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Abstract

Joins are arguably the most important relational operators. Poor implementations are tantamount to
computing the Cartesian product of the input relations. In a temporal database, the problem is more acute
for two reasons. First, conventional techniques are designed for the evaluation of joins with equality
predicates, rather than the inequality predicates prevalent in valid-time queries. Second, the presence
of temporally-varying data dramatically increases the size of the database. These factors indicate that
specialized techniques are needed to efficiently evaluate temporal joins.

We address this need for efficient join evaluation in temporal databases. Our purpose is two-fold. We
first survey all previously proposed temporal join operators. While many temporal join operators have
been defined in previous work, this work has been done largely in isolation from competing proposals,
with little, if any, comparison of the various operators. We then address evaluation algorithms, compar-
ing the applicability of various algorithms to the temporal join operators, and describing a performance
study involving algorithms for one important operator, the temporal equijoin. Our focus, with respect to
implementation, is on non-index based join algorithms. Such algorithms do not rely on auxiliary access
paths, but may exploit sort orderings to achieve efficiency.

1 Introduction

Time is an attribute of all real-world phenomena. Consequently, efforts to incorporate the temporal domain
into database management systems (DBMSs) have been on-going for more than a decade [ÖS95, TK96].
The potential benefits of this research include enhanced data modeling capabilities and more conveniently
expressed and efficiently processed queries over time.

Whereas most work in temporal databases has concentrated on conceptual issues such as data modeling
and query languages, recent attention has been on implementation-related issues, most notably indexing and
query processing strategies. We consider in this paper an important subproblem of temporal query process-
ing, the evaluation ad-hoc temporal join operations, i.e., join operations for which indexing or secondary
access paths are not available or appropriate. Temporal indexing, which has been a prolific research area
in its own right [ST99], and query evaluation algorithms that exploit such temporal indexes are beyond the
scope of this paper.

Joins are arguably the most important relational operators. This is so because efficient join processing is
essential to the overall efficiency of a query processor. Joins occur frequently due to database normalization
and are potentially expensive to compute [ME92]. Poor implementations are tantamount to computing the
Cartesian product of the input relations. In a temporal database, the problem is more acute. Conventional
techniques are aimed toward the optimization of joins with equality predicates, rather than the inequality
predicates prevalent in temporal queries [LM90]. Moreover, the introduction of a time dimension may
significantly increase the size of the database. These factors indicate that new techniques are required to
efficiently evaluate joins over temporal relations.

This paper aims to present a complete and systematic study of join operations in temporal databases,
including both semantics and implementation. Many temporal join operators have been proposed in pre-
vious research, but little comparison has been performed with respect to the semantics of these operators.
Similarly, many evaluation algorithms supporting these operators have been proposed but little analysis has
appeared with respect to their relative performance, especially in terms of empirical study.

The main contributions of this paper are the following.

� To provide a systematic classification of temporal join operators as natural extensions of conventional
join operators.

� To provide a systematic classification of temporal join evaluation algorithms as extensions of common
relational query evaluation paradigms.
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� To empirically quantify the performance of the temporal join algorithms for one important, frequently
occurring, and potentially expensive temporal operator.

We intend that DBMS vendors can use the contributions of this paper as part of a migration path to
incorporating temporal support into their products. Specifically, we show that nearly all temporal query
evaluation work to date has extended well-accepted conventional operators and evaluation algorithms. In
many cases, these operators and techniques can be implemented with small changes to an existing code
base, and with acceptable, though perhaps not optimal, performance.

Research has identified two orthogonal dimensions of time in databases, valid time, modeling changes
in the real-world, and transaction time, modeling the update activity of the database [SA86, Jen98]. A
database may support none, one, or both of the given time dimensions. In this paper, we consider only single
dimension temporal databases, so-called valid-time and transaction-time databases. Databases supporting
both time dimensions, so-called bitemporal databases, are beyond the scope of this paper, though many of
the described techniques extend readily to bitemporal databases. We will use the terms snapshot, relational,
or conventional database to refer to databases that provide no integrated support for time.

The remainder of the paper is organized as follows. We propose a taxonomy of temporal join operators
in Section 2. This taxonomy extends well-established relational operators to the temporal context, and it
classifies all previously defined temporal operators. In Section 3 we develop a corresponding taxonomy
of temporal join evaluation algorithms, all of which are non-index based algorithms. In Section 5, we
empirically investigate the performance of the evaluation algorithms with respect to one particular, and
important, valid-time join operator. The algorithms are tested under a variety of resource constraints and
database parameters. Finally, conclusions and directions for future work are offered in Section 6.

2 Temporal Join Operators

In the past, temporal join operators have been defined in different temporal data models; at times the es-
sentially same operators have even been given different names when defined in different models. Further,
the existing join algorithms have also been constructed within the contexts of different data models. This
section enables the comparison of join definitions and implementations across data models. We thus pro-
ceed to propose a taxonomy of temporal joins and then use this taxonomy to classify all previously defined
temporal joins.

We take our outset in the core set of conventional relational joins that have long been accepted as
“standard” [ME92]: Cartesian product (whose “join predicate” is the constant expression TRUE), theta-join,
equijoin, natural join, left and right outerjoin, and full outerjoin. For each of these, we define a temporal
counterpart that is a natural, temporal generalization of it. This generalization hinges on the notion of
snapshot equivalence [JSS94b], which states that two temporal relations are equivalent if they consist of the
same, sequence of time-indexed snapshots. We note that some other join operators do exist, including semi-
join, anti-semi-join, and difference. Their temporal counterparts have been explored elsewhere [DDD

�
02]

and are not considered here.
Having defined this set of temporal joins, we show how all previously defined operators are related

to this taxonomy of temporal joins. The previous operators considered include Cartesian product,
�

-JOIN, EQUIJOIN, NATURAL-JOIN, and TIME-JOIN [CC87, CC93], TE-JOIN, TE-OUTERJOIN,
and EVENT-JOIN [SG89, GS91, Seg93, SE96], and those based on Allen’s [All83] interval relations (cf.
[LM90, LM92b, NA93]). We show that many of these operators incorporate less restrictive predicates or
use specialized attribute semantics, and thus are variants of one of the taxonomic joins.
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2.1 Temporal Join Definitions

To be specific, we base the definitions on a single data model. We choose the model that is used most widely
in temporal data management implementations, namely the one that timestamps each tuple with an interval.
We assume that the time-line is partitioned into minimal-duration intervals, termed chronons [DS93], and
we denote intervals by inclusive starting and ending chronons.

We define two temporal relational schemas, � and � , as follows.

� � �����	��
�
�
	����
�� T ��� T ���
� � ��� � ��
�
�
�������� T � � T � �

The ��� , �������! , and �"� , ���#���#$ , are the explicit attributes that are found in corresponding snapshot
schemas, and T � and T � are the timestamp start and end attributes, recording when the information recorded
by the explicit attributes holds (or held or will hold) true. We will use T as a shorthand for the interval%
T � � T �'& , and � and � as a shorthand for (�� � ��
�
�
)��� 
+* and (�� � ��
�
�
	��� 
+* , respectively. Also, we define ,

and - to be instances of � and � , respectively.

Example 2.1 Consider the following two temporal relations. The relations show the canonical example of
employees, the departments they work for, and the managers who supervise those departments.

Employee
EmpName Dept T

Ron Ship [1,5]
George Ship [5,9]

Ron Mail [6,10]

Manages
Dept MgrName T

Load Ed [3,8]
Ship Jim [7,15]

Tuples in the relations represent facts about the modeled reality. For example, the first tuple in the Employee
relation represents the fact that Ron worked for the Shipping department from time 1 to time 5, inclusive.
Notice that none of the attributes, including the timestamp attributes T, are set-valued—the relation schemas
are in 1NF. ./
2.2 Cartesian Product

The temporal Cartesian product is a conventional Cartesian product with a predicate on the timestamp
attributes. To define it, we need two auxiliary definitions.

First, 021+354�687�4:9	3	�<;��8= & � , where ; and = are intervals, returns TRUE if there exists a chronon > such
that >@?�A %T &CB >@?ED %T & , and FALSE otherwise. Second, FHGI4�6�JLK8MN�<;��8=O� returns the maximum interval
contained in its two argument intervals. If no non-empty intervals exists, the function returns P . To state
this more precisely, let QR687�3 and JLKS7�3 return the smallest and largest of two argument chronons, respectively.
Also let ; � and ; � denote the starting and ending chronons of ; , and similarly for = .

TSUWV ,IX�Y	Z[�<;��8=@�R�
\ % X2YW-�>��<; � �8= � �8�:]^�_,`-�>��<; � �8= � � & if X�YW-	>��<; � �8= � ���!]^�_,`-�>��<; � �8= � �P otherwise

Definition 2.1 The temporal Cartesian product, ,ba T - , of two temporal relations , and - is defined as
follows.

,ba T - = (�cWd 
 � � �fe�gih�j Ak?l, j Dm?n-o�p021+354�687�4:9	3��2A % T & �qD %T & � B c % � & �rA % � &oB c % � & �rD % � &oBc % T & �sFHGH4�68JtK8Mu�2A %T & �qD %T & � B c % T &Nv�wP`� *
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The first line of the definition ensures that matching tuples A and D have overlapping timestamps and sets
the explicit attribute values of the result tuple c to the concatenation of the explicit attribute values of A andD . The second line computes the timestamp of c and ensures that it is non-empty. We include the 0 1+354�6:7	4�9�3
predicate only for later reference—it may be omitted without changing the meaning of the definition. ./

Example 2.2 Consider the query “Show the names of employees and managers where the employee worked
for the company while the manager managed some department in the company.” This can be satisfied using
the temporal Cartesian product.

Employee � T Manages
EmpName Dept Dept MgrName T

Ron Ship Load Ed [3,5]
George Ship Load Ed [5,8]
George Ship Ship Jim [7,9]

Ron Mail Load Ed [6,8]
Ron Mail Ship Jim [7,10]

./
The overlap function is necessary and sufficient to ensure snapshot reducibility, as will be discussed in

detail in Section 2.7. Basically, we want the temporal Cartesian product to act as though it is a conventional
Cartesian product applied independently at each point in time. When operating on interval-stamped data,
this semantics corresponds to an intersection: the result will be valid during those times when contributing
tuples from both input relations are valid.

The temporal Cartesian product was first defined by Segev and Gunadhi [SG89, GS91]. This operator
was termed the Time-join and the abbreviation T-join was used. Clifford and Croker [CC93] defined
a Cartesian product operator that is a combination of the temporal Cartesian product and the temporal
outerjoin, to be defined shortly.

2.3 Theta-Join

Like the conventional theta-join, the temporal theta-join supports an unrestricted predicate
�

on the explicit
attributes of its input arguments. The temporal theta-join, ,�� T� - , of two relations , and - selects those
tuples from ,ma T - that satisfy predicate

� �2, % � & �:- % � & � . Let � denote the standard selection operator.

Definition 2.2 The temporal theta-join, ,�� T� - , of two temporal relations , and - is defined as follows.

,�� T� -"��� � d	� 
 �
��� � 
 ��� g �2,ba T -H�
./

A form of this operator, the
�

-JOIN, was proposed by Clifford and Croker [CC87]. This operator was
later extended to allow computations more general than overlap on the timestamps of result tuples [SJS95].

4



2.4 Equijoin

Like snapshot equijoin, the temporal equijoin operator enforces equality matching between specified subsets
of the explicit attributes of the input relations.

Definition 2.3 The temporal equijoin on two temporal relations , and - on attributes ��� � � and ��� � �
is defined as the theta-join with predicate

��� , % ��� & � - % ��� & :
, � T

�

 ��� �	� � 
 �
� � -�


./
Like the temporal theta-join, the temporal equijoin was first defined by Clifford and Croker [CC87].

A specialized operator, the TE-join, was developed independently by Segev and Gunadhi [SG89]. The
TE-join required the explicit join attribute to be a surrogate attribute of both input relations. Essentially, a
surrogate attribute would be a key attribute of a corresponding non-temporal schema. In a temporal context,
a surrogate attribute value represents a time-invariant object identifier. If we augment schemas � and �
with surrogate attributes ID then the TE-join can be expressed using the temporal equijoin as follows.

, TE-join - � , � T

�


ID
�	� � 
 ID� -

The temporal equijoin was also generalized by Zhang, Tsotras and Seeger to yield the generalized TE-
Join, termed the GTE-Join, which specifies that the joined tuples must have their keys in a specified range
while their intervals should intersect a specified interval [ZTS02]. The objective was to focus on tuples
within interesting rectangles in the key-time space.

2.5 Natural Join

The temporal natural join bears the same relationship to the temporal equijoin as does their snapshot coun-
terparts. Namely, the temporal natural join is simply a temporal equijoin on identically named explicit
attributes, followed by a subsequent projection operation.

To define this join, we augment our relation schemas with explicit join attributes, ��� , � �����
� , which
we abbreviate by � .

� � ��� � ��
�
�
)��� 
 ��� � ��
�
�
������ � T � � T � �
� � ��� � ��
�
�
���������� � ��
�
�
������ � T � � T � �

Definition 2.4 The temporal natural join of , and - , ,�� T - , is defined as follows.

