RDBMS Support for Efficient Indexing of
Historical Spatio-Temporal Point Data

Daniel Mallett, Mario A. Nascimento, Viorica Botea and Jp&ander

November 1, 2005

TR-84

A TIMECENTER Technical Report

Title RDBMS Support for Efficient Indexing of Historical Spati@mporal Point Data

Copyright(©) 2005 Daniel Mallett, Mario A. Nascimento, Viorica Botea aluerg
Sander. All rights reserved.

Author(s) Daniel Mallett, Mario A. Nascimento, Viorica Botea and Jp&ander

Publication History November 2005. A TME CENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark 5
Christian S. Jensen (codirector), Simo&adtenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, Saba@utrim, Bongki Moon, Sudha Ram, Stanley Yao

Individual participants

Yun Ae Ahn, Chungbuk National University, Korea; Michael Bbhlen, Free University of Bolzano, Italy; Cur-
tis E. Dyreson, Washington State University, USA; Dengf&@ap, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Heidi Gregersen, Aas School of Business, Denmark; Vijay Khatri, Indi-
ana University, USA; Nick Kline, Microsoft, USA; Gerhard Khmayer, University of Bern, Switzerland; Carme
Martin, Technical University of Catalonia, Spain; ThonMgrach, University of Bern, Switzerland; Kwang W.
Nam, Chungbuk National University, Korea; Mario A. Nascitteg University of Alberta, Canada; John F. Rod-
dick, Flinders University, Australia; Keun H. Ryu, ChundghNational University, Korea; Dennis Shasha, New
York University, USA; Michael D. Soo, amazon.com, USA; Aads Steiner, TimeConsult, Switzerland; Paolo
Terenziani, University of Torino, Italy; Vassilis Tsotrdsniversity of California, Riverside, USA; Fusheng Wang,
Siemens, USA; Jef Wijsen, University of Mons-Hainaut, Bedy; and Carlo Zaniolo, University of California,
Los Angeles, USA

For additional information, see ThaMe CENTER Homepage:
URL: <ht t p: // ww. cs. aau. dk/ Ti neCent er >

Any software made available viamE CENTERIs provided “as is” and without any express or implied wartas,
including, without limitation, the implied warranty of neérantability and fithess for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” a&téels in the so-calleRune
alphabet used one millennium ago by the Vikings, as well athbir precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which havelanghapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be foundaatrig tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respedyive

Abstract

Despite pressing need, current RDBMS support for spatipteat data is limited and inadequate, and most
existing spatiotemporal access methods cannot be reatiigrated into an RDBMS. This paper proposes SPIT,
an adaptive technique for spatiotemporal storage, indeximd query support that can be fully integrated within
any off-the-shelf RDBMS. We initially propose a cost modettassumes a uniform data distribution for deter-
mining an optimal partitioning of the data space in termsugrg processing time. We then use this model as a
basis for a heuristic method for partitioning the data speiteout making any assumption about the data distri-
bution. Using Oracle as our implementation platform witthbeal and synthetic datasets, we show that SPIT is
robust and significantly outperforms other RDBMS-basedboptfor managing historical spatiotemporal data.

1 Introduction

The need for spatiotemporal access methods (STAMs) irttjkaithin a relational database management sys-
tem (RDBMS) has become increasingly apparent. A prolific benof GPS, wireless computing, and mobile
phone devices are capable of accurately reporting theitiposand applications that can take advantage of this
information, e.g., traffic control, data mining, fleet mamihg, and location-aware services, are in high demand.
Managing large datasets of such data demands the convenieliability, and data storage capabilities that a tra-
ditional RDBMS affords. However, little work exists on how provide spatiotemporal data support, a STAM in
particular, inside a RDBMS, [1] being an exception. Our wiiltk this crucial need by proposing a spatiotemporal
access method which can be fully integrated within any RDBMB identify two chief alternatives for providing
RDBMS support for spatiotemporal data: loosely couplingal@ to the RDBMS, and tightly coupling a STAM
inside the RDBMS via a relational mapping. Our approactsfatider the latter, i.e., we design a STAM that
leverages existing RDBMS functionality. The chief advaetés that our method can be readily integrated into
any RDBMS.

There are two main types of spatiotemporal databases [etthat manage historical information and those
that manage current information for current/predictiveryupurposes. This paper focuses on the first category,
i.e., we assume that the database stores the completeyhodtoroving objects through time and must answer
gueries about any time in the history of objects. We assumterétords about object’'s movements are tracked
and sent (possibly via regular updates) to the RDBMS. Eacbrdehas the attribute®id, «, y, t5, t.), where
oid identifies an object(x, y) are spatial coordinates, artl, ¢.) indicate the interval during which an object
remained at positiofiz, y). A typical domain where such a model fits is mobile devicekirag, e.g., of GPS,
PDA, or wireless phone devices. Unlike the trajectory m¢8klour data model does not assume anything about
the movement of objects between records. The model refleetd-avorld applicatiohconstraint where assuming
an object follows a linear trajectory between data pointy tead to incorrect assumptions. For example, in
security/monitoring applications, a person could be rkisgly assumed to have entered a restricted area because
his/her movement was interpolated. Our model can be viewea step-wise interpolation instead of a linear
interpolation, i.e., objects are assumed to remain at thendic, y) position for the giverit,, t.) time interval.

In this work a a spatiotemporal range quéhtakes the forn@) = (R, 7) whereR is a spatial region an@
is a time range(@ returns the uniqueid’s of records wheréz, y) is insideR and(t,, t.) intersects with7. An
example of such a query would be “find all objects that werdhWest Edmonton Mall at some point between
noon and 1 p.m. yesterday”.

