
Spatiotemporal Aggregate Computation: A
Survey

Inés Fernando Vega López, Richard T. Snodgrass, and Bongki Moon

January 14, 2004

TR-77

A TIMECENTER Technical Report

Title Spatiotemporal Aggregate Computation: A Survey

Copyright c© 2004 In és Fernando Vega L ópez, Richard T. Snodgrass, and
Bongki Moon. All rights reserved.

Author(s) In és Fernando Vega L ópez, Richard T. Snodgrass, and Bongki Moon

Publication History January 2004. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. Böhlen, Heidi Gregersen, Simonas Šaltenis, Janne Skyt, Giedrius
Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Dengfeng Gao, Bongki Moon, Sudha Ram

Individual participants
Curtis E. Dyreson, Washington State University, USA; Fabio Grandi, University of Bologna, Italy; Vijay
Khatri, Indiana University, USA; Nick Kline, Microsoft, USA; Gerhard Knolmayer, University of Bern,
Switzerland; Thomas Myrach, University of Bern, Switzerland; Kwang W. Nam, Chungbuk National Uni-
versity, Korea; Mario A. Nascimento, University of Alberta, Canada; John F. Roddick, Flinders University,
Australia; Keun H. Ryu, Chungbuk National University, Korea; Dennis Shasha, New York University, USA;
Michael D. Soo, amazon.com, USA; Andreas Steiner, TimeConsult, Switzerland; Paolo Terenziani, Uni-
versity of Torino; Vassilis Tsotras, University of California, Riverside, USA; Jef Wijsen, University of
Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Aggregate Functions . 2
2.2 Aggregation on Explicit Attributes . 3
2.3 Aggregation on the Temporal and Spatial Extent . 4
2.4 Scope of this Survey . 4

3 Aggregate Functions on Explicit Attributes 5
3.1 Formal Definition of Aggregation on Explicit Attributes 5
3.2 Existing Approaches for Evaluating Aggregate Queries 6
3.3 Aggregation and OLAP . 7

4 Temporal Aggregates 7
4.1 Formal Definition of Temporal Aggregation . 7
4.2 Existing Approaches for Evaluating Temporal Aggregate Queries 9

4.2.1 Non-indexed Aggregation Evaluation . 10
4.2.2 Indexed Aggregation Evaluation . 12

4.3 Aggregates on Data Streams . 13
4.4 Research Opportunities . 14

5 Spatial Aggregation 14
5.1 Formal Definition of Spatial Aggregation . 15
5.2 Existing Approaches for Evaluating Spatial Aggregate Queries 16
5.3 Research Opportunities . 17

6 Spatiotemporal Aggregation 18
6.1 Formal Definition of Spatiotemporal Aggregation . 18
6.2 Existing Approaches for Evaluating Spatiotemporal Aggregate Queries 19
6.3 Research Opportunities . 20

7 Conclusion 21

8 Acknowledgments 21

i

ii

Abstract

Spatiotemporal databases are becoming increasingly more common. Typically, applications model-
ing spatiotemporal objects need to process vast amounts of data. In such cases, generating aggregate
information from the data set is more useful than individually analyzing every entry. In this paper, we
study the most relevant techniques for the evaluation of aggregate queries on spatial, temporal, and spa-
tiotemporal data. We also present a model that reduces the evaluation of aggregate queries to the problem
of selecting qualifying tuples and the grouping of these tuples into collections on which an aggregate
function is to be applied. This model give us a framework that allows us to analyze and compare the
different existing techniques for the evaluation of aggregate queries. At the same time, it allows us to
identify opportunities of research on types of aggregate queries that have not been studied.
Keywords: Spatiotemporal Databases, Aggregation Queries, Aggregate Function

1 Introduction

A wide variety of scientific and business applications need to capture spatial and time-varying characteristics
of the entities they model. Spatial, temporal, and spatiotemporal applications are becoming more common
with the increasing capabilities of computer systems to store and process large amounts of information. Ex-
amples of such applications include land management, weather monitoring, natural resources management,
environmental, ecological, and biodiversity studies, tracking of mobile devices, and navigation systems.

Typically, spatiotemporal applications store vast amounts of data. For example, remotely sensed data
from NASA is captured at a rate of several Gigabytes a day. Clearly, due to the size of the data sets, the
study of individual entries in the database is rarely feasible, and in some cases, not possible for legal reasons
(i.e., keeping track of the trajectory followed by a cell phone user). In addition, as data sets grow larger,
there is a need for extracting general characterizations of large subsets of the data. Therefore it is useful to
develop techniques that efficiently summarize and discover trends in data and help in decision making. For
example, in a traffic control application, rather than studying the precise position of every single vehicle
in a particular road, it may be of interest just to know the overall number of cars crossing an intersection
during rush hour. This summarized information may support decisions regarding the construction of new
roads and underpasses, or the addition of new traffic lights, for instance. Similarly, for biodiversity studies
it might be of interest to determine the distribution of taxa in a particular region, rather than the specific
position of each plant or animal. Once a region rich in biodiversity has been detected, it can be considered
for declaration of a natural reserve.

In recent years, there has been an increasing amount of research work dedicated to spatiotemporal
data. Efforts have focused on identifying relevant characteristics of spatiotemporal entities and in providing
models for this new kind of data [2, 12, 22, 58, 69, 80]. We have also observed interest in the organization
of data for efficient retrieval [32, 57, 67]. The goal of this paper is to provide a survey on the state of the art
techniques for computing spatiotemporal aggregate functions, a topic of fervent interest during the last few
years.

Aggregate functions are widely used in database applications. Their popularity is reflected in the pres-
ence of aggregates in a large number of queries in the decision support benchmark TPC-D [28]. The ability
of aggregate functions to provide summarized information from a large collection of data is indeed fun-
damental in specific, increasingly relevant, application domains such as On Line Analytical Processing
(OLAP), decision support, statistical evaluation, and management of geographical data [9, 11, 14, 29, 33,
85].

In this paper, we decompose a spatiotemporal object into the different extents associated with it, namely
its explicit attributes, its spatial extent, its temporal extent, and the combination of spatial and temporal
extents. We similarly characterize all the distinct types of spatiotemporal aggregation queries that can be
of interest for a given user. This characterization allows us to classify different approaches in the literature

1

within a common framework. The rest of this survey is organized as follows. Section 2 gives the pre-
liminaries on spatiotemporal objects and aggregation. The following three sections present the semantics
of aggregate functions for traditional relational databases, temporal databases, and spatial databases, along
with most techniques for computing aggregates on such databases. Section 6 is devoted to spatiotemporal
aggregation. Finally, Section 7 summarizes the state of techniques described in this paper and formulates
research questions for future work.

2 Preliminaries

In studying previous research on aggregation we have observed inconsistencies in the problem definition,
as well as in the terms used to refer to specific concepts. Therefore, we start with a concrete definition
of the problem of aggregation on databases and present a model to describe aggregation queries. Such
model can be applied to traditional databases, in which objects lack temporal or spatial extent, as well as
to temporal, spatial, and spatiotemporal databases. This allows us to classify previous work on aggregation
and to identify areas of this problem that have not yet been addressed by the research community.

By definition, a spatiotemporal object is a unified object with spatial and temporal extent [12, 84]. A
pure spatial object can be either a point, a line, or a region in 2 or 3-dimensional space [21, 46, 82]. If no
spatial information is required, no spatial extent is associated to the object. The time extent of an object can
be modeled by either valid time, transaction time, or both (in which case the object is known as a bitemporal
object) [19]. Of course, the time variation of the objects being modeled may be of no relevance, in which
case the temporal extent of the object is simply ignored. When the time-varying behavior of a spatial object
is of interest, we have objects that change position, shape, and both position and shape [80]. Therefore,
the combination of the temporal extent with spatial extents of an object leads to different models, ranging
from snapshots to 3-dimensional, 4-dimensional, and even 5-dimensional objects depending on the different
definitions of time and space [35, 84].

2.1 Aggregate Functions

An aggregate function takes a set of tuples and returns a single value that summarizes the information
contained in the set of tuples [9, 29, 42]. In the context of this survey, aggregation is the effect of applying
an aggregate function to a group of qualifying tuples. Aggregate functions have received several names
in the extent research literature. Epstein differentiates between scalar aggregate and aggregate function
to distinguish between queries returning single or multiple aggregate values [20]. In Epstein’s work, an
aggregate query can return several results if the tuples are first partitioned into disjoint subsets based in
a grouping attribute (i.e., a GROUP-BY query). The SQL standard uses the term set functions to refer to
aggregate functions. In the rest of this paper, we refer to the functions computing an aggregate value from
a set of tuples as aggregate functions. As we will see, there is no need to differentiate between functions
returning either single or multiple aggregate values. Multiple aggregate values are the result of an orthogonal
operator that partitions the relation into sets of tuples also known as aggregation groups. We favor the term
aggregate function over set function used by SQL because it is more specific.

The SQL standard provides a variety of aggregate functions. The SQL-92 standard includes five such
functions, namely COUNT, SUM, AVG, MIN, and MAX [50]. The SQL:1999 standard adds EVERY, SOME,
and ANY, whereas the SQL/OLAP addendum 1 to the SQL:1999 standard includes 18 additional aggregate
functions [50].

1The aggregate functions defined in SQL/OLAP are STDDEV POP, STDDEV SAMP, VAR POP, VAR SAMP, COVAR POP,
COVAR SAMP, CORR, REGR SLOPE, REGR INTERCEPT, REGR COUNT, REGR R2, REGR AVGX, REGR AVGY, REGR SSX,
REGR SSY, REGR SYY, PERCENTILE DISC, and PERCENTILE CONT.

2

Name DepartmentId Age Salary

Praveen 1 24 45000
John 1 28 42000
Frank 1 50 80000
Sophia 2 25 40000
Fernando 2 30 48000

Table 1: Employees: A Sample Relation

DepartmentId MAX(Salary)

1 80000
2 48000

Table 2: The result of an Aggregate query using group composition and the MAX aggregate function

2.2 Aggregation on Explicit Attributes

Aggregate functions are applied to a collection (i.e., set) of tuples. Given a relation, a collection of tuples
can be generated at three different levels. For example, consider the relation employees given in Table 1,
whose schema is {Name,DepartmentId,Age, Salary}. A typical aggregate query on this relation could
be the following.

Query 1 Compute the highest salary on each department.

The results for Query 1 are shown in Table 2. In this case, the MAX aggregation function is applied
to collections of tuples created by a process known as group composition. In group composition, tuples
sharing the same values in a list of attributes (termed grouping attributes) form a collection. Because these
collections of tuples result from grouping composition, let us call them groups. Aggregate functions are then
applied to each group of tuples. This procedure aggregates information at a coarse level because a single
aggregate value is generated for each group. In the case of Query 1, two groups of tuples were generated
by the distinct values of DepartmentId (i.e., the grouping attribute). The first group is composed the
the tuples corresponding to employees Praveen, John, and Frank from whom, Frank has the highest salary
(80000). The second group is composed by the tuples corresponding to Fernando and Sofia. Fernando has
the highest salary of the group (48000). Therefore, the result for this query is the relation formed by the
tuples {< 1, 80000 >,< 2, 48000 >}.

