
RDBMS Support for Efficient Indexing of
Historical Spatio-Temporal Point Data

Daniel Mallett, Mario A. Nascimento, Viorica Botea and Joerg Sander

November 1, 2005

TR-84

A T IMECENTER Technical Report



Title RDBMS Support for Efficient Indexing of Historical Spatio-Temporal Point Data

Copyright c© 2005 Daniel Mallett, Mario A. Nascimento, Viorica Botea andJoerg
Sander. All rights reserved.

Author(s) Daniel Mallett, Mario A. Nascimento, Viorica Botea and Joerg Sander

Publication History November 2005. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, Sabah A.Currim, Bongki Moon, Sudha Ram, Stanley Yao

Individual participants
Yun Ae Ahn, Chungbuk National University, Korea; Michael H.Böhlen, Free University of Bolzano, Italy; Cur-
tis E. Dyreson, Washington State University, USA; DengfengGao, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Heidi Gregersen, Aarhus School of Business, Denmark; Vijay Khatri, Indi-
ana University, USA; Nick Kline, Microsoft, USA; Gerhard Knolmayer, University of Bern, Switzerland; Carme
Martı́n, Technical University of Catalonia, Spain; ThomasMyrach, University of Bern, Switzerland; Kwang W.
Nam, Chungbuk National University, Korea; Mario A. Nascimento, University of Alberta, Canada; John F. Rod-
dick, Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Dennis Shasha, New
York University, USA; Michael D. Soo, amazon.com, USA; Andreas Steiner, TimeConsult, Switzerland; Paolo
Terenziani, University of Torino, Italy; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang,
Siemens, USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California,
Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as bytheir precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

Despite pressing need, current RDBMS support for spatiotemporal data is limited and inadequate, and most
existing spatiotemporal access methods cannot be readily integrated into an RDBMS. This paper proposes SPIT,
an adaptive technique for spatiotemporal storage, indexing and query support that can be fully integrated within
any off-the-shelf RDBMS. We initially propose a cost model that assumes a uniform data distribution for deter-
mining an optimal partitioning of the data space in terms of query processing time. We then use this model as a
basis for a heuristic method for partitioning the data spacewithout making any assumption about the data distri-
bution. Using Oracle as our implementation platform with both real and synthetic datasets, we show that SPIT is
robust and significantly outperforms other RDBMS-based options for managing historical spatiotemporal data.

1 Introduction

The need for spatiotemporal access methods (STAMs) integrated within a relational database management sys-
tem (RDBMS) has become increasingly apparent. A prolific number of GPS, wireless computing, and mobile
phone devices are capable of accurately reporting their position, and applications that can take advantage of this
information, e.g., traffic control, data mining, fleet monitoring, and location-aware services, are in high demand.
Managing large datasets of such data demands the convenience, reliability, and data storage capabilities that a tra-
ditional RDBMS affords. However, little work exists on how to provide spatiotemporal data support, a STAM in
particular, inside a RDBMS, [1] being an exception. Our workfills this crucial need by proposing a spatiotemporal
access method which can be fully integrated within any RDBMS. We identify two chief alternatives for providing
RDBMS support for spatiotemporal data: loosely coupling a STAM to the RDBMS, and tightly coupling a STAM
inside the RDBMS via a relational mapping. Our approach falls under the latter, i.e., we design a STAM that
leverages existing RDBMS functionality. The chief advantage is that our method can be readily integrated into
any RDBMS.

There are two main types of spatiotemporal databases [2], those that manage historical information and those
that manage current information for current/predictive query purposes. This paper focuses on the first category,
i.e., we assume that the database stores the complete history of moving objects through time and must answer
queries about any time in the history of objects. We assume that records about object’s movements are tracked
and sent (possibly via regular updates) to the RDBMS. Each record has the attributes〈oid, x, y, ts, te〉, where
oid identifies an object,〈x, y〉 are spatial coordinates, and〈ts, te〉 indicate the interval during which an object
remained at position〈x, y〉. A typical domain where such a model fits is mobile device tracking, e.g., of GPS,
PDA, or wireless phone devices. Unlike the trajectory model[3], our data model does not assume anything about
the movement of objects between records. The model reflects areal-world application1 constraint where assuming
an object follows a linear trajectory between data points may lead to incorrect assumptions. For example, in
security/monitoring applications, a person could be mistakingly assumed to have entered a restricted area because
his/her movement was interpolated. Our model can be viewed as a step-wise interpolation instead of a linear
interpolation, i.e., objects are assumed to remain at the given〈x, y〉 position for the given〈ts, te〉 time interval.

In this work a a spatiotemporal range queryQ takes the formQ = 〈R, T 〉 whereR is a spatial region andT
is a time range.Q returns the uniqueoid’s of records where〈x, y〉 is insideR and〈ts, te〉 intersects withT . An
example of such a query would be “find all objects that were in the West Edmonton Mall at some point between
noon and 1 p.m. yesterday”.

In this paper we propose an efficient spatiotemporal indexing technique fully integrated within a RDBMS via
a relational mapping. Our approach is based on a partitioning of the data space, which can be done at logical or
physical level at the underlying RDBMS. The general idea of our approach is similar to SETI [4] in that we have
primary partitions the of two-dimensional space, and independent temporal index structures in each of the spatial
partitions.