In this paper we propose an efficient spatiotemporal indgténhnique fully integrated within a RDBMS via
a relational mapping. Our approach is based on a partitipoirihe data space, which can be done at logical or
physical level at the underlying RDBMS. The general ideawfapproach is similar to SETI [4] in that we have
primary partitions the of two-dimensional space, and irtelent temporal index structures in each of the spatial
partitions.

The new contributions of this paper are the following: (1) ¥éwelop a cost model to analytically determine
the number of primary partitions to use. The model sugghstatimber of primary patrtitions so that the expected
number disk accesses is minimized, assuming a uniform dsttdbdtion and an average expected query size.
(2) Based on this cost model, we also propose a heuristicaddtr partitioning the data space for arbitrary
data distributions, which yields very good performanceractice. (3) We design a relational mapping of our

1Details of which cannot be disclosed due to confidentiakigsons.

proposed STAM, which can be used to easily deploy this STAMguany RDBMS. (4) We show in a compre-
hensive experimental comparison that our proposed teabrdcamatically outperforms other RDBMS-supported
spatiotemporal indexing alternatives.

This remainder of this paper is structured as follows, $ac reviews related work and also provides back-
ground on what options for RDBMS support of spatiotempoashexist. Section 3 details our proposed approach,
and the associated cost model. In Section 4 we describe hoappuoach can be implemented using a particular
RDBMS. In Section 5 we confirm the reliability of the model arainpare our approach to several other methods
for indexing spatiotemporal data inside a RDBMS. Sectionitctudes the paper.

2 Related Work

A thorough overview of work on STAMs for historical and curtépredictive spatiotemporal support can be found
in [2]. Predictive STAMs support queries that predict a nmgvobject’s location at a given time based on the
current velocity of the object. Historical STAMs supportegies that can be classified as coordinate-based (the
case we are interested in) or trajectory-based [3].

The current state-of-the-art for predictive STAMSs is tHetBee [5]. Built on top of a B -tree and using a space
filling curve underneath it, it allows, like in our case, thdéx to be used within an existing DBMS. Another recent
access structure of interest is the TPRee [6], which is an a version of the TPR-tree TPR-tree [ithwnproved
construction algorithms based on a performance model.

Many historical STAMs have been proposed [3, 8, 4, 9, 10] tagnity of which are based on the R-tree [11],
[4] being a notable exception. The 3-D R-Tree [10] treat®tes a third dimension and indexes spatiotemporal
data using a 3-dimensional R-tree. The Historical R-trae-fke) [9], an overlapping and multi-version structure,
adapts the R-tree for historical spatiotemporal data. TM3Rtree [12] improved upon these providing more
efficient support for interval queries. The Trajectory Blen@iree (TB R-tree) [3] proposes a trajectory-oriented
access method that can (under certain conditions) ansajectory-oriented queries faster than the R-tree. The
2-3TR-tree [8] suggests the use of two R-tree indexes, adiw@nsional point index representing current data,
and a three-dimensional historical index.

The work presented in [4] is the one closest to ours. The asiffropose a grid-based spatiotemporal indexing
technique which they call SETI. SETI partitions the spadiaiension into static, non-overlapping partitions, and
within each partition uses a “sparse” temporal index —whlehpaper describes as a 1-dimensional R-tree over
the temporal interval of all the object records stored inngle data page. An in-memory “front-line” structure
keeps track of the last position of each moving object. Haxgawnlike our proposal, no cost model or heuristic is
presented to guide the partitioning of the data space.

3 SPIT: Space Partitioning with Indexes on Time

SPIT partitions the data according to its spatial locatind then creates temporal indexes over each partition.
The data is partitioned into a fixed number of cells, eachamellesponding to a different partition in the RDBMS.
The key advantage of spatial partitioning is that of pamtitelimination at query time. Cells that do not intersect
the spatial component of the query window can be eliminatech fconsideration. For spatiotemporal data this
works extremely effectively because we can further appgnaptoral filter within all intersecting cells. The spatial
discrimination is achieved at next to no cost and the loqabigral index benefits from having to manage only
a (small) subset of the data. As in [4], query processinggeds according to four stages: (1) coaspatial
filtering based on the grid location of tuples, @mporal filteringusing the per grid temporal indexes, (3) fine
spatial refinemenbased the on actual spatial location of tuples, andi{)icate elimination

As shown in Figure 1, for the case of a regular grid, the callsld be numbered using a horizontal sweep
space-filling curve, giving each cell a unique identified (shown in the upper right corner of each cell in the
figure). The lengtli refers to the length of a grid cell in each spatial dimensfhocal temporal index orft, ¢..)
is created over the domain of tuples within each partiticr.tRat we use a combined B-tree index(on t.). We
considered the use of a 1-dimensional R-tree to index thpdemhdimension. However, we abandoned the idea
because preliminary experiments showed that a large def@erlap among the temporal intervals of objects
occurs. In such a situation the performance (and indexioretimes) of the 1-D R-tree approach is prohibitively
expensive. It is important to note that not only can the coradiB-tree ont,, t.) be readily supported in any

RDBMS, but the B-tree index also has a performance advawofaggng able to perform an index range scan. For
similar performance reasons we do not consider the use lofigees for RDBMS-support of temporal data, i.e.,
the temporal RI-tree [13]. Finally, assuming tuples aréesbby time, at query time a sequential scan is performed
on disk over the range where tuples intersect the tempogaldaterval.

