
Integrating Multiple Calendarsusing Zaman

BedirhanUrgun,CurtisE. Dyreson,Nick Kline, JessicaK. Miller, RichardT.
Snodgrass,MichaelD. Soo,andChristianS.Jensen

August19,2004

TR-80

A TIMECENTER TechnicalReport

��� ��� �
Integrating Multipl e Calendars using � Zaman

Copyright c
�

2004 Bedirhan Urgun,Curtis E. Dyreson, Nick Kline, Jes-
sica K. Miller, RichardT. Snodgrass,Michael D. Soo, and Christian S.
Jensen.All rightsreserved.

	�
 �
�����������
BedirhanUrgun, CurtisE.Dyreson, Nick Kline, JessicaK. Miller, Richard
T. Snodgrass,Michael D. Soo,andChristianS.Jensen

��
�� ��� ������� �! #"$� ���%�&�('
August 2004. A TIMECENTER Technical Report

)
IME * ENTER

� ���(��� �+�-,.�� .�%�

Aalborg University, Denmark
ChristianS.Jensen(codirector), Michael H. Böhlen,Heidi Gregersen,SimonašSaltenis,JanneSkyt, Giedrius
Slivinskas,Kristian Torp

University of Arizona, USA
RichardT. Snodgrass(codirector), Dengfeng Gao,Bongki Moon, SudhaRam

Indi vidual partici pants
Curtis E. Dyreson, Washington StateUniversity, USA; Fabio Grandi,University of Bologna, Italy; Vijay
Khatri, IndianaUniversity, USA; Nick Kline, Microsoft, USA; GerhardKnolmayer, University of Bern,
Switzerland; ThomasMyrach,University of Bern,Switzerland; KwangW. Nam,Chungbuk National Uni-
versity, Korea;Mario A. Nascimento, University of Alberta,Canada; JohnF. Roddick, Flinders University,
Australia; KeunH. Ryu,Chungbuk NationalUniversity, Korea;DennisShasha, New York University, USA;
Michael D. Soo,amazon.com,USA; AndreasSteiner, TimeConsult,Switzerland; Paolo Terenziani, Uni-
versity of Torino; Vassilis Tsotras,University of California, Riverside,USA; Jef Wijsen, University of
Mons-Hainaut,Belgium;andCarloZaniolo,University of California,Los Angeles,USA

For additional information, seeTheTIMECENTER Homepage:
URL: <htt p:// www.cs.au c.dk /Time Cent er>

Any software madeavailable via TIMECENTER is provided “as is” and without any express or implied
warranties,including, without limitation, theimpliedwarrantyof merchantability andfitnessfor a particular
purpose.

The TIMECENTER icon on the cover combinestwo “arrows.” These“arrows” are lettersin the so-called
Runealphabet usedonemillennium agoby the Vikings, aswell asby their precedessors andsuccessors.
TheRunealphabet(secondphase) has16 letters,all of which haveangular shapes andlack horizontal lines
becausetheprimary storagemediumwaswood. Runesmayalsobe found on jewelry, tools, andweapons
andwereperceivedby many ashaving magic,hiddenpowers.

Thetwo Runearrows in theicon denote“T” and“C,” respectively.

Abstract

Programmersworld-wide areinterestedin developing applicationsthatcanbeusedinternationally.
Part of the internationalizationeffort is theability to engineer applications to usedatesandtimesthat
conform to local calendars yet can inter-operatewith datesandtimes in othercalendars, for instance
betweenthe Gregorian andIslamic calendars. / ZAMAN is a systemthat providesa naturallanguage
andcalendar-independent framework for integratingmultiple calendars. / ZAMAN performs “runtime-
binding” of calendars andlanguagesupport. A running / ZAMAN systemdynamically loadscalendars
and language support tablesfrom XML-for mattedfiles. Loading a calendar integrates it with other,
alreadyloadedcalendars,enabling usersof / ZAMAN to add,compare,andconvert timesbetweenmulti-
ple calendars. / ZAMAN alsoprovidesa flexible, calendar-independentframework for parsingtemporal
literals. Literals canbe input andoutputin XML or plain text, usinguser-definedformats,andin dif-
ferentlanguagesandcharactersets.Finally, / ZAMAN is a client/server system,enabling sharedaccess
to calendarservers spreadthroughout theweb. This paperdescribesthe architecture of / ZAMAN and
experimentallyquantifies thecostof usingacalendarserver to translateandmanipulatedates.

Keywords: Time,multiple calendars,calendric systems,temporal datatypes, datetime representation.

1 Intr oduction

Thereis a need for a systemthatcansupport multiple calendars. Temporaldatais present in someform in
mostapplications. Einstein’s theory of relativity posits thatanobserver measurestimerelative to a frameof
reference.For mostobservers,especially thosetravelingata(small!) fraction of thespeedof light, theframe
of referenceis influencedmostby theobserver’s cultural andlinguistic background. Diversebackgrounds
have producedmany different waysto measure time. According to Fraser, about forty majorcalendarsare
in daily use[Fra87]. Even though time is measured, represented, andusedin many different ways,most
applications imposea single interpretation for time and temporal operations. For instance, the SQL-92
standarddatabasequery languagerequiresdates to berepresentedsolely in theGregoriancalendar[MS93].

Thispaper presents� ZAMAN, asystemthatprovidestemporal functionality for applicationsthatneedto
calculate, format,parse,and/or comparetimeswithin eithera singlecalendaror acrossmultiple calendars.
The project nameis composedof the Turkish word for time, Zaman, (pronounced “Zah-mon”), and the
Greekletter, � (pronouncedtau), whichdenotesthatit is partof theTemporalAccessfor Users(tau)project
startedat theUniversity of Arizona.1

Theintendeduseof � ZAMAN is asacalendarserver, for multiplecalendars.� ZAMAN takesa“runtime-
binding” approachto integratingmultiplecalendars.In runtimebinding, calendarsandsupporting tablesare
developedin isolationatdifferentlocations,andaresubsequently loadedasneeded into arunning � ZAMAN

system. For instance,a developerin Francecouldspecify a Gregorian calendar, another in Australia could
write tablesfor monthnamesin English, a third developer in SaudiArabiacould build anIslamiccalendar,
anda fourth in Japancould write Islamic monthnamesin Japanese.Eachdeveloperworks independently.
Whenfinished, a developer places a description of his or her work on theweb formatted in theExtensible
MarkupLanguage(XML) [W3C00]. Thenauserin Canadacouldspecify acalendric systemutil izing all of
theseresourcesthougha simplespecification (againin XML). � ZAMAN integratesthecalendarsonly when
the calendric systemis loaded. Usersof the systemcaninput andoutput timesin different languagesand
calendars,perform inter-calendarconversions, andcompare andmodify timesasdesired. � ZAMAN also
providesa rangeof arithmeticandcomparisonoperationson times,for examplethere is anoperationto add
aninterval(e.g.,“1 week”) to aninstant(e.g.,“January 1, 2004”).

1http://www.c s.arizona.ed u/tau

1

� ZAMAN is a calendar-independent framework that incorporatesseveralnovel featuresfor enabling the
rapid integration of multiple calendars.

0 � ZAMAN is a client/server system. Calendars canbe complicatedandcostly to develop, which is
onereason why applications usually have limited support for time. Whena calendar is developed,
it is useful to sharethecalendaramongmany applicationsandusers.A client/server systemenables
the creation of “calendarservers” that canprovide calendar-relatedservicesto multiple clients. We
anticipatethat therewill be � ZAMAN servers,or moreprecisely � ZAMAN webservices,running on
well-known sites, especially for themajorcalendars.

0 A key part of the design of � ZAMAN is the ability to add calendarsand input-output formatson
the fly, at run-time. New calendarsand other user-definedinformation, suchas natural languages
or input-output formatsfor temporal literals,canbe integratedinto a multi-calendar systemwithout
recompiling � ZAMAN or evenstopping andrestartinga � ZAMAN server.

0 � ZAMAN makesextensive useof XML. XML is becoming increasingly popular in webapplications
for exchangingdataanddescribing services.In � ZAMAN, all calendar-related specificationsareXML
documents.UsingXML alsohelpsto improvetheparsingof thefilesfor specifying � ZAMAN compo-
nents,making it easier to developcalendars.For instance,aspecificationfile in XML canbevalidated
with anXML schemalanguage,like XML Schema[Fal01]. � ZAMAN alsosupportstheconstruction
anduseof XML-sensitive formats to input andoutput temporal literals since we anticipatea future
growth in theuseof XML to representtimesanddates.

This paper is organizedasfoll ows. The next section presentsseveral examplescenarios showinghow
� ZAMAN can be used. Section 3 introducesthe major time-related concepts that are implemented in
� ZAMAN. The architectureis described in Section4, which consists of an overview of the major pack-
agesanda detaileddiscussion of theroles of individual classes. We show how developersandusers create
andusecalendarsin � ZAMAN.

We performedseveral experimentsto measurethe efficiency of � ZAMAN. The results arereported in
Section5. Section 6 presents a prototype end-userand calendar developer tool, with a Graphical User
Interface(GUI), thatuses� ZAMAN to translateandmanipulatedates. Thelast two sectionsdiscussrelated
research andlist thecontributionsandfuture directionsof this research.

2 UsageScenarios

This section presentsseveralexamplesto motivatetheutili ty andfunctionality of � ZAMAN. Eachexample
is a separatescenario. Thescenarios becomeincreasingly moresophisticated.

In the first scenario a user, let’s call her Leslie, hasa long list of banking records timestampedwith
Gregorian calendar dates.The datesareformatted using a style commonin the United Statesof America
(mm/dd/yyy y). Leslie is sending the records to Paris,so shewould like to convert the datesto a format
usedin Europe(dd/mm/yyyy). Figure1 shows a concreteexampleof sucha conversion.This conversion
is very simple.Onecould imaginewriting aPerlscript, or aprogramin anotherstring processing language,
to perform the conversion. � ZAMAN canalsoconvert timesbetween formats. To do a format conversion,
Lesliewould first connect to a Gregoriancalendar � ZAMAN server, pushan Instant input property with the
USA format, andpushan Instant output property with the Europeanformat. Next, for eachdate,Leslie
would constructaninstant (e.g.,by calling theInstant class constructor) andsubsequently have that instant
output itself. Theinstant wouldbeconstructedusingtheGregorian calendarandtheUSA format,but output
in theEuropeanformat.

2

04/08 /200 3 1 08/0 4/200 3

Figure1: Converting a datefrom a USA to a European format

<date > <dat e>
<mont h valu e = "04 " /> <day >08</day>
<day valu e = "08" /> 1 <month>0 4</mo nth>
<year val ue = "200 3" /> <yea r>20 03</y ear>

</dat e> </da te>

Figure2: An XML-basedconversionfrom USA to European dateformat

The second scenario is similar to the first, but instead of an unstructured text document,Leslie hasan
XML document. The datesin the document are encoded within <dat e> elements. Shewould like to
do the samekind of conversion, from USA to Europeanformat, as illustratedin Figure2. � ZAMAN can
alsoperform XML-sensitive conversions.Theconversion usesthesameprocessesasthepreviousscenario,
only the Instant input property and Instant output property would have to change to usethe XML-based
formats(I/O formats canbe specified by users). We anticipatethat XML-basedconversions will become
morecommonthan unstructured text conversions in future.

Thethird scenario concernschanging thelanguagein which a calendardateis represented. Lesliehasa
friend in India. She’d like to translateGregoriancalendardates that includeanEnglishmonthnameinto a
datewith themonthnamegivenin Hindi, without changing theformatasillustratedin Figure3. � ZAMAN

supports using different languagesand different charactersetsfor fields in formats, suchas the nameof
the month. New tablesfor languagesupport, encodedasXML documents,canbe dynamically loadedas
needed.

Thefourth scenario concernsconverting timesbetweencalendars.Lesliecontactsabusinessin Cairoto
integrateher banking information with Egyptian purchasedata. Thebusinessasks Leslie to translateeach
Gregorian calendar dateto the corresponding datein the Islamic calendar. Figure4 illustratesthe desired
conversionfrom the Gregorianto the Islamic calendar. The figure renders the Islamic datein Englishfor
expository purposes; the languagecould be translatedto Arabic during theconversionin a mannersimilar
to thethird scenario.

Thefifth scenario featuresacalendarserver to convertatimefrom aGregorianto anIslamiccalendar. A
single � ZAMAN systemcanloadseveral calendarsat onceandapply inter-calendar conversions. � ZAMAN

could alsobedeployedin a distributedsystemasillustratedin Figure5. Thefigureshows a “local” user(in
this scenario, thelocal useris thebusinessin Cairo)running � ZAMAN that hasa reliable implementationof
the Islamiccalendar. Leslie runsa “remote” � ZAMAN server for theGregoriancalendar. The“client” API
for � ZAMAN is the samefor local andremoteservers, so clients do not have to be specializedto manage
local and remoteservices differently. From a client’s perspective the only difference between local and

<dat e> <dat e>
<month val ue = "Jan uary" /> <month valu e = "Magha" />
<day val ue = "08" /> 1 <day val ue = "08" />
<yea r valu e = "20 03" /> <yea r value = "20 03" />

</da te> </da te>

Figure3: A time valueis translatedfrom English to Hindi

3

<dat e> <dat e>
<month val ue = "Jan uary" /> <month valu e = "Saf ar"/>
<day val ue = "08" /> 1 <day val ue = "06" />
<yea r valu e = "20 03"/ > <yea r value = "14 24"/>

</da te> </da te>

Figure4: A Gregoriancalendarto Islamiccalendar conversion

User

values
time

set 1

values
time

"Islamic Calendar"

resources
local

set 2

Client Side Server Side

"Gregorian Calendar"

resources
remote

same API

Figure5: Convertingbetween local andremote� ZAMAN servers

remoteservers,other thanperformance, is that theservers have different names. Thefigureshowsa client
in contact with a single remoteserver, but in general, a � ZAMAN client cansimultaneously communicate
with multiple � ZAMAN servers.

Thesixth scenario examinesatimegranularity conversion. SupposeLesliewantsto know how muchshe
spendseachmonth.In order to calculatetheamountpermonth, sheneedsto convert thedateof eachbanking
record from a granularity of Gregoriancalendarday s to a granularity of Gregorian mont hs , so that she
knows which records are in the samemonth. Figure 6(a) illustratesthis simple granularity conversion.
A lessstraightforward conversion would be from days to a granularity of Gregorian weeks (assuming
Leslie would like to do a weekly analysis of her spending). An even morecomplicatedconversion would
beconverting a time at a granularity of months to oneat agranularity of days (or weeks). For example,
supposeLeslieknows shebought anitem in March2003, but doesnot know theexactdaywhenshebought
theitem. Generally, conversionsfrom coarseto fine granularitiesresult in indeterminate times[DS98]. An
indeterminate time is a time that is not precisely specified, suchas“sometime in March” or “last week”.
Figure6(b) shows anexampleconversion. Thedateon theright half of thefigure indicatesthat the time is
somedayin therangeof daysbetween thefirst andlastdayin themonth. � ZAMAN supportsbothintra- and
inter-calendar granularity conversions. Additionally, � ZAMAN providesclassesthat model indeterminate
times,sotheindeterminacy canbeaccountedfor (or discardedif desired)in theconversion.

4

Apri l 13, 2003 1 Apr il 2003
(a) days to month s

April 2003 1 Apr il 1, 2003 2 Apri l 30, 2003
(b) months to days

Figure6: Granularity conversions

Apr il 13, 2003 3 Apr il 14, 2003 1 true
(a) An “earlier than” predicate

Apri l 13, 2003 4 5 days 1 Apri l 18, 2003
(b) Adding aninterval to aninstant

Figure7: Evaluating temporal operations

Theseventh scenario is about supporting arithmeticandcomparison operations for time values. Leslie
wantsto sendherbanking records to Sydney to be integratedwith datafrom Australian consumers.Leslie
observesthatSydney is onedayaheadof theUSA. To properly integratethedatasheneeds to convert the
datato local conditions in Australia. For thetemporal informationin herrecords,shebasically needsto add
onedayto eachdate.Sinceherdatesarerepresentedin theUSA format(mm/dd/yyy y), it is morecompli-
catedthatincreasingthe“day” number by one; for instance,adaythatendsa monthwould have to increase
the month(and possibly the year) andset the day to 1. Increasinga dateby oneday is just oneexample
of themany arithmeticandcomparisonoperations thatapplications needto perform on times.An example
comparison is illustratedin Figure 7(a), and an examplearithmetic operation is depicted in Figure 7(b).
Thefiguresshow relatively simpleoperations. In general, theseoperationscanbecomplicatedbecausethe
operandsmaybeat differentgranularities,from differentcalendars,in different languages, andinvolve dif-
ferent formats.Thetimesin anoperationcould alsobe indeterminate or might even involve special times,
suchasthevariable timecallednowthatrepresentstheever-changing currenttime[CDI5 97]. � ZAMAN pro-
videsa complete setof temporal comparisonoperationsandauseful setof arithmeticoperations. � ZAMAN

also supports a semantics interfacethat permitsusersto imposespecial-purposesemantics for temporal
operations, suchasconverting operandsin binary operationsto the granularity of the left operand prior to
performing theoperation.