The new contributions of this paper are the following: (1) Wedevelop a cost model to analytically determine
the number of primary partitions to use. The model suggests the number of primary partitions so that the expected
number disk accesses is minimized, assuming a uniform data distribution and an average expected query size.
(2) Based on this cost model, we also propose a heuristic method for partitioning the data space for arbitrary
data distributions, which yields very good performance in practice. (3) We design a relational mapping of our

1Details of which cannot be disclosed due to confidentiality reasons.

1



proposed STAM, which can be used to easily deploy this STAM using any RDBMS. (4) We show in a compre-
hensive experimental comparison that our proposed technique dramatically outperforms other RDBMS-supported
spatiotemporal indexing alternatives.

This remainder of this paper is structured as follows, Section 2 reviews related work and also provides back-
ground on what options for RDBMS support of spatiotemporal data exist. Section 3 details our proposed approach,
and the associated cost model. In Section 4 we describe how our approach can be implemented using a particular
RDBMS. In Section 5 we confirm the reliability of the model andcompare our approach to several other methods
for indexing spatiotemporal data inside a RDBMS. Section 6 concludes the paper.

2 Related Work

A thorough overview of work on STAMs for historical and current/predictive spatiotemporal support can be found
in [2]. Predictive STAMs support queries that predict a moving object’s location at a given time based on the
current velocity of the object. Historical STAMs support queries that can be classified as coordinate-based (the
case we are interested in) or trajectory-based [3].

The current state-of-the-art for predictive STAMs is the Bx-tree [5]. Built on top of a B+-tree and using a space
filling curve underneath it, it allows, like in our case, the index to be used within an existing DBMS. Another recent
access structure of interest is the TPR∗-Tree [6], which is an a version of the TPR-tree TPR-tree [7] with improved
construction algorithms based on a performance model.

Many historical STAMs have been proposed [3, 8, 4, 9, 10] the majority of which are based on the R-tree [11],
[4] being a notable exception. The 3-D R-Tree [10] treats time as a third dimension and indexes spatiotemporal
data using a 3-dimensional R-tree. The Historical R-tree (HR-tree) [9], an overlapping and multi-version structure,
adapts the R-tree for historical spatiotemporal data. The MV3R-tree [12] improved upon these providing more
efficient support for interval queries. The Trajectory Bundle Tree (TB R-tree) [3] proposes a trajectory-oriented
access method that can (under certain conditions) answer trajectory-oriented queries faster than the R-tree. The
2-3TR-tree [8] suggests the use of two R-tree indexes, a two-dimensional point index representing current data,
and a three-dimensional historical index.

The work presented in [4] is the one closest to ours. The authors propose a grid-based spatiotemporal indexing
technique which they call SETI. SETI partitions the spatialdimension into static, non-overlapping partitions, and
within each partition uses a “sparse” temporal index –whichthe paper describes as a 1-dimensional R-tree over
the temporal interval of all the object records stored in a single data page. An in-memory “front-line” structure
keeps track of the last position of each moving object. However, unlike our proposal, no cost model or heuristic is
presented to guide the partitioning of the data space.

3 SPIT: Space Partitioning with Indexes on Time

SPIT partitions the data according to its spatial location and then creates temporal indexes over each partition.
The data is partitioned into a fixed number of cells, each cellcorresponding to a different partition in the RDBMS.
The key advantage of spatial partitioning is that of partition elimination at query time. Cells that do not intersect
the spatial component of the query window can be eliminated from consideration. For spatiotemporal data this
works extremely effectively because we can further apply a temporal filter within all intersecting cells. The spatial
discrimination is achieved at next to no cost and the local temporal index benefits from having to manage only
a (small) subset of the data. As in [4], query processing proceeds according to four stages: (1) coarsespatial
filtering based on the grid location of tuples, (2)temporal filteringusing the per grid temporal indexes, (3) fine
spatial refinementbased the on actual spatial location of tuples, and (4)duplicate elimination.

As shown in Figure 1, for the case of a regular grid, the cells could be numbered using a horizontal sweep
space-filling curve, giving each cell a unique identifierpid (shown in the upper right corner of each cell in the
figure). The lengthl refers to the length of a grid cell in each spatial dimension.A local temporal index on〈ts, te〉
is created over the domain of tuples within each partition. For that we use a combined B-tree index on〈ts, te〉. We
considered the use of a 1-dimensional R-tree to index the temporal dimension. However, we abandoned the idea
because preliminary experiments showed that a large degreeof overlap among the temporal intervals of objects
occurs. In such a situation the performance (and index creation times) of the 1-D R-tree approach is prohibitively
expensive. It is important to note that not only can the combined B-tree on〈ts, te〉 be readily supported in any

2



RDBMS, but the B-tree index also has a performance advantageof being able to perform an index range scan. For
similar performance reasons we do not consider the use of techniques for RDBMS-support of temporal data, i.e.,
the temporal RI-tree [13]. Finally, assuming tuples are sorted by time, at query time a sequential scan is performed
on disk over the range where tuples intersect the temporal query interval.

ts_te ts_te ts_te

ts_te ts_te ts_te

ts_te ts_tets_te ts_te

ts_te

ts_te

ts_te ts_te ts_te ts_te

l

l

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Y

0.0
0.0 X 1.0

1.0

Figure 1: SPIT’s approach for a 4× 4 regular grid.

Algorithm 1 st query() function.

