
The COST Benchmark—Comparison and
Evaluation of Spatio-Temporal Indexes

Christian S. Jensen and Dalia Tiešyṫe and Nerius Tradišauskas

July 17, 2006

TR-86

A T IMECENTER Technical Report

Title The COST Benchmark—Comparison and Evaluation of Spatio-Temporal Indexes

Copyright c© 2006 Christian S. Jensen and Dalia Tiešyṫe and Nerius Tradišauskas.
All rights reserved.

Author(s) Christian S. Jensen and Dalia Tiešyṫe and Nerius Tradišauskas

Publication History July 2006. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, Sabah A.Currim, Bongki Moon, Sudha Ram, Stanley Yao

Individual participants
Yun Ae Ahn, Chungbuk National University, Korea; Michael H.Böhlen, Free University of Bolzano, Italy; Cur-
tis E. Dyreson, Washington State University, USA; DengfengGao, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Heidi Gregersen, Aarhus School of Business, Denmark; Vijay Khatri, Indi-
ana University, USA; Nick Kline, Microsoft, USA; Gerhard Knolmayer, University of Bern, Switzerland; Carme
Mart́ın, Technical University of Catalonia, Spain; Thomas Myrach, University of Bern, Switzerland; Kwang W.
Nam, Chungbuk National University, Korea; Mario A. Nascimento, University of Alberta, Canada; John F. Rod-
dick, Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Dennis Shasha, New
York University, USA; Michael D. Soo, amazon.com, USA; Andreas Steiner, TimeConsult, Switzerland; Paolo
Terenziani, University of Torino, Italy; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang,
Siemens, USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California,
Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as bytheir precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

An infrastructure is emerging that enables the positioning of populations ofon-line, mobile service users. In
step with this, research in the management of moving objects has attracted substantial attention. In particular,
quite a few proposals now exist for the indexing of moving objects, and more are underway. As a result, there is
an increasing need for an independent benchmark for spatio-temporal indexes.

This report characterizes the spatio-temporal indexing problem and proposes a benchmark for the perfor-
mance evaluation and comparison of spatio-temporal indexes. Notably,the benchmark takes into account that the
available positions of the moving objects are inaccurate, an aspect largelyignored in previous indexing research.
The concepts of data and query enlargement are introduced for addressing inaccuracy. As proof of concepts of
the benchmark, the report covers the application of the benchmark to three spatio-temporal indexes—the TPR-,
TPR*-, and Bx-trees. Based on conceptual analyses of the indexes, performancehypotheses are formulated.
Experimental results and consequent guidelines for the usage of theseindexes are reported.

1 Introduction

With the availability of mobile computing technologies, geo-positioning, and wireless communication capabili-
ties, it has become possible to accumulate the changing locations of populations of moving objects in real time.
Consumer electronics are affordable, current Global Positioning System (GPS) [1] receivers are capable of geo-
positioning with an accuracy of up to a few meters, the General Packet Radio Service (GPRS) [2] and similar
technologies have become common and relatively cheap meansof wireless data transfer. It is thus possible for an
object to continually obtain and transmit its current position to a central server.

Applications are emerging that require or may benefit from the tracking of the locations of moving objects.
These occur in areas such as logistics, traffic management, public transportation, and location-based services.
Current applications usually track only relatively small numbers of objects, but as the underlying technologies
continue to improve, applications that concern large numbers of objects are on the horizon.

The increasing interest in mobile location data has served as motivation for the development of spatio-temporal
indexes for the current and near-future positions of movingobjects. A number of spatio-temporal indexes have
been proposed, such as R-tree-based indexes, e.g., the TPR-tree [3], the TPR*-tree [4], the STAR-tree [5], and the
REXP-tree [6]; the quadtree-based index STRIPES [7], and the B+-tree-based Bx-tree [8], to name but a few.

This continuing proliferation of indexing techniques creates a need for a standard procedure for performance
evaluation and comparison. Although mathematical complexity analysis is valuable, empirical evaluation [9] is
indispensable for evaluation and comparison of spatio-temporal indexing techniques. The current state of affairs
is that indexes being proposed are being evaluated empirically and are being compared to, typically, one other
indexing technique. The empirical studies reported are rarely exhaustive and, not surprisingly, tend to focus on
the favorable qualities of the index being proposed. The availability of an independent benchmark specification
establishes an equal footing for obtaining experimental results and enables broader comparison.

This report proposes a benchmark specification, termed COST, for the evaluation and comparison of spatio-
temporal indexes. The benchmark is independent in the sensethat it is proposed independently of a specific
indexing technique. The benchmark aims to provide a unified procedure that covers an extensive variety of possible
and realistic settings. In particular, the benchmark evaluates the index ability to accommodate uncertain object
positions. Queries and updates are considered, as are both I/O and CPU performance.

The remainder of this report is outlined as follows. Relatedwork is covered in Section 2. The addressed index-
ing problem is detailed in Section 3. Sections 4 and 5 containthe benchmark specification. Section 6 introduces to
spatio-temporal indexes, performs conceptual analysis oftheir performance, and reports on experimental results
that were obtained using the benchmark. Section 7 concludesand offers directions of future work.

2 Related Work

We cover in turn existing benchmarks for spatio-temporal data, previous work on the indexing of uncertain data,
and past empirical evaluations of spatio-temporal indexes.

A number of benchmarks exist that measure transaction performance in traditional database systems. For
example, a set of benchmarks that evaluate system performance and price is provided by Gray [10]. However,
these benchmarks are not applicable to spatio-temporal data.