,�� T -�� (�c d 
 � � � � �fe�g h�j A ?l, j D ?n-o�2A % � & �wD % � &2Bc % � & �rA % � &WB c % � & �rA % � &oB c % � & �rD % � &2Bc %T & � FHGI4�6�JLK8MN�2A %T & �qD % T & � B c %T &uv� P`� *
The first two lines ensure that tuples A and D agree on the values of the join attributes � and set the explicit
attribute of the result tuple c to the concatenation of the non-join attributes � and � and a single copy of
the join attributes, � . The third line computes the timestamp of c as the overlap of the timestamps of A andD , and ensures that A % T& and D %T & actually overlap. ./

This operator was first defined by Clifford and Croker [CC87] who named it the natural time-
join. We showed in earlier work that the temporal natural join plays the same important role in recon-
structing normalized temporal relations as does the snapshot natural join for normalized snapshot rela-
tions [JSS96]. Most previous work in temporal join evaluation has addressed, either implicitly or explicitly,
the implementation of the temporal natural join (or the closely related temporal equijoin).
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2.6 Outerjoins and Outer Cartesian Products

Like the snapshot outerjoin, temporal outerjoins and Cartesian products retain dangling tuples, i.e., tuples
that do not participate in the join. However, in a temporal database, a tuple may dangle over a portion of
its time interval and be covered over others; this situation must be accounted for in a temporal outerjoin or
Cartesian product.

We may define the temporal outerjoin as the union of two subjoins, analogous to the snapshot outerjoin.
The two subjoins are the temporal left outerjoin and the temporal right outerjoin. As the left and right
outerjoins are symmetric, we define only the left outerjoin.

We need two auxiliary functions. The coalesce function collapses value-equivalent tuples—tuples with
mutually equal non-timestamp attribute values [Jen98]—in a temporal relation into a single tuple with the
same non-timestamp attribute values and a timestamp that is the finite union of intervals that precisely
contains the chronons in the timestamps of the value-equivalent tuples. (Finite unions of time intervals are
termed temporal elements [Gad88].) The definition of coalesce uses the function chronons that returns the
set of chronons contained in the argument interval.

��T YoX V - ��V �2,`�u� (�c d 
 �fe�g h	j An?l, ��c % � & �rA % � &�� ��� , T  T  -o�2A % T & � � c %T &2B� A �^? , �2A % � & �rA�� % � &�� � ��� , T  T  -o�2A�� %T & � � c %T & �q�q� B� >N?nc %T & j A � � ?l, ��c % � & �rA � � % � &WB > ? ��� , T  T  - �2A � � %T& �q� *
The first two lines of the definition coalesce all value-equivalent tuples in relation , . The third line ensures
that no spurious chronons are generated.

We now define a function expand that returns the set of maximal intervals contained in an argument
temporal element, � . Prior to defining expand we define an auxiliary function intervals that returns the set
of intervals contained in an argument temporal element.

�5 > V , U Y X -o���"� � ( % >q���q>'� & h >q� ?�� B >'� ?	� B � >�? ��� , T  T  -o� % >q���q>'� & ���2> ?	�"� *
The two first conditions ensures that the beginning and ending chronons of the interval are elements of � .
The third condition ensures that the interval is contiguous within � .

Using intervals, expand is defined as follows.

V A`Z�Y  �
����"�u� ( % > � �q> ��& h % > � �q> �q& ? �_ > V , U Y X -o���"� B
� j % > � � �q> � � & ? �_ > V , U YoX�-o���"��� ��� , T  T  - � % > � �q> �q& ��
 ��� , T  T  -o� % > � � �q> � � & �q� *

The first line ensures that a member of the result is an interval contained in � . The second line ensures that
the interval is indeed maximal.

We are now ready to define the temporal left outerjoin. Let � and � be defined as for the temporal
equijoin. We use � � � � and ��� � � as the explicit join attributes.

Definition 2.5 The temporal left outerjoin, , � T

�

 � � �	� � 
 �
� � - of two temporal relations , and - is defined as

follows.

, � T

�

 � � �	� � 
 � � � -�� (�cWd 
 � � �fe�gih�j A ? ��T YoX V - ��V �2, � j D ? ��T YoX V - ��V � -H��2A % � � & �wD % � � &oB c % � & �rA % � &WB c %T &Nv� P B�q��c % � & �wD % � &oB c % T & ? ( V A Z�Y  �
^�2A % T &�� D % T & � * �����c % � & � null B c % T & ? ( V A Z�Y  �
^�2A % T & ��� V A Z�Y  �
^�2D % T & � * �q�q���j A ? ��T YoX V - ��V �2, � � D ? ��T YoX V - ��V � -H��2A % � � &uv�wD % ��� &�� c % � & �rA % � &WB c % � & � null Bc % T & ? V A`Z^Y  �
^�2A % � & � B c %T &Nv� P`� *
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The first four lines of the definition handle the case where, for a tuple A deriving from the left argument, a
tuple D with matching explicit join attribute values is found. For those time intervals of A that are not shared
with D , we generate tuples with null values in the attributes of D . The final three lines of the definition handle
the case where no matching tuple D is found. Tuples with null values in the attributes of D are generated../

The temporal outerjoin may be defined as simply the union of the temporal left and the temporal right
outerjoins (the union operator eliminates the duplicate equijoin tuples). Similarly, a temporal outer Cartesian
product is a temporal outerjoin without the equijoin condition ( � � � � � � P ).

Gunadhi and Segev were the first researchers to investigate outerjoins over time. They defined a spe-
cialized version of the temporal outerjoin called the EVENT JOIN [SG89]. This operator, of which the
temporal left and right outerjoins were components, used a surrogate attribute as its explicit join attribute.
This definition was later extended to allow any attributes to serve as the explicit join attributes [SJS95].
A specialized version of the left and right outerjoins called the TE-outerjoin was also defined. The
TE-outerjoin incorporated the TE-join, i.e., temporal equijoin, as a component.

Clifford and Croker [CC93] defined a temporal outer Cartesian product, which they termed simply
Cartesian product.

2.7 Reducibility

We proceed to show how the temporal operators reduce to snapshot operators. Reducibility guarantees that
the semantics of snapshot operator is preserved in its more complex, temporal counterpart.

For example, the semantics of the temporal natural join reduces to the semantics of the snapshot natural
join in that the result of first joining two temporal relations and then transforming the result to a snapshot
relation yields a result that is the same as that obtained by first transforming the arguments to snapshot
relations and then joining the snapshot relations. This commutativity diagram is shown in Figure 1 and
stated formally in the first equality of the following theorem.

�

�

��

Snapshot relationsTemporal relations

�� T

� T�

� T�

� T����� � T �
	��
� � T�����
� � � T������	��� � T ��	

� T������� , � T����� 	 �� , � 	

Figure 1: Reducibility of Temporal Natural Join to Snapshot Natural Join

The timeslice operation � T takes a temporal relation , as argument and a chronon > as parameter. It
returns the corresponding snapshot relation, i.e., with the schema of , , but without the timestamp attributes,
that contains (the non-timestamp portion of) all tuples A from , for which > belongs to A % � & . It follows from
the theorem next that the temporal joins defined here reduce to their snapshot counterparts.

Theorem 2.6 Let > denote a chronon and let , and - be relation instances of the proper types for the
operators they are applied to. Then the following hold for all > :

� T� �2,�� T -S� � � T� �2, � ��� T� � -H�
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� T� �2,ba T -S� � � T� �2, � a � T� � -H�
� T� �2, � T� -S� � � T� �2, � � � � T� � -H�
� T� �2, � T -S� � � T� �2, � � � T� � -S�
� T� �2, � T -S� � � T� �2, � � � T� � -S�

PROOF: An equivalence is shown by proving its two inclusions separately. The non-timestamp attributes
of , and - are � � and ��� , respectively, where � , � , and � are sets of attributes and � denotes the join
attribute(s) (cf. the definition of temporal natural join). We prove one inclusion of the first equivalence, that
is, � T� �2,�� T -S� � � T� �2, � � � T� � -H� . The remaining proofs are similar in style.

Let A � �^? � T� �2, �E-S� (the left hand side of the equivalence to be proved). Then there is a tuple A � ?l,�� T -
such that A � % ��� � & � A�� � and >m? A � %T& . By the definition of � T, there exist tuples A �l?r, and A e ? -
such that A � % � & � A e % � & � A � % � & , A � % � & � A � % � & , A e % � & � A � % � & , A � % � & � FHGH4�68JtK8MN�2A � % � & �qA e % � & � . By the
definition of � T� , there exist a tuple A
� � ? � T� �2, � such that A � � � A � % � � & � A�� % ��� & and a tuple A � e ? � T� � -H�
such that A � e � A e % � � & � A � % � � & . Then there exists A � �� e ? � T� �2,`� � � T� � -H� (the right hand side of the
equivalence) such that A � �� e % ��� & � A � � and A � �� e % � & � A�� e % � & . By construction A � �� e � A � � . This proves the

�
inclusion. ./
2.8 Summary

We have defined a taxonomy for temporal join operators. The taxonomy was constructed as a natural
extension of corresponding snapshot database operators. We also briefly described how previously defined
temporal operators are accommodated in the taxonomy.

Table 1 summarizes how previous work is represented in the taxonomy. For each operator defined in
previous work, the table lists the defining publication, researchers, the corresponding taxonomy operator,
and any restrictions assumed by the original operators. In early work, Clifford [CT85] indicated that a an

Table 1: Temporal Join Operators
Operator Initial Citation Taxonomy Operator Restrictions

�
-JOIN [CC87] Theta-join None

EQUIJOIN [CC87] Equijoin None
NATURAL-JOIN [CC87] Natural Join None
TIME-JOIN [CC87] Cartesian Product 1
T-join [GS91] Cartesian Product None

Cartesian product [CC93] Outer Cartesian Product None
TE-JOIN [SG89] Equijoin 2

TE-OUTERJOIN [SG89] Left Outerjoin 2
EVENT-JOIN [SG89] Outerjoin 2

Valid-Time Theta-Join [SJS95] Theta-join None
Valid-Time Left Join [SJS95] Left Outerjoin None

GTE-Join [ZTS02] Equijoin 2, 3
Restrictions:
1 = restricts also the valid time of the result tuples
2 = matching only on surrogate attributes
3 = includes also intersection predicates with an argument surrogate range and a time range

INTERSECTION-JOIN should be defined that represents the categorized the non-outer joins and Cartesian
products, and he proposed that a UNION-JOIN be defined for the outer variants.
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3 Evaluation Algorithms

In the previous section, we described the semantics of all previously proposed temporal join operators.
We now turn our attention to implementation algorithms for these operators. As before, our purpose is to
enumerate the space of algorithms applicable to the temporal join operators, thereby providing a consistent
framework within which existing temporal join evaluation algorithms can be placed.

Our approach is to extend well-understood paradigms from conventional query evaluation to tempo-
ral databases. Algorithms for temporal join evaluation are necessarily more complex than their snapshot
counterparts. Whereas snapshot evaluation algorithms match input tuples on their explicit join attributes,
temporal join evaluation algorithms typically must in addition ensure that temporal restrictions are met.
Furthermore, this problem is exacerbated in two ways. Timestamps are typically complex data types, e.g.,
intervals, requiring inequality predicates, which conventional query processors are not optimized to handle.
Also, a temporal database is usually larger than a corresponding snapshot database due to the versioning of
tuples.

We consider non-index-based algorithms. Index-based algorithms use an auxiliary access path, i.e., a
data structure that identifies tuples or their locations using a join-attribute value. Non-index-based algo-
rithms do not employ auxiliary access paths. While some attention has been focused on index-based tem-
poral join algorithms, the large number of temporal indexes that have been proposed in the literature [ST99]
precludes a thorough investigation in this paper.

We first provide a taxonomy of temporal join algorithms. This taxonomy, like the operator taxonomy
of Table 1, is based on well-established relational concepts. Sections 3.2 and 3.3 describe the algorithms
in the taxonomy and place existing work within the given framework. Lastly, conclusions are offered in
Section 3.4.

3.1 Evaluation Taxonomy

All binary relational query evaluation algorithms, including those computing conventional joins, are derived
from four basic paradigms: nested-loop, partitioning, sort-merge, and index-based [Gra93].

Partition-based join evaluation divides the input tuples into buckets using the join attributes of the input
relations as key values. Corresponding buckets of the input relations contain all tuples that could possibly
match with one another, and the buckets are constructed to best utilize the available main memory buffer
space. The result is produced by performing an in-memory join of each pair of corresponding buckets from
the input relations.

Sort-merge join evaluation also divides the input relation, but uses physical memory loads as the units
of division. The memory loads are sorted, producing sorted runs, and written to disk. The result is produced
by merging the sorted runs, where qualifying tuples are matched and output tuples are produced.

Index-based join evaluation utilizes indexes defined on the join attributes of the input relations to locate
joining tuples efficiently. The index could be pre-existing or built on the fly. Elmasri et al. presented a
temporal join algorithm that utilizes a two-level time index, which used a B

�
-tree to index the explicit

attribute in the upper level, with the leaves referencing other B
�

-trees indexing time points [EWK90]. Son
and Elmasri revised the time index to require less space and utilized this modified index to determine the
partitioning intervals in a partition-based timestamp algorithm [SE96]. Bercken and Seeger proposed several
temporal join algorithms based on multi-version B

�
-tree (MVBT) [BS96]. Later Zhang, Tsotras and Seeger

described several algorithms based on B
�

-trees, R � -trees [BKS90], and the MVBT for the related GTE-join.
This operation requires that joined tuples have key values that belong to a specified range and have time
intervals that intersect a specified interval [ZTS02]. The MVBT assumes that updates arrive in increasing
time order, which is not the case for valid-time data. We focus on non-index-based join algorithms that apply
to both valid-time and transaction-time relations, and we do not discuss these index-based joins further.
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We adapt the basic non-index-based algorithms (nested-loop, partitioning, and sort-merge) to support
temporal joins. To enumerate the space of temporal join algorithms, we exploit the duality of partitioning
and sort-merge [GLS94]. In particular, the division step of partitioning, where tuples are separated based
on key values, is analogous to the merging step of sort-merge, where tuples are matched based on key
values. In the following, we consider the characteristics of sort-merge algorithms and apply duality to
derive corresponding characteristics of partition-based algorithms.

