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Abstract: Many real world applications need to organize data based on time (e.g., accounting, portfolio 
management, personnel management, inventory management) and/or space (e.g., facility management, 
market analysis, transportation, logistics). Underlying these applications is temporal and/or spatial data, 
referred to as spatio-temporal data. Conventional conceptual models provide a mechanism to elicit data 
semantics related to “what” is important for an application rather than the “when” and “where” semantics. 
For spatio-temporal applications listed above, it is left to the database designers to discover, design and 
implement—on an ad-hoc basis—the temporal and spatial concepts that they need. We describe a 
database design-support environment that exemplifies our spatio-temporal conceptual design approach:  
(i) first capture current reality using a conventional conceptual model without considering the temporal or 
spatial aspects (i.e., “what”); and only then (ii) annotate a conventional schema with spatio-temporal data 
semantics (i.e., “when/where”). We show how segregating “what” from “when/where” via annotations is 
straightforward to implement, satisfies ontology- and cognition-based requirements, dovetails with 
existing database design methodologies, and can support seamless integration of schemas across diverse 
design-support environments having different syntax but the same underlying semantics. We demonstrate 
how such an overall design-support environment that supports elicitation of the spatio-temporal semantics 
can help bridge the semantic gap between the real world and its spatio-temporal representation in the 
information systems. 
 
Keywords: Semantic Model, Data Semantics, Database Design, Spatio-Temporal Database, CASE Tool 

1 Introduction 
A design-support environment—a tool that automates many of the analyst’s tasks in developing 

software—helps reduce time and money spent on a project and can improve the quality of the end-product 

[21]. Additionally, such environments improve the effectiveness of software development, an important 

issue facing information systems managers [10]. However, extant design-support environments do not 

adequately support applications that need to organize data based on time (e.g., accounting, portfolio 

management, personnel management) and/or space (e.g., facility management, transportation, logistics). 

Conventional conceptual models, e.g., [11, 16], provide a mechanism to elicit data semantics related to 

“what” is important for an application rather than the “when” and “where” semantics. For spatio-temporal 

applications listed above, it is left to the database designers to discover, design and implement—on an ad-

hoc basis—the temporal and spatial concepts that they need to represent the “miniworld,” or an aspect of 

the real world [16]. To capture the data semantics related to space and/or time—at an abstract-level 

independent of the physical data model—there is a need for a design-support environment that is based on 

a spatio-temporal conceptual model.  

We describe a design-support environment that exemplifies our spatio-temporal conceptual design 

approach that advocates: (i) first capturing current reality using a conventional conceptual model without 

considering spatial or temporal aspects (i.e., “what”); and only then (ii) annotating a conventional 

schema to capture spatio-temporal requirements (i.e., “when/where”). This approach is embodied in a 

prototype, a DesIgn-Support environment for SpaTIotemporaL data, or DISTIL. To date there has been 

little work done in characterizing the impact of adding spatio-temporal semantics to an existing database 

design-support environment. We demonstrate how augmenting an extant database design-support 
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environment is straightforward to implement, satisfies ontology- and cognition-based requirements, 

dovetails with existing database design methodologies, and can support seamless integration of schemas 

across diverse design-support environments having different syntax but the same underlying semantics. 

Todd et al. [67] define CASE (Computer-Aided Software/System Engineering) tool as “the 

automation of part of, or the entire, system development process.” Various studies [4, 20, 43] have 

concluded that CASE tools improve the development process. However, there does not exist a CASE tool 

that can be employed for designing and developing spatio-temporal database applications. Research 

interest in spatio-temporal data has increased dramatically over the past decade, as is evident from 

published bibliographies [2, 35, 38, 63, 64, 69, 78]. From a practitioner’s perspective, recent advances in 

technologies like high-resolution satellite-borne imaging systems, mobile systems, global positioning 

systems and the overall decrease in hardware costs is resulting in temporal and spatial data finding its way 

into many traditional applications.  

Via DISTIL, we exemplify our spatio-temporal design methodology that includes: (i) support for 

development of a conventional conceptual schema using the Unifying Semantic Model (USM) [49], an 

extended Entity-Relationship (ER) Model [11]; (ii) means for associating the conventional schema with 

spatio-temporal annotations, thus, helping encapsulate spatio-temporal semantics via the ST-USM (Spatio-

Temporal Unifying Semantic Model) schema [33, 34]; (iii) assistance in validating consistency of the 

captured spatio-temporal semantics; (iv) a mechanism for explicating the encapsulated spatio-temporal 

semantics via the translated USM schema; (v) support for conversion of a translated USM schema to a 

logical schema; (vi) provision for translation of the annotated conceptual schema to an XML document, 

thus, facilitating sharing of conceptual schemas developed with, possibly, diverse design tools having 

different syntax but same underlying semantics.   

Our work makes several contributions to spatio-temporal conceptual design. (i) One of the problems 

with developing spatio-temporal applications is that there is “a gulf between the richness of knowledge 

structures in the application domains and the relative simplicity of the data model in which the structures 

can be expressed” [77]. We demonstrate how spatio-temporal conceptual modeling can be augmented and 

realized into an existing design-support environment. (ii) The challenge in adding the space and time 

dimension is balancing simplicity and understandability with preciseness and completeness. The 

annotations—based on spatio-temporal ontology—are precisely defined in Backus-Naur Form (BNF) (cf. 

Appendix) and first-order logic [33]. At the same time, our approach supports multiple levels of 

abstraction and helps elicit spatio-temporal requirements in a manner that is consistent with human 

cognition. (iii) Our approach augments existing database design methodology and is upward compatible 

[62], i.e., it does not invalidate any legacy schemas. (iv) Our proposed methodology is straightforward to 

implement. We show how adding spatio-temporal annotations requires few changes to existing code and 

to the structure of the database that underlies the design-support environment. (v) Various types of 
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abstractions supported by typical conventional conceptual models, e.g., [5, 11, 16, 49, 55], include 

classification, association, generalization/specialization and aggregation. While different modeling 

formalisms provide different syntax, they share similar underlying data semantics. We show how 

conversion of a conceptual schema to an XML document can support exchange and sharing of conceptual 

schemas “across” design-support environments that are based on abstractions like classification, 

association, generalization/specialization and aggregation. 

The rest of the paper is organized as follows. We first motivate the need for spatio-temporal 

conceptual design using a study at the United States Geological Survey (USGS). According to Wand et 

al. [72], “the power of a modeling language lies in the semantics of its constructs” and “ontology can be 

used to define concepts that should be represented by the modeling language.” The basis for dialog panels 

in our proposed design-support environment is a time and space ontology, which is summarized in 

Section 3. In Section 4 we describe a database analyst’s interaction with DISTIL using the USGS 

example of Section 2. Next, we provide an architecture for a spatio-temporal database design-support 

environment in Section 5. In Section 6, we evaluate the DISTIL prototype and show how augmenting an 

existing design-support environment with spatio-temporal annotations is straightforward to implement. 

We compare our work with that of other design-support environments in Section 7, and conclude in 

Section 8. 

2 Motivation  
Woods [74] defines data semantics as the meaning and use of data. In the information systems context, 

data semantics [54] refers to a set of mappings from a representation language to agreed-upon concepts in 

the real world. Data semantics provide “a connection from a database to the real world outside the 

database” [54] and a conceptual model provides a mechanism to capture the data semantics. Using an 

example of an application at USGS, we demonstrate the need to capture spatio-temporal data semantics. 

Earth-science studies, e.g., landslide hazards, earthquakes, volcanoes, subsurface tunneling and 

construction, environmental contamination, water availability, provide the knowledge required for society 

to make decisions related to managing natural resources in a sustainable manner. While many advances in 

the understanding of earth-science processes and applications are being used by researchers, technologies 

for storing, sharing and managing the spatio-temporal data are far less developed. As an example, in 

addressing concerns related to water quality, water-availability and contamination, large amounts of 

multidisciplinary data must be acquired, synthesized, analyzed and disseminated. Capturing the space and 

time semantics of the vast amounts of interdisciplinary data is the core of this infrastructure. 