In sum,many users andapplicationsneedtemporal functionality. Unfortunately, applications areoften
limited in their support for time becauseit is costly to develop the code needed to full y support input and
output in a wide range of formats, languages,and calendars,correctly perform granularity conversions,
andimplementa complete setof temporal operations. What is needed is a flexible, extensible systemthat
supports the modular definition of calendarsandgranularities, can load new calendarswhenneeded, and
canhandle all the complexities of parsing and formatting a wide variety of times. The remainder of this
paper describesonesuchsystem.

3 6 Zaman Concepts

Thissection introducesconceptsthatareof util ity to usersof � ZAMAN, namelycalendars, calendric systems
andvarious temporal data types. A calendaris a humanabstraction of time. Readers arelikely to bemost
familiar with theGregoriancalendar, but many other calendarsarealsoin daily use.Relatedcalendarsare
groupedinto larger structurescalledcalendric systems. A calendric system facilitatesinteraction amonga

5

Calendar Description

UTC2 Reviseduniversal coordinated time
Gregorian Commonwestern solarwith months
Lunar Commoneasternlunar
Julian Westernsolarwith years anddays
Meso-american 260daycycles
Academic Yearconsistsof semesters
CommonFiscal Financial yearbeginsat New Year
AcademicFiscal Financial yearstarts in Fall
FederalFiscal Financial yearstarts in October
Timecard 8 hour daysand5 dayweeks
3-shift Work Day 24 hourdaydividedinto threeshifts of 8 hours
Carbon-14 Time basedon radioactive decay
Geologic Time basedon geologic processes

Table1: Commoncalendars

group of calendars. � ZAMAN supports temporal operationson threetemporal datatypes: instants, periods,
andintervals [JC98]. An instant represents a point on anunderlying time-line,a period is thetime between
two instants,andaninterval is a durationof time. In theremainder of this section we explain eachconcept
in moredetail. Section4 presents the � ZAMAN architecture to support theconcepts.

3.1 Calendars

A calendar is a humanabstractionof time [JC98]. Calendarsdefinethe time valuesof interest to a user,
usually over a specific segment of the physical time-line. A calendar familiar to many is the Gregorian
calendar, based on the rotation of the Earthon its axis and its revolution around the Sun. Somewestern
cultureshave usedthe Gregorian calendar since the late 16th century to measurethe passageof time. As
anotherexample,theIslamic calendaris alunar calendar, basedontheamountof timerequiredfor theMoon
to revolve around theEarth.Yearsin theIslamic calendararecountedsincetheHijr a (Mohammed’s flight
to Medina),which corresponds to theGregorian calendaryear622C.E.

The Gregorian and lunar calendarsare examples of daily and monthly calendars,but, in general, a
calendar canmeasuretime using any well-defined time unit. For example,an employeetime cardcanbe
regarded asa calendarwhich measures time in eight-hour increments andis only definedfor five daysof
eachweek. We note that many different calendarsexist, and that no calendar is inherently “better” than
another; thevalueof a particular calendar is wholly determinedby thepopulation thatusesit. Table1 lists
several prominently-usedcalendars.

It is important to alsosupport “one-off ” or special-purpose calendars.Theusageof a calendardepends
on thecultural, legal, andevenbusinessorientationof theuser. For example,businesses generally perform
accounting relative to somefiscal year. However, the definition of fiscal year variesdepending on the
business.Universities may have their fiscal calendar coincidewith the academicyearin order to simplify
accounting. Otherinstitutionsusethemorecommonhalf-yearlyor quarterly definitionsof fiscalyear.

To enable calendarsto be developedin isolation yet be rapidly integratedinto a multi-calendar appli-
cation, a modulardefinition of a calendar is essential. The defining characteristics of a calendar canbe
partitionedinto two sets: intri nsic characteristics which definethe universalqualities of the calendar, and
extrinsiccharacteristicswhichdefinetheuser-dependent or varying qualitiesof thecalendar[SS92,Soo93].

6

Property Description

Locale Location for timezone displacement
Instant input format Input formatstring for instants; therearealsoformats for now-relative andinde-

terminate instants.
Instant output format Outputformat string for instants;there arealsoformatsfor now-relative andin-

determinateinstants.
Intervalinput format Input formatstringfor interval; thereis alsoa formatfor indeterminateintervals
Intervaloutput format Outputformatstringfor interval; thereis alsoa formatfor indeterminateintervals
Periodinput format Input formatstringfor periods
Periodoutput format Outputformatstring for periods

Table2: Calendarproperties

Theintrinsiccharacteristicsof acalendardefinethesemanticsof thecalendarandof its componentsthat
depend directly on suchsemantics. For example,the duration of time units (e.g.,week,month) andtheir
interrelationships areintrinsic componentsof a calendar. Functionsperforming calendar-definedcomputa-
tionsarealsointrinsic. An exampleof sucha function would be,isLe apYear(ye ar) , for theGregorian
calendar, which returns a Booleanvalueindicatingwhether thegivenyearis a leapyear.

The intrinsiccharacteristics of a calendar includea collectionof temporal granularities. A granularity
is asystem of measurementfor a temporal datum[BDE5 98, JC98]. For instance,in theGregorian calendar,
birth dates are typically measured in the granularity of days and train schedulesarespecified to that of
minu tes . Sincemeasurementsarediscrete, a granularity createsa discrete imageof a time-line. More
precisely, theunderlying time-linecanbethoughtof asbeing choppedinto segmentscalledgranules. Times
aremeasured to a granule within a granularity.

It is important for a userpopulation to be able to definetheir own granularities; any fixed system of
granularities,suchasthosesupported by SQL from the Gregorian calendar, will not meetthe needsof all
users. In that sense, a calendarcanbe definedasa collection of related granularities[WBBJ97, DELS00,
BJW00]. Granularitiesarerelatedin thesensethat thegranulesin onegranularity maybefurtheraggregated
to form largergranulesbelonging to acoarsergranularity [BDE5 98]. For example,aseveryGregorian year
is anaggregationof 365or 366days, it follows that year s is a coarser granularity thanday s . Similarly,
days is a finer granularity than yea rs .

The extrinsic characteristics of a calendar capture the propertiesof a calendar that vary depending on
theorientationof theuser. As anexampleof this typeof characteristic,considerthesamedateexpressedin
differentlanguages,sayEnglish andHindi. TheGregoriancalendardatemaybewrittenas“January/1/1999”
in English, but in Hindi it would be “Magha/1/1999”. A single datemay also be expressed in several
formats, e.g.,it couldbeastringlike“August 202003” or anXML-formattedstringsuchas“ 7 date8 August,
20 20037 /date8 ”. Both of the formats are in English; however, they arestructurally very different. Yet
anotherexampleis thedifferencebetween themm/dd/yy yy formatpreferredin theUnitedStates,andthe
dd/m m/yy yy formatusedin many other countries.Often,international standardsandlanguagesimpose a
single representation. For example, the ISO 8601 international format representsdatesonly in the context
of the Gregoriancalendarandhasa rigid setof definedformats[Int00]. In contrast, � ZAMAN provides
support for user-definedextrinsic characteristics of calendars, and hencecan support multiple languages
anddifferentformats for dates.

Wehave identified asetof calendarpropertiesapplicableto many calendars.Table2 lists theproperties.
Calendarsfor whichaparticularpropertydoesnotapplycanignorethevalueof theproperty, if it is defined.
Appendix C contains a completedescription of theproperties in Table2.

7

Roman
Calendar
9Geologic

:
Calendar

Carbon-14
Calendar
9 Julian

Calendar
Gregorian
Calendar

Communist
Calendar

Gregorian
:
Calendar

600 B.C.E. 100 B.C.E. 1929 C.E. 1931 C.E.1917 C.E.70,000 B.C.E.
;

Figure8: TheRussiancalendric system

Data Type Scenario

instant “When did Alice starttherace?”
period “When wasAlice running?”
interval “How long did Alice run?”

Table3: Examplesof temporaldata types

3.2 Calendric Systems

Calendric systemsarecollectionsof calendarswhereeachcalendarcoversacontiguousandnon-overlapping
portion of the time-line, calledanepoch [JC98]. It is possible that there aretimeson the time-line thatare
not coveredby any epochfor a calendar in a calendric system. Figure8 illustratesthe Russiancalendric
system. It capturestheuseof calendarsover time in theareaof theworld called(in English) “Russia”. In
thefigure, the time-line is not shown to scale. In prehistoric epochs, theGeologic calendar andCarbon-14
dating (another form of a calendar)areusedto measure time. During theRomanempirethelunar calendar
developed by the Romanrepublic was used. PopeJulius, in the 1st Century B.C.E., introduced a solar
calendar, known astheJulian calendar. This calendar wasin useuntil the1917 Bolshevik revolution when
the Gregorian calendar, first introducedby PopeGregory XIII in 1572, wasadopted. In 1929, the Soviets
introduceda continuous schedulework weekbased on four daysof work followed by onedayof rest, in an
attemptto breaktradition with the seven-day week. This new calendar, the Communistcalendar, hadthe
failing thatonly eighty percentof thework force wasactive on any day, andwasabandonedafteronly two
yearsin favor of theGregoriancalendar, which is still in usetodayin thatcountry.

� ZAMAN is theonly systemthatwe know of thatsupportsmultiple calendarswithin a single calendric
system. Most systems that support time have only a single, pre-definedcalendar over a very small epoch.
For example, a DBMS that implementsthe SQL2 proposalsupportsonly the Gregorian calendarandonly
overtheepochfrom 1 C.E.to 9999C.E. [Dat88, MS93]. This is inadequatefor applicationsthatmanipulate
time valuesthat fall outside of this epoch, suchasdeveloping a historical record of ancient Egypt. Also,
applicationsthat usetime valuesthatarewithin this epoch, but in a differentcalendar, cannot beadequately
supported. By allowing multiple calendric systemsto exist within anapplication, andsupporting calendric
systems with multiple calendars,we offer a general notion of expressingtime that is able to capture the
entire history of anenterprise.

3.3 Temporal Data Types

� ZAMAN hasthreetemporal datatypeswith rich semantics thatcapture the intuitive andfamiliar concepts
of time: instants, periods, and intervals. The datatypesareexplained in detail in the restof this section;
Table3 givesanexampleusagefor eachtype.

An instant modelsa singlepoint in time [JC98]. On a continuous time-line, it is generally not possible
to precisely identify asingle time point becauseour ability to measuretime is inherently imprecise [CR87].

8

For example,if a wristwatch reports that the current time is 3:45:23 P.M., the time is actually sometime
during that second, but it is unknown exactly when. The wristwatchcanonly measureto the accuracy of
the granularity of seco nds . Usually, an instant is modeled by a single granule. But moregenerally, an
instant is representedby a sequenceof granules, calledthe support, together with an optional probability
distribution on thesupport [DS98]. Thesupport indicatesthepossible granulesto which thetime is known
while the distribution records the probability that the instant is a particular granule. The support extends
from a lower support granule, < , to anupper support granule, = in a granularity, > , andin this paper will be
designatedusingthefollowing notation:

<�2?=#@BADCFEG>IHJ<�3KCF3?=ML.N
It is possible that the lower and upper supports are the same,indicating that the instant is modeled

by a single granule. In this case, the instant is called a determinate instant. Otherwise, it is called an
indeterminate instant.

While it is important to recognize that instantsarespecified only to theprecisionof a particular granu-
larity, it is equally important to choosethecorrect granularity. Sometimes,for reasonsof linguistic conve-
nience,humansunder-specify a time, that is, they specify a time in a very coarsegranularity whenthetime
thatit signifiesis actually known or intendedto beataveryfinegranularity. For example,if ashipschedule
states thata shipdeparts at 3 P.M., thenthetime of theshipdepartureis givenin thegranularity of hours ,
but “3 P.M.” is (probably) accurateto a muchfiner granularity, specifically to thegranularity of min utes .

A period is a segmentof the time-line [JC98]. A periodcanberepresentedwith a pair of granules. A
period that extends from granule CPO to granule CRQ is the setof granulesin > betweenCJO and C�Q , under the
constraint that CSOT3UC�Q . Periodsliterals canbegivenaseither openor closed; anopenperiod excludesthe
bounding granule from the period. For example, in the Gregoriancalendarthe closedperiod “[1/1/1776 -
12/31/1776]” representsall thedaysin theyear1776. Wewill assumethatboth thestarting andterminating
granules are in the samegranularity. Instants and periods are relatedin the sense that two instantscan
uniquely determinea period,anda period’s bounding instantscanalways bedetermined.

An interval is anunanchoredduration of time, that is, it is anamountof time with known length but no
specific starting or ending instants[JC98]. For example,theinterval“oneweek” is known to haveaduration
of sevendays,but oneweekcanrefer to any duration of sevenconsecutive days.An interval canbeeither
positive,denoting forwardmotionin time,or negative,denoting backwardsmotionin time.

It is important to notethat intervals do not necessarily have a fixed duration. For example,the length
of the interval “one month” in theGregorian calendarchangesfrom monthto monthwhenobservedat the
granularity of days . In February thedurationof amonthmightbe28days,but in Juneit becomes31 days.

Finally, therearesomeinstants that have special semantics. Beginning and forever arespecial instants
representing theearliestandlatest possible times,respectively, that is, minimal andmaximalinstants. The
instant nowrepresentstheconstantly changing current time. A now-relative instant includesadisplacement
from thecurrent time, e.g.,now 4 1 day [CDI 5 97]. Thespecial instants canbeusedin periods,andsome
special intervalsalsoexist. For instance,theinterval all of time is theduration from beginning to forever.

� ZAMAN supports a basic setof arithmetic operations involving instancesof the instant, period, and
interval datatypes. For example,onemaywish to determine the arrival time of a train given its departure
time and the duration of its trip by adding an interval to an instant, e.g., “March 28, 2003” + “1 day”
givesthearrival instant, which is “March 29,2003”. Table4 shows thesupportedoperationsandoperands.
‘ / ’, ‘* ’, and‘+’ arebinary operatorsimplementing theoperations of division, multiplication,andaddition,
respectively. ‘ - ’ implementsbinary subtraction in addition to intervalvaluenegation,a unary operation.

Notethattheoperationsarenot orthogonal.For example,instant * instant is undefinedsincenoreason-
ablesemantics for thatexpressionexists.

9

Operand1 Operator Operand 2 Yields

- interval interval
interval + interval interval
interval - interval interval
instant + interval instant
instant - interval instant
interval + instant instant
instant - instant interval
interval * numeric interval
numeric * interval interval
interval / numeric interval
interval / interval numeric
interval + period period
period + interval period
period - interval period

Table4: Valid arithmeticexpressions andresults

� ZAMAN hasa completeset of temporal comparison operations. Determining a temporal ordering
relationship between a pair of objects is central to many applications. For example,onemight beinterested
in which employeeswerehired during a particular year, or given two employees,who hasmoreseniority.
Allen defined a completesetof relationshipsbetweenperiods[All83]. � ZAMAN extends Allen’s operators
with ananalogoussetof operatorsfor theinstantandinterval datatypes. Table5 liststheavailableoperations
in � ZAMAN. This setwasshown to becomplete elsewhere [SJS95].

The arithmetic andcomparison operations discussedabove assumethat the operandsare in the same
granularity. In order to have a systematicway of handling operandsat different granularities, � ZAMAN

allows users to definetheir own semantics for operations on temporal datatypes. Usually this involves
converting oneoperand to the granularity of theother operand. For example, supposethat an interval,say
“1 day” knownto Gregorian days is to be addedto an instant, say“12:00, March 1, 2003” at Gregorian
hour s . Below arefour reasonable semanticsfor evaluating theoperation.

Mismatch Give a mismatchedgranularity error[AQdO85].

Left-operand semantics Performtheoperationat thegranularity of thefirst operand. This is reminiscent
of theassignmentoperator in many strongly typed languages,which casts thevalueof theright hand
sideto thetypeof theleft handside.

Right-operand semantics Performtheoperationat thegranularity of thesecond operand.This is reminis-
centof someexpressions in C++, e.g.,7/2 .0 , which convertsthevalue of the left handsideof the
division operator to thefloatingpoint type,becausetheright handsideis a floatingpoint number.

Finer semantics Performthe operation to the finer granularity [CR87,Sar93, WJL91]. If the two granu-
laritiesareincomparable (neither is finer thantheother), thenperform theoperation to a granularity
finer thanbotharguments;if noneexists, give anerror.