1

Of relevance to moving objects, Theodoridis [11] provides abenchmark that includes a database description
and 10 non-predictive queries for the static and moving spatial data. Myllymaki and Kaufman [12] also propose a
benchmark for moving objects. The query and update performance measure is CPU time, as a main-memory resi-
dent index is assumed. Future queries on anticipated futurelocations are not considered. Werstein [13] proposes a
benchmark for 3-dimensional spatio-temporal data. The benchmark is oriented towards general operating system
and database system performance comparison, including evaluation of the spatio-temporal and 3-dimensional ca-
pabilities. Zobel et al. [9] provide general guidelines forthe comparison of indexing techniques. The authors list
criteria by which the indexing techniques should be compared and give four comparison methodologies. Tzoura-
manis et al. [14] perform an extensive, rigorous experimental comparison of four types of quadtree-based spatio-
temporal indexes, using the same benchmark specification when performing experiments with the four indexes.
Their proposal concerns raster data, generated with the G-TERD benchmark tool.

The concept of data uncertainty for moving object positionshas previously been studied quite extensively
(see, e.g., [15, 17, 18, 19]). While the bulk of this work has been conducted independently of indexing, some
works (see, e.g., [16, 19]) offer insights into the indexingof uncertain positions. The present work goes further
by proposing a simple and yet effective method for storing and retrieving position data with accuracy guarantees.
Existing indexes can straightforwardly be extended to accommodate such data.

Many authors of spatio-temporal indexes have compared their indexes to usually one other competitive index
(e.g., [3, 4, 7, 8]). However, these comparisons tend to focus on exploring the properties of the new index being
proposed; and with the new index being the main topic, the experimental specifications are relatively limited and
lack independence.

The benchmarks covered above consider neither uncertain data nor accuracy guarantees. DynaMark [12]
shares similarities with the COST benchmark with respect tothe generated traffic data, but it ignores aspects to
do with future positions. To the best of our knowledge, no independent benchmark exists that has been designed
specifically for the evaluation of disk-based indexes for the current and near-future uncertain positions of moving
objects.

3 Spatio-Temporal Indexing

This research is concerned with the indexing of large amounts of current and near-future, 2-dimensional moving
object positions, and predictive spatial queries are of interest. In this setting, position data are received from
continuously moving objects capable of reporting their position and velocity. Mobile applications—e.g., those
that provide location-enabled services to mobile users—issue queries on this data.

3.1 Spatio-Temporal Data and Queries

The objects, represented as 2-dimensional points, update their positions periodically. As the server is recording
the positions of a large amount of objects, updates should occur as rarely as possible. The current and anticipated
future positions of the objects can be queried at any time. Therefore, continuous function that approximates the
actual object movements and enables predictive queries is derived from the position data received.

An appropriate approximation function should satisfy the following requirements: (1) the parameters of the
function can be obtained from the moving object; (2) the function reduces the amount of updates; (3) predicted
positions are helpful in answering predictive queries; and(4) the function is easy to compute and its representation
is compact.

It is common to predict an object’s near-future position using a linear function of time [3, 4, 7, 8]. An object’s
position at timet is denoted by a 2-dimensional vector

−→
P , and its velocity is given by a 2-dimensional vector

−→
V .

The function takes time as an argument, and returns the object’s position:

−→
P (t) =

−→
P (tup) +

−→
V (tup)(t − tup) . (1)

Heretup is the time of the last update, at which the object’s positionwas
−→
P (tup);

−→
V (tup) is the velocity at time

tup, and
−→
P (t) is the predicted position at timet.

This function may be represented as a tuple(
−→
P (tref),

−→
V (tup)), where timetref is an agreed upon, global

reference time at which the object’s position is stored. Whenan update of an object arrives at timetup, its position
P (tref) at timetref is calculated using (1).

2

The linear function satisfies the four requirements for the approximation function. Velocity and position val-
ues are easy to obtain—they are output by GPS receivers [1], and the velocity can also be estimated based on
previous positions (first requirement). The function’s value is calculated in a constant time, and the representation
is compact (fourth requirement). Studies show that using this function for vehicle positions, the average num-
ber of updates is reduced by more than a factor of two for accuracy thresholds below 200 meters, in comparison
to the standard approach where the current position is assumed to be given by the most recently reported posi-
tion [17] (second requirement). Finally, linear movement prediction offers better approximations of near-future
positions than does stationary position prediction, yielding more reasonable answers to predictive queries (third
requirement).

Three types of queries that a spatio-temporal index should support can be distinguished [3]. Lett, t1, andt2
be time points and letqr, qr1 , andqr2 be 2-dimensional rectangles.

Q1 Timeslice queryQ1 = (qr, t) returns the objects that intersect withqr at timet.

Q2 Window queryQ2 = (qr, t1, t2) returns objects that intersect withqr at some time during time interval[t1, t2].
This query generalizes the timeslice query.

Q3 Moving window queryQ3 = (qr1 , qr2 , t1, t2) returns the objects that intersect, at some time during[t1, t2],
with the trapezoid obtained by connecting rectanglesqr1 andqr2 at timest1 andt2, respectively. This query
generalizes the window query.

Figure 1 offers an example encompassing four objects and three queries in 1-dimensional space. Thearrows
in the figure represent object movement. The queriesq1, q2, andq3 are timeslice, window, and moving window

-20

x

t

-10

0

10

2 4 6

20

o2

o1
o3

o1

o4

q1
q2

q3

Figure 1:Example of objects and queries in a 1-dimensional space

queries, respectively. Queryq3 has spatial rangesq3r1
= [−20,−10], q3r2

= [−25,−10], and time range[5, 6].
The result of the query depends on when the query is issued. Ifissued before timet = 3, the result is{o1}.
If issued between timet = 3 and timet = 4, the result is the empty set∅, because objecto4 has not yet been
inserted. Otherwise, the result is{o4}. Objecto1 is updated at time3 and its predicted trajectory changes. Its new
trajectory does not intersect with the query.

3.2 Update Policies

The inaccuracy of the moving object positions available at the server side stems from two sources. The positions
measured by the moving objects (e.g., using GPS) are inaccurate, and the use of sampling introduces inaccuracy.
Because the measurement inaccuracy is much smaller than thesampling inaccuracy in a typical setting, we assume
that the measurements are accurate and focus on the inaccuracy due to sampling.