We are working with a group of researchers who are developing a ground-water flow model [12] for 

the Death Valley region. Beneath the earth's surface, the zone where all interstices are filled with water is 
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referred to as ground water. In arid regions like Death Valley, which encompasses approximately 80,000 

km2 in Nevada and California, ground water provides a large percentage of water for domestic, industrial 

and agricultural uses. The objective of the ground-water flow model for the Death Valley Region is to 

characterize regional 3D ground-water flow paths so that policy makers can make decisions related to 

radio-nuclide contaminant transport and the impact of ground-water pumping on national parks and local 

communities in the region. However, the quality of model outputs and predictions based on the model are 

dependent on the data that forms an input to the model. We describe a subset of the input data required for 

the ground-water flow model. 

 Two key objects of interest for the ground-water flow model are spring-water sites and borehole 

sites. Both of these need to be spatially referenced to the Earth and are uniquely identified by a site id. A 

spring-water site is a point on the surface of the Earth given by geographic x- and y- coordinates, with a 

spatial granularity of dms-second. Geographically spring-water sites exist within a spring (represented as 

a region) and there can be many spring-water sites within a spring. A spring usually has a name by which 

it is known locally. An important characteristic of a spring is the permanence of discharge at the spring, 

e.g., perennial springs discharge continuously and intermittent springs are periodically 

dry. A borehole site refers to a part of the borehole whose 3D location is given by x- and y- coordinates on 

the Earth’s surface, with a spatial granularity of dms-second, and depth below the surface with a spatial 

granularity of foot. While there can be one or more borehole sites at different depths within a drilled hole 

at the same surface location, each borehole site is associated with exactly one borehole. A borehole site is 

characterized by tests like horizontal (hydraulic) conductivity and diffusivity, and the values for these tests 

are valid for the minute at which the test was conducted. Borehole sites and spring-water sites also have 

an associated status, e.g., site was dry and no water level was recorded and site 

was recently pumped. Spring-water sites also have an associated description that characterizes and 

defines the site. The measurements at the borehole site and spring site are taken by a source agency, and 

these measurements embody the ground-water flow model. 

 A borehole site may have a pumplift that removes water from the borehole site and this can affect 

other data collected at the borehole site. Some of the characteristics of a pumplift are type (e.g., air 

lift, rotary pump, jet pump), manufacturer and serial number. A pumplift has a lifespan that 

specifies the time periods when the pumplift was installed and was operational. The time periods of 

pumplift existence denote the times when data collected at a borehole site can be influenced by a given 

pumplift. 

 As exemplified by the spatio-temporal application described above, we summarize the requirements 

for a design-support environment as follows: (i) Support for conventional conceptual modeling, e.g., 

entity class (e.g., SOURCE_AGENCY), attribute (e.g., agency_code and tech_name) and relationship (i.e., 

sp_measure between SPRING_SITE and SOURCE_AGENCY). (ii) Ability to capture semantics associated 
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with valid time [59], i.e., when a given fact was true in the real-world. Some facts, e.g., diffusivity and 

horizontal conductivity, need to be represented as events. An event occurs at a point of time, i.e., an event 

has no duration. On the other hand, the lifespan of pumplift needs to be represented as state. A state has 

duration, e.g., pumplift existed from 04/12/1999 to 07/27/2001. (iii) All the temporal data need to be 

associated with temporal granularity. For example, the lifespan of a pumplift needs to be captured to the 

granularity of day while that for diffusivity and horizontal conductivity needs to be captured to the 

granularity of minute. (iv) The spatial objects are characterized by shape and position [13]. For example, 

spring site needs to be represented as a point on the x-y plane and spring needs to be represented as a 

region on the x-y plane. (v) All spatial data needs to associated with spatial granularity, e.g., dms-sec for 

SPRING_SITE (vi) Augmenting a design-support environment should also take into consideration the 

extant (non- temporal/non-spatial) CASE tools. Considering the large number of extant design-support 

environments, any spatio-temporal extension should not require extensive changes to an existing tool. 

(vii) Jarzabek and Huang [28] argue that current design tools “are weak in addressing soft aspects of 

software development.” Thus, the CASE tool interface design should also take into consideration how we 

perceive and process spatio-temporal data. (viii) The recent revolution in network interconnectivity and 

the World-Wide Web (WWW) presents a unique opportunity for distributed teams to employ an 

integrated virtual environment for designing information systems. The design tool should support 

translation of a conceptual schema to an XML document, thus, enabling integration of schemas developed 

by different design-support environments.  

 Having summarized the requirements for a design-support environment that supports spatio-temporal 

conceptual modeling, we next formalize the temporal and spatial data semantics that can be elicited with a 

design-support environment, e.g., DISTIL, that facilitates spatio-temporal conceptual modeling. 

3 Needed Ontological Concepts 
Ontology is the specification of the representational vocabulary for a shared domain of discourse [25], 

and space and time ontology is the basis for the dialog panel in the design-support environment and the 

associated annotations. We first formalize ontological concepts related to temporal [1, 7, 8, 14, 15, 29, 58-

61] and spatial [13, 22, 50, 75, 76] data that are embedded in DISTIL. One of the deficiencies of the 

existing conceptual models that can represent geographic phenomena is their inability to “represent 

information in way that is more natural to humans” [39, 47]. We next describe how DISTIL takes into 

consideration cognition related to spatio-temporal data.  
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3.1 Temporal Ontology 

The basis of time ontology is the definition of the time domain. We review extant definitions associated 

with how facts can interact with time [59-61]. Intrinsic to temporal data is temporal granularity. We 

summarize existing definitions associated with temporal granularity [7, 8, 14]. 

A time domain is denoted by the pair (T, ≤), where T is a nonempty set of time instants and “≤” is the 

total order on T. We can assume the time domain is either discrete or dense. While there is no general 

agreement if time domain is dense or discrete, the temporal database community agrees that a discrete 

model of time is generally adequate for representing reality [31]. Additionally, time is assumed to be 

bounded at both ends, i.e., the past and the future [57]. An instant is a time point on the time line. For 

example, (Z, ≤) represents a discrete time domain where instants are isomorphic to integers, implying that 

every instant has a unique successor. 

Facts can interact with time in two orthogonal ways resulting in transaction time and valid time [59]. 

Valid time denotes when the fact is true in the real world and implies the storage of histories related to 

facts. On the other hand, transaction time links an object to the time it is current in the database and 

implies the storage of versions of a database object. While the temporal granularity can be specified for 

valid time, that for transaction time is system-defined. The transaction time has duration from insertion to 

(logical) deletion [32] and can include granules only up to the current time granule in the real world. 

Time-varying data may be modeled as an event or a state [30]. An event occurs at a point of time, i.e., an 

event has no duration. A state has duration, e.g., a storm occurred from 5:07 PM to 5:46 PM. 

 Temporal granularity is a measure of the time datum. A temporal granularity is defined as a mapping 

TG from index i to subsets of the time domain such that: (i) granules TG(i) in a temporal granularity do 

not overlap; (ii) the index order of a temporal granularity corresponds with the time domain order; (iii) the 

index set of a temporal granularity provides a contiguous granule encoding; and (iv) a special granule 

called the origin, TG(0) is non-empty. Although the index of a temporal granularity is constrained to be 

contiguous, the granules are not constrained to be contiguous on the time domain. Thus, a temporal 

granularity defines countable set of non-decomposable granules that can be composed of a set of 

contiguous instants or non-contiguous instants. Some examples of temporal granularities are Gregorian 

day, business day and business week. While Gregorian day is a temporal granularity with contiguous 

granules of hour, business day is not. Each non-empty granule may have a textual representation termed a 

label (e.g., “November 25, 2000”), which can be mapped to the index integer with a mapping called the 

label mapping. The earliest time domain element in the origin is referred to as an anchor with respect to 

the time domain. The union of time granules is called an image of a temporal granularity. The smallest 

interval of the time domain that contains the image of a temporal granularity is called the extent of that 

granularity. The image of a temporal granularity can be contiguous or have holes in it. Gregorian day and 
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business day are granularities with discrete image of days. However, Gregorian day has contiguous 

granules of hour while business day includes non-contiguous granules of hour. 

3.2 Spatial Ontology 

Any data that can be associated with location on the Earth are referred to as geographic data [13]. 

Geographic space based on Euclidean geometry is the basis for most GISs [37]. In this case, the location 

can be expressed by a set of coordinates, e.g., latitude and longitude. We briefly review concepts related 

to space and spatial granularity. 