For a conventional relation, sort-based join algorithms order the input relation on the input relations’
explicit join attributes. For a temporal relation, which includes timestamp attributes in addition to explicit
attributes, there are four possibilities for ordering the relation. First, the relation can be sorted using the
explicit attributes exclusively. Second, the relation can be ordered on time, using either the starting or
ending timestamp [LM93, Seg93]. The choice of starting or ending timestamp dictates an ascending or
descending sort order, respectively. Third, the relation can be ordered primarily on the explicit attributes
and secondarily on time [NA93]. Lastly, the relation can be ordered primarily on time and secondarily on
the explicit attributes.

By duality, the division step of partition-based algorithms can partition using any of these options
[LM93, Seg93]. Hence, four choices exist for the dual steps of merging in sort-merge or partitioning in
partition-based methods.

We use this distinction to categorize the different approaches to temporal join evaluation. The first ap-
proach above, using the explicit attributes as the primary matching attributes, we term explicit algorithms.
Similarly, we term the second approach timestamp algorithms. We retain the generic term temporal algo-
rithm to mean any algorithm to evaluate a temporal operator.

Finally, it has been recognized that the choice of buffer allocation strategy, GRACE or hybrid [DKO
�

84],
is independent of whether a sort or partition-based approach is used [Gra93]. Hybrid policies retain most
of the last run of the outer relation in main memory, and so minimize the flushing of intermediate buffers to
disk, thereby potentially decreasing the I/O cost.

Figure 2 lists the choices of sort-merge versus partitioning, the possible sorting/partitioning attributes,
and the possible buffer allocation strategies. Combining all possibilities yields sixteen possible evaluation
algorithms. Including the basic nested-loop algorithm results in a total of seventeen possible algorithms.
The seventeen algorithms are named and described in Table 2.

\
Sort-merge
Partitioning

�
a������
����

Explicit
Timestamp

Explicit/timestamp
Timestamp/explicit

�
����
����
a
\

GRACE
Hybrid

�

Figure 2: Space of Possible Evaluation Algorithms

We noted previously that time intervals lack a natural order. From this point of view, spatial join is
similar because there is no natural order preserving spatial closeness. Previous work on spatial join may
be categorized into three approaches. Early work [Ore86, OM88] used a transformation approach based
on space-filling curves, performing a sort-merge join along the curve to solve the join problem. Most of
the work falls in the index-based approaches, utilizing spatial index structures such as the R-tree [Gut84],
R

�
-tree [SRF87], R � -tree [BKS90], Quad-tree [Sam90], or seeded tree [LR94]. While some algorithms use

preexisting indexes, others build the indexes on-the-fly.
In recent years, some work has focused on non-index-based spatial join approaches. Two partition-

based spatial join algorithms have been proposed. One of them [LR96] uses an indexed nested loop join to
perform the join within each partition. The other [PD96] utilizes a computational geometry based plane-

10



Table 2: Algorithm Taxonomy
Algorithm Name Description

Explicit sort ES GRACE sort-merge on explicit attributes
Hybrid explicit sort ES-H Hybrid sort-merge on explicit attributes
Timestamp sort TS GRACE sort-merge on timestamps
Hybrid timestamp sort TS-H Hybrid sort-merge on timestamps
Explicit/timestamp sort ETS GRACE sort-merge on explicit attributes/time
Hybrid explicit/timestamp sort ETS-H Hybrid sort-merge on explicit attributes/time
Timestamp/explicit sort TES GRACE sort-merge on time/explicit attributes
Hybrid timestamp/explicit sort TES-H Hybrid sort-merge on time/explicit attributes
Explicit partitioning EP GRACE partition on explicit attributes
Hybrid explicit partitioning EP-H Hybrid partition on explicit attributes
Timestamp partitioning TP Range partition on time
Hybrid timestamp partitioning TP-H Hybrid range partition on time
Explicit/timestamp partitioning ETP GRACE partition on explicit attributes/time
Hybrid explicit/timestamp partitioning ETP-H Hybrid partition on explicit attributes/time
Timestamp/explicit partitioning TEP GRACE partitioning on time/explicit attributes
Hybrid timestamp/explicit partitioning TEP-H Hybrid partitioning on time/explicit attributes
Nested-loop NL Exhaustive matching

sweep algorithm which can be thought of as the spatial equivalent of the sort-merge algorithm. Arge et
al. [APR98] introduced a highly optimized implementation of the sweeping-based algorithm that first sorts
the data along the vertical axis, after which it partitions the input into a number of vertical strips. Data in
each strip can then be joined by an internal plane-sweep algorithm. The above non-index based spatial join
algorithms all use sort- or partition-based approach, or combine these two approaches in one algorithm,
which is exactly the approach we adopt in some of our temporal join algorithms (cf., Section 4.3.2).

In the next two sections, we examine the space of explicit algorithms and timestamp algorithms, respec-
tively, and classify existing approaches using the taxonomy developed in this section. We will see that most
previous work in temporal join evaluation has centered on timestamp algorithms. However, for expository
purposes, we first examine those algorithms based on manipulation of the non-timestamp columns, which
we term “explicit” algorithms.

3.2 Explicit Algorithms

Previous work has largely ignored the fact that conventional query evaluation algorithms can be easily
modified to evaluate temporal joins. In this section, we show how the three paradigms of query evaluation
can support temporal join evaluation. To make the discussion concrete, we develop an algorithm to evaluate
the valid-time natural join, defined in Section 2, for each of the three paradigms. We begin with the simplest
paradigm, nested-loop evaluation.

3.2.1 Nested Loop-Based Algorithms

Nested-loop join algorithms match tuples by exhaustively comparing pairs of tuples from the input relations.
As an I/O optimization, blocks of the input relations are read into memory, with comparisons performed
between all tuples in the input blocks. The size of the input blocks is constrained by the available main
memory buffer space.
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The algorithm operates as follows. One relation is designated as the outer relation, the other as the inner
relation [ME92, Gra93]. The outer relation is scanned once. For each block of the outer relation, the inner
relation is scanned. When a block of the inner relation is read into memory the tuples in that “inner block”
are joined with the tuples in the “outer block.”

The temporal nested-loop join is easily constructed from this basic algorithm. All that is required is that
the timestamp predicate be evaluated at the same time as the predicate on the explicit attributes. Figure 3
shows the temporal algorithm. (In the figure, , is the outer relation and - is the inner relation. We assume
their schemas are as defined in Section 2.)

explicitNestedLoop ��������� :
��	
����
������ ;
for each block �������

read ������� ;
for each block �������

read ��� � � ;
for each tuple �������

for each tuple  !��� �
if �#" $&%(') *" $&% and overlap ���#" T %+�, *" T %-��.'/�0 " 12%*�3�4" 12% ; 0 " 56%(�3 *" 56% ; 0 " $&%��3�#" $&% ;0 " T %*� overlap ���#" T %+�7 *" T%-�98

��	
�:�(
��;�3��	
����
��=<�> 0@? ;
return �A	
����
�� ;

Figure 3: Algorithm explicitNestedLoop

While conceptually simple, nested-loop based evaluation is often not competitive due to its quadratic
cost. We now describe temporal variants of the sort-merge and partition-based algorithms that usually
exhibit better performance.

3.2.2 Sort Merge-Based Algorithms

Sort-merge join algorithms consist of two phases. In the first phase, the input relations , and - are sorted
on their join attributes. In the second phase, the result is produced by simultaneously scanning , and - ,
merging tuples with identical values for their join attributes.

Complications arise if the join attributes are not key attributes of the input relations. In this case, multiple
tuples in , , and in - , may have identical join attribute values. Hence, a given , tuple may join with many -
tuples, and vice-versa. (This is termed skew [LGS02].)

As before, we designate one relation as the outer relation, and the other as the inner relation. When
consecutive tuples in the outer relation have identical values for their explicit join attributes, i.e., their non-
timestamp join attributes, the scan of the inner relation is “backed-up” to ensure that all possible matches are
found. Prior to showing algorithm explicitSortMerge, we define a suite of algorithms that manage
the scans of the input relations. For each scan, we maintain the state structure shown in Figure 4.

structure �B�DCE�D	
integer F9�(�
�A	:G�� ��
-H
F�I ;
integer F9�(�
�A	:G�� �D�KJ(
L	 ;
integer 
�CM�B� �B
-H
F�I ;
integer 
�CM�B� ���KJ�
L	 ;
block ���KJ�
L	
� ;

Figure 4: State Structure for Merge Scanning
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The fields current block and current tuple together indicate the current tuple in the scan, by recording the
number of the current block and the index of the current tuple within that block. The fields last block and
last tuple are used to record the state at the beginning of a scan of the inner relation, in order to back up the
scan later if needed. Lastly, tuples stores the block of the relation currently in memory. For convenience,
we treat the block as an array of tuples.

Algorithm initState shown in Figure 5 initializes the state of a scan. Essentially, counters are set
to guarantee that the first block read and the first tuple scanned are the first block and first tuple within that
block in the input relation. We assume that a seek operation is available which repositions the file pointer
associated with a relation to a given block number.

initState ���A	�
-CE��� H
G �,�B��C@�D	
� :
�B�DCE�,	�� FB�(�
��	�G�� �B
-H
F�I � 1;
�B�DCE�,	�� FB�(�
��	�G�� ���KJ�
L	�� 0;
�B�DCE�,	�� 
-C �B� ��
�H�FBI ��� 8
�B�DCE�,	�� 
-C �B� �D�AJ�
L	&��� 8
seek ����	

�C@���+H�G � �B�DCE�D	�� F9�(����	:G�� ��
-H
F�I �98
�B�DCE�,	�� �D�KJ(
L	
��� read block ����	

�C@���+H�G=�98

advance ���A	�
-CE��� H
G �,�B��C@�D	
� :
if � �B�DCE�,	�� FB�(�
��	�G�� �D�KJ�
-	 ' MAX TUPLES �

�B�DCE�,	�� �D�AJ�
L	
�2� read block ����	�
-CE���+H�G=�98
�B�DCE�,	�� FB�M����	:G*� ��
-H
F�I ���B�DCE�,	�� FB�(�
��	�G�� �B
-H
F�I + 1;
�B�DCE�,	�� FB�M����	:G*� �D�KJ�
-	 � 1;

else
�B�DCE�,	�� FB�M����	:G*� �D�KJ�
-	 ������CE�,	�� FB�(�
�A	:G�� ���KJ�
L	 + 1;

currentTuple � �B�DCE�,	
� :
return �B�DCE�D	�� ���KJ�
L	
�K" ����CE�,	�� FB�(�
�A	:G�� �D�KJ�
-	:%

backUp ���A	�
-CE��� H
G �7�B�DCE�D	�� :
if � �B�DCE�,	�� FB�(�
��	�G�� ��
-H
F�I .'/�B�DCE�D	�� 
-C �B� �B
-H
F�I �

�B�DCE�,	�� FB�M����	:G*� ��
-H
F�I ���B�DCE�,	�� 
-C �B� ��
�H�FBI ;
seek ����	

�C@���+H�G � �B�DCE�D	�� F9�(����	:G�� ��
�H�FBIM�98
�B�DCE�,	�� �D�AJ�
L	
�2� read block ����	�
-CE���+H�G=�98

�B�DCE�,	�� FB�(�
��	�G�� ���KJ�
L	�� �B��C@�D	�� 
�CM�B� �D�KJ�
-	 ;

markScanStart � �B�DCE�,	
� :
�B�DCE�,	�� 
-C �B� ��
�H�FBI � �B�DCE�D	�� F9�(����	:G�� ��
-H
F�I ;
�B�DCE�,	�� 
-C �B� �D�AJ�
L	&� �B�DCE�,	�� FB�M����	:G*� �D�KJ�
-	 ;

Figure 5: Merge Algorithms

Algorithm advance advances the scan of the argument relation and state to the next tuple in the sorted
relation. If the current block has been exhausted then the next block of the relation is read. Otherwise, the
state is updated to mark the next tuple in the current block as the next tuple in the scan. Algorithm cur-
rent tuple merely returns the next tuple in the scan, as indicated by the scan state. Finally, algorithms
backUp and markScanStart manage the backing up of the inner relation scan. Algorithm backUp
reverts the current block and tuple counters to their last values. These values are stored in the state at the
beginning of a scan by algorithm markScanStart.