In particular, we assume an approach where, at any point in time, the actual position of an object deviates from
the position assumed on the sever side, the predicted position, by no more than a chosen distance thresholdthr .
An update policy should be adopted that satisfies the accuracy guarantee with as few updates as possible.

The so-calledpoint-basedupdate policy requires an object to issue an update when the distance between the
object’s current and its most recently reported positions reaches the threshold value. With this policy, the server
assumes that an object remains where it was when it most recently reported its position. Frequent updates result.

To reduce the cost of updates avector-basedpolicy may be adopted [17], where each moving object shares a
linear prediction, as given by (1), of its position with the server. When the distance between an object’s actual and

3

predicted positions exceeds the distance thresholdthr , the object issues an update to the server. The point-based
policy is the special case of the vector-based policy, wherethe linear prediction function is constant (

−→
V =

−→
0 ,

where−→0 is the zero vector).
The point-based update policy is shown in Figure 2 (a). Here,the position

−→
P (ti) is updated at timeti, and the

actual position remains in the circle with center
−→
P (ti) and radiusthr for some time, yielding a predicted position

of
−→
P (ti). At time ti+1, the difference between the actual and predicted positionsreachesthr, and an update is

issued.

P(ti)
thr P(ti+1) thr

V(ti)P(ti)

P(ti+1)

(a) (b)
Ppr(ti+1)

Figure 2:Point-based (a) and vector-based (b) update policies with accuracy thresholdthr

Next, the vector-based policy is illustrated in Figure 2 (b). First, at timeti, the object reports its actual position
−→
P (ti) and velocity

−→
V (ti) to the server. The server’s prediction is illustrated by thesolid horizontal vector.

The object shares this prediction with the server. In addition, it repeatedly compares its actual position with
the predicted position

−→
P pr. When at timeti+1, the object’s position is

−→
P (ti+1), the distance between the two

positions isthr , and an update is generated. Again updates are sent only whenneeded in order to maintain the
accuracy guarantees.

As discussed in Section 3.1, the vector-based policy yieldsfewer updates than the point-based policy for the
same accuracy guarantees and therefore is preferable.

3.3 Query and Data Enlargement

The notions ofprecision(p) andrecall (r) [20] are commonly used for measuring the accuracy of a queryresult.
The precision is the fraction of the objects in the result that actually satisfy the query predicate, and the recall is
the fraction of the objects that satisfy the query predicatethat are in the query result. Ideally,p = r = 1, meaning
that the query result contains exactly the objects that satisfy the query.

However, the data are inaccurate—the positions of the objects are only known with accuracythr . It is thus not
possible to achievep = r = 1; however, perfect recall (r = 1) can be achieved1 and is a desirable requirement for
an index. Thus, the query result is guaranteed to contain allobjects that may satisfy the query predicate.

To achieve perfect recall, it is necessary to take the inaccuracy of the predicted positions into account. This
may be done by means of either data or query enlargement.

Query enlargement addresses position inaccuracy by expanding the query area bythr in all directions. If
different objects have different thresholds, the maximum threshold must be used. Perfect recall is achieved as all
the objects that are actually in the query area have predicted positions that are no further thanthr away from their
actual positions.

The “fattened” query rectangle may be obtained as the Minkowski sum [21] of the two sets. Each pointpq that
belongs to the query rectangleqr is added to each pointps that belongs to the segments of lengththr :

qr ⊕ s = {pq + ps|pq ∈ qr ∧ ps ∈ s}

Figure 3 (a) shows query enlargement in a 2-dimensional space.
Next, with data enlargement object positions are expanded into spatial regions with extent. In particular, an

object’s position becomes a circle with radiusthr , instead of being a point. The center of the circle is the predicted
position. The object’s actual position is always inside thecircle. If the circle intersects with the query area, the
object must be included in the query result. Figure 3 (b) illustrates data enlargement. The shaded area denotes the
movement of the object.

A spatio-temporal index should support either query or dataenlargement. However, existing indexes tend
to ignore position inaccuracy and simply assume that they know the exact position of each object, meaning that
thr = 0. Such indexes must be adjusted to index positions with non-zero threshold values.

1We note that perfect recall for queries that concern future times is only possible when updates that occur between the time aquery is issued
and the future times specified in the query cannot affect the query result.

4

thr

y

x

V

thr

(a) (b)

Figure 3:Example of query (a) and data (b) enlargement

4 Benchmark Data and Settings

The workload for an index consists of a sequence of the updates and queries. The benchmark specification contains
definitions of workloads and procedures of using them. The desired properties of the workloads and workload
generation are discussed first. Definitions of benchmark procedures, termedexperiments, then follow.

4.1 Workload Parameters

A set of update and query parameters defines the benchmark workloads. The workloads aim to simulate a wide
range of situations in which an index may be used. The following parameters are of interest:

Number of Objects The number of objects largely determines the size of the index and may be used to examine
the scalability of the index.

Position and Velocity Skew These parameters determine the distribution in space of theobject positions and
velocities. They are highly related, as velocity skew leadsto position skew. An example of skew is the concentra-
tion of stationary vehicles in the suburbs at night and in business districts during working hours, and many moving
vehicles during the morning and afternoon rush hours.

Update Arrival Pattern The rate of updates depends on the chosen update policy as described in Section 3.2.
With the vector-based policy, the durations in-between updates vary greatly. The update frequency depends on the
movement trajectories and speeds of the objects. This parameter allows examination of how an index accommo-
dates different frequencies of updates.

Position Accuracy Threshold The distance thresholdthr (defined in Section 3.2) affects the update arrival rate
and the query or data extents. By varying this parameter, theindex ability to support various update frequencies
as well as data and query sizes can be studied.