The space domain may be represented as a set (e.g., R3, R2, N3, N2) with elements referred to as 

points. A spatial object is associated with geometry and position. Geometry represents the shape and size 

of an object [13]. The position in space is based on coordinates in a mathematically-defined reference 

system, e.g., latitude and longitude. Geometry of the spatial object may be 0-, 1- or 2- dimensional 

corresponding to a point, a line or a region. A point is “a zero-dimensional spatial object with 

coordinates,” a line is “a sequence of ordered points, where the beginning of the line may have a special 

start node and the end a special end node” and a region or polygon consists of “one outer and zero or 

more inner rings” [70]. David et al. [13] define an area as “a bounded continuous two-dimensional 

geometric primitive delimited by one outer non-intersecting boundary and zero or more nested non-

intersecting inner boundaries.” They differentiate between a line and a region: the line itself is “the 

carrier” of the information while in a region, the area is of primary importance and the “boundary is 

secondary…to limit the area.”  

For geographic applications, horizontal space is segregated from vertical space. Correspondingly, we 

define horizontal and vertical spatial granularities [34]. Intuitively, the horizontal space domain 

corresponds to the Earth’s surface while vertical space domain corresponds to the depth/height 

below/above the sea level. We define horizontal spatial granularity as a mapping from integers to any 

partition of horizontal space, where the partition may arise from pixellation of space and may be a regular 

square or any other shape such as a triangular irregular network (TIN) or even an irregular shape (e.g., 

county). Formally, a horizontal spatial granularity may be defined as a mapping SGxy from index i to a 

subset of space domain such that: (i) granules from a spatial granularity do not overlap; (ii) the index set 

of a spatial granularity provides a contiguous encoding, though the granules in the space domain are not 

constrained to be contiguous in the underlying spatial domain; and (iii) origin granule SGxy(0) is 

nonempty. Examples of horizontal spatial granularities are dms-deg, dms-min and county. Each non-

empty granule can have a textual representation called label, which can be mapped to the index integer by 

a mapping function called label mapping. For example, 45°23′E/24°35′N is an example of a label that 

represents a point in space whose granularity is dms-min for both latitude/longitude. For granularities like 
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dms-deg, space is partitioned along two perpendicular directions and the granularity is construed to be 

dms-deg along the two dimensions. On the other hand, county is an example of an irregular horizontal 

spatial granularity.  

3.3 Time-Varying Spatial Ontology 

In geography, space is indivisibly coupled with time [46]. Lately, there has been much interest in adding a 

temporal aspect to geographic databases [23] since time integrates human activity, orders events and 

separates cause from effect [71]. Three types of interaction between an object and space-time are possible 

[48, 68]: (i) moving objects, i.e., objects whose position changes continuously but whose shape does not 

(e.g., a car moving on a road network); (ii) objects whose spatial characteristics and position change with 

time discretely, i.e., changing shape (e.g., change of the shape of land parcels in a cadastral application); 

and, (iii) integration of the above two behaviors, i.e., continuous moving and changing phenomena (e.g., 

modeling a storm). While a point and a line may “move over time”, a region can change its location (i.e., 

move) and change its shape. 

3.4 Cognition of Spatio-Temporal Data 

Since a conceptual schema acts as a communication mechanism among users, database analysts and the 

database implementation, the formalism provided by a conceptual model for developing a schema should 

be comprehensible and straightforward to use. Therefore, it is imperative to propose a spatio-temporal 

modeling approach that takes into account cognition, as this would ensure that the proposed schema is 

comprehensible and straightforward to use.  

Prior research [3, 51] posits that all human knowledge is stored as abstract conceptual propositions. 

The propositions are assertions about the real world.  

Proposition

Fact Context

Subject Predicate Time Location
 

Figure 1: Human Associative Memory Model [3] 
 

As shown in Figure 1, Anderson and Bower’s [3] Human Associative Model (HAM) is based on 

propositions, which are composed of facts and context associated with the facts. The subject and 

predicate correspond with a topic and a comment about the topic, and this corresponds to the 
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representation as object-property or property-value pairs. For some applications, the context in which the 

fact is true can be the key to reasoning about the mini-world. This context in turn is composed of time and 

location associated with the fact. Our spatio-temporal conceptual design approach focuses first on facts 

(what) and then on context (where and when) related to those facts corresponds with Anderson and 

Bower’s Human Associative Memory Model [3]. Thus, we expect that such an approach will lead to 

schemas that are comprehensible and straightforward to use. 

4 Spatio-Temporal Conceptual Design  
As shown in Figure 2, our spatio-temporal conceptual modeling approach involves first developing a non-

spatio-temporal conceptual schema referred to as a core conceptual schema (cf. Section 4.1), augmenting 

the core schema with spatio-temporal annotations leading to an annotated conceptual schema (cf. 4.2), 

validating the consistency of the annotated schema (cf. 4.3), explicating the semantics of the annotated 

schema (cf. 4.4) resulting in the translated conceptual schema and translating the conceptual schema to a 

logical schema (cf. 4.5).  

 

Core Conceptual
Schema
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Schema
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Conceptual Schema
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XML Document
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Figure 2: Overview of our Spatio-Temporal Conceptual Design Approach  

 

A semantically richer spatio-temporal logical schema innately “understands” the spatio-temporal concepts 

that are encapsulated via annotations during spatio-temporal conceptual design. As a result, the encoded 

semantics that is “wrapped” in the annotated conceptual schema and is kept “wrapped” in the spatio-

temporal logical schema. On the other hand, a non-spatio-temporal logical schema needs translation from 

a translated conceptual schema, where the spatio-temporal semantics need to be explicated. The 

translation of the core conceptual schema (i.e., non-temporal and non-spatial) or annotated schemas (i.e., 

spatio-temporal) to an XML document helps facilitate integration of schemas developed by different 

design-support environments (cf. 4.6). 
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4.1 Developing a Core Schema 

We first summarize key terms and terminology related to USM [49], which is an extended version of the 

ER Model [11]. We next describe how our approach supports conceptual modeling using the formalism 

provided by USM. 

We chose USM as the base model for capturing “what” are the data semantics that are important for 

an application as it provides an overall framework that carefully defines entity class (i.e., classification) 

and various types of relationships like interaction (i.e., aggregation), generalization/specialization, and 

composite and grouping relationships (i.e., association). Additionally, USM provides subtle semantics 

that segregate groupings from composites [5, 11, 16, 49, 55]. Note that USM is consistent with 

conventional conceptual models that include abstractions like classification, aggregation, 

generalization/specialization and association. 

All real world objects are referred to by the term entity. Characteristics or properties of entities are 

called attributes (Ai, where i = 1,…, n). Each attribute has associated with it an attribute domain 

(dom(Ai)) or simply domain, which is the set of values that an entity can take for the attribute. An entity 

class (or class) may be defined as E = ∪i (Ai, dom(Ai)). The set of instantiations of an entity class is 

referred to as an entity set. In other words, an entity e of an entity class E may be designated as e(E) and a 

set of entities of an entity class is represented by S(E) where e(E) ∈ S(E).  

 Attributes are created by property relationships. Associations between or among members of entity 

classes are called class relationships. If an attribute is created by a property relationship, its values are 

drawn from an attribute domain. An attribute created by a class relationship refers to members in some 

other entity class. In this case, the domain of the attribute is a set of entities belonging to another entity 

class. USM distinguishes between simple and constructed entity classes. In simple entity classes all 

attributes are created by property relationships, whereas in constructed classes there are one or more 

attributes that are created by class relationships. Constructed classes are used to model entities built from 

other entities of the database application. We briefly describe various class relationships: interaction, 

generalization/specialization, composite and grouping. 

 An interaction relationship refers members of one entity class to members of one or more entity 

classes. Formally, let R be an interaction relationship and E1, E2,…, En be classes that participate in the 

relationship. An interaction relationship set, S(R), may be considered to be a subset of the Cartesian 

product S(E1) × S(E2) ×…× S(En). A relationship instance, r(R), consists of exactly one entity from each 

participating entity set. Generalization is a form of abstraction in which similar objects are related to a 

higher-level generic object and the constituent objects may be considered as the specialization of the 

generic object [8]. A generalization proceeds from the recognition that a number of entity classes share 

some common features. The crucial property of higher- and lower-level entities created by specialization 
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and generalization is attribute inheritance, i.e., the attributes of higher-level entity classes are said to be 

inherited by the lower-level entity classes [55].  