We are now ready to exhibit algorithm explicitSortMerge, shown in Figure 6. The algorithm
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accepts three parameters, the input relations , and - , and the join attributes � . We assume that the schemas
of , and - are as given in Section 2. Tuples from the outer relation are scanned in order. For each outer tuple,
if the tuple matches the previous outer tuple, the scan of the inner relation is backed-up to the first matching
inner tuple. The starting location of the scan is recorded, in case backing up is needed by the next outer
tuple, and the scan proceeds forward as normal. The complexity of the algorithm, as well as its performance
degradation, as compared with conventional sort-merge, is due largely to the bookkeeping required to back
up the inner relation scan. We consider this performance hit in more detail in Section 4.2.2.

explicitSortMerge ����� �A� $ � :
� � � sort ����� $ �98
� � � sort � �A� $ �98

initState ��� � �,H
�M�,	:� �B��C@�D	
� ; initState � � � � G*G 	:� �B�DCE�,	
� ;
� � " $&%*� � 8
��	
����
��;�3� ;
advance � � � � �+G*G 	�� ����CE�,	
�986 � currentTuple � �+G*G 	:� �B�DCE�,	
�98

for � � 1 to
� � � �

advance ��� � �,H
�M�,	:� �B��C@�D	
�986� � currentTuple ��H�� �,	:� �B�DCE�,	
�98

if �#" $&%*' � � " $&%
backUp � � � � �+G*G 	:� �B�DCE�,	
�98
 � currentTuple � � � ��� G*G 	:� �B�DCE�,	
�98

� � " $&%����#" $&% ;

while ( �#" $&%��  *" $&% )
advance � � � � �+G*G 	:� �B�DCE�,	
�986 � currentTuple � � G*G 	:� �B�DCE�,	
�98

markScanStart � �+G*G 	�� ����CE�,	
�98

while ( �#" $&%*'  *" $&% )
if overlap ���#" T %+�7 *" T%-� .')�K�0 " 1�%��3�#" 1�% ; 0 " 5 %*�  *" 5 % ; 0 " $&%*� �#" $&% ;0 " T %*� overlap ���#" T%+�, *" T %-�98

�A	
����
����3��	�����
 � < > 0E? ;
advance � � � � �+G*G 	:� �B�DCE�,	
�986 � currentTuple � � G*G 	:� �B�DCE�,	
�98

return �A	
����
�� ;

Figure 6: Algorithm explicitSortMerge

Segev and Gunadhi developed three algorithms based on explicit sorting, differing primarily on the code
in the inner loop and on whether backup is necessary. Two of the algorithms, TEJ-1 and TEJ-2, support the
temporal equijoin [Seg93]; the remaining algorithm, EJ-1, evaluates the temporal outerjoin [Seg93].

TEJ-1 is applicable if the equijoin condition is on the surrogate attributes of the input relations. The
surrogate attributes are essentially key attributes of a corresponding snapshot schema. TEJ-1 assumes that
the input relations are sorted primarily on their surrogate attributes and secondarily on their starting times-
tamps. The surrogate matching, sort-ordering, and 1TNF assumption described in Section 3.3.1, allows the
result to be produced with a single scan of both input relations, with no back-up.

The second equijoin algorithm, TEJ-2, is applicable when the equijoin condition involves any explicit
attributes, surrogate or not. TEJ-2 assumes that the input relations are sorted first on their explicit join
attribute(s) and secondly on their starting timestamps. Notice that since the join attribute can be a non-
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surrogate attribute, tuples sharing the same join attribute value may overlap in valid-time. Consequently,
TEJ-2 requires the scan of the inner relation to be backed-up, in order to find all tuples with matching
explicit attributes.

For the EVENT-JOIN, Segev and Gunadhi described sort-merge based algorithm, EJ-1. EJ-1 assumes
that the input relations are sorted primarily on their surrogate attributes and secondarily on their starting
timestamps. Like TEJ-1, the result is produced by a single scan of both input relations.

3.2.3 Partition-Based Algorithms

As in sort-merge based algorithms, partition-based algorithms have two distinct phases. In the first phase,
the input relations are partitioned based on their join attribute values. The partitioning is performed so that a
given bucket produced from one input relation contains tuples that can only match with tuples contained in
the corresponding bucket of the other input relation. Each produced bucket is also intended to fill the allotted
main memory. Typically, a hash function is used as the partitioning agent. Both relations are filtered through
the same hash function, producing two parallel sets of buckets. In the second phase, the join is computed
by comparing tuples in corresponding buckets of the input relations. Partition-based algorithms have been
shown to have superior performance when the relative sizes of the input relations differ [Gra93].

A partitioning algorithm for the temporal natural join is shown in Figure 7. The algorithm accepts as
input two relations , and - and the names of the explicit join attributes � . We assume that the schemas of ,
and - are as given in Section 2.

explicitPartitionJoin ����� �A� $ � :
�A	
����
������ ;

partition ���
�D����� � � �B�,���M�98
partition � �A�7� � � � � ��� � � �98

for � � 1 to G
H
�M�,	:� �9�(F�I 	��;� read partition ����� �98
for each page J���� �

J!� read page � � � �98
for each tuple ����H
�M�,	:� �B�(FBI 	��

for each tuple  � J
if ( �4" $&% =  *" $&% and overlap ���4" T %+�7 *" T%-� .')� )0 " 12%�� �#" 1�% ; 0 " 5 %*�3 *" 5 % ; 0 " $&%*���#" $&% ;0 " T %(� overlap ���#" T %+�, *" T % );

��	
����
����3�A	
����
�� <�> 0@? ;
return ��	
�:�(
�� ;

partition ����� � � � � � �:�D� � � :
for � � 1 to G

���#�3� ;

for each block �&���
read block ���:�98
for each tuple �����

�4� hash ���#" $&%-�98
� � �3� � <�>�� ? ;

Figure 7: Algorithms explicitPartitionJoin and partition
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As can be seen, the explicit partition-based join algorithm is conceptually very simple. One relation is
designated the outer relation; the other is designated as the inner relation. After partitioning, each bucket of
the outer relation is read in turn. For a given “outer bucket,” each page of the corresponding “inner bucket”
is read, and tuples in the buffers are joined.

The partitioning step in Figure 7 is performed by algorithm partition. This algorithm takes as
its first argument an input relation. The resulting  partitions are returned in the remaining parameters.
Algorithm partition assumes that a hash function hash is available which accepts the join attribute valuesA % � & as input and returns an integer, the index of the target bucket, as its result.

3.3 Timestamp Algorithms

In contrast to the algorithms of the previous section, timestamp algorithms perform their primary matching
on the timestamps associated with tuples.

In this section, we enumerate, to the best of our knowledge, all existing timestamp-based evaluation
algorithms for the temporal join operators described in Section 3. Many of these algorithms assume sort
ordering of the input on either their starting or ending timestamps. While such assumptions are valid for
many applications, they are not valid in the general case, as valid-time semantics allows correction and
deletion of previously stored data. (Of course, in such cases one could resort within the join.) As before, all
of the algorithms described here are derived from either nested-loop, sort-merge, or partitioning; we do not
consider index-based temporal joins.

3.3.1 Nested Loop-Based Timestamp Algorithms

One timestamp nested loop-based algorithm has been proposed for temporal join evaluation. Like the EJ-1
algorithm described in the previous section, Segev and Gunadhi developed their algorithm, EJ-2, for the
EVENT-JOIN [SG89, GS91] (see Table 1).

EJ-2 does not assume any ordering of the input relations. It does assume that the explicit join attribute is
a distinguished surrogate attribute and that the input relations are in Temporal First Normal Form (1TNF).
Essentially, 1TNF ensures that tuples within a single relation that have the same surrogate value may not
overlap in time.

EJ-2 simultaneously produces the natural join and left outerjoin in an initial phase, and then computes
the right outerjoin in a subsequent phase.

For the first phase, the inner relation is scanned once from front to back for each outer relation tuple. For
a given outer relation tuple, the scan of the inner relation is terminated when the inner relation is exhausted
or the outer tuple’s timestamp has been completely overlapped by matching inner tuples. The outer tuple’s
natural join is produced as the scan progresses. The outer tuple’s left outerjoin is produced by tracking the
subintervals of the outer tuple’s timestamp that are not overlapped by any inner tuples. An output tuple is
produced for each subinterval remaining at the end of the scan. Notice that main memory buffer space must
be allocated to contain the non-overlapped subintervals of the outer tuple.

In the second phase, the roles of the inner and outer relations are reversed. Now, since the natural join
was produced during the first phase, only the right outerjoin needs to be computed. The right outerjoin
tuples are produced in the same manner as above, with one small optimization. If it is known that a tuple of
the (current) outer relation did not join with any tuples during the first phase then no scanning of the inner
relation is required and the corresponding outerjoin tuple is produced immediately.

Incidentally, Zurek proposed several algorithms for evaluating temporal Cartesian product on multipro-
cessors, based on nested loops [Zurek96].
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3.3.2 Sort Merge-Based Timestamp Algorithms

Two date, four sets of researchers, Segev and Gunadhi, Leung and Muntz, Pfoser and Jensen, and Rana and
Fotouhi have developed timestamp sort-merge algorithms.

Segev and Gunadhi modified the traditional merge-join algorithm to support the T-join and the temporal
equijoin [SG89, GS91]. We describe the algorithms for each of these operators in turn.

For the T-join, the relations are sorted in ascending order of starting timestamp. The result is produced
by a single scan of the input relations.

For the temporal equijoin, two timestamp sorting algorithms, named TEJ-3 and TEJ-4, are presented.
Both TEJ-3 and TEJ-4 assume that their input relations are sorted on starting timestamp only. TEJ-4 is
applicable only if the equijoin condition is on the surrogate attribute. In addition to assuming that the input
relations are sorted on their starting timestamps, TEJ-4 assumes that all tuples with the same surrogate value
are linked, thereby allowing all tuples with the same surrogate to be retrieved when the first is found. The
result is performed with a linear scan of both relations, with random access needed to traverse surrogate
chains.

Like TEJ-2, TEJ-3 is applicable for temporal equijoins on both the surrogate and explicit attribute
values. TEJ-3 assumes that the input relations are sorted in ascending order of their starting timestamps, but
no sort order is assumed on the explicit join attributes. Hence, TEJ-3 requires that the inner relation scan be
backed-up should consecutive tuples in the outer relation have overlapping interval timestamps.

Leung and Muntz developed a series of algorithms based on the sort-merge algorithm to support tem-
poral join predicates such as “contains” and “intersect” [All83]. Although their algorithms do not explicitly
support predicates on non-temporal attribute values, their techniques are easily modified to support more
complex join operators such as the temporal equijoin. Like Segev and Gunadhi, this work describes evalu-
ation algorithms appropriate for different sorting assumptions and access paths.

Leung and Muntz use a stream-processing approach. Abstractly, the input relations are considered as
sequences of time-sorted tuples where only the tuples at the front of the streams may be read. The ordering
of the tuples is a trade-off with the amount of main memory needed to compute the join. For example,
Leung and Muntz show how a contain-join [All83] can be computed if the input streams are sorted in
ascending order of their starting timestamp. They summarize for various sort orders on the starting and
ending timestamps what tuples must be retained in main memory during the join computation. A family of
algorithms are developed assuming different orderings (ascending/descending) of the starting and ending
timestamps.

Leung and Muntz also show how checkpoints, essentially the set of tuples valid during some chronon,
can be used to evaluate temporal joins where the join predicate implies some overlap between the partici-
pating tuples. Here, the checkpoints actually contain tuple identifiers (TIDs) for the tuples valid during the
specified chronon and the TIDs of the next tuples in the input streams. Suppose a checkpoint exists at time> . Using this checkpoint, the set of tuples participating in a join over a time interval containing > can be
computed by using the cached TIDs and “rolling forward” using the TIDs of the next tuples in the streams.

Rana and Fotouhi proposed several techniques to improve the performance of time-join algorithms, in
which they claimed they used a nested loop approach [RF93]. Since they assumed the input relations were
sorted by the start time and/or end time, those algorithms are more like the second phase of sort merge-
based timestamp algorithms. The algorithms are very similar to the sort merge-based algorithms developed
by Segev and Gunadhi.

Most recently, Pfoser and Jensen [Pfo99] applied the sort-merge approach to the temporal theta-join in a
setting where each argument relation consists of a non-current and a current partition. Tuples in the former
all have intervals that end before the current time, while all tuples of the latter have intervals that end at
the current time. They assume that updates arrive in time-order, so that tuples in non-current partitions are
ordered on their interval end times and tuples in current partitions are ordered on their interval start times.

17



A join then consists of three different kinds of sub-joins. They develop two join algorithms for this setting
and subsequently use these algorithms for incremental join computation.

As can be seen from the above discussion, a large number of timestamp-based sort-merge algorithms
have been proposed, some for specific join operators. However, each of these proposals have been devel-
oped largely in isolation from other work, with little or no cross-comparison. Furthermore, performance
figures that have been published have been derived mainly from analytical models, rather than empirical
observations. An empirical comparison, as provided in Section 5, is needed to truly evaluate the different
proposals.

3.3.3 Partition-Based Timestamp Algorithms

Partitioning a relation over explicit attributes is relatively straightforward, if the partitioning attributes have
discrete values. Partitioning over time is more difficult since our timestamps are intervals, i.e., range data,
rather than discrete values. Previous timestamp partitioning algorithms have therefore developed various
means of range partitioning the time intervals associated with tuples.

In previous work, we described a valid-time join algorithm using partitioning [SSJ94]. This algorithm
was presented in the context of evaluating the valid-time natural join, though it is easily adapted to other
temporal joins. The range partitioning used by this algorithm mapped tuples to singular buckets and dynam-
ically migrated the tuples to other buckets as needed during the join computation. This approach avoided
data redundancy, and associated I/O overhead, at the expense of more complex buffer management.

Sitzmann and Stuchey extended this algorithm by using histograms to decide the partition bound-
ary [SS00]. Their algorithm take the number of long-lived tuples into consideration, which renders its
performance insensitive to the number of long-lived tuples. However, it relies on a pre-existing temporal
histogram.