Query Parameters The required query types, their spatial and temporal extents and their time intervals are the
query parameters of interest. The types of queries considered are described in Section 3.1.

Workload Duration The workload duration is measured as a number of updates executed by the index. This
parameter allows examination of how an amount of updates affects the performance of an index.

4.2 Workload Generator

The workloads in the COST benchmark are generated using a workload generator that extends the generator de-
veloped byŠaltenis et al. [22]. That generator was chosen as the starting point because it is capable of easily
creating workloads according to many of the parameters discussed in Section 4.1 and because it is fast in compari-
son to such generators as CitySimulator [23, 24] and GSTD [25, 26], which use complex functions, e.g., functions
that control the interactions among the objects. We proceedto explain the original generator, then describe the
extensions implemented.

A workload intermixes queries and updates with a chosen proportion. An index is then subjected to these
operations. In the generator, object movement is either random or network-based. To accommodate the latter, a
number of “hubs” with random positions and links between these form a complete, bi-directional, spatial graph.
Objects move between hubs until the end of a simulation. The maximum speed of an object is chosen randomly
from a set of maximum speeds. An object accelerates and decelerates when moving from one hub to another. Up-
dates are generated in average intervals ofUpdateInterval time durations. For any kind of data, these parameters
can be set:

5

Objects Total number of moving objects.

Space The extent of the space where the objects are moving.

Speed i, i = 1, ..., 50 Set of maximum speeds of the objects. For each object, its maximum speed is chosen at
random.

TotalUpdates The number of update operations performed in the simulation.

UpdateInterval The average duration between two successive updates of an object.

Hubs The number of destinations between which the objects are moving. Value 0 implies uniform (random)
distribution.

QuerySize The maximum spatial extent of a query in percentages of the indexed space.

QueryTypes The fractions of timeslice, window, and moving window queries (see Section 3.1). The sum of the
three fractions must be equal to1.

QueryTime The maximum temporal extents of window and moving window queries.

QueryWindow The maximum duration of time that queries may reach into the future.

QueryingInterval Querying frequency relative to update operations.

QueryQuantity The number of queries generated at each query generation event.

The generator was extended, enabling it to choose between its original update policy and the vector-based
policy (as described in Section 3.2). The original policy was extended so that it is able to randomly select a different
update interval for each object. Specifically, the generator was extended to accommodate three parameters:

Update PolicySpecifies if the shared prediction based vector policy (0) orthe original time-based (1) policy is
used.

Thresholdi, i = 1, ..., 50 The threshold distance between the predicted and the actualpositions, used in the vector
policy. Up to 50 thresholds may coexist. For each object, itsthreshold is chosen at random. This parameter
is used whenUpdate Policy=0.

Update Intervali, i = 1, ..., 50 The average duration between two successive updates of an object (as in the
original generator). Up to 50 update intervals are possible. For each object, its average update interval is
chosen at random. This parameter is used only whenUpdate Policy=1.

With the vector-based update policy, updates are generatedwhen the distance between the actual position of
an object and the predicted position reachesThresholdi. An additional update is generated when an object reaches
a hub.

4.3 Evaluation Metrics

The COST benchmark uses two types of performance metrics: the average number of I/O operations per index
operation, and the average CPU time per index operation (update, query). One I/O operation is one read of a page
from disk or one write of a page to disk. Reads from and writes to the available main memory buffer are not
counted as I/O operations. The CPU time for one operation is the time of CPU usage from the moment when the
operation is issued to the moment when the result of the operation is computed. CPU measure is average time
in milliseconds per operation. I/O is typically consideredto be the main cost factor in determining an index’s
performance, while the CPU time is a minor factor.

6

5 Definitions of Experiments

A benchmark experiment is defined by a set of workload parameters and disk page and main memory buffer size
settings. In each experiment, one parameter, or a set of related parameters, as defined in Section 4.1, is varied. The
set of experiments was chosen with the objective of varying the important workload parameters from Section 4.1.
Parameter values are chosen so that the workloads cover a wide variety of situations. To ensure that the benchmark
stress-tests the indexes under study, some experiments useextreme parameter values. The page and buffer size
settings are kept constant for all experiments.

The default values for all workload parameters and settingsare listed in Table 1. The chosen values are
commonly used in existing evaluations of spatio-temporal indexes (e.g., [4, 8]). The default speeds are typical
speeds of vehicles, and the number of hubs simulates a real-world road network with a substantial number of
destinations. The page and buffer sizes are relatively small, the objective being to obtain the effects of large
indexes with relatively small volumes of data. For each experiment, described shortly, only parameters with
values that differ from the defaults are listed. Note that itis possible to use only a subset of parametersSpeed i,
Threshold i, andUpdateInterval i, i = 1, ..., 50, e.g., it is possible to assign the same speed to all objects by
settingSpeed1 and omitting parametersSpeed i, i = 2, ..., 50.

All experiments measure the average CPU time and number of I/O’s per operation.

Table 1: Default workload parameters and settings used in experiments

Parameter Value Parameter Value
Page,Buffer 1 KB, 50 KB (50 pages) QueryingInterval 400 updates
Objects 100, 000 QueryQuantity 2 (in total 1000)
Space 100, 000 × 100, 000 m2 QueryTime 10 s
Speed i, i = 1, ..., 4 12.5, 25, 37.5, 50 m/s QuerySize 0.25% ofSpace

TotalUpdates 200, 000 QueryWindow 50 s
Hubs 500 QueryTypes 0.6:0.2:0.2
UpdatePolicy 0 Threshold1 100 m

Experiment 1. Number of Objects Objective:Examine index scalability.
Parameter values:Points = 100, 200, ..., 1000 K.
Number of workloads:10.

