Supporting Valid-time I ndeter minacy

Curtis E. Dyreson and Richard T. Snodgrass

TR-7

A TIMECENTER Technical Report

Title Supporting Valid-time Indeter minacy

Copyright (©) 1997 Curtis E. Dyreson and Richard T. Snodgrass. All rights
reserved.

Author(s) Curtis E. Dyreson and Richard T. Snodgrass

Publication History December 1996. Manuscript.
April 1997. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Chrigtian S. Jensen (codirector)
Michael H. Bohlen

Renato Busatto

Heidi Gregersen

Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta

Individual participants

Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk Nationa University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland

Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TIMECENTER isprovided “ asis’ and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows’ are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, aswell as by their precedessors and successors, The
Rune alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines because
the primary storage medium waswood. However, runes may also be found on jewelry, tools, and weapons.
Runes were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “ C,” respectively.

Abstract

In valid-time indeterminacy it is known that an event stored in a database did in fact occur, but it is not
known exactly when the event occurred. In this paper we extend the SQL datamodel and query language
to support valid-timeindeterminacy. We represent the occurrence time of an event with a set of possible
instants, delimiting when the event might have occurred, and a probability distribution over that set. We
also describe query language constructs to retrieve information in the presence of indeterminacy. These
constructs enable usersto specify their credibility in the underlying data and their plausibility in therela-
tionships among that data. A denotational semantics for SQL's select statement with optional credibility
and plausibility constructsis given. We show that this semanticsisreliable, in that it never producesin-
correct information, maximal, in that if it were extended to be more informative, the results may not be
reliable, and reduces to the previous semantics when there is no indeterminacy. Although the extended
datamodel and query language provide needed modeling capabilities, these extensionsappear initially to
carry asignificant execution cost. A contribution of this paper isto demonstrate that our approachis use-
ful and practical. An efficient representation of valid-time indeterminacy and efficient query processing
algorithmsare provided. The cost of support for indeterminacy is empirically measured, and is shown to
be modest. Finally, we show that the approach is general, by applying it to the temporal query language
constructs being proposed for SQL 3.

Keywords: Incompleteinformation; indeterminacy; probabilisticinformation; SQL ; temporal database; TSQL2; valid-
time database.

1 Oveview

Most databases record the history of an enterprise. Such databases associate with each event a timestamp
indicating when that event occurred. Often a user knows only approximately when an event happened. For
instance, she may know that it happened “between 2 PM and 4 PM,” “sometime last week,” or “around the
middle of the month.” These are examples of valid-time indeterminacy. Information that isvalid-time inde-
terminate can be characterized as “don’t know when” information, or more precisely, “don’t know exactly
when” information. Thiskind of information has various sources, including the following.

e Granularity mismatch — In many cases, the granularity with which datais recorded is finer than the
precision to which the occurrence time of an event isknown. For example, an occurrence time known
towithin one hour recorded on asystem with timestampsin the granularity of asecond happened some-
time during that hour but during which second is unknown.

¢ Dating techniques — Many dating techniques, such as Carbon-14 dating [GC66], are inherently im-
precise.

e Uncertainty in planning — Projected completion dates are often inexactly specified, e.g., the project
will complete three to six months from now.

e Unknown or imprecise event times — In general occurrence times could be unknown or imprecise.
For example, perhaps we do not know when a student in the first grade was born. The student’s date
of birth could be recorded in the database as either unknown (she was born between the beginning and
the end of time) or imprecise (she was born between five and seven years ago).

e Clock measurements — Every clock measurement has some imprecision [Pet91].

This paper proposes the valid-time indeterminate data model and its implementation. The model adds
valid-time indeterminacy to SQL [MS93].

We identified severa design goalsto be met in extending SQL with indeterminacy. First, we wanted the
syntactic extensions to be minimal, yet highly expressive. Timestamps should include a representation for

valid-time indeterminacy and users should be able to control, via gquery language constructs, the amount of
indeterminacy present in derived information. Second, we wanted the extensions to be upward compatible
with SQL. Inthe absence of valid-timeindeterminacy the syntax and semantics should reduce to that of SQL.
Third, the semantics should be simple and intuitive. In particular, information should not be *invented’ dur-
ing queries. And finaly, it was critical that valid-time indeterminacy have little impact on the performance
of the DBMS, either in space to store indeterminate timestamps or in query evaluation time.

Unfortunately, these design goals conflict, as discussed further in Section 11. Earlier work required a
three-valued [Sno82] or four-valued logic [Sch87]. Probabilistic approaches (e.g., [BGMP92]) are highly
expressive, but have a query evaluation cost which is proportional to the number of probable alternatives.
The number of such aternatives can easily number in the millions for a single indeterminate time, and thus
probabilistic approaches areimpractical if directly applied in atemporal context. More recent work models
indeterminacy by using a constraint network. At best, using a restricted network, query evaluation com-
plexity has been shown to be cubic [BCTP95] in the number of constraints. Our approach uses probabilistic
weights, yet achieves alinear query evaluation complexity, with anominal increase in storage cost.

The next section introduces an example requiring the storage of valid-time indeterminate information;
this example will be used throughout the paper. We then examine the representation of valid-time indetermi-
nacy. After that, we explore what it meansto retrieve information from a database with valid-time indetermi-
nacy. We outline syntactic and semantic extensions to SQL to support retrieval of valid-time indeterminate
information, and argue their correctness. We then show how valid-time indeterminacy can be implemented.
Although retrieving valid-time indeterminate information may appear to be expensive, we demonstrate that
an efficient implementation exists. Thefinal sections apply these same notionsto atemporal query language,
trace related work, summarize our approach, and discuss future work. Proofs for all theorems can be found
in the Appendix.

2 Motivating Example

An example database is shown in Figure 1. This database models a single company with two warehouses
and one airplane factory. The warehouses supply parts to the factory. Each warehouse keeps a Sent rela-
tion, which records when parts were shipped from the warehouse to the factory. The factory maintains the
In_Production relation, which is a production history of airplanes built by the factory. Thisrelation includes
a period timestamp'; the other two relations include instant timestamps. For each relation we assume an
underlying timestamp granularity of one day?.

Vaid-time indeterminacy naturally arises in both base relations and derived relations. The
During attribute of the In_Production base relation is an indeterminate period. This is because the granu-
larity of the In_Production relation is a month. A month is an indeterminate value that represents a set of
possible days. Production on an airplane started on some day in the indicated month, but we cannot be sure
which one. For example, production on the Centurion with serial number AB33 started sometime between
(inclusive) March 1 and March 31. For this example, we assume that production is equally likely to have
started or ended during any day in anindicated month, although, in general we allow nonuniform likelihoods.

The Received relation is not maintained by either the factory or a warehouse; rather it is a derived re-
lation, the product of educated guesswork. Parts are shipped by truck from a warehouse and arrive at the
factory no earlier than four and no later than twenty-four days after they leave a warehouse. The Received
relation is computed from each warehouse's Sent relation by adding a 4-24 day “fudge factor” to the When

1Thispaper will usethe SQL 3/Temporal [Mel96] term period to denote an anchored duration of time, e.g., theyear 1995, in place
of the term interval [JCE™94] which appears more commonly in the literature, as interval is used in SQL to denote an unanchored
duration of time, e.g., one year.

2For expository purposes only, we adopt anon-SQL format for temporal constants, e.g., May 1 rather than 1996-05-01.

Sent_by_Boeing(Lot_Num,Part,When) Sent_by_Cessna(Lot_Num,Part,\WWhen)

Lot Num | Part | When LotNum | Part | When
23 wing strut | May 6 30 wing strut | May 26
24 engine June 4 31 wing strut | June 9

In_Production(Model, Serial_Num, During)

Model | Serial_-Num | During

Centurion | AB33 [March 1 ~ March 31 —June 1 ~ June 30]

Cutlass Z19 [June 1 ~ June 30 — July 1 ~ July 31]

Centurion | AB34 [June 1 ~ June 30 — August 1 ~ August 31]

Caravan | FA2K [April 1 ~ April 30 —-May 1 ~ May 31]

Received(Warehouse, Lot_Num, Part, When)

Warehouse | LotNum | Part | When
Boeing 23 wing strut | May 10 ~ May 29 ¢,
Cessna 30 wing strut | May 30 ~ June 18 ¢es
Boeing 24 engine June8 ~ June27 ej3
Cessna 31 wingstrut | Junel3~Jduly2 ey

Figure 1. An example database

atribute. Thevalid timesin the Received relation are indeterminate; that is, we know roughly when the parts
were received, but we do not know exactly which day they were received. We will assume that each day in
the recorded range of days is equally likely. For example, the batch of engines received from the Boeing
warehouse arrived on one of the days in the set {June 8, June 9, ..., June 27}, but we have no reason to
favor one day over another.

Queries can make use of indeterminate information in the database. Suppose that afew of the Centurion
airplane ownersreport afaulty wing strut. Naturally, wewould like to query the database to determine which
warehouse(s) supplied the defective parts and, specifically, which lots are implicated (we give such aquery
in Section 4). In SQL with valid-time indeterminacy, we could query to determine which shipment of wing
struts “overlaps’ the production of a Centurion airplane. Overlap is the operation of temporal intersection.

There are two well-defined limits on an answer to a query in an incomplete information database: the
definite answer and the possible answer [Lip79]. The definite answer is the information that satisfies the
guery in all possible extensions of the database while the possible answer is the information that satisfies
the query in some possible extension of the database (we formalize these bounds in Section 5.3). For ex-
ample, consider atemporal selection on the Recelved relation that selects those tuples received prior to June
10. Even though the exact date the shipment of lot number 23 from the Boeing warehouse arrived is un-
known, it is clear that this shipment arrived before June 10 (the shipment arrived on some day in the set
{May 10, May 11, ..., May 29}). Thistuple, and no other, isin the definite answer to the query. Lot num-
ber 30 from the Cessna warehouse is in the possible answer to the query. It is possible that this shipment
arrived prior to June 10 (and also possible that it did not). Similarly, lot number 24 from the Boeing ware-
house possibly arrived prior to June 10. Thefirst shipment from the Boeing warehouseisalso in the possible
answer because a definite answer is also a possible answer, but not vice-versa.

The Definite Answer Warehouse | Lot_Num Part When
Boeing 23 wing strut | May 10 ~ May 29

Warehouse | Lot_Num Part When
The Probable Answer Boeing 23 wing strut | May 10 ~ May 29
Cessna 30 wing strut | May 30 ~ June 18

Warehouse | Lot_Num Part When
. Boeing 23 wing strut | May 10 ~ May 29
The Possible Answer Cessna 30 wing strut | May 30 ~ June 18
Boeing 24 engine June 8 ~ June 27

Figure 2: Answersto example queries

Between the possible and definitelimitslie other answers. For instance, assumethat itisequally likely for
eachday in{June 8, June9, ..., June 27} that ot number 24 arrived. For the shipment to have arrived prior
to June 10, it had to arrive on either June 8 or June 9. If all the days are considered to be equally likely, then
there isa probability of only 0.10 (2 chances out of 20) that the the shipment was received prior to June 10.
So it isimprobable that lot number 24 arrived prior to June 10. However, it is probable that both lot number
30 (0.55 probahility, 11 chances out of 20) and lot number 23 did arrive (1.00 probability). The definite,
possible, and “probable’ answer to the temporal selection are portrayed in Figure 2. If the query language
can make use of a probability distribution over the possible times associated with an indeterminate instant, a
“richer” query language results, one not restricted to the definite and possible answers. The richness of the
guery language, however, must not compromise efficient implementation nor detract from the intuitiveness
of the language.

There aretwo stages to determining an answer to aquery. Thefirst stageretrievesthe datathat isrelevant
to the query. The second stage constructs an answer that satisfies the conditions specified in the query. We
provide separate controls on the indeterminacy for each stage.

Correlation credibility (potentially) changes the information available to query processing by replacing
each indeterminate time value with arelevant determinate time value. A typical replacement is the expected
value or probabilistic mean. For example, the expected start of production for the Centurion with seria num-
ber AB33isMarch 15 (the expectation of the uniform distribution over a sequence of valuesisthe half-way
point in that sequence). In SQL with indeterminacy the user can express this preference by selecting an ap-
propriate correlation credibility value. The chosen correlation credibility potentially modifies every time
value in the associated relation, removing the indeterminacy.

Ordering plausibility controls the construction of an answer to the query. For instance, aCenturion owner
could query which shipment of wing struts plausibly arrived during production of hisor her plane. Intuitively
such aquery relaxes the constraints on the rel ationship between the production times and the day a shipment
wasreceived from “ do they definitely overlap?’ to“isit probable that they overlap?’ or perhapsto“isit even
remotely possible that they overlap?’. The user selects the kind of overlap that she or he requires by setting
an appropriate ordering plausibility value. It isprobable that lot number 31 from the Cessna warehouse was
received during production of the Centurion with serial number AB33, but one cannot be absolutely sure that
it did.

Thereisanatura division between indeterminacy inthe dataand indeterminacy inthe query. The support
for valid-time indeterminacy that we add to SQL alows the user to control both kinds of indeterminacy.
Correlation credibility replaces indeterminacy in the data while ordering plausibility governs the probability
of relationships among the data.

3 Extendingthe Data Model with I ndeter minacy

In this section we discuss how to represent indeterminate instants, periods, and intervals in the data model.
In Section 7 we discuss how these representations are implemented.

3.1 Modd of the Time-line

We briefly summarize the simple, standard model of time that we adopt for this paper. Themode is presented
in detail elsewhere [DSS95].

Time has a standard geometric metaphor. In this metaphor, time itself is aline segment (assuming a
bounded universe); apoint on thetime-lineis called an instant; the time between two instants is known as a
time period (period for short); and alength, or unanchored segment, of thetime-lineisan interval. Thetime-
line segment is partitioned into afinite number of smaller segments each of whichiscalled achronon [Ari86,
CR87, JCE"94]. A chronon is the smallest amount of time that can be represented in the implementation.
The chronons are consecutively labeled with the integersin the sequence 0, . .., N, where N isthe number
of values that a timestamp can represent. The domain of time values is the set of chronons and two special
values, —oo and 400, which are used to represent the beginning of timeinstant and the ending of time instant,
respectively.

3.2 Indeterminate | nstants

Aninstant is apoint on the time-line. Aninstant is determinate if it is known when (i.e., during which par-
ticular chronon) it islocated. Often, however, we do not know the exact chronon during which an instant is
located; instead, we only know that the instant is located sometime during a set or range of chronons. We
call such an instant an indeterminate instant. The indeterminacy refers to the location of the instant, rather
than to the existence of the instant.

Anindeterminate instant is described by alower support, an upper support, and a probability mass func-
tion (p.m.f.) [DS93]. The supports are chronons that delimit when the instant is located; the instant is no
earlier than during the lower support and no later than during the upper support. Between the supports lies
aperiod of indeterminacy. The period of indeterminacy is a contiguous set of possible chronons. The in-
stant islocated during some chronon in this set, but which chronon is unknown. We denote a set of possible
chronons that extends from the lower support, .., to the upper support, o*, using the notation ov, ~ o,
eg., May 10 ~ May 29.

3.21 TheProbability Mass Function

Although theinstant islocated during some possible chronon, not al the possible chronons are equally likely.
For example, it could be that the instant is most likely located during the earliest chronon in the period of
indeterminacy. The probability mass function gives the probability of each chronon. The probability mass
function, P,, for the indeterminate instant, «, is

P,(i) = Prla=1] i € {0,1,...,N}

where Pr[a = 1] isthe probability that the instant is located during chronon . Since the instant is not any
time outside the period of indeterminacy, Pr[i < a,] = 0 and Pr[i > o*] = 0. All indeterminate instants
are considered to be independent, that is

Pria =i A B =j] = Prla=1] x Pr[f =]

Like most other probabilistic approaches in databases [BGMP90, BGMP92, DS96, CP87, FR96, GH86,
K'S93b, KS93a, Zim92] no provisions are made for joint or dependent probabilities. An indeterminate in-
stant, «, isdenoted using the notation, (a, ~ a*, Py,).