Lu, Ooi, and Tan described another range-partitioning algorithm for computing temporal joins [LOT94].
This algorithm is applicable to Theta-joins, where a result tuple is produced for each pair of input tuples
with overlapping valid-time intervals. Their approach is to map intervals to a two-dimensional plane, which
is then partitioned into regions. The join result is produced by computing the subjoins of pairs of partitions
corresponding to adjacent regions in the plane. This method applies to a restricted temporal model where
future time is not allowed. They utilize a spatial index to speed up the joining phase.

3.4 Summary

We have surveyed temporal join algorithms and proposed a taxonomy of such algorithms. The taxonomy
was developed by adapting well-established relational query evaluation paradigms to the temporal opera-
tions.

Table 3 summarizes how each temporal join operations proposed in previous work is classified in the
taxonomy. We believe that the framework is complete since, disregarding data model specific considera-
tions, all previous work naturally fits into one of the proposed categories.

4 Engineering the Algorithms

As noted in the previous section, an adequate empirical investigation of the performance of temporal join
algorithms has not been performed. We concentrate on the temporal equijoin, defined in Section 2.4. This
join and the related temporal natural join, are needed to reconstruct normalized temporal relations [JSS96].
To perform a study of implementations of this join, we must first provide state of the art implementations
of the 17 different types of algorithms outlined for this join. In this section, we discuss our implementation
choices.
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Table 3: Existing Algorithms and Taxonomy Counterparts
Algorithm Defined By Taxonomy Assumptions

TEJ-1 Segev & Gunadhi Explicit/timestamp sort Surrogate attribute and 1TNF
TEJ-2 Segev & Gunadhi Explicit/timestamp sort None
EJ-2 Segev & Gunadhi Nested-loop Surrogate attribute and 1TNF
EJ-1 Segev & Gunadhi Explicit/timestamp sort Surrogate attribute and 1TNF

Time-join Segev & Gunadhi Timestamp sort None
TEJ-3 Segev & Gunadhi Timestamp sort None
TEJ-4 Segev & Gunadhi Timestamp sort Surrogate attribute/Access chain

Several Leung & Muntz Timestamp sort None
Two Pfoser & Jensen Timestamp sort Partitioned relation; time-ordered up-

dates
— Soo et al. Timestamp partition None
— Sitzmann & Stuckey Timestamp partition Requires pre-existing temporal his-

togram
— Lu, Ooi & Tan Timestamp partition Disallows future time; uses spatial in-

dex

4.1 Nested Loop Algorithm

We implemented a simple block-oriented nested-loop algorithm. Each block of the outer relation is read
into memory, in turn. The outer block is sorted on the explicit joining attribute (actually, pointers are sorted
to avoid copying of tuples). Each block of the inner relation is then brought into memory. For a given inner
block, each tuple in that block is joined by binary searching the sorted tuples.

This algorithm is simpler than the nested-loop algorithm, EJ-2, described in Section 3.3.1 [SG89, GS91].
In particular, our algorithm computes only the valid-time equijoin, while EJ-2 computes the valid-time
outerjoin, which includes the equijoin in the form of the valid-time natural join. However, our algorithm
supports a more general equijoin condition than EJ-2 in that we support matching on any explicit attribute,
rather than solely on a designated surrogate attribute.

4.2 Sort Merge-Based Algorithms

We were careful to utilize a high-performance sort-merge algorithm with the features covered next.

4.2.1 Combining Last Sort Step with Merge Step

Sort-merge join uses a disk-based sorting phase that starts by generating many small, fully-sorted runs, then
repeatedly merges these into increasingly longer runs until a single run is obtained (this is done for the
left-hand side and right-hand side independently). Each step of the sort phase reads and writes the entire
relation. The merge phase then scans the totally-sorted left and right-hand relations to produce the output
relation. A common optimization is to stop the sorting phase one step early, when there are a small number
of fully sorted runs. The final step is done in parallel with the merge phase of the join, thereby avoiding one
read and one write scan. Our sort-merge algorithms implemented for the performance analysis are based on
this optimization. We generated initial runs using an in-memory quicksort on either the explicit attributes
(ES and ES-H), the timestamp attributes (TS and TS-H), or both (ETS and ETS-H), and then merged the
two relations on multiple runs.
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Figure 8: Performance Improvement of ES with Spooled Cache on Skewed Data

4.2.2 Efficient Skew Handling

As noted in Section 3.2.2, sort-merge join algorithms become complicated when the join attributes are not
key attributes. Previous work on conventional joins [LGS02] shows that intrinsic skew is generally present
in this situation. Even a small amount of intrinsic skew can result in a significant performance hit because
the naive approach to handle skew is to reread the previous tuples in the same value packet (containing the
identical values for the equijoin attribute); this rereading involves additional I/O operations. We previously
proposed several techniques to handle skew efficiently [LGS02]. Among them, SC-  (Spooled Cache on
multiple runs) was recommended due to its strikingly better performance in the presence of skew for both
conventional and band joins. This algorithm also exhibits virtually identical performance as traditional sort-
merge join in the absence of skew. SC-  uses a small cache to hold the skewed tuples from the right-hand
relation that satisfy the join condition. At the cache’s overflow point, the cache data is spooled to disk.

Skew is prevalent in temporal joins. SC-  can be adapted for temporal join by adding a supplemental
predicate and calculation of the resulting timestamps. We adopt this spooled cache in ES instead of rereading
the previous tuples. The advantage of using spooled cache is shown in Figure 8. ES Reread is the multi-run
version of the algorithm explicitSortMerge exhibited in Section 3.2.2, which backUps the right-
hand relation when a duplicate value is found in the left-hand relation.

The two algorithms were executed in the TIMEIT system. The parameters are the same as will be used
in Section 5.2. In this experiment, the memory size was fixed at 8 MB and the cache size was fixed at 32 KB.
The relations were generated with different percentages of smooth skew on the explicit attribute. A relation
has 1% smooth skew when 1% of the tuples in the relation have one duplicate value on the join attribute and
the remaining 98% of the tuples have no duplicates. Since the cache can hold the skewed tuples in memory,
no additional I/O is caused by backing-up the relation. The performance improvement of using a cache is
approximately 25% when the data has 50% smooth skew. We thus use use a spooled cache to handle skew.
Spooling will generally not occur, but is available in case a large value packet is present.

4.2.3 Time-Varying Value Packets and Optimized Prediction Rule

ES utilizes a prediction rule to judge if skew is present. (Recall that skew occurs if the two tuples have
the same join attribute value.) The prediction rule works as follows. When the last tuple in the right hand
relation (RHR) buffer is visited, the last tuple in the left hand relation (LHR) buffer is checked to determine
if skew is present and the current RHR value packet needs to put into the cache.
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We also implemented an algorithm (TS) that sorts the input relations on start time rather than on the
explicit join attribute. Here the RHR value packet associated with a specific LHR tuple is not composed
of those RHR tuples with the same start time, but rather those RHR tuples that overlap with the interval of
the LHR tuple. Hence, value packets are not disjoint, and they grow and shrink as one scans the LHR. In
particular, TS puts into the cache only those tuples that could overlap in the future: the tuples that do not
stop too early, that is, before subsequent LHR tuples start. For an individual LHR tuple, the RHR value
packet starts with the first tuple that stops sometime during the LHR tuple’s interval, and goes through the
first RHR tuple that starts after the LHR tuple stops. Value packets are also not totally ordered when sorting
on start time.

These considerations suggest that we change the prediction rule in TS. When the RHR reaches a block
boundary, the maximum stop time in the current value packet is compared with the start time of the last
tuple in the LHR buffer. If the maximum stop time of the RHR value packet is less than the last start time of
the LHR, none of the tuples in the value packet will overlap with the subsequent LHR tuples. Thus, there is
no need to put them in the cache. Otherwise, the value packet is scanned and only those tuples with a stop
time greater than the last start time of the LHR are put into the cache, thus minimizing the utilization of the
cache and thus the possibility of cache overflow.

ETS sorts the input relations on the explicit attribute first and on the start time secondarily. Here the
right value packet associated with a left tuple is composed of those right tuples that not only have the same
value of the explicit attribute, but also overlap with the interval of the left tuple. The prediction rules used
in ES and TS are combined to decide whether or not to put a tuple or a value packet into the cache.

To make our work complete, we also implemented TES, which sorts the input relations on the start time
first and on the explicit attribute secondarily. The logic of TES is exactly the same as that of TS for the
joining phase. We expect the extra sorting on explicitly attribute will not help to optimize the algorithm, but
rather will simply increase the CPU time.

4.2.4 Specialized Cache Purging

Since the cache size is small, it could be filled up if a value packet is very large or if several value packets
accumulate in the cache. For the former, nothing but spooling the cache can be done. However, purging the
cache periodically can avoid unnecessary cache spool for the latter and may result in fewer I/O operations.

Purging the cache costs more in TS since the RHR value packets are not disjoint, while in ES they
are disjoint both in each run and in the cache. The cache purging process in ES scans the cache from the
beginning and stops whenever the first tuple that belongs to the current value packet is met. But in TS, this
purging stage cannot stop until the whole cache has been scanned because the tuples belong to the current
value packet are spread across the cache. An inner long-lived tuple could be kept in the cache for a long
time because its time interval could intersect with many LHR tuples.

4.2.5 Using a Heap

As stated in Section 4.2.1, the final step of sorting is done in parallel with the merging stage. Assuming the
two relations are sorted in ascending order, in the merging stage, the algorithm first has to find the smallest
value from the multiple sorted runs of each relation, then compare the two values to see if they can be joined.
The simplest way to find the smallest value is to scan the current value of each run. Suppose one relation is
divided into $ runs, the cost of selecting the smallest value is

� �2$ � . A more efficient way to do this is to
use a heap to select the smallest value. The cost of using a heap is

� ��X T�� e $ � when $�� � . By utilizing a
heap, the time complexity is reduced.

At the beginning of the merging step, the heap is built based on the value of the first tuple in each
run. Whenever advance is called, the run currently on the top of the heap advances its reading pointer to
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the next tuple. Since the key value of this tuple is no less than the tuple in the current state, it should be
propagated down to maintain the heap structure. When a run is backed up, its reading pointer is restored
to point to a previously visited tuple, which has a smaller key value, and thus should be propagated up the
heap.

When the memory size is relatively small, which indicates the size of each run is small, and therefore,
a relation has to be divided into more runs (the number of runs $ is large), the performance of using the
heap will be much better than that without heap. However, using a heap causes some pointer swaps when
sifting down or propagating up a tuple in the heap, which are not needed in the simple algorithm. When the
memory size is sufficiently large, the performance of using heap will be close to or even worse than that of
the simple algorithm.
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Figure 9: Performance Improvement of Using a Heap in ES

Figure 9 shows the total CPU time of ES when using and not using a heap. The data used in Figure 9
are two 64M B relations. The input relations are joined while using different sizes of memory. Note that the
CPU time includes the time of both the sorting step and the merging step. As expected, the performance of
using a heap is better than that without a heap when the memory is small. The performance improvement
is roughly 40% when the memory size is 2 MB. The performance difference decreases along with the
increasing of the memory. When the memory size is greater than 32 MB, which is one half of the relation
size, using a heap has no benefit. Since using a heap significantly improves the performance when the
memory is relatively small and barely degrades performance when the memory is large, we use a heap in
all sort-based algorithms.

4.2.6 GRACE and Hybrid Variants

We implemented both GRACE and hybrid versions of each sort-based algorithm. In the GRACE variants,
all the sorted runs of a relation are written to disk before the merging stage. The hybrid variants keep most
of the last run of the outer relation in memory. This guarantees saving one (multi-block) disk read and one
disk write of the memory-resident part. When the available memory is slightly smaller than the data set, the
hybrid algorithms will require relatively fewer I/O operations.

4.3 Partition-Based Algorithms

Several engineering considerations also occur when implementing the partition-based algorithms.
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4.3.1 Partitioning Details

The details of algorithm TP are described elsewhere [SSJ94]. We changed TP to use a slightly larger input
buffer (32KB) and a cache for the inner relation (also 32KB) instead of using a one-page buffer and cache.

Algorithms ETP and TEP partition the input relations in two steps. ETP partitions the relations on
the explicit attribute first. For each pair of the buckets to be joined, if none of them fits in memory, a
further partition on the timestamp attribute will be done to these buckets to increase the possibility that the
resulting buckets do not overflow the available buffer space. TEP is similar to ETP, except that it partitions
the relations in the reversed order, first by timestamp and then, if necessary, by explicit attribute.

4.3.2 Joining the Partitions

The partition-based algorithms perform their second phase, the joining of corresponding partitions of the
outer and inner relations, as follows. The outer partition is fetched into memory, assuming that it will not
overflow the available buffer space, and pointers to the outer tuples are sorted using an in-memory quicksort.
The inner partition is then scanned, utilizing all memory pages not occupied by the outer partition. For
each inner tuple, matching outer tuples are found by binary search. If the outer partitions overflow the
available buffer space then the algorithms default to an explicit attribute sort-merge join of the corresponding
partitions.

4.3.3 GRACE and Hybrid Variants

In addition to the conventional GRACE algorithm, we implemented the hybrid buffer management for each
partition-based algorithm. In the hybrid algorithms, one outer bucket is designated as memory-resident.
Its buffer space is increased accordingly to hold the whole bucket in memory. When the inner relation is
partitioned, the inner tuples that map to the corresponding bucket are joined with the tuples in the memory-
resident bucket. This eliminates the I/O operations to write and read one bucket of tuples for both the inner
and the outer relation. Similar to the hybrid sort-based algorithms, the hybrid partition-based algorithms are
supposed to have better performance when the input relation is slightly larger than the available memory
size.

