
Transitioning Temporal Support in TSQL2 to
SQL3

Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen and Andreas Steiner

April 1, 1997

TR-8

A TIMECENTER Technical Report

Title Transitioning Temporal Support in TSQL2 to SQL3

Copyright c 1997 Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen
and Andreas Steiner. All rights reserved.

Author(s) Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen and Andreas Steiner

Publication History March 1997. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Christian S. Jensen (codirector)
Kristian Torp

University of Arizona, USA
Anindya Datta
Richard T. Snodgrass (codirector)

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available via TIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called Rune al-
phabet used one millennium ago by the Vikings, as well as by their precedessors and successors, The Rune alphabet
(second phase) has 16 letters. They all have angular shapes and lack horizontal lines because the primary storage
medium was wood. However, runes may also be found on jewelry, tools, and weapons. Runes were perceived by
many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

This document summarizes the proposals before the SQL3 committees to allow the addition of tables with
valid-time and transaction-time support into SQL/Temporal, and explains how to use these facilities to migrate
smoothly from a conventional relational system to one encompassing temporal support. Initially, important re-
quirements to a temporal system that may facilitate such a transition are motivated and discussed. The proposal
then describes the language additions necessary to add valid-time support to SQL3 while fulfilling these require-
ments. The constructs of the language are divided into four levels, with each level adding increased temporal func-
tionality to its predecessor. A prototype system implementing these constructs on top of a conventional DBMS
is publicly available.

1 Introduction

We introduce constructs that have been submitted to the ISO SQL3 committee as change proposals to SQL/Temporal
[7] to add valid-time and transaction-time support to SQL3 [12, 13]. These constructs are variants of those first
defined in TSQL2 [11]. We start with a brief chronology of work by the temporal database community. We then
outline a four-level approach for the integration of time. The extensions are fairly minimal. Each level is described
via a quick tour consisting of a set of examples. These examples have been tested in a prototype which is publicly
available [14]. We examine valid-time support first, then consider transaction-time and bitemporal support.

2 Chronology

The TSQL2 committee was formed in July, 1993 after a general invitation sent to the community. This committee
consisted of Richard T. Snodgrass, Ilsoo Ahn, Gad Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Chris-
tian S. Jensen, Ramez Elmasri, Fabio Grandi, Wolfgang Käfer, Nick Kline, Krishna Kulkarni, Ting Y. Cliff Leung,
Nikos Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo, and Surynarayana M. Sripada. The committee pro-
duced a preliminary language specification the following January, which appeared in the ACM SIGMOD Record
[8]. Based on responses to that specification, changes were made to the language, and the final language specifi-
cation and 28 commentaries were made available via anonymous FTP in early October, 1994. A book describing
the language and examining in detail the design decisions was released at the VLDB International Workshop on
Temporal Databases in September, 1995 [11].

Richard Snodgrass started working with the ANSI and ISO SQL3 committees in late 1994. The first step was
to propose a new part to SQL3, termed SQL/Temporal [10]. This was formally approved in July, 1995. Jim Melton
agreed to edit this new part.

Discussions then commenced on adding valid-time support to SQL/Temporal. While the ANSI committee was
supportive of the overall approach, there were several concerns voiced about the TSQL2 design. The major objec-
tions were as follows.

1. Temporal elements are not bounded in size, which means that all timestamped rows will also be unbounded
in size.

2. Duplicates are not allowed, because coalescing is always enforced.

3. A table with temporal support is returned with a conventional SELECT statement. To get a table without
temporal support, the SNAPSHOT keyword is required. The committee felt that a conventional query should
return a table without temporal support.

4. There was no formal semantics for TSQL2.

5. There existed no implementation of the proposed constructs.

6. The keywords VALID and TRANSACTION were judged to be too generic.

After many discussions with the committee and with others, the following solutions were agreed upon. This
process took well over a year to complete. These modifications are reasonable, as the TSQL2 design and the change
proposals had differing objectives.

1

1. Rows would be timestamped with periods rather than temporal elements. This enabled timestamps to be
bounded in size.

2. Coalescing would be optional, so that duplicates could be accommodated.

3. SNAPSHOT was discarded. A conventional query returns a table with no temporal support (this was later
generalized to the highly desirable property of temporal upward compatibility [1]). The VALID clause was
moved to before the SELECT and later generalized to support sequenced queries (which were developed as
part of the ATSQL design [4]).

4. Mike Böhlen provided a formal semantics for the language.

5. Mike Böhlen and Andreas Steiner produced a public domain prototype implementation. Andreas has con-
tinued to evolve this prototype to be consistent with the change proposal.

6. The keywords were changed to VALIDTIME and TRANSACTIONTIME.

Many other smaller changes were made to the language proposals and to the wording of the change proposals
to address concerns of the committee members. The full story, including the change proposals themselves, can be
found at FTP.cs.arizona.edu/tsql/tsql2/sql3.

The change proposals have been unanimously approved by the ANSI SQL3 committee (ANSI X3H2) and are
under consideration by the ISO SQL3 committee (ISO/IEC JTC 1/SC 21/WG 3 DBL).

3 The Problem

Most databases store time-varying information. For such databases, SQL is often the language of choice for devel-
oping applications that utilize the information in these databases. However, users also realize that SQL does not
provide adequate support for temporal applications. To illustrate this, the reader is invited to attempt to formulate
the following straightforward, realistic statements in SQL3. An intermediate SQL programmer can express all of
them in SQL for a non-time-varying database in perhaps five minutes. However, even SQL experts find these same
queries challenging to do in several hours when time-varying data is taken into account.

� An Employee table has three columns: Name, Manager and Dept. We then store historical information by
adding a fourth column, When, of data type PERIOD. Manager is a foreign key for Employee.Name. This
means that at each point in time, the character string value in the Manager column also occurs in the Name
column (probably in a different row) at the same time. This cannot be expressed via SQL’s foreign key con-
straint, which doesn’t take time into account. Formulate this constraint instead as an assertion.

� Consider the query “List those employees who are not managers.” This can easily be expressed in SQL, using
EXCEPT or NOT EXISTS, on the original, three-column table. Things are just a little harder with the When
column; a where predicate is required to extract the current employees. Now formulate the query “List those
employees who were not managers, and indicate when.” EXCEPT and NOT EXISTS won’t work, because
they don’t consider time. This simple temporal query is challenging even to SQL experts.

� Consider the query “Give the number of employees in each department.” Again, this is a simple query in
SQL. Formulate the query “Give the history of the number of employees in each department.” This query is
extremely difficult without temporal support in the language.

� Now formulate the modification “Change the manager of the tools department for 1994 to Bob.” This mod-
ification is difficult in SQL because only a portion of many validity periods needs be changed, with the in-
formation outside of 1994 retained.

Most users know only too well that while SQL is an extremely powerful language for writing queries on the
current state, the language provides much less help when writing temporal queries, modifications, and constraints.

2

4 Outline of the Solution

The problem with formulating these SQL statements is due to the extreme difficulty of specifying in SQL the correct
values of the timestamp column(s) of the result. The solution is to allow the DBMS to compute these values, moving
the complexity from the application code into the DBMS. With the language extensions proposed here, the above
queries can all be easily written by an intermediate SQL programmer in about five minutes.

Referential integrity can be specified using sequenced valid semantics (which will be defined, exemplified, and
provided a formal definition later in this document):

CREATE TABLE Employee(
Name VARCHAR(30),
Manager VARCHAR(30) VALIDTIME REFERENCES Employee (Name),
Dept VARCHAR(20)) AS VALIDTIME PERIOD(DATE)

Here we indicate that the table has valid-time support through “AS VALIDTIME PERIOD(DATE)” and that the
referential integrity is to hold for each point in time through “VALIDTIME REFERENCES”.

For the query “List those employees who are not managers,” we are interested only in the current employees.
We use temporal upward compatibility to extract this information from the historical information stored in the Em-
ployee table.

SELECT Name FROM Employee EXCEPT SELECT Manager FROM Employee

This results in a conventional table, with one column.
We use sequenced valid semantics in the query “List those employees who were not managers, and when.”

VALIDTIME SELECT Name FROM Employee EXCEPT SELECT Manager FROM Employee

The added “VALIDTIME” reserved word specifies that the query is to be evaluated at each point in time. At some
times, an employee may not be a manager, whereas at other times, the employee is a manager. A one-column table
results, but this time with valid-time support (i.e., the periods of time when each was not a manager is included).

The query “Give the number of employees in each department” is easy given temporal upward compatibility.

SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

Again, we just get the current count for each department. To extract “the history of the number of employees in
each department”, only a simple change is required.

VALIDTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

For each department, a time-varying count will be returned.
Modifications work in similar ways. The modification “Change the manager of the tools department for 1994

to Bob” can be expressed by following VALIDTIME with a period expression.

VALIDTIME PERIOD ’[1994-01-01 - 1994-12-31]’ UPDATE Employee
SET Manager = ’Bob’
WHERE Dept = ’Tools’

Here again, we exploit our knowledge of SQL to first write the update ignoring time, then change it in minor ways
to take account of time.

These statements are reminiscent of the kinds of SQL statements that application programmers are called to
write all the time. The potential for increased productivity is dramatic. Statements that previously took hours to
write, or were simply too difficult to express, can take only minutes to write with the extensions discussed here.

We now return to the important question of migrating legacy databases. In the next section, we formulate
several requirements of SQL/Temporal to allow graceful migration of applications from conventional to tempo-
ral databases.

3

5 Migration

The potential users of temporal database technology are enterprises with applications1 that need to manage poten-
tially large amounts of time-varying information. These include financial applications such as portfolio manage-
ment, accounting, and banking; record-keeping applications, including personnel, medical records, and inventory;
and travel applications such as airline, train, and hotel reservations and schedule management. It is most realistic to
assume that these enterprises are already managing time-varying data and that the temporal applications are already
in place and working. Indeed, the uninterrupted functioning of applications is likely to be of vital importance.

For example, companies usually have applications that manage the personnel records of their employees. These
applications manage large quantities of time-varying data, and they may benefit substantially from built-in temporal
support in the DBMS [9]. Temporal queries that are shorter and more easily formulated are among the potential
benefits. This leads to improved productivity, correctness, and maintainability.

This section explores the problems that may occur when migrating database applications from an existing to a
new DBMS, and it formulates a number of requirements to the new DBMS that must be satisfied in order to avoid
different potential problems when migrating. Formal definitions of these requirements may be found elsewhere
[1].

5.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guarantee that all application code without
modification will work with the new system exactly with the same functionality as with the existing system.

To explore the relationship between nontemporal and temporal data and queries, we employ a series of figures
that demonstrate increasing query and update functionality. In Figure 1, a conventional table is denoted with a
rectangle. The current state of this table is the rectangle in the upper-right corner. Whenever a modification is made
to this table, the previous state is discarded; hence, at any time only the current state is available. The discarded
prior states are denoted with dashed rectangles; the right-pointing arrows denote the modification that took the table
from one state to the next state.

q

...

Time

Figure 1: Level 1 evaluates an SQL3 query over a table without temporal support and returns a table also without
temporal support

When a query q is applied to the current state of a table, a resulting table is computed, shown as the rectangle
in the bottom right corner. While this figure only concerns queries over single tables, the extension to queries over
multiple tables is clear.

Upward compatibility states that (1) all instances of tables in SQL3 are instances of tables in SQL/Temporal, (2)
all SQL3 modifications to tables in SQL3 result in the same tables when the modifications are evaluated according
to SQL/Temporal semantics, and (3) all SQL3 queries result in the same tables when the queries are evaluated
according to SQL/Temporal.

1We use “database application” non-restrictively, for denoting any software system that uses a DBMS as a standard component.

4

By requiring that SQL/Temporal is a strict superset (i.e., only adding constructs and semantics), it is relatively
easy to ensure that SQL/Temporal is upward compatible with SQL3.

Throughout, we provide examples of the various levels. In Section 6, we show these examples expressed in
SQL/Temporal.

EXAMPLE 1: A company wishes to computerize its personnel records, so it creates two tables, an employee ta-
ble and a monthly salary table. Every employee must have a salary. These tables are populated. A view identifies
those employees with a monthly salary greater than $3500. Then employee Therese is given a 10% raise. Since
the salary table has no temporal support, Therese’s previous salary is lost. These schema changes and queries can
be easily expressed in SQL3. ut

5.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the data in one or more tables, the
table can be defined with or altered to add valid-time support (e.g., by using the CREATE TABLE : : : AS VALID
or ALTER : : : ADD VALID statements). The distinction of a table having valid-time support is orthogonal to the
many other distinctions already present in SQL/Foundation, including “base table” versus “derived table”, “created
table” versus “declared table”, “global table” versus “local table”, “grouped table” versus ungrouped table, ordered
table versus table with implementation-dependent order, “subtable” versus “supertable”, and “temporary table”
versus “permanent table”. These distinctions can be combined, subject to stated rules. For example, a table can
be simultaneously a temporary table, a table of degree 1, an inherently updatable table, a viewed table, and a table
with valid-time support. In most of the SQL3 specification, it doesn’t matter what distinctions apply to the table in
question. In those few places where it does matter, the syntax and general rules specify the distinction.

It is undesirable to be forced to change the application code that accesses the table without temporal support
that is replaced by a table with valid-time support. We formulate a requirement that states that the existing appli-
cations on tables without temporal support will continue to work with no changes in functionality when the tables
they access are altered to add valid-time support. Specifically, temporal upward compatibility requires that each
query will return the same result on an associated snapshot database as on the temporal counterpart of the database.
Further, this property is not affected by modifications to those tables with valid-time support.

Temporal upward compatibility is illustrated in Figure 2. When valid-time support is added to a table, the his-
tory is preserved, and modifications over time are retained. In this figure, the state to the far left was the current
state when the table was made temporal. All subsequent modifications, denoted by the arrows, result in states that
are retained, and thus are solid rectangles. Temporal upward compatibility ensures that the states will have identical
contents to those states resulting from modifications of the table without valid-time support.

q

...

Time

Figure 2: Level 2 evaluates an SQL3 query over a table with valid-time support and returns a table with similar
support

The query q is an SQL3 query. Due to temporal upward compatibility the semantics of this query must not

5

change if it is applied to a table with valid-time support. Hence, the query only applies to the current state, and a
table without temporal support results.

EXAMPLE 2: We make both the employee and salary tables temporal. This means that all information currently
in the tables is valid from today on. We add an employee. This modification to the two tables, consisting of two
SQL3 INSERT statements, respects temporal upward compatibility. That means it is valid from now on. Queries
and views on these tables with newly-added valid-time support work exactly as before. The SQL3 query to list
where high-salaried employees live returns the current information. Constraints and assertions also work exactly
as before, applying to the current state and checked on database modification. ut

It is instructive to consider temporal upward compatibility in more detail. When designing information systems,
two general approaches have been advocated. In the first approach, the system design is based on the function of
the enterprise that the system is intended for (the “Yourdon” approach [15]); in the second, the design is based on
the structure of the reality that the system is about (the “Jackson” approach [5]). It has been argued that the latter
approach is superior because structure may remain stable when the function changes while the opposite is generally
not possible. Thus, a more stable system design, needing less maintenance, is achieved when adopting the second
design principle. This suggests that the data needs of an enterprise are relatively stable and only change when the
actual business of the enterprise changes.

Enterprises currently use non-temporal database systems for database management, but that does not mean
that enterprises manage only non-temporal data. Indeed, temporal databases are currently being managed in a
wide range of applications, including, e.g., academic, accounting, budgeting, financial, insurance, inventory, le-
gal, medical, payroll, planning, reservation, and scientific applications. Temporal data may be accommodated by
non-temporal database systems in several ways. For example, a pair of explicit time attributes may encode a valid-
time interval associated with a row.

Temporal database systems offer increased user-friendliness and productivity, as well as better performance,
when managing data with temporal. The typical situation, when replacing a non-temporal system with a temporal
system, is one where the enterprise is not changing its business, but wants the extra support offered by the temporal
system for managing its temporal data. Thus, it is atypical for an enterprise to suddenly desire to record tempo-
ral information where it previously recorded only snapshot information. Such a change would be motivated by a
change in the business.

The typical situation is rather more complicated. The non-temporal database system is likely to already manage
temporal data, which is encoded using tables without temporal support, in an ad hoc manner. When adopting the
new system, upward compatibility guarantees that it is not necessary to change the database schema or application
programs. However, without changes, the benefits of the added valid-time support are also limited. Only when
defining new tables or modifying existing applications, can the new temporal support be exploited. The enterprise
then gradually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several reasons. First, it pro-
vides an appealing intuitive notion of a table with valid-time support: the semantics of queries and modification
are retained from tables without temporal support; the only difference is that intermediate states are also retained.
Second, in those cases where the original table contained no historical information, temporal upward compatibility
affords a natural means of migrating to temporal support. In such cases, not a single line of the application need be
changed when the table is altered to be temporal. Third, conventional tables that do contain temporal information
and for which temporal support has been added can still be queried and modified by conventional SQL3 statements
in a consistent manner.