  

 
Figure 3: USM Schema 

 

A composite relationship defines a new class called the composite class that has another entity set (or 

subsets of an entity set) as its members. A composite relationship is similar to the “power set grouping” in 

[52], in that they both represent a set whose members are subsets of the base entity set, S(E). Each 

member from a composite class—referred to as a composite—is a subclass from some other class called 

the base class. Note that the base class is both a subclass and a subtype of a composite class. A grouping 

relationship defines a new class, called a grouping class, whose members are physically or logically made 

up of members or sets of members from some other entity class(es), called component classes. The 

grouping establishes a “part-of” or “property-of” relationship. 

Having briefly overviewed the USM, we next show how to elicit semantics of “what” is important for 

the USGS application described in Section 2. Figure 3 shows an example of a core USM Schema 

developed by the database analyst. This schema includes entity classes like SPRING_SITE, 
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BORE_HOLE_SITE, SOURCE_AGENCY, PUMPLIFT, SPRING, BORE_HOLE, GROUND_WATER_STATION and 

their various attributes. 

Entity classes are created by using the constructs on the “USM Model” panel on the left side 

(specifically, the “Strong” rectangles). For example, the relationship sp_measures (the diamond “Rel” on 

the USM Model side panel) between SPRING_SITE and SOURCE_AGENCY relates an entity of 

SPRING_SITE with that of SOURCE_AGENCY. Each entity class has associated attributes, e.g., PUMPLIFT 

has properties like type and manufacturer (mfg) and a key attribute serial_no. SPRING and BORE_HOLE 

have certain common properties that can be abstracted as GROUND_WATER_STATION. Properties such as 

station_name and site_type are common to both SPRING and BORE_HOLE. On the other hand, the 

attributes like permanence and name are specific to SPRING, and source and method are specific to 

BORE_HOLE. 

Developing a schema like the one shown in Figure 3, which includes abstractions like entity class, 

attributes, relationships, superclass/subclass, grouping and composite, is supported by typical design-

support environments. Note that developing such a schema—even without space and time aspects—is an 

involved task and the resulting non-temporal and non-spatial schema can contain tens of entity types and 

hundreds of attributes. For example, a small fragment of the (non-temporal and non-spatial) schema for 

the USGS application includes 18 entity classes and 92 attributes [33]. 

We next show how a design-support environment that supports conventional conceptual modeling 

can be augmented with spatio-temporal annotations. 

4.2 Annotating the Core Schema 

Via annotations, we exemplify a supplementary level of abstraction that “naturally” extends the semantics 

of a conventional conceptual model to capture the spatio-temporal data semantics. The conceptual model 

that captures spatio-temporal semantics via annotations is referred to as ST-USM. We describe the syntax 

related to annotations and then show how DISTIL—based on the analysts’ inputs—automatically creates 

annotation phrases within the schema. Note that these annotation phrases succinctly encapsulate the 

spatio-temporal aspects of the application. 

As shown in the Appendix, the overall structure of an annotation phrase has the following 

components. 

〈temporal annotation〉 // 〈geospatial annotation〉 // 〈time-varying spatial annotation〉 

The temporal annotations, spatial annotations and time-varying spatial annotations are each separated by a 

double forward slash (//). 

 The temporal annotation first specifies the existence time (or valid time) followed by the transaction 

time. The temporal annotation for existence time and transaction time is segregated by a forward slash (/). 
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Any of these aspects can be specified as not being relevant to the associated conceptual construct by using 

“-”. The valid time or existence time can be modeled as an event (E) or a state (S) and has an associated 

temporal granularity. For example, “S(min)/T//” associated with PUMPLIFT would denote that PUMPLIFT 

exists in a bitemporal space; the temporal granularity of the states (S) is minute (min). Additionally, we 

also need to capture transaction time (T) associated with PUMPLIFT. In this example, the granularity 

associated with transaction time is not specified as it is system-defined. 

The temporal annotation described above can be specified using a dialog panel (e.g., Figure 4). In the 

pop-up box, the database analyst can specify if the application needs organize data based on time.  

 
Figure 4: Specifying Temporal Aspects 

 

Accordingly, valid time and/or transaction time may be pertinent for an application. The valid time may 

be represented as an event or state and has an associated temporal granularity. On the other hand, 

granularity associated with transaction time does not need to be specified as it is system-defined. For 

example, Figure 4 shows how the database analyst can enter temporal details which would result in an 

annotation phrase “S(day)/-//” for PUMPLIFT. This annotation succinctly describes that the lifespan of a 

pumplift need to be represented as a state (S) with temporal granularity of day. 
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 The spatial annotation includes geometry and position in x-, y- and z-dimension; each dimension is 

segregated by a forward slash (/). For example, “// P(dms-sec) / P(dms-sec) / -” for SPRING_SITE 

describes a geometry of points (P) in the x-y plane. The associated horizontal spatial granularity is dms-

sec. 

 Figure 5 shows how the database analyst can enter spatial details that result in an annotation phrase 

“//P(dms-sec)/P(dms-sec)/-” for SPRING_SITE. This implies that the SPRING_SITE needs to be 

represented as a point (“P”) on the x-y plane. Additionally, the associated granularity in the x-y plane is 

degree (deg). 

 
Figure 5: Specifying Spatial Aspects 

 

The interaction between an object and space-time can result in change in the shape and/or change in 

the position of an object. A time-varying spatial annotation can be specified only if spatial and temporal 

annotation have already been specified. For example, a class of moving car tracked by satellite may be 

represented by an annotation phrase “E(sec)/-// P(deg)/ P(deg)/-//Pos@xy,” which denotes a time-varying 

position while the shape is time-invariant. The geometry is a point (P) in an x-y plane with a spatial 

granularity of degree. The position changes in the x-y plane (Pos@xy) over time and each geometry is 

valid for time granules (E, i.e., event) measured in second.  
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Figure 6 shows the dialog panel for specifying the time-varying spatial aspects of an application. The 

four options are: neither shape or position is changing, shape is changing, position is changing, and both 

shape and position are changing over time. Additionally the dimension over which the change is 

happening can be specified. 

 

 
Figure 6: Specifying Time-Varying Spatial Aspects 

 

In summary, for each construct in the core USM schema the database analyst, in consultation with the 

users, considers whether temporality and spatiality are important for the application. The database analyst 

asks questions like: Do you want to store the history or only the current value of this fact? Do you want to 

capture valid time or transaction time, or both? What is the associated temporal granularity? Is it 

important to store the geographical reference for the objects? What is the geographical shape of the 

objects? What is the associated spatial granularity? Can the spatial shape/position for these objects change 

over time? Accordingly, the database analyst enters the details using the dialog panel as shown in Figure 

4, Figure 5 and Figure 6. 
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Figure 7: Annotated Schema 

 

The schema shown in Figure 7 is automatically annotated according to the information filled into the 

pop-up boxes. The database analyst can annotate each entity class (e.g., SPRING_SITE, BOREHOLE_SITE, 

SPRING, BORE_HOLE, PUMPLIFT), relationship and attribute (e.g., diffusivity, horizontal_conductivity, 

source). Once the database analyst has made the annotated schema, the requirements so collected can be 

established with other users. Note how the annotated schema encapsulates the spatio-temporal semantics 

for an application and can be employed to verify (with the user) if the spatio-temporal semantics have 

been captured in the schema.  

Our annotation-based approach is upward compatible [9, 60], i.e., our approach renders conventional 

conceptual schemas spatio-temporal without affecting the legacy schemas. Upward compatibility requires 

that the syntax and semantics of the traditional conceptual model, e.g., [16, 49, 55], remain unaltered. The 

schema shown in Figure 7 includes both “un”annotated constructs (e.g., SOURCE_AGENCY), where space 
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and time may not pertinent/important for the application and annotated constructs (e.g., PUMPLIFT), 

where annotation phrase exemplifies another level for abstraction that represents the time- and space-

related semantics.  

4.3 Validating Consistency in a Spatio-Temporal Conceptual Schema 

Once the spatio-temporal aspects of the application have been elicited and captured in the schema, the 

database analyst needs to check if the spatio-temporal aspects are consistent. Using an example of a 

temporal relationship, we show how an inconsistent schema is identified by the design-support 

environment. 

A temporal relationship implies that we want to keep track of the evolution of the interaction between 

temporal entities in a relationship. For example, if bore_measure were a temporal relationship between 

two temporal entity classes BOREHOLE_SITE and SOURCE_AGENCY, it would imply that an application 

might include queries like “In the last six months, what are the various source agencies associated with 

the borehole site 12345.”  