1.0 12| 13 14 1

ts_te ts_te ts_te ts_te

ts_te ts_te ts_te ts_te

ts_te ts_te ts_te ts_te

ts_te ts_te ts_te ts_te

0.0
0.0 X 1.0

Figure 1: SPIT’s approach for ax4 4 regular grid.

Algorithm 1 st_query() function.
INPUT: (R,T)
OuTPUT: list of oid’s
1: pid-ist := p_intersect(R)
2: for all pid in pid_list do

3 oid_list ;= oid_list U

4: SELECToid

5: FROM pid

6: WHEREt; BETWEENT .t,,in— MAXTI AND 7 .t100
7 AND t, BETWEENT .t,in AND T 4,02+ MAXTI

8: AND z betweerR.z,,i, andR.z,,qz

9: AND y betweerR.y,in andR.ymax

10: end for

11: sortoid_list and remove duplicates
12: return oid_list

Algorithm 1 provides the pseudo-code for the functidnyuery() which processes queries using the SPIT
model. The algorithm assumes that the functimtersect()exist. Its task is to simply return the identifiers
pid of the grid cells that intersect the query’s spatial comman®lote that lines 4-9 assume the existence of a
SQL interface in order to retrieve matching tuples fromigiarts in the RDBMS. Thus, the filtering occurs in a
pipelined fashion — at each stage of query processing ooletituples satisfying the previous stage are further
examined.

As was done in [14], Algorithm 1 uses the fact that the thedatgemporal interval is known (and denoted
asMAXTI). This is a reasonable and practical assumption, e.g.,@hrf@nitoring, it can be safe to assume that
vehicles do not remain stationary for more than 2 or 3 daysiwéerves to further restrict the temporal range that
needs to be inspected at query time, hence improving quenepsing time. In cases where a minority of objects
may occasionally exceed tiAX_TI, the offending records can be split into two or more reconds adhere to
the assumption.

3.1 SPIT's Cost Model and Partitioning

We propose the following cost model to choose an optimalsizd for use within SPIT assuming a fixed regular
grid. We assume the average query size, on both the temparapatial dimensions, are known —the robustness of

Symbol Meaning

N number of tuples in the database

DA number of disk I/Os to answer a query

GA average number of grid cell accessed

DA, number of data (disk) 1/Os per grid cell accessed

IA, number of index (disk) I/0Os per grid cell accessed

f fanout of a B-tree index

BS block size (the number of tuples that fit in one block on disk)

qs average size (percentage-wise) of the query in each spatiahsion with
respect to the modeled space

q average size (percentage-wise) of the temporal aspect gfubry with
respect to the number of observed timestamps

l length of a grid cell in each dimension

* optimal length of a grid cell in each dimension

N, total number of cells in the grid €1 /1)?

Ny optimal total number of cells in the grid @ /1*)?

N, optimal number of partitions (grid cells) in one dimension

Table 1: Notation used.

SPIT with respect to such an assumption is discussed in fheriexental Section 5.3. We also assume the spatial
domain to be the unit square and that the temporal domaimrisefd by the total set of recorded timestamps. Note
that this means the temporal domain is therefore bounded dinite number of observations exist. Table 1 lists
the notation we will use throughout the reminder of the paper

The total number of disk accesses to answer a query can hdatalt by the average number of grid cells
(partitions) that need to be accessed and the number of pEdfermed inside each accessed grid cell — which is
the combination of reads to the data and reads to the temipoiet structure inside each grid cell, i.d2A =
GA x (DA, +IA,).

As per [15], the average number of cells that will be scansdtié total number of cells multiplied by the
average space the spatial component of a query covers extbydt GA = N, (I + ¢s)*.

Assuming a uniform data distribution, there are on aver¥g#/, tuples per grid cell which take u%—gg
blocks on disk to store. Because the index(tit.) will point to the range of tuples in the query answer set, we
only need to scan those blocks that are within the tempongleaf our queryy, i.e.: DA, = Négg X .

We assume a B-tree on the combined keyoft.) and (as in the worst case) that none of the index pages
are located in buffer, the number of index accesses can lzeiloled in terms of the fanout and N/N,, using:

IA, = logyN/N,. If we simplify the index access cost {01, = 3, which is typical for indexes witlf ~ 100
andX in the millions of tuples [16], we obtaiP A = (I + ¢5)% (222 + 2).

One immediate observation is that the index performanceitraensitive to the size of the spatial component
than to the temporal component. This is due to the fact traeasing the query’s area requires traversing more
partitions and the indexes within them. On the other harzemsing the query’s temporal range requires only a
larger scan on the indexes, which can be done efficiently.

After some algebraic manipulation it is easy to see that titk gize [* that will minimize disk accesses is
given byl* = ¢ % which can be shown to be a unique solution using the secordhtiee. Finally, the
qt

optimal number of grid cellsX;) can be represented in termslofusing

1 qut

N* = =
9 (1%)2 (3q3 x BS

)23, 1)

Thus, we can sedV; = (\/N_ﬂ in order to obtain aegular partitioning of the data space that minimizes the
number of disk access per query given an average query size.

It should be noted that partitioning the data space usingtieria just presented is optimal given the as-
sumption of a uniform data distribution. While in real lifeemarios data is seldom truly uniformly distributed if
one considers the whole modeled data space, it is often #eethat for some regions of the data space such an

assumption can be made. For instance in a map, it is much reasemable to assume that objects are uniformly
distributed inside the boundaries of a city than that theycatlectively uniformly distributed over the whole map.
In what follows we use this reasoning and the cost model alvoweder to provide a partitioning heuristic for an
arbitrary data distribution.