Different queries may request to generate aggregate values at a finer level. Consider for example the
following query.

Query 2 Within each department, compute the highest salary by age. For each different value of age
consider the salary of the next youngest employee.

The results for Query 2 are shown in Table 3 (for brevity, only results for the first department are
shown). In this case, the MAX aggregate function is applied to collections of tuples generated by a process
known as partition composition. During partition composition tuples sharing the same values in a list of
attributes (termed partition attributes) are placed in the same collection. Because these collections result
from partitioning composition, let us call them partitions. For Query 2 partition composition has been
defined on DepartmentId resulting in two partitions. Aggregate functions are not applied directly to
partitions. Instead sliding window composition is performed on each partition. During sliding window
composition, a window frame is placed around each tuple in the partition. A window frame is defined using
a range of values (logical size) or a number of tuples (physical size), either leading or trailing (or both)

3

Name DepartmentId Age Salary MAX(Salary)

Praveen 1 24 45000 45000
John 1 28 42000 45000
Frank 1 50 80000 80000

Table 3: The result of an Aggregate query using partition composition on DepartmentId, sliding window
composition on Age, and MAX aggregate function on Salary

each tuple in the partition. In the case of Query 2, the window frame was defined as “1 tuple trailing”.
This effectively selects a set of tuples on which an aggregate function is applied. For example, for the first
tuple in the partition (i.e., Praveen) there are no tuples trailing. Hence, the aggregate function is applied
only to the current value of Salary (45000 in this case). For the second tuple in the partition (i.e., John),
the window frame selects the current and previous tuples in the partition. The MAX aggregate function is
then applied to the set {45000, 42000}, resulting in the aggregate value 45000. For the third tuple in the
partition, the aggregate function is applied to the set {42000, 80000}, yielding the aggregate value 80000.
Note that in this case, we generate an aggregate value for every tuple in every partition of every group. If
group composition is not used (such as in Query 2), the entire relation is considered as a single group.

To complement the aggregate functions, the SQL standard includes mechanisms for defining collection
of tuples at these three levels. The SQL-92 standard includes the GROUP BY clause to perform grouping
composition. The need for partitioning and sliding window composition was later noted and the SQL:1999
standard includes the WINDOW clause to address both of these needs.

2.3 Aggregation on the Temporal and Spatial Extent

Similar to the case for explicit attributes, the implicit attributes of a spatiotemporal object can be used
to define collections of tuples on which to apply aggregate functions. For the temporal dimension, these
collections are defined by a process called temporal grouping [40], in which the time line is partitioned and
tuples are grouped over these time partitions. Temporal aggregation, as studied in the literature, uses time
granularities as the building blocks for temporal grouping. Different granularities of the time dimension
can be used to define temporal group composition, temporal partition composition, and temporal sliding
widow composition. Details on how this is achieved, along with illustrative examples, will be presented in
Section 4.

Similar to temporal grouping, space grouping is the process of defining collections of tuples based on a
partition of space. Different levels of spatial granularities can be used to define spatial group composition,
spatial partition composition, and spatial sliding window composition in a spatial relation. Further details
and examples will be presented in Section 5.

The temporal and spatial extents of a spatiotemporal objects are orthogonally defined. Therefore, the
concept of aggregation groups can be defined independently on each dimension and should not affect our
formalism. The reader is referred to Section 6 for a detailed description of spatio-temporal aggregation.

2.4 Scope of this Survey

Aggregation in databases has different meanings depending on the context. For instance, it could refer to
aspects of language design, data modeling, or the evaluation of aggregate functions. For data modeling,
aggregation is a form of abstraction in which a relationship between objects is considered as a higher level
(aggregate) object [63, 64]. The focus of this paper is only on the study of algorithms for computing aggre-
gate functions on spatiotemporal objects. We do not consider issues of language design or data modeling
further.

4

Aggregate Evaluation Evaluation with unique values

COUNTi(R) |R| |πAi
(R)|

SUMi(R)
∑

({r.Ai|r ∈ R})
∑

({r.Ai|r ∈ πAi
(R)})

AV Gi(R) SUMi(R)/COUNTi(R) SUMi(πAi
(R))/COUNTi(πAi

(R))
MINi(R) min({r.Ai|r ∈ R}) min({r.Ai|r ∈ R})
MAXi(R) max({r.Ai|r ∈ R}) max({r.Ai|r ∈ R})

Table 4: Evaluation of the SQL-92 Aggregate Functions

3 Aggregate Functions on Explicit Attributes

Computing aggregations has always been considered an important feature of practical database query lan-
guages. An aggregate query is a query involving aggregate functions and it usually includes predicates and
other operators to select and reorganize qualifying tuples from the database.

Aggregate functions produce a single value over a collection of qualifying tuples from a relation [9,
29, 42]. As we have mentioned in Section 2.2, these collections of tuples can be defined using group
composition (e.g., the GROUP-BY clause in SQL) and partition and sliding window composition (e.g.,
the WINDOW clause in SQL). Klug [42] provided a formal framework for defining aggregate functions
for relational databases. In his model, for a relation with n attributes, he proposed to use a set of n ag-
gregate functions, each function defined on one attribute of the relation. Formally, for a relation R with
schema {A1, A2, . . . , An}, with each attribute Ai associated with domain Di, a countable set Agg =
{f1, f2, . . . , fn} of aggregate functions should exist. Each function fi ∈ Agg operates on attribute Ai ∈ R,
and for each function fi ∈ Agg, fi : D1×D2× . . . Dn → Dagg , where Dagg is the domain of the aggregate
function. Here, we present a framework for analyzing aggregate queries based on the mechanisms used to
define collections of tuples.

3.1 Formal Definition of Aggregation on Explicit Attributes

The aggregation functions defined by the SQL-92 standard can be evaluated as indicated in Table 4. Each
of these functions operates over a virtual relation. This virtual relation is a collection of tuples defined by
group composition, partition composition, and sliding window composition. Let us consider an aggregate
query using group composition such as Query 1 presented in the previous section. In this query, tuples
were first assigned to collections based on the value of their attribute DepartmentId. Then, an aggregate
function (e.g., MAX) was applied to each collection. Formally, an aggregate query using group composition
generates an aggregate value for each resulting group as follows.

Definition 1 (Aggregation using Group Composition) Given an aggregation query on relation R and a
select predicate SP, using group composition to define collections of tuples based on the values of attribute
list A of R, the solution to the query can be generated as follows.

Let S be the set of distinct values contained in the attribute list A. That is, S = πA(R). Every s ∈ S
partitions the value domain of A and generates groups of tuples from R as

GA,SP (s,R) = {r|r ∈ R ∧ r[A] = s[A] ∧ SP(r)} . (1)

Now, the solution to an aggregate query using the groups of tuples defined by S over relation R, S = πA(R),
is given by the expression

GAggfi,A,SP (R) = {s ◦ fi(GA,SP (s,R))|s ∈ πA(R)}

where fi is the aggregate function. This query produces a new relation whose schema is A ∪ Agg.

5

Let us now consider an aggregate query using partition composition such as Query 2 presented in the
previous section. As we have seen, this query generates collections of tuples based on the values of a list
of attributes, but instead of generating a single aggregate value for each collection, an aggregate value for
every tuple in the collection is generated. Therefore, there is a need to define a window to slide through all
tuples in the collection. An aggregate function is then applied to the set of tuples covered by the window.
Formally, an aggregate query using partition composition generates an aggregate value for each tuple in the
relation as follows.

Definition 2 (Aggregation using Partition Composition) Given an aggregation query on relation R and
a select predicate SP, using the partition composition to define partitions of tuples based on the values of
attribute list A of R and sliding window composition based on a single attribute B of R, the solution to the
query can be generated as follows.

Let the list of attributes A of R create a data partition P as defined by Equation 1. During sliding
window composition, for each tuple p in P , a window frame is defined by the following expression 2.

WFprecedes,follows,B(p, P) = {t|t ∈ P ∧ (p[B] − precedes) ≤ t[B] ≤ (p[B] + follows)}

Now, the solution to an aggregate query using data partitions defined by A over relation R, window fames
defined on attribute B of R, and a range on B defined by precedes and follows, is given by the following
expression.

WAggfi,A,SP,B,precedes,follows(R) = {p ◦ fi(WFprecedes,follows,B(p, P))|p ∈ PA,SP (s,R) ∧ s ∈ πA(R)}

The resulting relation has schema R ∪ Agg.

We can evaluate Query 2 using this semantics. For this, we simply need to set the values of precede and
follows to 1 and 0, respectively. The sliding window is defined on attribute Age (i.e., B = Age). Similarly,
the list of partition attributes A = {DepartmentId} and fi = MAXSalary.

3.2 Existing Approaches for Evaluating Aggregate Queries

A simple two-step algorithm was proposed by Epstein for evaluating aggregate queries [20]. To handle
many aggregate functions in a query, the algorithm computes each of them separately and stores each
result in a singleton relation, referring to that singleton relation when evaluating the rest of the query. A
different approach employing program transformation methods was proposed by Freytag and Goodman to
systematically generate efficient iterative programs for aggregate queries [23]. For brevity, we omit further
details on this methods because they are not critical for understanding spatiotemporal aggregation.

Recently, research work have explored diverse aspects of the aggregation operation. Among them,
optimization, for applications where performance is of utter importance [44, 85], online aggregation,
where the user is aware of the progress made by the query processor and he/she is capable of stopping the
query once an acceptable result have been achieved [31, 33], or approximate solutions, for applications
where an exact solution is not required, and a fast good answer is preferred [10, 11, 26, 27]. These are
techniques that can be applied to the computation of aggregate functions in general. We provide more detail
whenever these techniques are presented as part of the existing approaches for evaluating temporal, spatial,
or spatiotemporal aggregation.

2While the SQL standard contemplates the possibility of defining window frames by specifying its physical size, this implies
having some ordering in the tuples. This is not possible using set algebra. Therefore we do not contemplate this possibility in our
model.

6

3.3 Aggregation and OLAP

Typical OLAP queries aggregate data across several attributes (i.e., columns) in a relation. The CUBE oper-
ator [29], for instance, was proposed as the n-dimensional generalization of the
GROUP-BY clause in SQL. It computes GROUP-BYs corresponding to all possible combinations of a list
of attributes. This implies finding the power set of all attributes in the relation, which is not a trivial task.
Thus, solving aggregate queries in OLAP applications has inspired a considerable amount of research work.
A general assumption in the CUBE operator is that the aggregate function being computed is distributive.
Therefore, aggregate functions can be partially computed on disjoint subsets of data. By pre-computing
the aggregated results of different subsets of data, the total processing time of a query can be drastically
reduced. The final result can be obtained by properly merging these partial results [3, 14, 34].

While the different columns in a data cube are usually called “dimensions,” they generally cannot be
considered as dimensions in a spatial database. This is because some of the dimensions in a data cube (e.g.,
CustomerId) are defined over discrete domains which do not have a natural ordering among their values
(customer 1000 cannot be considered “close” to customer 1001). In such cases, any ordering defined for the
values in one of these columns is arbitrary. For this reason, we differentiate databases for OLAP applications
from spatial databases. For the same reason we do not consider these “dimensions” as a special extent of
the entities modeled by the database; instead, they can be regarded as explicit attributes that characterize a
particular entity.