I NPUT: 〈R, T 〉
OUTPUT: list of oid’s

1: pid list := p intersect(R)
2: for all pid in pid list do
3: oid list := oid list ∪
4: SELECToid
5: FROMpid
6: WHEREts BETWEENT .tmin− MAX TI AND T .tmax

7: AND te BETWEENT .tmin AND T .tmax+ MAX TI
8: AND x betweenR.xmin andR.xmax

9: AND y betweenR.ymin andR.ymax

10: end for
11: sortoid list and remove duplicates
12: return oid list

Algorithm 1 provides the pseudo-code for the functionst query() which processes queries using the SPIT
model. The algorithm assumes that the functionp intersect()exist. Its task is to simply return the identifiers
pid of the grid cells that intersect the query’s spatial component. Note that lines 4–9 assume the existence of a
SQL interface in order to retrieve matching tuples from partitions in the RDBMS. Thus, the filtering occurs in a
pipelined fashion – at each stage of query processing only those tuples satisfying the previous stage are further
examined.

As was done in [14], Algorithm 1 uses the fact that the the largest temporal interval is known (and denoted
asMAX TI). This is a reasonable and practical assumption, e.g., in fleet monitoring, it can be safe to assume that
vehicles do not remain stationary for more than 2 or 3 days, which serves to further restrict the temporal range that
needs to be inspected at query time, hence improving query processing time. In cases where a minority of objects
may occasionally exceed theMAX TI, the offending records can be split into two or more records that adhere to
the assumption.

3.1 SPIT’s Cost Model and Partitioning

We propose the following cost model to choose an optimal cellsize for use within SPIT assuming a fixed regular
grid. We assume the average query size, on both the temporal and spatial dimensions, are known –the robustness of

3



Symbol Meaning
N number of tuples in the database
DA number of disk I/Os to answer a query
GA average number of grid cell accessed
DAg number of data (disk) I/Os per grid cell accessed
IAg number of index (disk) I/Os per grid cell accessed
f fanout of a B-tree index
BS block size (the number of tuples that fit in one block on disk)
qs average size (percentage-wise) of the query in each spatialdimension with

respect to the modeled space
qt average size (percentage-wise) of the temporal aspect of the query with

respect to the number of observed timestamps
l length of a grid cell in each dimension
l∗ optimal length of a grid cell in each dimension
Ng total number of cells in the grid =(1/l)2

N∗

g optimal total number of cells in the grid =(1/l∗)2

N∗

p optimal number of partitions (grid cells) in one dimension

Table 1: Notation used.

SPIT with respect to such an assumption is discussed in the experimental Section 5.3. We also assume the spatial
domain to be the unit square and that the temporal domain is formed by the total set of recorded timestamps. Note
that this means the temporal domain is therefore bounded anda finite number of observations exist. Table 1 lists
the notation we will use throughout the reminder of the paper.

The total number of disk accesses to answer a query can be calculated by the average number of grid cells
(partitions) that need to be accessed and the number of I/O’sperformed inside each accessed grid cell – which is
the combination of reads to the data and reads to the temporalindex structure inside each grid cell, i.e.:DA =
GA × (DAg + IAg).

As per [15], the average number of cells that will be scanned is the total number of cells multiplied by the
average space the spatial component of a query covers extended byl: GA = Ng(l + qs)

2.

Assuming a uniform data distribution, there are on averageN/Ng tuples per grid cell which take upN/Ng

BS
blocks on disk to store. Because the index on〈ts, te〉 will point to the range of tuples in the query answer set, we
only need to scan those blocks that are within the temporal range of our queryqt, i.e.: DAg =

N/Ng

BS × qt.
We assume a B-tree on the combined key of〈ts, te〉 and (as in the worst case) that none of the index pages

are located in buffer, the number of index accesses can be described in terms of the fanoutf andN/Ng using:
IAg = logfN/Ng. If we simplify the index access cost toIAg = 3, which is typical for indexes withf ≈ 100

andN in the millions of tuples [16], we obtainDA = (l + qs)
2(N×qt

BS + 3

l2 ).
One immediate observation is that the index performance it more sensitive to the size of the spatial component

than to the temporal component. This is due to the fact that increasing the query’s area requires traversing more
partitions and the indexes within them. On the other hand, increasing the query’s temporal range requires only a
larger scan on the indexes, which can be done efficiently.

After some algebraic manipulation it is easy to see that the grid size l∗ that will minimize disk accesses is

given byl∗ = 3

√

6qs×BS
2N×qt

which can be shown to be a unique solution using the second derivative. Finally, the

optimal number of grid cells (N∗

g ) can be represented in terms ofl∗ using

N∗

g =
1

(l∗)2
= (

N × qt

3qs × BS
)2/3. (1)

Thus, we can setN∗

p = d
√

N∗

g e in order to obtain aregular partitioning of the data space that minimizes the
number of disk access per query given an average query size.

It should be noted that partitioning the data space using thecriteria just presented is optimal given the as-
sumption of a uniform data distribution. While in real life scenarios data is seldom truly uniformly distributed if
one considers the whole modeled data space, it is often the case that for some regions of the data space such an

4



assumption can be made. For instance in a map, it is much more reasonable to assume that objects are uniformly
distributed inside the boundaries of a city than that they are collectively uniformly distributed over the whole map.
In what follows we use this reasoning and the cost model abovein order to provide a partitioning heuristic for an
arbitrary data distribution.