Coarser semantics Performtheoperationto thecoarser granularity [BP85, MMCR92]. For incomparable
granularities,perform theoperation to a granularity that is minimally coarser.

10

Operand 1 Operator Operand2

interval equal s interval
interval pre cedes interval
instant equal s instant
instant pre cedes instant
instant pre cedes period
instant ove rlaps period
period pre cedes instant
period ove rlaps instant
period pre cedes period
period equal s period
period meets period
period ove rlaps period
period con tains period

Table5: A partial list of comparisonoperators

4 6 Zaman Ar chitecture

In this section we present thearchitecture of � ZAMAN, andoutline how to usethesystem.Thekey design
featuresof thearchitectureareextensibility andservice. � ZAMAN providesextensibilit y in two ways.First,
it supports multiple calendars, multiple languages, anda wide range of formatsfor time input andoutput.
Second, � ZAMAN canby dynamically reconfigured. Calendarsandcalendric systemscanbe dynamically
loaded or reloadedwith new specifications. � ZAMAN provides service by implementinga client/server
architecture. A calendarserver canbeaccessedby many remoteclients.

We implemented � ZAMAN in Java. While thearchitectureis independent of a particular programming
language,the design was influenced by the availabili ty in Java of certain languagefeatures. Below we
list the six reasons why we choseto implement usingJava. First, portability is a big concern. We’d like
� ZAMAN to operate on mosthardware andoperating systemplatforms,evenPDAs. TheJava Virtual Ma-
chine (JVM) providesa stable, platform-independent environmentin which � ZAMAN canberun. Second,
Java is “network-friendly” in thesensethat it hasstrongsupport for network communication andbuilding
client/serversystems.Wemadeextensiveuseof Java’sRemoteMethod Invocation (RMI) classes. � ZAMAN

canrun asa calendarserver, providing a network resourcefor handling timesin a specific calendar, suchas
the Gregorian or Julian calendar. Third, we anticipatethat calendar-relateddata,suchascalendar specifi-
cationsfiles in XML, will bemadeaccessibleon theweb. Java classesareavailable to fetch datausing the
Hypertext TransferProtocol (HTTP).Fourth, we anticipatethatXML will becomepopular for representing
datesandtimes. Somostof the datathat is input andoutput in � ZAMAN, such astemporalconstants and
calendar definition files, will be formatted in XML. � ZAMAN benefits from the widely-usedandreliable
XML parsing andprocessing packagesof Sun’s Java 2 platform, Standard Edition (J2SE)[Mic03]. Fifth,
Java supportsdynamic classloading. Dynamicclassloading canbe usedto extend a calendar server with
new calendarsat run-time. Sixth andfinally, Java providessupport for Unicode. We anticipatethat times
anddateswill begivenin a wide variety of charactersets.

Theremainder of this section presentsthearchitecture for � ZAMAN. We first give a broadoverviewof
the major packagesandhow they arerelated. Next, � ZAMAN is described from a user’s perspective. We
illustratehow to createaserver andclient, andhow to construct instancesof instants,intervals,andperiods.
Finally, eachof themajorarchitectural componentsis presentedin greater detail.

11

4.1 Overview

Figure9 shows the major componentsof the architecture.2 In the figure, eachbox representsa group of
relatedpackages,eachcomprisedof a numberof Java classes,60 in total. Usersarerepresentedwith ovals.
Therearetwo distinct categoriesof users:administrators andend-users. An administrator loads calendars,
calendric systems,and languagesupport tables, while an end-userinteractswith � ZAMAN to manipulate
temporal literals. A directededgein thefigure indicatesthat thesourcemakesuseof themethods in some
classin thetargetpackage.Since� ZAMAN is anAPI theend-userandadministrator rolesareassumedby a
program;in many casesthesameprogramwill assumebothroles. Therearethree mainoperational flows.

1. Configuration— Thisflow is for configuring � ZAMAN, suchasloading calendarsandproperties,and
setting up � ZAMAN services. Configuration canbe performeddynamically, so a configuration flow
could happen many timesduring execution. In Figure9 the configuration flow is represented by a
dashedline.

2. Input/Output — The second flow of operation is related to granularity conversions and input and
output of temporalliterals. Input calls a temporal datatype constructor for an instant, interval, or
period. Theinput andoutput flow is denotedwith a solid line in Figure9.

3. Operations — The third andfinal flow is for temporal operations (involving no granularity conver-
sions). � ZAMAN providesasetof operationsthatuserscanperform oninstants,intervals,andperiods.
Thetemporal operations flow is denotedwith a dottedline in Figure9.

Therearefivegroupsof packages:low-level, calendar-independentaspects(TemporalDataTypeandTime-
stamp),calendar-related aspects (Calendar, Calendric System,Property andField), the bridge betweenthe
calendar-relatedandcalendar-independent aspects (Input/Output), and the system configuration interface
(TauZamanSystem andClient/Server).

TheTimestampandTemporalDataTypepackagesencapsulate thecomponentsfor the instant,period,
andinterval datatypes. Thepackagesareindependentof thecalendar, althoughthecalendarsareusedduring
input (construction) andoutput of timesvia theTauZamanSystemandClient/Server packages.A userwho
wantsto create a temporal datatypefrom a string will interactwith TemporalDataTypepackageasshown
in Figure9. For example, aninstantcanbeconstructedby converting astring suchas“March 14,2003” to a
granulerepresentingtheappropriatedayin somecalendar;possibly it is day14,562in thedays granularity.
On output, the instant is convertedfrom a granule to a string by againusing a particular calendar and its
services. But the temporal datatypes interact only with the TauZamanSystemandClient/Server packages
for input andoutput asshown in Figure9.

The Calendric System,Calendar, Property, andField packagesmanageaccessto calendar-relatedser-
vices. TheTauZamanSystem andClient/Serverpackagesinvokemethodsin thesepackageswhenusersload
calendarsandcalendricsystems.Extensibility of calendricsystemsandcalendarsis oneof � ZAMAN’smain
design features. Calendarscanbedevelopedin isolationandthenloaded,dynamically, into a running sys-
tem. Additionally, new formats for input andoutput of time valuescanbecreated anddynamically loaded.
Thenew formats aredefinedin property specification files. Eachnew formatcould have a new languageor
a new namefor a featurein a format(e.g.,abbreviated monthnames).

Figure 9 shows that the Input/Output package bridgesthe calendar-dependent and independent parts
of � ZAMAN. Whena temporal data type is parsed or formatted, related calendar servicesarecalledvia
TauZamanSystem and Client/Servicepackages. Input is called when a new instance of a temporal data
type is constructedfrom a string. The string is parsed into individual fields usinga format specified by a
calendarproperty. Thefieldsarethenpassedto a calendar, which convertstheminto oneor moregranules.

2Theclassstructurein JavaDoccanbeviewedat http:// www.eecs.wsu .edu/˜cdyres on/pub/tauZa man.

12

Figure9: An overview of the � ZAMAN system architecture

Thegranule(s) forms thetime in thenew instance. For output, theprocess is reversed. First thegranule or
granulesareconvertedinto individual fields by calling a calendar. Next the string is constructedby using
theformatspecified by anoutput property.

The TauZamanSystemandClient/Server packagesmake � ZAMAN availableto endusers. TauZaman-
Systemis usedto perform input andoutput operationsfor theTemporalDataTypepackage.Additionally,
a usercan useTauZamanSystemto configure calendar-related components, for instance by loading new
calendric systems,properties, andcalendars.

TheClient/Serverpackagelets � ZAMAN berunaseither aserver, aclient, or both,asdescribedin more
detail in thenext section.

4.2 Using V Zaman

This section describeseachof theflows in moredetail, giving codeexamplesof using � ZAMAN.

4.2.1 Connectingto � ZAMAN

� ZAMAN canberun asa server, client, or a single systemthat is botha client anda server.

Server � ZAMAN canbe setasa (remote)server. The server provides calendar resourcesto clients on a
network. Theserver managesall thecalendar-relatedinformation. Clientscommunicatewith aserver
using remoteprocedurecall (RPC).A server cansupport multiple clients. Eachclient hasa separate
informationspace, managed by theserver. � ZAMAN wasdesignedto minimize theinformationflow
from clients to servers to improve theefficiency of RPC.Typically, eachcall will passeither a URL,
a single granule,or a shortlist of granules;sotheamount of datashippedis small.

13

Client A client connects to a � ZAMAN server over a network. A client canconnect to multiple servers.
Clients individually manageeachserver connection asa separate object. A client maintains all in-
stancesof the temporal datatypes, so Instant, Interval,andPeriodobjects resideon theclient rather
thantheserver. This meansthat temporal arithmetic andcomparisonoperations canbeperformedat
theclient, without involving theserver. Theserver is involvedonly in theconstruction of a temporal
datatype object, input, output, andgranularity conversions.

Local � ZAMAN canalsoberun asa single system that is botha client andserver. In this setup, theclient
andserver areon thesamemachine, andRPCis not usedfor communication. Only onelocal service
canberun within a process(but thesystemcanstill connect asa client to otherremote servers).

Finally, weshould notethatwhen� ZAMAN runsasaserver, it canconnect asaclient to yet other� ZAMAN

servers, creating a network of � ZAMAN servers. Soa server thatdoesnot know how to handle a temporal
literal canpassit off to a server thatdoes.

4.2.2 Running a � ZAMAN server

Running � ZAMAN asa server is very easy. First, theusermustcreate a TauZamanSyste mobject.

TauZamanSystem tzs = new TauZamanSystem();

Next, theobject is setto bea server.

TauZamanSystem.setRemot eService();

Theserver needsto do nothing else;it is now readyto processincoming requests from clients.

4.2.3 Running a � ZAMAN client

Making aconnection asa client to aserver is alsostraightforward. First aclient createsaTauZamanSys-
tem object.

TauZamanSystem tzs = new TauZamanSystem();

Next the connection to the server is established. Below we show the calls to create both a local service
anda remoteservice. Theremoteservice is identified by anIP number. During thecreation, theservice is
requestedto loadthe“UofACalendricSystem” andusetheproperties(for formatting time values)specified
by the “properties.xml” file. Both specificationsareXML files; thecalendric systemspecification is given
in Appendix B, while theproperties arelistedin Appendix D.

TauZamanRemoteService tzrs = tzs.getRemot eService(
186.24.12.1 , // IP of the server
"TauZaman", // Name of service
"null", // Use default RPC port
"UofA", // Server-s ide name of calendric system to load initially
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/ari zonaCalSys.x ml"),
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/pro perties.xml"));
);

TauZamanLocalService tzls = tzs.get LocalService (
"UofA", // Server-s ide name of calendric system to load initially
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/ari zonaCalSys.x ml"),
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/pro perties.xml"));
);

14

A problemin making a connection,e.g.,a badURL, will throwa TauZamanExcep tion . We emphasize
that a client will useexactly the sameinterfacefor all servicesprovidedby a local or remoteservice; the
only distinction is in creating theservice. Also observe that theXML specifications neednot be local to a
server, a server will loadeachXML file from theHTTP server namedin theURL.

4.2.4 Administrator activities

Oncethe connection to a local or remoteserver hasbeen established, a client canaskthe server to load a
calendric systemanda default setof propertiesfor that system. Below is an exampleof an administrator
requestingthat a local server (tzl s) loada calendric system.

tzls.loadCa lendricSyste m(
"UofA clone", // Server-side name of calendric system
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/ari zonaCalSys.x ml"),
new URL("ht tp://www.eec s.wsu.edu/˜c dyreson/pub/ tauzaman/pro perties.xml"));
);

Currently, � ZAMAN doesnot implement levels of security on loading, i.e., anyone can load and name
calendric systems.Weplanto addsecurity in future.

4.2.5 End-user activities

It is alsoeasyfor aclient to createandmanipulateinstants,periods,andintervals. In thedesignof � ZAMAN,
we choseto simplify the syntax for creating andmanipulating datatype instancesby adopting the notion
of anactive � ZAMAN serviceandcalendric system. Observe that a client could have multiple connections,
andeachservercould have several calendric systems.We let theclient establish animplicitly active service
andsystem,to avoid having to specify eachin every � ZAMAN method. For example,supposetheclient has
opened a remoteservice (tzrs) anda local service (tzls). Furthermore, supposethe local service has
two calendric systems:“UofA” and“UofA clone”. To make thelocal service and“UofA” calendric system
active in thecontext of a TauZamanSyste mobject(tzs), theuserwould do thefoll owing.

tzs.setActi veService(tz ls);
tzls.setAct iveCalendric System("UofA ")

Oncethe active service andsystem have beenestablished, a client canconstructandmanipulate instances
of � ZAMAN temporal datatypeswithout having to pass� ZAMAN specific information to theconstructors.
Below is anexampleof callsto the Inst ant andInt erval constructors.

Instant instnt = new Instant("<instant> <year value = "2003"/> </instan t>");
Interval intrvl = new Interva l("<interval > <year value = "3"/> </interv al>");
// An instant is output according to the instant output property
System.out. println(inst nt.toString());

Thepermissible formatfor theXML in eachstringis specified by thecorresponding instantor interval input
property in theactive service,or thedefault propertiesin theactivecalendric system.

Within a calendric system,the Inst ant object canbeconverted(cast or scaled) to a new granularity.
In theexample below, theconversionis from Gregorianyears to Gregoriandays.

Instant dayInstnt = instnt.ca st(days); // days is a Granula rity object

Thecastproducesanew instant.A castfrom yearsto dayswill producetheinstant correspondingto thefirst
day in theyear, i.e., “January1, 2003”. Alternatively, the instantcanbecastto a granularity in a different
calendar (but within the samecalendric system). An example of an intra-calendric system conversion is
givenbelow. Assumethattheactive calendric systemhasGregorian andAstronomy calendars.

15

// astronom yDays is a Granula rity object in the Astronomy calenda r
Instant astroDayI nstnt = instnt.cas t(astronomyD ays);

Inter-service system conversionsare also supported, indirectly. In the examplebelow, the output of an
instant in onecalendric system is piped into the Insta nt constructor for the new calendric system(note
thataninstant caches thecalendric systemduring construction,sochanging theactivecalendric systemwill
not changethesemanticsof already constructed instants).

// Use the local service
tzs.setActi veService(tz ls);
Instant instnt = new Instant("<instant> <year value = ’2003’/> </instan t>");
// Switch to using the remote service, also changing the calendri c system
tzs.setActi veService(tz rs);
Instant another = new Instant (instnt.toSt ring());

Oncean instant, interval, or period hasbeenconstructed, it canbe compared, added, subtracted,etc.
in thecontext of a Semantics object. Left operand semanticscasts operandsin binary operations to the
granularity of theleft operand,andthenperformsthedesiredoperation.

Semantics Ops = new LeftOpera ndSemantics();

// Add the interval to the instant
Instant result = Ops.add(inst nt, intrvl);

// Is instnt earlier on the time-li ne than result?
if (Ops.pre cedes(instnt ,result)) ...

Therestof thissectionprovidesadiscussion of individualcomponentsin eachgroup of relatedpackages.
Wefirst presentthelow-level building blocksin � ZAMAN, suchascomponentsfor supporting operationson
temporal datatypes.Next, thehigh-level componentsaredescribed,in particular, theTauZamanSystemand
Client/Server packages.� ZAMAN is implementedin Java; however thedesign could beimplementedusing
any languageor system thatsupports remoteprocedurecalls,dynamic loading of classes(or functions),and
XML parsing andprocessing.

4.3 Supporting Operationson Temporal Data Types

The classesfor the TemporalDataType andTimestamppackagesform the calendar-independent part of
� ZAMAN. Theseclassesand interactions areshownin Figure10. In the figure, a solid box representsa
class, while a dashed box representsa package. A directed edgeindicatesthat the source classmakesuse
of the target, which canbe either another class or a package. Dashed directed edges show the interaction
from classes to packages, whereassolid directededgesrepresenttheinteractionbetweenclassesin thesame
package.Thetemporal datatypeclassesuseservicesprovidedby theTauZamanSystemandClient/Server
packagesasshownin Figure9.

TheTimeValue classis the foundationof the calendar-independent part of � ZAMAN. Time Valu e
encapsulates the semantics of the underlying time domain. Many semantics are possible. Time can be
modeled asdiscrete,dense,or continuous; linearor branching; thedomaincould beboundedor infinite; and
time itself could bemultidimensional (i.e.,a spaceof valid andtransactiontime) [JS99]. TheTime Valu e
classimplementsa specific modelandprovidesmethods for arithmetic andcomparison operationswithin
themodel. Only onemodelcanbe implemented in a system. We chose to implement a discrete,bounded,
one-dimensional time domain. The bounds arethe special values, beginning and forever, representing the
earliestandlatest possible times,respectively. We usedJava’s long datatype for a time, so W�XZY different
timescanberepresented. In sixty-four bits it is possible to representcurrentestimates of thelifetime of the
universe,approximately thirteenbilli on years, to thegranularity of seconds.