The idea is to recursively divide the space into four subspaas in a Quad-tree [17], until all obtained sub-
spaces satisfy a uniform distribution criteria. The obddiells are then partitioned using the criteria yielded by
the cost model. The uniformity of the data distribution cachecked using Pearson’s Chi-Square test [18]. The
test partitions the data int&’ equally sized cells (categories) and computes the stihdf squared differences
between the actual number of objects inside each cell anekipected number of objects under the uniformity as-
sumption (i.e. N/ K, whereN is the total number of objects). If the value$f is smaller thary% _, () then the
uniformity assumption is accepted, otherwise it is rejgécfdgorithm 2 states this procedure using pseudo-code.

Algorithm 2 Partition() recursive algorithm.
INPUT: An MBR containing data points
OuTrPuT: A set of MBRs (each corresponding to a grid cell) and respegartitionings
1: Assume a uniform distribution of the data points and perf@earson’s test on MBR (using the grid granu-
larity suggested by the cost model)
2: if Pearson’s test is successful, i.e., the data distributithimthe MBR is considered unifornthen
3: Partition the MBR, in a regular manner, as suggested by thencodel
4. Store the resulting MBRs coordinates into taBé ti t i ons
5: else
6
7
8

Partition the MBR, splitting each dimension in half, obiamiMBR;, i = 1,2, 3,4
for i=1to 4do

Partition(MBR;)
9: end for
10: end if

It should be clear that if the data is truly uniformly distrtbd, the heuristic presented above yields an optimal
grid partitioning (as per the cost model assumptions). édde such a case the uniformity test would be imme-
diately successful and the algorithm would not recurselayelding exactly what the cost model would have
suggested in the first place.

It may appear that in the worst case the partitioning abomeesult in a very large of partitions with very few
objects in each of them. This obviously is not a good ideaesthere is an overhead cost to access a partition,
and there is a point where access less data in more partiionsre expensive than accessing more data within
less partitions. Fortunately, the heuristic partitionadgpve identifies such situation and stops the partitioning
accordingly. We discuss this in the following.

Recall that, during the partitioning? is the query size with respect to the current MBR, aads the number
of objects inside the current MBR. Initially the current MBRthe whole unit square, but as the partitioning goes,
i.e., the MBRs are subdivided and the current MBRs becomédletnas a consequencg, becomes relatively
larger. On the other hand, the numiéiof objects per MBR becomes likely smaller as the MBRs are isidet].

Let us consider the case the when the query size becomestediha& current MBR, i.e.q, = 1. From
Equation 1 one can see thayif = 1 and BS andg; are constants, theN < 3;95 y|eIdsN* =1, i.e., no further
partioning is needed. This agrees with the intuition thathaspartitioning progresses, it eventually leads to the
situation where accessing less data in more partitionsrbesanore likely and is more expensive than accessing
more data within a single partition, therefore triggerihg partitioning process to stop automatically.

Although only optimal for the case of uniformly distributddta, the resulting overall performance by SPIT
is typically very good. Indeed, as we shall see in the expemial section it is never worse than the best ad-hoc
partitioning, i.e., the best partitioning one could obtayrtrial-and-error. More importantly, however, SPIT isabl
to find very good partitions of the data space autonomoushyrelying on any information but the dataset itself
and an expected query size. Naturally, the better the useestamate the query size (which should happen with
time) the better the partitioning and therefore the querjgpmance.

create table ST_SPIT (
oid i nteger,
X nunber, 1: SELECT UNIQUE oid
y nunber, 2: FROM ST_SP' T
t s number , 3: WHERE pid IN(0,1,4,5)
t_e nunber, 4. AND t _s BETWEEN (0.5- MAX_TI)
pi d i nt eger AND 0. 6
) partition by range (p|d) (5. AND t _e BETWEEN 0.5 AND(OG
partition p0l values |less than (1), +MAX_TI)
partition p02 values |ess than (2), 6: AND x BETVEEN 0.1 AND 0.3
partition p03 values |ess than (3), 7: AND y BETVEEN 0.2 AND 0.4
partition p04 values |ess than (4)
)
(@) (0)

Figure 2: Creating and querying tisd _SPI T table for a 2«2 grid.

4 SPIT's Implementation

The SPIT grid is implemented using Oracle’s built-in tabdetjiioning support —each grid cell determined by our
heuristic algorithnPartition() corresponds to a single Oracle table partition. An uniquétjman id (pi d) along
with its MBR is stored in a table calledarti ti ons. The ST_SPI T table (whose DDL for an examplex2
grid is provided in Figure 2(a)) stores records along with ddditionalpid attribute. When inserting an object
into tableST_SPI T its coordinates are checked againstPage t i t i ons table to determine in which partition it
should be inserted. Oracle range partitioning is used tonaatically map the spatial grid to unique table partitions
on disk. Note that Oracle’s partitioning facility is not agrérement for SPIT to work. An RDBMS which does
not provide such facility can be used by simply creating aspda} table for each grid cell.

Given the sample query “find the objects that were within tea@nclosed by the MBR determined by vertices
(0.1,0.3) and (0.2,0.4) during the time interval [0.5,0.B]gure 2(b) provides the SQL query that would be issued
against thesT_SPI T table created in Figure 2(a).

Line 3 of the sample query corresponds to $ipatial filteringstage of SPIT’s query processing. The clause
forces Oracle to scan only table partitions correspondincgtls (0,1,4,5) —The list is computed by performing
a lookup on tabléPar ti ti ons. Only 4 out of 16 partitions need be scanned, which, evenudoh s trivial
example, is a significant reduction in /O cost.