Experiment 2. Position and Velocity Skew Objective:Examine the effects of position and velocity skew.
Parameter values:Part 1 (very high skew):Hubs = 2, 4, ..., 20. Part 2 (average skew):Hubs = 20, 40, ..., 200.
Part 3 (low skew):Hubs = 500, 1000, ..., 5000, and0 hubs (uniform distribution).
Number of workloads:10 for parts 1 and 2, 11 for part 3.

Experiment 3. Maximum Speeds of Objects Objective:Examine the effects of varying maximum speeds as
well as varying distributions of speeds among the objects. As fast objects are more likely to be updated than slow
ones per given time unit, the update frequency increases with increasing speeds.
Parameter values:Part 1 (distribution of speeds): All objects are assigned either speed25 m/s or200 m/s, and
workloads are generated so that the fractions of objects with speed200 m/s are: 0.02; 0.1; 0.2; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8; 0.9; 0.98. Thus, allSpeed i are assigned either25 m/s or 200 m/s, and for each workload, the
smallesti is chosen that allows us to obtain the needed fraction of fastobjects. Part 2 (low maximum speeds):
Speed1 = 0.05; 2; 4; 6; 8; 10; 12; 14; 16; 18. Part 3 (high maximum speeds):Speed1 = 30, 60, ..., 300 m/s.
Number of workloads:11 for part 1, 10 for the parts 2 and 3.

Experiment 4. Position Accuracy Threshold Objective:Examine the influence of varying thresholds as well
as the distribution of varying thresholds among the objects. Note that the update rate depends on the threshold and
that the simulation time increases as updates become infrequent.
Parameter values:Part 1 (distribution of thresholds): All objects are assigned either a threshold of100 m or a
1000 m, and workloads are generated so that the fractions of objects with speed1000 m are : 0.02; 0.1; 0.2; 0.3;
0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus allThreshold i are assigned either100 m or1000 m, and for each workload
the minimumi is chosen that allows us to obtain the needed fraction of objects with large (and small) threshold.

7

Part 2 (equal thresholds for all objects):Threshold1 = 100, 200, ..., 1000 m.
Number of workloads:11 for part 1, 10 for part 2.

Experiment 5. Update Arrival Interval Objective:Examine the influence of varying update intervals as well
as distribution of update intervals. The update frequency affects the time duration of a workload.
Parameter values:UpdatePolicy = 1. Part 1 (distribution of update intervals): Similarly to the two previous
experiments, two values of a parameter, hereUpdateInterval i, are used—60 s (frequent) and600 s (rare). The
value ofi is chosen so that workloads are obtained where the fractionsof objects with an interval of600 s are: 0.02;
0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Part 2 (frequent updates):UpdateInterval1 = 20, 40, ..., 200 s. Part
3 (rare updates):UpdateInterval1 = 120, 240, ..., 1200 s.
Number of workloads:11 for part 1, 10 for parts 2 and 3.

Experiment 6. Index Lifetime Objective:Examine the effect of varying index lifetime (in numbers of updates).
Parameter values:TotalUpdates = 100, 200, ..., 1000 K.
Number of workloads:10.

Experiment 7. Query Types Objective:Examine the differences in performance for different typesof queries:
timeslice, window, and moving window queries.
Parameter values:QueryTypes = 1 : 0 : 0, 0 : 1 : 0, 0 : 0 : 1.
Number of workloads:3.

Experiment 8. Query Parameters Objective:Examine the effects of varying spatial extents, temporal extents,
and time windows of queries.
Parameter values:Part 1 (spatial extents):QueryTypes = 0 : 1 : 0, QuerySize = 0.05, 0.15, ..., 0.95%.
Part 2 (temporal extents):QueryTypes = 0 : 1 : 0, QueryTime = 0, 20, ..., 120 s. Part 3 (time windows):
QueryTypes = 1 : 0 : 0, QueryWindow = 0, 20, ..., 120 s.
Number of workloads:10 for part 1 and 7 for parts 2 and 3.

6 Application of the COST Benchmark

In order to ensure that the benchmark was well specified and yields useful results, it was applied for evaluating
and comparing three existing indexes, namely the TPR-, TPR*-, and Bx-trees [3, 4, 8]. The TPR*- and Bx-trees
were chosen because they are recent and represent the state of the art, and the TPR-tree is the predecessor of a
dozen proposals for spatio-temporal indexes.

6.1 Introduction to the TPR-, TPR*-, and Bx-Trees

The TPR-tree (Time Parametrized R-tree) [3] and its descendant, the TPR*-tree [4], are based on the R*-tree [27].
These indexes are adapted for time-parametrized data and queries. Data objects are assigned to minimum bounding
rectangles (MBRs) as in the R*-tree. Additionally, the TPR-and TPR*-trees use linear functions of time to
represent the movements of the objects and MBRs.

Operations in the TPR-tree are handled similarly to the operations in the R*-tree, except that the penalty
metrics of the R*-tree (e.g., MBR enlargement) are generalized to being integrals over a time period ranging from
the current time andH time units into the future (calculated based on the update rate). The TPR-tree is optimized
for timeslice queries.

The authors of the TPR*-tree have modified the TPR-tree by introducing new insertion and deletion algo-
rithms. An additional heap structure is used during insertions with the objective of achieving better insertions.
Thechoosepathalgorithm selects an “optimal” (according to the paper’s particular definition) path down the tree
in insert operations. Instead of the integral used in the TPR-tree, the TPR*-tree calculates penalty metrics based
on sweeping regions (the area covered by a moving MBR from thecurrent time andH time units into the future).
The TPR*-tree is optimized for moving-window queries.

The Bx-tree uses the B+-tree structure and algorithms to store and retrieve data. Spatial data are transformed
into 1-dimensional data using space-filling curves, e.g., the Hilbert or Z curves.