The idea is to recursively divide the space into four subspaces, as in a Quad-tree [17], until all obtained sub-
spaces satisfy a uniform distribution criteria. The obtained cells are then partitioned using the criteria yielded by
the cost model. The uniformity of the data distribution can be checked using Pearson’s Chi-Square test [18]. The
test partitions the data intoK equally sized cells (categories) and computes the sum (S2) of squared differences
between the actual number of objects inside each cell and theexpected number of objects under the uniformity as-
sumption (i.e.,N/K, whereN is the total number of objects). If the value ofS2 is smaller thanχ2

K−1
(α) then the

uniformity assumption is accepted, otherwise it is rejected. Algorithm 2 states this procedure using pseudo-code.

Algorithm 2 Partition() recursive algorithm.
I NPUT: An MBR containing data points
OUTPUT: A set of MBRs (each corresponding to a grid cell) and respective partitionings

1: Assume a uniform distribution of the data points and performPearson’s test on MBR (using the grid granu-
larity suggested by the cost model)

2: if Pearson’s test is successful, i.e., the data distribution within the MBR is considered uniform,then
3: Partition the MBR, in a regular manner, as suggested by the cost model
4: Store the resulting MBRs coordinates into tablePartitions
5: else
6: Partition the MBR, splitting each dimension in half, obtaining MBRi, i = 1, 2, 3, 4
7: for i=1 to 4do
8: Partition(MBRi)
9: end for

10: end if

It should be clear that if the data is truly uniformly distributed, the heuristic presented above yields an optimal
grid partitioning (as per the cost model assumptions). Indeed, in such a case the uniformity test would be imme-
diately successful and the algorithm would not recurse at all, yielding exactly what the cost model would have
suggested in the first place.

It may appear that in the worst case the partitioning above can result in a very large of partitions with very few
objects in each of them. This obviously is not a good idea since there is an overhead cost to access a partition,
and there is a point where access less data in more partitionsis more expensive than accessing more data within
less partitions. Fortunately, the heuristic partitioningabove identifies such situation and stops the partitioning
accordingly. We discuss this in the following.

Recall that, during the partitioning,q2
s is the query size with respect to the current MBR, andN is the number

of objects inside the current MBR. Initially the current MBRis the whole unit square, but as the partitioning goes,
i.e., the MBRs are subdivided and the current MBRs become smaller, as a consequence,qs becomes relatively
larger. On the other hand, the numberN of objects per MBR becomes likely smaller as the MBRs are subdivided.

Let us consider the case the when the query size becomes equalto the current MBR, i.e.,qs = 1. From
Equation 1 one can see that ifqs = 1 andBS andqt are constants, thenN < 3BS

qt
yieldsN∗

g = 1, i.e., no further
partioning is needed. This agrees with the intuition that asthe partitioning progresses, it eventually leads to the
situation where accessing less data in more partitions becomes more likely and is more expensive than accessing
more data within a single partition, therefore triggering the partitioning process to stop automatically.

Although only optimal for the case of uniformly distributeddata, the resulting overall performance by SPIT
is typically very good. Indeed, as we shall see in the experimental section it is never worse than the best ad-hoc
partitioning, i.e., the best partitioning one could obtainby trial-and-error. More importantly, however, SPIT is able
to find very good partitions of the data space autonomously, not relying on any information but the dataset itself
and an expected query size. Naturally, the better the user can estimate the query size (which should happen with
time) the better the partitioning and therefore the query performance.

5



create table ST_SPIT (
oid integer,
x number,
y number,
t_s number,
t_e number,
pid integer

) partition by range (pid) (
partition p01 values less than (1),
partition p02 values less than (2),
partition p03 values less than (3),
partition p04 values less than (4)

)

1: SELECT UNIQUE oid
2: FROM ST_SPIT
3: WHERE pid IN (0,1,4,5)
4: AND t_s BETWEEN (0.5-MAX_TI)

AND 0.6
5: AND t_e BETWEEN 0.5 AND (0.6

+MAX_TI)
6: AND x BETWEEN 0.1 AND 0.3
7: AND y BETWEEN 0.2 AND 0.4

(a) (b)

Figure 2: Creating and querying theST SPIT table for a 2×2 grid.

4 SPIT’s Implementation

The SPIT grid is implemented using Oracle’s built-in table partitioning support –each grid cell determined by our
heuristic algorithmPartition() corresponds to a single Oracle table partition. An unique partition id (pid) along
with its MBR is stored in a table calledPartitions. TheST SPIT table (whose DDL for an example 2×2
grid is provided in Figure 2(a)) stores records along with the additionalpid attribute. When inserting an object
into tableST SPIT its coordinates are checked against thePartitions table to determine in which partition it
should be inserted. Oracle range partitioning is used to automatically map the spatial grid to unique table partitions
on disk. Note that Oracle’s partitioning facility is not a requirement for SPIT to work. An RDBMS which does
not provide such facility can be used by simply creating a physical table for each grid cell.

Given the sample query “find the objects that were within the area enclosed by the MBR determined by vertices
(0.1,0.3) and (0.2,0.4) during the time interval [0.5,0.6]”, Figure 2(b) provides the SQL query that would be issued
against theST SPIT table created in Figure 2(a).