3.2.2 Mass Function Sources

The probability mass function for an indeterminate instant is supplied by the user. In many common cases
the probability mass function for an indeterminate instant stems from the source of the indeterminacy.

e Granularity mismatch — The uniform or equi-probable mass function is auseful assumption. For ex-
ample, aninstant known to within one hour and recorded on a system with timestamps in the granular-
ity of asecond happened sometime during that hour, but during which particular second is unknown,
and there is no thereis no a priori reason to favor one second over another.

e Dating techniques — A property of radioactive dating techniques is that the estimate is described by
anormal, “bell-shaped curve’ distribution.

e Uncertainty in planning — Analysis of past data (the past data may be readily available in atempora
database) can sometimes provide a good indicator of future performance (when used carefully). For
instance, we may not know exactly when an airline will depart. However, an analysis of past departure
times for that route, type of airline, and day of the week (the analysis could be much more elaborate)
may show that this flight tends to leave later than scheduled. Based on this analysis, a“probably late”
distribution could be used for the departure time of that flight.

e Unknown or imprecise instants — Typically, if the location of an instant is unknown, the distribution
is aso unknown. In these situations, a user can specify that the distribution is missing (see below).

¢ Clock measurements — Clock-specific distributions model the imprecision of specific clock measure-
ments [Pet91].

Dey and Sarkar provide several additional means of determining the underlying mass function [DS96].

In some case, auser just may not know the underlying mass function because that information isunavail-
able or the mass function might exceed the implementation capacities of the system (Section 8 describes the
implementation and the constraints it imposes on massfunctions). In such cases, the distribution can be spec-
ified asmissing. A distribution that ismissing represents acomplete lack of knowledge about the distribution.
Itisakind of second-order incompleteness, that is, the distribution that is missing isincomplete information
about indeterminate information. Unlike some other probabilistic datamodels [BGM P90, BGMP92], we do
not alow partially known distributions.

While the terminology introduced so far suggests a difference between indeterminate and determinate
instants, it is instructive to note that an indeterminate instant can be used to model a determinate instant.
A determinate instant is modeled by an indeterminate instant with a singleton set of possible chronons. A
determinate instant records that an instant is located sometime during a particular chronon. Without |oss of
generality, we assume that a determinate instant represents any real-world instant during a chronon. Hence,
at an abstract level, the exact real-world instant modeled by a determinate instant is never precisely known.
At best only the chronon during which it islocated is known.

3.3 Indeterminate Periods and Intervals

A determinate period isthe time between two instants. In our model of time, it is represented by a sequence
of chronons, denoted by the starting and terminating chronons in the sequence.

3While the period data typeis not in SQL-92[MS93], it isincluded in SQL3 [Mel96].

A period bounded by indeterminate instants (called the starting and terminating instants) is termed an
indeterminate period. Anindeterminate period could start during any member of the set of possible chronons
of the starting instant. Likewise, theindeterminate period could end during any member of the set of possible
chronons of the terminating instant. Sincethe location of the starting and terminating instants are known only
imprecisaly, it follows that it is unknown precisely when an indeterminate period begins or ends.

A determinate interval isaprecisely known duration of time, e.g., six days, and is represented as a count
of chronons. An indeterminate interval, on the other hand, is an imprecise duration that describes a set of
possible durations. Anindeterminateinterval isrepresented by an imprecise number of chronons, e.g., “from
two to three chronons.” The representation of an indeterminate interval has an associated probability mass
function which gives the likelihood of each possible duration.

We turn now from the data model to the query semantics.

4 Syntactic Extensionsto SQL

In this section we summarize the syntactic extensions to SQL to support the storage and retrieval of valid-
time indeterminate information from adatabase. Full coverage of the syntactic extensions can be found el se-
where [Sno95]. In the next section we provide aformal semantics for these constructs.

To support valid-time indeterminacy, three syntactic extensions to SQL are needed: (1) to indicate that a
temporal attribute is indeterminate, (2) to specify the correlation credibility, and (3) to specify the ordering
plausibility.

The first syntactic extension, to indicate that an attribute is indeterminate, involves the schema speci-
fication statements. In the create table statement a user may add either the modifier | NDETERM NATE or
| NDETERM NATE COMPACT after an instant, period, or interval attribute specification to specify that the
value may be indeterminate. The two modifiers toggle between alternative storage strategies for indetermi-
nate timestamps, discussed in Section 7 (the compact version is a less expressive, smaller timestamp). We
also add an optional “with” phrase to the end of the create table statement that allows the user to specify
standard or nonstandard mass functions. These two categories of mass functions are also discussed in Sec-
tion 7. ThedefaultisW TH STANDARD DI STRI BUTI ON. To the alter table statement we provide clauses
that allow any of these aspects to be changed. Below are some examples of the extended create table and
alter table statements.

CREATE TABLE Recei ved(War ehouse CHARACTER(30),
Lot _Num | NTEGER, Part CHARACTER(40),
When | NDETERM NATE DATE) ;
CREATE TABLE I n_Producti on(Mbdel CHARACTER(30),
Seri al _.Num CHARACTER(10),
Duri ng | NDETERM NATE PERI OD(DATE)) ;
ALTER TABLE Received ALTER COLUW When TO NONSTANDARD DI STRI BUTI ON,

The second syntactic extension supports correlation credibility. The from clause in the select statement
declares the relations over which the query is to be evaluated, and associates correlation name(s) with each
relation. The specified correlation credibility isdenoted viaaW TH CREDI BI LI TY phrase, and isapplied
to each time value (instant, period, or interval) in the relation associated with the specified correlation name.
The credibility is one of the following four values.

1. | NDETERM NATE— Retain al the indeterminacy by leaving the time values unchanged.

2. EXPECTED - Replace each indeterminate time value with the expected value. Select thisto compute
the expected result for a query.

3. MAX - Replace each indeterminate time value with the lower support (except for an instant that startsa
period, in which case use the upper support). For periods, this value eliminates al the indeterminacy.
For instants, it uses the earliest possible instant, while for intervals, the shortest possible interval is
chosen.

4. M N- Replace each indeterminate time value with the upper support (except for an instant that starts
aperiod, in which case use the lower support). For periods, this value converts all the indeterminate
information to determinate information. For instants, it chooses the latest possible instant, while for
intervals, the longest possible interval is used.

The credibility phrase is optional and has an initial default value of | NDETERM NATE. This default value
can be changed using aSET CREDI Bl LI TY statement.

The third syntactic extension concerns the ordering plausibility. The ordering plausibility is the plausi-
bility in the where predicate among the instants, periods, and intervals that participate in the predicate. The
default ordering plausibility is specified using a SET PLAUSI Bl LI TY statement. The default ordering
plausibility can be over-ridden in a select statement by appending aW TH PLAUSI BI LI TY phrase to the
end of the where clause. The ordering plausibility is an integer value between 1 and 100 (inclusive), and
hasan initial default value of 100. An ordering plausibility of 1 indicates that any possible answer isdesired
(i.e., the where predicate can be satisfied by any possible extension); an ordering plausibility of 100 requests
the definite answer (i.e., the where clause must be satisfied by all possible extensions).

An example query illustrating the various constructs is shown in Figure 3. Intuitively, the query will
determine, within the specified plausibility and credibility levels, which wing strut shipments were received
during production of each Centurion. The from clause specifies that al information, regardless of its credi-
bility, from the In_Production relation should be used (via the specified credibility of | NDETERM NATE).
The where clause selects pairs of Centurion and wing strut tuples that overlap with a plausibility of 60. Fi-
nally, thetarget list determines when the shipment of possibly defective partswasreceived. When this query
is applied to the database shown in Figure 1, the relation shown in Figure 4 is computed. Wewill discussin
detail in Section 5.8 how this query is evaluated to obtain the indicated result.

5 Semantic Extensionsto SQL

In this section we extend the semantics of SQL to support indeterminacy. The presentation focuseson SQL's
select statement. Wefirst provide abrief review of the semantics of the select statement. We then extend the
semantics to support indeterminacy. The evaluation of aselect in the extended semantics has a possible and
adefiniteinterpretation, aswell asother interpretations that lie between those bounds. We show that the pos-
sible interpretation is both reliable, in that it does not invent information, and maximal, insofar as it cannot
be strengthened to produce more results. However, the indeterminate semantics does not demonstrate that
indeterminacy can be efficiently implemented. Consequently we introduce an operational semantics. The
operational semantics provides all the necessary support for indeterminacy with three changes to the SQL
semantics. First it redefines the temporal ordering relation, Before. Second, it introduces a 4-sorted domain
for the evaluation of where clause predicates. And third, it adds a Replace operator to effect correlation cred-
ibility. Each of the changes incorporates the determinate semantics (as the default). Hence, the semantics of
existing queries is left unchanged. We show that the operational semantics correctly implements the inde-
terminate semantics.

5.1 Review of SQL Semantics

In this section we present a simplified semantics for the select statement. Our goal in this presentation isto
highlight those aspects of the statement that will be impacted by valid-time indeterminacy, a theme which

8

SET PLAUSI BI LI TY 60
SELECT r. Warehouse, r.Lot Num p. Serial Num r.Wen
FROM Recei ved AS r WTH CREDI Bl LI TY | NDETERM NATE,
I n_Production AS p WTH CREDI BI LI TY | NDETERM NATE
WHERE p. Model = "Centurion” AND r.Part = "wing strut”
AND r. When OVERLAPS p. During

Figure 3: An example query

Warehouse | Lot-Num | Serial .Num | When

Boeing 23 AB33 May 10 ~ May?29
Cessna 30 AB33 May30 ~ Junel8
Cessna 31 AB34 Junel13 ~ July2

Figure 4: Result of the example query

we will develop in subsequent sections.
Wewill usethenotation, [x | sor 1o denote the meaning of the syntactic SQL construct z. Thetop-level
of adenotational semantics for the select statement, applied to a database d, is given below.

[SELECT (target list) FROM (fromlist) WHERE (predicate) |5, (d) =
[(terget list) I ([WHERE (predicate) [y, ([(fromlist) Jsq(d)))

The select statement first applies the from clause to the database. This clause computes the Cartesian product
of the relations specified in the (fromlist). The meaning of the from clause is

[(fromlist) |5, (d) = [(relation), ..., (relation,) |sq(d) =
[(relation) [goz(d) x ... x [(relation,)] sqy(d)

where
[(relation;}], (d) =ri, ri € d,and r; is named (relation;).

Theresult computed by the from clause, an intermediate relation r, isthen used as an argument for the where
clause. This clause selects those tuples that satisfy the (predicate) in the where clause.

[WHERE (predicate) [o, (r) = {t |t € r A[(predicate) [5o, (1)}

Note that the correlation names appearing in (predicate) will need to be mapped to the attributes in the tuple
t. Thisis generally done by passing the symbol table as a second argument to |]]SQL. For simplicity, we
omit that argument. We will restrict the presentation to predicates that are logical formulaeconstructed from
comparison operations and boolean connectives, and will rely upon the readers background knowledge of
SQL to supply the meaning of each SQL (predicate), e.g., the standard Boolean logic applies:

[(predicate) AND (predicate) | ¢, () = [(predicate) [o, (t) A [(predicate) | gqp (1)
Inthefinal step, the output of thewhereis projected onto the desired domains specified by the (target list).
(r)

Here we also ignore the mapping of correlation names to attributes of r.

[(targetlist) [sqr(r) = 7 target list) 15,

9

5.2 Supporting the Syntactic Extensions

Since the current SQL semantics does not support indeterminacy the extended syntax can only be supported
in anew, extended semantics, whichwedenoteas| [,,,,. The extensions presented in Section 4 include two
additional controls ontheindeterminate information: the correlation credibility and the ordering plausibility.
These values will appear as additional parameters, § and v, respectively, to [J,,,,- Both values can be spec-
ified using SET DEFAULT statements. The meanings of the SET DEFAULT statements are given below.
Assume S isany SQL statement.

[SET DEFAULT CREDIBILITY 0'; S];,4(d,7,d) = [S];,4(9",7, d)
[SET DEFAULT PLAUSIBILITY~; S, (0,7, d) =[S];q4(6,7',d)

The default values can be over-ridden within the select statement itself. Here we show how to over-ride the
plausibility default; in Section 5.7 we show how to over-ride the credibility default.

[SELECT (target list) FROM (fromlist) WHERE (predicate) WITH PLAUSIBILITY '], .(d,v,d) =
[SELECT (target list) FROM (fromlist) WHERE (predicate) |,,,,(d,7',d)

Theinitial default credibility is| NDETERM NATE and initial default plausibility is 100.

5.3 An Overview of the I ndeter minate Semantics

In this section we give an overview of the indeterminate semantics and discuss severa properties that a se-
manticsinvolving incomplete information should possess. In later sections we show that our semantics does
indeed have these essential properties.

The indeterminate semantics for the select statement is outlined below. This semantics has the same
structure as the SQL semantics.

[SELECT (target list) FROM (fromlist) WHERE (predicate) J,,,,(9,7v,d) =
[(targetlist)];,,4(v, [WHERE (predicate) |, ,(v,[(fromlist)];,,(d,d)))

The SQL and indeterminate semantics differ in two ways. First, the indeterminate semantics has additional
parameter(s), but note that § is utilized only in the from list, and ~ is utilized only in the where predicate
and target list. Second, the select statement has a different meaning in the indeterminate semantics. Let's
consider what the meaning should be, intuitively.

A select statement applied to a database containing only complete information and evaluated under SQL
semantics has a single interpretation. In contrast, a retrieval from a database containing incomplete infor-
mation has at least two interpretations. One interpretation isthat the query selects information that possibly
matches the retrieval constraints. The second interpretation is that the query selects information that defi-
nitely matchestheretrieval constraints. Which interpretation isadopted is specified by the user via syntactic
congtructs in the query. It isimportant however, to guarantee that a query avoids producing impossible re-
sults. That is, aquery should be constrained to compute a subset of the possible interpretation, and a superset
of the definite interpretation. We formalize this by introducing the concept of a completion.

An indeterminate instant can be thought of as a set of possible instants, one of which is the “actual”
instant, but which oneisunknown. Each of the possible instants represents a different, complete description
of redlity. Each possibility is termed a completion of the instant*. The following definition captures this
intuition.

“Gadiaintroduced the completion of atemporal tuple and of atemporal relation [GNP92]. Our definition extends this notion to
indeterminate instants, periods and intervals and to conventional tuples, relations and databases containing such values.

10

Definition 1 (Completion of an indeterminateinstant) Let « = (v, ~ o*, P,). Acompletion of « IS «,
where ¢; is a determinate instant such that o, < «; < o*. The set of all completions for an instant « is
denoted C(«). |

Completions of periods and intervals also exist. A completion of an indeterminate period isonein which its
delimiting (indeterminate) instants are both replaced by their completions. A completion of an indeterminate
interval is one of the possible durations. The concept can also be generalized to apply to tuples, relations,
and databases. A completion of z, be it atuple, relation, or database, is x., where z. is the same as = but
with each indeterminate instant, period and interval replaced by a completion of that value. The set of all
completions for an entity = isdenoted C(z).

In the indeterminate semantics, the possible interpretation of the select statement is attained by using a
plausibility of 1, while the definite interpretation is given by adopting a plausibility of 100. We focus on
the where clause to show the difference in these two interpretations. The definite interpretation of the where
clause is given below.

[WHERE (predicate) [;,,(100,7) = {t [t € r A V' € C(t)([(predicate) [, ('))}

The definite interpretation selects only those tuples that are selected by the SQL semantics (note the use of
[(predicate) | 5, ,,) in every completion of the tuple.

The possible interpretation differs only dlightly. It selects only those tuples that are selected by the SQL
semantics in some completion of the tuple.