The Bx-tree partitions the time axis into intervals with a duration equal to the maximum duration in-between
two updates of any object,∆tmu. Each such interval is further partitioned inton phases. For each phase, an index
partition is created. At any point of time, there exist at most n + 1 partitions. The partition in which to insert an

8

object is chosen according to the object’s insertion time. As time passes, partitions expire, and new partitions are
created. Objects in an expiring partition are reinserted into the newest partition.

Insertions, updates, and deletions are as in the B+-tree. The index key of an object is calculated using the
update time and the position of the object, which is stored asof the reference time of object’s partition.

Queries in the Bx-tree must check each existing partition for qualifying objects. In one partition, the query area
is first expanded by a factor of the current maximum~Vmax and minimum~Vmin projections and of the velocities~v
of all objects:

~Vmax = (max
~v∈V

{vx},max
~v∈V

{vy}),

~Vmin = (min
~v∈V

{vx},min
~v∈V

{vy}),

wherevx andvy are the projections of velocities~v onx andy axes, andV is the set of velocities of current objects.
Next, the expanded query rectangle may be reduced if the maximum and minimum velocities of the objects that
fall into the expanded query area are smaller than~Vmax or larger than~Vmin. These velocities are stored for each
cell and each partition in avelocity histogramthat is maintained in main memory.

For the experimental evaluation, the TPR- and TPR*-trees were extended to support data enlargement, and the
Bx-tree was extended to support query enlargement. Enlarged data and query objects are approximated to squares
and rectangles, respectively.

6.2 Conceptual Analysis of the TPR-, TPR*-, and Bx-Trees

With the aim of explicitly formulating expectations to the CPU and I/O performance of the indexes before ex-
periments are conducted, this section presents conceptualanalyses of the indexes. Section 6.3 experimentally
evaluates the indexes.

In the ensuing discussion, we use “index performance” to refer to both CPU and I/O performance, unless
explicitly stated otherwise. The workloads defined in Section 5 for the benchmark specification are considered.
The analyses are based on the specifications of the indexes and the performance results provided in the articles
that introduce to these indexes [3, 4, 8].

The papers that introduce to the indexes considered report on experimental evaluations and comparisons with
one other index each. The authors of the TPR*-tree find that inmost cases, the TPR*-tree performs better than the
TPR-tree. The authors of the Bx-tree report that the Bx-tree outperforms the TPR-tree by a factor of10 in many
cases.

6.2.1 Index Size

The update and query performance of the TPR- and TPR*-trees are expected to degrade noticeably when the
numbers of objects grow. As the space in which the objects aremoving is limited, the density of the objects
increases together with their numbers; thus, the overlap ofMBRs is also expected to increase. Higher overlap
presumably increases the I/Os and CPU time required for queries, as searches need to traverse more paths and
inspect more nodes. For updates, thechoosepathalgorithm of the TPR*-tree might need to traverse more paths.

The Bx-tree is based on the B+-tree, which degrades only slightly for both queries and updates when the
amount of indexed objects grows. The Bx-tree is expected to experience only a slight update and query perfor-
mance degradation with a growing amount of objects.

Hypotheses

H11 The update and query performance of the TPR- and TPR*-trees degrade noticeably when index size grows.
The update performance of the TPR*-tree degrades more than for the TPR-tree, while the query performance
of the TPR-tree degrades more compared to the TPR*-tree.

H12 The update and query performance of the Bx-tree degrades only slightly with increasing index size.

9

6.2.2 Position and Velocity Direction Skew

Increasing position and velocity skew are expected to positively effect the update and query performance of the
TPR- and TPR*-trees. These trees index the data, not the underlying space, and they are balanced trees indepen-
dently of the position distribution of the objects. Position and velocity skew are expected to concentrate MBRs
in some areas, leading to smaller MBRs and less overlap amongMBRs than for uniform data. An MBR expands
more slowly if the movement directions of the objects in it are similar. With smaller MBRs that overlap less, fewer
paths need to be traversed by queries and updates, yielding improved performance.

Position skew is only expected to slightly affect the updateand query performance of the Bx-tree. Delete
operations (also part of updates) may experience a problem if many objects in the same index partition fall into
the same cell. Such objects are all assigned the same index key. This may result in many leaf nodes having to be
read, until the required object is found. Query performancemay be negatively affected by a high position skew, as
all the objects that are in the cells that overlap with a queryarea have to be read from the disk. Many objects are
then filtered out.

Direction skew should have no influence on the query performance of the Bx-tree, unless nearly all objects are
moving in the same direction. A query region is expanded proportionally to the current maximum and minimum
velocities,~Vmax, ~Vmin, of the objects that fall into the expanded query area. If allthe candidate objects move in
the same direction, the query expansion is smaller in comparison with data with uniform velocity. However, if the
objects are moving in several directions, skew should have no influence on the query performance.

Hypotheses

H21 The update and query performance of the TPR- and TPR*-trees improves as the position skewed of the data
increases.

H22 The update and query performance of the Bx-tree is best for data with no or low position skew. If the skew
is high, the update and query performance degrades. Extremely high skew may improve query performance.

6.2.3 Speed Skew and Maximum Speeds

The speeds at which the objects move are expected to have a high influence on the performance of the indexes.
The growth rates of the MBRs of the TPR- and TPR*-trees dependon the speeds of the objects in the MBRs.

The presence of a fast-moving object results in the MBR of itsleaf node and the MBRs that are in the path from
the root to the leaf growing fast. However, no other MBRs are affected. The required I/Os and CPU time are
expected to increase as the number of fast-moving objects increases, as more and more MBRs are affected.

The Bx-tree’s performance depends on the global maximum and minimum velocities of the indexed objects.
A query rectangle has to be expanded proportionally to the maximum and minimum velocities in all dimensions.
If at least one very fast-moving object falls into the initially expanded query area, it is not possible to reduce the
query in the object’s movement direction. It is possible to reduce the query area only if the query covers cells with
objects that move slower than the fastest objects among all the indexed objects (in all dimensions).