5 Performance

We implemented all seventeen algorithms enumerated in Figure 2 and tested their performance under a
variety of data distributions, including skewed explicit and timestamp distributions, timestamp durations,
memory allocations, and database sizes. We ensured that all algorithms generated exactly the same output
tuples in all of the experiments (the ordering of the tuples will differ).

The remainder of this section is organized as follows. We first give details on the join algorithms used
in the experiments, then describe the parameters used in the experiments. Sections 5.3 to 5.10 contain the
actual results of the experiments. Section 5.11 summarizes the results of the experiments.

5.1 Algorithm Details

In this section, we briefly describe details of the participating algorithms.
The partition-based algorithms, i.e., EP, EP-H, and TP, perform their second phase, the joining of corre-

sponding partitions of the outer and inner relations, as follows. The outer partition is fetched into memory,
assuming that it will not overflow the available buffer space, and pointers to the outer tuples are sorted using
an in-memory quicksort. The inner partition is then scanned, utilizing all memory pages not occupied by
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Table 4: System Characteristics
Parameter Value

Relation size 64 MB
Tuple size 16 bytes

Tuples per relation 4 M
Timestamp size ([ � , � ]) 8 bytes
Explicit attribute size 8 bytes

Relation lifespan 1000000 chronons
Page size 1 KB

Output buffer size 32 KB
Cache size in sort-merge 64 KB
Cache size in partitioning 32 KB

the outer partition. For each inner tuple, matching outer tuples are found by binary search of the sorted
array of pointers. If the outer partition overflowed the buffer, the algorithms default to an explicit attribute
sort-merge join of the corresponding partitions.

For the sort-based algorithms, we generated initial runs using an in-memory quicksort on either the
explicit attributes (ES and ES-H), the timestamp attributes (TS and TS-H), or both (ETS and ETS-H). The
merging phase of these algorithms used the concept of value packets [KF82] to simplify their logic. Value
packets are simply subsets of the input relation whose tuples have identical join attribute values.

For both the sort and partition-based algorithms, we employed a simple implementation of hybrid buffer
management. For the partition-based algorithms, i.e., EP-H, TP-H, ETP-H and TEP-H, we designated a
partition as memory resident, and increased its buffer space accordingly. For the sort-based algorithms, i.e.,
ES-H, TS-H, ETS-H, and TES-H, we retained in memory most of the last initial run generated.

The timestamp sorting algorithms, TS and TS-H, use tuple caching [SSJ94] to retain, during the merging
step, tuples from the inner relation that could join with tuples from the outer relation appearing later in the
scan. TS is an adaptation of the stream processing approach proposed by Leung and Muntz [LM93] for the
contains-join. The original algorithm assumed the input relations were ordered on time. We do not make
this assumption since valid-time databases allow previously entered information to be updated and deleted.
The tuple cache size was set at 32 KB, i.e., one cluster of I/O. The timestamp partitioning algorithm, TP,
which could also use tuple caching, was instead implemented using simple tuple replication.

5.2 Experimental Setup

The experiments were developed and executed using the TIMEIT [GKS
�

02] system, a software package
supporting the prototyping of temporal database components. Using TIMEIT, we fixed several parameters
describing all test relations used in the experiments. These parameters and their values are shown in Table 4.
In all experiments, tuples were 16 bytes long and consisted of two explicit attributes, both being integers and
occupying four bytes, and two integer timestamps, each also requiring four bytes. Only one of the explicit
attributes were used as the joining attribute. This yields result tuples that are 24 bytes long, consisting of 16
bytes of explicit attributes from each input tuple and 8 bytes for the timestamps.

We fixed the the relation size at 64 MB, giving 4 M tuples per relation. We were less interested in
absolute relation size than in the ratio of input size to available main memory. A scaling of these factors
would provide similar results. In all cases, the generated relations were randomly ordered with respect to
both their explicit and timestamp attributes.

The metrics used for all experiments are listed in Table 5. We measured both main memory operations
and disk I/O operations. To eliminate any undesired system effects from the results, all operations were
counted using facilities provided by TIMEIT. For disk operations, random and sequential access were mea-
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Table 5: Cost Metrics
Parameter Value

Sequential I/O cost 1 msec
Random I/O cost 10 msec

Join attribute compare 20 nsec
Timestamp compare 80 nsec

Pointer compare 20 nsec
Pointer swap 60 nsec
Tuple move 80 nsec

sured separately with a ten times cost factor for random accesses. We included the cost of writing the output
relation in the experiments since sort-based and partition-based algorithms exhibit dual random and sequen-
tial I/O patterns when sorting/coalescing and partitioning/merging. The total time was then computed by
weighing each parameter by the time values listed in Table 5.

Table 6 summarizes the values of the system parameters that varied among the different experiments.
Each row of the table identifies the figure(s) that illustrate the results of the experiments given the parameters
for the experiment.

Table 6: Experiment Parameters
Explicit Timestamp Timestamp Outer Inner Memory

Figure Skew Skew Duration Size Size Size
Numbers (%) (%) (Chronons) (MB) (MB) (MB)

10 and 11 None None 1 64 64 2–64
12 None None 100 64 64 2–64
13 None None 1 4–64 64 16

14 and 15 None None 100 4–64 64 16
16 0–100% one side None 1 64 64 16
17 None 0–100% one side 1 64 64 16
18 0–100% one side 0–100% one side 1 64 64 16
19 0–4% both sides None 1 64 64 16
21 None 0–4% both sides 1 64 64 16
23 0–4% both sides 0–4% both sides 1 64 64 16

5.3 Simple Experiments

In this section, we perform two “base case” experiments, where the join selectivity is low, i.e., for an equijoin
of valid-time relations , and - , a given tuple A�? , joins with one, or few, tuples D ? - . The experiments
incorporate random data distributions in the explicit join attributes, and short and long time intervals in the
timestamp attributes.

5.3.1 Low Explicit Selectivity with Short Timestamps

In this experiment, we generated a relation with little explicit matching and little overlap, and joined the
relation with itself. This mimics a foreign key-primary key natural join in that the cardinality of the result
is the same as one of the input relations. The relation size was fixed at 64 MB, corresponding to 4 M tuples.
The explicit joining attribute values were integers drawn from a space of

��� � � � values. For the given
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cardinality, a particular explicit attribute value appeared, on the average, in only one tuple in the relation.
The starting timestamp attribute values were randomly distributed over the relation lifespan and the duration
of the interval associated with each tuple was set to one chronon. We ran each of the seventeen algorithms
using the generated relation, with increasing main-memory allocations from 2 MB, a 1:32 memory to input
size ratio, to 64 MB, a 1:1 ratio.

The results of the experiment are shown in Figure 10. In each figure, the ordering of the legend corre-
sponds to the order of either the rightmost points or the leftmost points of each curve. The actual values
of each curve in all the figures may be found in Appendix A. Notice that both the A -axis and D -axis are
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Figure 10: Low Explicit Selectivity, Low Timestamp Selectivity

log-scaled. As suspected, nested-loop is clearly not competitive. The general nested-loop algorithm per-
forms very poorly in all cases but the highest memory allocation. At the smallest memory allocation, the
least expensive algorithm, EP, enjoys a 88% performance increase. Only at the highest memory allocation,
that is when the entire left hand side relation can fit in main memory, does the nested-loop algorithm have
comparable performance with other algorithms. Given the disparity in performance and given that various
characteristics, such as skew or the presence of long duration tuples do not impact the performance of the
nested loop algorithm, we will not consider this algorithm in the remainder of this section.

To get a better picture of the performance of the remaining algorithms, we plot them separately in
Figure 11. In this graph, only the A -axis is log-scaled. The sort-based and partition-based algorithms
exhibit largely the same performance, and the hybrid algorithms outperform their GRACE counterparts at
high memory allocations, in this case when the ratio of main memory to input size reaches approximately
1:8 (2 MB of main memory) or 1:4 (4 MB of main memory). The poor performance of the hybrid algorithms
stems from reserving buffer space to hold the resident run/partition, which takes buffer space away from the
remaining runs/partitions, causing the algorithms to incur more random I/O. At small memory allocations,
the problem is acute. Therefore, we see the curves are grouped into two sets. One of them (the hybrid
group) starts from a higher position and ends in a lower position. The other (the GRACE group) behaves in
the opposite way.

The performance differences between the sort-based algorithms and their partitioning counterparts are
small, and there is no absolute winner. TES, the sort-merge algorithm that sorts the input relation first on
start time and then on the explicit attribute secondarily, has slightly worse performance than TS, which sorts
the input relation on start time only. Since the order of the start time is not the order of the time interval,
the extra sorting on the explicit attribute does not help in the merging step. The program logic is the same
as TS, except for the extra sorting. We expect TES will always perform a little worse than TS. Therefore,
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Figure 11: Low Explicit Selectivity, Low Timestamp Selectivity (without NL)

neither TES nor TES-H will be considered in the remainder of this section.

5.3.2 Long Duration Timestamps

In the experiment of the previous section the join selectivity was low, since explicit attribute values were
shared among few tuples, and tuples were timestamped with intervals of short duration. We repeated the ex-
periment using long-duration timestamps. The duration of each tuple timestamp was fixed at 100 chronons
and the starting timestamps were randomly distributed throughout the relation lifespan. As before, the ex-
plicit join attribute values were randomly distributed integers, thus, the size of the result was just slightly
larger due to the long duration timestamps.

The results are shown in Figure 12, where the A -axis is log-scaled. The timestamp sorting algorithms,
TS and TS-H, suffer badly. Here, the long duration of the tuple lifespans did not cause overflow of the tuple
cache used in these algorithms. To see this, recall that our input relation cardinality was 4M tuples. For a
1,000,000 chronon relation lifespan, this implies that 4M / 1,000,000 = 4 tuples arrive per chronon. Since
tuple lifespans were fixed at 100 chronons, it follows that 4 a 100 = 400 tuples should be scanned before
any purging of the tuple cache can occur. However, a 64 KB tuple cache, capable of holding 4K tuples, does
not tend to overflow. Detailed studies verified that the cache never overflows in these experiments. The poor
performance of TS and TS-H are caused by the repeated in-memory processing of the long-lived tuples.

While TS and TS-H suffer, the timestamp partitioning algorithms, TP and TP-H, have very similar
performance as in Section 5.3.1. Two main causes of the good performance of TP and TP-H exist. The
first is that TP does not replicate long-lived tuples that overlap with multiple partition intervals. Otherwise,
TP will need more I/O for the replicated tuples. The second is that TP sorts each partition on the explicit
attribute. The long duration does not have any effects on the performance of the in-memory joining. All the
other algorithms sort or partition the relations on the explicit attributes. Therefore, their performance is not
affected by the long duration.

We may conclude from this experiment that the timestamp sort-based algorithms are quite sensitive to
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Figure 12: Low Explicit Selectivity (Long Duration Timestamps)

the durations of input tuple intervals. When tuple durations are long, the in-memory join in TS and TS-H
performs poorly, due to the need to repeatedly backup the tuple pointers.

5.4 Varying Relation Sizes

It has been shown for snapshot join algorithms that the relative sizes of the input relations can greatly affect
which sort or partition-based strategy is best [Gra93]. We investigate this phenomenon in the context of
valid-time databases.

We generated a series of relations, increasing in size from 4 MB to 64 MB, and joined them with a
64 MB relation. The memory allocation used in all trials was 16 MB, the size at which all algorithms
performed most closely in Figure 11. The explicit joining attribute values in all relations were randomly
distributed integers, as in the previous experiments. Short duration timestamps were used to mitigate the
caching effects on TS and TS-H seen in Figure 12. As before, starting timestamps were randomly distributed
over the relation lifespan. The results of the experiment are shown in Figure 13.

The impact of a differential in relation sizes for the partition-based algorithms is clear. When an input
relation is small relative to the available main memory, the partition-based algorithms use this relation as
the outer relation, and they build an in-memory partition table from it. The inner relation is then linearly
scanned and, for each inner tuple, the in-memory partition table is probed for matching outer tuples. The
benefit of this approach is that each relation is read only once, i.e., no intermediate writing and reading
of generated partitions occurs. Indeed, the inner relation is not partitioned at all, further reducing main
memory costs in addition to I/O savings.

An important point to note is that this strategy is beneficial regardless of the distribution of either the
explicit joining attributes and/or the timestamp attributes, i.e., it is unaffected by either explicit or timestamp
skew. Furthermore, no similar optimization is available for sort-based algorithms. Since each input relation
must be sorted, it is required that both relations be read and written once to generate sorted runs, and
subsequently read once to scan and match joining tuples.
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Figure 13: Different Relation Sizes (Short Duration Timestamps)

To further investigate the effectiveness of this strategy, we repeated the experiment of Figure 13 with
long-duration timestamps, i.e., tuples were timestamped with 100 chronon duration timestamps. The result
are shown in Figure 14.

As expected, long-duration timestamps adversely affect the performance of TS and TS-H for reasons
stated in Section 5.3.2. Replotting the remaining algorithms in Figure 15 shows that the long-duration
timestamps do not significantly impact the efficiency of other algorithms. 5

In both the short-duration and the long-duration case, the hybrid partitioning algorithms show the best
performance. They save about half of the I/O operations of their GRACE counterparts when the size of the
outer relation is 16 MB. This is due to the hybrid strategy.