[WHERE (predicate) [;,,,(1,7) ={t|t €r A 3t' € C(t)([(predicate) Jso(t))}

This semantics is reliable, in the sense that it never produces incorrect information®. For a semantics
to be reliable, the result of a where clause on a completion of arelation r in the SQL semantics should be
consistent with the result in the indeterminate semantics on the relation r.

Theorem 1 [WHERE (predicate)];, ,(1,r) isreliable, that is, for any where clause, W,
vr' € C(r) [[Wsqr(r') € CIW Lina(1r))] -

Proof: Proofs are given in the Appendix. |

The semantics is also maximal, in that if the semantics were extended to be more informative, i.e., al-
low more completions, then the result may no longer be reliable. From the previous theorem, we know that
[W1];,q(1,7) contains al the needed completions. We need to determine that it contains no extraneous com-
pletions.

Theorem 2 [WHERE (predicate) |, ,(1,7) ismaximal, i.e., for any where clause, W,
Ve € C([W];,4(1,7)[Fr" € C(r) (e = [W 5oL, ("))] -

Note that these two theorems in concert demonstrate that, for al where clauses W and indeterminate
relations r,

C([[W]]md(l,r)): U [[W]]SQL(TI)-
r'eC(r)

Observe that if the database has only complete information, there is only one completion, and effec-
tively just asingle interpretation of a query since the possible and definite interpretations are equivalent. So

Here we adopt the notions of reliability, and later, maximality, used by Gadia [GNP92].

11

the credibility and plausibility have no effect whatsoever on existing databases, which contain only com-
plete information, and the semantics of extant SQL queries and databases is unchanged by extensions to
support indeterminacy. This important property is termed temporal upward compatibility [BBJS96]. In the
context of indeterminacy, it isalso equivalent to stating that the indeterminate data model isa generalization
[GNP92] of the determinate (SQL) data mode.

The possible and definite interpretations are just two of the many interpretations available in the indeter-
minate semantics. Other interpretations result from choosing other credibility and plausibility values. These
interpretations are related. Increasing the plausibility setting in a select statement yields a “ more definite”
interpretation. It is essential however, to ensure that these other interpretations will not generate spurious
results. We guarantee this by demonstrating (in Section 5.9) that evaluating a select statement in the inde-
terminate semanticsis monotonic in the plausibility. Each result at a higher plausibility setting is a subset of
the result at alower plausibility.

5.4 Supporting Ordering Plausibility

Both the possible and definite interpretations of a query in the indeterminate semantics are stated in terms
of the SQL semantics. Unfortunately, a straightforward implementation of these interpretations would be
highly impractical, since it would require computing the predicate over every possible completion of atuple
in the inner loop of query processing. There could be many completions for each tuple, depending on the
duration of the period of indeterminacy. Asan example, there are seven billion completions of asingle inde-
terminate period that has delimiting instants with a period of indeterminacy of one day, assuming a chronon
size of one second.

Consequently, we introduce an operational semantics, [|,,, that implements the indeterminate seman-
tics. We later show that the operational semantics is efficient, satisfies the goals outlined above, and isfully
consistent with the indeterminate semantics, [|

ind*

5.4.1 Probabilistic Ordering

The ordering plausibility (primarily) impacts the meaning of the where clause. The semantics of the where
predicate without indeterminacy is based on a well-defined ordering of the instants in the underlying rela-
tions. Every temporal predicate (e.g., OVERLAPS) and temporal constructor (e.g., PERI OD((instant value),
(instant value))) refers to the ordering given by Before to determine the truth value of the predicate or the
instant or period returned by the constructor. For example consider the following OVERL APS predicate.

[(instant;) OVERLAPS PERI O (instant), (instants)) Jgqr =
Before([(instantz) | ¢y, [(instant:) Jgy,) A Before([(instanty) Jgq,, [(instants) Joq,)

A set of determinate instants has a single temporal ordering. Given atemporal expression consisting of
temporal predicates and temporal constructors, this ordering either satisfies the expression or failsto satisfy
it. A set of indeterminate instants, however, typically has many possible temporal orderings, due to the many
completions of those instants. Some of these temporal orderings are plausible while others are implausible.
The user specifies which orderings are plausible by setting an appropriate ordering plausibility value. We
dipulate that atempora expression is satisfied if there exists a plausible ordering between pairs of instants
that satisfies each predicate in the expression. This semantics reduces to that of the determinate case when
there is only one ordering.

In the SQL semantics, Before isthe “ <” relation on the representation of instants (i.e., on chronons).

Before(a,) = a < 3

12

g

€1 €2 €3 €4
e; | 1.00 100 1.00 1.00 €1 —+
a e 0 100 .86 .9 €2 P
es 0O .16 100 .73 €4 —
€4 0O .05 .27 1.00
(a) table of Pr[a <] (b) relative time-line location

Figure 5: Pr[a < f] for the indeterminate instants in Received

In the operational indeterminate semantics, the temporal ordering isinstead based on the probability that one
instant is before another. We define that probability first, and then give the new ordering operation.

Definition 2 (Probabilistic ordering) For any two indeterminate instants, «« and (3, the probability that «
isbefore gisPrla <] = 3,c; Prla=i] x Pr[8 =j] 4,5 €{0,...,N}. |

Figure 5(a) shows the value of Pr[a < f] (to two decimal places) for each pair of instants in the relation
Received, e.g., Prles < e3] = .86. Those instants are placed on atime-line in Figure 5(b).

The probabilistic ordering assumes that there are no dependencies between the probabilities associated
with indeterminate instants. Hence, it cannot be used to accurately compute the probability of orderings such
asPrf(a <3 <).

To handle indeterminate instants in a flexible manner, we define a new operator, Beforey, that includes
an additional parameter, the ordering plausibility, . The value of ~ can be any integer between 1 and 100
(inclusive). In generd, higher (closer to 100) ordering plausibilities stipulate that only highly probable or-
derings be considered plausible.

Definition 3 (Indeterminate Before) Let « and 8 be a pair of indeterminate instants.

{} if =(Prja <] x 100) > v) A =(Pr[f < a] x 100) > v)
) {True} if (Pr[a < 6] x 100) >) A =(Pr[3 <] x 100) >)
Before: (@, 5,7) =\ False} i (Prla < 8] x 100) > 1) A (Prl8 < o] x 100) >)
{True, False} if (Pr[a <] x 100) > v) A (Pr[3 < a] x 100) >) |

In the operational semantics, Before; is defined on the power set of the standard boolean domain (a four-
sorted domain, cf. [Bel77]). There are four possible outcomes for Before; on a pair of instants. In the first
case, the relationship does not hold, nor does its negation, and Before; evaluates to the empty set. In the
second, the relationship holds but its negation does not and Before; evaluates to {True}. In the third case,
the relationship does not hold but its negation does. Before; evaluates to { False}. The fourth case covers
the other possihility, that both the relationship and its negation hold simultaneously. Before; evaluates to
{True, False}.

Note that in the operational semantics Before; treats ordering probabilities that are between 0 and 0.01
as0. That is, it treats two instants that have a small chance of occurring before each other as well-ordered
in time. To distinguish the well-ordered case from this other case, we define the ordering probability to be
0.01 whenever its value is between 0 and 0.01.

Definition 4 (Refined definition of probabilistic ordering) Let« and 5 beapair of indeterminate instants.

Prla <] if Prla < 5] > 0.01
Prlla<p]=<¢ 0 if Prla < f]=0 |
0.01 otherwise

13

€4

€1 €1 €1

v = 01 v =25 v = 30 v =175 v = 100

Figure 6: Ordering the events in Received depends on

This function replaces Pr in the definition of Beforey. With this substitution, to evaluate every possible or-
dering, however improbable, an ordering plausibility of 1 suffices.

The missing mass function is treated specialy. If one (or more) of the instants being ordered has the
missing mass function, then the mass is assumed to be distributed in such a way that there is a small, but
non-zero probability, €, of ordering the two instants. For instance, if we introduce an instant e that has
an overlapping period of indeterminacy with ez, but a missing mass function, then Pr'[e; < e5] = € and
Pr'[es < es] = €. Consequently, in the semantics, an instant with a missing mass function behaves exactly
like anull value, in that we stipulate that the participation of such an instant in a Before; operation makes
the Before; evaluate to the empty set (for al plausibilities greater than 1). However, since there is a small
probability that an instant with amissing massis before another instant (when their periods of indeterminacy
overlap), Before; will bereturn {True, False} for an ordering plausibility of 1.

The ordering relation, Beforey, among the instants in the relation Recelved depends on the ordering plau-
sibility, v. The orderings given by differing values of ~ are graphically depicted in Figure 6. Each directed
edge in agraph indicates that the originating instant is before the terminating instant. Some pairs of instants
are “indistinguishable,” that is, each occurs before the other. If no edge connects two instants, the instants
are “incomparable,” neither occurs before the other.

5.4.2 Predicates, Logical Formulaeand Constructors

We are now in aposition to supply the operational semantics for the where clause predicate. Wewill assume,
without loss of generality, that this predicate isalogical formulaecomposed of Before operations on pairs of
instants; a complete set of temporal predicates can be constructed with such formulee[All83].

[(predicate;) AND (predicateg)]]op(%r) = (predicate1>]]op(%r)ﬂ[[(predicate2>]]op(7,r)
[(predicate;) OR (predicate;)],,(v,r) = [(predicate)],,(v,7) U[(predicate;)],,(v.r)
[NOT (predicate)]]op(y,r) ={z|-ze] <predicate)]]op(7,r)}

Below, we illustrate the semantics with several examples using the instants in Figure 5.

[e2 <es],,(r,100) = Befores (e, e3,100) = {NOT (e < e3)],,(r, 100) = {}

[e2 <es],,(r,50) = {True} [NOT (e2 < e3)],,(r,50) = {False}

[e2 <es],,(r 1) = {True, False} [NOT ez <e3],,(r, 1) = {True, False}

[e2 <esAND ey <eq],,(r,100) = {} [NOT (e2 < e3 AND €1 < e4)], (r,100) = {}

[ea <e3 ANDe; < 64]]0p(7“, 50) = {T'rue} [NOT (e2 < e3 AND e; < e4)]]Op(r, 50) = {False}
[e2 <esAND ey <eq],,(r,1) = {True} [NOT (e2 < e3 AND €1 < e4)],,(r,1) = {False}
[ea <e30Re; < 64]]0p(7“, 100) = {True} [NOT (e2 < e3 O0Re; < ey)]]Op(r, 100) = {False}
[e2 <e30Re; <eq],,(r,50) = {True} [NOT (e2 < e3 OR ey <e4)],,(r,50) = {False}

14

[e2 <e3O0Rer <eq],,(r,1) = {True, False}[NOT (e2 < e3 OR €1 < e4)],,(r,1) = {True, False}

A key difference between the operational semantics and the SQL semanticsisthat the operationa seman-
tics uses Beforey rather than Before. Here is the operational semantics for the OVERLAPS example given
previoudly.

[(instant;) OVERLAPS PERI OD((instanty), (instants))]]Op
= Before ([(instantz) [gq . [(instant:) [q . v) N Beforey ([(instant:) [sq . [(instants) [sqr,,)

Elsewhere we show how constructors can be extended in the presence of indeterminacy [DS93].

We reiterate that in the probabilistic ordering all instants are assumed to be independent. So in the ex-
pression “ Before(e2, e3,7y) AND Before;(es,eq,7y)” the two Before; operations operations are separately
evaluated, returning a set of boolean values that is subsequently intersected. While the strategy of separate
evaluation of conjuncts is consistent with the determinate semantics, it is important to realize that it is not
equivalent to computing (Pr[(ex < e3 < e4)] x 100) > ~.

5.4.3 Indeterminate Semantics of the Where Clause

The meaning of the where clause in the indeterminate semantics can now be given in terms of the operational
semantics.

[WHERE (predicate) |;,4(v.7) = {t |t € r A True € [(predicate) [,,(v,?)}

Note that the computation of the predicate over the completions of each underlying tuple has been replaced
with set operations over the result of the Pr’ function. Admittedly this function appears to also be expensive
to compute, asit is O(m?) per tuple, where m isthe number of chronons in the periods of indeterminacy of
theinstants to which Pr’ isapplied (m can be very large). However, we show in Section 8 that the Pr’ com-
putation can be approximated in constant time. With this result, the operational semantics for the evaluation
of atemporal expression consisting of temporal predicates and boolean connectives has the same complexity
as that of the determinate semantics: O(n), where n is the number of predicates in the query, independent
of both the number of chronons and the number of completions of indeterminate values of the tuple.

55 Sat_Before

A generalization of Before; is Set_Before. Set_Before is used below in the redefinition of various temporal
congtructors and predicates. Set_Before is similar to Before;, but operates on sets of instants.

Set_Before(y, a, 3) <= Vx € aVy € 3 Before;(v, x, y)

Set_Before stipulates that the set of instants, «, is before the set of instants, 3, if every instant in « is before
every instant in 3, to the specified ordering plausibility.

The new ordering relations are used to redefine the temporal constructors and predicates. Below, we con-
sider the First constructor in some detail since First is used in other constructors. First chooses the earliest
instant among a pair of instants. With indeterminate instants, choosing the earliest instant among a pair of
instants is not always straightforward. In particular, for agiven ordering plausibility, it could be that neither
instant in apair of instantsis earlier, or it could be that both are earlier. In the indeterminate semantics, First

15

operates on sets of instants.

(aUp if (Set_Before(r, a, B) A Set_Before(ry, 3, «))
« if Set_Before(y, «, 3)
. _ Ié; if Set_Before(y, 3, «)
First(y, o,) = n—4 otherwise, where
n=alJpad
(6 = {z|z € n A =3y € n (Beforer(v, y, x))}

To simplify discussion of First, consider the case where o and 3 each contain asingle indeterminate instant.
Determining which instant occurs first has several possible outcomes:

e only « isfirgt,

e only g isfirgt,

e both o and 3 arefirst (each is before the other; the instants are indistinguishable), or
e neither o nor G isfirst (neither is before the other; the instants are incomparable).

Thefirst two outcomes are straightforward. Thethird outcome, that for indistinguishable instants, is handled
by the fact that First is nondeterministic; each instant is generated separately and may result in a separate
output tuple. For the fina possible outcome, since neither instant is before the other, First constructs the set
containing both instants. Other tempora constructors and temporal predicates will treat the set as a set of
instants with no Before; relationships between the members. Ingenera, all membersin such setsarepairwise
incomparable. Below we show several temporal expressions composed of the First constructor and the result
of each expression using the instants from the relation Received.

First(50, {ea}, {e3}) = {ea} (v is first)

First(100, {es}, {e1}) = {e1} (0 is first)

First(1, {e2}, {es}) = {e2} and {e3} (both o and 3 are first)
First(100, {ea}, {e3}) = {e2, e3} (o and 3 are incomparable)

TheFirst constructor can deduce thefirst instant among agroup of instants, even when some of those instants
areincomparable (e2, e3, and e, areincomparable for aplausibility of 100 asshownin Figure 6), for example:

First(100, {e1}, First(100, {e2},{es3})) = {e1}
First(100, {es}, First(100, {es},{e1})) = {e1}.
First(100, First(100, {e2}, {e1}), First(1, {es}, {es})) = {e1}

The First constructor also works when some of the instants are indistinguishable (e2, e3, and e4 are indistin-
guishable for aplausibility of 1), for example:

First(1, {e1}, First(1, {e2},{es})) = {e1}
First(1, {es}, First(1, {es},{e1})) = {e1}
First(1, First(1, {e2}, {e1}), First(1, {es}, {es})) = {e1}.

The redefinition of the Last temporal constructor is similar to that of First and is omitted to save space.
The definitions of the other tempora constructors change little; a parameter for the plausibility is added to
each, eq.,

overlap (v, (o, 8), (n,0)) = (Last(y,a,n), First(v,,0)).

16

Contrast this with the determinate semantics for the overlap constructor:

overlap ({c,), (n,0)) = (Last(a,n), First(3,9)).