4 Temporal Aggregates

While a conventional database models the reality relevant to an enterprise as a single state, a temporal
database is one that supports some aspect of time and keeps track of the different states of the database.
Time-varying data is common, and applications that manage such data abound [6, 49, 88]. In a temporal
database, the temporal data is modeled as a collection of line segments. These line segments have a begin
time, an end time, one or more time-invariant attributes, and one or more time-varying attributes. It is well
known that database facts have at least two relevant temporal aspects. Valid time concerns when a fact was
true in the modeled reality. Transaction time, on the other hand, concerns when a fact was current in the
database. These two aspects are orthogonal, in that each could be independently recorded or not, and each
has associated with it specific properties [6, 36, 70, 71]. All methods to date have focused on one time
dimension only. However, most of them can be easily extended to handle either valid or transaction time.

4.1 Formal Definition of Temporal Aggregation

Computing temporal aggregates is a significantly more intricate problem than conventional aggregation
because each database tuple is accompanied by a time interval during which its attribute values are valid.
Consequently, the value of a tuple attribute affects the aggregate computation for all those instants included
in the tuple’s time interval.

In traditional databases, where only explicit attributes are of concern, aggregate functions are applied to
collections of tuples that are defined by the different values in a list of explicit attributes. For the temporal
extent of an object, collections of tuples can be defined based on time granularities (such characterization
will allow the approaches we discuss below to be classified).

A time domain is the set of primitive temporal entities used to define and interpret time-related con-
cepts [18, 54]. Formally, a time domain is a totally ordered set of time points with the ordering relation ≤.
A granularity creates a discrete image, in terms of granules, of the time domain. Portions of the time-domain
are grouped into aggregations called granules. A granule is a subset of the time domain. A granularity is

7

a mapping G from the integers to granules. Granularities are related in the sense that the granule in one
granularity may be further aggregated to form larger granules belonging to a coarser granularity [7, 8, 18].

Temporal group composition is a mechanism that generates collections of tuples. A collection, termed
a group, is formed by all tuples valid at the same time value at granularity G. An aggregate function can
then be applied to each group. Temporal partition composition is used for handling queries that require
aggregation at a finer level. Temporal partition composition defines collections of tuples, termed partitions,
based on the distinct time values at granularity H (H is finer than G, denoted by H ≺ G). However,
aggregation functions are not applied to these partitions. Instead, temporal sliding window composition
places window frames around each time value at granularity J (J ≺ H) within these partitions. A window
frame is defined by a time interval leading, trailing, or leading and trailing every time value in the partition.
The aggregate function is applied to the set of tuples valid for the window frame around each time value
within a partition.

The generation of collections of tuples based on some partition of the time domain have received several
names in the research literature. In particular, we have encountered the terms span grouping and instant
grouping. For span grouping, the time line is partitioned in pre-defined intervals such as year, month, or
day [40]. Instant grouping, in the other hand is defined by the data [40, 53, 72]. These two are really special
cases of temporal group composition. In the former, the granularity used is that of a year, month, day, etc.
In the latter, the granularity used for temporal group composition is the finest granularity supported by the
temporal relation.

When computing temporal aggregation using group composition, the resulting relation is a time-varying
relation defined at granularity G (i.e., the granularity of the groups). Consider, for example, the following
query.

Query 3 Compute the monthly average salary of all employees.

In this query, the time line is partitioned using fixed intervals (i.e., months). Groups of tuples are defined
by each temporal partition and the aggregation function is applied to each group. This kind of aggregation
query is formally defined as follows.

Definition 3 (Aggregation using Temporal Group Composition) Given a temporal relation RT and a
select predicate SP, let T (G,RT) = {τ |τ ∈ cast(r[vt], G)∧r ∈ RT }, where r[vt] gives the valid time of r,
be the set of time values at granularity G, for which there is at least one tuple in the temporal relation RT

that is valid at that time value and at that granularity. Each time value τ ∈ T (G,RT) defines a collection
of tuples in RT based on a time partition as follows.

PG,SP (τ,RT) = {t | ∃ r ∈ RT ∧ overlaps(cast(r[vt], G), τ) ∧ SP(r)

∧ (t[A1, . . . , An] = r[A1, . . . , An]) ∧ (t[vt] = intersect(r[vt], τ)} (2)

The result of an aggregate query using temporal group composition with granularity G is given by the
following expression.

GBAggfi,G,SP (RT) = {τ ◦ fi(PG,SP (τ,RT))|τ ∈ T (G,RT)}

In Equation 2, r[A1, . . . , An] refers to the explicit attributes of tuple r ∈ RT . Note that P , as defined
by Equation 2, does not generate a strict partition of RT such as the case of Equation 1. Instead, P is a
subset of the rows in RT . The temporal extent of the tuples in P has been narrowed to a single granule in
granularity G. Also note that, in order to provide a clean and simple notation, Equation 2 generates groups
based on the implicit attribute valid time. This definition can be easily modified to account for transaction
time.

8

For an aggregation using temporal partition composition, on the other hand, there are at least two gran-
ularities involved. The first (i.e., coarser) granularity defines collections of tuples called partitions, whereas
the second (i.e., finer) granularity is used to define window frames during temporal sliding window compo-
sition. When temporal partition composition at granularity H is used in combination with temporal group
composition at granularity G, H ≺ G. For example, consider the following query requiring temporal
partition composition and temporal window composition.

Query 4 For every year, compute the moving average of salary of all employees with respect to the previous
two months.

In this case, a temporal partition is defined at the granularity level of year. Within each partition, tuples
are grouped by month. All tuples valid at a particular month and the previous two months form a group on
which the aggregate function is to be applied. The result of the query is an aggregate value for every time
value at the granularity level of month. We can formally define this kind of query as follows.

Definition 4 (Aggregation using Temporal Partition Composition) Given a temporal relation RT and a
select predicate SP, let us use T (H,RT) and PH,SP (τ,RT) as before. Let J be a granularity such that
J ≺ H . For each t ∈ T (J,RT), a window frame with respect to the time partition defined by granularity
H is generated as

WFH,SP,J,precedes,follows(t, R
T) = {r|r ∈ PH,SP (cast(t,H), RT) ∧

overlaps(cast(r[vt], J), [t − precedes, t + follows))},

where precedes and follows are query arguments that define the aggregation group around each time value
t within a window partition.

The result of an aggregate query on temporal relation RT with temporal partitions at granularity H
and window frames at granularity J with ranges defined by precedes and follows, is given here.

WAggfi,H,SP,J,precedes,follows(R
T) = {cast(t,H) ◦ t ◦ fi(WFH,SP,J,precedes,follows(t, R

T))|t ∈ T (J,RT)}

For Query 4, we have used the granularity level year to define partitions (H = year) and the granularity
level month to define window frames (J = month). A window frame is defined by including the previous
two temporal values at granularity level month (i.e., trailing = 2) but no future values (i.e., leading = 0).
For all tuples valid within a particular window frame, the AVG aggregate function is applied.

4.2 Existing Approaches for Evaluating Temporal Aggregate Queries

Various algorithms have been proposed for processing temporal grouping and computing aggregation on
a temporal relation. These algorithms can be classified based on the time when the aggregate value is
computed. Non-indexed evaluation algorithms scan the temporal relation every time an aggregate query
is issued. During this process, collections of tuples are generated based on temporal grouping and an
aggregate function is applied to each collection. Indexed evaluation algorithms, on the other hand, pre-
process aggregate values and store this information in a disk-based data structure. Instead of scanning the
temporal relation when a query is issued, indexed evaluation algorithms use this data structure for answering
an aggregation query.

9

4.2.1 Non-indexed Aggregation Evaluation

The earliest approach for evaluating temporal aggregation was proposed by Tuma [81]. He proposed a two-
step algorithm In the first step, the temporal relation is scanned once to determine constant intervals. A
constant interval is a period for which the temporal relation remains unchanged [72]. In the second step,
the temporal relation is scanned again to apply the aggregate function on the groups of tuples defined by the
constant intervals. Tuma’s approach is based on Epstein’s [20] algorithm for computing aggregation over
explicit attributes using the GROUP-BY operator.

I/O efficient algorithms for computing temporal aggregation were developed after Tuma’s initial ap-
proach. These methods require reading the temporal relation only once. A data structure (usually main-
tained in main memory) is created as tuples in the temporal relation are processed. The resulting data
structure holds sufficient information to compute temporal aggregation.

The Aggregation Tree : Kline and Snodgrass [40] proposed an algorithm for computing temporal aggre-
gation main memory-based data structure. The proposed algorithm was called aggregation tree because it
builds a tree while scanning a temporal relation. After the tree has been built, the answer to the temporal
aggregation query is obtained by traversing the tree in depth-first search. It should be noted that this tree
is not balanced. Therefore, the order of tuples inserted into the aggregation tree affects its performance. If
the tuples are sorted on the start time and inserted in that order, the aggregation tree would look more like
a linked list, causing insertions to be slower than insertions into a balanced binary tree. For this reason, the
worst case time to create an aggregation tree is O(n2) for n tuples sorted in time. An even more serious
limitation of the aggregation tree approach is that the entire tree must be kept in memory. Since the size
of an aggregation tree is proportional to the number of distinct time stamps in the temporal relation, the
size of the database the aggregation tree algorithm can deal with tends to be limited by the size of available
memory and the number of distinct timestamps of tuples.

To minimize memory limitations, a variant of the aggregation tree, called k-ordered aggregation tree,
was proposed by the same authors. The k-ordered aggregation tree takes advantage of the k-orderedness
of tuples to enable garbage collection of tree nodes, so that the memory requirements can be reduced sig-
nificantly. However, the k-ordered aggregation tree approach assumes that the tuples in a table are ordered
within a certain degree. Specifically, each tuple is at most k positions from its position in a totally ordered
version of the table. This requirement is difficult to meet in a real database. Without a priori knowledge
about a given table, the k-orderedness is expensive to measure, as it requires an external sort of the table.
The worst case running time of the k-ordered aggregation tree algorithm is still O(n2).

In an extension of his previous work, Kline [41] proposed to use a 2-3 tree, which is a balanced tree,
to compute temporal aggregates. The leaf nodes of the tree store the time intervals of the aggregate results.
Like the aggregation tree, this approach requires only one database scan. Note that, because it is a balanced
tree, the running time is O(n log n). However, its main limitation lies on the requirement that a database be
initially sorted by start time. It has been shown that, for a randomly ordered database, the aggregation tree
performs better than the 2-3 tree approach [41]. This is due to the preprocessing cost required by the 2-3
tree approach to sort the database.

The PA-tree: Kim et al. proposed an algorithm for computing temporal aggregation that is asymptotically
better than the aggregation tree. The proposed method is based on the point-based aggregation tree (PA-
tree) [39], which stores timestamps instead of intervals in an AVL tree. This approach requires one scan
of the temporal relation for building the tree. Since the tree is balanced, the time complexity for building
the tree is O(n log n) rather than O(n2) for the aggregation tree. In addition to timestamps, each node in
the PA-tree stores either a single aggregate value for computational aggregates such as COUNT, SUM, and
AVG aggregation, or a list of value-length pairs for selective aggregates such as MIN and MAX aggregation.
Computing the algebraic aggregate functions is performed by doing an in-order traversal of the tree and

10

updating aggregate values by the amount indicated on each encountered node. Selective aggregate func-
tions are computed by merging the lists of pairs associated to each tree node in similar way to the skyline
problem [48].