The graph shows that partition-based algorithms should be chosen whenever the size of one or both of
the input relations is small relative to the available buffer space. We conjecture that the choice between
explicit partitioning and timestamp partitioning is largely dependent on the presence or absence of skew in
the explicit and/or timestamp attributes. Explicit and timestamp skew may or may not increase I/O cost,
however they will increase main-memory searching costs for the corresponding algorithms, as we now
investigate.

5.5 Explicit Attribute Skew

As in the experiments of Section 5.4, we fixed the main memory allocation at 16 MB to place all algorithms
on a nearly even footing. The inner and outer relation sizes were fixed at 64 MB each. We generated a series
of outer relations with increasing explicit attribute skew, from 0% to 100% in 20% increments. Explicit skew
was ensured by generating tuples with the same explicit joining attribute value. Short duration timestamps,
randomly distributed over the relation lifespan, were used to mitigate the long duration timestamp effect on
TS and TS-H. The results are shown in Figure 16.

There are three points to emphasize in this graph. First, the explicit partitioning algorithms, i.e., EP, EP-
H, ETP, and ETP-H, show increasing cost as the explicit skew increases. The performance of EP and EP-H
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Figure 16: Explicit Attribute Skew (Short-Duration Timestamps)

degrades dramatically with increasing explicit skew. This is due to partitions overflowing main memory,
causing subsequent buffer thrashing. The effect, while pronounced, is relatively small since only one of the
input relations is skewed. Encountering skew in both relations would exaggerate the effect. Although the
performance of ETP and ETP-H also degrades, the changes are much less pronounced. The reason is they
employ time partition to reduce the effect of explicit attribute skew.

The group of algorithms that perform sorting or partitioning on timestamps, TS, TS-H, TP, TP-H, TEP,
and TEP-H, have relatively flat performance, as expected. By ordering or partitioning on time, these algo-
rithms avoid effects due to explicit attribute distributions.

The explicit sorting algorithms, ES, ES-H, ETS, and ETS-H, perform very well. In fact, the performance
of ES and ES-H increases as the skew increases. As the skew increases, the relations become increasingly
sorted, by default. Hence, ES and ES-H expend less effort during run generation.

We conclude from this experiment that if high explicit skew is present in one input relation then explicit
sorting, timestamp partitioning, and timestamp sorting appear to be the better alternatives. The choice
among these is then dependent on the distribution and the length of tuple timestamps, which can increase
the amount of timestamp skew present in the input, as we will see in the next experiment.

5.6 Timestamp Skew

Analogous with explicit attribute distributions, the distribution of timestamp attribute values can greatly
impact the efficiency of the different algorithms. We now describe a study of the effect of this aspect.

As in the experiments of Section 5.4, we fixed the main memory allocation at 16 MB and the sizes
of all input relations at 64 MB. We fixed one relation with randomly distributed explicit attributes and
randomly distributed tuple timestamps, and we generated a series of relations with increasing timestamp
attribute skew, from 0% to 100% in 20% increments. The skew was created by generating tuples with the
same interval timestamp. Short-duration timestamps were used in all relations to mitigate the long-duration
timestamp effect on TS and TS-H. Explicit join attribute values were distributed randomly. The results of
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the experiment are shown in Figure 17.
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Figure 17: Timestamp Attribute Skew (Short-Duration Timestamps)

Three interesting observations may be made. First, as expected, the timestamp partitioning algorithms,
i.e., TP, TEP, TP-H, and TEP-H suffered increasingly poorer performance as the amount of timestamp
skew increased. This skew causes overflowing partitions. The performance of all these four algorithms
is good when the skew is 100%, because TP and TP-H become explicit sort-merge joins and TEP and
TEP-H become explicit partition joins. Second, the timestamp sorting algorithms, TS and TS-H, show
increased performance at the highest skew percentage. This is due to the sortedness of the input, analogous
to the behavior of ES and ES-H in the previous experiment. Lastly, the remaining algorithms have flat
performance across all trials, which is as expected.

When timestamp skew is present, timestamp partitioning is a poor choice. We expected this result, as
it is analogous to the behavior of partition-based algorithms in conventional databases, and similar results
have been reported for temporal coalescing. Therefore, the two main dangers to good performance are
explicit attribute skew and/or timestamp attribute skew. We investigate the effects of simultaneous skew in
the next.

5.7 Combined Explicit/Timestamp Attribute Skew

Again, we fixed the main memory allocation at 16 MB, and we set the input relation sizes at 64 MB. Times-
tamp durations were set to a one chronon, to mitigate the long-duration timestamp effect on the timestamp
sorting algorithms. We then generated a series of relations with increasing explicit and timestamps skew,
from 0% to 100% in 20% increments. Skew was created by generating tuples with the same explicit joining
attribute value and tuple timestamp. The results are shown in Figure 18.

The algorithms are divided into three groups in terms of performance. Most of the partition-based
algorithms, TEP, TEP-H, TP, TP-H, EP, and EP-H, show increasingly poorer performance as the explicit
and timestamp skew increases, which is as expected. The explicit/timestamp sorting algorithms show rel-
atively flat performance across all trials, and the explicit sorting and timestamp sorting algorithms exhibit
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Figure 18: Combined Explicit/Timestamp Attribute Skew

increasing performance as the skew increases, analogous to their performance in the experiments of Sec-
tions 5.5 and 5.6. While the elapsed time of ETP and ETP-H increase slowly along with increasing skew,
these two algorithms perform very well. This is analogous to their performance in the experiments of
Sections 5.5.

5.8 Explicit Attribute Skew in Both Relations

In previous work [LGS02], we studied the effect of data skew on the performance of sort-merge join. There
are three types of skew: outer relation skew, inner relation skew, and dual skew. Outer skew occurs when
value packets in the outer relation cross buffer boundaries. Similarly, inner skew occurs when value packets
in the inner relation cross buffer boundaries. Dual skew indicates that outer skew occurs in conjunction with
inner skew. While outer skew does not cause any problems to sort-merge join, which we have seen in the
previous sections, dual skew degrades the performance of sort-merge join. In this section, we compare the
performance of the join algorithms in the presence of dual skew in the explicit attribute.

The main memory allocation was fixed at 16 MB and the size of all input relations were fixed at 64 MB.
We generated a series of relations with increasing explicit attribute skew, from 0% to 4% in 1% increment.
To ensure dual skew, we performed selfjoin on these relations. Short-duration timestamps, randomly dis-
tributed over the relation lifespan, were used to mitigate the long-duration timestamp effect on the timestamp
sorting algorithms. The results are shown in Figure 19.

There are three points to discuss from the graph. First, the explicit algorithms, i.e., ES, ES-H, EP,
EP-H, ETP, and ETP-H, suffer when the skew increases. Although the numbers of I/O operations of these
algorithms increase along with the increasing skew, the I/O-incurred difference between the highest and the
lowest skew is only 2 seconds. The difference of the output relation size between the highest and the lowest
skew is only 460 KB, which leads to about 4.6 seconds performance difference. Then what is the real reason
of the performance hit of these algorithms? Detailed experiments reveal that it is in-memory operations that
cause the poor performance of these algorithms. When data skew is present, these algorithms have to do
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substantial in-memory work to perform the join. This is illustrated in Figure 20, which shows the CPU time
used by each algorithm. To present the difference clearly, we do not use a log-scale D -axis. Note that four
algorithms, specifically, ETS, TS, ETS-H, and TS-H, have very low CPU cost (less than 30 seconds) in all
cases. So their performance does not degrade when the degree of skew increases.

Second, the performance of the timestamp partitioning algorithms, i.e., TP, TP-H, TEP and TEP-H, de-
grade with increasing skew, but not as badly as do the explicit algorithms. Although timestamp partitioning
algorithms sort each partition on the explicit attribute, the explicit attribute inside each partition is not highly
skewed. For example, if there  tuples have the same value of the explicit attribute, they will be put into one
partition after being hashed in EP. In the join phase, there will be an  a  loop within the join. In TP, this
value packet will be distributed evenly across partitions. Assuming there are $ partitions, each partition
will have  ��)$ of these tuples, which leads to an  e �)$ e loop within the join per partition. The total number
of join operations in TP will be  e �)$ , which is ���)$ of that of EP. This factor can be seen from Figure 20.

Finally, the timestamp sorting algorithms, i.e., TS, TS-H, ETS, and ETS-H, perform very well under
explicit skew. TS and TS-H only use the timestamp to determine if a backup is needed. We see the benefit
of the secondary sorting on the timestamp in the algorithms ETS and ETS-H. Since these two algorithms
define the value packet by both the explicit attribute and the timestamp, the big loop in the joining phase is
avoided.

From this experiment, we conclude that when explicit dual skew is present, all the explicit algorithms
are poor choices except for ETS and ETS-H. The effects of timestamp dual skew are examined next.

5.9 Timestamp Dual Skew

Analogous with explicit dual skew, timestamp dual skew can affect the performance of the timestamp sort-
merge join algorithms. Ee look into this effect.

We fixed main memory at 16 MB and input relations at 64 MB. We generated a series of relations with
increasing timestamp skew, from 0% to 4% in 1% increments. To ensure dual skew, we performed a self-
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join on these relations. Short-duration timestamps, randomly distributed over the relation lifespan, were
used to mitigate the long-duration timestamp effect on timestamp sorting algorithms. The explicit attribute
values were also distributed randomly. The results are shown in Figure 21.

The algorithms fall into two groups. Only the timestamp sort-merge algorithms, i.e., TS and TS-H, show
poor performance. Again, there is no cache overflow in this experiment. The performance gap between these
two algorithms and all the other algorithms is caused by in-memory join operations. The CPU time used by
each algorithm is plotted separately in Figure 22. Since all the other algorithms perform the in-memory join
by sorting the relations or the partitions on the explicit attribute, their performance is not affected by dual
skew at all.

5.10 Explicit/Timestamp Dual Skew

In this section, we investigate the simultaneous effect of dual skew in both the explicit attribute and the
timestamp. This is a challenging situation for any temporal join algorithm.

The memory size is 16 MB, and we generated a series of 64 MB relations with increasing explicit and
timestamp skew, from 0% to 4% in 1% increments. Dual skew was guaranteed by performing a self-join on
these relations. The results are shown in Figure 23.

The interesting point is all the algorithms are affected by the simultaneous dual skew in both the explicit
and timestamp attributes. But they fall into two groups. The algorithms that are sensitive to the dual skew
in either explicit attribute or timestamp attribute perform as badly as they do in the experiments described
in Sections 5.8 and 5.9. The performance of the algorithms that are not affected by the dual skew in either
explicit attribute or timestamp attribute degrades with the increasing of skew. However, their performance
are better than that of the algorithms in the first group. This is due to the orthogonality of the explicit skew
and the timestamp skew.
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5.11 Summary

The performance study described in this section is the first comprehensive, empirical analysis of temporal
join algorithms. We investigated the performance of seventeen non-index-based join algorithms, namely
nested-loop (NL), explicit partitioning (EP and EP-H), explicit sorting (ES and ES-H), timestamp sorting
(TS and TS-H), timestamp partitioning (TP and TP-H), combined explicit/timestamp sorting (ETS and ETS-
H) and timestamp/explicit sorting (TES and TES-H), and combined explicit/timestamp partitioning (ETP
and ETP-H) and timestamp/explicit partitioning (TEP and TEP-H) for the temporal equijoin. We varied the
following main aspects in the experiments: the presence of long-duration timestamps, the relative sizes of
the input relations, and the explicit-join and timestamp attribute distributions.

The findings of this empirical analysis can be summarized as follows.

� Nested-loop is not competitive.

� The timestamp sorting algorithms, TS, TS-H, TES and TES-H, were also not competitive. They were
quite sensitive to the duration of input tuple timestamps.

� The GRACE variants were competitive only when there was low selectivity and a large memory size,
relative to the size of the input relations. In all other cases, the hybrid variants performed better.

� In the absence of explicit and timestamp skew, our results parallel those from conventional query
evaluation. In particular, when attribute distributions are random, all sorting and partitioning algo-
rithms (other than those already eliminated as noncompetititve) have nearly equivalent performance,
irrespective of the particular attribute type used for sorting or partitioning.

� In contrast with previous results in temporal coalescing [BSS97], the binary nature of the valid-time
equijoin allows an important optimization for partition-based algorithms. When one input relation is
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small relative to the available main memory buffer space, the partitioning algorithms have uniformly
better performance than their sort-based counterparts.

� The choice of timestamp or explicit partitioning depends on the presence or absence of skew in
either attribute dimension. Interestingly, the performance differences are dominated by main memory
effects. The timestamp partitioning algorithms were less affected by increasing skew.

� ES and ES-H were sensitive to explicit dual skew.

� The performance of the partition-based algorithms, EP and EP-H were affected by both outer and
dual explicit attribute skew.

� The performance of TP and TP-H degraded when outer skew was present. Except for this one situ-
ation, these partition-based algorithms are generally more efficient than their sort-based counterparts
since sorting, and associated main-memory operations, are avoided.

� It is interesting that the combined explicit/timestamp based algorithms can mitigate the effect of either
explicit attribute skew or timestamp skew. However, when dual skew was present in both explicit
attribute and timestamp simultaneously, the performance of all the algorithms degraded, though again
less so for timestamp partitioning.