16

IndeterminateSemantics

Period IntervalInstant

DeterminateSemantics ExtendedBoolean

Semantics

Timevalue Granularity ProbabilityMassFunction

Timestamp
NowRelativeGranule Granule

TauZamanSystem and
Client/Server Package

Temporal Data Type

Figure10: Classesin theTemporalDataTypeandTimestamppackages

Eachgranularity creates a discrete imageof the time-line asa sequenceof granules. The Gran ule
classassociatesa TimeValu e object with a granularity to form a granule. For instance,theTime Valu e
with a value of 3 is associatedwith thegranularity of Gregoriandays to representthethird granule in that
granularity. Granulesarefurther classifiedasdeterminate,indeterminate, or now-relative. Theclassification
providesadditional modeling capabiliti es. A determinategranule is a singleTimeValu e indicating that
thelocationof thetime is known to asingle granule in thatgranularity. An indeterminategranule,however,
is a time thatis sometimebetweenanlower andupperTimeVal ue , i.e.,a setof granules.A Prob abil -
ityM assF uncti on object describes the probability of each indeterminate alternative. Commonmass
functions,suchasuniform andPoisson, canbeprovided. Finally, a NowRelati veGr anule instanceis
a granule that moveswith the current time. A now-relative granule may include an interval that displaces
thegranuleafixeddistancefrom now. Arithmetic andcomparisonoperationsaresupported for eachtypeof
granule.

Granulesarepartof thedatastructure in eachof the threetemporal datatypeclasses: Ins tant , Pe-
riod , and Int erva l . Eachof the classes can represent determinate, indeterminate, and now-relative
times. Stringconstructorsarealsoprovidedfor each.For example the Insta nt string constructorwould
createaninstant with adeterminategranulewhengiven“March 28,2003”, aninstant with anindeterminate
granule from “March 28,2003 2 March29,2003”, andaninstant with anow-relative granule from “now +
5 days”.

The arithmetic and comparison operations discussedin Section3.3 are described by a Semantic s
interface. For instance,a Semantic s providesan operation to addan interval to an instant, but not to
addtwo Instants. Semantic s is an interfacerather thana classbecausethereareseveral reasonablese-
manticsfor performing an operation. For instanceonesemantics, called left operand semantics, converts
theright operandto thegranularity of theleft operandprior to performingtheoperation. A designerwould
implement aninterfacewith whateversemanticsis desiredby theuser. TheSemantic s interfaceis further

17

FVSupport
Repository

FVSupport

FVFunction FVTable

PropertyStack
ServiceProperty

Format FieldInfoImportFormat

Property
Repository

Calendar
Calendar

Repository

Granularity

CalendricSystem
Repository

GranularityLatticeCalendricSystem

CalendricSystem

Fields

Field

Field Property
PropertyManager

Calendar

Mapping

RegularMapping IrregularMapping

Figure11: Classesfor calendar-dependentcomponents

subclassedinto aDete rmina teSe manti cs interfaceandanInd eter minat eSemantic s interface.
Onedifferencebetweenthe two kinds of semantics is that the determinatesemantics returns boolean val-
uesfor comparison operations, but the indeterminate semantics returns an Exten dedBoole an value.
Exte nded Boole an implements a three-valuedlogic on thevalues tru e, fals e, andmaybe . The in-
determinatesemanticsalsopermitstwo controls ontheindeterminacy in anoperation, called theplausibilit y
andcredibility . Thesecontrols arepresentedin detail elsewhere [DS98].

4.4 Calendar Support

The Calendar, CalendricSystem,Property andField packagesimplement the calendar-dependentcompo-
nents of � ZAMAN. Userscan load, activate andde-activatecalendric systems, calendars,properties and
field values, convert temporal constants to timestamps, and perform granularity conversions. Figure 11
shows theindividual componentsthatcomprisethecalendarsupport. Classesin calendarsupport donotuse
any othermajorcomponentof � ZAMAN asshown in Figure9. Solid directededgesrepresentintra-package
interactions,whereas,dasheddirectededgesrepresentinter-packageinteractions betweenclasses.

4.4.1 Calendar

The Calendar packageencapsulatesa single calendar. We chose to representan individual calendarasa
combination of two different informationsets.Thefirst informationsetconsistsof the XML specification
files for the calendar, granularities, and granularity mappings. Eachfile is created as part of a calendar
developmentprocessby acalendardeveloper. Examplesof thespecificationsfor theGregorian calendarare

18

givenin Appendix A. Oneof thekey featuresof � ZAMAN is that it candynamically loadcalendars. It does
thisby reading theXML specificationsfor acalendar. Soonceadevelopercreatesacalendar, it canbemade
availablefor loading into a calendarserver by simply making thespecificationsavailableon theweb.

The second informationset is the location of Java classesthat provide the codeto do irr egular intra-
calendargranularity mappings.Therearetwomappingclasses: RegularM appi ng andIrreg ular Map-
ping . Mostgranularity conversionsareregular [BDE5 98]. A regular mappingcanbedescribedcompletely
in theXML specification by a simpleformula. For example, therelationshipbetween Gregoriandays and
Gregorian weeks is regular since regular periods of seven daysgroup into a week. Codefor performing
regular mappings is built into � ZAMAN. An irregular mappingis a special kind of conversionthat is not
reducible to a simpleformula. Oneexampleof anirregular mapping is therelationshipbetween Gregorian
days andGregorianmonth s . Thenumber of daysin amonthvariesfrom monthto month,andbecauseof
leapdays thesamemonthmayhave a differentnumber of days from year to year. Irregular mappingsneed
special code. A calendardeveloperhasto providea Java class,which is dynamically loaded, to perform an
irregular mapping.

With thetwo informationsets, � ZAMAN canloadeverything it needsabout anew calendar, providedthe
calendarspecificationfile is valid. A validating parser canensure thata specificationfile is a legal instance
that conforms to an XML Schemadescription of the calendarspecification. An exception is thrown if the
specification is invalid or other problemsaredetectedduring loading.

� ZAMAN usesacalendarrepository to sharecalendarsamongmultiple users. TheCalen darR epos -
itor y classimplements the repository. To prevent duplicateloading of calendarsand increasethe per-
formance of � ZAMAN, when a calendar is loaded it is added to a calendar repository. User requests to
subsequently load the samecalendar will fetch the already loadedcalendar from the repository. However,
� ZAMAN providesacalendar“refresh” operationto forcereloadingof acalendarwhendesired,for instance,
if the specification file hasbeenupdated. In responseto a load request,the calendar repository first deter-
minesif the calendar hasalready beenloaded. If found, the repository simply returns the found calendar
object, otherwise,it startsto loadthecalendar from thelocation identifiedby thecalendar’s URL. TheURL
is used asa primary key in thecalendarrepository.

4.4.2 Calendric System

TheCalendricSystempackageimplementsacalendric system.A calendric system is acollectionof multiple
calendars. Like calendars, calendric systemsarealsodescribed by XML specification files. Thecalendric
system specification providesdefinitions for epochs, calendars, a description of how to integratemultiple
calendars,default properties (seeSection 4.4.3), the location of Java classesto perform irregular inter-
calendar mappings, and default regular expressions for dateparsing. Appendix B includesan example
calendric system specification file, which importstheGregorianandUniversity of Arizonacalendars.

Themostimportantroleof acalendric systemis to integratethecalendarsthatit imports.In thecalendric
system specification eachcalendaris identifiedby aURL, whichlocatesthecalendar’sspecification file. The
calendarsareloaded whenthecalendric systemis loaded.To simplify thewriting andhandling of calendric
system specification files, importedcalendarscan be given local names,valid within the context of that
calendric system. The calendarsare integratedby mappings betweengranularities in different imported
calendars.Theinter-calendargranularity mappingscanberegular, in whichcasetheformula for mappingis
givenin thespecification file, or irregular, in which casethespecification file includesaURL to a compiled
Java classthatperformsthemapping. Thecompiled class is loaded during loading of thecalendric system.
Thecalendric system usesthemappingsto facilitategranularity conversions [DELS00].

Calendric systemsaresharedin arepository. Topreventduplicateloading of calendric systems,� ZAMAN

hasa calendric systemrepository. Whena calendric systemis initially loaded, it is added to therepository.

19

Subsequentattempts to loadthesamecalendric system will fetchthealready loadedsystem from therepos-
itory. A refresh operation is availableto forcereloading. TheURL of thecalendric system specificationfile
is theprimary key in therepository.

4.4.3 Property

The Prop erty classimplementsthe extrinsic characteristics of eachcalendar. We identified fourteen
kinds of properties, which universally explain user-dependent aspects of a calendar. More specifically,
thereareproperties that definethe internal mechanismsof how a temporalliteral should be convertedto
an underlying timestamp. Thereare also properties that provide other important information, such as a
timezone specification, to beusedin theinput andoutput of temporal literals. Appendix C summarizesthe
availableproperties.

Properties aredefinedin an XML specification file. A property specification file cancontain several
properties. A property is identified by the URL of the specification file that definesit and a property
name.An exampleproperty specificationfile, containing several individual properties, canbefoundin Ap-
pendix D. A property repository, similar in functionality to thecalendarandcalendric systemrepositories,
manages property loading andunloading. Having a repository helpsto improve the sharing of properties
without duplication.

Property values,unlikecalendarsandcalendric systems,aredifferentfor eachindividualapplication. To
support user-specificproperties, � ZAMAN allocatesprivatepropertystacksto eachuser. Sincetheproperties
have calendar-relatedcomponents, the stacksaremaintainedon theserver-side, ratherthanby a � ZAMAN

client. When a new property is desired, the user asksa � ZAMAN server to activate the property. The
property is parsed from a specificationfile (or retrievedfrom therepository) andpushed onto thestackfor
thatproperty. Subsequently, userscande-activatetheproperty, causing theproperty to bepoppedfrom the
stack.

Properties provide formats for input andoutput of temporal literals. To illustrate this, assume that a
userfirst wantsinstantsto beparsedaccording to a “mm/dd/yyy y ” format. Theuserwould activateanew
instant input property with thatformat.Latertheuserdecidesto changetheformatto “dd/m m/yy yy ”. The
userwould thenactivate a different instant input property with thenew format. Theusercould alsochange
other formatting features.

Within � ZAMAN the Pro pert yManger classhandlesthe management of properties via the Prop -
erty Stac kServ ice class.

4.4.4 Field

A field is an atomic date/time feature of a temporal literal. To illustrate fields, assumewe want to con-
struct the instant for the temporal literal “3/20/2003”. The literal will be parsed into threefields using
the Input instant format property: the monthfield value is 3, the day field is 20, andthe year is 2003. A
field generally representsa calendargranularity, but canincludeotherfeaturessuch asthenameof a time-
zone. As anotherexample, let’s assumewe want to constructa period from the literal “[March 20, 2003 -
March21,2003)”. Thefollowing structureof fieldsis producedby theparser using thePeriodinput format
property: A delimiter=“[” , A month=‘3”, day=“20” , year=“2003” L , A month=“3”, day=“21”, year=“2003”L ,
delimiter=“)” L . Thisfield structurecontains two field lists,onefor eachbounding instant,andtwo fieldsfor
delimiters,which areneeded to identify whethertheperiod is closedor open, on either side.

Fieldsarealsorelatedto languagesupport. Whena temporalliteral is parsed into fields,eachfield can
be further interpretedby languagesupport tables, called field value tablesor fv tables, that mapstrings to
field values.Considertheliteral “Mar/20/2003”. After parsing, themonthfield wouldhavethevalue“Mar”.
A field valuetable would beusedto mapthestring to thevalue3 representing themonthof March.During

20

Input Output

Calendar, CalendricSystem,
Property and Field Packages

FieldsBuilder

FormatParser

Figure12: Thearchitecture of theInput/Output package

output the field value tablesareusedto replace field values(integers)with the appropriateoutput string.
We’ll show wherethesefield valuescomefrom in thenext section.

Field value tables are described in field value specification XML files, which are loaded as part of
activating a property. A field value table could be implementedas a Java class. Appendix E gives an
exampleof a field valuetable specification file. The tablesarecached in a repository to facilitate sharing
andreuse.

4.5 Input/Outpu t

Input refersto the parsing of a temporal literal during construction of an instanceof a temporal datatype.
Outputconvertstheinstanceto a formattedstring. Figure12 shows theclassesandtheir interactionsin the
Input/Outputpackage.In addition, it alsoshowsinter-packageinteractions in parallel with Figure9. Since
output is largely thereverseof input, we will presentonly theprocess for input in detail.

Although input canbesomewhat complicateddueto the possible existenceof multiple calendars,lan-
guagesanda varietyof formatproperties, the input processcanbesummarizedin thefollowing five major
steps. Therestof this section explains thesestepsin detail.

1. Parsetheformat(anXML file) andbuild a Document ObjectModel (DOM).

2. Parsetheliteral andbuild a DOM.

3. Matchtheliteral’s DOM with theformat’s DOM.

4. Extract field values from theliteral’s DOM using regular expressions.

5. Createa field list structure from thefield values.

The first stepis to parse the appropriate input property andbuild a DOM for the format it contains.
A format specifies an acceptableskeleton or structurefor a temporalliteral. Figure13 shows an example
instant input format property with the format enclosed in a <fo rmat> element. The example format
stipulatesthatonly literalsconsisting of one<in stan t> elementwith threeattributes,month , day , and
year , areacceptable.Theformatfurther identifies fields within theliteral to extractfor furtherprocessing.
The presenceof a field is indicatedby a field variable, which startswith a “$” character. Therearethree
variablesin theexampleformat: $month , $day and$ye ar .

Thesecondstepis to applytheXML parserto theinput temporal literal, building aDOM for theliteral.
Assumethattheliteral to parseis givenbelow.

<instant month="Ma rch" day="20 " year="2003 "/>

21

<property name = "InstantIn putFormat">
<value>

<format>
<instant month="$mont h" day="$day " year="$yea r"/>
</instant >

</format>

<fieldInfo variable="mo nth" name="monthOfYear" using="engli shMonthNames "/>
<fieldInfo variable="da y" name="day OfMonth" using="ar abicNumeral" />
<fieldInfo variable="ye ar" name="ye ar" using="a rabicNumeral "/>

</value >
</propert y>

Figure13: An exampleof aninstant input formatproperty

Whenparsed,theliteral will createa DOM with oneelement node(<ins tant>) andthreeattributenodes
(mont h, day , andyea r). Theelement hasno content (subelementsor text). Eachof theattribute nodes
hasa nameanda value. As an aside, we notethat whitespacewithin an element tag is not representedin
a DOM, for instancetherecould be onespace or five spacesbetween the month andday attributes.We
further notethattheorder of theattributesis not recordedin theDOM.

Thethird stepmatchestheDOM for theliteral against eachDOM for a format.TheDOMsmustmatch
exactly, but variablesmustmatchat least partially to anattributevalueor text value. Sovariablescanonly
appear wheresometext is expected. If no formatmatches, thentheliteral cannot beparsedby theproperty.
An exception is thrownindicatingthat theparse failed. Theuser cantry anotherparsewith a new property.
If a matchsucceeds,thenthestructureof the literal is acceptable,but thevariableshave yet to beassigned
values. In the example given above, the DOM for the literal matches the exampleformat DOM, with the
following variable assignments:$month = “March ”, $day = “20”, and$ye ar = “2003 ”. A format
canoptionally specify whetherextra whitespace in text nodesor attributevaluesis to be ignored during
matching.

The fourth stepusesregular expressionsto extract a value for eachvariable. The regular expression
is built as follows. Eachfield variable is described by a <fi eldI nfo> element. The field information
element identifiesa field valuetablethathasall of thepossible legal field values.For examplethe$month
field usesthe English Month Namefield value table, which is a list of legal month namesin English.
Thetable alsohasa regular expressionfor recognizing valuesin thetable.For Engl ishMo nthN ame, the
regular expressionwould specify a non-zerosequenceof alphabeticcharacters from theWestern character
set.Thestring “Marc h” matchesthethird entryin this table(seeAppendix E), sothevalueof the$month
field is 3.

Therecognizerregular expression for anArab icNu meral tableontheother hand wouldbeanon-zero
sequenceof digits. Theregular expressionis applied to the string value that matches the field variable (in
theexample,eachfield matchesanattributevalue). If theexpressionproducesa match,thematchedstring
is checkedto ensure that it is in thelist of legal valuesin thetable. In this case, thereis a Java function that
takesthestringmatchedby theregular expression(for $day , thisstringis “20”) andreturnstheappropriate
integer, 20. Thesameprocessgeneratestheinteger2003 for the$year field.