5.3 Sequenced Valid Extensions

The requirements covered so far have been aimed at protecting investments in legacy code and at ensuring un-
interrupted operation of existing applications when achieving substantially increased temporal support. Upward
compatibility guarantees that (non-historical) legacy application code will continue to work without change when
migrating, and temporal upward compatibility in addition allows legacy code to coexist with new temporal appli-
cations following the migration.

The requirement in this section aims at protecting the investments in programmer training and at ensuring con-
tinued efficient, cost-effective application development upon migration. This is achieved by exploiting the fact that

6

programmers are likely to be comfortable with SQL.
Sequenced valid semantics states that SQL/Temporal must offer, for each query in SQL3, a temporal query

that “naturally” generalizes this query, in a specific technical sense. In addition, we require that the SQL/Temporal
query be syntactically similar to the SQL3 query that it generalizes.

With this requirement satisfied, SQL3-like SQL/Temporal queries on tables with temporal support have se-
mantics that are easily (“naturally”) understood in terms of the semantics of the SQL3 queries on tables without
temporal support. The familiarity of the similar syntax and the corresponding, naturally extended semantics makes
it possible for programmers to immediately and easily write a wide range of temporal queries, with little need for
expensive training.

Figure 3 illustrates this property. We have already seen that an SQL3 query q on a table with valid-time support
applies the standard SQL3 semantics on the current state of that table, resulting in a table without temporal support.
This figure illustrates a new query, q0, which is an SQL/Temporal query. Query q0 is applied to the table with valid-
time support (the sequence of states across the top of the figure), and results in a table also with valid-time support,
which is the sequence of states across the bottom.

q

...

=

...

q’ q q q q

Figure 3: Level 3 evaluates an SQL/Temporal query over a table with valid-time support and returns a table with
similar support

We would like the semantics of q0 to be easily understood by the SQL3 programmer. Satisfying sequenced
semantics along with the syntactical similarity requirement makes this possible. Specifically, the meaning of q0

is precisely that of applying SQL3 query q on each state of the input table (which must have temporal support),
producing a state of the output table for each such application. And when q0 also closely resembles q syntactically,
temporal queries are easily formulated and understood. To generate query q0, one needs only prepend the reserved
word VALIDTIME to query q.

EXAMPLE 3: We ask for the history of the monthly salaries paid to employees. Asking that question for the cur-
rent state (i.e., what is the salary for each employee) is easy in SQL3; let us call this query q. To ask for the history,
we simply prepend the keyword VALIDTIME to q to generate the SQL/Temporal query. Sequenced semantics al-
lows us to do this for all SQL3 queries. So let us try a harder one: list the history of those employees for which no
one makes a higher salary and lives in a different city. Again the problem reduces to expressing the SQL3 query
for the current state. We then prependVALIDTIME to get the history. Sequenced semantics also works for views,
integrity constraints and assertions. ut

These concepts also apply to sequenced modifications, illustrated in Figure 4. A valid-time modification de-
structively modifies states as illustrated by the curved arrows. As with queries, the modification is applied on a
state-by-state basis. Hence, the semantics of the SQL/Temporal modification is a natural extension of the SQL
modification statement that it generalizes.

EXAMPLE 4: It turns out that a particular employee never worked for the company. That employee is deleted from
the database. Note that if we use an SQL3 DELETE statement, temporal upward compatibility requires deleting
the information only from the current (and future) states. By prepending the reserved word VALIDTIME to the
DELETE statement, we can remove that employee from every state of the table.

7

u

...

=u’ u u u u

Figure 4: Level 3 also evaluates an SQL/Temporal modification on a table with valid-time support

Many people misspell the town Tucson as “Tuscon”, perhaps because the name derives from an American In-
dian word in a language no longer spoken. To modify the current state to correct this spelling requires a simple SQL
UPDATE statement; let’s call this statement u. To correct the spelling in all states, both past and possibly future,
we simply prepend the reserved word VALIDTIME to u. ut

5.4 Non-Sequenced Queries and Modifications

In a sequenced query, the information in a particular state of the resulting table with valid-time support is derived
solely from information in the state at that same time of the source table(s). However, there are many reasonable
queries that require other states to be examined. Such queries are illustrated in Figure 5, in which each state of the
resulting table requires information from possibly all states of the source table.

q

...

......

Figure 5: Level 4 evaluates a non-sequenced SQL/Temporal query over a table with valid-time support and returns
a table with similar support

In this figure, two tables with valid-time support are shown, one consisting of the states across the top of the
figure, and the other, the result of the query, consisting of the states across the bottom of the figure. A single query
q performs the possibly complex computation, with the information usage illustrated by the downward pointing
arrows. Whenever the computation of a single state of the result table may utilize information from a state at a dif-
ferent time, that query is non-sequenced. Such queries are more complex than sequenced queries, and they require
new constructs in the query language.

EXAMPLE 5: The query “Who was given salary raises?” requires locating two consecutive times, in which the
salary of the latter time was greater than the salary of the former time, for the same employee. Hence, it is a non-
sequenced query. ut

The concept of non-sequenced queries naturally generalizes to modifications. Non-sequenced modifications
destructively change states, with information retrieved from possibly all states of the original table. In Figure 6,
each state of the table with valid-time support is possibly modified, using information from possibly all states of
the table before the modification. Non-sequenced modifications include future modifications.

EXAMPLE 6: We wish to give employees a 5% raise if they have never had a raise before. This is not a temporally
upward compatible modification, because the modification of the current state uses information in the past. For the

8

...

Figure 6: Level 4 also evaluates a non-sequenced SQL/Temporal modification on a table with valid-time support

same reason, it is not a sequenced update. So we must use a slightly more involved SQL/Temporal UPDATE state-
ment. In fact, only the predicate “if they never had a raise” need be nonsequenced; the rest of the update can be
temporally upward compatible. ut

Views and cursors can also be nonsequenced.

EXAMPLE 7: We wish to define a snapshot view of the salary table in which the row’s timestamp period ap-
pears as an explicit column. We can also define a valid-time view on this snapshot view that uses the explicit period
column as an implicit timestamp. ut

It is important to note that nonsequenced queries are very different from sequenced queries. In the latter the
query language is providing a temporal semantics; in the former, the query language interprets the timestamp as
simply another column. For the user, this means that in nonsequenced queries (modifications, assertions, etc.)
the period timestamps must be manipulated explicitly. The operations, such as join and relational difference, are
performed with respect to the periods themselves, rather than on the individual states of the tables with temporal
support. Reserved words are used to syntactically differentiate temporally upward compatible queries, sequenced
queries, and non-sequenced queries, each of which applies a distinct semantics to the query.

5.5 Summary

In this section, we have formulated three important requirements that SQL/Temporal should satisfy to ensure a
smooth transition of legacy application code. We review each in turn.

Upward compatibility and temporal upward compatibility guarantee that legacy application code needs no mod-
ification when migrating and that new temporal applications may coexist with existing applications. They are thus
aimed at protecting investments in legacy application code.

The requirement that temporal statements be a sequenced extension of the existing statements guarantees that
the query language is easy to use for programmers familiar with the existing query language. The requirement thus
helps protect investment in programmer training. It also turns out that this property makes the semantics of tables
with valid-time support straight-forward to specify and enables a wide range of implementation alternatives [12].

These requirements induce four levels of temporal functionality, to be defined in SQL/Temporal.

Level 1 This lowest level captures the minimum functionality necessary for the query language to satisfy upward
compatibility with SQL3. Thus, there is support for legacy SQL3 statements, but there are no tables with
valid-time support and no temporal queries. Put differently, the functionality at this level is identical to that
of SQL3.

Level 2 This level adds to the previous level solely by allowing for the presence of tables with valid-time sup-
port. The temporal upward compatibility requirement is applicable to this subset of SQL/Temporal. This
level adds no new syntax for queries or modifications—only queries and modifications with SQL3 syntax
are possible.

Level 3 The functionality of Level 2 is enhanced with the possibility of giving sequenced temporal functionality
to queries, views, constraints, assertions, and modifications on tables with valid-time support. This level of
functionality is expected to provide adequate support for many applications. Starting at this level, temporal
queries exist, so SQL/Temporal must be a sequenced-consistent extension of SQL3.