6 Conclusions and Research Directions

As a prelude to investigating non-index based temporal join evaluation, this paper initially surveyed previous
work, by first describing the different temporal join operations proposed in the past and then describing join
algorithms proposed in previous work. The paper then developed evaluation strategies for the valid-time
equijoin and compared the evaluation strategies in a sequence of empirical performance studies. The specific
contributions are as follows.
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� We defined a taxonomy of all temporal join operators proposed in previous research. The taxonomy
is a natural one, in the sense that it classifies the temporal join operators as extensions of conventional
operators, irrespective of special joining attributes or other model-specific restrictions. The taxonomy
is thus model independent and assigns a name to each temporal operator consistent with its extension
of a conventional operator.

� We extended the three main paradigms of query evaluation algorithms to temporal databases, thereby
defining the space of possible temporal evaluation algorithms.

� Using the taxonomy of temporal join algorithms, we defined seventeen temporal equijoin algorithms,
representing the space of all such possible algorithms, and placed all existing work into this frame-
work.

� We defined the space of database parameters that affect the performance of the various join algo-
rithms. This space is characterized by the distribution of the explicit and timestamp attributes in the
input relation, the duration of timestamps in the input relations, the amount of main memory available
to the join algorithm, the relative sizes of the input relations, and the amount of dual attribute and/or
timestamp skew for each of the relations.

� We empirically compared the performance of the algorithms over this parameter space.

Our empirical study showed that some algorithms can be eliminated from further consideration: NL,
TS, TS-H, TES, TES-H, ES, ES-H, EP and EP-H. Hybrid variants generally dominated GRACE variants,
eliminating ETP, TEP and TP . When the relation sizes were different, explicit sorting (ETS, ETS-H, ES,
ES-H) performed poorly.

This leaves three algorithms, all partitioning ones: ETP-H, TEP-H, TP-H. Each dominates the other
two in certain circumstances. But TP-H performs poorly in the presence of timestamp and attribute skew
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and is significantly more complicated to implement. Of the other two, ETP-H came out ahead more often
than TEP-H. So we recommend ETP-H, a hybrid variant of explicit partitioning that partitions first on the
explicit attribute. If this attribute is skewed so that some buckets do not fit in memory, a further partition
on the timestamp attribute increases the possibility that the resulting buckets will fit in the available buffer
space.

The salient point of this study is that simple modifications to an existing conventional evaluation algo-
rithm (EP) can be used to effect temporal joins, with acceptable performance, and at relatively small devel-
opment cost. While novel algorithms (such as TP-H) may have better performance in certain circumstances,
well-understood technology can be easily adapted, and will perform acceptably in many situations. Hence,
database vendors wishing to implement temporal coalescing may do so with a relatively low development
cost, and still achieve acceptable performance.

Several directions for future work exist. Important problems remain to be addressed in temporal query
processing, in particular with respect to temporal query optimization. While several researchers have inves-
tigated algebraic query optimization, little research has appeared with respect to cost-based temporal query
optimization.

In relation to query evaluation, additional investigation of the algorithm space described in Section 5
is needed. Many optimizations originally developed for conventional databases, such as read-ahead and
write-behind buffering, forecasting, eager and lazy evaluation, and hash filtering, should be applied and
investigated.

All of our partitioning algorithms generate maximal partitions, that of the main memory size, minus a
few blocks for the join, for the left hand relation, then apply that partitioning to the right hand relation. In
the join step, a full left hand partition is brought into main memory and joined with successive blocks from
the associated right hand partition. Sitzmann and Stuckey term this a static buffer allocation strategy, and
instead advocate a dynamic buffer allocation strategy, in which the left hand and right hand relations are
partitioned in one step, so that two partitions, one from each relation, can simultaneously fit in the main
memory buffer [SS00]. The advantage over the static strategy is that fewer seeks are required to read the
right hand side partition; the disadvantages are that this strategy results in smaller, and thus more numerous,
partitions, which increases the number of seeks and requires the right hand side to also be sampled, which
also increases the number of seeks. It might be useful to augment the timestamp partitioning to incorporate
dynamic buffer allocation, though it is not clear at the outset that this will yield a performance benefit, over
our TP-H algorithm or over ETP-H.

Dynamic buffer allocation for conventional joins was first proposed by Harris and Ramamohanarao [HR96].
They built the cost model for nested loop and hash join algorithms with the size of buffers as one of the
parameters. Then, for each algorithm, they computed the optimal or suboptimal, but still good, buffer al-
location that led to the minimum join cost. Finally, the optimal buffer allocation was used to perform join.
It would interesting to see if this strategy can improve the performance of temporal joins. It would also be
useful to develop cost models for the most promising temporal join algorithm(s), starting with ETP-H.

The next logical progression in future work is to extend this work to index-based temporal joins, again
investigating the effectiveness of both explicit attribute indexing and timestamp indexing. While a large
number of timestamp indexes have been proposed in the literature [ST99], and there has been some work on
temporal joins that utilize temporal or spatial indexes [EWK90, SE96, LOT94, ZTS02], a comprehensive
empirical comparison is needed of these algorithms.

Orthogonally, more sophisticated techniques for temporal database implementation should be consid-
ered. In particular, we expect specialized temporal database architectures to have a significant impact on
query processing efficiency. It has been argued in previous work that incremental query evaluation is es-
pecially appropriate for temporal databases [McK88, JMR91, Pfo99]. In this approach, a query result is
materialized and stored back into the database, if it is anticipated that the same query, or one similar to it,
will be issued in the future. Updates to the contributing relations trigger corresponding updates to the stored
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result. The related topic of global query optimization, which attempts to exploit commonality between
multiple queries when formulating a query execution plan, has also yet to be explired in a temporal setting.
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A Tables of The Experimental Results

The experimental results for all the figures in Section 5 are listed in Table 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, and 18.

Table 7: Experimental Results for Figure 10 and Figure 11
Memory Size 2MB 4MB 8MB 16MB 32MB 64MB

NL 4592 2384 1312 776 507 373
TES-H 1708 660 535 492 457 398
TS-H 1707 658 533 491 455 395

ETS-H 1134 649 542 503 467 406
ES-H 1134 648 542 502 466 406

ETP-H 766 574 502 465 433 399
EP-H 747 572 502 464 433 399

TEP-H 745 568 516 482 457 370
TP-H 745 568 514 486 445 371
TEP 593 533 512 503 500 500
TP 593 533 512 503 501 500

ETS 574 537 527 525 524 524
ES 574 536 527 524 523 523

TES 567 528 517 514 514 515
TS 566 526 516 513 513 513

ETP 545 513 504 502 502 502
EP 545 513 504 502 502 502

Table 8: Experimental Results for Figure 12
Memory Size 2MB 4MB 8MB 16MB 32MB 64MB

TS-H 2685 1640 1391 1241 1107 953
TS 1745 1541 1382 1253 1165 1071

ETS-H 1134 649 541 502 467 406
ES-H 1134 648 540 502 466 406

ETP-H 766 574 502 465 434 399
EP-H 747 572 502 465 434 399
TP-H 746 568 517 482 441 363

TEP-H 745 574 514 484 451 382
TP 594 534 512 504 501 500

TEP 593 533 512 504 501 500
ETS 574 537 527 525 524 524
ES 574 536 527 524 524 523

ETP 545 513 504 502 502 502
EP 545 513 504 502 502 502
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Table 9: Experimental Results for Figure 13
Outer Relation Size 4MB 8MB 16MB 32MB 64MB

TS 217 230 257 309 413
ETS 217 229 255 306 408
ES 216 229 255 306 408

TS-H 211 216 229 282 389
ETS-H 210 215 228 280 384
ES-H 210 214 227 279 384
TEP 71 76 250 301 404
TP 71 76 250 301 404

ETP 71 76 250 301 403
EP 71 76 250 301 403

TEP-H 71 76 153 257 376
TP-H 71 76 153 257 376

ETP-H 71 76 149 236 354
EP-H 71 76 149 236 354

Table 10: Experimental Results for Figure 14 and Figure 15
Outer Relation Size 4MB 8MB 16MB 32MB 64MB

TS 266 323 452 697 1167
TS-H 257 308 420 659 1146
ETS 217 230 255 306 408
ES 217 229 255 306 408

ETS-H 210 215 228 280 384
ES-H 210 214 227 280 384
TEP 71 76 251 302 405
TP 71 76 251 302 405

ETP 71 76 253 303 403
EP 71 76 253 303 403

TEP-H 71 76 153 257 376
TP-H 71 76 153 257 376

ETP-H 71 76 149 236 354
EP-H 71 76 149 236 354

Table 11: Experimental Results for Figure 16
Explicit Skew in Outer 0 20% 40% 60% 80% 100%

EP 403 477 497 517 537 554
EP-H 354 434 459 485 511 536
ETP 403 408 409 410 411 416
TS 413 413 413 413 413 413

TEP 404 404 404 404 404 404
TP 404 404 404 404 404 404

ETP-H 354 365 371 378 384 392
TS-H 389 389 389 389 389 389
ETS 408 409 411 412 413 388
ES 408 407 406 405 404 375

TEP-H 371 372 371 371 371 373
TP-H 370 372 371 371 370 372

ETS-H 384 385 386 387 389 360
ES-H 384 382 381 379 378 345
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Table 12: Experimental Results for Figure 17
Timestamp Skew in Outer 0 20% 40% 60% 80% 100%

ETS 408 408 408 408 408 408
ES 408 408 408 408 408 408
TP 404 470 519 520 601 408

TEP 404 467 478 502 597 404
TP-H 370 419 420 469 499 403

TEP-H 373 411 420 460 500 403
ETP 403 403 403 403 403 403
EP 403 403 403 403 403 403

ETS-H 384 384 384 384 384 384
ES-H 384 384 384 384 384 384

TS 413 412 410 409 408 378
ETP-H 354 354 354 354 354 354
EP-H 354 354 354 354 354 354
TS-H 389 387 385 383 382 349

Table 13: Experimental Results for Figure 18
Explicit & Timestamp Skew in Outer 0 20% 40% 60% 80% 100%

TEP 404 460 513 579 626 554
EP 403 477 497 517 537 554

TEP-H 378 398 417 437 458 554
EP-H 354 434 460 485 511 536
ETP 403 407 406 404 402 403
TS 413 412 410 409 408 378

ETP-H 354 364 369 372 375 377
ETS 408 409 409 408 407 375
ES 408 407 406 405 403 375
TP 404 463 517 561 601 375

TP-H 377 438 471 504 537 375
TS-H 389 387 385 383 382 349

ETS-H 384 385 384 383 382 345
ES-H 384 382 381 379 378 345

Table 14: Experimental Results for Figure 19
Explicit Skew 0 1% 2% 3% 4%

ES 524 829 1760 3445 5424
ES-H 502 763 1485 2337 3867

EP 502 682 1229 2126 3383
ETP 502 682 1229 2126 3383
EP-H 464 645 1192 2089 3347

ETP-H 464 645 1192 2089 3347
TEP 503 533 624 777 987
TP 503 534 625 779 983

TEP-H 483 517 604 754 972
TP-H 483 511 601 763 967
ETS 525 525 525 525 526
TS 513 513 513 513 514

ETS-H 502 503 503 503 504
TS-H 491 491 491 491 491
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Table 15: Experimental Results for Figure 20
Explicit Skew 0 1% 2% 3% 4%

ES 15 320 1251 2935 4914
ES-H 15 273 992 1775 3283

EP 10 189 736 1633 2890
ETP 10 189 736 1633 2890
EP-H 10 189 736 1633 2890

ETP-H 10 189 736 1633 2890
TEP 6 36 126 280 490
TP 6 36 125 281 490

TEP-H 6 37 126 277 490
TP-H 6 36 125 282 489

TS 20 20 20 20 20
TS-H 20 20 20 20 20
ETS 15 15 16 16 16

ETS-H 16 15 16 16 16

Table 16: Experimental Results for Figure 21
Timestamp Skew 0 1% 2% 3% 4%

TS 513 862 1883 3560 6000
TS-H 491 812 1411 2405 3998
ETS 525 525 525 525 525
ES 524 524 524 524 524

TEP 503 503 503 503 503
TP 503 503 503 503 503

ETP 502 502 502 502 502
EP 502 502 502 502 502

ETS-H 502 502 502 503 502
ES-H 502 502 502 501 502

TEP-H 483 482 477 482 486
TP-H 487 476 481 486 481

ETP-H 464 465 465 464 464
EP-H 464 465 464 464 464

Table 17: Experimental Results for Figure 22
Explicit Skew 0 1% 2% 3% 4%

TS 20 369 1390 3067 5507
TS-H 20 333 930 1882 3492
ETS 15 15 15 16 16

ETS-H 16 15 15 15 16
ES 15 15 15 15 15

ES-H 15 15 15 15 15
ETP 10 10 10 10 10
EP 10 10 10 10 10

ETP-H 10 10 10 9 10
EP-H 10 10 10 9 10
TEP 6 6 6 6 6

TEP-H 6 6 6 6 6
TP 6 6 6 6 6

TP-H 6 6 6 6 6
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Table 18: Experimental Results for Figure 23
Explicit/Timestamp Skew 0 1% 2% 3% 4%

TS 513 853 2024 4063 6992
ES 524 829 1810 3687 6644

TS-H 491 795 1620 2918 5068
ES-H 502 785 1550 2751 5091
ETP 502 683 1279 2477 4437
EP 502 683 1279 2477 4437

ETP-H 465 645 1242 2441 4401
EP-H 465 645 1242 2441 4401
ETS 525 529 601 953 1781

ETS-H 502 506 579 930 1758
TEP 503 513 593 924 1675
TP 482 490 572 901 1651

TEP-H 480 489 574 896 1650
TP-H 482 490 572 893 1650
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