Lines 4-5 correspond to themporal filteringstage of SPIT’s query processing. Within each partitiomr, th
combined B-tree index oft;, t.) will be taken advantage of as Oracle will perform a local indenge scan of
the data. The clustering of data accordingttg ¢.) speeds up this phase of query processing.

Lines 67 correspond to thepatial refinemenstage of SPIT’s query processing. All tuples whose spatial
coordinates are not inside of the spatial query range arevedifrom the query result. Finally, line 1 performs
theduplicate eliminatiorstage of SPIT’s query processing.

We defined a PL/SQL function that generates dynamic SQL gsefithe form provided in Figure 2(b) given
a query spatial and temporal range. We choose to implemeralgforithms using PL/SQL because of the ease
of integration between PL/SQL and SQL queries in ORACLE, &y, any language capable of interacting with
the RDBMS, e.g., using embedded SQL, could be used.

5 Experimental Results

In order to test our proposal we used both synthetic and raakdts. One of the synthetic data set, denoted as
UNIFORM, has the objects uniformly distributed in the spand moving freely throughout the whole space. This
satisfies the assumptions for SPIT’'s cost model (v. Sectibn Bhe second synthetic dataset was generated using
the GSTD todd [19] and shows a scenario where the objects have an initiesigian distribution in the center of the
data space and then migrate towards the north-east corttex shme. A sample instance of this dataset, denoted
as GSTD, is illustrated in Figure 3(a), where all observagositions for a sample of 100 objects are shown. This

2http://db. cs. ual berta. ca: 8080/ gst d/

Parameter Values (default irbold)
Average Query Spatial Rangg) [% of data space] 0.25%,1% and 4%
Average Query Temporal Length,} [timestamps] 5,10and 20
Dataset sizel{) [millions of observations] 1,2.5and5

Table 2: Parameter and values investigated.

dataset is more realistic that the previous one, e.g., ildcdepict a scenario where animals are migrating from
one area to another in a park. It also will serve to show how tlelheuristic partitioning approach we proposed
adapts for a truly non-uniform data distribution. The finataket, denoted as INFATI, contains real GPS positions
of 20 cars roaming across the municipality of Aalborg, Derirjd0]. Each car’s positions have been sampled
every second, except when they were parked, for about 6reanis weeks over a period of 3 months. The dataset
contains approximately 1.9 million observations and issilitated in Figure 3(b) where all observations are plotted
—one can clearly see the notion of actual roads in this case.

(a) GSTD dataset (b) INFATI dataset

Figure 3: Data distribution for the GSTD and INFATI datasets

For each of the synthetic datasets we have three differetinzdities, namely 1, 2.5 and 5 million observation
data points. Given how the data is generated it means thatisaset has about 10, 25 and 50 thousand objects of
interest, respectively. We assume a unit two-dimensioatagpace and for query sizes we have used 0.25%, 1%
and 4% of the dataspace. Note that a query of 4% of the uniedmexselectivity of about 20% in each dimension,
i.e., itis not a small query. We experimented using the teampery component equal to 5%, 10% and 20% of all
observed timestamps. Table 2 summarizes the parameterfougbe experiments. Unless otherwise mentioned
whenever one parameter is being investigated, e.g., thestodss with respect to dataset size, all other parameters
are kept constant at their default values.

To investigate the average cost per query we issued 100 manderies following the same distribution of
the dataset, and measured the average number of disk I/@si¢phaccesses) perquery using the system’s own
internal tools. All tests were carried out on a desktop usingcle 10g Enterprise for Windows Edition. Before
executing each query the DBMS’s buffers were forced cleawvtid any influence on query performance.

We compare SPIT’s performance to two other approachesaiéd be implemented on top of Oracle. (Recall
that our main goal is to have an indexing scheme that can bieysbupon off-the-shelf RDBMS.) The first
method uses an R-tree for the spatial component along withraeBfor the temporal component. We adapt the
LRS spatio-temporal indexing approach suggested by Ofaftte our data model by creating a 2-dimensional
R-tree over point objects consisting of the y) of records and a B-tree index enand ont.. In what follows we
refer to this scheme as “R-tree+B-tree” The second apprizaatsimpleLinear Scarwhich should provide the
lower bound for expected performance.

We also used a scheme based on Z-values for of each tuple bases)(«x, y), and another B-tree for the
temporal component. For each dataset, we calculated £salsing the same number of cells in each dimension
(IV,) that SPIT employs. Although feasible and actually simplétplement, our preliminary experiments have
shown that this technique does not yield competitive pertorce and therefore we did not consider it further.
Details on how to implement both the R-tree+B-tree and tloeder based schemes can be found in [21].

5.1 Evaluating SPIT’s Partitioning Heuristic

We initially confirm the reliability of our cost model by corapng the analytical optimal number of grid cells to
the number of disk accesses reported by Oracle when usingrilierm data distribution (for which the model
gives an optimal partitioning). In this case the only alagive for comparing performance is an ad-hoc partitioning
where the user chooses a grid size manually.

(a) Uniform distribution

1600 [~ .
SPIT ——
1400 -]
0 1200
Q
@ 1000}
8
£ 800t
G 600
a
400
200
0 L L L L L L
1 5 10 13 20 40
Number of grid cells per dimension
(b) GSTD (c) INFATI
1800 - T T T T 3500 ¢
% Ad-hoc - Ad-hoc -
1600 SPIT —— 1 3000 . SPIT —— |
1400 1 .
3 $ 2500t
@ 1200F g T e
:(gj 1000F § 2000 |
~ 800 . ~ 1500
8 600t T] 8
e e) 1000 |
400 1
200 1 i 500
0 L L L L L 0 L L L L L
1 5 10 20 40 1 5 10 20 40
Number of grid cells per dimension Number of grid cells per dimension

Figure 4: Comparing 1/0O performance yielded by SPIT’s piaring against the use of ad-hoc regular grids.