The Balanced Tree: Moon et al. proposed two I/O and computationally efficient algorithms for the eval-
uation of temporal aggregates [52, 53]. A balanced tree is presented for solving temporal aggregation
involving computational aggregates (i.e., COUNT, SUM, and AVG). The motivation behind the balanced tree
algorithm is that all timestamps in the temporal relation can be sorted incrementally by inserting them into
a balanced tree, as the tuples of an input database are being scanned. Each node of a balanced tree stores
a timestamp, either a start time or an end time and two counters: one storing the number of tuples starting
at the time stamp and the other storing the number of tuples ending at the time stamp. By doing an inorder
traversal of the tree, the constant intervals can be determined. At the same time, the information on the
counters of each node is used to compute the value of the temporal aggregation for each constant interval.

For queries involving selective aggregates (i.e., MIN and MAX), Moon et al. proposed a bottom-up ag-
gregation approach, termed the merge-sort aggregation algorithm. Like the classical merge-sort algorithm
based on the divide-and-conquer strategy, the merge-sort aggregation algorithm computes a larger (interme-
diate) aggregate result by merging two smaller (intermediate) aggregate results. The algorithm starts with
merging tuples in pairs at the bottom and terminates when a final aggregate result is obtained at the top.

Both of these techniques are constrained by the amount of main memory available in the system. To
overcome this limitation, Moon et al. proposed the use of a data structure called the meta array. By using
the meta array, tuples in the base relation can be grouped into small subsets (following some partition of
the time line) for which temporal aggregation can be computed given a limited buffer space. The meta
array will maintain aggregate information of tuples overlapping the intervals given by this time partition to
guarantee the correctness of the result.

Parallel Temporal Aggregation: Here, we discuss algorithms that have been developed for the parallel
processing of temporal aggregation in large-scale databases. Ye and Keane proposed two approaches to
parallelize the aggregation tree algorithm on a shared-memory architecture [87]. They propose to parallelize
temporal aggregation queries that include GROUP-BY on explicit attributes. Each group defined by the
grouping attribute is send to a processor where the temporal aggregation is computed locally.

Gendrano et al. have also developed several parallel algorithms [25] for computing temporal aggregates,
specifically on a shared-nothing architecture, by parallelizing the aggregation tree algorithm. Gendrano et
al. showed promising scale-up performance of the parallel algorithms through extensive empirical studies
under various conditions. Nonetheless, all the aforementioned parallel algorithms inherit the same limita-
tions from the aggregation tree algorithm, as the parallel algorithms were developed by parallelizing the
aggregation tree. In particular, the size of the database those parallel algorithms can handle will be limited
by the aggregate memory of participating processors.

Moon et al. [52, 53] extended the notion of meta array to cover several processors while computing
temporal aggregates in parallel. A global meta array maintains aggregated information about tuples over-
lapping the time interval assigned to each processing node, whereas local meta arrays are used to compute
temporal aggregation locally on each node.

All the non-indexed evaluation algorithms for temporal aggregation presented here address the same
type of query. At a logical level, this type of query can be described as follows. First, for each time
value τ at the finest granularity supported by the temporal relation, a collection of tuples is generated. The
collection corresponding to the time value τ is formed by all tuples in the temporal relation valid during
time τ . Second, an aggregate value is generated for each collection and the corresponding time value τ is
annotated with this aggregate value. Finally, consecutive time values annotated with the same aggregate
value are coalesced into a constant interval. That is, a time interval for which the temporal aggregate value

11

remains constant. Note that this type of query corresponds to temporal aggregation queries using temporal
group composition as presented by Definition 3. The granularity used during group composition equals the
finest granularity supported by the temporal relation.

4.2.2 Indexed Aggregation Evaluation

A more recent approach for evaluating for temporal aggregation queries was proposed by Yang et al. They
introduced the SB-tree [86] for incrementally computing temporal aggregates using a materialized view
approach. This is a disk-based approach that computes temporal aggregates over a base relation that may
gradually change by insertion and deletion. The SB-tree contains a hierarchy of intervals associated with
partially computed aggregates. Aggregation over a given temporal interval is evaluated by performing a
depth-first search on the tree and accumulating the partial aggregate values along the way. The SB-tree was
developed for a data warehouse environment in which mostly insertions are expected. If deletion operations
are expected, then MIN and MAX aggregation queries are not supported since these aggregate values cannot
be incrementally maintained under deletions.

In addition to supporting temporal queries involving temporal group composition, the SB-tree supports
queries that require a sliding window termed in their paper cumulative aggregate queries. For every time
value τ at the finer granularity supported by the temporal relation, a cumulative aggregate query defines a
window frame around τ using a time interval of length w preceding τ . All tuples valid during the interval
[τ −w, τ] form a collection for which an aggregate value is generated. Cumulative aggregate queries can be
defined by our model using temporal partitioning and sliding windows. The granularity used for the sliding
window definition should be the finest granularity supported by the temporal relation. The granularity used
for the temporal partition definition should be so coarse that all tuples in the temporal relation belong to the
same collection.

One drawback of the SB-tree lies in the assumption that aggregate queries are always evaluated over
the entire base relation. This is a clear disadvantage because aggregate queries usually specify a number
of predicates to select the tuples on which temporal aggregation should be computed. The multi-version
SB-tree (MVSB-tree) [91] was specifically designed to address this issue. It was proposed to deal with
temporal aggregate queries coupled with range predicates on explicit attributes, termed range temporal
aggregates [91]. The MVSB-tree is logically a series of SB-trees, one for each timestamp. Given a range
on the values of one of the explicit attributes r, and a temporal interval i, the MSVB-tree computes the
aggregate of all the tuples within r and valid during i as a series of additions and subtractions of values
stored in the index. Because this is a form of pre-aggregation, only distributive aggregate functions can be
evaluated by the MVSB-tree, in particular SUM, COUNT, and AVG.

The effectiveness of the MVSB-tree is limited by the size of its index, which can be larger than the
database [76]. This limitation was overcome by Tao et al. [76] by an approach that computes an approxi-
mate solution to aggregate queries while maintaining only a small index. This approach is based, at a logical
level, on a MVB-tree, but can be practically implemented using an B-tree and an R-tree. In particular, Tao et
al. can approximately evaluate queries containing COUNT and SUM aggregate functions. Unfortunately, the
approaches presented by Zhang et al. [91] and Yao etal [76] can only evaluate non-sequenced queries (i.e.,
the query does not result in a temporal relation). This is because, once a set of tuples have been selected by a
range predicate given on one of the explicit attributes and by a temporal predicate, the temporal information
of the tuples is discarded.

One drawback of indexed evaluation algorithms is that they either assume that aggregate queries do
not include predicates on explicit attributes [86], or they assume that predicates are defined on a single
attribute [76, 91]. Furthermore, the approaches presented by Tao et al. and Zhang et al. [76, 91] ignore
the temporal characteristics of the tuples defined by the predicates once they have been selected. For this
reason, we do not consider this approach a valid technique for evaluating temporal aggregates. A side effect

12

of ignoring the temporal nature of data is the duplicate count problem, in which temporal objects may be
counted more than once.

Another disadvantage of indexed evaluation algorithms is that they can only process certain types of
aggregate functions. In particular, partial aggregation, or pre-aggregation, can only be used for distributive
functions such as those included in the SQL-92 standard [29]. Holistic aggregate functions (e.g., MEDIAN)
cannot be combined with pre-aggregation. Therefore, queries involving holistic aggregate functions cannot
be processed with indexed evaluation methods.

4.3 Aggregates on Data Streams

Data streams are ordered sequences of value points that are read/received in increasing order [4]. Because
each value in a data stream is usually associated with a timestamp indicating either the time when the value
was generated or the time when the value was received, data streams may be considered a special case of
temporal data. Applications requiring the use of data streams are increasingly common and it is easy to
find examples of data streams applications, such as network monitoring, security, telecommunications data
management, web applications, manufacturing, and sensor networks [4, 17, 90].

Because of the immense amount of data generated by the stream, it is extremely costly to store all data
in such a way that it is readily available for answering queries. Instead, stream data is either discarded or
archived after having been looked at just once. In consequence most applications only perform aggregate
queries over data streams. Summarized information about the data stream is often more important than
retrieving specific entries with certain properties [62].

There are two models used for processing stream data [16, 90]. The sliding window model is used when
only recent values in the data are of interest (i.e., within the past w timestamps). The complete (or infinite
window) model is used when all values in the stream are of interest. While stream data is a special case of
temporal data, the complete model essentially ignores its temporal properties.

The sliding window model for processing stream data corresponds to temporal partition composition
and temporal sliding window composition in our model. The sliding window composition is performed at
the finest granularity supported by the timestamps on the values of the stream. The window frame is given
by a trailing temporal interval of size w and there is no leading temporal interval. The temporal partition
composition is such that the entire stream data creates only one collection of values. Methods developed to
compute aggregation over data streams using the sliding window model include those by Datar et al. [16]
and Zhang et al. [90]. Datar et al. present a method for computing approximate solutions for the COUNT
and SUM aggregate functions. For this, they propose the use of Exponential Histograms, a data structure
that can be incrementally maintained while preserving guarantees on the approximate solutions to COUNT
and SUM aggregate queries. Zhang et al. [90] propose a mechanism for computing temporal aggregation on
stream data based on a hierarchy of granularities. The main idea is to use different granularities to aggregate
data depending on its age. Older data is aggregated at a coarser granularity whereas the most recent data
is aggregate at the finest granularity. The most recent data is aggregated following the sliding window
model. Established systems for stream data management have also adopted this approach for computing
aggregate functions. One good example is Aurora [1], which is a model and an architecture for data stream
management.

The complete model for processing data streams considers all values in the stream read so far. Since
data is not available at query time, only approximate solutions to aggregate queries are possible. For this,
research work has turned to the maintenance of summarized information in the form of histograms [30, 62]
or sketches [15, 17]. We do not provide further details on these methods because they ignore the temporal
characteristics of data while evaluating aggregate queries.

13

4.4 Research Opportunities

Temporal aggregation queries can be evaluated by either non-indexed or indexed methods. Non-indexed
evaluation methods require a scan of the base relation every time a query is issued. During this process,
qualifying tuples are retrieved according to the select predicate and their aggregate information is maintained
in a main-memory data structure. At the end of the scan, this data structure will provide a temporal relation
with the aggregate values and their corresponding valid intervals. Unfortunately, all evaluation algorithms
presented here rely on incrementally maintaining an aggregate value as the base relation is scanned. This
approach will not work for non-distributive aggregate functions.

Indexed evaluation methods do not require a scan of the base relation at query time. Instead, before any
query is issued, a disk-based data structure that maintains pre-computed aggregate values is created. The
evaluation algorithm uses this data structure to answer an aggregate query. Only one of the indexed methods
presented here (i.e., [86]) can evaluate a temporal aggregation query resulting in a temporal relation. The
rest of the indexed evaluation algorithms evaluate a temporal aggregation query to a non-temporal relation.
Because indexed evaluation algorithms rely on pre-aggregation, it is not possible for them to evaluate queries
including non-distributive aggregate functions. Furthermore, they provide only limited (or null) support of
selection predicates. If a query includes predicates not supported by the disk-based data structure, the query
cannot be evaluated.