The fifth stepputs the integers matched by eachfield variable into a field list structure (the Fie lds
class). Thefield list is a collection of information extractedfrom a temporal literal. A calendarwill convert
thefield list into agranule. For theGregoriancalendarof Appendix A, thefield list structurewith a$month
of 3, a $day of 20, anda $yea r of 2003, thegranule 736004will bereturned(consistentwith theorigin
of thedaygranularity of January1, 1 C.E.).

22

<property name = "Indetermi nateInstantI nputFormat">
<value>

<format>
<indeterm inateInstant >

<suppor t>$lower</su pport>
<suppor t>$upper</su pport>

</indeter minateInstan t>
</format>
<importForm at variable= "lower" name="Inst antInputForm at"/>
<importForm at variable= "upper" name="Inst antInputForm at"/>

</value >
</propert y>

Figure14: An exampleof anindeterminate instant input format property

<indeterm inateInstant >
<suppor t><instant year="2 003" month=" March" day="20"/>< /support>
<suppor t><instant day="21 " month="Mar ch" year="20 03"/></suppo rt>

</indeter minateInstan t>

Figure15: An exampleof anindeterminate instant literal

Indeterminateinstants,now-relativeinstants,anddeterminateandindeterminateperiodsall have“bound-
ing” instants. Theinstant input andoutput format propertiescanbe importedinto theformat propertiesfor
other temporal datatypes. Figure14 shows an exampleindeterminateinstant format property. The upper
and lower support areboth instants. So the instant input format (e.g.,asshown in Figure13) is used in
parsing thosecomponentsin an indeterminateinstant literal, suchasthe literal shown in Figure15. The
field list structureis slightly morecomplex for anindeterminate instant; it consistsof a pair of lists (onefor
eachsupport) asillustrated in Figure16.

4.6 The TauZamanSystemand Client/Server Package

TheTauZamanSyst emclassis themanagerfor accessto � ZAMAN. Figure17showstheclassinteractions
within TauZamanSystem and Client/Server package. In the samefigure, interactions with Input/Output,
TemporalDataTypesandTimestamppackagesarealsoshown.

Thereweretwo main design criteria that guided the developmentof the server/client functionality in
� ZAMAN.

1. Fromaclient’sperspective,thereshould benocoding differencebetweenusingaremoteandlocalser-
vice, exceptidentifying theserviceaslocal or remote.Our goalwasto make thedistinction between
local andremoteobjects transparentto a client. However, full transparency canbe disconcerting in
somedistributedsystemapplicationssincetherecanbeprofounddifferencesin performancebetween
using local or remoteobjects. Therefore, in � ZAMAN, ausermustsimply identify theserviceaslocal
or remote.Knowing theservice typewill inform usersof potential performancedifferences.

2. All instancesof temporal datatypesarelocal. Ourgoalwasto minimizetheamountandfrequency of
client/servercommunication. Ideally, a � ZAMAN client will haveall local resources.Remoteservices
will be invokedonly whennecessary, primarily for input, output, andgranularity conversions. Rela-
tively few kindsof objectscanbepassedfrom client to server;only theGranu le classis serializable
(andtheclassesit references,namelyGran ular ity andTimeValu e).

23

IndeterminateInstantInputFormat

InstantInputFormat

InstantInputFormat

{ dayOfMonth = "20", monthOfYear = "3", year = "2003" }

{ dayOfMonth = "21", monthOfYear = "3", year = "2003" }

Figure16: Field list structurefor theindeterminate instant

Input/Output
Packages Property and Field Packages

Calendar, CalendricSystem,

TauZamanService

TauZamanSystem

TauZamanLocal TauZamanRemote
ServiceHandlerService

TauZamanRemote
Service

Figure17: Theclassesin theTauZamanSystem andClient/Server packages

Figure18 illustratesthe client/server structure. In the figure a TauZamanSyst em at the client side
connectsto the server’s TauZamanRemoteSer vice Handler , creating a referenceto a TauZaman-
RemoteSe rvice object. Theremoteserviceandremoteobjectanddepictedwith dashedlinesattheclient
sideto indicatethatthefunctionality andcodephysically resides in server side. Notethat theTauZaman-
Syst em object, on the client side, canconnect to multiple TauZamanServi ce objects. Client/server
communicationin � ZAMAN usesRPCin Java’s RemoteMethod Invocation (RMI) package.

A user, whetherit is aclient or aserver, createsasingle TauZamanSyste minstance.When� ZAMAN

is run asa server, the TauZamanSyste mobjectis responsible for communicating with clients andman-
aging thefour repositories.Figure19 shows thestructureof a � ZAMAN systemandtherepositoriesaftera
system is created. The repositories arepopulatedover time asa client loads calendric systems,calendars,
properties, and field value tables. The choice of setting a system as a client or a server is application-
dependent.

A TauZamanSyste mobject alsoprovidesTauZamanServi ce , which is theclient’s API for inter-
acting with calendar-relatedcomponents.A TauZamanServi ce offers all of the calendar-relatedmeth-
odsto endusers. This includesmethodsto loadcalendric systems,andcalendars, to activateandde-activate
properties, andto input andoutput temporal literals. To increasetheflexibili ty of thesystemfor theusers,
a user mayhave several services,connectingtheclient to a local systemandmultiple remote servers. The
TauZamanSyste mobject storesthe currently activeservice; clients switchamongthe many servicesby
designating thedesired serviceasactive.

24

TauZamanRemote
ServiceHandler

TauZamanRemote
Service

TauZamanLocal

TauZamanSystem TauZamanSystem

Server SideClient Side

TauZamanRemote
ServiceService

Figure18: Theclient/server architecture of � ZAMAN

User

System construction
and service requests

TauZaman services

TauZaman System

Repository
Field Value SupportProperty

Repository
CalendarCalendric System

Repository Repository

Figure19: A TauZamanSyst emafter initialization

The TauZamanServ ice class is subclassedinto two services, TauZamanLocalS ervi ce and
TauZamanRemoteSer vice . A remoteservice is designedto be a remoteobject, that is, it should be
registeredwith the object registry andreferencedby a client system. To setup a TauZamanSyst emas
a server, the usershould first register the nameof the server andpublicize the URL of the listener. Any
TauZamanSyste mknowingtheURL andregisterednamecanconnect to theserver asa client.

Eachservicehasanactive statethatstoresthecurrent setof active components.Thestateconsistsof a
calendric systemandanoperational semantics. A service mayhave loadedseveral calendric systems.For
example, a client may needthe Americancalendric system,which includesthe Astronomy andGregorian
calendars,andin thesameservicealsoloadtheRussian calendric system,whichmanagestheGregorian and
Communistcalendars.However, only onecalendric systemcanbeactive at any time. Theclient switches
betweenthecalendric systemswithin theservice by setting theactive calendric systemto thedesiredcalen-
dric system.Figure20 shows auser thatis communicatingto two services:aTauZamanLocal Serv ice
and a TauZamanRemoteSe rvic e. The local service is the currently active service. It includes two
calendric systems: Russian andAmerican.TheAmericancalendric systemis currently active.

Maintaining a “global” active serviceandactive state within thatservicereducestheoverheadon tem-
poral datatypeoperations. For instance,consideranInstant constructor. Insteadof having to passtheactive
service andactive calendric system to the constructor, the active service andstateareretrieved within the

25

American
calendric system

American
calendric system

User

calendric system
Russian

active active

TauZamanService TauZamanService

remote local, active

Figure20: Communicating with multiple servicesandcalendric systems

constructor usingclassmethods in theTauZamanSyste mclass.This minimizesthe length of parameter
lists in methods. Furthermore,two of our design goalswereto support client/server servicesandbe able
to utilize multiple calendric systems.Temporaldatatype operations in � ZAMAN, evenwith theadditional
functionality, need only areasonablenumber of parameters,e.g.,theoperation to addaninterval to aninstant
is invoked with only the interval andthe instant. In � ZAMAN, the active service is cached in each created
instanceof a temporal datatype,alongwith the active stateof the service so that the instancecanbe later
output using thesameserviceandcalendric system. If a cachedservice or calendric system is subsequently
unloadedor dereferenced thenan exception will be thrown whenoperationson thosetemporaldatatypes
areinvoked.

5 Coding Statisticsand Experimental Results

This section reports on thesizeandperformanceof � ZAMAN. Statistics about the � ZAMAN’s implementa-
tion aregivenfirst, followed by results of severalperformanceexperiments.We measuredtheperformance
of local andremote� ZAMAN servicesin configuring a systemandinput andoutput of temporalliterals.

5.1 Coding Statistics

The current version of � ZAMAN consists of approximately 12,500 lines of Java code,not including the
codein system or third-party supplied classes. � ZAMAN has60 classesorganizedinto 8 packages. We
developed � ZAMAN usingSun’s j2sdk1.4.1 02 environment. We did not attempt to optimizeperformance
with a native-codeJava compiler, or by tuning thecode with a Java profiler. � ZAMAN hasseveralpackage
dependencies.Thedependenciesarelistedbelow along with thetasks for which eachis needed.

0 java .rmi is usedto implementRPCbehavior.

0 java .net. URLClassL oade r is usedfor dynamic loading of methods andclassesfor irregular
mappings.

0 java x.xml .par ser andorg. w3c.d omareusedto parseandprocesstheXML-formattedspec-
ification files,andduring input andoutput of temporal literals.

0 java .util .reg ex is usedfor to match regular expressions for field valuesduring parsing of
temporal literals.

0 java .util .Has htabl e is usedextensively for implementing therepositories.

26

CISCO CATALYST
5000

256 RAM
Intel celeron 1.80GHz
Windows 2000

256 RAM
Intel Pentium III 730 MHz
Linux Red Hat 7.1

10 TX (CAT3)

100 FX FOUNDRY
BIG IRON 8000

100 FX

CISCO 2924

HP 4000 M

FT 20

CISCO 1924INTERNET

ZEUS NETFILER

(runs TauZaman)

(includes specification
files)

(runs TauZaman)

100 FX

100 TX

burgun

dyreson

100 FX

Figure21: A diagramof theenvironmentfor theexperiments

5.2 Experiment Envir onment

We conductedthe experimentsin a distributed system environment because � ZAMAN is a client/server
system. Figure21 showsthe network architecturefor the machines in the experiment. The two primary
machinesin the environment arebur gun anddyre son . bur gun is a Windowsbox, while dyre son
runs Linux. We measured the round trip time between burgu n and dyr eson at approximately eight
millisecondsfor a dummyJava RMI call. Both machinesareservedby a network file server calledzeus ,
soloading andunloadinginvolve fetching files from zeus . We usedJava 2 SDK, version 1.4.1.

5.3 Experiments on TauZamanService Initialization

A clientaccesses� ZAMAN by constructingaTauZamanServ ice object, whichcould beremoteor local.
Theservice is startedby providing theURL of acalendric systemspecificationandaproperty specification.
Thespecificationfiles arefetched(via HTTP), parsed, andprocessedto form thedefault componentsof the
service. In processingthecalendric system specification, further fetchesaredonefor eachcalendarmanaged
by thecalendric system.Startinga service alsoinitializestherepositories.

The first experiment measuresthe performanceof creating a local service. We usedthe specification
files given in Appendix B andAppendix D. We starteda local serviceon burg un by providing theURLs
of acalendric systemandproperty specification locatedonzeu s . Wesubsequently recreatedthesamelocal
serviceto testtheperformanceof reloading thesystem(with objectscachedin therepository). Table6 gives
the measured times. All timesareroundedup to the millisecond. All timesin this andsubsequent figures
representa single round trip, unlessnoted otherwise. Sincethe service is local, thereis no network cost
on thecreation, or recreationof theservice. Theinitial loading time is, not surprisingly, muchlonger than
subsequent loading timesbecause � ZAMAN provides repositories to cachereused objects. Note that the
initi al loading time is a “one-time” cost.

27

Total Calendric System Property Table

Initial loading 633 518 115
Subsequentloads 1 1 1

Table6: Average loading times(in milliseconds)of a TauZamanLocal Serv ice

Client Side Server Side
Total Total Calendric System PropertyTable

Initial loading 720 686 499 187
Subsequentloads 30 1 1 1

Table7: Average loading times(in milliseconds)of a TauZamanRemoteSe rvice

The second experiment measures the performanceof creating a remoteservice. In this experiment
the client is locatedat dyres on . Theclient createsa remote TauZamanRemoteSer vice , identifying
burg un asthe remoteserver. burg un loads the calendric systemandproperty tablespecification files
from zeus via HTTP in responseto the request. Theresults aregiven in Table7. We averaged the times
overfiveteststo smooththeeffectsof network congestion, which leadto variationsof up to 40milliseconds
per round-trip. We separatedthe total time (client side) from the load time (server side). As with the
local service performance, thetime of the initial load is longer thansubsequent loadsdueto caching in the
repositories. Notealsothattheinitial loadtimeontheclient sidetimeis longerthanthatfor thelocal service.
Thereason is thatthereis overheadonestablishing communicationbetweentheclient andtheremoteserver
that is only incurred with a remoteservice. In addition to the overhead of network, round-trip time there
is anadditional costbecausea TauZamanRemoteSer vice objectis marshaled andunmarshaledduring
thecall. As statedpreviously, this is oneof thereasonsthatwedid not pursuea fully transparent distributed
architecture,sinceresponsetimesarelongerwith remoteservices.

The third experiment tests the performanceof input and output of temporal literals. The operations
perform effectively the sameamount of work, just in a different sequence. So we will measure the total
costof performing an input foll owed immediately by an output. The experiment testssix different kinds
of temporal literal: determinateinstant, now-relative instant, indeterminateinstant, (determinate)interval,
determinateperiod, andindeterminateperiod. period, andinterval,andtheir indeterminateandnow-relative
formats. Appendix D givestheformatpropertiesusedin theexperimentsfor eachkind of temporal literal.
Theseformats are of normal complexity ratherthan worst-case complexity. More complex formatswill
incur a slightly higher cost. Theliterals testedaregivenin Appendix F.

We first experiment on a local service; the next experiment is for a remoteservice. The local test is
performedonbothburg un (aWindowsbox)anddyre son (aLinux box). burg un hasmorememoryand
a faster CPU.A TauZamanLocal Serv ice is created on eachmachine, with specification files fetched
from zeus . Table8 reports the results of the experiment. Like the other experimentsit is separatedinto
two different measurements: an initi al loading (for the first input and output) and a consecutive loading
time. The timesaregiven in milliseconds. The initial cost is higher thansubsequentI/O becauseiniti ally
theformatis parsedandthefield valuetablesarefetched from zeus ; onsubsequentconversions,theparsed
formatandfield value tables areretrievedfrom a repository.

Theconversion timesdiffer for the different kindsof literals. The indeterminate period is the slowest,
while the determinate interval is the fastest. The differencesin the timings arebecausean indeterminate
period is composedof four instants,sowe would expect it to take a bit longer thanI/O of a single instant.
The determinate interval is the fastest becauseit hasthe simplest format. burg un performs better than
dyre son dueto better hardware on burgu n.

28

dyr eson burg un
Initial I/O SubsequentI/O Initial I/O SubsequentI/O

Instant 199 8 130 7
Now-relative Instant 226 12 150 8
Indeterminate Instant 249 17 155 13
Period 278 14 175 10
Indeterminate Period 330 19 220 14
Interval 159 6 100 5

Table8: Average input andoutput times(in milliseconds) for different kinds of temporal literals usinga
local service

dyr eson
Initial Subsequent
I/O I/O

Instant 287 29
Now-relative Instant 383 41
Indeterminate Instant 390 53
Period 365 35
Indeterminate Period 402 37
Interval 258 28

Table9: Average input andoutput times(in milliseconds) for different kinds of temporal literals usinga
remoteservice

We next testedinput andoutput in a remoteservice. We usedexactly the sameexperiment asfor the
local service,exceptthatweusedaremoteservice from aclient on dyr eson to aserveronburgu n. This
testincludestheoverheadon thenetwork communicationandmarshaling of parameters,sotheoverall cost
should begreater thanthatof thelocal service.

Table9 shows the results of this experiment. The cost of the initial loading includesthe time spent
fetching field value tables. Consecutive I/O costsare much lower. Whencompared to the local service
test, we can observe the overhead in the remotecommunication. The times in Table 8 are lower than
those in Table 9. The last observation to make about the results is that now-relative and indeterminate
instantsareevenmoreexpensive. Thereason is thatthereis asingle Instantconstructor, rather thanseparate
constructors for determinate,now-relative, and indeterminate instants. During construction of an instant,
the (determinate)InstantInputFormatproperty is used to parsethe instant. If the parsefails then the the
NowRelativeInstantIntputFormat is tried, followed by the IndeterminateInstantInputFormat. Eachparse
failureresults in another round of RPCbetweentheclient andtheserveruntil theappropriatekind of instant
is finally constructed. (We could have hadthe server try eachkind of property in succession. This would
improvethetimesslightly, sinceit savesononeor two network round-trips.But overall thecost is dominated
by theparsing,sosucha refinementwouldn’t have a large impacton theperformance.)