9

Level 4 Finally, the full temporal functionality normally associated with a temporal language is added, specifically,
non-sequenced temporal queries, assertions, constraints, views, and modifications. These additions include
temporal queries and modifications that have no syntactic counterpart in SQL3.

6 Tables with Valid-Time Support in SQL3

This section informally introduces the new constructs of SQL/Temporal. These constructs are an improved and ex-
tended version of those in the consensus temporal query language TSQL2 [11]. The improvements concern guar-
anteeing the properties listed in Section 5, to support easy migration of legacy SQL3 application code [3]. The
extensions concern views, assertions, and constraints (specifically temporal upward compatible and sequenced and
non-sequenced extensions) that were not considered in the original TSQL2 design.

The presentation is divided into four levels, where each successive level adds temporal functionality. The lev-
els correspond to those discussed informally in the previous section. Throughout, the functionality is exemplified
with input to and corresponding output from a prototype system [14]. The reader may find it instructive to execute
the sample statements on the prototype. In the examples, executable statements are displayed in typewriter
style on a line of their own starting with the prompt “> ”.

6.1 Level 1: Upward Compatibility

Level 1 ensures upward compatibility (see Figure 1), i.e., it guarantees that legacy SQL3 statements evaluated over
databases without temporal support return the result dictated by SQL3.

6.1.1 SQL3 Extensions

Obviously there are no syntactic extensions to SQL3 at this level.

6.1.2 A Quick Tour

The following statements are executed on January 1, 1995. A company creates two tables, an employee table and a
monthly salary table. Every employee must have a salary. These schema changes can be easily expressed in SQL3.

> CREATE TABLE employee(ename VARCHAR(12), eno INTEGER PRIMARY KEY,
street VARCHAR(22), city VARCHAR(10), birthday DATE);

> CREATE TABLE salary(eno INTEGER REFERENCES employee(eno), amount INTEGER);

> CREATE ASSERTION emp_has_sal CHECK
(NOT EXISTS (SELECT *

FROM employee AS e
WHERE NOT EXISTS (SELECT *

FROM salary AS s
WHERE e.eno = s.eno)));

These tables are populated.

> INSERT INTO employee
VALUES (’Therese’, 5873, ’Bahnhofstrasse 121’, ’Zurich’, DATE ’1961-03-21’);

> INSERT INTO employee
VALUES (’Franziska’, 6542, ’Rennweg 683’, ’Zurich’, DATE ’1963-07-04’);

> INSERT INTO salary VALUES (6542, 3200);
> INSERT INTO salary VALUES (5873, 3300);

A view identifies those employees with a monthly salary greater than $3500.

> CREATE VIEW high_salary AS SELECT * FROM salary WHERE amount > 3500;

10

Employee Therese is given a 10% raise. Since the salary table has no temporal support, Therese’s previous
salary is lost.

> UPDATE salary s
SET amount = 1.1 * amount

WHERE s.eno = (SELECT e.eno FROM employee e WHERE e.ename = ’Therese’);

> COMMIT;

6.2 Level 2: Temporal Upward Compatibility

Level 2 ensures temporal upward compatibility as depicted in Figure 2. Temporal upward compatibility is straight-
forward for queries. They are evaluated over the current state of a database with valid-time support.

6.2.1 SQL3 Extensions

The create table statement is extended to define tables with valid-time support. Specifically, this statement can be
followed by the clause “AS VALIDTIME<datetime field>”, e.g., “AS VALIDTIME PERIOD(DATE)”. This
specifies that the table has valid-time support, with states indexed by particular days. The alter table statement is
extended to permit valid-time support to be added to a table without such support or dropped from a table with
valid-time support.

A table with valid-time support is conceptually a sequence of states indexed with valid-time granules at the
specified granularity. This is the view of a table with valid-time support adopted in temporal upward compatibility
and sequenced semantics. At a more specific logical level, a table with valid-time support is also a collection of
rows associated with valid-time periods.

Indeed, our definition of the semantics of the addition to SQL/Temporal being proposed satisfies temporal up-
ward compatibility and sequenced semantics.

6.2.2 A Quick Tour

The following statements are executed on February 1, 1995.

> ALTER TABLE salary ADD VALIDTIME PERIOD(DATE);
> ALTER TABLE employee ADD VALIDTIME PERIOD(DATE);

The following statements are typed in the next day (February 2, 1995).

> INSERT INTO employee
VALUES(’Lilian’, 3463, ’46 Speedway’, ’Tuscon’, DATE ’1970-03-09’);

> INSERT INTO salary VALUES(3463, 3400);
> COMMIT;

The employee table contains the following rows. (In these examples, we used open-closed (”[: : :)”) for
periods.)

ename eno street city birthday Valid
Therese 5873 Bahnhofstrasse 121 Zurich 1961-03-21 [1995-02-01 - 9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 9999-12-31)
Lilian 3463 46 Speedway Tuscon 1970-03-09 [1995-02-02 - 9999-12-31)

Note that the valid time extends to the end of time, which in SQL3 is the largest date.
The salary table contains the following rows.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
5873 3630 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

11

We continue, still on February 2. Tables, views, and queries act like before, because temporal upward compat-
ibility is satisfied. To find out where the high-salaried employees live, use the following.

> SELECT ename, city
FROM high_salary AS s, employee AS e
WHERE s.eno = e.eno;

Evaluated over the current state, this returns the employee Therese, in Zürich.
Assertions and referential integrity act like before, applying to the current state. The following transaction will

abort due to (1) a violation of the PRIMARY KEY constraint, (2) a violation of the emp has sal assertion and
(3) a referential integrity violation, respectively.

> INSERT INTO employee
VALUES (’Eric’, 3463, ’701 Broadway’, ’Tucson’, DATE ’1988-01-06’);

> INSERT INTO employee
VALUES (’Melanie’, 1234, ’701 Broadway’, ’Tucson’, DATE ’1991-03-08’);

> INSERT INTO salary VALUES(9999, 4900);
> COMMIT;

6.3 Level 3: Sequenced Language Constructs

Level 3 adds syntactically similar, sequenced counterparts of existing queries, modifications, views, constraints,
and assertions (see Figure 3). Sequenced SQL/Temporal queries produce tables with valid-time support. The state
of a result table at each time is computed from the state of the underlying table(s) at the same time, via the semantics
of the contained SQL3 query. In this way, users are able to express temporal queries in a natural fashion, exploiting
their knowledge of SQL3. Temporal views, assertions and constrains can likewise be naturally expressed.

6.3.1 SQL3 Extensions

Temporal queries, modifications, views, assertions, and constraints are signaled by the reserved word VALIDTIME.
This reserved word can appear in a number of locations.

Derived table in a from clause In the from clause, one can prepend VALIDTIME to a <query expression>.

View definition Temporal views can be specified, with sequenced semantics.

Assertion definition A sequenced assertion applies to each of the states of the underlying table(s). This is in
contrast to a snapshot assertion, which is only evaluated on the current state. In both cases, the assertion is
checked before a transaction is committed.

Table and column constraints When specified with VALIDTIME, such constraints must apply to all states of
the table with valid-time support.

Cursor expression Cursors can range over tables with valid-time support.

Single-row select Such a select can return a row with an associated valid time.

Modification statements When specified with VALIDTIME, the modification applies to each state comprising
the table with valid-time support.

In all cases, the VALIDTIME reserved word indicates that sequenced semantics is to be employed.

6.3.2 A Quick Tour

We evaluate the following statements on March 1, 1995.
Prepending VALIDTIME to any SELECT statement evaluates that query on all states, in a sequenced fashion.

The first query provides the history of the monthly salaries paid to employees. This query is constructed by first
writing the snapshot query, then prepending VALIDTIME.

12

> VALIDTIME
SELECT ename, amount
FROM salary AS s, employee AS e
WHERE s.eno = e.eno;

This evaluates to the following.

ename amount Valid
Franziska 3200 [1995-02-01 - 9999-12-31)
Therese 3630 [1995-02-01 - 9999-12-31)
Lilian 3400 [1995-02-02 - 9999-12-31)

List those for which no one makes a higher salary in a different city, over all time.

> VALIDTIME
SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno
AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city);

This gives the following result.

ename Valid
Therese [1995-02-01 - 9999-12-31)
Franziska [1995-02-01 - 1995-02-02)

Therese is listed because the only person in a different city, Lilian, makes a lower salary. Franziska is listed because
for that one day, there was no one in a different city (Lilian didn’t join the company until February 2).