We have identified the need for indexed evaluation algorithms with extended predicate support. These
algorithms should also be capable of evaluating aggregation queries that result in a temporal relation. In
addition, both non-indexed and indexed evaluation algorithms should be extended to handle non-distributive
aggregate functions.

5 Spatial Aggregation

Spatial data appear in numerous applications, such as GIS, multimedia, and even traditional databases. Spa-
tial database systems organize and manage large amounts of multidimensional data. Objects stored in spatial
relations are associated with spatial extents that define their geometric features [47]. These objects are usu-
ally points, lines, polygons, and volumetric objects [83]. Spatial relations are indexed by multidimensional
access methods, such as R-trees, for the efficient processing of queries such as spatial selections or spatial
joins [24, 47, 68]. Due to the complexity of the spatial operators, the large amount of data, and the diffi-
culty for defining a spatial ordering, a traditional relational Database Management System (DBMS) may
not be adequate to efficiently support spatial data. Therefore DBMSs must offer spatial query processing
capabilities to meet the needs of such applications [6, 47, 49, 83].

Aggregate queries over spatial data require the organization of tuples from a spatial relation into col-
lections based on their spatial extent. Aggregate functions are then applied to these collections. Spatial
aggregation, as studied in the literature, can be viewed as aggregates on collections of tuples based on gran-
ularities of the spatial domain. A spatial domain may be represented as a set (e.g., R3, R2, N3, N2), with
elements referred to as points. However, for geographic applications horizontal space (e.g., latitude and
longitude) is usually segregated from vertical space (e.g., depth or altitude), with horizontal and vertical
granularities defined on the spatial domain [38].

A horizontal spatial granularity may be defined as a mapping from the integers to a subset of the space
domain such that (i) granules from a spatial granularity do not overlap and (ii) the index set of a spatial
granularity provides a contiguous encoding. Different granularity levels for a horizontal space could be ex-
pressed in degree, minute, or second, for example. The definition associated with vertical spatial granularity
is similar to temporal granularity. Different levels of granularity for the vertical space could be expressed
using centimeter, meter, and kilometer, for example. A three-dimensional granularity is a cross product of
the horizontal and vertical spatial granularities [38].

14

5.1 Formal Definition of Spatial Aggregation

Different levels of spatial granularities can be used to define group, partition, and sliding window composi-
tion in a spatial relation. In spatial group composition tuples sharing the same space value at granularity G
form a collection termed group. For each group, an aggregate function is applied and the group is annotated
with the aggregate value. When computing spatial aggregation using group composition, the resulting rela-
tion is a spatial relation defined at granularity G (i.e., the granularity of the groups). Consider, for example,
a land management application that keeps track of forests in the US. The regions of land covered by forest
can be estimated from satellite data such as Landsat [43]. The following is an example of spatial aggregation
query for this application.

Query 5 Compute the amount of land covered by forest in every county of the state of Arizona.

This query can be answered by applying group composition at granularity G = county to the tuples that
satisfy the predicate “in the state of Arizona”. Then, for each collection of tuples sharing the same spatial
value (i.e., same county), an aggregate function is applied. In this case, we apply SUM on the area, where
area is a property of any object with a spatial extent. The answer to this kind of query can be formally
defined as follows.

Definition 5 (Aggregation using Spatial Group Composition) Given a spatial relation RS and a select
predicate SP, let S(G,RS) = {s|s ∈ cast(r[se], G) ∧ r ∈ RS} be the spatial counterpart of T (G,RT),
where r[se] gives the spatial extent of tuple r. Each space value s ∈ S , defines a subset of tuples of RS

based on a space partition as follows.

PG,SP (s,RS) = {t | ∃ r ∈ RS ∧ overlaps(cast(r[se], G), s) ∧ SP (r)

∧ t[A1 . . . An] = r[A1 . . . An] ∧ t[se] = intersect(r[se], s)} (3)

The result of an aggregate query using spatial group composition at granularity G is given by the
following expression.

GBAggfi,G,SP (RS) = {s ◦ fi(PG,SP (s,RS))|s ∈ S(G,RS)}

In Equation 3, r[A1 . . . An] indicates the explicit attributes of tuple r ∈ RS whereas r[se] indicates its
implicit spatial extent. Depending on the type of this spatial extent, Equation 3 may or may not define a strict
partition of the data. If the base spatial relation stores only point objects, a partition of the spatial domain
also defines a partition of the data. On the other hand, if the objects stored in the relation correspond to
regions (say areas with different vegetation), then Equation 3 defines a subset of the rows in RS rather than
a strict partition. Similar to the case of Equation 2, the spatial extent of the tuples in P has been narrowed
to a single granule of the spatial granularity G.

Spatial partition composition is used when a finer level of aggregation is required. During this process,
each space value at granularity H (H ≺ G, where G is the granularity used for spatial group composition)
defines a collection of tuples termed a partition. To each partition, we apply spatial sliding window com-
position, which places a window frame around each spatial value s at granularity J (J ≺ H). A window
frame around s =< sx, sy > is defined as

Wwindowsize(s) = {< x, y > |(sx − windowsize ≤ x ≤ sx + windowsize) ∧

(sy − windowsize ≤ y ≤ sy + windowsize)}, (4)

where windowsize is a query argument defining the size of the window frame. In this case s was a two-
dimensional spatial point and the window frame was a square. However, Equation 4 can be generalized for

15

three-dimensional spaces and for different shapes of windows. For every space value s, an aggregate value
is generated by applying an aggregate function to the set of tuples valid for the window defined around s.

When computing spatial aggregation using partition and sliding window composition, the resulting re-
lation is a spatial relation containing one entry for every spatial value at granularity J (i.e., the granularity
used for sliding window composition). To illustrate this, consider the land management application de-
scribed before, from which we would like to detect a good place for founding a natural reserve. In this case,
we are interested in analyzing information at a fine granularity. Clearly, finding the county with the highest
plant diversity is of no much use in this case. The result of the following query might provide the required
information.

Query 6 Compute the average diversity of vegetation (i.e., number of species of plants) per square kilome-
ter in each county of the state of Arizona. For each square kilometer, consider neighboring regions up to 2
km on each direction (north, south, east, and west), to smooth out local variations.

To answer this query, we need spatial partition composition using a granularity at the county level. Within
each partition we define sliding window composition using a granule of 1 km2. The aggregate function
is then applied to the set of tuples occurring within the limits of each spatial window and that satisfy the
spatial predicate “in the state of Arizona”. In this case, the window frame is 5 × 5 km because leading or
trailing spatial intervals of 2 kilometers are used, to account for the influence that neighboring regions might
have on the diversity of a particular region. In general, the answer for this type of queries can be formally
expressed by the following definition.

Definition 6 (Aggregation using Spatial Partition Composition) Given a spatial relation RS and a se-
lect predicate SP, let us use S(H,RS) and PH,SP (s,RS) as before. Let J be a space granularity with
J ≺ H . For each s ∈ S(J,RS), a window frame with respect to the spatial partition generated by granu-
larity H is defined as

WFH,SP,J,windowsize(s,R
S) = {r|r ∈ PH,SP (cast(s,H), RS) ∧

overlaps(cast(r[se], J),Wwindowsize(s))},

where windowsize is a query argument that defines the window frame around each space value s within a
window partition.

The result of an aggregate query on spatial relation RS with spatial partitions at granularity H and
window frames at granularity J with range defined by windowsize, is given by

WAggfi,H,J,windowsize(R
S) = {cast(s,H) ◦ s ◦ fi(WFH,J,windowsize(s,R

S))|s ∈ S(J,RS)} .

5.2 Existing Approaches for Evaluating Spatial Aggregate Queries

Various algorithms have been proposed to evaluate aggregate queries on spatial databases. Because these
queries usually include a spatial selection predicate describing a multi-dimensional box or window, they
are often referred to as box aggregation queries. Aggregate queries with these spatial predicates retrieve
summarized information of the objects that either partially or completely overlap the region defined by the
multi-dimensional window [45, 77, 83, 93].

In Section 4, we classified existing approaches for the evaluation of temporal aggregates into either
non-indexed or indexed evaluation algorithms. However, for spatial aggregation, we have only encountered
indexed evaluation algorithms. That is, rather than answering directly from the data stored in a spatial
relation, they rely on a small disk-based data structure to answer the queries. Furthermore, to the best of our
knowledge, all these methods only focus on box aggregation queries.

16

Pedersen et al. [59] proposed pre-aggregation over spatial data warehouses. They analyze the proper-
ties of topological relationships between 2-dimensional spatial objects and show why traditional techniques
for pre-aggregation will not work on these settings. Pre-aggregation is a common technique used to ef-
ficiently process aggregate functions over data warehouses. However, for pre-aggregation to work, the
spatial properties of the objects must be distributive over some aggregate function. On spatial data, some
of the topological relationships are not distributive (e.g., union). To circumvent this problem, Pedersen et
al. presented a methodology to de-compose spatial objects in a way that pre-aggregation can be applied.

Using an approach that combines indexing with pre-aggregation, Papadias et al. presented the Aggrega-
tion R-Tree (aR-Tree) [56], an R-Tree that annotates each MBR with the value of the aggregate function for
all the objects that are enclosed by it. Therefore an aggregate query does not need to access all the enclosed
objects, since part of the answer is found in the intermediate nodes of the tree. In this case, pre-aggregation
is possible because they only consider disjoint spatial objects. Zhang et al. presented a set of four optimiza-
tion techniques to improve query performance for MIN and MAX aggregation [92]. While some of these
optimizations could be implemented in the aR-tree, they also proposed the Max R-tree (MR-tree), a data
structure explicitly designed to maintain MIN and MAX aggregates. In later work, Zhang et al. [93] focus
on developing efficient solutions to the COUNT, SUM, and AVG aggregate functions. Instead of relying on
previous indexing techniques such as the aR-tree, they use specialized aggregate indexes that incrementally
maintain aggregates. They provide a new approach to reduce aggregate queries to the dominance-sums
problem. In addition, they extend the best known solution to the dominance-sums problem, the ECDF-
tree [5], an static, main-memory data structure, and make it dynamic and disk-based (the ECDF-B-tree).
Unfortunately, this data structure cannot efficiently handle insertions when optimized for queries. They
present a solution to this problem by introducing the Box Aggregation Tree (BA-tree), a data structure that
efficiently supports both insertions and queries.

Lazaridis and Mehrotra proposed a tree structure for evaluating box aggregate queries in a multi-
dimensional space containing point data items [45]. Their approach uses a tree structure called Multi-
resolution Aggregate tree (MRA-tree), and their algorithm selectively traverses nodes of this tree based on
reasonable assumptions on which nodes, if examined, will most likely reduce the uncertainty on the value
of the aggregate. Tree nodes are augmented with aggregate information for all data points indexed by them.
Tao et al. [77] use a specialized index structure called the aggregate Point-tree (aP-tree) for evaluating
box aggregation queries over points in 2-dimensional space. The intuition behind the aP-tree is that two-
dimensional points can be viewed as intervals in the key-time plane and, therefore, they can be indexed
using temporal access methods. A box aggregation query is reduced to a pair of vertical range aggregate
(VRA) queries, which can be answered in constant time by the aP-tree. The main advantage of this approach
is that the query cost is independent of the the number of objects contained by the query window.