One final aspect should be mentioned. Within the where clause, or in the target list, as discussed be-
low, periods can appear as attribute values or as the result of a constructor. In both cases, for a period p,
if Beforer (p from, Pro; v), then the period value should be replaced with the value NULL. Additionally, any
indeterminate predicate applied to aNULL argument should yield the empty set.

56 TheTarget List

The indeterminate semantics of the target list is quite simple.

[(targetlist)], (v,7) = T (target listy 1., ,(7) (r)

ind
Theonly wrinkleisthat any constructors in the target list, e.qg., PERI OD() , will utilize the ordering plausi-
bility, .

5.7 Supporting Correlation Credibility

Correlation credibility extends the from clause with an optional credibility phrase. In general correlation
credibility isused to replace indeterminate time val ues with determinate time values. The replacement strat-
egy to use depends upon the credibility value and whether the time value replaced is an instant, period, or
interval. Below we define a Replace function that effects the replacement for every time valuein atuple.

Definition 5 (Replace) Lettuplet = (X, aq,...,a,) where X are non-temporal values and vy, . .., a,
aretime values. Then
Replace(0,t) = (X,R(ay),...,R(a)).

R is the replacement strategy. Table 1 lists the replacement strategies for each combination of credibility
value and kind of time value, assuming that the timevalueis (a.. ~ o, P,) and E[«] isthe expected value.

As an example, consider the tuple
t = (Centurion, AB33, [March 1 ~ March 31 — June 1 ~ June 30]).
For this period timestamped tuple the four credibility values yield the following results.

Replace(l NDETERM NATE, ¢t) = ¢

Replace(EXPECTED, t) = (Centurion, AB33, [March 15 — June 15])
Replace(MAX, t) = (Centurion, AB33, [March 31 — June 1])
Replace(M N, t) = (Centurion, AB33, [March 1 —June 30])

Using the Replace function, we are in aposition to define the meaning of the from clause in the indeter-
minate semantics, including the specification of how the default credibility can be over-ridden for aparticul ar
correlation variable.

[(fromlist)];,4(9,d) =
[(fromy), ..., (from,)],,.(0,d) =
[{fromy) Ji,a(6,d) x ... x [(fromy) J;,4(6, d)

where each of the (from;)’s can be either of two constructs.

17

\ | instant | period start | period end | interval |

| NDETERM NATE « « « «
EXPECTED || E[a] E[q] E[q] E[q]

M N Oy Oy o Oy

MAX o o Oy o

Table 1: Replacement strategies

[(relation)];,,(d,d) = {t'| t € (relation) At' = Replace(d,t)}
[(relation) WITH CREDIBILITY ¢'],,,(0,d)= {t'|t € (relation) A t' = Replace(d',t)}

When the (fromlist) is given acredibility of 6 = INDETERMINATE, it retains al of the indeterminacy
present in the temporal values of d, not atering them at al. Hence,

[(fromlist)];,,(INDETERMINATE, d) = [(fromlist) [5o, (d).

5.8 Resault of the Example Query

At this point, the indeterminate semantics of the select statement has been specified. As an example, we
provide the tuple cal culus semantics for the query given in Figure 3 on page 9.

[Qlina(d) = {(r-Warehouse, r.Lot_Num, p.Serial Num, r.When) |
7 € Replace(INDETERMINATE, Received)
Ap € Replace(INDETERMINATE, In_Production)
Ap.Model ='Centurion’ A r.Part = 'wingstrut’
A True € {Beforer(p.Duringfrom, r-When, 60)
N Beforer (r.W hen, p.Duringy,, 60)}}

Here the Cartesian product and projection operators have been expressed in the tuple calculus.

If this query isapplied to the database given in Figure 1 on page 3, it will result in three tuples, shownin
Figure4. Firgt, thetimevaluesin the underlying relations are unchanged because the query usesacorrelation
credibility of | NDETERM NATE. The where clause eliminates every tuple from In_Production except the
Centurions. Likewise, the where clause aso eliminates every tuple from Received except the wing strut
tuples.

The shipment of lot number 23 was definitely received during production of the Centurion serial number
AB33; it satisfies the overlap with every plausibility. The other shipments might have been received. Lot
number 30 satisfies the overlap for plausibilities lower than 60 because (May 30 ~ June 18, uniform) is
before (June 1 ~ June 30, uniform) for every ordering plausibility below 65. The other shipment, how-
ever, arrived too late in June to be considered plausible. It is plausible that 1ot number 31 arrived before the
end of production only for ordering plausibilities of 28 or less. For production of the Centurion serial number
AB34, al the shipments arrived too early, except for lot number 31 from the Cessna warehouse.

5.9 Correctness

Theintuitive semantics ([],,,,), motivated in Section 5.3, applies the predicate to each completion and thus
isimpractical, whereas the operational semantics ([]]Op) can be efficiently implemented. The correctness of
the operational semantics hinges on two requirements. The first is that the two semantics agree where the
intuitive semanticsisdefined, that is, for the possible and definite interpretations. The possible interpretation
has an ordering plausibility of v = 1; the definite interpretation has v = 100. The interpretations concern
only the ordering plausibility; they apply at any correlation credibility.

18

Theorem 3 [];,4(v,r) and [],,(v,r) areequivalent for v = 1 and v = 100.

The second requirement isthat the operational semantics be monotonic: asthe plausibility increases, the
result must move from the possible interpretation towards the definite interpretation. This ensures that the
semantics at intermediate plausibilities is consistent with that of the possible interpretation.

Theorem 4 [S],,,,(6,7,7) ismonotonicin ~.

6 Implementation Overview

Changes to the semantics to support valid-time indeterminacy induce changes in the implementation. These
changes areisolated to the representation of instants, intervals, and periods, and to the new or modified tem-
poral operators. Before;, Set_Before, and Replace. In the next two sections we describe the data structures
and algorithms to implement these new or modified operators. Our goal isto provide support for valid-time
indeterminacy without adversely impacting storage requirements or query evaluation efficiency.

At first glance, support for valid-time indeterminacy appears to be expensive. Some of the modified
operators, e.g., Beforey, are executed in the “inner loop” of query processing, potentialy performed many
timesfor each combination of tuplesin the queried relations. Significant slowdown of these operators would
have a dramatic effect on the overall speed of query evaluation.

We show below how the new operators can beimplemented efficiently. We begin with the representation
of indeterminate information. In particular, we describe timestamp formats that compactly store vaid-time
indeterminate instants, periods, and intervals. We then show how the new operators can be implemented
efficiently, focusing on the probabilistic ordering used in Before;.

7 Indeterminate Timestamp Formats

Valid-time indeterminate instants, periods, and intervals model new kinds of tempora information. To rep-
resent indeterminate temporal values, new temporal datatypes, or timestamps [JCET94], are needed. Inthis
section we briefly describe the indeterminate timestamps. We present only the indeterminate instant times-
tamps; the interval and period timestamps are natural extensions of the instant timestamps [DS95b].

The instant format described here builds upon the determinate instant format; a full description of this
format is given elsewhere [DS95b]. A determinate instant timestamp combines a type tag (to indicate the
kind of instant, e.g., determinate or indeterminate) with asigned integer representing adistance (in chronons
or, more precisaly, in granules®) from the time-line origin or anchor-point. The type tag occupies three bits
and the signed integer either 29, 61, or 93 hits depending upon the maximum range and granularity of the
timestamp. The 64-bit timestamps can store arange of historical timesto the granularity of a microsecond,
or times within arange of 36 billion years (al of time, back to the big bang) to the granularity of a second.
It isimportant to point out that the range and granularity of an instant timestamp are stored in the schema
rather than in the timestamp.

Indeterminate instants cannot use the determinate timestamp because an indeterminate instant is more
thanasingletime; itistwotimesand aprobability massfunction. Torepresent indeterminate instants, we add
four new formats. Thesefour formats are acombination of compact or general with standard or nonstandard
distributions. The combinations are explained in detail below.

A granuleisa coarse-grained grouping of chronons, e.g., chronons can be grouped into days, years, or months. The timestamp
stores the distance in terms of granules so that large ranges of times, e.g., 10 million years, can be stored compactly by counting in
coarse granules, e.g., in millenia

19

Starting | Terminating | Probability

FORMAT Time Time Distribution
determinate explicit implicit implicit
compact, standard explicit implicit implicit
compact, nonstandard || explicit implicit explicit
general, standard explicit explicit implicit
generd, nonstandard || explicit explicit explicit

Table 2: Encodings in the indeterminate formats

Each indeterminate timestamp format has the three basic parts needed to describe an indeterminate in-
stant: alower support, an upper support, and a probability mass function. These three parts are encoded in
the timestamp either implicitly or explicitly. Table 2 indicates for each format whether the representation is
explicit or implicit. For example, the determinate format has an explicit lower support, but an implicit up-
per support (identical to the lower support) and an implicit probability mass function (the mass function is
missing).

The compact indeterminate formats implicitly encode the upper support. The implicit encoding con-
sists of a chunk-size and a number of chunks. The upper support is computed by adding the number of
chunks, each of size chunk-size, to the lower support. For example, to represent aperiod of indeterminacy of
seven hours using chunks, the timestamp would record that there are seven hour-sized chunks. The chunking
scheme was devel oped to meet the expectation that regular periods of indeterminacy, e.g., N hours, N days,
or N years, will be the norm. If the format is not compact it is said to be general and the upper support is
stored explicitly as a count of granules from the anchor point.

If the chunk-size and number of chunks can be stored intwo small fields, then chunking isavery efficient
method of encoding aterminating time. In our formats, the chunk-size is afour-bit field and the number of
chunks a seven-bit field, or eleven bits in toto. Since the chunk-size is four bits, only alimited number of
chunk-sizes are available. One of the duties of the database implementor is to specify chunk-size tables,
one for each supported granularity. Common chunk-sizes are seconds, hours, days, and weeks. The space
efficiency of the chunking comes at the expense of some run-time computation since the terminating time
must be computed on the fly. The computation costs one addition to add the chunks to the lower support.

The timestamp representation of a probability mass function is the name of a mass function (a 16-hit
identifier). Only the name of the mass function, e.g., uniform, normal, etc., is stored with the timestamp;
the actual mass function is stored separately as described further in Section 8.1.2. Instants with a uniform
distribution or adistribution that is missing, are termed the standard distributions. Since these distributions
will likely be common, we optimized representation their representation as a single bit rather than a 16-bit
identifier (to toggle between uniform and missing).

The user specifies the kind of timestamp, compact or general, and the kind of distribution, standard or
nonstandard, to use when defining or altering atemporal attribute asdiscussed in Section 4. Thedesign of the
indeterminate timestamp formats optimizes representation of the common mass functions (the standard mass
functions cost only asingle bit). The chunking scheme and the use of standard distributions yield a compact
timestamp. SQL-92's limited TI MESTAMP format without fractional seconds and without indeter minacy
(assuming that the positions in the SQL-92 timestamp are four-bit nibbles) is 56 bits. Our indeterminate
compact timestamp with the same range and granularity as the SQL-92 datetime format requires only 64
bits. The smallest indeterminate timestamp is just 32 bits (a compact, standard format with a range of 2'8
granules and achunked period of indeterminacy). Thelargest is 208 bits (ageneral, nonstandard format with
an upper and lower support within 29 granules of the granularity anchor point).

20

8 Implementation of Operators

In this section we discuss the implementation of Before;, Set_Before, and Replace.

8.1 Implementation of Before;

We observed in Section 5 that the semantics of temporal constructors and predicates such as OVERLAPS and
PERI OD are ultimately based on Before;. If the instants being compared by Before; are determinate then
Before; isthe “ <" relation on the domain of time values (the integers extended with specia values repre-
senting the beginning and end of time). Indeterminate instants complicate the implementation of Before;. In
theindeterminate semanticsit may be necessary to compute the probability that oneinstant is before another.
Thisisapotentialy costly computation. We show below how this computation can be made efficient.

8.1.1 TheCommon Interface

Theinterfaceto the Before; routineisgivenin Figure 7. Theinterface determinesif therelatively costly com-
putation of the ordering probability can be avoided. If o and 3 are the same instant, then Before; istrivialy
true since an instant is always equal to itself. Before; isalso trivid if o’sand 5's periods of indeterminacy
aredigoint. Digointness implies that oneinstant is before the other in al possible cases. We anticipate that
digoint periods of indeterminacy will be common. If no specia case applies then the ordering probability,
Pr'[a <], must be calculated.

8.1.2 Probability Mass Function Representation

In this section we describe a data structure to store aprobability mass function. We present the data structure
first since it impacts the agorithm design.

In general, afunction can either be computed on the fly or pre-computed and its values cached, say, in
an array. The latter strategy is best for a probability mass function. Before; is executed in the “inner loop”
of query processing, performed many times during aquery. We anticipate that many useful probability mass
functions are not easily computable functions, making computing values on the fly expensive in terms of
execution time whereas table-lookup is quite cheap, although potentialy expensive in terms of space.

To attain reasonable storage costs, the probability mass function is approximated. We assume that the
domain of the mass function is normalized to [0,1] and that the mass is quantized; that is, it is parceled into
indivisible, discrete chunks of probability. The quanta can be thought of as rods of equal mass but (possibly)
differing lengths. If aprobability mass function has P rodsin total, then the mass of eachrod is %. The num-
ber of rods is called the precision of the approximation. The mass function is sampled at C evenly-spaced
points. C is called the coarseness of the approximation. The sample points are {75, 5>, ..., 255}, To
approximate the mass function, for each sample point, the rods to the left and right of the point are recorded.
Typicaly thereisalso arod that covers the point, but thisrod is not counted (thisis the error in the approxi-
mation). The coarseness is usually much larger than the precision. For instance, in our experiments we use
acoarseness of 26 but aprecision of 28. The approximation of the uniform mass function with a coarseness
of 8 and aprecision of 3 isshown in Figure 8.

Therod and point method of approximating aprobability massfunction hassomelimitations. Thecoarse-
ness and precision restrict the variety of functions that can be approximately represented. If the coarseness
equals the precision, then only the uniform probability mass function (every point is equaly likely) can be
represented (adifferent rod on every point). Asthe coarseness and precision diverge, more mass functions
can be represented. In general, with a precision of P and a coarseness of C, at most (¢) different proba

bility mass functions are possible. Also, mass functions that have a mass of more than % spread over less

21

function Beforer(in «, G @ instant; in +y : integer) : set of boolean;
begin
if ais g then return {True}
eseif o* < 3, thenreturn {True}
eseif * < a, then return {False}
elsereturn PROB_a_LEQ_S(«, 3,)
end;

Figure 7: Interface to Before;

than % of their domain cannot be approximated. To model such “spiky” mass functions, two or more rods
might have to span the same point. It is the database implementor’s task to choose the appropriate C and P
values, supporting the kinds of mass functions that are of interest to the users of the system.

Using the rod and point method, a probability mass function is approximated with an absolute error of
less than %. That is, the probability of a possible instant in the approximated distribution is within % of
the actual probability. If the difference between the probabilities is more than % then the approximation has
been done incorrectly, as a new rod should have been introduced.

The approximated mass function is stored in abinary tree rather than an array. Thereis one leaf for each
sample point. For instance, the first leaf in a preorder traversal corresponds to the sample point % At each
leaf in the tree, the number of rods to the left and right of the sample point are stored. For example, in the
approximation of the uniform mass function shown in Figure 8 there are no rods to the left and two rods to
the right of the first point. The example shows that the number of rods left and right of a sample point will
often sum to P — 1 since the rod covering the node is uncounted. The tree for the approximated uniform
mass function is shown in Figure 9(a).