The reserved wordVALIDTIME specifies that the semantics of the query to which it is prepended is a sequenced
semantics. Conceptually the query is evaluated independently on every state of the underlying tables (cf. Figure 3).
This ensures that the user’s intuition about SQL carries over to sequenced queries and modifications.

A formal semantics for sequenced queries has been developed [12, 4]. While Figure 3 provides the meaning
of sequenced queries in terms of states, the formal semantics is expressed in terms of manipulations on the period
timestamps of the underlying tables with valid-time support.

We then create a temporal view, similar to the non-temporal view defined earlier. In fact, the only difference is
the use of the reserved word VALIDTIME.

> CREATE VIEW high_salary_history AS
VALIDTIME SELECT * FROM salary WHERE s.salary > 3500;

Finally, we define a temporal column constraint.

> ALTER TABLE salary ADD VALIDTIME CHECK (amount > 1000 AND amount < 12000);
> COMMIT;

Rather than being checked on the current state only, this constraint is checked on each state of the salary table.
This is useful to restrict retroactive changes [6], i.e., changes to past states and proactive changes, i.e., changes to
future states. This constraint is satisfied for all states in the table.

Sequenced modifications are similarly handled. To remove employee #5873 for all states of the database, we
use the following statement.

13

> VALIDTIME DELETE FROM employee
WHERE eno = 5873;

> VALIDTIME DELETE FROM salary
WHERE eno = 5873;

> COMMIT;

To correct the common misspelling of Tucson, we use the following statement.

> VALIDTIME UPDATE employee
SET city = ’Tucson’

WHERE city = ’Tuscon’;
> COMMIT;

This updates all incorrect values, at all times, including the past and future. Lillian’s city is thus corrected.

6.4 Level 4: Non-Sequenced Language Constructs

Level 4 accounts for non-sequenced queries (see Figure 5) and non-sequenced modifications (see Figure 6). Many
useful queries and modifications are in this category. However, their semantics is necessarily more complicated
than that of sequenced queries, because non-sequenced queries cannot exploit that useful property. Instead, they
must support the formulation of special-purpose user-defined temporal relationships between implicit timestamps,
datetime values expressed in the query, and stored datetime columns in the database.

Nonsequenced SQL/Temporal queries can produce tables with or without valid-time support, depending on
whether the valid-time period of the resulting rows is provided in the query. The state of a result table, if a table is
without valid-time support, or the state of a result table at each time, if a table has valid-time support, is computed
from potentially all of the states of the underlying table(s), at any time. The semantics are quite simple. A nonse-
quenced evaluation treats a table with valid-time support as a table without temporal support, but with an additional
column containing the timestamp. We again emphasize that this semantics is quite different from temporally up-
ward compatible semantics (where the query is evaluated only on the current state) and from sequenced semantics
(where the query is effectively evaluated on each state independently).

6.4.1 SQL3 Extensions

Nonsequenced valid queries are signaled by the new reserved wordNONSEQUENCED preceding the reserved word
VALIDTIME. This applies analogously to nonsequenced modifications, views, assertions, and constraints. This
reserved word can appear in a number of locations.

Derived table in a from clause In the from clause, one can prependNONSEQUENCED VALIDTIME to a<query
expression>. This results in a table without temporal support, and is the means of removing the valid-time
support of a table.

View definition Nonsequenced views can be specified.

Assertion definition A nonsequenced assertion applies simultaneously to all of the states of the underlying ta-
ble(s). This is in contrast to a snapshot assertion, which is only evaluated on the current state. In both cases,
the assertion is checked before a transaction is committed.

Table and column constraints When specified with NONSEQUENCED VALIDTIME, such constraints must
apply to the table with valid-time support as a whole.

Cursor expression Cursors can range over the result of a nonsequenced select.

Single-row select A nonsequenced single-row select will return a row without temporal support, even when
evaluated over tables with valid-time support.

Modification statements When specified with NONSEQUENCED VALIDTIME, the modification applies si-
multaneously to all states comprising the table with valid-time support.

14

In all cases, the NONSEQUENCED reserved word indicates that nonsequenced semantics is to be employed.
The syntax of a <query expression> is extended to the following.

� �
NONSEQUENCED

	
VALIDTIME

�
<value expression>

	 	
<query expression>

An optional period expression after VALIDTIME specifies that the valid-time period of each row of the result
is intersected with the value of the expression. This allows one to restrict the result of a select statement, cursor
expression, or view definition to a specified period, and to restrict the time for which assertion definitions, table
constraints and column constraints are checked.

An optional period expression after NONSEQUENCED VALIDTIME specifies the valid-time period of each
row of the result, and thus renders the resulting table to have valid-time support. This enables a table without tem-
poral support to be converted into a table with valid-time support within a query or other statement.

For modification statements, the period expression after VALIDTIME specifies the temporal scope of the mod-
ification: the times at which the modification is to be applied.

The value expression “VALIDTIME(<correlation name>)” is available; it evaluates to the valid-time period
of the row associated with the correlation or table name. This is required because valid-time periods of tables with
valid-time support are not explicit columns (the alternative violates temporal upward compatibility).

The following quick tour provides examples of these constructs.

6.4.2 A Quick Tour

This quick tour starts with the database as it was when we last left it, in the previous quick tour. The employee
table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

The salary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

A period expression after VALIDTIME specifies the temporal scope of the result. List those who were em-
ployed sometime during the first six months.

> VALIDTIME PERIOD ’[1995-01-01 - 1995-07-01)’ SELECT ename FROM employee;

This returns the following table.

ename Valid
Franziska [1995-02-01 - 1995-07-01)
Lilian [1995-02-02 - 1995-07-01)

On April 1, 1995, we give Lilian a 5% raise, starting immediately. This is a temporally upward compatible
modification, and so is already expressible in SQL.

> UPDATE salary
SET amount = 1.05 * amount
WHERE eno = (SELECT S.eno

FROM salary AS S, employee as E
WHERE ename = ’Lilian’ AND E.eno = S.eno);

> COMMIT;

This results in the following salary table.

15

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

To determine who was given salary raises, we must simultaneously consider two consecutive states of the
salary table, before and after the raise. This requires a nonsequenced query.

> NONSEQUENCED VALIDTIME SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2);

MEETS ensures that the valid-time period associated with S1 is immediately followed by the valid-time period
associated with S2. Since the valid-time period of a row is not in an explicit column (as this would violate temporal
upward compatibility), VALIDTIME() is used to extract the associated valid-time period. The result is a table
without temporal support, because NONSEQUENCED is not followed by a period expression.

ename
Lilian

If we instead wish to get back a table with valid-time support, i.e., “Who was given salary raises, and when did they
receive the higher salary?”, we place a <value expression> after VALIDTIME to specify when each resulting row
is valid. Our first try is the following, in which the <value expression> extracts the valid timestamp of S2.

> NONSEQUENCED VALIDTIME VALIDTIME(S2) SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2);

Because an expression is associated with NONSEQUENCED VALIDTIME, the result will be a table with valid-time
support, with a valid timestamp of the value of the timestamp of S2. However, this isn’t quite correct, because the
period expression following VALIDTIME can only mention the columns of the following select statement, and
the timestamp of S2 isn’t available. So we put the value in the select list, and use an enclosing (sequenced) select
statement to get rid of this extra column.

> VALIDTIME SELECT ename
FROM (NONSEQUENCED VALIDTIME S2valid SELECT ename, VALIDTIME(S2) AS S2valid

FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2)) AS S;

The inner query evaluates to two columns, ename and S2valid. The NONSEQUENCED VALIDTIME includes
a <value expression>, specifying that a table with valid-time support is desired. The valid timestamp of each row
is the same as the value of the S2valid column. The outer query just projects out the ename column, retaining
the valid timestamp. This query has the following result.

ename Valid
Lilian [1995-04-01 - 9999-12-31)

If we had desired the time when the person had received the lower salary, we would simply specifyVALIDTIME(S1)
instead.

This query is admittedly more complex than the sequenced queries given in the previous section. In non-
sequenced queries the user (more specifically, the query) is doing all the work of manipulating the timestamps,
whereas in sequenced queries, the semantics handles the timestamps automatically, freeing the user from this con-
cern. The reason that nonsequenced queries are included is that some (very useful) queries cannot be expressed
using the sequenced semantics, the query just given being one example.

Following VALIDTIME with a period expression in a modification (whether sequenced or not) specifies the
temporal scope of the modification. Two applications of this are retroactive and future changes. Assume it is now
May 1, 1995. Franziska, employee 6542, will be taking a leave of absence the last half of the year.