When using all experimental default values and a block si84 82 bytes our cost model determines a13
grid, which indeed is the best option when compared to sew#rar choices for a regular partitioning of the data
space as shown in Figure 4(a).

It is interesting to note that as the number of partitionséases beyond the optimum, there is an increasing
overhead due to the cost of accessing more partitions. Eargh not shown here, this is even more clear for
larger query sizes, which cover a larger number of partitioWhen the number of partitions is smaller than the
optimum then the overhead is due to reading more data péfigathan it would be necessary in the optimal
case.

As discussed earlier, for non-uniform distributions SP$Esithe cost model to obtain a non-regular partition
of the dataspace. Again we compare to the ad-hoc alternattivaving the user trying several different regular
grids. As can be seen in Figures 4(b) and (c), for both nofermidistributions the grid partition determined by
SPIT provides performance at least as good to the best agantitoning. (Since the resulting grid is non-uniform
it does not make sense to plot performance as a function afitthier of grid cells as in the case of Uniform data
distribution, hence the flat line for the SPIT performance.)

Again, the additional cost of underpartitioning is cleaut bnlike in the case for Uniform data, overpartitioning
seems to be not as prejudicial. In fact, it is clear that th#itpmning obtained via SPIT is not optimal (though
it was not meant to be in the first place), as the finer pariiigyields performance slightly superior to SPIT’s.
Nevertheless, giving the trend in the figures it reasonabéxpect that over partitioning would eventually lead to
too much overhead and deteriorate performance as well.

10000
8000 1
6000 1
0
Q
4000 - SPIT ——
. R-tree+B-tree--—x----
* Linear Scan-=
2000 1
0 " —]
0.25 1 4
Query size [% of space]
(b) GSTD (c) INFATI
10000 — T T T T T
x 30000 | x 1
8000 1 25000 1
L] 20000} SPIT —— |
» 6000 0 R-tree+B-tree--—--x---
g 2 15000 b Linear Scan-= J
4000 SPIT —=— 1
R-tree+B-treg-——- 10000]
2000 Linear Scan-=
| 1 5000 1
/ - "
0 L L O L L L
0.25 1 4 0.25 1 4
Query size [% of space] Query size [% of space]
Figure 5: Comparing I/O performance as a function of the gfzée spatial component of the query.
(a) UNIFORM
10000 — T T
8000 | A
6000 | E
v
Q
4000 SPIT —— 1
- R-tree+B-tree———
Linear Scan-=
2000 1
0l
5 10 20
Query size [timestamps]
(b) GSTD (c) INFATI
10000 — T T T T T
L 30000 | L
8000 1 250001
L i 20000 SPIT ——
73 6000 %) R-tree+B-tree-——-x-—-
Q SPIT —=— Q 15000} Linear Scan-=
4000 - R-tree+B-tree-——— ,
Linear Scan-—= 10000
2000 1 5000 |
. . [
0 L L L O L L L

Figure 6: Comparing I/0 performance as a function of thetleinfthe temporal component of the query.

(a) UNIFORM

5

10
Query size [timestamps]

20

5

10
Query size [timestamps]

20

5.2 Query Performance Evaluation

Next we compare the performance of SPIT against the R-trde2dBapproach and a linear scan of the data, i.e.,
no index support. All approaches make use of the assumptadMiAX Tl is known at query time.

Figure 5 shows query performance as a function of the sizéefkpatial component of the query, while
Figure 6 shows the performance when varying the length ofgimporal compoment. As expected, in both cases
the performance of the linear scan is constant, as it depmmig®n the cardinality of the dataset. In all figures it
is easy to see that the performance of the R-tree+B-treeaphpes degrades rather quickly, unlike for the other
approaches. In the case of the UNIFORM dataset is the onlywieee the R-tree+B-tree remains competitive
with the linear scan for up to medium sized queries. For GSaia the R-tree+B-tree is not competitve at all. This
happens because for the former the density of the data incthgped portion of the space is higher, causing the
undelying R-tree to have more overlaps and, consequemnflyinemore tree traversals. The case for the INFATI
dataset is even more extreme. In this case the linear scéormpsrrelatively much better and is only about 2.65
times slower than SPIT for larger queries. This in contrasttfie UNIFORM and GSTD dataset where, for
the same size of queries, the linear scan was up to 104 an@dkatively, times slower. This loss of relative
advantage for SPIT seems to be related to the scan on the Betrees. Recall that we make use of h&X_TI
information. If this value is large a large portion of theJea in the B-tree would need to be scanned, rendering
the B-tree itself of not much use, i.e., degenerating toeslirscan of the dataset inside the investigated partitions.
In our future work we plan to investigate how to split largiend intervals into smaller one at the expense of
increasing the number of indexed objects in order to furitinprove SPIT’s relative performance.

SPIT consistently provides the best performance, beingoul00 faster than the other approaches. More
importantly however, it is very robust with the increaselwf tjuery size for all distributions. This suggests that
the grid partitioning heuristic is able to cope well with iadions in this parameter.