5.3 Research Opportunities

All of the approaches presented on this section for the evaluation of spatial aggregation focus on box aggre-
gation queries. In other words, only selection predicates defining a range in space are supported. Any other
predicates, such as predicates on explicit attributes, are not supported. In addition, these approaches do not
offer support for queries requiring spatial group or partition composition. In fact, once these approaches se-
lect the set of qualifying tuples, the spatial properties of the objects represented by these tuples are ignored.
Because of this, queries such as Query 5 and Query 6 cannot be evaluated.

We have identified the need for algorithms capable of evaluating spatial aggregation queries that utilize
the spatial extent of the objects selected by the query predicates. In addition, such algorithms should be able
to provide support for predicates defined on spatial and explicit attributes. Furthermore, support should be
provided for non-distributive aggregate functions.

17

6 Spatiotemporal Aggregation

An increasing number of applications manage spatiotemporal aspects of the real-world. In consequence, we
have observed a growing interest for this kind of applications in the research community. Recent surveys
and bibliographic studies show a large amount of research papers on spatiotemporal databases [2, 65]. A
spatiotemporal object is an object with both spatial and temporal extent [12, 84]. Not only do the spatial
extents of these objects can change over time, but also the values explicit attributes describing non-spatial
characteristics of the object may change over time [35, 80].

There are various approaches to modeling the time-varying spatial properties of spatiotemporal objects.
Some of them consider objects which observe continuous movement [13, 60, 61], while others consider
objects that change its shape in discrete steps [49, 78, 79]. However, these modeling approaches only affect
how data should be stored and organized. From a semantic perspective, the time model adopted is largely
irrelevant for the computation of aggregate functions.

Aggregate queries over spatiotemporal data require the organization of tuples from a spatiotemporal
relation into collections defined based on their spatial and temporal extents. Aggregate functions are applied
to these collections. In Sections 4 and 5, we have shown how collections of tuples are generated based on
granularities of the temporal and spatial domains, respectively. This concept can be extended to generate
collections of tuples based on spatiotemporal granularities. A spatiotemporal granularity is a cross product
of the spatial and temporal granularities.

6.1 Formal Definition of Spatiotemporal Aggregation

Different levels of spatiotemporal granularities can be used to define group, partition, and sliding window
composition in a spatiotemporal relation. In spatiotemporal group composition tuples sharing the same
spatial and temporal value at granularity G form a collection termed group. For each group, an aggregate
function is applied and the group is annotated with the aggregate value. When computing spatiotemporal ag-
gregation using group composition, the resulting relation is a spatiotemporal relation defined at granularity
G = GS × GT (i.e., the cross product of spatial granularity GS and temporal granularity GT).

Consider a land management application that keeps track of the forests in the US. In this application,
each stored object is a region (spatial extent) that can change with time (temporal extent). Forests can
change their shape due to natural phenomena such as wildfires or droughts. In addition, forest composition
is also time-varying because vegetation changes with seasons. Information about spatiotemporal changes
in the forest can be obtained by remote sensors such as the Moderate Resolution Imaging Radio Spectrora-
diometer (MODIS) [37, 66] aboard the Terra and Aqua Satellites. This information is available for temporal
granularities as fine as 16 days and spatial granularities of 500 meters [51]. For land management appli-
cations, we might be interested in identifying correlations between wildfires and forest density. A useful
query in this case will be the following.

Query 7 For every county in the state of Arizona, what has been the yearly forest density for the last ten
years?

In this case, we are not only interested in knowing the aggregate value “density” but also we want to
know how this value changes in time and space. Note that Query 7 refers to the spatiotemporal granularity
G = county × year. The clause “for the last 10 years” is a temporal predicate. Similarly, the clause “in
the state of Arizona” is a spatial predicate. These predicates are used to select qualifying tuples. To answer
this query, we need to form groups of tuples sharing the spatial value county and the temporal value year.
Each of these groups is then annotated with their corresponding aggregate value.

Some queries may require aggregate at a finer level of detail while still maintaining some data orga-
nization at a higher level. In such case, spatiotemporal partition composition and spatiotemporal sliding

18

window composition are required. When computing spatiotemporal aggregation using partition and sliding
window composition, the resulting relation is a spatiotemporal relation containing one entry for every pair
of spatial and temporal values at granularity J (i.e., the granularity used for sliding window composition).
However, each window frame can only contain data valid during a temporal value at granularity H (the
granularity used for partition composition), J ≺ H .

To illustrate the need of spatiotemporal partition and sliding window composition, consider the follow-
ing scenario. During year 2002, the state of Arizona experienced some of the worst wild fires in its history.
By identifying characteristics of the vegetation (say density) that could have influenced these wild fires, we
might be able to prevent similar wild fires and minimize ecological and property damage. What is needed
is a fine-grained analysis of the forest properties such that particular places (say lodging cabins) can be
evacuated or measures taken to prevent wildfires. At the same time we want to perform this analysis within
human-defined spatial boundaries (say a county) to notify the proper authorities. At the same time, we need
to know how the vegetation changes over time. In addition, for every region under analysis, we might want
to consider the conditions of neighboring regions (i.e., it does not help to clean a particular property within
an acre of land free of trees if it is surrounded by a dense forest, the property is still likely to suffer fire
damage). For this application, the following query might provide useful information.

Query 8 For every square kilometer in every county in the state of Arizona, what has been the density
of the forest for this year? For each square kilometer, consider neighboring regions up to 2 km on each
direction (north, south, east, and west). For obtaining the density consider the current and next oldest
MODIS observation.

This query is expressed using two granularities H = county×year and J = km2× (16-day). The clauses
“in the state of Arizona” and “for this year” are spatial and temporal predicates for selecting qualifying
tuples. To answer Query 8, we need spatiotemporal partition composition using a spatial granularity at the
county level and temporal granularity in years (however, only one year is of interest). Within each partition
we define spatiotemporal sliding window composition using spatial granules of 1 square kilometer and
temporal granules of 16 days (i.e., the finest temporal granularity in the data set). The aggregate function
is applied to the set of tuples occurring within the limits of each spatiotemporal window. In this case, the
window is 5 × 5 km by 2 16-day temporal granules (i.e., current and previous).

6.2 Existing Approaches for Evaluating Spatiotemporal Aggregate Queries

A typical spatiotemporal query specifies spatial and temporal predicates to select tuples of interest. A spatial
predicate is defined in terms of a point or an extent, while a temporal predicate can involve a time instant or a
time interval [49, 75]. Algorithms proposed for the evaluation of spatiotemporal aggregation queries seem to
concentrate in a generalization of the box aggregation problem presented in Section 5. In this case, the query
box is extended with a temporal interval. Given a spatial range and a temporal interval, the query returns
summarized information of all the tuples valid during the time interval and that are contained or intersected
by the query range. Alas, the evaluation of this type of queries does not result in a spatiotemporal relation.

The evaluation of spatiotemporal aggregation queries has only recently caught the attention of the re-
search community. Here we present, in chronological order, four different approaches for the evaluation of
these queries proposed in the last two years. All these methods are based on a disk-based data structure that
stores some pre-computed values that are used for answering the queries. Therefore they all are indexed
evaluation algorithms.

Zhang et al. [91, 89] proposed an extension to their approach for computing aggregates over data
streams to handle spatio-temporal data. This approach, based on multiple granularity levels was described
in Section 4 and we omit further details here. Papadias et al. [57] proposed an index-based approach in

19

which they group spatial objects into static regions and index these regions using an R-tree. Temporal
information is stored in a B-tree associated to each region in the R-tree. Index nodes are annotated with
aggregate information about the spatial objects contained in the region. This data structure is called aggre-
gation RB-tree (aRB-tree) and can be extended to handle the case when objects are grouped into dynamic
regions, resulting in the aggregation Historical RB-tree (aHRB-tree) or the aggregate 3-dimensional R-
B-tree (a3DRB-tree). By keeping pre-aggregate information inside the index, aggregation queries can be
answered by intermediate index nodes, thus saving accesses to detailed data.

One drawback of Papadia’s aRB-tree is the distinct counting problem. This problem occurs if a data
object remains in the query region for several timestamps during the query interval because such data object
will be counted multiple times [74]. Tao et al. [74] recognize the distinct count problem within the aRB-tree
and presented an approximate approach to evaluating distinct COUNT and distinct SUM aggregate queries.
Their approach is based on sketches and an sketch index, similar in structure to the aRB-tree.

Another approach for the approximate evaluation of spatiotemporal aggregate queries was proposed by
Sun et al. [73]. They consider a data model in which moving objects continuously generate large amounts
of spatiotemporal information in the form of data streams. Until an object transmits a new location it is
assumed to be in the last recorded position. Space is partitioned in a 2-dimensional grid of w × w regular
cells, where w is a constant called resolution. Each cell is associated with the number of objects (at present
time) in its extent. Sun’s approach can answer approximate queries to the COUNT aggregate based on a
data structure termed Adaptive Multi-dimensional Histogram (AMH), which is updated every time an object
transmits a new position. The AMH can only be used for answering snapshots aggregate queries [73].

6.3 Research Opportunities

While the techniques presented in this section are interesting approaches for evaluating spatiotemporal ag-
gregation, they all rely on some form of pre-aggregation. Since they pre-compute results for a particular
set of qualifying tuples and keep the summarized information in a data structure, it is not clear whether
they could handle aggregate queries that include predicates defined on explicit attributes. Different predi-
cates will select different set of tuples rendering previous pre-computed values useless. Another significant
drawback is the fact that none of this approaches can evaluate a spatiotemporal aggregate query resulting
in a spatiotemporal relation. This is because they all focus on the box aggregation problem, which after
applying spatial and temporal predicates for selecting tuples, ignores the spatial and temporal properties
of the qualifying tuples. Problems such as the distinct count problem mentioned by Tao et al. [74] would
have not arisen if the temporal properties of the selected tuples had been preserved and considered while
computing the aggregation.

We have identified the need for algorithms that evaluate a spatiotemporal aggregate queries that perform
spatiotemporal group and partition composition. Such queries can identify the time-varying as well as the
spatial nature of the aggregation over spatiotemporal relations. That is, the resulting aggregate value is also
a spatial object that changes with time. Current approaches for evaluating spatiotemporal aggregation do
not offer support for this kind of queries. Queries such as Query 7 and Query 8, for example, cannot be
evaluated by the surveyed techniques. Nor can these techniques evaluate Queries 5 and 6. In addition,
new approaches should provide support for any kind of selection predicates whether they are defined on the
implicit attributes such as spatial and temporal extents or on explicit attributes.

As we have mentioned before, existing approaches for evaluating spatiotemporal aggregate queries rely
on pre-aggregation. Pre-aggregation is not useful if the aggregate functions in the query are non-distributive
(e.g., MEDIAN), we need to develop algorithms for the efficient evaluation of this type of aggregate functions
for spatiotemporal data.