Line 3 of the sample query corresponds to thespatial filteringstage of SPIT’s query processing. The clause
forces Oracle to scan only table partitions corresponding to cells (0,1,4,5) –The list is computed by performing
a lookup on tablePartitions. Only 4 out of 16 partitions need be scanned, which, even for such a trivial
example, is a significant reduction in I/O cost.

Lines 4–5 correspond to thetemporal filteringstage of SPIT’s query processing. Within each partition, the
combined B-tree index on〈ts, te〉 will be taken advantage of as Oracle will perform a local index range scan of
the data. The clustering of data according to〈ts, te〉 speeds up this phase of query processing.

Lines 6–7 correspond to thespatial refinementstage of SPIT’s query processing. All tuples whose spatial
coordinates are not inside of the spatial query range are removed from the query result. Finally, line 1 performs
theduplicate eliminationstage of SPIT’s query processing.

We defined a PL/SQL function that generates dynamic SQL queries of the form provided in Figure 2(b) given
a query spatial and temporal range. We choose to implement the algorithms using PL/SQL because of the ease
of integration between PL/SQL and SQL queries in ORACLE, however, any language capable of interacting with
the RDBMS, e.g., using embedded SQL, could be used.

5 Experimental Results

In order to test our proposal we used both synthetic and real datasets. One of the synthetic data set, denoted as
UNIFORM, has the objects uniformly distributed in the spaceand moving freely throughout the whole space. This
satisfies the assumptions for SPIT’s cost model (v. Section 3.1). The second synthetic dataset was generated using
the GSTD tool2 [19] and shows a scenario where the objects have an initial gaussian distribution in the center of the
data space and then migrate towards the north-east corner ofthe same. A sample instance of this dataset, denoted
as GSTD, is illustrated in Figure 3(a), where all observation positions for a sample of 100 objects are shown. This

2http://db.cs.ualberta.ca:8080/gstd/

6



Parameter Values (default inbold)
Average Query Spatial Range (qs) [% of data space] 0.25%,1% and 4%
Average Query Temporal Length (qt) [timestamps] 5, 10and 20
Dataset size (N ) [millions of observations] 1, 2.5and 5

Table 2: Parameter and values investigated.

dataset is more realistic that the previous one, e.g., it could depict a scenario where animals are migrating from
one area to another in a park. It also will serve to show how well the heuristic partitioning approach we proposed
adapts for a truly non-uniform data distribution. The final dataset, denoted as INFATI, contains real GPS positions
of 20 cars roaming across the municipality of Aalborg, Denmark [20]. Each car’s positions have been sampled
every second, except when they were parked, for about 6 continuous weeks over a period of 3 months. The dataset
contains approximately 1.9 million observations and is illustrated in Figure 3(b) where all observations are plotted
–one can clearly see the notion of actual roads in this case.

(a) GSTD dataset (b) INFATI dataset

Figure 3: Data distribution for the GSTD and INFATI datasets.

For each of the synthetic datasets we have three different cardinalities, namely 1, 2.5 and 5 million observation
data points. Given how the data is generated it means that each dataset has about 10, 25 and 50 thousand objects of
interest, respectively. We assume a unit two-dimensional dataspace and for query sizes we have used 0.25%, 1%
and 4% of the dataspace. Note that a query of 4% of the unit space has selectivity of about 20% in each dimension,
i.e., it is not a small query. We experimented using the temporal query component equal to 5%, 10% and 20% of all
observed timestamps. Table 2 summarizes the parameters used for the experiments. Unless otherwise mentioned
whenever one parameter is being investigated, e.g., the robustness with respect to dataset size, all other parameters
are kept constant at their default values.

To investigate the average cost per query we issued 100 random queries following the same distribution of
the dataset, and measured the average number of disk I/Os (physical accesses) perquery using the system’s own
internal tools. All tests were carried out on a desktop usingOracle 10g Enterprise for Windows Edition. Before
executing each query the DBMS’s buffers were forced clear toavoid any influence on query performance.

We compare SPIT’s performance to two other approaches that could be implemented on top of Oracle. (Recall
that our main goal is to have an indexing scheme that can be deployed upon off-the-shelf RDBMS.) The first
method uses an R-tree for the spatial component along with a B-tree for the temporal component. We adapt the
LRS spatio-temporal indexing approach suggested by Oracle[1] to our data model by creating a 2-dimensional
R-tree over point objects consisting of the〈x, y〉 of records and a B-tree index onts and onte. In what follows we
refer to this scheme as “R-tree+B-tree” The second approachis a simpleLinear Scanwhich should provide the
lower bound for expected performance.

We also used a scheme based on Z-values for of each tuple basedon its 〈x, y〉, and another B-tree for the
temporal component. For each dataset, we calculated Z-values using the same number of cells in each dimension
(N∗

p ) that SPIT employs. Although feasible and actually simple to implement, our preliminary experiments have
shown that this technique does not yield competitive performance and therefore we did not consider it further.
Details on how to implement both the R-tree+B-tree and the Z-order based schemes can be found in [21].