16

> VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM salary
WHERE eno = 6542;

> VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM employee
WHERE eno = 6542;

> COMMIT;

The salary table now has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-07-01)
6542 3200 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

The employee table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

Note that these deletions split single periods into two, with a lapse between them. Many modifications are greatly
simplified in this way. Also note that previously specified sequenced valid referential integrity and other constraints
and assertions must apply to each state. Hence, if the first DELETEwas performed, but not the second, theCOMMIT
will abort because the emp has sal constraint is violated for certain states, such as the one on August 1, 1995.

The period expression following VALIDTIME is also allowed for assertions and constraints. Assume that no
employee may make less than 3000 during 1996.

> CREATE ASSERTION salary_check
VALIDTIME PERIOD ’[1996-01-01 - 1997-01-01)’ CHECK

(NOT EXISTS (SELECT * FROM salary WHERE amount < 3000));

This is a sequenced assertion, and thus applies separately to each state (at least, those in 1996). Nonsequenced
assertions and constraints apply to all states at once. To assert that there is only one employee with a particular
name, we use the following constraint within the employee table definition.

> CONSTRAINT unique_name UNIQUE (ename)

This is interpreted with temporal upward compatible semantics, and so applies only to the current state. If all we
do is temporal upward compatible modifications, this will be sufficient. However, if we perform future updates,
violations may be missed. To always check all states, a sequenced constraint is used.

> CONSTRAINT unique_name_per_time VALIDTIME UNIQUE (ename)

This will ensure that at any time, each ename value is unique.
To ensure that each ename is unique, across all states simultaneously, a nonsequenced constraint is required.

> CONSTRAINT unique_name_over_all_time NONSEQUENCED VALIDTIME UNIQUE (ename)

The above employee table satisfies the first two constraints, but not the third (the nonsequenced one), because
there are two rows with an ename of Franziska.

As with VALIDTIME, NONSEQUENCED VALIDTIME can appear in a from clause. To give employees a
5% raise if they never had a raise before, we first write a temporal upward compatible modification (i.e., without
VALIDTIME) to give the raise.

17

> UPDATE salary AS S
SET amount = 1.05 * amount;

We can augment this statement to use a non-sequenced query in the from clause to look for raises in the past.

> UPDATE salary AS S
SET amount = 1.05 * amount
WHERE NOT EXISTS (SELECT *

FROM (NONSEQUENCED VALIDTIME SELECT *
FROM salary AS S1, salary AS S2
WHERE S1.amount < S2.amount

AND VALIDTIME(S1) MEETS VALIDTIME(S2)
AND S1.eno = S.eno and S2.eno = S.eno) AS S3

);
> COMMIT;

The NOT EXISTSwas added. Assume that the update was entered on June 1, 1995. The followingsalary table
results.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Since the update is evaluated with temporal upward compatible semantics, if changes the salary for valid times
after June 1.

Finally, we wish to define a snapshot view of the salary table in which the row’s timestamp appears as an
explicit column.

> CREATE VIEW snapshot_salary (eno, amount, when) AS
NONSEQUENCED VALIDTIME SELECT S.*, VALIDTIME(S) FROM salary AS S;

Coming around full circle, we can define a valid-time view on snapshot salary that uses the explicit column
validtime as an implicit timestamp.

> CREATE VIEW temporal_salary (eno, amount) AS
VALIDTIME SELECT eno, amount
FROM (NONSEQUENCED VALIDTIME when SELECT * FROM snapshot_salary AS S) AS S2;

This conversion can also be applied within queries and cursors.

7 Transaction-Time Support

Transaction time identifies when data was asserted in the database. If transaction time is supported, the states of
the database at all previous points of time are retained and updates are append-only.

Unlike valid time, transaction time cannot be entirely simulated with tables with explicit timestamp columns.
The reason is that tables with transaction-time support are append-only: they grow monotonically. While the query
functionality can be simulated on table with no temporal support, in the same way that valid-time query functional-
ity can be translated into queries on table with no temporal support, there is no way to restrict the user to modifica-
tions that ensure the table is append-only. While one can revoke permission to use DELETE, it is still possible for
the user to corrupt the transaction timestamp via database updates and insertions. This means that the user can never
be sure that what the table says was stored at some time in the past was actually in the table at that time. The only
way to ensure the consistency of the data is to have the DBMS maintain the transaction timestamps automatically.

18

Many applications need to keep track of the past states of the database, often for auditing requirements. Changes
are not allowed on the past states; that would prevent secure auditing. Instead, compensating transactions are used
to correct errors.

When an error is encountered, often the analyst will look at the state of the database at a previous point in time
to determine where and how the error occurred.

However, SQL currently does not support such modifications or queries well. The following example will il-
lustrate the problems.

� Assume that we wish to keep track of the changes and deletions of the Employee table discussed above.
This table has four columns: Name, Manager, Dept, and When (a PERIOD indicating when the row was
valid). To know when rows are inserted and (logically) deleted, we add two more columns, InsertTime and
DeleteTime, both of the data type TIMESTAMP. Of course, adding these two columns breaks the referential
integrity constraint between Manager and Name (the manager must also be an employee). The reader is
invited to write this referential integrity constraint to take into account the three time columns.

� We find out that the telephone bill for a department is unusually high, so we ask “How many employees have
been in each department” to get a start. This query is quite complex to formulate in SQL.

� It turns out that one of the departments shows an unreasonable number of current employees (more than
25). When was the error introduced? Is this inconsistency in the database widespread? How long has the
database been incorrect? The query “When did we think that departments are overly large?” provides an
initial answer, but is also very difficult to express in SQL.

These queries are very challenging, even for SQL experts, when time is involved.
Modifications are even more of a problem. A logical deletion must be implemented as an update and an inser-

tion, because we don’t want to change the previously stored information. However, there is no way of preventing an
application from inadvertently corrupting past states (by incorrectly altering the values of the InsertTime or Delete-
Time columns), or a white-collar criminal from intentionally “changing history” to cover up his tracks.

8 Outline of the Solution

The solution is to have the DBMS maintain transaction time automatically, so that the integrity of the previous
states of the database is preserved. The query language can also help out, by making it easy to write queries and
modifications.

With the small syntactic additions proposed here, transaction time can be easily added.

ALTER TABLE Employee ADD TRANSACTIONTIME

Because the DBMS is maintaining transaction time for us, for this table, we don’t have to worry about the integrity
of the previous states. The DBMS simply won’t let us modify past states.

The previously specified sequenced valid referential integrity still applies, always on the current state of the
database. No rephrasing of this integrity constraint is necessary.

The query “How many employees have been in each department?” asks for the history in valid time of the
current transaction-time state. Hence, it is particularly easy to specify, by exploiting transaction-time upward com-
patibility.

VALIDTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

To find where the error was made, we write the query “When did we think that departments are overly large?”
This uses the current time in valid time (the current departments), but looks at past states of the database. This
requires a sequenced transaction query, with valid-time upward compatibility.

19

TRANSACTIONTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept
HAVING COUNT(*) > 25

By having the DBMS maintain transaction time, applications that need to retain past states of tables for audit-
ing purposes can have these past states maintained automatically, correctly, and securely. As well, the proposed
language extensions enable queries to be written in minutes instead of hours.

The concepts of temporal upward compatibility (TUC), sequenced (SEQ), and nonsequenced (NONSEQ) se-
mantics apply orthogonally to valid time and transaction time.

The semantics is dictated by three simple rules.

� The absence of VALIDTIME (respectively, TRANSACTIONTIME) indicates valid-time (resp., transaction-
time) upward compatibility. The result does not include valid-time (resp., transaction-time) support.

� VALIDTIME (respectively,TRANSACTIONTIME) indicates sequenced valid (resp., transaction) semantics.
An optional period expression temporally scopes the result. The result includes valid-time (resp., transaction-
time) support.

� NONSEQUENCED denotes nonsequenced valid (resp., transaction) semantics. An optional period expression
after NONSEQUENCED VALIDTIME provides a valid-time timestamp, yielding valid-time support in the
result.

EXAMPLE 8: Assume that we have an employee table with attributes Name, Salary, and Manager. We can state
queries that are different combinations of TUC, SEQ, and NONSEQ in valid and transaction time. In the follow-
ing, we indicate valid time, then transaction time. Hence, “TUC/SEQ” means valid-time upward compatible and
sequenced transaction-time semantics.

TUC/TUC Who currently makes more than their manager, as best known?