20

7 Conclusion

In this paper, we have studied the most relevant techniques for the evaluation of aggregate queries on spatial,
temporal, and spatiotemporal data. We have also presented a model that reduces the evaluation of aggregate
queries to the problem of selecting qualifying tuples and grouping these tuples into collections on which an
aggregate function is to be applied. This model gives us a framework that allows us to analyze and compare
the different existing techniques for the evaluation of aggregate queries. At the same time it allows us to
identify opportunities of research on types of aggregate queries that have not been studied.

Algorithms for the evaluation of aggregate queries can be classified as either non-indexed or indexed.
Non-indexed algorithms need to scan the base relation every time the query is issued. During this scan,
aggregate values are incrementally computed. Indexed algorithms, on the other hand, rely on annotated
disk-based data structures. These structures provide sufficient information for computing aggregates while
not requiring the evaluation algorithm to explore every qualifying object in the base relation.

As we have indicated, most of the existing approaches for the evaluation of temporal, spatial, and
spatiotemporal aggregate queries rely on some form of pre-aggregation. Hence they only consider distribu-
tive aggregate functions such as COUNT, SUM, and MAX. Efficient methods for computing non-distributive
aggregate functions such as MEDIAN, MODE, or RANK should be proposed. This issue has recently been ad-
dressed for traditional databases by Palpanas et al. [55]. They propose a general incremental maintenance
mechanism that applies to all aggregate functions.

We note that sequenced aggregate queries have not been addressed for spatial and spatiotemporal
databases. A sequenced temporal query is one that is effectively evaluated at every granule in time, re-
sulting in a temporal relation [70]. Sequenced temporal aggregation can be evaluated using Definitions 3
and 4. We can extend this term and define a sequenced query as one resulting in a relation of the same type
as the base relation. Sequenced spatial aggregation can be evaluated using Definitions 5 and 6. It is impor-
tant that we evaluate an aggregate function without ignoring the spatial and temporal characteristics of the
data. This is a critical issue because it is important that we know both the spatial and temporal properties of
aggregate values. For example, consider a weather monitoring application keeping track of a hurricane. In
such application is not only of interest to know the maximum speed of the wind but also when and where
such strong wind is expected.

Lastly, we have also detected that selective predicates are poorly supported by indexed evaluation al-
gorithms. In the best cases, only spatial and temporal predicates defining a box (i.e., box aggregation) are
supported. It is important that we develop algorithms for the efficient evaluation of aggregate queries over
the full range of spatiotemporal grouping and partition composition.

8 Acknowledgments

This work was sponsored in part by NSF Grant No. IIS-0100436 and NSF Research Infrastructure Pro-
gram EIA-0080123. It was also supported by Consejo Nacional de Ciencia y Tecnolog ı́a and Universidad
Aut ónoma de Sinaloa, scholarship 117476. The authors assume all responsibility for the contents of the
paper.

References

[1] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and architecture for data
stream management. VLDB Journal, 12(2):120–139, August 2003.

21

[2] Tamas Abraham and John F. Roddick. Survey of Spatio-Temporal Databases. GeoInformatica,
3(1):61–99, 1999.

[3] Sameet Agarwal, Rakesh Agrawal, Prasad M. Deshpande, Ashish Gupta, Jeffrey F. Naughton, Raghu
Ramakrishnan, and Sunita Sarawagi. On the Computation of Multidimensional Aggregates. In Pro-
ceedings of the VLDB Conference, pages 506–521, Bombay, India, September 3–6 1996.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
Issues in Data Stream Systems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 1–16, Madison, WI, June 2002. Invited talk.

[5] Jon L. Bentley. Multidimensional Divide-and-Conquer. Communications of the ACM, 23(4):214–229,
1980.

[6] Elisa Bertino et al. Indexing Techniques for Advanced Database Systems. Kluwer Academic Publish-
ers, Boston, MA, 1997.

[7] Claudio Bettini, Curtis E. Dyreson, William S. Evans, Richard T. Snodgrass, and Xiaoyang Sean
Wang. Temporal Databases: Research and Practice, chapter A Glossary of Time Granularity Con-
cepts, pages 406–413. Springer, 1998.

[8] Claudio Bettini, Sushil Jajodia, and Sean X. Wang. Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, Berlin, 2000.

[9] Luca Cabibbo and Riccardo Torlone. A Framework for the Investigation of Aggregate Functions in
Database Queries. In Proceedings of the International Conference in Database Theory (ICDT), pages
383–397, Jerusalem, Israel, January 1999.

[10] Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and Vivek Narasayva. Overcoming
Limitations of Sampling for Aggregation Queries. In Proceedings of the International Conference on
Data Engineering, pages 534–542, Heidelberg, Germany, April 2001.

[11] Surajit Chaudhuri, Gautam Das, and Vivek Narasayva. A Robust, Optimization-Based Approach for
Approximate Answering of Aggregate Queries. In Proceedings of the ACM-SIGMOD Conference,
pages 295–306, Santa Barbara, CA, May 2001.

[12] Cindy Xinmin Chen and Carlo Zaniolo. SQLST : A Spatio-Temporal Data Model and Query Lan-
guage. In Proceedings of the International Conference on Conceptual Modeling (ER), pages 96–111,
Salt Lake City, UT, October 9–12 2000.

[13] Yong-Jin Choi and Chin-Wan Chung. Selectivity Estimation in Spatio-Temporal Queries to Moving
Objects. In Proceedings of the ACM-SIGMOD Conference, pages 440–451, Madison, WI, June 2002.

[14] Seok-Ju Chun, Chin-Wan Chung, Ju-Hong Lee, and Seok-Lyong Lee. Dynamic Update Cube for
Range-Sum Queries. In Proceedings of the VLDB Conference, pages 521–530, Roma, Italy, September
11–14 2001.

[15] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. Approximate Aggregation Techniques
for Sensor Databases. In Proceedings of the International Conference on Data Engineering, Boston,
USA, March 30–April 2 2004. To appear.

[16] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Streams Statistics
over Sliding Windows (Extended Abstract). In Proceedings of the annual ACM-SIAM Symposium on
Discrete Algorithms, pages 635–644, San Francisco, CA, January 2002.

22

[17] Alin Dobra, Minos Garofalakis, Johanes Gehrke, and Rajeev Rastogi. Processing Complex Aggregate
Queries over Data Streams. In Proceedings of the ACM-SIGMOD Conference, pages 61–72, Madison,
WI, June 2002.

[18] Curtis E. Dyreson, William S. Evans, Hong Lin, and Richard T. Snodgrass. Efficiently Supporting
Temporal Granularities. IEEE Transactions on Knowledge and Data Engineering, 12(4):565–587,
July–August 2000.

[19] Curtis E. Dyreson, Fabio Grandi, Wolfgang Kafer, Nick Kline, Nikos Lorentzos, Yannis Mitsopoulos,
Angelo Montanari, Daniel Nonen, Elisa Peressi, Barbara Pernici, John F. Roddick, Nandlal L. Sarda,
Maria R. Scalas, Arie Segev, Richard T. Snodgrass, Mike D. Soo, Abdullah Tansel, Paolo Tiberio,
Gio Wiederhold, and Christian S. Jensen. A Consensus Glossary of Temporal Database Concepts.
SIGMOD Record, 23(1):52–64, March 1994.

[20] Robert Epstein. Techniques for Processing of Aggregates in Relational Database Systems. Technical
Report UCB/ERL M7918, University of California, Berkeley, CA, February 1979.

[21] Martin Erwing, Ralf H. Guting, Markus Schneider, and Michalis Vazirgiannis. Spatio-Temporal Data
Types: An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica,
3(3):269–296, 1999.

[22] Luca Forlizzi, Ralf H. Guting, Enrico Nardelli, and Markus Schneider. A Data Model and Data
Structures for Moving Object Databases. In Proceedings of the ACM-SIGMOD Conference, pages
319–330, Dallas, TX, May 2000.

[23] Johann C. Freytag and Nathan Goodman. Translating Aggregate Queries into Iterative Programs. In
Proceedings of the VLDB Conference, pages 138–146, Kyoto, Japan, August 1986.

[24] Volker Gaede and Oliver Gunther. Multidimensional Access methods. ACM Computing Surveys,
30(2):170–231, 1998.

[25] Jose Alvin G. Gendrano, Bruce C. Huang, Jim M. Rodrigue, Bongki Moon, and Richard T. Snod-
grass. Parallel Algorithms for Computing Temporal Aggregates. In Proceedings of the International
Conference on Data Engineering, pages 418–427, Sydney, Australia, March 1999.

[26] Anna C. Gilbert, Yannis Lotidis, S Muthukrishnan, and Martin J. Strauss. Optimal and Approximate
Computation of Summary Statistics for Range Aggregates. In Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 227–236, Santa Barbara,
CA, May 2001.

[27] Anna C. Gilbert, Yannis Lotidis, S. Muthukrishnan, and Martin J. Strauss. Surfing Wavelets on
Streams: One-Pass Summaries for Approximate Aggregate Queries. In Proceedings of the VLDB
Conference, pages 79–88, Roma, Italy, September 11–14 2001.

[28] Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems. Morgan
Kaufmann, 1991.

[29] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing
Group-by, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

23

[30] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-Streams and Histograms. In Proceedings of the
annual ACM Symposium on Theory of Computing, pages 471–475, Hersonissos, Crete, Greece, July
2001.

[31] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online Aggregation. In Proceedings of the
ACM-SIGMOD Conference, pages 287–298, Philadelphia, PA, USA, June 1–3 1999.

[32] Marios Hadjieleftheriou, George Kollios, and Vassilis J. Tsotras. Efficient Indexing of Spatiotempo-
ral Objects. In Proceedings of the Conference on Extending Database Technology, pages 251–268,
Prague, Czech Republic, March 25–27 2002.

[33] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online Aggregation. In Proceedings of the
ACM-SIGMOD Conference, pages 171–182, Tucson, AZ, May 1997.

[34] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range Queries in
OLAP Data Cubes. In Proceedings of the ACM-SIGMOD Conference, pages 73–88, Tucson, AZ,
May 1997.

[35] Marten Hogeweg. Spatio-temporal Visualization and the Need for Integration. GeoInformatics, pages
32–35, June 2001.

[36] Christian S. Jensen and Richard T. Snodgrass. Semantics of Time-Varying Information. Information
Systems, 21(4):311–352, June 1996.

[37] C. Justice, D. Hall, and V. V. Salomonson. The Moderate Resolution Imaging Spectroradiometer
(MODIS): Land Remote Sensing for Global Change Research. IEEE Transactions on Geoscience and
Remote Sensing, 36:1228–1249, 1998.

[38] Vijay Khatri, Sudha Ram, Richard T. Snodgrass, and Grady M O’Brien. Supporting User-defined
Granularities and Indeterminacy in a Spatiotemporal Conceptual Model. Annals of Mathematics and
Artificial Intelligence, 36(1-2):195–232, 2002.

[39] Jong S. Kim, Sung T. Kang, and Myoung-H. Kim. On Temporal Aggregate Processing based on Time
Points. Information Processing Letters, 71(5-6):213–220, September 1999.