6 The TAUZAMANTESTER- A Graphical User Interface (GUI) for I/O

� ZAMAN providesboth an Application Programming Interface(API) for programmersanda (prototype)
GUI-basedtesting tool called the TAUZAMANTESTER. The TAUZAMANTESTER is a user-friendly tool
for two usergroups: application developerswho want to see� ZAMAN in actionbefore writing code, and

29

specification developerswho want to testanddebug their specifications. More specifically, the tool was
designedto meetthefollowing goals.

0 To provide a niceinterfacefor demonstrating � ZAMAN.

0 To create a platform for testing the input andoutput of temporal literals. Rapidtesting candecrease
the time needed to develop format properties and other XML specifications. The testing includes
checking thespecifications for syntacticcorrectness andcompleteness.

0 To simplify � ZAMAN’s configuration and setup for a naive user. Userscan activate a service by
selecting it from a combo-box insteadof by writing code. Different service configurationscanbe
loadedusing thetool.

0 To facilitatethetesting of temporal operations. Userscancompare or perform arithmetic on created
time values.

0 To provide performancemeasures. Thetool reports theprocessing time of eachoperation.

WhentheTAUZAMANTESTER is started, a mainwindow is opened.A screenshotof themainwindow
is shown in Figure22. The window includesa top row of four ’tab’ buttons. Choosing a button puts the
TAUZAMANTESTER into oneof thefoll owing four modes.

1. Service Configuration - A userwould select this tabto testandloadnew configurations for a local or
remoteservice. Successfully loadedconfigurationsbecomeavailable in theothermodes.

2. Property Management - Allows a user to test property specificationsand load new properties(for
testing in theothermodes).

3. Input/Output - Converts a time literal, asdescribedin moredetail below.

4. TemporalOperations - Provides an interfacefor performing arithmetic andcomparison of temporal
literals.

Whenthe’Input/Output’ modeis selected,theTAUZAMANTESTER createsaninstanceof TauZaman-
Loca lSer vice and TauZamanRemoteSer vice . All of the configuration information, suchas the
URLs of the calendric system, property table,andcalendar specification files, aswell as the URL of the
remote� ZAMAN serverarespecified in anXML-formattedinitialization file for thetool. Theconfiguration
canbechangedeasily. We provide a default calendric systemspecificationfile listed in Appendix B, a de-
fault Gregoriancalendargivenin Appendix A, a default Academiccalendar(not givenin this paper), anda
default list of propertiesgivenin Appendix G. After initi alizing theservices,theTAUZAMANTESTER opens
themainwindowandwaitsfor userinstructions. In ‘Input/Output’ mode,there arethreepanels.

1. An input panel hasa scrollabletext areain which user caninput a temporal literal. Theinput panelis
theleft-mostareain thescreenshot in Figure22.

2. A configuration panelprovidesasetof GUI componentsthatallow theuserto configure theTauZa-
manSystem object. Theconfigurationpanel is thelist of buttonsandcombo-boxesin themiddleof
thescreenin Figure22. For example,a user canactivatetheremoteor local � ZAMAN serviceby se-
lecting theappropriateonefrom acombo-box. Or a usercouldchoosefrom amongseveral properties
to active onefor input andoutput formatting. Theuser mustselect oneof the temporal datatypes to
parse andoutput thetime literal enteredin theinput panel.

30

3. An output panel hasa scrollable text areathat displaysthe output of the temporal literal. Note that
theinput andoutput usedifferentformats, aslistedin Appendix G. Theoutputpanel is theright-most
areain thescreenshotin Figure22.

Generally a userwill enter a temporal literal into the input panel, configure the settings asdesired, press
the “PROCESS” button in the configuration panel, andthe output will appear in the output panel. If any
exceptionsoccurs during processing,for instancethe input did not parse correctly, anerrordialog box will
popup. TheGUI alsodisplaystheprocessingtime of theentire operation.

Two snapshots of the TAUZAMANTESTER in action are shown in Figure 22 and Figure 23. In Fig-
ure22,anindeterminate instant is enteredin theinput sub-panel,TauZamanSystem is configuredusing the
componentsin theconfiguration sub-panel,andthe instant is output. In Figure23, a determinateperiod is
processed.

Thecurrenttool is limited to input andoutput; we planto extend thetool to showcase� ZAMAN’s other
capabilities in the future. Someof the important future functions we plan to implement within the tool
includetheability to

0 dynamically configure the services,suchasadding a new service, removing an existing service or
setting its TauZamanSyste mobjectto bea server;

0 improve thevisibility of thepropertymanagementby showing thepropertystack; and

0 adda full setof arithmetic, comparison,andgranularity conversionoperations.

Figure22: A snapshotof theTAUZAMANTESTER processing anindeterminate instant

7 RelatedWork

While work on temporaldatatypes goesback two decades, in the last five yearstherehasbeena flurry
of activity. Relatedresearch canbe broadly classified into two categories: modeling andimplementation.

31

Figure23: A snapshotof TAUZAMANTESTER processinga determinateperiod

The modeling category coversresearch in temporal datamodels, andin particular, it establishes desirable
operationson temporaldataandcalendars.Thesecondcategory is research into implementationsof thefirst
category. Although this paper is in the implementation category, in this section we tracethe influenceson
this research from bothcategories.

Allen motivated the interval (which we call a period) asa fundamentaltemporal entity [All83]. He for-
malizedthesetof possible relationshipswhichcould holdbetweentwo intervalsanddevelopedaninference
algorithm to maintainthesetof temporal relationships betweenentities.

Anderson described a formal framework to support conceptual time spaces using inheritance hierar-
chies[And82, And83]. Her modelalsosupportsmultiple conceptual times. � ZAMAN canbeconsideredas
a practical realizationandextensionof someof theconceptsdevelopedby Anderson.

Clif ford andRaodevelopeda framework for describing temporal domains using naive set theory and
algebra [CR87]. Their framework allows a hierarchyof calendarindependent domainsto bebuilt andtem-
poral operatorsto bedefined betweenobjects of a single domainandbetweenobjects of differentdomains.
Theframework is powerful but lackstheability to describe time domainsthatarenot integral multiplesof
finer granularity time domains. For example, mont hs arenot anintegral numberof weeks since a whole
numberof weeksdonot ordinarily correspond to asinglemonth.Ourwork removesthis limitation by mak-
ing thesemantics of any conceptual time unit user-definable. Theuseris not tied to any predefinednotion
of time or time domain.

Navrat andBielikova argued for declarative, rather thanalgorithmic, calendar definitions [NB95]. Al-
gorithmic definitionssometimesleadto oversimplification of predictions for future timesandunnecessary
approximationsof pasttimes.For example, in the Islamic calendar, thefirst dayof themonthof Ramadan
cannot bepredictedby analgorithm, althoughanapproximation existsandis usedby somecultures.Navrat
andBielikovaaddressedthisproblemby usingfactual past knowledgecombinedwith Prologto betterdefine
thestart of Ramadan. Their framework alsoprovidessomesupport for multiplecalendars,andinter-calendar
calculations. But accounting for thesemantics of granularity in operationis missing.

32

Bettini, Wang, and Jajodia developed a formal foundation for reasoning about temporal granulari-
ties[BJW00]. Ning, WangandJajodiaextendedthiswork with analgebraicapproachto definegranularities
andcalendars[NWJ02]. They arguedthatirregular granularity conversionscanbedonein adeclarativeway
without theneed of a specializedpieceof code, althoughthedeclarative specification canbecomplicated.
In contrast,� ZAMAN usesspecialized code. We areinvestigating using their approachto support irregular
mappingsin � ZAMAN.

Kraus,Sagiv andSubrahmanianproposeda formal definition of calendarsandtemporal datatypesin
termsof constraints, asopposed to our representation, which aregranules (asintegers)at different granu-
larities[KSS96]. They alsoshowed how to support multiple calendarsandarguedthat specifying a time
point asintegersor realnumbers is cumbersomefor humanbeings.Weagree:� ZAMAN usesfamiliarstring
representationsfor temporal literals.

KakoudakisandTheodoulidis implementedasinglecalendarsystemthatsupportsoperationsin only the
Gregorian calendar, with a limited number of granularities[KT96].

Chandra, Segev andStonebraker [CSS94] presenteda design for set-basedspecification of calendars.
They gave analgorithm for parsing thespecifications anddescribedhow to extend the temporal support in
the Postgresdatabasemanagement systemwith new calendars. Chandraet. al compared their project to
MULTICAL [SSD5 92], which is a precursorproject to � ZAMAN (asdescribedin moredetail below).

In the second category, implemented systems, thereexist several systemsthat support temporal data
types, temporal operations, datetime calculations andconversions. Most of thesystemsthat perform date-
time calculations andconversionsarelimited in scope, having static calendarsupport, with at mostfour or
five different calendars,and limited kinds of formats. On the otherhand, therearealsoapplications that
support multiple calendarsandtemporal datatype operations.

� ZAMAN is an enhancementof two earlier systems: MULTICAL [SSD5 92] and TIMEADT [KLS99].
MULTICAL addssupport for timeandmultiplecalendarsto relational databasemanagement systems.MUL-
TICAL hasacoresystem of calendar-independent temporal operations,but allowsusers to modularly define
calendarsfor formatting timesin different calendarsandlanguages.MULTICAL doesnot have a predefined
setof calendars;rather new calendarscanbedefinedandcompiled into thesystem.TIMEADT is a succes-
sor to MULTICAL. It refinesthe temporal operations in MULTICAL by adding support for granularity and
temporal indeterminacy andsupport for C++. � ZAMAN inherits many design featuresfrom both MULTI-
CAL andTIMEADT, but is different becauseit candynamically loadcalendars,canparsetemporal literals
formattedin XML, providesa client/server system, supportscalendars,etc.,asXML documentsaccessible
on theInternet,andis implementedin Java.

Boost [Sof02] is a date-time library in C++, which supports threebasic temporal datatypes: point,
duration and interval. One of its design main goals is to support ISO 8601 compliant input and output
representation. It providesarithmeticandcomparisonoperationsfor eachtype, although not with different
semanticsfor granularity conversions. It alsohasiteratorsontimeanddateranges,whichhelpsauseriterate
over the daysof a week,for example. Boostsupports multiple calendars,but not the dynamic loading of
calendars.It alsolacksinter-calendarconversions andcalculations.

International Components for Unicode (ICU) [Cor02] is a set of libraries developedby the Unicode
group in IBM Globalization Centerof Competency. Themaingoalof theselibraries is to hide thecultural
andgeographical differencesin international softwaredevelopment.Oneof theproblemsthatICU addresses
is themulti-cultural aspect of representing time by supporting multiple calendarsandtimezones.Currently
ICU only supports the Gregoriancalendarbut with its abstract calendar structure it is claimedto handle
multiple calendars,againin a staticcontext asin Boost. Additionally it supportsonly a limited numberof
granularities,anddoesnot handle inter-calendarconversions.

TheJoda project includesa re-implementation of SunJava’s built-in dateandcalendarclasses[Col02].
Its main aim is to provide date and time implementation to the Java community. Jodasupports multiple

33

calendars,but not dynamic loading of calendars. It providesISO 8601 compatible input andoutput. Ad-
ditionally it providesan API that includesmethods to create input andoutput formats. The format canbe
checking for correctnessbeforeit is tried in input or output. In ourproject formatscanbeproducedin XML
files and thuscanbe shared andexaminedeasily. In Joda, to relatean instanceof a temporal datatype,
like an instant, to a calendar, a userhasto passthe calendarobject to the instant constructor. � ZAMAN

globally cachesthe active TauZamanService andcalendric system to keep the parameterlists short. Joda
supportsperiod andinterval temporal datatypesunder thenameof TimePeriod,which we believe confuses
this distinction. Jodaargues theimmutability of temporal datatypesfor being safein threadenvironments;
TauZamanalsohasimmutable temporal data types. And lastly Joda doesnot includetemporalconversions
betweendifferent temporal datatypes.

WebCal[Ohl03b], a calendarserver producedby OhlBach,is a client/server architecture for providing
temporal support. WebCal is a part of the WebTNSS[Ohl03a] project, which is a support system for
temporal notions. WebCalprovides calendar-independent time representations and temporal operational
support in WebTNSS.Although � ZAMAN andWebCalaresimilar in thatthey arebothclient/serversystems,
therearealsoseveral differences.

0 � ZAMAN’s specification files simplify the production, understanding and publishing of calendars,
calendric systems,properties, and field value tables. An application that usesWebCalmust code
these featuresinto theapplication.

0 In WebCalthesmallest granularity is sec onds . � ZAMAN cansupport muchfiner granularities.

0 In WebCal,all temporal operations arebuilt on top of an intervaldatatype. � ZAMAN differentiates
between instant, interval, and period datatypes. � ZAMAN also supports indeterminacy and now-
relative values.

0 For performancereasons, � ZAMAN canbe setup to run in a single process with a local service, but
WebCalis only a server.

0 WebCaldoeshave languagesupport, partly becauseit is designedto provide calendar-independent
time representation for the WebTNSSproject. On the other hand, � ZAMAN supports language-
dependent formatsin time values.

GSTP[Bet03] is aclient/serversystemthatprovidesgranularity conversionsandmulti-granularity con-
straint satisfaction. � ZAMAN providestheformer(aswell asmany other services)but not thelatter. GSTP
only runs asa server; � ZAMAN canbesetup asa server, a client, or both.

Finally, there areseveral papers devotedstrictly to theparsing of dates.
Karttunen et al. [KCGS96] proposeda regular expressioncalculus for natural languageapplications.

And asoneof its illustrations, they described a finite stategrammarfor dates. For a completely new date
input, anew grammarshould beemployed. On theotherhand, in our approachuserscancreatea formatby
writing anXML fragmentanddynamically addit into thesystemto handleanew date input. But obviously
this context is application-specific andtheextent of Kartunnenet al.’s proposalis very broad.

Sperberg-McQueen[SM99] arguedthatrecognition of datesis possibleby regularexpressionsandgave
lex code thatrecognizesandvalidatesISO8601complaint dates.

Cameron[Cam99] provideda setof shallow parsing regular expressions, which canbeusedto parsean
XML documentinto individual items,suchasattributeandtext values.He arguedthat this styleof parsing
is relatively faster thanoff-the-shelf XML parsing andprocessingtools. We chose to implementa different
approachin � ZAMAN. � ZAMAN uses anoff-the-shelf XML parser to matchtheXML skeletonin a format
against thatof a literal, andlocatedthetext andattributevalues. Parsingin � ZAMAN thenisolatesthefields

34

within text nodesor attributevalueswith regular expressions. Oneproblem with using regular expressions
for anentire XML fragment is that they canbevery complex andhardto understand whencombined with
theregularexpressionsfetchedfrom thefield valuetablesfor individualfields.Wechoseto makeour format
propertieseasyto specify.

8 Conclusionsand Futur eWork

� ZAMAN is a systemwritten in Java for formatting andmanipulatingtimesanddates in multiple calendars
andlanguages.� ZAMAN hasa dynamicandextensible architecture thatseparatescalendar-dependentfrom
calendar-independentaspectsof processing timevalues. Fromadesign perspective, � ZAMAN redesignsand
extendsall of thebasic mechanismspreviously employed. Fromanimplementation perspective, � ZAMAN

achievesfull dynamic support for calendarsandrelated componentsin a client/server system, andbrings
a new, XML-basedinformationrepresentation andprocessing style. Theprimarycontributions includethe
following.

0 � ZAMAN supports dynamic anddistributed handling of calendarsandother services. We take ad-
vantageof Java’s dynamicclass loadersto provide dynamicsupport for extending serverson thefly
with new calendarsandcalendar-relatedcomponents. � ZAMAN implementsaclient/servermodelthat
makescalendar-related servicesavailableon a network.

0 XML technology is usedto representandprocesscritical data.� ZAMAN improvestherepresentation
andprocessing of thesystem specificationfilesby formatting thefiles in theXML. Thisalsoimproves
the processingof thespecification files andallows them to beshared on theweb. Finally, � ZAMAN

integratesXML into the parsing andoutput of temporal literals, to meetthe future growth of times
formattedin XML.

0 Repositoriesallow effective sharing of components. � ZAMAN usesrepositories to enable sharing of
critical data, suchascalendars, calendric systems,granularity mappings,formats (asproperties) and
languages(asfield values) for parsing temporal literals. Repositories reduce the responsetime for
users, especially whenparsing temporal literals andperforming granularity conversions,by caching
componentsthatarereused.