Inthetree shownin Figure 9, C and P are small values, consequently the entire tree can be easily stored
injust afew bytes. But when C and P are large, it isinfeasible to store the full tree, nor do we need to store
the full tree. We are primarily interested in recording where each rod ends. Observe that if both children
have the same count, then no rod ends within the subtree rooted at the parent (and al nodes in the subtree
will have the same count). All such subtrees can be pruned, keeping only the root of the subtree, which is
specialy marked. When traversing a pruned subtree, the tree traversal algorithm treats a specially marked
node astheroot of a*“virtual” subtree and traverses the subtree as though it were stored. The pruned tree for
the example distribution is shown in Figure 9(b). The specially marked nodes have dashed line borders.

The tree pruning technique saves quite a bit of space. The pruned tree has at most 2P |leaves (one leaf
might be needed per rod end) and could have asfew as P leaves. In contrast, the unpruned tree has C leaves
(ingeneral C' >> P). The number of interior nodes also varies, with asfew as P — 1 interior nodes and as
many as2P — 1 interior nodes in atree. Each interior node istwo log, (C')-bit pointers while each leaf node
istwo log, (P)-bit fields to store the number of rods. For C' = 2'6 and P = 28, the storage cost of a pruned
search tree is between 1.5K and 3K bytes.

Thedistribution tree efficiently storesthe approximated probability massfunction, but the approximation
impacts the computation of Pr'[« < (3], changing the problem to arod counting problem.

8.1.3 An Overview of Computing Pr'[a < f]

Calculating the probability that one instant is before another using the approximated mass function can be
reformulated as arod counting problem. Assume that there are two rows of P rods. The two rows, which
we shall cal the a-row and the 3-row, are paralel to each other as shown in Figure 10. As shown in the
figure, the length of each rod can vary. The rod counting problem is to count the pairs of rods, one rod from

22

N
\ H | |
([((((([([([
point’ bbb
5 11
0 o 1 1

Figure 8: The approximated uniform mass function with P =3 and C = 8
O O

O O O

AL A AL AN

O O O O 02! O O 20
AN N N N VA NVAN
012 [0[2] [0[2] [1[1] [1[4] [2[9 [2[0] [2Q
\ | | | | |
(a) the complete tree (b) the pruned tree

Figure 9: The tree for the approximated uniform mass function with P =3 and ¢ =8

each row, such that the rod from the a-row is before the rod from the g-row. Each such pair represents a
contribution of 5 to Pr'[or < 4.

The rod counting problem is complicated by the fact that severa rods may be located within a single
chronon, so some rods in 3 could be strictly before those in o yet may still contribute to Pr/[ac < f3]. For
the purpose of computing Pr’[ac < (3] each chronon has an indivisible mass, that is, al the rods entirely
within the same chronon should be treated as a single rod with a mass equivaent to the total mass of the
constituent rods. For example, consider an indeterminate instant with a uniform mass function and a set of
possible chronons consisting of only two chronons. There are {%J rods within each chronon, consequently
each chronon in this indeterminate instant has an indivisible mass of 0.5.

The rod counting problem also differs from the original problem of computing the probability that one
instant is before another instant in asubtle, but significant way: the sum of the massin pairs of rodswhereo’s
rod is before 5’srod is not quite the same as Pr'[« < (3]. Consider apair of rods, neither of which is before
the other (the rods are at the same place in the overall ordering of rods). Each rod represents the probability
that the instant is located during a certain range of chronons, but how the probability is distributed among
the chronons within that range is unknown. Although neither rod is before the other, it is probably the case
that some chronon within the range represented by the rod is before a chronon in the range represented by
the other rod. The rod counting problem does not count the small probability (< #) of this case and thus
undercounts Pr’[a < 3]. Below we quantify the error on the rod counting technique.

The algorithm for counting pairs of rods is based on a divide-and-conquer technique. Each step in the
agorithmisillustrated in Figure 10. Thefirst step isto chose apivot. A pivotisarodina’srow or rods. The
pivot splits the rods in a-row into three groups: those before the pivot, avgefor., those after the pivot, avyyier,
and the pivot itself.

23

The second step is to identify where the left-end of the pivot belongs in the ordering of 5’srods. The
left-end of the pivot divides 3's row of rods into three parts: those before the left-end of the pivot, Byefore,
those after the left-end, 3., and, perhaps, arod that overlaps the left-end, 3,yeriap-

The third step is the conquer step. Observe that al the rods in a.f,r. U pivot are before al the rods in
Bafter- Each pair of rods, one chosen from each of these two groups, adds # to arunning sum of Pr'[a <
A]. If the running sum (scaled by 100) exceeds the plausibility, ~, then the algorithm terminates since the
plausibility has been met and Before; is {T'rue}. Thisis caled an “early exit” condition.

Similarly, all the rods in By, are before the rodsin a,z.-. Each pair of rods, one chosen from each
of these two groups, adds % to arunning sum of Pr[3 < «]. If the running sum (scaled by 100) exceeds
100—+y, then the algorithm terminates since Beforey is{ Flalse}. Thisistheonly other “early exit” condition.

If an early exit is not taken, then two subproblems remain to be solved. The agorithm has yet to deter-
mine the relationships between the rodsin avpef,re and those in Byerore U Boveriap » 8 Well asthe relationships
between the the rods in a., e, |J pivot and thosein 3. Each of these subproblems is solved recursively
in the next “round” of the algorithm.

8.1.4 Choosing the pivot

The choice of pivat is an important factor in controlling the algorithm. The algorithm chooses as the pivot
the rod corresponding to half of the remaining rodsin « (those rods that have yet to be counted). Thischoice
enables the algorithm to reach an “early” exit condition quickly. Overall, the total work performed by the
agorithm isto count all P? pairs of rods. But the counting can stop when enough pairs are counted to de-
termine if either Pr'[a <] or Pr[8 < «] is satisfied (the early exit conditions). It is better if, in the first
few pivot choices, an algorithm maximizes the pairs of rods it counts since it will then hit an exit condition
in fewer pivots.

Theorem 5 The &N pivot will count P2/21109:()]+1 pajrs,

For example, for a precision of 28, after the fourteenth pivot, the algorithm will have counted 93% of
the total number of pairs. In other words, to approximate the ordering probability to within 10%, at most
fourteen pivots must be performed.

Aswe pointed out earlier, the approximation by rods and points leadsto an undercounting of Pr’[a < 3].
However, this undercounting is small.

Theorem 6 The undercount islessthan 2.

8.1.5 Implementation Detailsfor Computing Pr'[a <]

The code for the “pivoting” algorithm is shown in Figure 11. The counting stops when the count of pairs
exceeds the needed number of true pairs or false pairs (it smultaneously solves for both Pr'[a < 3] and
Pr[s < «a]), or when all the possible pivots have been tried (an undercount has occurred and we assume that
Pr'[a < 3] isfalse). The most important feature of this code is that the mgjority of instructions are “cheap”
integer operations. shifts, assignments, and additions. There are only two multiplications, no divisions, and
no floating point operations. Although, for pedagogical reasons, we have presented the pivoting code as a
recursive procedure, the procedure is implemented using a queue and iteration, thus avoiding the expense
of recursive procedure calls and supporting breadth-first recursion. One final observation, calculating the
number of true and false pairs has been reduced to a table-lookup since the ordering plausibility, -, can take
on only 100 different values.

24

pivot

a-row II—M—H—\
[| |) p-row

a) Choosing a pivot

Qpefore U pivot ; |

‘ I l ﬁafter
b) Add this contribution to Pr'[aleq (]

- Oofter
ﬁ before I:l I:l

¢) Add this contribution to Pr'[3 < o]

A pefore U pivot]

Qafter
ﬁbefore U ﬁoverlap :__] [| ﬁafter

d) Two subproblems glenerated

_——————

Figure 10: A rod counting operation

8.2 The Replace Function

The Replace function changes an indeterminate time value in one of four ways. It could replace the value
withthelower support, replace it with the upper support, replace it with the expected value, or leave thevalue
unchanged. The straightforward pseudo-code for Replace for an instant is given in Figure 12. The code for
starting and terminating period time values, aswell asfor intervals, issimilar, and omitted for brevity. Inthis
pseudo-code we assume that the expected value for the probability mass function has been pre-computed for
the normal interval [0,1]. Thisvalue is cached and used by the Replace function to compute the expected
value for anon-normal interval, i.e., aperiod of indeterminacy.

8.3 Set_Before

Set_Before also appears costly since it must compute over sets of instants. But we stipulate that there can
be at most 32 instants in a set (the maximum number of instants in an expression, corresponding to between
eight and sixteen tuple variables, avery high maximum in practice); hence, asingle word of storage suffices
to represent a set, each bit indicating membership of an instant in the set. Set_Before efficiently determines
if al the instants in one set are Before; those in another by performing logical ands between rows in the
boolean table of previousy computed Before; results.

25

function PROB_.a_LEQ_§(in o, 8 : event; in ~ : integer) : set of boolean;
const
P : integer = 256; C : integer = 65536;
Qgreer Biree - Probability_mass function_tree(C,P);
plausibility_map : array[1..100] of 1..| P?/100];
var
false_pairs, true_pairs, pivot, a.,,;4 : integer;
leaf : tree_node_pointer;
procedure ROD_COUNTING(in ttfrom, Cto, Bfrom, Bto : iNtEYEY);
begin
/* Check the exit conditions */
if (true_pairs < 0) v (false_pairs < 0) then return;
if ((ato — afrom) = 0) V ((Bro — Brrom) = 0) then return;

[* Calculate pivot */
PIVOL <— A from + (((tto — tfrom) div 2);

/* Figure out o’'s contribution */
Qpefore — inOt - afrom;
Qafter $ Qgo — PIVOL;

/* Figure out the chronon in which the pivot ends using binary search */
Qmig < binary_search(a e, pivot);

/* Find therod in 3 just after the pivot’s chronon using binary search */
leaf < binary_search(Bree, @ mid);

/* Figure out 3's contribution */
Bhefore < leaf Ieft rods — Brrom;
ﬂafter — ﬂto - |eaf.right_r0ds;

/* How much isthe total contribution? */
true_pairs < true_pairs — ((@pefore + 1) X Bafter);
false_pairs < false_pairs — (gfter X Bboefore);

/* Continue counting */
ROD_COUNTI NG(afTomv A from + Qbpefore ﬂﬁ‘omv ﬂfrom + ﬂbefore);
ROD_COUNTI NG(ato — Qgfters Ao, Bto - Bafteru Bto);
end;
begin
true_pairs « plausibility_map[~];
false_pairs < P? — true_pairs;
ROD_COUNTING(1, P, 1, P);
if (true_pairs < 0) return {True};
elseif (false_pairs < 0) return {False};
elsereturn {};
end;

Figure 11: The pivoting algorithm

26

function Replacelnstant(in § : credibility; in « : instant) : instant;
const
Qyree - Probability_mass_function_treg(C, P);
var
j & integer;
begin
cased
| NDETERM NATE: return «;
MAX: return o*;
M N: return o
EXPECTED: return ., + (egpected X (@ — o))
end; { Replacelnstant }

Figure 12: The Replacelnstant algorithm

8.4 Impact of Indeterminacy on the Deter minate |mplementation

In parallel with the theorem of reducibility given in Section 5.9, conventional SQL queries on determinate
relations will incur no additional execution overhead under the new semantics, and executing such queries
on indeterminate relations will add little overhead since Before;’s for aplausibility of 100 are very efficient.

9 Empirical Analysisof the mplementation

We implemented the indeterminate operations in a prototype system for tempora support caled MULTI-
CAL [SSDT92]. MULTICAL is written in the C programming language’. We complied the code using the
GNU C compiler, version 2.7.2, with compiler optimization fully enabled. We used a precision of 28 and
acoarseness of 216 in the code for the indeterminate Before;. These values limit the maximum error in the
pivoting algorithm to less than 1%. We also implemented Before; with a maximum possible error of 10%.
Thisversion of Before; performs (at most) 14 pivots as discussed in Section 8.1.4.

We tested the performance of each operation inisolation first. All tests were performed on aDEC-Alpha
3000 Model 400 (a 133.33 MHZ machine). The timings for each test were collected using the at omtool
[SE94], which allowed us to count machine cycles. Table 3 showsthe results for each operation. The execu-
tion times shown in the table only include the cycles actually spent within the function, and exclude the cost
of the function call itself. ‘NA’ denotes “not applicable.” The Replace and determinate Before operations
are relatively cheap. The worst case for Replace occurs with the EXPECTED credibility since it involves a
floating point multiplication. The best and worst case behavior of Before; vary significantly.

To further examine Beforer's behavior, we devised several additiona tests for the indeterminate Before;.
These tests were designed to capture both the worst case and the expected case performance of the pivoting
algorithm. Theworst case for Before; happens when the two indeterminate instants span the same chronons
and have uniform distributions. Wetested thisworst case performance of Before; on apair of instants, each of
which has aperiod of indeterminacy of one million chronons. The results are given in Figure 13. The graph
plots the execution time (in machine cycles) of Beforer for the plausibility values 1 to 100. Asthe ordering
plausibility approaches 50, the execution times increase because more pivots are needed to determine the
outcome of Before;. The average worst case Before; operation with 1% error, across al plausihilities, is

"C code for the operations discussed in the previous section, as well as for all the experiments discussed here, is available via
theWWW at htt p: / / www. cs. j cu. edu. au/ ~curti s/ htm s/indeterm nacy. htm .

27

Determinate | Indeterminate | Indeterminate
Cost Best Case Worst Case

Operation Cost Cost
Determinate Before 73 NA NA
Indeterminate Beforer - 1% error NA 77 86930
Indeterminate Beforey - 10% error NA 77 4960
Replace NA 33 239
Set_Before NA 0.4 0.4

Table 3: Timings on indeterminate operations (in machine cycles)
6000

1% error —-—
10% error -+---

5000

4000

3000 -

Machine Cycles

2000 -

1000

O T T T T T T T T T 1
1 10 20 30 40 50 60 70 80 90 100
Plausibility

Figure 13: Worst-case performance of Before;

approximately 2781 machine cycles, with a high of 86930 machine cycles at a plausibility of 50, and alow
of 77 machine cycles. With amaximum error of 10%, the average worst case for Before; is somewhat less,
1246 machine cycles, with a high of 4960 machine cycles at a plausibility of 50.

Theworst case performance does not aways occur at aplausibility of 50, but depends on the relative po-
sitions and mass functions of apair of indeterminate instants. Two instants with uniform distributions which
have partially (but not fully) overlapping periods of indeterminacy will exhibit worst case performance at
plausibilities other than 50. Using the same two instants from thefirst test, we tested arange of relationships
between their periods of indeterminacy, from no overlap to complete overlap. We fixed the position of one
instant in chronon space and dlid the other instant relative to the fixed instant. Figure 14 shows the results.
The z-axis is the cost (in machine cycles) of asingle call to Before; (we used the 10% error version). The
x-axisisthe plausibility. They-axisistherelative position of the two instants, “far apart” indicates no over-
lap in the periods of indeterminacy whereas “even” means complete overlap. The figure shows that if the
instants do not overlap (acommon case), Before; isvery cheap. If theinstants overlap, Before; only exhibits
poor performance along a central ridge. Note that the graph in Figure 13 isadice of the graph in Figure 14
a the “even” point along the “relative position” axis.

28

Machine Cycles

4000 -

3000 -

2000 -

1000 ~

20
40
Plausibility

far apart

Relative Position

Figure 14: Sliding one instant relative to another performance of Before;

While examining worst-case behavior is sometimesilluminating, we anticipate that it will be uncommon
for two instants to have overlapping periods of indeterminacy, and that worst-case behavior will berarer still.
For example, consider an event relation of employee hires timestamped with the day of hiring. The day
an employee was hired is an indeterminate instant, assuming a common timestamp granularity of a second.
Supposewe query thisrelation to determine which employees werehired before the third fiscal quarter began.
The quarter began at 8 AM on October 1. It is unlikely that most of the hiring instants overlap 8 AM on
October 15, Hence, the precedes comparison for most of the instants in the relation will be very efficient,
and the impact of the other comparisons on the total work done in the query will be dight.