(a) UNIFORM (b) GSTD
10000 — ‘ 10000 -~ .
! X
8000 | /] 8000 ’
6000 | /] 6000}
7 i 7
Q A Q
4000 SPIT —+— | 4000 SPIT —+—
e R-tree+B-tree—— © R-tree+B-tree———
Linear Scan-= Linear Scan
2000 -~ 1 2000
0l o—
1 25 5 1 25 5
Number of tuples [millions] Number of tuples [millions]

Figure 7: Comparing I/O performance as a function of thestteardinality.

SPIT is also very robust with respect to the increase in thasea size as can be seen in Figure 7. (Note
that the INFATI data set was not used here as the datasenatitglis fixed and an intrinsic part of the dataset
features.) The linear scan, as one would expect, does nletwedl with the size of the dataset, and again the
R-tree+-B-tree approach is also a poor choice. SPIT's pmdace is up at least two orders of magnitude faster
than the other approaches, and more importantly, quitéesteith respect to the dataset size. This is due to very
effective filtering of heavily heavily populated partiti@that do not contribute to the query’s answer, leading to
I/O efficient query processing.

5.3 Robustness

As we detailed earlier the cost model depends on an assuneed sjge, both on the temporal and in the spatial
component. Next we discuss how the performance is affedteththe user estimates one query size but the actual
posed queries have a different size. Ideally, one would themperformance to be robust, i.e., to not degrade much
more with reasonable variances between the assumed ard @aéuy sizes. In all forthcoming tables the values

10

§=0.05T7T=01

§=0.1,T=0.1

§=02T=0.1

S5 =0.05,T7=0.1 29.32 34.77 43.08
S=01,T=0.1 60.37 60.27 73.65
5=027T=0.1 169.42 147.94 156.29

(a) UNIFORM dataset

§=0.05T7T=01

§S=0.1,T=0.1

§=02T=0.1

§$=0.05T1T=01 244.98 288.32 303.98
S=01,T=0.1 445.69 486.56 505.63
§$=02T=01 1062.74 1053.73 1026.65

(b) GSTD dataset

§$=0.05T1T=01

S=0.1,T=0.1

§5=027T=0.1

§=0.05T7T=01 1624.96 1647.83 1716.12
§$=01,T=01 2216.70 2228.41 2364.74
§=02T=0.1 2780.47 2782.19 28.24.00

(c) INFATI dataset

Table 3: 1/0 robustness of SPIT for all three datasets widipeet to spatial query size (temporal query size is
fixed).

in the first row represent the query sizes assumed at inddgrumtion time, while the values on the first column
are the sizes of the issued queries.

In Tables 3(a), (b) and (c) we can see the performance olotaithen the spatial component of the query
varies, and the temporal range is fixed for all three dataJetsies 4(a), (b) and (c), on the other hand, show the
performance when the temporal range varies and the spagay gemains fixed.

It is interesting to note that the smallest number does wetiyd appear in the diagonal of the tables as one
would have liked. The main reason for this is that even in #me®f the UNIFORM dataset, the data cannot be
said to fit perfectly to the the cost model assumptions, tbasesvariation is not surprising. Another reason, that
applies to the GSTD and INFATI datasets is that the datatjmanithg follows an heuristic and is therefore expected
to be sub-optimal. Nevertheless, the most important ptgpat is having performance not varying too much if
one builds the dataset assuming a wrong, within reasonatits,|average query is observed throughout the table.

Overall, these results serve to show that SPIT is indeed ast@pproach with respect to the assumed query
size. That is to say, that even if the user estimated queey %z building the indices, is off by a factor of two or
four in either the spatial or temporal dimension, SPIT i akile to deliver good performance.

5.4

Our final remarks on the experiments deal with time requioectéate and index the database. In this regard, the
Linear Scan is obviously the most efficient since there isvesteead associated to it. This comes at the expense of
inefficient query performance as detailed above. The tirepsnted were obtained on a PC with an AMD Athlon
XP 3200+ running at 2.19GHz and with 1.00GB of RAM, and uslmg&STD dataset with 2.5 million objects.

There are two main tasks that need be performed within SBdt, Ehe partitioning must be obtained using
the heuristic algorithm presented in Section refmodel.eAfhat the objects need to be inserted in the correct
partitions and, finally, the local B-trees (one per pamitéoe created). SPIT required about 865 sec to build the
partitions and inserting the data objects onto those, withdditional 33 sec needed to created the local B-trees,
for a total of 898 sec. The R-tree+B-tree approach, on therdtand needed only 200 sec to insert the data on
the (single) table but needed 784 sec to build the the ingdfoes total of 984 sec. It should be noted that both
approaches made use of SQL*Loader facility available d@tdiracle installations.

Even though SPIT is overall about 10% faster we could obstatethe partitions look-up pose most of the
overhead at data insertion time. We did considered the iflbailoling an index to speed up the partition lookup,

Index Creation

11

S=01,T=005|5=01,T=01]5=0.1,T=0.2
S=0.1,T7=0.05 38.16 42.29 42.09
S=01T=0.1 62.91 60.27 60.86
S=01,T=02 113.58 101.26 87.42

(a) UNIFORM dataset

S=01,T=005|5=01,T=01]5=0.1,T=0.2
S=0.1,T7=0.05 328.80 302.27 298.34
S=01T=0.1 518.99 486.56 446.05
S=0.1,T=02 816.80 770.39 675.40

(b) GSTD dataset

S$=01,T=005|5=01,T=01] 5=0.1,T=0.2
S=0.1,T=0.05 1838.15 1843.23 1955.60
S=01,T=0.1 2364.74 2228.41 2215.77
S=0.1,T=02 3159.20 2974.37 2949.53

(c) INFATI dataset

Table 4: 1/0 robustness of SPIT for all three datasets widipeet to temporal query size (spatial query size is
fixed).

but the number of partitions was fairly low (close to 100) @nsould not benefit from an index, as compared to
a simple linear scan of the partitions table.