In future we planto extend this research in several directions.Thefirst direction is improving thespeed
of � ZAMAN. Thereareseveral optimization techniquesthatcouldbe implemented. Oneoptimization is to
batchinput, output, andgranularity conversionrequeststo remoteservers to amortize turnaroundtime. A
secondoptimizationis to cachegranularity mappingsontheclient side, to avoid anRPCcall to cast or scale
an instanceof a temporal datatype. A third optimization is to skip theexpensive, uselessstepof parsing a
non-XML temporal literal with anXML parser.

Another direction of future work is studying how to craft userinterfacesto easethe taskof calendar
specification andreduce the possibilit y of mistakesby calendar developers. This would involve extending
the TAUZAMANTESTER with support for calendar andcalendric system debuggingandconfiguration. The
tool could alsobeextendedto visualizegranularitiesenabling developersto graphically constructgranularity
mappings,to createanduseprobability massfunctionsfor indeterminate temporaldatatypes, andto have a
point-and-click interfacefor creating input andoutput formats.

A third direction for future work is to refineandextendthemappingsbetweengranularitiesto include
granularitieswith “holes,” e.g.,therearesomedaysthataremissingbetweengranulesin holi days . In this
context, detailed experimentson temporal operations andconversions between different granularities will
beperformed.A fourth direction is to integrate� ZAMAN with Xalan[Pro03]. Xalanis anXPathevaluation

35

engine. The ideais to engineerXalan to coordinatewith a calendarserver to provide “temporal views” of
XML fragments that correspond to time literals in an XML document. So,given an XML document that
hastime literals in ISO format,a usercould query thedocumentusinga view of thosetimesin any desired
calendarandformat, for instance,in theIslamiccalendar. A fifth direction is to describe theclient API asa
webservice.Thiswouldallow webbotsandshoppingagentsto makedirect useof � ZAMAN’s functionality.
A sixthdirection is to add“pull” technology for calendar, property, languagesupport, andcalendreicsystem
specifications. Currently, whena specification changes,thespecificationhasto bemanually reloadedinto a
running � ZAMAN server. By automatically reloadingsuchfileswhenthey aremodified, calendarsandother
componentscanbe kept up-to-date. We’d also like to optimize the performanceof � ZAMAN by using a
native-codeJavacompiler andtuning thecodewith aJavaprofiler. Finally, we’d like to re-implementJava’s
current calendarsupport in � ZAMAN. This will help to demonstratetheextensibility of � ZAMAN.

Acknowledgments

This researchwassupportedin partby NSFgrants IIS-0100436andEIA-0080123.

References

[All83] J .F. Allen. Maintaining Knowledgeabout TemporalIntervals. Communicationsof theAssoci-
ation of Computing Machinery, 26(11):832–843,November1983.

[And82] T. L. Anderson. Modeling Time at theConceptual Level. In P. Scheuermann,editor, Proceed-
ingsof theInternational Conferenceon Databases:Improving Usability andResponsiveness,
pages273–297,Jerusalem,Israel, June1982. AcademicPress.

[And83] T. L. Anderson. Modeling EventsandProcessesat the Conceptual Level. In S.M. Deenand
P. Hammersley, editors, Proceedings of the Second International Conference on Databases,
Cambridge, GreatBritain, 1983. TheBritish ComputerSociety, Wiley HeydenLtd.

[AQdO85] M. Adiba, N. B. Quang,and J. P. de Oliveira. Time Conceptin Generalized Data Bases.
In Proceedingsof the ACM AnnualConference, pages214–223.Association for Computing
Machinery, October 1985.

[BDE 5 98] C. Bettini, C. E. Dyreson, W. S. Evans,R. T. Snodgrass,and X. S. Wang. A Glossary of
TimeGranularity Concepts. In Temporal Databases:Research andPractice, Lecture Notesin
ComputerScience1399, pages406–411.Springer-Verlag, 1998.

[Bet03] C. Bettini. Web servicesfor time granularity reasoning. In Proceedingsof the International
Symposium on Temporal Representation andReasoning. IEEE,2003.

[BJW00] C. Bettini, S. Jajodia, andX. S. Wang. TimeGranularities in Databases,Data Mining, and
Temporal Reasoning. Springer-Verlag, SanMateo, CA, 2000.

[BP85] F. BarbicandB. Pernici.TimeModeling in OfficeInformationSystems.In S.Navathe, editor,
Proceedingsof ACM SIGMODInternational Conferenceon Managementof Data, pages 51–
62,Austin, TX, May 1985. Association for Computing Machinery.

[Cam99] R. D. Cameron.REX: XML Shallow Parsingwith Regular Expressions. MarkupLanguages,
1(3):61–88, 1999.

36

[CDI 5 97] J.Clif ford, C. E. Dyreson, T. Isakowitz, C. S.Jensen, andR. T. Snodgrass.On theSemantics
of “Now” in Databases. ACM Transactionson DatabaseSystems, 22(2):171–214,1997.

[Col02] S. Colebourne. Jodahome page. http ://jo da.s ourc eforg e.ne t , current as of
November, 2002.

[Cor02] IBM Corporation. International Components for Unicode (ICU). http ://os s.so ft-
war e.ibm .com /icu , current asof May, 2002.

[CR87] J.Clif ford andA. Rao.A Simple,GeneralStructurefor Temporal Domains.In Proceedingsof
theConferenceon Temporal Aspects in InformationSystems, pages23–30, France, May 1987.
AFCET.

[CSS94] R. Chandra, A. Segev, andM. Stonebraker. Implementing Calendars andTemporalRulesin
Next Generation Databases. In Proceedings of the International Conferenceon Data Engi-
neering, pages 264–276,February 1994.

[Dat88] C.J.Date.A Proposal for AddingDateandTimeSupport to SQL. SIGMODRecord, 17(2):53–
76,June1988.

[DELS00] C. E. Dyreson, W. S. Evans,H. Lin, andR. T. Snodgrass. Efficiently Supporting Temporal
Granularities. IEEETransactionsonKnowledgeandDataEngineering, 12(4):568–587,2000.

[DS98] C.E.DyresonandR.T. Snodgrass.Supporting Valid-TimeIndeterminacy. ACM Transactions
on DatabaseSystems, 23(1):1–57, 1998.

[Fal01] D. C. Fallside (editor). XML SchemaPart 0: Primer. http ://w ww.w3c.or g/TR -
/xm lsche ma-0 , current asof May, 2001.

[Fra87] J.Fraser. TimetheFamiliar Stranger. TempusBooks, Redmond, WA, 1987.

[Int00] International Organization for Standardization. Dataelementsandinterchangeformats– Infor-
mationinterchange– Representation of dates andtimes. Technical Report ISO8601:2000(E),
ISO,December2000.

[JC98] C. S.JensenandC. E. Dyreson (editors). A ConsensusGlossary of TemporalDatabaseCon-
cepts- February 1998Version. In Temporal Databases:Research andPractice, Lecture Notes
in Computer Science1399, pages367–405.Springer-Verlag,1998.

[JS99] C. S.Jensen andR. T. Snodgrass.TemporalDataManagement.IEEETransactionsonKnowl-
edge andData Engineering, 11(1):36–44, January/February 1999.

[KCGS96] L. Karttunen, J. Chanod, G. Grefenstette,andA. Schiller. RegularExpressions for Language
Engineering. Natural Language Engineering, 2(4):305–238,1996.

[KLS99] N. Kline, J. Li, andR. T. Snodgrass. Specifying Multiple Calendars,Calendric Systems,and
Field TablesandFunctions in TimeADT. Technical Report41, TimeCenter, Aalborg, Den-
mark,May 1999.

[KSS96] S.Kraus, Y. Sagiv, andV. S.Subrahmanian. Representing andintegrating multiple calendars.
Technical ReportCS-TR-3751,Univ. of Arizona,Dept.of Comp.Science,1996.

37

[KT96] I. Kakoudakis and B. Theodoulidis. The TAU TemporalObject Model. Technical Report
TR-96-4,TimeLab,University of Manchester(UMIST), 1996.

[Mic03] SunMicrosystems.Java2 Platform,Standard Edition (J2SE)v. 1.4.1.http ://ja va.s un-
.co m/j2s e/1. 4.1/ , current asof May, 2003.

[MMCR92] A. Montanari, E. Maim, E. Ciapessoni, andE. Ratto. Dealingwith Time Granularity in the
Eventcalculus. In Proceedingsof theInternational Conferenceon Fifth Generation Computer
Systems1992, volume2, pages 702–712,Tokyo, Japan, June1992.ICOT.

[MS93] J.Melton andA. R. Simon. Understanding theNew SQL:A CompleteGuide. MorganKauf-
mannPublishers, Inc., SanMateo,CA, 1993.

[NB95] P. Navrat and M. Bielikova. Representing Calendrical Algorithms and Data in Prolog and
PrologIII. SIGPLANNotices, 30(7):45–51, 1995.

[NWJ02] P. Ning, X. S. Wang,andS. Jajodia. An Algebraic Representation of Calendars. Annalsof
MathematicsandArtificial Intelligence, 36(1-2):5–38,2002.

[Ohl03a] H. J.Ohlbach. Project WebTNSS.http://www.pms.informatik.uni-muenchen.de/mitarbeiter/-
ohlbach/WebTNSS/motivation.html,currentasof May 2003.

[Ohl03b] H. J.Ohlbach. WebCal,anAdvancedCalendarServer. htt p://w ww.pms.in form atik -
.un i-mue nche n.de/ mita rbei ter/o hlba ch/We bTNSS/WebCal- WWW.pdf , cur-
rentasof May 2003.

[Pro03] ApacheXML Project. Xalan-Java version2.5.D1. htt p://x ml.a pach e.org /xal an-
j , current asof May, 2003.

[Sar93] N. Sarda.HSQL:A Historical QueryLanguage.In Temporal Databases:Theory, Design,and
Implementation, pages 110–140.Benjamin/Cummings,1993.

[SJS95] M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQL2, chapter 27, pages
505–546. Kluwer AcademicPress,September 1995.

[SM99] C. M. Sperberg-McQueen. Regular Expressions for Dates. Markup Languages, 1(4):20–26,
1999.

[Sof02] CrystalClear Software. BoostDate-TimeLibrary. http ://w ww.bo ost. org/l ibs , cur-
rentasof December, 2002.

[Soo93] M. D. Soo. Multipl e Calendar Support for Conventional DatabaseManagement Systems.
In R. T. Snodgrass,editor, Proceedings of the Workshop on an Infrastructure for Temporal
Databases, pages FF1–FF17,June 1993.

[SS92] M. D. SooandR. Snodgrass.Multiple Calendar Support for Conventional Database Manage-
mentSystems.Technical Report92-7, ComputerScience Department,University of Arizona,
February 1992.

[SSD5 92] M. D. Soo,R. Snodgrass,C. Dyreson, C. S. Jensen,andN. Kline. Architectural Extensions
to Support Multiple Calendars. TempISTechnicalReport32, ComputerScience Department,
University of Arizona,Revised May 1992.

38

[W3C00] W3C. Extensible MarkupLanguage(XML) 1.0. http: //ww w.w3c .org /TR/ REC-xml ,
current asof October, 2000.

[WBBJ97] X. S. Wang,C. Bettini, A. Brodsky, andS. Jajodia. Logical Designfor TemporalDatabases
with Multiple Granularities. ACM Transactionson DatabaseSystesms, 22(2):115–170,1997.

[WJL91] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in Temporal
Databases. In Proc. 3rd Nordic Conf. on AdvancedInformationSystemsEngineering, Trond-
heim,Norway, May 1991.

A An Example Calendar Specification

This appendix givesan exampleof a specification file for the Gregorian calendar. A calendar is mostly a
collection of related granularities. Eachgranularity is specified by a <granular ity> element. Theelement
definesagranularity asamappingfrom a(previously) definedgranularity. Themappingcanberegular (i.e.,
describedby aformula),or irregular (implementedby ashortpieceof code). Codefor theirregularmappings
is supplied in thecompiled Java classthatsupports thecalendar. Thesespecification files andothers canbe
foundatthe � ZAMAN projectwebsite(http ://ww w.ee cs.w su.ed u/˜c dyres on/p ub/t auZaman).

<!-- A calendar hasonebuilt-in granularity, theURL identifiescalendar specificcode-->
<calendar Specificatio n

implUrl = "http://w ww.eecs.wsu. edu/˜cdyreso n/pub/tauzam an/release/G regorianCale ndar.class"
underly ingGranulari ty = "second s">

<!-- Minutesto secondsmapping, it is irregular becauseof leapseconds-->
<granul arity name = "seconds">

<irregularM apping from = "minutes" relationship = "finer">
<method name = "castMinuteT oSecond" type = "cast"/>

</irregular Mapping>
</granu larity>

<!-- Minutesto secondsmapping, it is irregular becauseof leapseconds-->
<granul arity name = "minutes">

<irregularM apping from = "seconds" relationship = "coarser" >
<method name = "castSecondT oMinute" type = "cast" />

</irregular Mapping>
</granu larity>

<!-- Hours to minutesis regular, each hour is 60minutes -->
<granul arity name = "hours">

<regularMap ping from = "minutes" relation ship = "coarser"
periodSiz e = "60" groupSize = "60"/>

</granu larity>

<!-- Mappingsfromdays -->
<granul arity name = "days">

<!- - Daysto hours is regular, each dayis 24hours -->
<regularMap ping from = "hours" relationsh ip = "coarse r"

periodSiz e = "24" groupSize = "24"/>

<!- - Daysto monthsis irregular -->
<irregularM apping from = "months" relatio nship = "finer">

<method name = "castMonthTo Day" type = "cast" />
</irregular Mapping>

</granu larity>

<!-- Weeksto daysis regular, each weekis 7 days-->
<granul arity name = "weeks">

<regularMap ping from = "days" relationshi p = "coarser "
periodSiz e = "7" groupSize = "7"/>

</granu larity>

39

<!-- Monthsto daysis irregular, monthshavea different numberof days-->
<granul arity name = "months">

<irregularM apping from = "days" relations hip = "coarser" >
<method name = "castDayToMo nth" type = "cast" />

</irregular Mapping>
</granu larity>

<!-- Years to months is regular, each yearhas12months -->
<granul arity name = "years">

<regularMap ping from = "months" relations hip = "coarser"
periodSiz e = "12" groupSize = "12"/>

</granu larity>

</calenda rSpecificati on>

Every specification file alsohasa <descrip tor> element, which is not processedby the system and
exists only for informative reasons. Here is the structure of a <descri ptor> , listing its (optional) sub-
elements, thatexists in every specification file usedfor [ZAMAN.

<descript or>
<versio ns>

<currentVer sion tag = "..." url = "..." />
<previousVe rsion tag = "..." url = "..." />

</versi ons>
<contac t>

<name>
<first>.. .</first>
<middle>. ..</middle>
<last>... </last>

</name>
<email>...< /email>

</conta ct>
<refere nce>...</ref erence>
<descri ption>...</d escription>

</descrip tor>

B An ExampleCalendric SystemSpecification

This appendix givesan examplecalendric system specification file. A calendric system is a collection of
calendars,plus inter-calendar granularity mappings. The mappings are implemented in a compiled Java
classthat is dynamically loaded whenthe calendric system object is created. Theexamplespecification is
for a University of Arizona (UofA) calendric system. The system consistsof the Gregoriancalendar and
a special calendar for theUniversity. TheUofA calendar is similar to theGregoriancalendar, but daysare
limited to timesonly whenclasses arein session, semesters andimportant dates within eachsemester(e.g.,
thedatesof vacationslike SpringBreak).
<!-- A calendricsystemfor useat theUniversity of Arizona-->
<calendri cSystem name = "UofALimi tedCalendric System">

<!-- Thecalendric systemusestheGregoriancalendar -->
<import Calendar name="ADGregorian"

url="http:/ /www.eecs.ws u.edu/˜cdyre son/pub/tauz aman/release /ADGregorian Calendar.xml " />

<!-- Thecalendric systemalsousestheUofAcalendar -->
<import Calendar name="Uof ACalendar"

url="http:/ /www.eecs.ws u.edu/˜cdyre son/pub/tauz aman/release /UofACalenda r.xml" />

<!-- Try to parsedatesin thespecifiedcalendar order -->
<defaul tInputOrder>

ADGregorian
UofACalenda r

</defau ltInputOrder >

<!-- Inter-calendar mappings -->
<mappin gs>

40

<!-- UofA hours to Gregorian hours is a congruent,irr egular mapping sinceonly someGregorian hours are
UofAhours -->

<irregularM apping
from="hou r" fromCalen dar = "UofACalenda r"
to="hour" toCalendar = "ADGregori an"
url="http ://www.eecs. wsu.edu/˜cdy reson/pub/ta uzaman/relea se/UofALimit edCalendricS ystem.class"
relations hip = "congruent" >

<method name="castUo fAHourToGreg Hour"/>
</irregular Mapping>

<!- - Gregorian hours to UofAhours is alsoirregular -->
<irregularM apping

from="hou r" fromCalen dar = "ADGregorian "
to="hour" toCalendar ="UofACalend ar"
url="http ://www.eecs. wsu.edu/˜cdy reson/pub/ta uzaman/relea se/UofALimit edCalendricS ystem.class"
relations hip = "congruent" >

<method name="castGr egHourToUofA Hour"/>
</irregular Mapping>

</mappi ngs>

<!-- Defaultregular expressionto split upa temporal literal -->
<defaul ts token="[a -zA-Z0-9]+" />

</calendr icSystem>

C Available Properties

This appendix givesexamples of eachkind of property. We list andexplain them individually. In thenext
section we provide anexample of each. Additionally, we give all of theproperty operationsavailable to a
userto manageproperties.