7



5.1 Evaluating SPIT’s Partitioning Heuristic

We initially confirm the reliability of our cost model by comparing the analytical optimal number of grid cells to
the number of disk accesses reported by Oracle when using theUniform data distribution (for which the model
gives an optimal partitioning). In this case the only alternative for comparing performance is an ad-hoc partitioning
where the user chooses a grid size manually.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 40 20 13 10 5 1

D
is

k 
A

cc
es

se
s

Number of grid cells per dimension

(a) Uniform distribution

SPIT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 40 20 10 5 1

D
is

k 
A

cc
es

se
s

Number of grid cells per dimension

(b) GSTD

Ad-hoc
SPIT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 40 20 10 5 1

D
is

k 
A

cc
es

se
s

Number of grid cells per dimension

(c) INFATI

Ad-hoc
SPIT

Figure 4: Comparing I/O performance yielded by SPIT’s partitioning against the use of ad-hoc regular grids.

When using all experimental default values and a block size of 8192 bytes our cost model determines a 13×13
grid, which indeed is the best option when compared to several other choices for a regular partitioning of the data
space as shown in Figure 4(a).

It is interesting to note that as the number of partitions increases beyond the optimum, there is an increasing
overhead due to the cost of accessing more partitions. Even though not shown here, this is even more clear for
larger query sizes, which cover a larger number of partitions. When the number of partitions is smaller than the
optimum then the overhead is due to reading more data per partition than it would be necessary in the optimal
case.

As discussed earlier, for non-uniform distributions SPIT uses the cost model to obtain a non-regular partition
of the dataspace. Again we compare to the ad-hoc alternativeof having the user trying several different regular
grids. As can be seen in Figures 4(b) and (c), for both non-uniform distributions the grid partition determined by
SPIT provides performance at least as good to the best ad-hocpartitioning. (Since the resulting grid is non-uniform
it does not make sense to plot performance as a function of thenumber of grid cells as in the case of Uniform data
distribution, hence the flat line for the SPIT performance.)

Again, the additional cost of underpartitioning is clear, but unlike in the case for Uniform data, overpartitioning
seems to be not as prejudicial. In fact, it is clear that the partitioning obtained via SPIT is not optimal (though
it was not meant to be in the first place), as the finer partitioning yields performance slightly superior to SPIT’s.
Nevertheless, giving the trend in the figures it reasonable to expect that over partitioning would eventually lead to
too much overhead and deteriorate performance as well.

8



 0

 2000

 4000

 6000

 8000

 10000

410.25

I/O
s

Query size [% of space]

(a) UNIFORM

SPIT
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

410.25

I/O
s

Query size [% of space]

(b) GSTD

SPIT
R-tree+B-tree

Linear Scan

 0

 5000

 10000

 15000

 20000

 25000

 30000

410.25

I/O
s

Query size [% of space]

(c) INFATI

SPIT
R-tree+B-tree

Linear Scan

Figure 5: Comparing I/O performance as a function of the sizeof the spatial component of the query.

 0

 2000

 4000

 6000

 8000

 10000

 20 10 5

I/O
s

Query size [timestamps]

(a) UNIFORM

SPIT
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

 20 10 5

I/O
s

Query size [timestamps]

(b) GSTD

SPIT
R-tree+B-tree

Linear Scan

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 10 5

I/O
s

Query size [timestamps]

(c) INFATI

SPIT
R-tree+B-tree

Linear Scan

Figure 6: Comparing I/O performance as a function of the length of the temporal component of the query.

9



5.2 Query Performance Evaluation

Next we compare the performance of SPIT against the R-tree+B-tree approach and a linear scan of the data, i.e.,
no index support. All approaches make use of the assumption thatMAX TI is known at query time.

Figure 5 shows query performance as a function of the size of the spatial component of the query, while
Figure 6 shows the performance when varying the length of thetemporal compoment. As expected, in both cases
the performance of the linear scan is constant, as it dependsonly on the cardinality of the dataset. In all figures it
is easy to see that the performance of the R-tree+B-tree approaches degrades rather quickly, unlike for the other
approaches. In the case of the UNIFORM dataset is the only onewhere the R-tree+B-tree remains competitive
with the linear scan for up to medium sized queries. For GSTD data the R-tree+B-tree is not competitve at all. This
happens because for the former the density of the data in the occupied portion of the space is higher, causing the
undelying R-tree to have more overlaps and, consequently require more tree traversals. The case for the INFATI
dataset is even more extreme. In this case the linear scan performs relatively much better and is only about 2.65
times slower than SPIT for larger queries. This in contrast for the UNIFORM and GSTD dataset where, for
the same size of queries, the linear scan was up to 104 and 13, respectively, times slower. This loss of relative
advantage for SPIT seems to be related to the scan on the B-tree leaves. Recall that we make use of theMAX TI
information. If this value is large a large portion of the leaves in the B-tree would need to be scanned, rendering
the B-tree itself of not much use, i.e., degenerating to a linear scan of the dataset inside the investigated partitions.
In our future work we plan to investigate how to split larger time intervals into smaller one at the expense of
increasing the number of indexed objects in order to furtherimprove SPIT’s relative performance.

SPIT consistently provides the best performance, being up to 100 faster than the other approaches. More
importantly however, it is very robust with the increase of the query size for all distributions. This suggests that
the grid partitioning heuristic is able to cope well with variations in this parameter.

 0

 2000

 4000

 6000

 8000

 10000

52.51

I/O
s

Number of tuples [millions]

(a) UNIFORM

SPIT
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

52.51

I/O
s

Number of tuples [millions]

(b) GSTD

SPIT
R-tree+B-tree

Linear Scan

Figure 7: Comparing I/O performance as a function of the dataset cardinality.