Recall that SPIT was designed to handle historical spatigsbral data, as such handling updates should not
be a concern. SPIT is a feasible alternative for a scenareramtiata is collected and at one point (later) in time
is to be queried. Even for large datasets index creationldhmmusuch that one can start querying data not much
longer after it was collected.

6 Conclusions and Future Work

The Space-Partitioning with Indexes on Time (SPIT) appndecerages existing RDBMS technology by provid-
ing support for “out-of-the-box” RDBMS based managemenhigtorical spatio-temporal point data. SPIT is
based on a cost model aiming at optimizing query cost (I/0).tke case of a uniform data distribution the cost
model provides an optimal partitioning of the dataset. Fbiteary data distributions, the cost model is used to
guide a heuristic partitioning which leads to very good gumrformance. SPIT has been shown to outperform
other alternatives by a large margin for spatio-tempor#d el@anagement, also to be robust with respect to the
guery size assumed at index construction time. While theotispatial partitioning to index the spatial compo-
nent of the data is a well known method, applying this straiagthe spatio-temporal domain while providing
automatic and tightly integrated RDBMS support has not lukere before.

We are considering ways in which SPIT’s partitioning couddgeriodically re-adjusted as the database size
increases. Even though some preliminary experimentaltsesuggest that SPIT is resilient to modest increases
in database size, rebuilding the index is bound to be negeaf@r some point in time. It would be useful to
develop a technique to automatically determine such m)imt(the database lifetime. We also plan to investigate
whether a self-adaptation scheme, where the RDBMS woutnéigure partitions by itself without having to
rebuild the whole index, can be developed. This would helpg&PIT even more scalable and adaptable for very
large databases.

Finally, we are currently investigating how to extend thegmsed SPIT approach in order to handle trajec-
tories, obtained, for instance, by interpolating two sugjosamt observations. A query of interest in such a case
would be find trajectories that intersect a given spatiajeanithin a determined time window, where possibly no
observed data point actually falls within the queried rdtige.

12

Acknowledgments

Research partially supported by CFI, iCORE Alberta, NSER@d&a, and Profilium, Inc.

References

[1] Kothuri, R., Ravada, S.: Spatio-Temporal Indexing ira€le: Issues and Challenges. IEEE TCDE Bulletin
25(2002) 5660

[2] Mokbel, M., Ghanem, T., Aref, W.: Spatio-Temporal Acedgethods. IEEE TCDE Bulleti26 (2003)
40-49

[3] Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Apprascim Query Processing for Moving Object Trajecto-
ries. In: Proc. of VLDB. (2000) 395-406

[4] Chakka, V., et al.: Indexing Large Trajectory Data SetslVEETI . In: Online Proc. of CIDR. (2003)
[http://www-db.cs.wisc.edu/cidr/program/p15.pdf].

[5] Jensen, C., Lin, D., Ooi, B.C.: Query and Update EfficientTree Based Indexing of Moving Objects. In:
Proc. of VLDB. (2004) 768-779

[6] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An OptadiSpatio-Temporal Access Method for Predictive
Queries. In: Proc. of VLDB. (2003) 790-801

[7] Saltenis, S., et al.: Indexing the Positions of Continsiyg Moving Objects. In: Proc. of ACM SIGMOD.
(2000) 331-342

[8] Abdelguerfi, M., etal.: The 2-3TR-tree, a Trajectoryirted Index Structure for Fully Evolving Valid-Time
Spatio-Temporal Datasets. In: Proc. of ACM GIS. (2002) 2b—3

[9] Nascimento, M., Silva, J.: Towards historical R-trels.Proc. ACM SAC. (1998) 235-240

[10] Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spafl@mporal Indexing for Large Multimedia Applications.
In: Proc. of IEEE ICMCS. (1996) 441448

[11] Guttman, A.: R-trees: a dynamic index structure fortgbaearching. In: Proc. of ACM SIGMOD. (1984)
47-57

[12] Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporat@ss Method for Timestamp and Interval Queries.
In: Proc. of VLDB. (2001) 431440

[13] Kriegel, H.P., Potke, M., Seidl, T.: Managing Intelv&fficiently in Object-Relational Databases. In: Proc.
of VLDB. (2000) 407-418

[14] Nascimento, M., Dunham, M.: Indexing valid time databsvia B+ -trees — the MAP21 approach. IEEE
TKDE 11(1999) 1-19

[15] Theodoridis, Y., Sellis, T.: A Model for the Predictiai R-tree Performance. In: Proc. of PODS. (1996)
161-171

[16] Lewis, P., A.B., Kifer, M.: Database and Transactiond¢&ssing. Addison-Wesley (2002)

[17] Samet, H.: The Quadtree and Related Hierarchical Datacttres. ACM Comput. Surveyks (1984)
187-260

[18] Ross, S.: Introductory Statistics. McGraw-Hill (1996

[19] Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: OretGeneration of Spatiotemporal Datasets. In: Proc.
of SSD. (1999) 147-164

13

[20] Jensen, C., et al.: The INFATI data. Technical Report-78R TimeCenter (2004)
[http://arxiv.org/abs/cs.DB/0410001].

[21] Mallett, D.: Relational database support for spatioyporal data. Technical Report TR04-21 (M.Sc. Thesis),
Dept. of Computing Science, Univ. of Alberta (2004) [httgww.cs.ualberta.ca/TechReports/2004/TR04-
21/TR04-21.pdf].

14