A table with no temporal support results.

SEQ/TUC Who at any time makes or made more than their manager did (at the same time, as best known)?

A table with valid-time support results.

TUC/SEQ Who did we think makes more than their manager today?

NONSEQ/TUC Who made more than their manager did (at any time), as best known?

A table with no temporal support results.

TUC/NONSEQ When was it recorded that someone currently makes more than their manager?

A table with no temporal support results.

SEQ/SEQ When did we think that someone, at some time, made more than their manager, at the same time?

A table with both valid-time and transaction-time support results.

SEQ/NONSEQ When did we correct the information to record that someone, at some time, made more than their
manager, at the same time?

A table with valid-time support results. For each transaction time, we get a row with valid-time support,
indicating when the employee is now considered to make more than their manager.

NONSEQ/SEQ Who was recorded, perhaps erroneously, to have made more than their manager did at any time?

Here we get a table with transaction-time support, indicating when the perhaps erroneous data was in the
table.

NONSEQ/NONSEQ When did we correct the information, to record that someone made more than their manager
did, at any time?

Here a table with no temporal support results.

20

TUC in valid time translates in English to “at now”; SEQ translates to “at the same time’; and NONSEQ trans-
lates to “at any time.” TUC in transaction time translates to “as best known”; SEQ translates to “when did we think
: : : at the same time”; and NONSEQ translates to “when was it recorded that.”

This example illustrates that all combinations are meaningful. ut

While this example emphasized the orthogonally of valid and transaction time, that TUC, SEQ, and NONSEQ
can be applied equally to both, there are still some differences between the two types of time.

First, valid time can have a precision specified by the user at table creation time. The transaction timestamps
have an implementation-dependent range and precision. Second, valid time extends into the future, whereas trans-
action time always ends at now. Third, unlike NONSEQUENCED VALIDTIME, a <value expression> is not per-
mitted afterNONSEQUENCED TRANSACTIONTIME, because it is not possible to compute a table with transaction-
time support. Finally, during modifications the DBMS provides the transaction time, in contrast with the valid time
of facts, which are provided by the user. This derives from the different semantics of transaction time and valid
time. Specifically, when a fact is (logically) deleted from a table with transaction-time support, its transaction stop
time is set automatically by the DBMS to the current time. When a fact is inserted into the table, its transaction start
time is set by the DBMS, again to the current time. An update is treated, concerning the transaction-time times-
tamps, as a deletion followed by an insertion. The transaction times that a set of modification transactions give to
the modified rows must be consistent with the serialization order of those transactions.

EXAMPLE 9: We can alter the employee table to be a table with both valid-time and transaction-time support, by
adding transaction-time support. ut

Temporal upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work as before,
with the same semantics.

Since the history of the database is recorded in tables with both valid-time and transaction-time support, we can
find out when corrections were made, using a nonsequenced transaction query.

EXAMPLE 10: The query “When was the street corrected, and what were the old and new values?”, combines
nonsequenced transaction semantics (since this involves two transaction states: before and after the correction)
with sequenced valid semantics. ut

EXAMPLE 11: To extract all the information from the employee table, we can use a sequenced valid/sequenced
transaction query. Such queries can have arbitrarily complex predicates. “When did we think that someone lived
somewhere for more than six months?” ut

Modifications take effect at the current transaction time. However, we can still specify the scope of the change
in valid time, both before and after now (retroactive and postactive changes, respectively).

EXAMPLE 12: Lilian moved last June 1. ut

Finally, arbitrarily complex queries in transaction time can be expressed with nonsequenced transaction queries.

EXAMPLE 13: The query “When was an employee’s address for 1995 corrected?” involves nonsequenced trans-
action semantics and sequenced valid semantics, with a temporal scope of 1995. ut

As always, the concepts also apply to views, cursors, constraints, and assertions.

EXAMPLE 14: The assertion “An entry in the security table can never be updated. It can only be deleted, and a
new entry, with another key value, inserted.” can be expressed with a nonsequenced transaction semantics, stating
in effect that the key value is unique over all transaction time. ut

21

9 A Quick Tour

This quick tour starts with the database as it was when we last left it, at the end of the previous quick tour. The
employee table has the following contents. Recall that closed-open periods are used here for the valid-time and
transaction-time periods.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

The salary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

We can alter the employee table to be a table with both valid-time and transaction-time support, by adding
transaction-time support. Assume that the current date is July 1, 1995.

ALTER TABLE employee ADD TRANSACTIONTIME;
COMMIT;

Since employee was a table with valid-time support, this statement converts it to the following table with both
valid-time and transaction-time support. Recall that an the ending bound of the transaction-time period of the end of
time in the representation simply indicates that the row still logically resides in the table, i.e., has not been logically
deleted.

ename eno street city birthday Valid Transaction
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

We retain the salary table as a table with valid-time support.
Temporal upward compatibility guarantees that conventional, nontemporal queries, updates, etc. work as be-

fore, with the same semantics. We can list those for which (currently, as best known) no one makes a higher salary
in a different city.

SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno AND s2.amount > s1.amount

AND e1.city <> e2.city)

This takes a timeslice in both valid time and transaction time at now, and returns the result: Lilian.
We can also ask, for all time, when this is true, by simply prepending “VALIDTIME”.

VALIDTIME SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno AND s2.amount > s1.amount

AND e1.city <> e2.city)

22

This returns a table with valid-time support, evaluated with sequenced valid semantics, after the current transaction
timeslice has been taken.

ename Valid
Franziska [1995-02-01 - 1995-02-02)
Lilian [1995-02-02 - 1995-04-01)
Lilian [1995-04-01 - 9999-12-31)

There are two rows for Lilian, because two rows of salary participated in computing the result. Interestingly,
Franziska satisfied the where condition for exactly one day, before Lilian was hired.

Temporally upward compatible modifications also work as before. Assume it is now August 1, 1995. Franziska
just moved.

UPDATE employee
SET street = ’Niederdorfstrasse 2’
WHERE ename = ’Franziska’;
COMMIT;

This update yields the following employee table. Note that although Franziska is at the new address starting on
August 1, 1995, since she won’t be an employee for the next five months, her new address is recorded from January
1, 1996 onward.

ename eno street city birthday Valid Transaction
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

Since the history of the database is recorded in tables with both valid-time and transaction-time support, we
can find out when corrections were made, using a nonsequenced transaction query. Assume it is now September
1, 1995.

The query “When was the street corrected, and what were the old and new values?” combines nonsequenced
transaction semantics with sequenced valid semantics.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME
SELECT e1.ename, e1.street AS old_street, e2.street AS new_street,

BEGIN(TRANSACTIONTIME(e2)) AS trans_time
FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

This yields the following table with valid-time support. The trans time column specifies when the change was
made; the implicit timestamp indicates the valid-time period of the fact that was changed.

ename old street new street trans time Valid
Franziska Rennweg 683 Niederdorfstrasse 2 1995-08-01 [1996-01-01 - 9999-12-31)

To extract all the information from the employee table, we can use a sequenced valid/sequenced transaction
query. “When did we think that someone lived somewhere for more than six months?”.

VALIDTIME AND TRANSACTIONTIME SELECT ename, street
FROM employee
WHERE INTERVAL(VALIDTIME(employee) MONTH) > INTERVAL ’6’ MONTH

ename street Valid Transaction
Franziska Rennweg 683 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
Franziska Niederdorfstrasse 2 [1996-01-01 - 9999-12-31) [1995-08-01 - 1995-09-01)
Lilian 46 Speedway [1995-02-02 - 9999-12-31) [1995-07-01 - 1995-09-01)

23

Notice that in the result, the ending transaction time for data in the current state is always the current time, rather
than the end of time, reflecting information currently known.

Modifications take effect at the current transaction time. However, we can still specify the scope of the change
in valid time, both before and after now (retroactive and postactive changes, respectively).

Assume it is now October 1, 1995. Lilian moved last June 1.