To explore this aspect further, we devised afurther test. We randomly placed ten instants, each of which
had a one-day period of indeterminacy (86,400 chronons) and a uniform distribution, in a chronon space
that varied between 1 and 50 days (between 86,400 and 4,320,000 chronons) in size. For every plausibility
between 1 and 100, wetested Before; on every possible combination of instants (10? possible combinations)
at plausibilities ranging from 1 to 100. Instants were not compared to themselves. We rerandomized the
location of the instants between each test (i.e., per one hundred comparisons). The results are depicted in
Figure 15. The graph in Figure 13 isadlice of this graph at avaue of one unit of random space. The graph
shows that in anormal mix of instants, rare worst-case situations have little impact on overall performance.
Only when the size of the random space is small is the cost of Before; significant.

To this point we had not determined how much more expensive we expect Before; to be than Before.
To measure the relative cost of Before; we reran the “random placement of instants’ test described above
on both Before and Beforey. But this time we let the size of the random chronon space vary between 1 and

29

Machine Cycles

4000 +
3500 -
3000 -
2500 -
2000 - s
2252 T
S NN
5 22250%52200852228 052
1500 - S22 zj;;; 22
1000 -
S35
500+ e
2285237 \2;52522‘\5(52225275022
2

Size of Random Space
(in Periods of Indeterminacy)

Figure 15: The cost of comparing ten instants randomly placed in a chronon space of varying size

93 days rather than 1 and 50. For each day, we averaged the cost of the Before; operation across al the
plausibilities, 1 to 100. The results are plotted in Figure 16. When al ten instants are randomly placed in a
chronon space three monthsin size (i.e., there are ten employee hiresin three months and only these hiresare
used in the query), Beforey is approximately one and one-half times as expensive as Before. This difference
will remain approximately the same as we further increase the size of the random space.

Although the run-time cost of each operation considered in isolation isinformative, it does not address
the “actua” cost of aquery with indeterminate information, since the frequency of operations and the inter-
actions between operations are absent from the analysis. In addition, these operations are only one portion
of query evaluation; many other operations are performed in most queries. To measure Before; and the other
operations in context, we designed a test of a complete query. We hand-compiled the example SQL query
givenin Figure 3 on page 9into the seriesof MULTICAL calsshowninFigure17. Thedeterminate and inde-
terminate sequences of callsdiffer only dightly; the differences are highlighted initalicsin the indeterminate
sequence. We used the compact indeterminate timestamp formats, which are more expensive to unpack, but
have the same space cost asthe determinate timestamps used in the experiment. Notethat each sequence does
O(n?) unpacks, i.e., al possible combinations of instants and periods are unpacked. An aternative query
processing strategy is to unpack each instant and period and cache the results, costing only O(n) unpacks.
We a so programmed this sequence of calls, which we refer to as the “ optimized unpack sequence.” For all
the sequences we suppressed all input, output, and disk 1/0, as these expensive operations tend to dominate
the cost of other operations, and also because those costs are identical whether indeterminacy is present or
absent.

30

700+

1% Error ——
Determinate —+-—-—

600 -

500+ ¢

400+

300+

Machine Cycles

200

100+

T T 1
1 month 2 months 3 months
Size of Indeterminate Space

Figure 16: The average cost of comparing ten instants randomly placed in a chronon space of varying size

{ The determinate sequence } { Theindeterminate sequence }

for every combination of r and p for every combination of r and p
unpack_instant(r.When); unpack_instant(r.When);
unpack_period(p.During); unpack_period(p.During);
cl « Before(r.When, p.During,,); cl « Before;(r.When, p.During,,, 60);
c2 <+ Before(p.Duringsrom, r.When); C2 + Beforer(p.During,.om., r-When, 60);
if (c1andc2) then if (cland c2) then

add temp to result add temp to result

end end

end end

Figure 17: MuULTICAL callsfor example query

To test the query we once again used a variation of “the random placement of instants.” We used the
tuples shown in Figure 1, but randomly placed the instants in a chronon space of increasing size. We used
a period of indeterminacy of one day (86,400 chronons) for the instants in both relations. The results are
shown in Figure 18. Except for the rare situations where most of the instants are packed into a relatively
tight random space, indeterminacy roughly doubles the CPU cost of the query.

10 Extending Temporal Query Languages

In SQL, vaid-time indeterminacy is a form of value incompleteness (cf. [Mot90]), where the value of an
attribute is not fully known. The Received relation in Figure 19 provides examples of value incompl eteness

31

50000 -,
‘ Indeterminate, 1% Error ——
Indeterminate, optimized unpack -+---
Determinate -&---

Determinate, optimized unpack -

45000
40000
35000-|
30000
250001 ‘

20000 |

Machine Cycles (per total query)

T T 1
1 month 2 months 3 months
Size of Indeterminate Space

Figure 18: The average cost of the example query per combination of tuples

Warehouse | Lot-Num | Part | When
s5; Boeng 40 unknown May 31
s¢ Cessna 70 some electrical part | May 31
s7 Boeing 41 {yoke, throttle} May 31

Figure 19: Examples of value incompleteness

for the Part attribute: a part may exist which we have yet to identify (s5), has been partially identified (sg
restricts the kind of part to belong to the specified class of parts), or has been narrowed down to a set of pos-
sihilities (s7). We showed in Section 3 how to support value incompleteness in instant, period, and interval
attributes.

Vaid-time indeterminacy can also apply in tempora data models [TCG™93]. In such models, the val-
ues themselves vary over time. This behavior is often modeled by associating atimestamp with each tuple.
Allowing thisimplicit timestamp to be indeterminate adds a new source of incompleteness, which we term
tuple valid-time indeter minacy, which is orthogonal to other sources of incompleteness. In particular, it can
peacefully coexist with value incompleteness, of both non-tempora and temporal attributes, and with tuple
incompleteness, where the membership of atuple in arelation is not fully determined. We advocate sepa-
rating the various kinds of indeterminacy, so that users can choose the combination that is most appropriate
for their application.

As a concrete example, we now review how tuple valid-time indeterminacy can be added to a specific
temporal query language, TSQL 2. Thislanguage was designed by acommittee of eighteen researchers from
academia, vendor research labs, and industry [Sno95]. In this section, we consider a variant of TSQL2
termed ATSQL 2 that is being proposed for incorporation into the SQL 3 standard [SBJS96]. This variant
differs from TSQL2's data model in allowing duplicates and timestamping tuples with periods instead of
with temporal elements (sets of maximal periods).

TSQL 2 supportsthreetemporal dimensions. valid time, transaction time, and user-defined time[Sno95].

32

The approach to value incompl eteness discussed to this point applies to user-defined time. In the remainder
of thissection, we consider tuple valid-timeindeterminacy. Specifically, weallow the period valid timestamp
of atuple to be an indeterminate period. As the timestamp indicates when the fact represented by the tuple
wasvalid inreality, anindeterminate timestamp indicates that it is not known precisely when the fact became
true, or nolonger wastrue. Note, however, that we do know that the fact wastrue at some point (orthogonally,
tuple incompl eteness could be added, to add the uncertainty in whether the fact was ever true).

10.1 Syntactic Extensions

AsTSQL2isan extension of SQL-92, we start with the syntactic extensions introduced in Section 4, specif-
ically, indeterminate temporal attributes in the create table and alter table statements, correlation credibility
in the from clause, and ordering plausibility in the where clause. Interestingly, these are all that are neces-
sary to add tuple vaid-time indeterminacy to TSQL2. As an example, to define the Received relation as an
indeterminate valid-time relation, we simply specify an indeterminate period type asthe implicit timestamp.

CREATE TABLE Recei ved(War ehouse CHARACTER(30),
Lot _Num | NTEGER,
Par t CHARACTER(40))
AS VALI DTI ME | NDETERM NATE PERI OD(DATE) W TH NONSTANDARD DI STRI BUTI ON;

Note that the When attribute is no longer present; instead the timestamp isimplicit. Theimplicit timestamp
associated with a correlation name (e.g., r) is accessible within queries via the function VALI DTI ME(r) ;
itsvalue isimpacted by the correlation credibility and ordering plausibility identically to the explicit values
in the tuple.

10.2 Semantic Extensions

The semantics of ATSQL 2is specified in terms of the semantics of SQL-92. Since ATSQL 2 with tuple valid-
time indeterminacy is an extension of SQL-92 with value valid-time indeterminacy, the mgjor change isto
replace [|5, inthe ATSQL2 semantics with [|, ;-

ATSQL 2 hasthree modes, specified using new reserved words: temporal upward compatibility, inwhich
only the current state is used, sequenced semantics, in which the query is applied with SQL semantics at
each point in time, and nonsequenced semantics, in which the table istreated as a conventional table with an
additional period attribute.

The nonsequenced semantics is aready dealt with in the rest of the paper, with the proviso that the cor-
relation credibility may replace the implicit period timestamp with a determinate value. In temporal upward
compatibility, all tables are snapshot as of now. We use the overlap operator to determine those tuples valid
at now; the operator is aready defined for indeterminate periods. The specified plausibility, or the default if
aplausibility is not specified, is used for the overlap. For the sequenced semantics, a tuple will be consid-
ered to be valid at a given time point if the indeterminate period overlaps with the given time point, using
the specified plausibility.

Thefinal change required isthat to support coalescing. Theuser can specify inATSQL 2 (via®(PERI D) ”
inthefrom clause) that arelation be coalesced: tupleswithidentical valuesfor the explicit attributes (termed
value-equivalent) with timestamps that overlap or meet in valid time are merged into a single tuple with a
timestamp that is the union of the timestamps of the original tuples. If the periods do not overlap or meet
then the tuples are unchanged. The semantic function Coalesce repeatedly coalesces overlapping pairs, until
there is no more overlap.

33

1 _ skyline

probability

Figure 20: The result of coalescing two indeterminate periods follows the skyline

10.3 Semantics of Coalescing

Intheindeterminate semantics, the coal escing operation must be extended to handle periods with indeterminacy® .

Definition 6 (Indeterminate Coalescing) For two value-equivalent tuplesthat have valid-time periods [« 3]
and [n,] which overlap with plausibility 100 (i.e., definitely overlap), the indeterminate coalescing of the
periods [«, 3] and [n, 0] produces [s, t] where

s = (min(au, ns) ~ min(a*,n*), Ps),

t = (max(f,,d,) ~ max(3%,0%), P),

P isthe probability mass function such that its cumulative density function F; behaves as follows.

B F,(z) ifattimez, F,(z) > F,(z)
Flz) = {Fn(x) otherwise !

P, isthe probability mass function such that its complementary cumulative density function F; behaves as
follows.
!/ H H ! !
Fl(z) = F?(w) if at tlmx,Fﬂ(x) > Fj(z)
F5(xz) otherwise

If the periods do not definitely overlap, then the periods are already coalesced. |

While this definition may appear complicated, the underlying ideais simple. Figure 20 shows a probability
“profile” for two overlapping periods. Both periods ‘ramp up’ to definite information during their respective
starting instants and ‘fall off’ to no information during the terminating instants. The union of the two periods
isthe “skyline” of the two periods. The skyline represents the maximal extent of both the determinate and
indeterminate portions of the periods.

10.4 Implementation of Coalescing

Theimplementation techniques devel oped in Section 8 apply directly to theindeterminate portions of TSQL 2,
except for coaescing, which requires a new approach. A straightforward implementation of indeterminate
coalescing could be very costly since, in some cases, the operator must dynamically compute a new prob-
ability mass function. Not only would dynamically computing such functions quickly exhaust the limited
space of probability mass function names (recall from Section 7 that the timestamp formats limit the number

8This coalesce operator contends with indeterminate attribute values, and so differs from Dey and Sarkar’s coal escence opera-
tions, which handles indeterminate tuples [DS96].

of mass functions to 2'6 possibilities), but the efficient implementation of Before; would also suffer since it
depends upon the pre-computed approximation of the mass function.

Our solution isto accept some information loss during coalescing and avoid the expense of dynamically
computing amassfunction by substituting the missing distribution for the new massfunction. Inother words,
for two valid-time periods [«, 5] and [n,] which definitely overlap, the implementation of indeterminate
coalescing produces the period [s, t] where

« if for every timet, F,,(t) > Fy(t)
s = n if for every timet, F},(t) > F,(t)
(min(a.,n.) ~ min(a*,n*), missing) otherwise

and
3 if for every time ¢, F(t)
t=) if for every time ¢, Fj(t)
(max(fy,0.) ~ max(3*,0%), missing) otherwise

But even this‘weakened' version of coalescing is much too expensive since the cumulative density func-
tions for two instants must be computed at each time in a period of indeterminacy to determine if one func-
tion dominates another. However, it is easy to determine dominance in some special, but common cases.
For instance, for apair of starting instants, if both instants have the same probability mass function, and one
instant’s period of indeterminacy starts before the other instant’s period of indeterminacy starts and ends be-
fore the other’s ends, then the earlier instant is dominant. For example, the starting instant (1~5, uniform)
dominates the instant (3~6, uniform). The implementation of indeterminate coalescing in Coalesce’ only
checks for dominance in these specia cases, and substitutes the missing mass function in all other cases as
shown in Figure 21.

10.5 Summary

To support tuple vaid-time indeterminacy in the variant of TSQL2 being proposed for SQL 3, no syntac-
tic extensions beyond those discussed for conventional SQL., presented in Section 4, are needed. The only
significant semantic extension is to support coalescing. We speculate that our approach to valid-time inde-
terminacy, both the value incompleteness variety and the tuple valid-time incompleteness variety, can be
added in asimilarly straight-forward manner to any of the many temporal query languages proposed in the
literature.

11 Reated Work

Degpite the wealth of research on adding incomplete information to databases [Dyr93, Par96], there are few
efforts that address incomplete temporal information. Much of the previous research in incomplete infor-
mation databases has concentrated on issues related to null values (e.g., [Vasr9, Zan84, Cod90, Dat86]).
Another primary research thrust has studied the applicability of fuzzy set theory to relational databases (e.g.,
[DPT88, ZK85, Prad3]). There is also extensive Al literature on integrating various combinations of prob-
abilistic reasoning, temporal reasoning, and planning; Kraus and Subrahmanian provide a nice summary of
that literature [KS96].

We first place our work in the context of value and tuple incompleteness, then examine in detail severa
papers that concern temporal incompleteness.

35

function COALESCE(in [«, 5], [7, 4] : period) : set-of-periods;
var
s, t:instant;
begin
if not overlap(100, [«, 5], [, 6]) then return {[«, 3], [, 01}

{ Compute starting instant }
if o <n,thens+ «
eseif a, > n* thens<+ g
eseif P, is P, then
if a, <my and o <n* thens+ «
eseif o, > ny and o >n* thens<+ g
eses«+ (min(as,n.) ~ min(a*,n*), missing)

{ Compute terminating instant }
if B < d*thent« 3
dseif 3* > 0, thent«+ o
elseif Pgis P; then
if 3. > d, and §* > 0* thent«+ g3
dseif 6, < 0, and [* < 6* thent«+ o
eset«+ (max(f.,d.) ~ max(5*, "), missing)
return {[st]}
end; { COALESCE }

Figure 21: Indeterminate Coalescing

Information that is valid-time indeterminate is similar to digunctive information, especialy in the con-
text of deductive databases [LS90]. Digunctive information is a collection of facts, one (or more) of which
istrue. A set of possible chrononsisof the exclusive-or variety of digunctive information (only one digunct
istrue) [Ola92]. Vaid-time indeterminacy differs from the above investigations because the alternatives are
“weighted” and the weights are integrated into the query semantics.