SPIT is also very robust with respect to the increase in the dataset size as can be seen in Figure 7. (Note
that the INFATI data set was not used here as the dataset cardinality is fixed and an intrinsic part of the dataset
features.) The linear scan, as one would expect, does not scale well with the size of the dataset, and again the
R-tree+-B-tree approach is also a poor choice. SPIT’s performance is up at least two orders of magnitude faster
than the other approaches, and more importantly, quite stable with respect to the dataset size. This is due to very
effective filtering of heavily heavily populated partitions that do not contribute to the query’s answer, leading to
I/O efficient query processing.

5.3 Robustness

As we detailed earlier the cost model depends on an assumed query size, both on the temporal and in the spatial
component. Next we discuss how the performance is affected when the user estimates one query size but the actual
posed queries have a different size. Ideally, one would wantthe performance to be robust, i.e., to not degrade much
more with reasonable variances between the assumed and actual query sizes. In all forthcoming tables the values

10



S = 0.05, T = 0.1 S = 0.1, T = 0.1 S = 0.2, T = 0.1
S = 0.05, T = 0.1 29.32 34.77 43.08
S = 0.1, T = 0.1 60.37 60.27 73.65
S = 0.2, T = 0.1 169.42 147.94 156.29

(a) UNIFORM dataset

S = 0.05, T = 0.1 S = 0.1, T = 0.1 S = 0.2, T = 0.1
S = 0.05, T = 0.1 244.98 288.32 303.98
S = 0.1, T = 0.1 445.69 486.56 505.63
S = 0.2, T = 0.1 1062.74 1053.73 1026.65

(b) GSTD dataset

S = 0.05, T = 0.1 S = 0.1, T = 0.1 S = 0.2, T = 0.1
S = 0.05, T = 0.1 1624.96 1647.83 1716.12
S = 0.1, T = 0.1 2216.70 2228.41 2364.74
S = 0.2, T = 0.1 2780.47 2782.19 28.24.00

(c) INFATI dataset

Table 3: I/O robustness of SPIT for all three datasets with respect to spatial query size (temporal query size is
fixed).

in the first row represent the query sizes assumed at index contruction time, while the values on the first column
are the sizes of the issued queries.

In Tables 3(a), (b) and (c) we can see the performance obtained when the spatial component of the query
varies, and the temporal range is fixed for all three datasets. Tables 4(a), (b) and (c), on the other hand, show the
performance when the temporal range varies and the spatial query remains fixed.

It is interesting to note that the smallest number does not always appear in the diagonal of the tables as one
would have liked. The main reason for this is that even in the case of the UNIFORM dataset, the data cannot be
said to fit perfectly to the the cost model assumptions, thus some variation is not surprising. Another reason, that
applies to the GSTD and INFATI datasets is that the data partitioning follows an heuristic and is therefore expected
to be sub-optimal. Nevertheless, the most important property, that is having performance not varying too much if
one builds the dataset assuming a wrong, within reasonable limits, average query is observed throughout the table.

Overall, these results serve to show that SPIT is indeed a robust approach with respect to the assumed query
size. That is to say, that even if the user estimated query size, for building the indices, is off by a factor of two or
four in either the spatial or temporal dimension, SPIT is still able to deliver good performance.

5.4 Index Creation

Our final remarks on the experiments deal with time required to create and index the database. In this regard, the
Linear Scan is obviously the most efficient since there is no overhead associated to it. This comes at the expense of
inefficient query performance as detailed above. The times reported were obtained on a PC with an AMD Athlon
XP 3200+ running at 2.19GHz and with 1.00GB of RAM, and using the GSTD dataset with 2.5 million objects.

There are two main tasks that need be performed within SPIT. First, the partitioning must be obtained using
the heuristic algorithm presented in Section refmodel. After that the objects need to be inserted in the correct
partitions and, finally, the local B-trees (one per partition are created). SPIT required about 865 sec to build the
partitions and inserting the data objects onto those, with an additional 33 sec needed to created the local B-trees,
for a total of 898 sec. The R-tree+B-tree approach, on the other hand needed only 200 sec to insert the data on
the (single) table but needed 784 sec to build the the indices, for a total of 984 sec. It should be noted that both
approaches made use of SQL*Loader facility available at typical Oracle installations.

Even though SPIT is overall about 10% faster we could observethat the partitions look-up pose most of the
overhead at data insertion time. We did considered the idea of building an index to speed up the partition lookup,

11



S = 0.1, T = 0.05 S = 0.1, T = 0.1 S = 0.1, T = 0.2
S = 0.1, T = 0.05 38.16 42.29 42.09
S = 0.1, T = 0.1 62.91 60.27 60.86
S = 0.1, T = 0.2 113.58 101.26 87.42

(a) UNIFORM dataset

S = 0.1, T = 0.05 S = 0.1, T = 0.1 S = 0.1, T = 0.2
S = 0.1, T = 0.05 328.80 302.27 298.34
S = 0.1, T = 0.1 518.99 486.56 446.05
S = 0.1, T = 0.2 816.80 770.39 675.40

(b) GSTD dataset

S = 0.1, T = 0.05 S = 0.1, T = 0.1 S = 0.1, T = 0.2
S = 0.1, T = 0.05 1838.15 1843.23 1955.60
S = 0.1, T = 0.1 2364.74 2228.41 2215.77
S = 0.1, T = 0.2 3159.20 2974.37 2949.53

(c) INFATI dataset

Table 4: I/O robustness of SPIT for all three datasets with respect to temporal query size (spatial query size is
fixed).

but the number of partitions was fairly low (close to 100) andit would not benefit from an index, as compared to
a simple linear scan of the partitions table.