In general, all the indexes are expected to benefit from objects that move slowly.

Hypotheses

H31 The update and query performance of the TPR- and TPR*-trees and the query performance of the Bx-tree
degrade when the maximum speeds of objects increase.

H32 The update and query performance of the TPR- and TPR*-trees degrade gradually when the numbers of
fast-moving objects increase.

H33 The query performance of the Bx-tree degrades significantly for even a small number of objects with high
velocities, compared to the situation when all the objects have low velocities. The update performance is
not affected by the speeds of the objects.

10

6.2.4 Position Accuracy Threshold

The TPR- and TPR*-trees can use either query enlargement or data enlargement to support perfect recall, as
described in Section 3.2. With data enlargement, it is possible to store different thresholds for different objects,
and so data enlargement is expected be superior, and we consider only data enlargement. With data enlargement,
increasing thresholds should degrade both update and queryperformance, as larger MBRs result.

The Bx-tree is capable only of query enlargement. When threshold values are different for different objects
and/or parts of the space, the index must increase the query window by the maximum accuracy threshold in all
directions. As a result, the Bx-tree should have worse query performance with larger thresholds than with smaller
thresholds. The update performance should not be influenced.

Hypotheses

H41 All the indexes perform best when the upper bound of the threshold value is low. When query enlargement is
used, only the query performance is affected. With data enlargement, both the update and query performance
are affected.

H42 The Bx-tree’s query performance degrades when there is at least one object that has a threshold value,
compared to the situation where all threshold values are low.

H43 Due to data enlargement, the query performance of the TPR- and TPR*-trees is affected less by a small
amounts of objects with high thresholds than is the query performance of the Bx-tree.

6.2.5 Update Arrival Pattern

The update arrival frequency affects the growth of MBRs in the TPR- and TPR*-trees. If updates are frequent,
the MBRs are likely to be adjusted often, which improves the query performance. Because of itschoosepath
algorithm, the TPR*-tree is likely to adjust more MBRs than the TPR-tree during one update; thus, a lower
number of objects that send updates frequently are needed tomaintain tight MBRs. However, if updates are too
frequent, access to the MBRs is likely to cost extra I/Os without significant benefits being obtained from the
adjusting of the MBRs—the MBRs are tightened too often. If no object is updated in an MBR and not all of its
objects are stationary, it grows infinitely large. Therefore, rare updates are expected to degrade the update and
query performance of both the TPR- and TPR*-trees, especially the TPR-tree, as it tightens MBRs less frequently.

For the Bx-tree, objects that are updated rarely need to be migrated when an index partition expires. The Bx-
tree reinserts objects that were not updated during the maximum update interval∆tmu. If many objects need to be
migrated, this will affect the average update performance,as the I/Os and the CPU time for migration are added
as an update overhead in our evaluation. The query performance should not be affected by the update frequency.
Only when the updates are extremely frequent and all objectsreside in one index partition, the query performance
should improve.

Hypotheses

H51 The update and query performance of the TPR- and TPR*-trees degrade when updates arrive very frequently
or rarely. The best case lies somewhere in-between.

H52 The TPR-tree requires more updates to maintain tight MBRs in comparison to the TPR*-tree. The optimal
update arrival frequency is higher for the TPR-tree than forthe TPR*-tree.

H53 The update performance of the Bx-tree is better when updates arrive at the intervals equal toor shorter than
the maximum update interval∆tmu compared to longer intervals.

H54 The query performance of the Bx-tree improves when updates are much more frequent than the maximum
update interval, compared to more rare updates. Otherwise,the query performance is not affected by the
update arrival frequency.

11

6.2.6 Index Lifetime

The TPR- and TPR*-trees are expected to experience update and query performance degradation as the time of
index usage passes because MBRs become less optimal with thepassing of time. The TPR-tree may exhibit a
higher performance degradation than the TPR*-tree, as the TPR*-tree tightens MBRs more often.

The B+-tree’s performance is nearly time-independent [8]. As theindex lifetime increases, the Bx-tree is
expected to experience only a very slight update and query performance degradation. The query performance of
the Bx-tree is expected to be better at the very beginning of the index usage. This is so because when the index is
first created, there exists only one index partition, and queries need to look for objects only in that partition. As
time passes, more partitions are created that queries must access.

Hypotheses

H61 The update and query performance of the TPR- and TPR*-trees degrade as time passes.

H62 The update and query performance degrade faster for the TPR-tree than for the TPR*-tree as time passes.

H63 The update performance of the Bx-tree degrades very slightly as time passes. The query performance of the
Bx-tree degrades faster at the very beginning of index usage and only very slightly later on.

6.2.7 Query Types

The TPR-tree is optimized for timeslice queries, while the TPR*-tree is optimized for window queries. In both
indexes, queries are optimized for a time rangeH (time horizon, defined in Section 6.1). Window and moving
window queries have larger extents (with respect to time) than timeslice queries, and window and moving win-
dow queries require more complex computation to determine whether the query area intersects with an MBR.
Therefore, they are expected to require more I/Os and more CPU time in both trees.

The TPR*-tree is optimized for window queries. As a result, the difference between the performance of
timeslice queries and the performance of window queries in the TPR*-tree is likely to be smaller compared to the
TPR-tree. Still, timeslice queries should be executed withless I/Os, as they have no temporal extents.

The Bx-tree uses query expansion for all types of queries. The query performance depends on the query start
and end times. Window queries are likely to be expanded more than timeslice queries, as they are expanded by
the maximum expansion required for the query start and end times. Moving window queries are also expanded by
the maximum expansion required for the query start and end times, but their area covers all regions in which the
query rectangle moves. Timeslice queries are expected to require the least amount of I/Os and CPU time, window
queries are expected to need slightly more, and moving window queries are expected to be the most expensive.

Hypotheses

H71 The query performance of the TPR- and TPR*-trees is best for timeslice queries, worse for window queries,
and worst for moving window queries.