Thefield of probabilistic databases covers awide spectrum of different uses of probabilistic information.
Probabilistic weights have been attached to attribute valuesto model situations where an attribute value could
be one of several more or lesslikely values [BGMP90, BGM P92, FR96, GH86, LLRS96, Lee92, TCW93].
Probahilistic weights have aso been appended to tuples, where the weight is the probability that the tuple
belongs to the relation [CP87, DS96, FR96, KS93b, KS93a, LLRS96, Lee92, TCW93, Zim92]. Decision
support systems, vague queries, information retrieval and data mining have also utilized probabilistic infor-
mation [Won82, Fuh90, HS93, VCC96]. Our work concerns only probabilities in attribute values and can
be seen as an extension of the Probabilistic DataModel (PDM) [BGMP92]. Inthe PDM, attribute values are
sets with weights attached to each element. The weight is the probability that the corresponding element is
thevalue of the attribute. Queries use the probabilistic representation in conjunction with asingle user-given
“confidence” to compute aresult within the framework of the possible world semantics. The novelty in our
work can be seen in the methods used to retrieve the incomplete information and in how that information
is represented. Inthe PDM each element in a set of possible values is stored and processed separately. The
costs of the probabilistic operators in PDM are proportiona to the number of aternatives in the set (some of
the operations have a cost that is proportional to the square of the number of aternatives).

36

Dey and Sarkar extend this data model, in part to render it in first normal form and to permit a more
genera join operation [DS96]. More recently, Lakshmanan, Leone, Ross and Subrahmanian have extended
the PDM to eliminate several of the assumptions, including independence of elements, in their ProbView
system [LLRS96]. In particular, they permit a range of Cartesian product operators to be defined, with the
situation dictating the appropriate strategy.

We could not adopt the PDM approach or its successors to support temporal indeterminacy, since there
might be several million elementsin a set of possible chronons. Representing each alternative with an asso-
ciated probability isimpractical. Dueto the unique nature of valid-time indeterminacy, adifferent approach
was required.

We now turn to the literature of temporal incompleteness, which, unlike our approach, does not employ
probabilities.

Inthe earliest work on incomplete temporal information, an indeterminate instant was model ed with a set
of possible chronons [Sno82]. Before was extended to return the value unknown, necessitating an extension
to athree-valued logic. Also, afour-valued logic was proposed to model times and values that are unknown,
imprecise, or negative (under the open world assumption) [Sch87]. Our current approach allows aprobability
mass function to be associated with each indeterminate instant, and does not require a multi-valued logic,
though we do use such alogic in the operational semantics.

Dutta uses a fuzzy set approach to handle generalized temporal events [Dut89]. A generaized tempo-
ra event isasingle event that has multiple occurrences. For example the event “Margaret’s salary is high”
may occur at various times as Margaret’s salary fluctuates to reflect promotions and demotions. The mean-
ing of “high” isincomplete. High is not a crisp predicate. In Dutta's model all the possibilities for high are
represented in a generalized event and the user selects some subset according to his or her interpretation of
“high.” This contrasts with the task of encoding the type of information we have characterized asvalid-time
indeterminate. We view events as having a single occurrence. An indeterminate instant is a set of alterna-
tives, one and only one of which is the actual time. Every member in afuzzy set is always possible, to a
greater or lesser extent, depending on the degree of membership, but always possible (although some fuzzy
databases stipulate by fiat that only one member is possible [DPT88]). Our approach and that of Dutta's
model different kinds of temporal incompleteness. We feel that a probabilistic approach is better suited to
modeling valid-time indeterminacy as formulated in this paper, and that fuzzy set approaches like Dutta's
(e.g., [Vit83, DP89]), are better suited to modeling generalized events. The two approaches are orthogonal,
and the user may pick the one(s) most appropriate to her application.

Generdized bitemporal elements are defined somewhat differently in amore recent paper [KE92, KE94].
Bitempora elements combine transaction time and valid time in the same temporal element. Since TSQL 2
also supports transaction time, valid-time indeterminacy and generalized bitempora elements differ mainly
in their handling of valid time. In Kouramgjian and Elmasri’s model, both the upper and lower support on
avalid time period could be a set of noncontiguous possible chronons. Unlike valid-time indeterminacy no
probabilities are used. Sincethere are no probabilities, the user in general islimited to querying for answers
which are either definite or those which are possible (or combinations thereof). Generalized valid times are
composed of valid times by the operators of alternation (only onevalid time applies) and/or union (both valid
times could apply). We provide no capability for “generalizing” valid times to handle aternation or union.

Another proposed model intertwines support for value and temporal incompleteness [GNP92]. By com-
bining the different kinds of incomplete information, awide spectrum of attribute values are s multaneously
modeled, including values that are completely known, values that are unknown but are known to have oc-
curred, values that are known if they occurred, and values that are unknown even if they occurred. In our
approach, value incompleteness, tuple incompleteness, and tuple valid-time indeterminacy are orthogonal .
By combining valid-time indeterminacy with other kinds of incomplete information we can support each of
thekinds of incomplete information found in Gadiaet d., plus others (e.g., fuzzy valueincompleteness). An-
other difference between our approach and theirsis that they make no use of probabilistic information. The

37

user cannot express his or her credibility in the underlying data nor plausibility in the temporal relationships
in the data.

Gadia et a. prove reliability for their model, as we did for ours, in Section 5.9. They also showed that
except for certain cases of selection, their operators were maximal. The same holdsfor our operators. Hence,
both of our models (with the exception of certain cases of selection in their language) are theoretically sound.

While the possible and definite limits to incomplete temporal information are well-understood, the cost
of querying incomplete temporal information can be prohibitive. Satisfaction of general constraints, that
is, awell-formed formulae consisting of tempora variables, predicates and boolean connectives (including
negation), and allowing substitution of indeterminate instants is, not surprisingly, NP-hard [vB91, DB8§].

Koubarakis showed that by restricting the kinds of constraints allowed, polynomial time algorithms can
be obtained [Kou93]. Koubarakis proposed a tempora data model with global and local inequality con-
straints on the occurrence time of an event. The resulting model supports indefinite instants. An indefinite
instant is a very general kind of instant that includes indeterminate instants, instants with digoint sets of
possible chronons, and instants with incompletely specified upper and lower supports. For instance, we may
know that o occurred before 3 but after 2PM (2 PM < o < (), and we may know that 3 happened before
4 PM. In Koubarakis's data model we can then conclude that « happened between 2 and 4 PM. Koubarakis
restricts the kinds of constraints allowed (to disunctions of inequalities) and achieves polynomial time com-
plexity for retrieving information.

Anather constraint-based temporal reasoner isLaTeR, which hasbeen successfully implemented [BCTP95].
LaTeR similarly restricts the kinds of constraints allowed (to conjunctions of linear inequalities), but this
class of constraints includes many of the important temporal predicates. LaTeR must construct a constraint
network during insertion or updating of temporal information, but uses this network very efficiently when
retrieving information to achieve O(n?) performance.

The primary difference between these constraint-based models and ours (other than probabilities) isthat
SQL (like most relational database models) does not alow inter-tuple constraints. Tuplesin SQL relations
are “row-independent,” that is, no information is shared between tuples. Since the indeterminate data model
isbased on SQL, it makesno overt provisionsfor sharing indeterminate information between tuples. Only the
constraints given inthe query areused to relate tuples. Further, we, like most others, assumethat the variables
in aquery are independent. Our motivation is to avoid the expensive computation of dependent probabili-
ties, but the independence assumption also yields an O(n.r) complexity for evaluating an unrestricted query
consisting of temporal predicates and boolean connectives (where . isthe number of predicatesin the query,
and r is the number of tuples). However, constraint-based models are able to model temporal information
that we cannot.

We note that thereislittle discussion in most of the aforementioned papers, save LaTeR, on implemen-
tation aspects. We feel that both efficient representations and efficient query processing agorithms are es-
sential, especialy when the incomplete information is weighted.

12 Summary and Future Work

This paper has extended the syntax and formal semantics of SQL to support valid-time indeterminacy and
has described an efficient implementation for that support. We also showed how the concepts can be applied
to tempora query languages, in particular to the variant of TSQL2 being proposed for incorporation into
SQL3.

We return to the goals enumerated in Section 1. The syntactic extensions are minimal. In particular,
we provide the user with two controls on the retrieval process, correlation credibility and ordering plausi-
bility. We have augmented the create table and alter table statements to specify which attributes incorporate
valid-timeindeterminacy and to identify which timestamp format to use, extended the from clause to specify

38

correlation credibility using an optiona with clause, extended the select statement to specify ordering plausi-
bilities, and added variants to the set statement to specify default plausibilities and credibilities. Correlation
credibility changes the information available to query processing; it replacesindeterminate with determinate
information. Ordering plausibility controls the construction of an answer to a query using the pool of cred-
ible information. A tempora expression is satisfied if there exists a plausible ordering (to the level spec-
ified by the user) that satisfies it. The approach is orthogonal to those proposed by others to handle value
incompleteness and generalized events (cf. Section 10), has an intuitive semantics (Section 5), retains the
first normal form structure of SQL and TSQL 2 (Section 3), refines previousy proposed techniques to han-
dle multiple granularities of time (Section 7), is temporally upward compatible, in that it reduces to SQL’s
and ATSQL 2's semantics in the absence of indeterminacy (Section 5.3), reduces to SQL's semanticsevenin
the presence of indeterminacy, when the new constructs are not used (Section 5.7), and has been proven to
be both reliable and maximal (Section 5.9).

While these languages extensions are highly expressive, this paper demonstrates that they can be effi-
ciently implemented. We showed how indeterminate instants with a uniform probability mass function or
mass function that is missing can be represented in only 64 bits in most cases; for user-defined distributions
the common representation is only 96 bits (Section 7). The operational semantics was shown to be correct
(Section 5.9); the rod-counting algorithm is efficient (Section 8.1.4), and the undercounting of thisagorithm
isminimal (also Section 8.1.4). Weimplemented the functions required by the altered semantics (Section 8),
and demonstrated that the implementation roughly doubles the CPU cost of a query when indeterminacy is
present and plausibilities and credibilities less than 100 are specified, while having little impact on its disk
I/O time (Section 9).

This paper only considers the sdlect, create table, and alter table statements of SQL and TSQL2. The
modification statements (append, delete, and update) as well as views, integrity constraints, assertions, and
cursors, can be extended in an analogous manner. The approach espoused here has been adopted in TSQL 2
[DS954d).

Oneimportant area of future research is extension of indexing methods to support indeterminate val ues.
Most extant indexing approaches assume atotal order on the underlying domain. Only for an ordering plau-
sibility of 100 does such atotal order exist for indeterminate instants (cf. Section 5.4.1). Indexing methods
need to be extended to support arbitrary ordering plausibilities, to be specified at query time.

Algorithm improvements on the functions discussed in Section 8 are certainly possible. While such im-
provements might reduce execution time considerably in specia cases, we doubt that they will have much
impact on the average case.

A useful extension of the current work would be to use periods instead of values to express plausibility.
For instance, the user could constrain retrieval to tuples that “overlap March, 1984” to “within ayear” (this
has been termed a “band join” [DNS91] or a “fuzzy temporal equi-join” [LM91]). This possibility can be
seen as an extension of the present paper, specificaly, as arefinement of the Before; operation.

Finally, it isaways useful to consider increasing the expressive power of the data model and query lan-
guage. In particular, one important assumption we make throughout isthat tuples are row-independent, with
no information shared between indeterminate tuples. Most of the other approaches that utilize probabilities
to model various flavors of incompleteness make this assumption as well, because computing dependent
probabilities in the inner loop of query processing isjust too expensive. We aso assume that indeterminate
instants are modeled by contiguous sets of possible chronons. We do not support noncontiguous sets which
could model indeterminate instants such as “it happened yesterday morning or this morning.” We exploit
both of these assumptions to achieve efficiency in representation and in query processing. We conjecture
that relaxing either of these assumptions will cause the query evaluation complexity to return to cubic (or
worse), thereby rendering the performance unacceptable for many tempora database applications.

39

Acknowledgments

Thiswork was supported in part by NSF grants | SI-8902707, 1S1-9302244 and IRI-9632569, IBM contract
#1124 and a grant from the AT& T Foundation. We wish to thank Merrie Brucks, Saumya Debray, Peter J.
Downey, Christian S. Jensen and V. S. Subrahmanian for their insightful comments and contributions.

References

[Al183]

[AriS6]

[BBJS96]

[BCTP95]

[Bel77]

[BGMP90]

[BGMP92]

[Cod9o]

[CP87]

[CR87]

[Dats6)]

[DB8g]

J.F. Allen. Maintaining Knowledge About Temporal Intervals. Communications of the ACM,
26(11):832-843, November 1983.

G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database Systems,
11(4):499-527, December 1986.

J. Bair, M. Bohlen, C. S. Jensen, and R. T. Snodgrass. Notions of Upward Compatibility of
Temporal Query Languages. Business Informatics (Wrtschaftsinformatik), to appear, 1997, 19

pages.

V. Brusoni, L. Console, P. Terenziani, and B. Pernici. Extending Temporal Relational Databases
to Deal with Imprecise and Qualitative Tempora Information. In S. Clifford and A. Tuzhilin, ed-
itors, Recent Advancesin Temporal Databases, pp. 3-22, Zurich, Switzerland, September 1995.
Proceedings of the International Workshop on Temporal Databases, Springer Verlag.

N. Belnap. A Useful Four-Vaued Logic. In Modern Uses of Many-valued Logic, G. Epstein
and J. M. Dunn (eds), D. Reidel, pp. 8-37, 1977.

D. Barbara, H. GarciaMolina, and D. Porter. A Probabilistic Relational Data Model. In
Proceedings of the International Conference on Extending Database Technology: Advancesin
Database Technology, pages 6074, Venice, Italy, March 1990.

D. Barbara, H. GarciaMolina, and D. Porter. The Management of Probabilistic Data. |EEE
Transactions on Knowledge and Data Engineering, 4(5):487-502, October 1992.

E. F. Codd. Missing Information and Response to Technical Criticisms Regarding Missing In-
formation, chapters 8 and 9 of The Relational Model for Database Management: Version 2,
pp. 169-206. Addison-Wesley Publishing Company, Inc., 1990.

R. Cavdlo and M. Pittarelli. The Theory of Probabilistic Databases. In P. Hammersley, editor,
Proceedings of the International Conference on Very Large Databases, pp. 71-81, Brighton,
England, September 1987.

J. Clifford and A. Rao. A Simple, General Structure for Temporal Domains. In Proceedings
of the Conference on Temporal Aspects in Information Systems, pp. 23-30, France, May 1987.
AFCET.

C. J. Date. Null Vaues in Database Management, chapter 15 of Relational Database: Selected
Witings, pp. 313-334. Addison-Wesley, Reading, MA, 1986.

T. Dean and M. Boddy. Reasoning About Partially Ordered Events. Atrtificial Intelligence,
36(3):375-399, October 1988.

[DNS91]

[DP89]

[DPT88]

[DS93]

[DS954]

[DS95h]

[DS96]

[DSS95]

[Dut89]

[Dyrog3]

[FRO6]

[FuhoO]

[GC66]
[GH86]

[GNP92]

[HSO3]

D. DeWwitt, J. Naughton, and D. Schneider. An Evauation of Non-equijoin Algorithms. In
Proceedings of the International Conference on Very Large Databases, pp. 443-452, 1991.

D. Dubois and H. Prade. Processing Fuzzy Temporal Knowledge. |EEE Transactions of Sys-
tems, Man and Cybernetics, 19(4):729-744, 1989.

D. Dubois, H. Prade, and C. Testamale. Handling Incomplete or Uncertain Data and Vague
Queriesin Database Applications, chapter 6 of Possibility Theory: An Approach to Computer-
ized Processing of Uncertainty, pp. 217-257. Plenum Press, New York and London, 1988.

C. E. Dyreson and R. T. Snodgrass. Valid-time Indeterminacy. In Proceedings of the Interna-
tional Conference on Data Engineering, pp. 335-343, Vienna, Austria, April 1993.