Recall that SPIT was designed to handle historical spatio-temporal data, as such handling updates should not
be a concern. SPIT is a feasible alternative for a scenario where data is collected and at one point (later) in time
is to be queried. Even for large datasets index creation should be such that one can start querying data not much
longer after it was collected.

6 Conclusions and Future Work

The Space-Partitioning with Indexes on Time (SPIT) approach leverages existing RDBMS technology by provid-
ing support for “out-of-the-box” RDBMS based management ofhistorical spatio-temporal point data. SPIT is
based on a cost model aiming at optimizing query cost (I/O). For the case of a uniform data distribution the cost
model provides an optimal partitioning of the dataset. For arbitrary data distributions, the cost model is used to
guide a heuristic partitioning which leads to very good query performance. SPIT has been shown to outperform
other alternatives by a large margin for spatio-temporal data management, also to be robust with respect to the
query size assumed at index construction time. While the useof spatial partitioning to index the spatial compo-
nent of the data is a well known method, applying this strategy in the spatio-temporal domain while providing
automatic and tightly integrated RDBMS support has not beendone before.

We are considering ways in which SPIT’s partitioning could be periodically re-adjusted as the database size
increases. Even though some preliminary experimental results suggest that SPIT is resilient to modest increases
in database size, rebuilding the index is bound to be necessary after some point in time. It would be useful to
develop a technique to automatically determine such point(s) in the database lifetime. We also plan to investigate
whether a self-adaptation scheme, where the RDBMS would re-configure partitions by itself without having to
rebuild the whole index, can be developed. This would help make SPIT even more scalable and adaptable for very
large databases.

Finally, we are currently investigating how to extend the proposed SPIT approach in order to handle trajec-
tories, obtained, for instance, by interpolating two subsequent observations. A query of interest in such a case
would be find trajectories that intersect a given spatial range within a determined time window, where possibly no
observed data point actually falls within the queried range/time.

12



Acknowledgments

Research partially supported by CFI, iCORE Alberta, NSERC Canada, and Profilium, Inc.

References

[1] Kothuri, R., Ravada, S.: Spatio-Temporal Indexing in Oracle: Issues and Challenges. IEEE TCDE Bulletin
25 (2002) 56–60

[2] Mokbel, M., Ghanem, T., Aref, W.: Spatio-Temporal Access Methods. IEEE TCDE Bulletin26 (2003)
40–49

[3] Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approaches in Query Processing for Moving Object Trajecto-
ries. In: Proc. of VLDB. (2000) 395–406

[4] Chakka, V., et al.: Indexing Large Trajectory Data Sets With SETI . In: Online Proc. of CIDR. (2003)
[http://www-db.cs.wisc.edu/cidr/program/p15.pdf].

[5] Jensen, C., Lin, D., Ooi, B.C.: Query and Update EfficientB+-Tree Based Indexing of Moving Objects. In:
Proc. of VLDB. (2004) 768–779

[6] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive
Queries. In: Proc. of VLDB. (2003) 790–801

[7] Saltenis, S., et al.: Indexing the Positions of Continuously Moving Objects. In: Proc. of ACM SIGMOD.
(2000) 331–342

[8] Abdelguerfi, M., et al.: The 2-3TR-tree, a Trajectory-Oriented Index Structure for Fully Evolving Valid-Time
Spatio-Temporal Datasets. In: Proc. of ACM GIS. (2002) 29–34

[9] Nascimento, M., Silva, J.: Towards historical R-trees.In: Proc. ACM SAC. (1998) 235–240

[10] Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-Temporal Indexing for Large Multimedia Applications.
In: Proc. of IEEE ICMCS. (1996) 441–448

[11] Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. of ACM SIGMOD. (1984)
47–57

[12] Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries.
In: Proc. of VLDB. (2001) 431–440

[13] Kriegel, H.P., Pötke, M., Seidl, T.: Managing Intervals Efficiently in Object-Relational Databases. In: Proc.
of VLDB. (2000) 407–418

[14] Nascimento, M., Dunham, M.: Indexing valid time databases via B+ -trees – the MAP21 approach. IEEE
TKDE 11 (1999) 1–19

[15] Theodoridis, Y., Sellis, T.: A Model for the Predictionof R-tree Performance. In: Proc. of PODS. (1996)
161–171

[16] Lewis, P., A.B., Kifer, M.: Database and Transaction Processing. Addison-Wesley (2002)

[17] Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Comput. Surveys16 (1984)
187–260

[18] Ross, S.: Introductory Statistics. McGraw-Hill (1996)

[19] Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the Generation of Spatiotemporal Datasets. In: Proc.
of SSD. (1999) 147–164

13



[20] Jensen, C., et al.: The INFATI data. Technical Report TR-79, TimeCenter (2004)
[http://arxiv.org/abs/cs.DB/0410001].

[21] Mallett, D.: Relational database support for spatio-temporal data. Technical Report TR04-21 (M.Sc. Thesis),
Dept. of Computing Science, Univ. of Alberta (2004) [http://www.cs.ualberta.ca/TechReports/2004/TR04-
21/TR04-21.pdf].

14