A temporal/non-temporal relationship may be associated temporal/non-temporal entities. As shown in 

Table 1, a temporal relationship and the participating entities include four possibilities. A temporal 

relationship can be defined only when all the participating entities are also temporal.  

 

 Non-temporal Relationship Temporal Relationship 
Non-temporal Entity 
Class 

Currently valid relationship between 
currently valid entities (1) 

N/A (2) 

Temporal/ Time-varying 
Spatial Entity Class 

Currently valid relationship among 
temporal (time-varying spatial) 
entities (3) 

Temporal relationship among 
temporal (time-varying spatial) 
entities (4) 

Table 1: The semantics of temporal/non-temporal relationship/entity class combinations 
 

Note that this is an implication of the semantics of a relationship in a conventional conceptual model 

where relationships can only be defined between entities that exist. If the participating entity classes are 

temporal but the relationship is not (cell 3 of Table 1) the entities participating in the relationship should 

be valid now.  A temporal relationship between non-temporal entities (cell 2 of Table 1) is not legal in ST 

USM, as that would imply existence of a relationship even when the associated entities do not exist (since 

the existence time of entities is unknown). If the database analyst does specify a temporal relationship 

between non-temporal entity classes, the design-support environment should flag this as an error.  

 



 18

 
Figure 8: Semantic Error Log 

 

 If the database analyst were to specify a relationship (e.g., bore_measure) as temporal when the 

participating entity classes are not temporal, an error log is shown to the database analyst. For example, 

Figure 8 shows an error log that advises the database analyst that a temporal relationship like 

bore_measure implies that the participating entity classes (i.e., BOREHOLE_SITE and SOURCE_AGENCY) 

should also be temporal. The consistency checker in DISTIL ensures that the captured temporal and 

spatial data semantics—as specified by the database analyst—are always consistent. If they are not, a 

semantic error log like that in Figure 8 is shown to the database analyst. If the developed schema is found 

to be consistent, the consistency checker gives the message “Consistency checker found no errors.” 

The consistency checks supported by the design-support environment are based on snapshot 

reducibility [9, 56]. For incorporating spatio-temporal extension, snapshot reducibility implies “natural” 

generalization of the syntax and semantics of extant conventional conceptual models (e.g., [16, 49, 55]). 
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As shown in the example above, snapshot reducibility guides whether, e.g., temporal relationship can be 

defined between non-temporal entity classes. Table 1 showed how snapshot reducibility can be 

operationalized for a spatio-temporal conceptual model, and Figure 8 demonstrated how snapshot 

reducibility can be embedded into a design-support environment. 

4.4 Semantics of the Annotated Schema 

Our spatio-temporal design methodology uses annotations to capture the semantics of (temporal and 

spatial) sequenced statements. With annotations, our approach naturally extends the semantics of a 

conventional conceptual model (with implicit snapshot semantics), thereby inducing sequenced spatio-

temporal semantics. For example, in a conventional conceptual model a key attribute [16] uniquely 

identifies an entity (at a point in time). A temporal key [58] implies uniqueness at each point in time. As 

may be evident, the semantics of a temporal key here are implied by the semantics of a key in a 

conventional conceptual model. Similarly, in a temporal relationship, the temporal element associated 

with a temporal relationship is constrained to be a subset of the intersection of the lifespan of the 

participating entities. Again, the semantics of a temporal relationship are implied from that of a 

(conventional) relationship where a relationship can be defined among entities that exist. 

Annotations provide a mechanism to encapsulate concepts like history, lifespan and geo-referencing 

while hiding the concepts which have well-known semantics (e.g., valid time, point, line, region). In this 

section, we describe how the encapsulated semantics can be explicated. Note that explication of the 

temporal and spatial data semantics—resulting in what is referred to as a translated schema—is based on 

time and space ontology described in Section 3. Using an example of a temporal entity class, we show 

detailed semantics of an annotated abstraction. Details related to other abstractions like attribute, 

interaction relationship, subclass, composite class and grouping class are similar to those of a temporal 

entity class and described elsewhere [33].  

A temporal entity class implies that the membership of an entity in the entity set is time-varying. We 

assume that a temporal entity class (as contrasted with entities of that class) exists during the entire 

modeled time. Thus, the existence time represents the lifespan of an entity and defines the time when 

facts associated with an entity can be true in the miniworld. Similarly, we can capture the transaction time 

associated with an entity, which may be important for applications requiring traceability. When an entity 

class is defined as temporal, it implies that the application would have queries like “What is the average 

monthly power consumption by all pumplifts over their installed existence?” and “What are the pumplifts 

that were installed before 1995 and are operational now?” 

 Figure 9 illustrates the representation of existence time expressed as state (S) with day as the temporal 

granularity name. Based on the users’ requirements, the database analyst simply annotates PUMPLIFT with 
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“S(day)/-//” and does not need to contend with the complexity of the underlying semantics or the 

associated temporal constraints. Figure 9 also shows the semantics of a temporal entity class in ST USM 

via a mapping using the concepts of a conventional conceptual model, which we refer to as a translated 

USM schema. This mapping from ST USM to (translated) USM is snapshot equivalent; i.e., the two 

schemas (ST USM and translated USM) represent the same information content over snapshots taken at 

all times. In order to express the semantics of a temporal entity class, we need to specify a 

TEMPORAL_GRANULARITY in which the evolution of a temporal object is embedded. The relationship 

PUMPLIFT_has_ET associates an entity with a corresponding TEMPORAL_GRANULARITY. Each 

TEMPORAL_GRANULARITY is uniquely identified by a granularity_name, shown by the underlined 

attribute. An extent is the smallest time interval that includes the image of a granularity and is expressed 

by two indexes, minimum and maximum. Each anchor_gran is a recursive relationship (i.e., a relationship 

where an entity from the same entity class can play different roles) such that each participating granularity 

optionally has an anchor (0:1) and each granularity is an anchor for 0 to many (i.e., 0:M) other 

granularities. The anchor of a granularity TG is the first index of a strictly finer granularity that 

corresponds to the origin of this granularity, i.e., TG(0). All granularities except the bottom granularity 

have an associated anchor. A finer-than and a coarser-than relationship between granularities are denoted 

by a recursive relationship groups_into, where one entity plays the role of finer-than and the other the role 

of coarser-than. The relationships anchor_gran together with groups_into helps create a granularity graph 

[14], which can help a user choose the level of detail associated with facts. Details related to granularities 

and indeterminacy is presented elsewhere [34]. 

A temporal entity with existence time may have a set of event_instants or state_periods associated 

with it depending on whether a temporal entity is represented as an event or a state. A time period of 

PUMPLIFT is represented with indexes begin and end of state_periods. A double-lined ellipse in USM 

denotes a multi-valued attribute. For example, state_periods is represented as a multi-valued attribute and 

represents a set of state periods (i.e., a temporal element) associated with an entity. Additionally, eight 

constraints described below will be generated in the translated USM schema for PUMPLIFT. These 

constraints are implicit in the ST USM schema but are explicit in the translated USM schema. Constraints 

4.4.1 and 4.4.2 are based on the definition of a temporal entity; i.e., a temporal entity has an associated 

temporal granularity and an associated temporal element. Constraints 4.4.3−4.4.5 are based on the 

definition of temporal granularity, and these constraints need to be generated once for the entire schema. 

Constraints 4.4.6−4.4.8 are based on the definition of a temporal element. In these definitions, we assume 

a closed-open representation [58], i.e., the begin index is contained in the period while the index 

corresponding to end is not. 
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Figure 9: Temporal Entity Class in ST USM and its semantics in USM 

 

For example, an instant for a temporal element may be represented by [17, 18). In this example, begin 

index (i.e., 17) is inclusive in the instant while end index (i.e., 18) is not. 
Constraint 4.4.1: The existence time for all the entities of PUMPLIFT have the same associated granularity.  

∀ e ∈ S(PUMPLIFT),  
e. PUMPLIFT_has_ET.TEMPORAL_GRANULARITY (granularity_name) = day 

 
Constraint 4.4.2: For every entity of PUMPLIFT, there exists an associated temporal element with well-
formed periods. 

∀ e ∈ S(PUMPLIFT), ∃p ∈ e(state_periods), p.begin < p.end 
 
Constraint 4.4.3: Each TEMPORAL_GRANULARITY has a lower and an upper bound referred to as minimum 
and maximum; these bounds are well-formed. 