C. E. Dyreson and R. T. Snodgrass. Temporal Indeterminacy. Chapter 18 of [Sno95], pp. 327—
346.

C. E. Dyreson and R. T. Snodgrass. A Timestamp Representation. Chapter 25 of [Sno95],
pp. 475-500.

D. Dey and S. Sarkar. A Probabilistic Relationa Model and Algebra. ACM Transactions on
Database Systems, 21(3):339-369, September 1996.

C. E. Dyreson, M. Soo, and R. T. Snodgrass. The Data Model for Time. Chapter 6 of [Sno95],
pp. 97-101.

S. Dutta. Generalized Eventsin Tempora Databases. In Proceedings of the Fifth International
Conference on Data Engineering, pp. 118-126, Los Angeles, CA, February 1989.

C. Dyreson. A Bibliography on Uncertainty Management in Information Systems. In Pro-
ceedings of the Workshop on Uncertainty Management in Information Systems. From Needsto
Solutions, pp. 187-220, Avalon, Santa Catalina, California, April 1993.

N. Fuhr and T. Rolleke. A Probabilistic Relational Algebra for the Integration of Information
Retrieval and Database Systems. ACM Transactions on |nformation Systems, 1996, to appear.

N. Fuhr. A Probabilistic Framework for Vague Queries and |mprecise Information in Databases.
In Proceedings of the International Conference on Very Large Databases, Brisbane, Australia,
1990.

S. Goudsmit and R. Claiborne. Time. Time Inc., New York, 1966.

E. Gelenbe and G. Hebrail. A Probability Model of Uncertainty in Data Bases. In Proceedings
of the International Conference on Data Engineering, pp. 328-333, LosAngeles, CA, February
1986.

S.K. Gadia, S. Nair, and Y.-C. Poon. Incomplete Information in Relational Temporal Databases.
In Proceedings of the International Conference on Very Large Databases, Vancouver, Canada,
August 1992.

M. Henrion and J. Suermondt. Probabilistic and Bayesian Representations of Uncertainty and
Information Systems. A Pragmatic Introduction. In Proceedings of the Workshop on Uncer-
tainty Management in Information Systems. From Needsto Solutions, pp. 71-90, Avalon, Santa
Catdina, California, April 1993.

41

[JCE+94]

[KE92]

[KE94]

[Kou93]

[KS934]

[KS93b]

[KS96]

[Leeo?]

[Lip79]

[LLRS96]

[LM91]

[LS90]

[Mel96]
[Mot90]

[MS93]

[O1a92]

[Par96]

C. S. Jensen, J. Clifford, R. EImasri, S. K. Gadia, P. Hayes, and S. Jgjodia (eds). A Glossary of
Tempora Database Concepts. ACM SGMOD Record, 23(1):52—-64, March 1994.

V. Kouramgjian and R. Elmasri. A Generalized Temporal Model. Tech. Report, University of
Texas at Arlington, February 1992.

V. Kouramgjian and R. ElImasri. A Generalized Temporal Modedl. In the Uncertainty in
Databases and Deductive Systems Workshop, Ithaca, NY, November, 1994.

M. Koubarakis. Representation and Querying in Temporal Databases: The Power of Temporal
Constraints. In Proceedings of the the International Conference on Data Engineering, pp. 327—
334, Vienna, Austria, April 1993.

Y. Kornatzky and S. Shimony. A Probabilistic Object-oriented DataModel. TR FC 93-04, Ben-
Gurion University, May 1993.

Y. Kornatzky and S. Shimony. A Probabilistic Spatial DataModel. In DEXA' 93, Prague, Czech
Republic, September 1993.

S. Kraus and V. S. Subrahmanian. Multiagent Reasoning with Probability, Time and Béeliefs.
International Journal of Intelligent Systems, 10(5) 459499, 1994.

S. K. Lee. An Extended Relational Database Model for Uncertain and Imprecise Information.
In Proceedings of the International Conference on Very Large Databases, Vancouver, Canada,
August 1992.

Lipski, W., J. On Semantic Issues Connected with Incomplete Information Databases. ACM
Transactions on Database Systems, 4(3):262—296, September 1979.

V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: A Flexible Proba-
bilistic Database System. Submitted for journal publication, 1996.

T. Y. Leung and R. Muntz. Tempora Query Processing and Optimization in Multiprocessor
Database Machines. Technical Report CSD-910077, Computer Science Department, UCLA,
November 1991.

K. C.Liuand R. Sunderraman. Indefinite and Maybe Information in Relational Databases. ACM
Transactions on Database Systems, 15(1):1-39, March 1990.

J. Mélton. SQL/Temporal. ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-0012, July 1996.

A. Motro. Imprecision and Incompleteness in Relational Databases. Survey. Information and
Software Technology, 32(9):579-588, November 1990.

J. Méeltonand A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1993.

A. Ola. Relational Databases with Exclusive Digunctions. In Proceedings of the Eighth Inter-
national Conference on Data Engineering, pp. 328-336, Tempe, AZ, February 1992,

S. Parson. Current Approaches to Handling Imperfect Information in Data and Knowledge
Bases. |EEE Transactions on Knowledge and Data Engineering, 8(3):353—372, 1996.

42

[Pet91]

[Prad3]

[SBJS96]

[Sch87]

[Snos2]

[Sno95]

[SSD*92]

[SE94]

[TCG+93]

[TCWO3]

[Vasr9]

[vB91]

[VCC96]

[Vit83]

B. W. Petley. Time and Frequency in Fundamental Metrology. Proceedings of the |EEE,
79(9):1070-1077, July 1991.

H. Prade. Annotated Bibliography on Fuzzy Information Processing. InH. Prade, D. Duboisand
R. Yager, editors, Readings on Fuzzy Setsin Intelligent Systems. Morgan & Kaufmann, 1993.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding Valid Time to
SQL/Temporal. Change Proposal ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL
MAD-146r2, November 1996.

U. Schiel. Representation and Retrieva of Incomplete and Tempora Information. TR DSC-
02/87, Universidade Federal Da Paraiba, May 1987.

R. Snodgrass. Monitoring Distributed Systems: A Relational Approach. PhD thesis, Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA, December 1982.

R. T. Snodgrass (editor), I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri, F.
Grandi, C. S. Jensen, W. K&fer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F. Rod-
dick, A. Segev, M. D. Soo and S. M. Sripada. The Temporal Query Language TSQL2. Kluwer
Academic Pub., 1995.

M. D. Soo, R. Snodgrass, C. Dyreson, C. S. Jensen, and N. Kline. Archi-
tectural Extensions to Support Multiple Caendars. TemplS Technicad Re
port 32, Computer Science Department, University of Arizona, Revised May 1992.
ftp://FTP.cs. arizona. edu/ tsqgl/mul tical

A. Srivastava and A. Eustace. ATOM: A System for Building Customized Program Anaysis
Toals. In Proceedings of the ACM S GPLAN' 94 Conference on Programming Language Design
and Implementation, pp. 196205, June 1994.

A. Tansd, J. Clifford, S. Gadia, S. Jgodia, A. Segev, and R. Snodgrass (eds.). Temporal
Databases. Theory, Design, and Implementation. Database Systems and Applications Series.
Benjamin/Cummings, Redwood City, CA, 1993.

F. S. C. Tseng, A. L. P. Chen, and W.-P. Wang. Answering Heterogeneous Database Queries
with Degrees of Uncertainty. Distributed and Parallel Databases. An International Journal,
1(3):281-302, July 1993.

Y. Vassiliou. Null Values in Database Management—a Denotational Semantics Approach. In
Proceedings of the ACM SSGMOD International Conference on Management of Data, pp. 162—
169, New York, May 1979.

P. van Beek. Temporal Query Processing with Indefinite Information. Artificial Intelligence in
Medicine, 3(6):325-339, December 1991.

S. R. Vasanthakumar, J. P. Collan, and W. B. Croft. Integrating INQUIRY with an RDBMSto
Support Text Retrieval. |EEE Data Engineering, 19(1):24-33, March 1996.

M. Vitek. Fuzzy Information and Fuzzy Time. In Proceedings of the |FAC Symposium Fuzzy In-
formation, Knowledge Representation and Decision Analysis, pp. 159-162, Marseille, France,
1983.

[Won82]

[Zan84]

[Zim92]

[ZK85]

E. Wong. A Statistical Approach to Incomplete Information in Database Systems. ACM Trans-
actions on Database Systems, 7(3):470-488, September 1982.

C. Zaniolo. Database Relations with Null Values. Journal of Computer and System Sciences,
28:142-166, 1984.

E. Zimanyi. Incomplete and Uncertain Information in Relational Databases. PhD thesis, Uni-
versité Libre de Bruxelles, Brussells, Belgium, July 1992.

M. Zemankovaand A. Kandel. Implementing Imprecision in Information Systems. Information
Sciences, 37:107-141, 1985.

A Proofsof Theorems

Theorem 1 [WHERE (predicate) [, ,(1,7) isreliable.

Proof: For any where clause W, for al ' € C(r), let c=[W]gq.(r"). ThenVt' € +'(t' € ¢ =
[(predicate) [g4, (t')). From the definition of [TV]

ind?

Virer' (' ec= 3ter(t e Ct)Ate[W],,.(1,7)))).
From the definition of C, it followsthat c € C([W];,,,(1,7)). |
Theorem 2 [WHERE (predicate) [, ,(1,7) ismaximal.

Proof: We need to show V (where clause) W, Ve € C([W]
the possible interpretation,

(L,7)), Ir' € C(r) (c=[W]gqL(r")). For

ind

vV (where clause) W, Ve € C([W ;,,4(1,7)) (V' € ¢, 3t € 7 (3" € C(t) A[PlgqL ("))
From the definition of C on relations, it followsthat 3r' € C(r) (¢ = [W [54.,()). |

Theorem 3] |, and [], agree on the possible and definite interpretations.

ind

Proof: For the definite bound (v = 100), we heed to show

V (predicate) P, Vr, Vd ([WHERE P];,,(100,7) = {t|[t € r AT € [P],,(100,7)}).

From the definition of [],,,,, thisis equivalent to Vi Ve € C(t) ([Plsq(c) = T € [P],,(100,1)). We
show this by induction on the boolean connectives in P, after replacing P with its equivalent in terms of
Before (or Beforey, for [],,,), A and —.

Basis: [P]gq;, is Before(a,b), where a and b are (instant) valuesin the tuple ¢.
From the definition of the completion of atuple, we must show
(Veq € C(a), Yep € C(b) (o <)) = T € Beforer(a, b, 100).
Theleft hand sideimpliesthat Pr[a < b] = 1.00, so Before; (a, b, 100) = {T'}.

Induction: Assume that V¢ Ve € C(t) ([P]gg.(c) = T € [P],,(100,%)) holds for P containing i — 1
boolean connectives. We need to show that this holds for P containing 7 connectives.

(1) PisPAP,. Applyingthedefinitionsof |]]SQL and[], thefollowing holdsfrom theinductive

hypothesis.

op’

Vive € C(1) ([P Jsqu A P Jsqu(©) = T € ([P 1,,(100,8) N[P2],,,(100,1)

It then follows that the inductive hypothesis also holds for P.

45

(2) Pis—P;. Again, applying the definitions to the inductive hypothesis,

ViVe € C(t) (<[Pilsqr) = F € ([P11,,(100,t)).

This shows that the the two semantics agree for P containing ¢ predicate connectives.
For the possible bound (v = 1), we need to show
V (predicate) P, VrVd([WHERE P, ,(1,7) = {t|t er AT € [P],,(1,7)}.

Thisisequivalent to Vtdc € C(t) ([PlgqL(c)) = T € [P],,(1,t)). Comparing this to the analogous
formula in the definite portion of this proof, note that V¢ has been replaced with 3¢, and v = 100 has been
replaced with v = 1.

Again, we show this by induction on the number of boolean connectivesin P.

Basis: [P]gq; is Before(a,b), wherea and b are (instant) values in the tuple ¢. From the definition of the
completion of atuple, we must show

(Jeq € C(a), Jep € C(b) (cg <)) = T € Beforer(a, b, 1)

Applying the definition of Before;, the right hand side is equivalent to Prja < b] > 0 (here we use
Pr'[...] = 0.01). From the left hand side, we know that Pr[a = ¢,] > 0 and Pr[b = ¢;] > 0, S0
Prja > b] > 0. Hence,
(Jeq € Cla), Jep € C(b) (g <)= Prla=cy] >0APrib=c] >0ANce <y

= Prlja>b] >0

= T € Beforer(a, b, 1)

=T e[P],,(1,1).

Induction: We utilize asimilar induction hypothesis as before, and the inductive steps follow naturally. |

Theorem 4 [S];,,,(6,7,7) ismonotonicin ~.

Proof: Asthe semantics of each clause depends only on one parameter, the proof proceedsin two parts: (1)
show that [(where clause) |, ; is monotonic in -, and (2) show that | (target list)],,,; iS monotonic in-y.

To show (1), we need to demonstrate that
vtV (predicate) P (v > ' = C([P],,(7,1)) < C([P],,(v',1)).

We prove this by induction on the boolean connectivesin p, after replacing p with itsequivalent, as discussed
in Section 5.4.2.

46

pivot

e
ﬁﬁﬁ;ﬂﬁ

Figure 22: The rods within the dotted lines are the undercount for the pivot

Basis: [P],, isBeforer(a, b,). Thisfollows from the definition of Before; and the monotonicity of Pr.

Induction: Assume that the above holds for P containing ¢ — 1 boolean connectives.

(@ Pis P, AND P,, whichisreplaced with P N P,, which ismonotonic when P; and P, are mono-
tonic.

(b) P isNOT P, whichisreplaced with {z | (-z) € [P],,(7,r)}. Again, thisis monotonic if P
iS monotonic.

To show (2), we observe that [(target list)], , utilizes constructors based on Beforer. By Theorem 3,
[1;,,4 1san equivaent semantics, and hence from (1), just shown, (2) follows. |

Theorem 5: The £t pivot will count P2/21109:(®)]+1 pairs,

Proof. By choosing the rod corresponding to half of the remaining rods, the algorithm counts half the pairs
on the first pivot, that is, it counts P2 /2 pairs. On the second and third pivots, it counts half of half of the
remaining pairs, or P2 /8 pairs per pivot, assuming “breadth-first” recursion. On the fourth through seventh
pivats, it counts half of half of half of the remaining pairs, or P2/32 pairs. Soin general, the ith pivot will
count P2 /21109:(0)1+1 pairs, In general, the k" pivot will count P2 /2l1°:(%)]+1 pairs. In the worst case,
2P pivots are required. |

Theorem 6: The undercount isless than 2.

Proof: First consider the error once a pivot has been chosen. The error is the rods in the other row of rods
that remain uncounted. The uncounted rods are those that overlap the pivot. These rods are uncounted be-
cause it is unknown how the probability mass is distributed within each rod, consequently it is impossible
to determine whether the mass is before or after the mass in the pivot. Figure 22 shows the rods that are
uncounted for an example pivot; the rods that are either partialy or wholly within the dotted lines are not
counted. But how many pairs of rods possibly overlap? We claim that there can be at most 2P — 1 pairsthat
overlap.

We demonstrate this claim by modeling the overlapping rods with an undirected graph. Let eachrod bea
nodeinagraph. Add an edge between each pair of rods that overlaps. Observe that the edges cannot “ cross’
each other, that is, the graph is planar. Now count the total number of edges in the graph. Choose the first,
or “leftmost” edge in the graph. Since edges cannot cross, at least one node on this edge is a sink, uncon-
nected to any other nodes by a different edge. Eliminate both the node and the edge. Repeat this process,

47

aways choosing the “leftmost” remaining edge, until there are no more edges. Initidly there are 2P nodes.
One node is eliminated at every step along with one edge. At least one node remains after the final edgeis
removed. Consequently, initialy, there wereat most 2P — 1 edges.

Each edge represents a pair of rods that overlap, corresponding to a mass of # that remains uncounted.

Sincethere are at most 2P — 1 edges, the total missing massis less than %. For a precision of 28, the total
error isless than 1%. |

