dichotomic ttg can always be
achieved by simply removing tableau tuples. Unfortunately(-) cannot handle all queries with projection and
associated coalescing. Nevertheless, it can detect and handle some queries that are outside th§Rcope of
For example@ = mi(op2,6(R2)), WhereRR has arity 2, is non-monotonic in strict sense, but has an equivalent
dichotomic ttq. An open problem is deciding containmen$Bf *™¢ queries with projections that can result in
an unbounded number of tuples being coalesced into a single one. It is unclear whether such projections can be
captured by finite tableaux.

The use of “homomorphisms” for deciding containment of queries that deal with intervals, is somehow re-
markable. Queries in which each variable is bounded by a constant from only one side (either left or right) have
been called semiinterval queries. The homomorphism property is known to fail for semiinterval queries [5]. Left-
semiinterval queries are queries whaikinequalities are of the forméc, wherex is a variable¢ is a constant,
andd € {<, <, =}, i.e,, inequalities can express only upper bounds for variables. Right-semiinterval queries are
defined analogously. In [6] it is shown that the homomorphism property holds for left-semiinterval queries and
right-semiinterval queries. Temporal tableau queries are neither left- nor right-semiinteiSB{CH* queries
are translated iSPC<, inequalities of the fornf < p, f > p, t > p, t < p emerge, together with< t (p € 7).

For example, a tableau tup{€, [f, p]) expresses: If < p then(Z, [f,p]) should be in the argument temporal
relation (up to a substitution of constants for variableg)irand iff > p thentrue. .

The operatotab(-) mapsSPC"™® queries to ttgs. The inverse mapping from ttgSkE"™ has not been con-
sidered. In this respect, itis interesting to note that the removal of redundant revi¢d)) does not necessarily
lead to a simplification of thePC"™* query@. For example, the quefy-] of Example 4 equalsib (i (o72,6( R))),
whereR is of arity 2. The tableau size dfr| can be reduced, as shown in Example 10. However, it is easy to see
thatm (o72,6(R)) is equivalent to nGGPC"™ query with less operations. Recall incidentally that some ttgs are
equivalent to nGPCY™ query, as illustrated by Example 2.

Some limits of our ttq formalism are as follows. The results are presented for queries over a single relation,
but can be generalized for database schemas involving more than one relation. For multiple relations, a rule-based
formalism may be more appropriate than the tableau formalism. We considered only valid time; the extension to
bitemporal relations is an open issue. As already noticed in [14], many of our results rely on the assumption that
time is discrete. Itis interesting to investigate how the ttq formalism needs to be adapted to deal with dense time.

Finally, it is important to note that ttqs have been introduced as a tool for query optimization, and by no means
as a query language for end-users. Several temporal query languages for end-users have been proposed in the liter-
ature. Such query languages may use point-based time instead of interval-based time, as in [11]. However, even if

®Monotonic in strict sense means tha€ J impliesQ (1) C Q(J).
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point-based time is used at the conceptual level, time intervals are likely to emerge at the storage level for efficiency
reasons, and hence optimization of interval-based queries remains significant.
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