∀ e ∈ S(TEMPORAL_GRANULARITY), e(extent.minimum) < e(extent.maximum) 
 
Constraint 4.4.4: All the granularities, except one, have an anchor. The bottom granularity is allowed not 
to have an anchor.  

∀ e1 ∈ S(TEMPORAL_GRANULARITY), ¬ has(e1.anchor_gran) ⇒  
¬ (∃ e2 ∈ S(TEMPORAL_GRANULARITY) ∧ e1 ≠ e2 ∧ ¬ has(e2.anchor_gran)) 

 
Constraint 4.4.5: For a temporal granularity, if an anchor does not exist then that is the bottom granularity 
not having any granularity finer than it; in other words, it cannot take the role of coarser-than in the 
relationship groups-into.  

∀ e ∈ S(TEMPORAL_GRANULARITY), ¬ has(e.anchor_gran) ⇒ ¬ coarser-than(e.groups_into) 
 
Constraint 4.4.6: State periods of an entity of PUMPLIFT are well-formed.   

∀ e ∈ S(PUMPLIFT), ∀p ∈ e(state_periods), p.begin < p.end 
 
Constraint 4.4.7: Temporal elements are well-formed. A temporal element is defined as a union of non-
overlapping time intervals.  

∀ e ∈ S(PUMPLIFT), ∀ p1, p2 ∈ e(state_periods), p1.begin < p2.begin ⇒ p1.end ≤ p2.begin 
 
Constraint 4.4.8: The extent of a temporal granularity defines the upper and lower bounds for any 
temporal element. In other words, a temporal element cannot include an index that is larger than the 
corresponding extent.maximum or smaller than the corresponding extent.minimum. 

∀ e ∈ S(PUMPLIFT),  
∀ p ∈ e(state_periods), e. PUMPLIFT_has_ET.TEMPORAL_GRANULARITY (extent.minimum) ≤   

p.begin < p.end ≤ e. PUMPLIFT_has_ET.TEMPORAL_GRANULARITY (extent.maximum) 
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As may be evident, a straightforward annotation phrase (specifically “S(day)/- ”) represents relatively 

involved semantics described in this section. We next show how the encapsulated spatio-temporal 

semantics can be explicated using DISTIL.  

To view detailed explicit semantics associated with the annotated schema, the database analyst clicks 

on the “Translated USM Schema” tab to obtain a translated USM schema corresponding to the ST-USM 

schema (Figure 10).  

 
Figure 10: Semantics of the Annotated Schema 

 

We have embedded translation rules (e.g., Figure 9) into DISTIL, to help translate the annotated 

constructs to an equivalent USM schema with explicit representation of the associated spatiality and 

temporality. In Figure 10, the portion of the ST-USM schema on the right has been translated into the 

conventional USM schema on the left. For example, the semantics associated with a temporal entity class 

PUMPLIFT includes an entity class TEMPORAL_GRANULARITY, which specifies the temporal granularity in 

which PUMPLIFT is embedded. The relationship PUMPLIFT_has_ET relates an entity from PUMPLIFT with 

a corresponding temporal granularity. A multi-valued attribute state_periods (with components begin and 

end) is added to the entity PUMPLIFT because PUMPLIFT lifespan was modeled as state. A multi-valued 
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attribute implies that each PUMPLIFT can have many associated state_periods. Similarly, other constructs 

of the annotated ST-USM schema are converted to a translated USM schema using the embedded rules in 

DISTIL. 

 Note how annotation phrases succinctly encapsulate the spatio-temporal data semantics on the 

conceptual schema. The translated schema that is shown in Figure 10 includes only a fragment of the 

entire schema, which includes 12 entity classes, 51 attributes, 22 relationships and 42 constraints. Thus, a 

relatively straightforward annotated schema (e.g., Figure 7) encapsulates rich-semantics explicated in the 

translated schema. In this section, we described how our formal ontology-based approach helps elicit—at 

a conceptual level—the spatio-temporal data semantics, e.g., event and state [29], valid time and 

transaction time [59], existence time [24], temporal granularities [7, 8, 14], shape and position [13], 

spatial resolution [75, 76], and change in position and/or shape over time [48, 68]. These formalized 

semantics are the basis for the development to the representational schema, which we describe next. 

4.5 Logical Schema 

While conceptual models provide a mechanism to that is close to the way users perceive the data, physical 

models provide concepts how data is stored in the computer. A representational model, e.g., relational 

model, provides concepts that may be understood by users and are not too far removed from the way data 

is organized in the computer [16]. Mapping rules that provide correspondences between conceptual and 

representational model constructs are applied in logical design and result in the development of a logical 

schema. 

 The mappings to a logical schema depend on the type of representational model used. Standard SQL 

(Structured Query Language), the basis for a relational schema, does not include time support except for 

user-defined time. As a result, over 50 temporal query languages have been proposed [29], most of which 

are a result of extending SQL for the temporal domain. While change proposals to SQL3 that includes 

temporal semantics is referred to as SQL/Temporal [60, 61], the Open GIS Consortium has proposed 

extensions to SQL that supports simple geospatial collections that is referred to as SQL/OGIS [40]. For 

each of these languages, mapping rules may be developed to convert an ST USM schema to a logical 

schema in that language. As illustrated in Figure 2, there are two mapping rules, which depend on the 

logical model used: a non-temporal logical model (e.g., SQL) or a temporal or spatio-temporal conceptual 

model (e.g., SQL/Temporal, SQL/OGIS). None of the existing DBMS products yet support a spatio-

temporal logical model. So, we do not discuss this latter case further, other than to note that such a 

mapping could be developed as an extension of a previously-developed mapping from ER to 

SQL/Temporal [58]. Instead, we briefly describe a mapping from a spatio-temporal conceptual schema to 

a logical schema that does not support space and time semantics, utilizing additional columns to denote 
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the spatial and temporal extent of each row. This mapping is more complex than one to a spatio-temporal 

logical data model, because there are no special spatio-temporal constructs, such as temporally-sequenced 

primary and foreign keys, provided by the logical model that can be exploited in the mapping. 

 The translation from conceptual schema to logical schema is similar to the one described in standard 

database textbooks [16]. Each constraint described in the previous section will be translated to assertion. 

For example, we have a sequenced constraint for BOREHOLE: there can only be one value for source at 

any point in time. This can be enforced with the following assertion [58]. 
CREATE ASSERTION source_assertion 
CHECK (NOT EXISTS (SELECT * 

    FROM BOREHOLE AS I1 
    WHERE 1 < (SELECT COUNT(source) 

   FROM BOREHOLE AS I2 
    WHERE I1.source = I2.source 
     AND I1.BEGIN < I2.END 
     AND I2.BEGIN < I1.END)) 

  AND NOT EXISTS (SELECT * 
    FROM BOREHOLE AS I 
    WHERE I.source IS NULL) 
  ); 

 

This assertion can be implemented using a trigger in Oracle [58]. 
 

 CREATE OR REPLACE TRIGGER source_TRIGGER 
  AFTER INSERT OR UPDATE ON BOREHOLE  

 DECLARE 
   valid INTEGER; 

 BEGIN 
   SELECT 1 
   INTO valid 

  FROM DUAL 
   WHERE NOT EXISTS (SELECT * 
    FROM BOREHOLE  I1, BOREHOLE I2 
    WHERE I1.source = I2.source 
     AND I1.BEGIN < I2.END 

    AND I2.BEGIN < I1.END 
     AND I1.rowed <> I2.rowed ) 
    AND NOT EXISTS (SELECT *  

FROM BOREHOLE AS I 
WHERE I.source IS NULL); 

 EXCEPTION 
   WHEN NO_DATA_FOUND THEN 
   RAISE_APPLICATION_ERROR (-20001, ‘source can have one value at any point in time’); 

 END; 
 

Once the users’ spatio-temporal requirements have been captured and validated, the database analyst 

can click the “Logical Schema” tab to get the logical schema (Figure 11). This schema includes the name 

of the table, attributes in the table, primary key and foreign key (if any). For example, PUMPLIFT table 

includes four attributes: serial_no, type, mfg and granularity_name. The primary key (PK) is serial_no and 

the foreign key (FK) is TEMPORAL_GRANULARITY.granularity_name.  