VALIDTIME PERIOD ’[1995-06-01 - 9999-12-31)’ UPDATE employee
SET street = ’124 Alberca’
WHERE ename = ’Lilian’
COMMIT;

This update yields the following employee table.

ename eno street city birthday Valid Transaction
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31) [1995-07-01 - 1996-10-01)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 1995-06-01) [1995-10-01 - 9999-12-31)
Lilian 3463 124 Alberca Tucson 1970-03-09 [1995-06-01 - 9999-12-31) [1995-10-01 - 9999-12-31)

Finally, arbitrarily complex queries in transaction time can be expressed with nonsequenced transaction queries.
The query, “When was an employee’s address for 1995 corrected?”, involves nonsequenced transaction seman-

tics and sequenced valid semantics, with a temporal scope of 1995. Assume that it is November 1, 1995.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME PERIOD ’[1995-01-01 - 1996-01-01)’
SELECT e1.ename, e1.street AS old_street, e2.street AS new_street,

BEGIN(TRANSACTIONTIME(e2)) AS trans_time
FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

AND e1.street <> e2.street

This evaluates to the following result, which has an explicit column denoting the date the change was made, and
an implicit valid time indicating the time in reality in question.

ename old street new street trans time Valid
Lilian 46 Speedway 124 Alberca 1995-10-01 [1995-06-01 - 1996-01-01)

Note that the period from February through May is not included in the valid time, as the street didn’t change for
that period.

As always, the concepts also apply to views, cursors, constraints, and assertions.
In Section 6.3.2 we gave an example of a sequenced constraint (VALIDTIME CHECK (amount > 1000

AND amount < 12000)) on the salary table. This constraint must hold independently on every (valid-time)
state of the table. In Section 6.4.2 we gave a series of valid-time constraints on theename column of theemployee
table. Those alternatives apply orthogonally to the transaction time. As an example, the assertion, “An entry in the
security table can never be updated. It can only be deleted, and a new entry, with another key value, inserted.”,
can be expressed with a nonsequenced transaction semantics, stating in effect that the key value is unique over all
transaction time.

CREATE TABLE security (
keyvalue NUMERIC(8) NONSEQUENCED TRANSACTIONTIME UNIQUE,
...

)

24

10 Summary

In this paper, we first outlined several desirable features of SQL/Temporal relative to SQL3: upward compatibility,
temporal upward compatibility, and sequenced semantics. A series of four levels of increasing functionality was
elaborated. The specific syntactic additions were outlined and examples given to illustrate these constructs. The
extensions involve (a) the use of the VALIDTIME and TRANSACTIONTIME reserved words, to indicate valid-
time, resp. transaction-time, support (in the case of schema specification statements) and sequenced semantics (in
the case of queries, modifications, views, cursors, assertions and constraints), (b) the use of the NONSEQUENCED
reserved word for nonsequenced semantics, and (c) the use of a period expression to temporally scope sequenced
and nonsequenced queries, modifications, views, cursors, constraints, and assertions. Elsewhere we provide a for-
mal semantics, in terms of the formal semantics of SQL3, that satisfied the sequenced semantics correspondence
between temporal queries and snapshot queries, and also provide the semantics for nonsequenced queries [12, 13].
In those change proposals we also list alternative implementation approaches which vary in the degree of imple-
mentation difficulty and the achievable performance efficiency. The implementation alternatives all compute the
result by manipulating periods, and thus are independent of the granularity.

In this paper we introduced transaction time as well as tables with transaction-time support, sequenced transac-
tion semantics, nonsequenced transaction semantics, scoping on transaction time via an optional period expression,
and modification semantics. The specific syntactic additions were outlined and examples given to illustrate these
constructs.

We end by listing some of the advantages of the approach espoused here.

� Upward compatibility is assured, permitting existing constructs to operate exactly as before.

� Only three new reserved words, NONSEQUENCED, VALIDTIME, and TRANSACTIONTIME, are required.

� Satisfaction of temporal upward compatibility ensures that existing applications do not break when tables
without temporal support have such support added.

� Satisfaction of sequenced semantics ensures that temporal queries, modifications, views, assertions, and con-
straints are easy to specify, formalize, and implement.

� Nonsequenced semantics permits tables with temporal support to be converted to tables without such support,
with explicit timestamp columns, and for temporal support to be added to tables, even within a query.

� A simple period expression permits the temporal scope to be specified.

� The transaction-time extensions are compatible with, and orthogonal to, those for valid time.

� Since the semantics is defined in terms of the non-temporal semantics, the extensions are compatible with
all the facilities of SQL3.

� A public-domain prototype [14] demonstrates the practical viability of the proposed constructs. The quick
tour was validated on this prototype.

Acknowledgments

The inspiration for the constructs described here and proposed for incorporation into SQL/Temporal is the TSQL2
language. The participation of Ilsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis E. Dyreson, Ramez
Elmasri, Fabio Grandi, Wolfgang Käfer, Nick Kline, Krishna Kulkarni, T.Y. Cliff Leung, Nikos Lorentzos, John
F. Roddick, Arie Segev, Michael D. Soo and Surynarayana M. Sripada was critical.

This research was supported in part by the National Science Foundation through grants IRI-9632569 and ISI-
9202244, by grants from IBM, the AT&T Foundation, and DuPont, by the Danish Natural Science Research Coun-
cil through grant 9400911, and by the CHOROCHRONOS project, funded by the European Commission DG XII
Science, Research and Development, as a Networks Activity of the Training and Mobility of Researchers Pro-
gramme, contract no. FMRX-CT96-0056.

David Toman provided helpful comments on a previous draft. We also appreciate feedback from the ANSI and
ISO SQL3 committees, which helped shape the specifics of this proposal.

25

References

[1] Bair, J., M. Böhlen, C.S. Jensen, and R.T. Snodgrass, “Notions of Upward Compatibility of Temporal Query
Languages”, Business Informatics (Wirtschaftsinformatik) 39(1):25–34, February 1997.

[2] Böhlen, M. H. Valid-Time Integrity Constraints, Aalborg University, October 1995, 21 pages.

[3] Böhlen, M. H., C. S. Jensen and R. T. Snodgrass,. “Evaluating the Completeness of TSQL2”, in Proceedings
of the VLDB International Workshop on Temporal Databases. Ed. J. Clifford and A. Tuzhilin. VLDB. Springer
Verlag, September 1995.

[4] Böhlen, M. H. and C. S. Jensen. Seamless Integration of Time into SQL. Technical Report R-962049, Aalborg
University, Department of Computer Science, Denmark, December, 1996.

[5] Jackson, M. A. System Development. Prentice-Hall International Series in Computer Science. Prentice-Hall
International, Inc., 1983.

[6] Jensen, C. S. and R. Snodgrass, “Temporal Specialization and Generalization”.IEEE Transactions on Knowl-
edge and Data Engineering 6(6):954–974, December 1994.

[7] Melton, J. (ed.) SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-012.)

[8] Snodgrass, R.T., I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. Elmasri, F. Grandi, C.S. Jensen,
W. Käfer, N. Kline, K. Kulkarni, T.Y.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo, and S.M. Sri-
pada, “TSQL2 Language Specification,” SIGMOD Record 23(1):65–86, March, 1994.

[9] Snodgrass, R. T. and H. Kucera. Rationale for Temporal Support in SQL3. 1994. (ISO/IEC JTC1/SC21/WG3
DBL SOU-177, SQL/MM SOU-02.)

[10] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos. Proposal for a new SQL Part—Temporal. 1994.
(ISO/IEC JTC1/SC21/WG3 DBL RIO-75, X3H2-94-481.)

[11] Snodgrass, R. T. (editor), Ilsoo Ahn, Gad Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Ramez El-
masri, Fabio Grandi, Christian S. Jensen, Wolfgang Käfer, Nick Kline, Krishna Kulkarni, T. Y. Cliff Leung,
Nikos Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo and Suryanarayana M. Sripada. The Temporal
Query Language TSQL2. Kluwer Academic Pub., 1995.

[12] Snodgrass, R. T., M. H. Böhlen, C. S. Jensen and A. Steiner Adding Valid Time to SQL/Temporal, change
proposal, ANSI X3H2-96-501r2, ISO/IEC JTC 1/SC 21/WG 3 DBL-MAD-146r2, November 1996, 77
pages. At URL:<ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/mad146.ps> (version cur-
rent November 21, 1996).

[13] Snodgrass, R. T., M. H. Böhlen, C. S. Jensen and A. Steiner Adding Transaction Time to SQL/Temporal,
change proposal, ANSI X3H2-96-502r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-147r2, November 1996, 47
pages. At URL:<ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/mad147.ps> (version cur-
rent November 21, 1996).

[14] Steiner, A. and M. H. Böhlen. The TimeDB Temporal Database Prototype, Version 1.07, November
1996. At URL: <http://www.iesd.auc.dk/general/DBS/tdb/TimeCenter> or at URL:
<ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz> (version current
March 26, 1997).

[15] Yourdon, E. Managing the System Life Cycle. Yourdon Press, 1982.

26