[40] Nick Kline and Richard T. Snodgrass. Computing Temporal Aggregates. In Proceedings of the Inter-
national Conference on Data Engineering, pages 222–231, Taipei, Taiwan, March 1995.

[41] Rodger N. Kline. Aggregation in Temporal Databases. PhD thesis, University of Arizona, Tucson,
Arizona, May 1999.

[42] Athony Klug. Equivalence of Relational Algebra and Relational Calculus Query Languages Having
Aggregate Functions. Journal of the ACM, 29(3):699–717, July 1982.

[43] Landsat. Landsat Project Website. http://landsat7.usgs.gov/index.php, October 2003.

[44] Per-Ake Larson. Data Reduction by Partial Preaggregation. In Proceedings of the International Con-
ference on Data Engineering, pages 706–715, San Jose, CA, February 26–March 1 2002.

[45] Iosif Lazaridis and Sharad Mehrotra. Progressive Approximate Aggregate Queries with a Multi-
Resolution Tree Structure. In Proceedings of the ACM-SIGMOD Conference, pages 401–412, Santa
Barbara, CA, May 2001.

24

[46] Jose A. Cotelo Lema and Ralf H. Guting. Dual Grid: A New Approach for Robust Spatial Algebra
Implementation. GeoInformatica, 6(1):57–76, 2002.

[47] Nikos Mamoulis and Dimitris Papadias. Selectivity Estimation of Complex Spatial Queries. In Pro-
ceedings of the International Symposium on Advances in Spatial and Temporal Databases, pages
155–174, Redondo Beach, CA, July 12–15 2001.

[48] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley Publishing Company,
Reading, Mass., 1989.

[49] Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J. Tsotras. Advanced Database Indexing.
Kluwer Academic Publishers, Boston, MA, 2000.

[50] Jim Melton. Advanced SQL:1999. Understanding Object-Relational and Other Advanced Features.
The Morgan Kaufman Series in Data Management Systems. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 2003.

[51] MODIS. MODIS Web. http://modis.gsfc.nasa.gov/, October 2003.

[52] Bongki Moon, Ines F. Vega Lopez, and Vijaykumar Immanuel. Scalable Algorithms for Large Tempo-
ral Aggregation. In Proceedings of the International Conference on Data Engineering, pages 145–156,
San Diego, CA, March 2000.

[53] Bongki Moon, Ines F. Vega Lopez, and Vijaykumar Immanuel. Efficient Algorithms for Large-Scale
Temporal Aggregation. IEEE Transactions on Knowledge and Data Engineering, 15(3):744–751,
May–June 2003.

[54] Peng Ning, Xiaoyang Sean Wang, and Sushil Jajodia. An Algebraic Representation of Calendars.
Annals of Mathematics and Artificial Intelligence, 36(1-2):5–38, 2002.

[55] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh. Incremental Main-
tenance for Non-Distributive Aggregate Functions. In Proceedings of the VLDB Conference, pages
802–813, Hong Kong, China, August 2002.

[56] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient OLAP Operations in Spatial Data
Warehouses. In Proceedings of the International Symposium on Advances in Spatial and Temporal
Databases, pages 443–459, Redondo Beach, CA, July 12–15 2001.

[57] Dimitris Papadias, Yufei Tao, Panos Kalnis, and Jun Zhang. Indexing Spatio-Temporal Data Ware-
houses. In Proceedings of the International Conference on Data Engineering, pages 166–175, San
Jose, CA, February 26–March 1 2002.

[58] Christine Parent, Stefano Spaccapietra, and Esteban Zimanyi. Spatio-Temporal Conceptual Models:
Data Structures + Space + Time. In Proceedings of the ACM-GIS Conference, pages 26–33, Kansas
City, MO, November 1999.

[59] Torben B. Pedersen and Nectaria Tryfona. Pre-aggregation in Spatial Data Warehouses. In Proceed-
ings of the International Symposium on Advances in Spatial and Temporal Databases, pages 460–480,
Redondo Beach, CA, July 12–15 2001.

[60] Dieter Pfoser and Nectaria Tryfona. Requirements, Definitions and Notations for Spatiotemporal
Application Environments. In Proceedings of the ACM-GIS Conference, pages 124–130, Washington,
DC, November 1998.

25

[61] Kriengkrai Porkaew, Iosif Lazaridis, and Sharad Mehrotra. Querying Mobile Objects in Spatio-
Temporal Databases. In Proceedings of the International Symposium on Advances in Spatial and
Temporal Databases, pages 59–78, Redondo Beach, CA, July 12–15 2001.

[62] Lin Qiao, Divy Agrawal, and Amr El Abbadi. RHist: Adaptive Summarization over Continuous Data
Streams. In Proceedings of the ACM-CIKM Conference, pages 469–476, McLean VA, November
2002.

[63] Sudha Ram. Intelligent Database Design Using the Unifying Semantinc Model. Information and
Management, 29(1995):191–206, 1995.

[64] Sudha Ram and Veda C. Storey. Composite and Grouping: Extending the Realm of Semantic Model-
ing. In Proceedings of the Hawaii International Conference on System Sciences HICSS, pages 212–
218, Maui, HA, January 1993.

[65] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. YABTSSTDMR - Yet Another Bibliog-
raphy of Temporal, Spatial, and Spatio-Temporal Data Mining Research. In Proceedings of SIGKDD
Temporal Data Mining Workshop, pages 167–175, San Francisco, CA, 2001.

[66] V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow. MODIS: Ad-
vanced Facility Instrument for Studies of the Earth as a System. IEEE Transactions on Geoscience
and Remote Sensing, 27:145–153, 1989.

[67] Simonas Saltenis and Christian S. Jensen. Indexing of Moving Objects for Location- Based Services.
In Proceedings of the International Conference on Data Engineering, pages 463–472, San Jose, CA,
February 26–March 1 2002.

[68] Betty Salzberg. Access Methods. ACM Computing Surveys, 28(1):117–120, 1996.

[69] Timos Sellis. Research Issues in Spatio-Temporal Database Systems. In Proceedings of the Inter-
national Symposium on Advances in Spatial Databases, pages 3–11, Hong Kong, China, July 20–23
1999.

[70] Richard T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann,
San Francisco, CA, 2000.

[71] Richard T. Snodgrass and Ilsoo Ahn. A Taxonomy of Time in Databases. In Proceedings of the
ACM-SIGMOD Conference, pages 236–246, Austin, TX, May 1985.

[72] Richard T. Snodgrass, Santiago Gomez, and L. Edwin McKenzie Jr. Aggregates in the Temporal
Query Language TQuel. IEEE Transactions on Knowledge and Data Engineering, 5(5):826–842,
September–October 1993.

[73] Jimeng Sun, Dimitris Papadias, Yufei Tao, and Bin Liu. Querying about the Past, the Present, and
the Future in Spatio-Temporal Databases. In Proceedings of the International Conference on Data
Engineering, Boston, USA, March 30–April 2 2004. To appear.

[74] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. Spatio-Temporal
Aggregation Using Sketches. In Proceedings of the International Conference on Data Engineering,
Boston, USA, March 30–April 2 2004. To appear.

[75] Yufei Tao and Dimitris Papadias. The MV3R-Tree: A Spatio-Temporal Access Method for Timestamp
and Interval Queries. In Proceedings of the VLDB Conference, pages 431–440, Roma, Italy, September
11–14 2001.

26

[76] Yufei Tao, Dimitris Papadias, and Christos Faloutsos. Approximate Temporal Aggregation. In Pro-
ceedings of the International Conference on Data Engineering, Boston, USA, March 30–April 2 2004.
To appear.

[77] Yufei Tao, Dimitris Papadias, and Jun Zhang. Aggregate Processing of Planar Points. In Proceedings
of the Conference on Extending Database Technology, pages 682–700, Prague, Czhech Republic,
March 25–27 2002.

[78] Yannis Theodoridis, Timos Sellis, Apostolos N. Papadopoulos, and Yannis Manolopoulos. Spec-
ifications for Efficient Indexing in Spatiotemporal Databases. Technical Report CH-98-01, The
Chorochronos research network project, Athens, Greece, February 1998.

[79] Yannis Theodoridis, Jefferson R. O. Silva, and Mario A. Nascimento. On the Generation of Spa-
tiotemporal Datasets. In Proceedings of the International Symposium on Large Spatial Databases,
pages 147–164, Hong Kong, China, July 20–23 1999.

[80] Nectaria Tryfona and Christian S. Jensen. Conceptual Data Modeling for Spatiotemporal Applications.
GeoInformatica, 3(3):245–268, 1999.

[81] Paul A. Tuma. Implementing Historical Aggregates in TempIS. Master’s thesis, Wayne State Univer-
sity, Detroit, Michigan, November 1992.

[82] Jan W. van Roessel. Design of a Spatial Data Structure using the Relational Normal Form. Interna-
tional Journal of Geographical Information Systems, 1(1):33–50, 1987.

[83] Min Wang, Jeffrey S. Vitter, Lipyeow Lim, and Sriram Padmanabhan. Wavelet-Based Cost Estima-
tion for Spatial Queries. In Proceedings of the International Symposium on Advances in Spatial and
Temporal Databases, pages 175–193, Redondo Beach, CA, July 12–15 2001.

[84] Michael F. Worboys. A Unified Model for Spatial and Temporal Information. The Computer Journal,
37(1):26–34, 1994.

[85] Weipeng P. Yan and Per-Ake Larson. Eager Aggregation and Lazy Aggregation. In Proceedings of
the VLDB Conference, pages 345–357, Zurich, Switzerland, September 1995.

[86] Jun Yang and Jennifer Widom. Incremental Computation and Maintenance of Temporal Aggregates.
In Proceedings of the International Conference on Data Engineering, pages 51–60, Heidelberg, Ger-
many, April 2001.

[87] Xinfeng Ye and John A. Keane. Processing Temporal Aggregates in Parallel. In IEEE International
Conference on Systems, Man, and Cybernetics, pages 1373–1378, Orlando, FL, October 1997.

[88] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S. Subrahmanian, and
Roberto Zicari. Advanced Database Systems. Data Management Systems. Morgan Kaufmann, San
Francisco, CA, 1997.

[89] Donghui Zhang. Aggregation Computation over Complex Objects. PhD thesis, University of Califor-
nia, Riverside, August 2002.

[90] Donghui Zhang, Dimitris Gunopulos, Vassilis J. Tsotras, and Bernhard Seeger. Temporal Aggrega-
tion over Data Streams using Multiple Granularities. In Proceedings of the Conference on Extending
Database Technology, pages 646–663, Prague, Czhech Republic, March 25–27 2002.

27

[91] Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and Bernhard
Seeger. Efficient Computation of Temporal Aggregates with Range Predicates. In Proceedings of
the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 237–245,
Santa Barbara, CA, May 2001.

[92] Donghui Zhang and Vassilis J. Tsotras. Improving Min/Max Aggregation Over Spatial Objects. In
Proceedings of the ACM-GIS Conference, pages 88–93, Atlanta, GA, November 2001.

[93] Donghui Zhang, Vassilis J. Tsotras, and Dimitrios Gunopulos. Efficient Aggregation Over Objects
with Extent. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 121–132, Madison, WI, June 2002.

28