 25

 

 
Figure 11: Logical Schema 

 

While the tool described above gives a textual description of the logical schema, this can be tailored 

for specific DBMSs, such as Oracle. For example, Oracle Spatial [41, 42] includes a pre-defined object 

type SDO_GEOMETRY and a table for SPRING can be defined as shown below. 
CREATE TABLE SPRING ( 

station_name VARCHAR2(30) PRIMARY KEY, 
name VARCHAR2(100), 
permanence NUMBER (5,2), 
geo MDSYS.SDO_GEOMETRY); 

We described how different mapping rules can be employed to translate a given conceptual schema to 

a logical schema. These mapping rules depend on the specific logical model and on the DBMS under 

consideration. We demonstrated how a methodical approach ensures that the spatio-temporal semantics 

elicited during conceptual design are embedded in the subsequent logical schema. A design-support 
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environment like DISTIL can automate this translation, thus, ensuring that the rich spatio-temporal 

semantics captured during conceptual design are not “lost” during translation to the logical schema. 

4.6 Encoding the Schema as an XML Document 

XML provides a standard format for exchanging conceptual schema among diverse design-support 

environments. If the schemas are generated by different design-support environments—with different 

syntax but same semantics—the XML document can enable sharing of the conceptual schema across 

platforms. Using an example of PUMPLIFT, we show the translation rules to an XML document. 

While the first part of the XML document shown in Figure 12 describes the semantics of 

conventional conceptual schema (e.g., USM), the second part corresponds to the spatio-temporal 

annotations.  

 
Figure 12: XML Document for a fragment of ST-USM Schema 

 
 

The second part of the XML document—between 〈ST_ANNOTATION〉 and 〈/ST_ANNOTATION〉—specifies 

the spatio-temporal data semantics. In this case, the temporal entity class PUMPLIFT is represented as a 

state having a granularity of day. Note how the orthogonality of spatio-temporal semantics in a 

conceptual schema (e.g., Figure 7) renders an XML document where the conventional semantics (i.e., 

“what”) are segregated from the “when/where” semantics. 

Having, described the translation from conceptual schema to XML document, we next show how a 

design-support environment supports such a translation. The database analyst can click on “XML 

Schema” tab to obtain the XML document corresponding to the ST USM Schema. This XML file can be 

saved (“Save XML File”) and is useful for sharing schemas among database analysts using different 

design-support environments. 

Core Schema: 
“What” 
Semantics

Annotations: 
“When”/ “Where” 
Semantics 
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Figure 13: XML Document 

 

 We showed how a spatio-temporal conceptual schema can be “exported” to an XML document. The 

XML document can be “imported” into another design-support environment, with possibly different 

syntax, but same underlying semantics, i.e., based on abstractions like classification, association, 

generalization/specialization and aggregation. We illustrated how the “when” and “where” semantics can 

be kept orthogonal to the “what” semantics even in the XML document (cf. Figure 12). 

5 Architecture 
We describe the underlying architecture of DISTIL (Figure 14) that enables the development of spatio-

temporal conceptual schemas. Figure 14 also explicates our spatio-temporal conceptual design approach 

that advocates first capturing “what” is important for the application (during Conventional Conceptual 
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Design) and only then augmenting the schema with the “when/where” semantics (during Spatio-Temporal 

Conceptual Design). 

As illustrated in Figure 14, the database analyst first develops a Core USM Schema during 

Conventional Conceptual Design using USM Schema Designer. The USM Schema Designer allows the 

database analyst to develop a core conceptual schema (e.g., Figure 3) that captures current reality without 

considering temporal or spatial aspects. We have adapted the USM Schema Designer from the data 

modeling module of CREAM [45].  

Our Spatio-Temporal Conceptual Design includes annotating the Core USM Schema via Annotation 

Designer (e.g., Figure 4, Figure 5) resulting in the ST-USM Schema (e.g., Figure 7) and validating the 

consistency of the captured spatio-temporal semantics via Consistency Checker. If any inconsistencies are 

detected in the spatio-temporal annotations, they are shown via the Semantic Error Log (e.g., Figure 8). 

This architecture also supports the translation of existing USM schemas that have spatio-temporal 

semantics incorporated in an ad-hoc manner (perhaps because they were designed with CASE tools that 

did not have such support). The user loads such a schema in as a Core USM Schema. For each time-

varying entity class, relationship, and attribute, the user can annotate that semantic object, then manually 

remove the ad hoc modeling constructs. For example, if the original schema had used a ternary 

relationship to model a time-varying binary relationship (with one of the entity classes being a time 

value), the relationship could be designated as time-varying with an annotation, then the time value entity 

class and its connection to the relationship removed, leaving a simpler schema with the same abstract 

semantics. The user could then add more detail to the annotation, such as granularity, indeterminacy, kind 

of time; it is doubtful that all of these details were in the original schema. Because the resulting schema is 

at a higher level of abstraction, different logical schemas could then be generated, under user control. 

A consistent ST-USM Schema (e.g., Figure 7) can next be converted to a Translated USM Schema 

(e.g., Figure 10) through the Semantic Mapper. While the spatio-temporal semantics are encapsulated in 

the ST-USM schema, these semantics are explicated in the translated USM schema. While the consistent 

ST-USM schema can be employed for eliciting and validating (with the user) the spatio-temporal 

requirements for an application, the translated USM schema is useful for translation to a logical schema 

that is interpretable by a DBMS.  

 



 29

Conventional
Conceptual Design

USM
Schema
Designer

Core USM
Schema

Annotation
Designer

ST- USM
Schema

Semantic
Mapper

Translated
USM Schema

Logical
Mapper

Relational
Schema

Consistency
Checker

Conventional
Logical Design

Spatio-Temporal
Conceptual Design

Relational DBMS

Legend

Module

Input/
Ouput

XML
Mapper

XML
Document

XML Translator

Semantic
Error Log

ST-USM
Mapper

SQL3/
Temporal-

OGIS Schema

Spatio-Temporal
Logical Design

SQL3/Temporal
SQL/OGIS DBMS

 
Figure 14: DISTIL Architecture 

 
As shown in Figure 14, our proposed Spatio-Temporal Conceptual Design implemented via DISTIL 

integrates with Conventional Conceptual Design and the translated USM Schema merges again with the 

Conventional Logical Design. The Logical Mapper in Conventional Logical Design includes rules to 

convert a Translated USM Schema to Relational Schema with spatial support that can be implemented in 

a relational DBMS. The XML Mapper converts a USM or ST USM Schema to an XML Document. The 

Schema in XML format can be shared by distributed teams which may be, possibly, using different 

design-support environment with different modeling formalism (i.e., syntax) but the same underlying 

semantics. In the future, it would be useful to incorporate the ST-USM Logical Mapper, which would 

translate the ST-USM schema to an SQL3/Temporal-OGIS Schema that can be implemented in a spatio-

temporal DBMS. 

DISTIL has been implemented using Java 2 (JDK 1.2) and Oracle 8.1.6. A dialog panel in DISTIL 

(cf., Figure 4, Figure 5, Figure 6) is created to elicit the spatial and temporal semantics associated with an 

entity class, a relationship or an attribute. When a user clicks an icon of a persistent object (e.g., an entity 

class), a dialog panel pops up and allows the user to input the spatial and temporal information of that 

persistent object. The “annotation” class is a Java Bean implemented to capture the spatial and temporal 

aspects associated with a persistent object that becomes a property of the persistent object. This 

annotation class also summarizes the spatial and temporal information into a simple annotation string. 

This string is displayed on the drawing canvas and stored in the database. An application can keep track 
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of the spatial and temporal information of an object class simply by looking up the annotation string that 

accompanies the object.  

Having described the design-support environment, we evaluate DISTIL along with our proposed 

underlying approach. 

6 Evaluation 
Batini et al. [5] posit that conceptual models should possess the following qualities: expressiveness, 

simplicity, minimality and formality.  

Expressiveness refers to the availability of a large variety of concepts for a more comprehensive 

representation of the real world. Wand et al. [72] propose that “conceptual modeling can be anchored in 

the models of human knowledge” and that ontology be employed as the basis a proposed formalism. We 

propose intuitive ontology-based dialog panels in DISTIL, which comprehensively capture the semantics 

related to space and time. These pop-up boxes automatically annotate the schema, thus, helping represent 

the spatio-temporal data semantics on the conceptual schema. 

One of the conflicting goals related to expressiveness is simplicity, which requires that augmenting an 

existing design-support environment should require minimal. As shown in Table 2, the additional number 

of classes (and lines of code) required to augment an existing design-support environment (i.e., [45]) with 

the spatio-temporal semantics is relatively modest. 