Therearefourteenproperties. Propertiescanbeclassifiedinto threecategories: format-relatedproperties
(twelve propertiesareof this kind), timezone-relatedproperties(oneproperty) andinput priority properties
(oneproperty). Thevalueof a format-relatedproperty is a sequenceof templates usedfor input or output.
Thetemplatesareapplied in theorderspecified, until onematches.

Locale Thisproperty is in time-zonerelatedclassandit is usedto specify a location for timezonedisplace-
ment.

Overri deInputOrd er This property specifies specifies which calendarto useto translatetemporal literals,
overriding theorderin thecalendar systemspecification.

InstantInputF ormat Usedto parse aninstanttemporal literal.

InstantOutputF ormat Usedto formataninstant.

NowRelativeInstantInputFormat Usedto parse a now-relative instant temporal literal.

NowRelativeInstantOutputFormat Formatsa a now-relative instant during output.

IndeterminateInstantInputFormat For parsing anindeterminate instant.

IndeterminateInstantOutputFormat Formatusedin theoutput of anindeterminateinstant.

PeriodInputF ormat Usedto parsea period.

PeriodOutputFormat Formatusedin theoutput of a period.

Inter valInputF ormat Usedto parseaninterval.

41

Inter valOutputF ormat Formatusedto output aninterval.

IndeterminateIntervalInputF ormat Usedto parseanindeterminate intervaltemporal literal.

IndeterminateIntervalOutputFormat Formatusedto output anindeterminate interval.

D An Example Property Specification

Thisappendix givesanexampleproperty specificationfile, whichcontainsall possiblepropertiesandthere-
fore canbeusedasa full default property table by a TauZamanServicewith a relatedcalendric system.
<!-- A propertytableis a collection of propertiesandfieldvaluetables-->
<property Table>

<!-- Providesa mapping betweenthenames(labels)andcodefor fieldvaluetables-->
<fieldV alueSupportM apper>

<fieldvalue support label = "arabicN umeral"
url = "http://ww w.eecs.wsu.e du/˜cdyreson /pub/tauzama n/release/Ar abicNumeral. class"/>

<fieldvalue support label = "english GregorianMon thNames"
url = "http://ww w.eecs.wsu.e du/˜cdyreson /pub/tauzama n/release/en glishGregori anMonthNames.xml"/>

<fieldvalue support label = "periodL eftDelimiter List"
url ="http://www .eecs.wsu.ed u/˜cdyreson/ pub/tauzaman /release/lef tDelimiterLi st.xml"/>

<fieldvalue support label = "periodR ightDelimite rList"
url ="http://www .eecs.wsu.ed u/˜cdyreson/ pub/tauzaman /release/rig htDelimiterL ist.xml"/>

<fieldvalue support label = "directi onList"
url = "http://ww w.eecs.wsu.e du/˜cdyreson /pub/tauzama n/release/di rectionList. xml"/>

<fieldvalue support label = "english NowNames"
url = "http://ww w.eecs.wsu.e du/˜cdyreson /pub/tauzama n/release/en glishNowName s.xml" />

<fieldvalue support label = "distrib utionNames"
url = "http://ww w.eecs.wsu.e du/˜cdyreson /pub/tauzama n/release/di stributionNa mes.xml" />

</field ValueSupport Mapper>

<!-- Thelocalepropertyis for establishinga timezone-->
<proper ty name = "Locale" value = "America/ Los_Angeles" />

<!-- Thispropertysetsupa formatfor parsinga determinate instant-->
<proper ty name = "Instant InputFormat" >

<value>

<format>
<instan t>

<day value = "$day"/>
<month value = "$month " />
<year value = "$year" />

</insta nt>
</format>

<fieldInf o variable = "month" name = "monthOf Year"
using = "englishMont hNames" />

<fieldInf o variable = "day" name = "dayOfMont h"
using = "arabicNumer al" />

<fieldInf o variable = "year" name = "year"
using = "arabicNumer al" />

</value>
</prope rty>

<!-- Theformatfor outputting a determinateinstant-->
<proper ty name = "Instant OutputFormat " >

<value>

<format>
<instan t>

$day, $month, $year
</insta nt>

</format>

42

<fieldInf o variable = "month" name = "monthOf Year"
using = "englishMont hNames" />

<fieldInf o variable = "day" name = "dayOfMont h"
using = "arabicNumer al" />

<fieldInf o variable = "year" name = "year"
using = "arabicNumer al" />

</value>
</prope rty>

<!-- Theformatfor parsingan interval -->
<proper ty name = "Interva lInputFormat ">

<value>

<format>
<months value = "$monthAs Number" />

</format>

<fieldInf o variable = "monthAsNum ber" name = "month"
using = "arabicNumer al" />

</value>
</prope rty>

<!-- Theformatfor outputting an interval -->
<proper ty name = "Interva lOutputForma t">

<value>

<format>
<months value = "$monthAs Number" />

</format>

<fieldInf o variable = "monthAsNum ber" name = "month"
using = "arabicNumer al" />

</value>
</prope rty>

<!-- Theformatfor parsinga now-relativeinstant-->
<proper ty name = "NowRela tiveInstantI nputFormat">

<value>

<format>
<now value = "$now" />
<direction value = "$direction " />
$interval

</format>

<fieldInf o variable = "now" name = "now"
using = "englishNowN ames"/>

<fieldInf o variable = "direction" name = "direction s"
using = "directionLi st" />

<importFo rmat variabl e = "interva l" name = "Interva lInputFormat " />

</value>
</prope rty>

<!-- Theformatfor outputting annow-relativeinstant-->
<proper ty name = "NowRela tiveInstantO utputFormat" >

<value>

<format>
<now value = "$now" />
<direction value = "$direction " />
$interval

</format>

<fieldInf o variable = "now" name = "now"

43

using = "englishNowN ames"/>
<fieldInf o variable = "direction" name = "direction s"

using = "directionLi st" />

<importFo rmat variabl e = "interva l" name = "Interva lOutputForma t" />

</value>
</prope rty>

<!-- A periodformatinvolves two instants(indeterminate, now-relative, or determinate) -->
<proper ty name = "PeriodI nputFormat">

<value>
<format>

<period>
<delimiter value = "$leftClose d" />
$instant
$instant
<delimiter value = "$rightClos ed" />
</period>

</format>

<fieldInf o variable = "leftClosed " name = "periodDe limiter"
using = "leftDelimit erList"/>

<fieldInf o variable = "rightClose d" name = "periodD elimiter"
using = "rightDelimi terList"/>

<importFo rmat variabl e = "instant " name = "InstantI nputFormat" />

</value>
</prope rty>

<!-- Theformatfor outputting a period,usestheinstantformat-->
<proper ty name = "PeriodO utputFormat" >

<value>
<format>

<period>
<delimiter value = "$leftClose d" />
$instant
$instant
<delimiter value = "$rightClos ed" />
</period>

</format>

<fieldInf o variable = "leftClosed " name = "periodDe limiter"
using = "leftDelimit erList"/>

<fieldInf o variable = "rightClose d" name = "periodD elimiter"
using = "rightDelimi terList"/>

<importFo rmat variabl e = "instant " name = "InstantO utputFormat" />

</value>
</prope rty>

<!-- Theformatfor parsingan indeterminateinstant-->
<proper ty name = "Indeter minateInstan tInputFormat ">

<value>
<format>

<indetermin ateInstant>
$lower
$upper
<distributi on value = "$distr ibution" />
</indetermi nateInstant>

</format>

<importFo rmat variabl e = "lower" name = "InstantInp utFormat" />
<importFo rmat variabl e = "upper" name = "InstantInp utFormat" />

<fieldInf o variable = "distributi on" name = "distri bution"
using = "distributio nNames"/>

</value>
</prope rty>

44

<!-- Theformatfor outputting an indeterminate instant-->
<proper ty name = "Indeter minateInstan tOutputForma t">

<value>
<format>

<indetermin ateInstant>
$lower
$upper
<distributi on value = "$distr ibution" />
</indetermi nateInstant>

</format>

<importFo rmat variabl e = "lower" name = "InstantOut putFormat" />
<importFo rmat variabl e = "upper" name = "InstantOut putFormat" />

<fieldInf o variable = "distributi on" name = "distri bution"
using = "distributio nNames"/>

</value>
</prope rty>

<!-- Setsthecalendar order in which literals areparsed(overridescalsysdefault) -->
<proper ty name = "Overrid eInputOrder"

value = "ADGregor ian" />

</propert yTable>

E ExampleField Value Specifications

This section hastwo examples of field valuetable specification files: engl ishMo nthN ames.xml and
left Deli miter List .xml .

Thespecificationfile for EnglishmonthnamesrelatesGregorianEnglish monthnameswith indexes.If
indicesarenotexplicitly given,by default they startfrom 1, andincrementby onefor eachrow in document
order.

<fieldVal ueTable>

<row string = "January" />
<row string = "February" />
<row string = "March" />
<row string = "April" />
<row string = "May" />
<row string = "June" />
<row string = "July" />
<row string = "August" />
<row string = "September" />
<row string = "October" />
<row string = "November" />
<row string = "December" />

</fieldVa lueTable>

Indicescanalsobeexplicitly givenwith any row (with theexception thatneitherstringsnor indexescan
have duplicatesin a single field valuetable). Below is an example of the lef tDel imite rLis t.xm l
specification.

<fieldVal ueTable regex = "[ˆ\s]">

<row string = "[" value=" 1" />
<row string = "(" value=" 2" />

</fieldVa lueTable>

45

Thereg ex attributeof thefiel dValu eTable elementspecifiesa regular expression, which is used
to recognizea tokenof this type in a temporalliteral. In this example,theregular expressionspecifiesthat
any non-whitespacecharactercould potentially bealeft delimiter(alternatively, theregular expressioncould
beshortenedto just include ’[’ and’(’). If no regular expression is given explicitly, asin Engl ishM on-
thNa mes, a default regularexpression, givenin thecalendric systemspecification,is usedinstead.

F Example Time Literals

This appendix hasthe time literals that areusedto form instancesof the temporal datatypesin the exper-
imentsdescribed in Section5. Although eachof theseliterals is given in XML, we would like to remind
the readerthat [ZAMAN canparseboth XML andnon-XML literals, suchasthe instant literal “March 6,
2003”. Below arelistedtheexampleliterals, formattedin XML.
<!-- Determinateinstant-->
<instant>

<day value = "6" />
<month value = "March" />
<year value = "2003" />

</instant >

<!-- Interval -->
<months value = "5" />

<!-- Now-relativeinstant-->
<now value = "now" />
<directio n value = "+" />
<months value = "5" />

<!-- Indeterminateinstant-->
<indeterm inateInstant >

<instan t>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</insta nt>

<instan t>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</insta nt>

<distri bution value = "uniform" />
</indeter minateInstan t>

<!-- Determinateperiod-->
<period>

<delimi ter value = "["/>

<instan t>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</insta nt>

<instan t>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</insta nt>

<delimi ter value = "]" />
</period>

46

<!-- Indeterminateperiod-->
<period>

<delimi ter value = "["/>

<indete rminateInsta nt>
<instant>

<day value = "6" />
<month value = "March" />
<year value = "2003" />

</instant>

<instant>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</instant>

<distributi on value = "unifor m" />
</indet erminateInst ant>

<indete rminateInsta nt>
<instant>

<day value = "6" />
<month value = "March" />
<year value = "2003" />

</instant>

<instant>
<day value = "6" />
<month value = "March" />
<year value = "2003" />

</instant>

<distributi on value = "unifor m" />
</indet erminateInst ant>

<delimi ter value = "]" />
</period>

In someof theexperiments,subelementswereused to wraprelevant information(rather thanincluding
the dataasattribute values). We give only the literals for the determinateinstant andnow-relative instant.
<!-- Determinateinstant-->
<instant>

<day> 5 </day>
<month> March </month>
<year> 2003 </year>

</instant >

<!-- Now-relativeinstant-->
<now> now </now>
<directio n> + </direc tion>
<months> 5 </months>

G Format Propertiesusedin TAUZAMANTESTER

This appendix hasthe format properties used in Section 6. In Figure22 an indeterminateinstant is con-
structed(andoutput) according to an“IndeterminateInstantInput(Output)Format” asdescribedin “property
table2” (theproperty table is chosen in thethird drop-down menuin thecenterof theGUI). Sincethe“In-
determinateInstantInput(Output)Format” imports an “InstantInput(Output)Format”, for completeness, we
have to show bothof theformatproperties.On theotherhand, to keepit short,referencedfield valuetables
will not beshown here.
<!-- Thepropertytableusedin theTAUZAMANTESTER -->
<property Table>

47

<!-- Mapsfieldvaluetablelabelsto support code-->
<fieldV alueSupportM apper>

<fieldvalue support label = "arabicN umeral"
url = "http://w ww.eecs.wsu. edu/˜cdyreso n/pub/tauzam an/release/A rabicNumeral .class"/>

<fieldvalue support label = "english MonthNames"
url = "http://w ww.eecs.wsu. edu/˜cdyreso n/pub/tauzam an/release/e nglishMonthN ames.xml"/>

<fieldvalue support label = "distrib utionNames"
url = "http://w ww.eecs.wsu. edu/˜cdyreso n/pub/tauzam an/release/d istributionN ames.xml" />

</field ValueSupport Mapper>

<!-- Input propertyfor instants-->
<proper ty name = "Instant InputFormat" >

<value>
<format>< date month = "$month" year = "$year" day = "$day" /></format >
<fieldInf o variable = "month" name = "monthOf Year" using = "englishMo nthNames" />
<fieldInf o variable = "day" name = "dayOfMont h" using = "arabic Numeral" />
<fieldInf o variable = "year" name = "year" using = "arabicNumer al" />

</value>
</prope rty>

<!-- Output propertyfor instants-->
<proper ty name = "Instant OutputFormat " >

<value>
<format>< date> month = "$month" year = "$year" day = "$day" </date></ format>
<fieldInf o variable = "month" name = "monthOf Year" using = "englishMo nthNames" />
<fieldInf o variable = "day" name = "dayOfMont h" using = "arabic Numeral" />
<fieldInf o variable = "year" name = "year" using = "arabicNumer al" />

</value>
</prope rty>

<!-- Input propertyfor indeterminateinstants-->
<proper ty name = "Indeter minateInstan tInputFormat ">

<value>
<format>

<lower> $lower </lower>
<upper> $upper </upper>
<distri bution value = "$distrib ution" />

</format>

<!- - Each bound is a determinateinstant.-->
<importFo rmat variabl e = "lower" name = "InstantInp utFormat" />
<importFo rmat variabl e = "upper" name = "InstantInp utFormat" />

<!- - Thedefault distribution is uniform.
<fieldInf o variable = "distributi on" name = "distri bution"

using = "distributio nNames" />
</value>

</prope rty>

<!-- Output propertyfor indeterminate instants-->
<proper ty name = "Indeter minateInstan tOutputForma t">

<value>
<format>

<suppor t> <lower> $lower </lower> </support >
<suppor t> <upper> $upper </upper> </support >
<distri bution value = "$distrib ution" />

</format>
<importFo rmat variabl e = "lower" name = "InstantOut putFormat" />
<importFo rmat variabl e = "upper" name = "InstantOut putFormat" />
<fieldInf o variable = "distributi on" name = "distri bution"

using = "distributio nNames" />
</value>

</prope rty>

In Figure23adeterminateperiod isconstructed(andoutput) according to an“PeriodInput(Output)Format”
in property table1. Since“PeriodInput(Output)Format” importsan“InstantInput(Output)Format”, for com-
pleteness,we have to showbothof theformatproperties. Property table 1 usedin the TAUZAMANTESTER

is the sameas the exampleproperty table shown in Appendix D. So, “PeriodInput(Output)Format” and
“InstantInput(Output)Format” that it importscanbefoundthere.

48