 

Module Classes Lines of Code (kLOC) 
USM Schema Designer 118 34.1 
Annotation Designer 6 2.2  
Semantic Mapper 3 1.4 
Logical Mapper 2 1.0 
XML Mapper 5 2.4 

Table 2: Number of Classes and Lines of Code for Modules of DISTIL 
 
The annotation designer and semantic mapper entailed a 10.6% increase in the lines of code. Additionally, 

adding the spatio-temporal semantics via annotations did not entail any changes to the existing code. 

Thus, orthogonality of a conceptual framework (i.e., ST USM) is mirrored with orthogonality of an 

implementation structure (i.e., DISTIL). Additionally, to incorporate annotations the changes to the 

database schema were minimal. The XML document encoding an annotated ST USM Schema captures 

spatio-temporal semantics orthogonal to conventional semantics. All this implies that our approach is 

straightforward from the perspective of repository (database) design and application development. 

Minimality ensures that no concept can be expressed through composition of other concepts. Because 

of orthogonality in the annotated ST-USM schema and the corresponding XML document, minimality is 

also supported. 
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Formality specifies that the model must present a unique, precise and well-defined interpretation. 

Wand et al. [73] posit that effective use of conceptual modeling constructs requires that their meanings be 

defined “rigorously.” The syntax and semantics of the underlying ST-USM is formally defined using 

BNF (cf. Appendix) and first-order logic [33], respectively. 

Snapshot reducibility ensures that the semantics of a spatio-temporal conceptual model are 

understandable in terms of the semantics of the conventional conceptual model, thus, helping ensure 

minimum additional investment in database analyst training.  

Upward compatibility allows the legacy and spatio-temporal schemas to co-exist. Upward 

compatibility requires that the syntax and semantics of the traditional conceptual model, e.g., [16, 49, 55], 

remain unaltered. Our proposed approach has not altered the syntax or semantics of extant models. 

With our annotation-based approach, we claim to have achieved expressiveness and formality along 

with simplicity in spatio-temporal conceptual modeling. 

7 Related Work 
Given the need to capture spatio-temporal data semantics, various formalisms have been proposed. 

However, the extant spatio-temporal database design methodologies—e.g., [26, 27, 53]—do not integrate 

naturally into extant conventional conceptual design. While some approaches that add new constructs 

(e.g., [19, 65, 66]) have changed the syntax of conventional conceptual models, some other approaches 

(e.g., [17, 18, 65, 66]) have even resorted to changing the semantics of conventional conceptual models. 

With the growth of geographic applications, recently design tools [6, 36, 44] to support modeling of 

spatio-temporal databases have been proposed. Perceptory [6] and GeoOOA [36] focus on capturing the 

semantics associated with geometry of the spatial objects, where spatiality of entities is defined by a 

relationship link with geometry, e.g., point, line and region. A visual schema editor based on MADS [6, 

36, 44] aids in capturing some spatio-temporal semantics. However, none of these tools provide a 

mechanism to capture semantics related to granularity and indeterminacy. Granularities related to facts 

need to be captured during conceptual design because under-specifying granularities can restrict an 

application and affect relative ordering of events. Additionally, none of the extant design-support 

environments help validates the consistency of the schemas. As far as we know, there does not exist a tool 

that helps translate a conceptual schema to an XML document. Because extant tools do not embed a 

generic spatio-temporal database design methodology that integrates naturally with conventional 

conceptual design, methodologies proposed via these tools cannot be easily adopted by existing CASE 

tools that support conventional conceptual design.  

Our approach to spatio-temporal conceptual modeling is comprehensive and captures various aspects 

related to temporality and spatiality, e.g., valid time, transaction time, events, states, position, geometry, 
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shape, granularities and indeterminacy. Additionally, our proposed annotation-based approach used in 

DISTIL integrates into existing database design methodologies. Annotating the schema is intuitive from 

the perspective of database analysts and users as it corresponds to the way human beings perceive spatio-

temporal objects. Moreover, incorporating annotation—via pop-up boxes—into an existing CASE tool is 

also straightforward to implement. Additionally, we show how schemas developed via distributed design 

tools can be shared using XML document.  

8 Conclusion 
We described an approach to supporting spatio-temporal conceptual database design and described a 

proof-of-concept spatio-temporal conceptual modeling design environment called DISTIL. DISTIL 

enables capturing “what” is pertinent for a database application along with the “when/where” semantics. 

This ST-USM schema—developed using DISTIL—can be used as communication vehicle: it can also be 

used to decide if all the spatio-temporal requirements of the user have been captured and whether the 

requirements are conflicting. Schemas developed via DISTIL can be saved as XML documents, which 

can be used for schema exchange among database analysts. Via DISTIL, we demonstrated how 

augmenting an existing CASE tool with our proposed the annotation-based approach is straightforward to 

implement. An empirical study that evaluated our spatio-temporal conceptual modeling approach on 

comprehension and ease of use is outside the scope of this paper, and described in detail elsewhere [33]. 

In the future, we plan to incorporate the ST-USM Logical Mapper, which would translate the ST-

USM schema to an SQL3/Temporal Logical Schema [60, 61] that can be implemented in a temporal 

DBMS. We want to consider the details of tailoring the mapping for specific DBMSs, e.g., Oracle. 

Additionally, we want to investigate generating triggers in the logical schema that are the temporal and 

spatial equivalents of the non-temporal constructs in USM. 
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Appendix: Annotation Syntax in BNF 
〈annotation〉   ::= є | 〈temporal annotation〉 // 〈spatial annotation〉  

| 〈temporal annotation〉 // 〈spatial annotation〉 // 〈time-varying spatial annotation〉   
 
〈temporal annotation〉 ::= є | 〈valid time〉 / 〈transaction time〉   
〈valid time〉  ::= 〈state〉 (〈gt〉) | 〈indeterminate state〉 (〈gt〉) | 〈event〉 (〈gt〉) | 〈indeterminate event〉(〈gt〉) | -  
〈transaction time〉  ::= T | - 
〈state〉   ::=  S | State 
〈indeterminate state〉 ::= 〈state〉~ | 〈state〉+-  
〈event〉   ::= E | Event   
〈indeterminate event〉 ::= 〈event〉~ | 〈event〉+-   
 
〈spatial annotation〉  ::= є | 〈horizontal geometry〉 / 〈vertical geometry〉  
〈horizontal geometry〉 ::= 〈geometry〉 (〈gxy〉) / 〈geometry〉 (〈gxy〉) 
〈vertical geometry〉  ::= 〈geometry〉 (〈gz〉) | - 
〈geometry〉 ::= 〈point〉 | 〈indeterminate point〉 | 〈line〉 | 〈indeterminate line〉 | 〈region〉  

| 〈indeterminate region〉 | 〈user defined〉 | - 
〈point〉   ::= P | Point  
〈indeterminate point〉 ::= 〈point〉~ | 〈point〉+- 
〈line〉   ::= L | Line 
〈indeterminate line〉  ::= 〈line〉~ | 〈line〉+- 
〈region〉   ::= R | Region 
〈indeterminate region〉 ::= 〈region〉~ | 〈region〉+- 
 
〈time-varying spatial annotation〉 ::= є | 〈position varying〉 | 〈shape varying〉 | 〈position varying〉 / 〈shape varying〉   
〈position varying〉   ::= 〈position〉@〈varying in dimension〉 
〈shape varying〉   ::= 〈shape〉@〈varying in dimension〉 
〈position〉   ::= Pos | Position 
〈shape〉     ::= Sh | Shape  
〈varying in dimension〉  ::= x | y | z | xy | yz | xz | xyz 
 
〈gt〉   ::= 〈day〉 | 〈hour〉 | 〈minute〉 | 〈second〉 | 〈user defined〉 
〈day〉     ::= day 
〈hour〉    ::= hr | hour 
〈minute〉    ::= min | minute 
〈second〉    ::= sec | second 
〈gsxy〉   ::= 〈mile〉 | 〈dms-degree〉 | 〈dms-minute〉 | 〈foot〉 | 〈user defined〉 
〈gsz〉   ::= 〈mile〉 | 〈foot〉 | 〈user defined〉 
〈mile〉   ::= mile 
〈dms-degree〉  ::= dms-deg | dms-degree 
〈dms-minute〉  ::= dms-min | dms-minute 
〈foot〉   ::= ft | foot 
 