H72 The query performance of the TPR*-tree is affected less by the query types in comparison to the TPR-tree.

H73 The query performance of the Bx-tree is best for timeslice queries, worse for window queries, and worst for
moving window queries.

6.2.8 Temporal Extents, Spatial Extents, and Time Windows of Queries

The TPR- and TPR*-trees are optimized for a time horizonH (see Section 6.1). The further into the future queries
extend beyondH, the less optimal the query performance is expected to be dueto expanding MBRs. A larger
temporal extent is expected to require more I/Os and CPU timethan a smaller extent.

In the Bx-tree, queries are expanded so that the fastest of all objects that might be in the query area is part of
the query result. The Bx-tree can have at most one partition that has a reference timein the past. Other partitions
have future reference times. That is, the Bx-tree is optimized for predictive queries. The query performance of
the Bx-tree is expected to be better with queries that look furtherinto the future than with queries that have a time
close to the current time. An increasing temporal extent should degrade the index performance only slightly.

12

The Bx-tree partitions space into grid cells and uses a space-filling curve to enumerate the cells. Use of a high
space granularity yields a small cell size and vice versa. The space-filling curve orders the cells. All the objects
in the same index partition that fall into the same cell according to their positions are assigned the same index
key. No matter how big the overlap between an expanded query rectangle and a cell is, all the objects that are
in that cell have to be checked to determine whether they fallinto the query area. For this reason, small queries
(compared to the chosen space granularity) are expected to have a large overhead.

The TPR- and TPR*-trees do not need to choose any parameters in relation to the space granularity. The
required I/Os and CPU time should increase gradually as the spatial extents of the queries increase.

Hypotheses

H81 The query performance of the TPR- and TPR*-trees are better for queries with a time close to the current
time than for queries that look far into the future.

H82 The query performance of the TPR- and TPR*-trees are better for queries with shorter temporal extent than
for queries with longer temporal extent.

H83 The performance of the Bx-tree is better for queries that look further into the futurethan for queries that
have a time close to the current time.

H84 The query performance of the TPR- and TPR*-trees decrease proportionally to the query size.

H85 The performance of the Bx-tree has a large overhead for small queries and a smaller overhead for larger
queries.

6.3 Experimental Evaluation Using the COST Benchmark

Implementations of the three indexes were obtained from their authors and modified where needed in order to
perform the benchmark experiments. The indexes require a number of parameters to be set. For the Bx-tree, the
maximum update interval is 120 s, there are 2 phases, and the cell size is100 × 100 m2. For the TPR and TPR*-
trees,H = 120 s. All experiments were performed on a Sun Fire V880 server having 8x900 MHz CPU and 32 GB
RAM running the Solaris 9 (SPARC) operating system.

6.3.1 Experiment 1—Index Size

Hypotheses H11 and H12 are examined in this experiment. The results are shown in Figure 4.
In comparison to the TPR*-tree, the TPR-tree exhibits a visibly better performance for updates, a visibly better

CPU performance for queries, and a slightly better I/O performance for queries. The TPR*-tree was expected to
perform better than the TPR-tree, as this was reported in thepaper that presents the TPR*-tree [4]. The different
results might be due to the different workloads that are usedin the experiments. The density of objects in the
experiments in [4] is 100 times higher than in our default setting.

As expected (Hypothesis H11), the update performance of theTPR*-tree degrades more than that of the TPR-
tree. The TPR*-tree needs to traverse more branches than theTPR-tree during an insertion. When the overlap
between MBRs increases, more branches might have to be traversed. However, contrary to expectation, the query
performance of the TPR*-tree also degrades slightly more that is the case for the TPR-tree.

The Bx-tree, as expected (Hypothesis H12), degrades only slightly for queries and almost negligibly for up-
dates when the index size grows, while the query performanceof the TPR- and TPR*-trees (Hypothesis H11)
degrade approximately linearly when the amount of objects grows. The reason is likely to be the greater overlaps
among MBRs, resulting in more paths to be searched.

Hypothesis H11 is partially confirmed. The query performance of the TPR*-tree degrades slightly more than
the query performance of the TPR-tree. Hypothesis H12 is confirmed.

13

0
2
4
6
8

10
12
14

2 4 6 8 10
Amount of objects, 100 K

Exp. 1. Avg I/O per update

0
40
80

120
160
200

2 4 6 8 10
Amount of objects, 100K

Exp. 1. Avg I/O per query

0
0.5

1
1.5

2
2.5

2 4 6 8 10
Amount of objects, 100K

Exp. 1. Avg CPU per update

0
10
20
30
40
50
60
70

2 4 6 8 10
Amount of objects, 100K

Exp. 1. Avg CPU per query

Bx TPR TPR*

Figure 4: Experiment 1—index size

6.3.2 Experiment 2—Position and Velocity Skew

This experiment examines Hypotheses H21 and H22. The results are shown in Figure 5.
The query performance of the TPR- and TPR*-trees are significantly worse when position and velocity skew

is very high compared to average and low skew. When the skew decreases from average to low, the query perfor-
mance degrades slightly. Better performance was expected when the skew is high (Hypothesis H21). However,
when the objects are concentrated in just a few places in the space, the overlap between the MBRs is likely to be
very high, which leads to many paths having to be traversed inqueries and updates. For settings with high position
and velocity skew, updates become rare; thus, MBRs are adjusted less frequently and thus grow bigger.

As expected in Hypothesis H22, the query performance of the Bx-tree is slightly better with low skew than with
high skew. Extremely high skew (2 hubs) does not influence thequery performance negatively. This may be due
to the similar movement directions of the objects. When the position and velocity distribution of the data approach
uniform, the query performance improves significantly. A reason for this might be he shorter time that passes
during the index lifetime. The effect of the index lifetime is observed and discussed in Experiments 4.2, 5.2, and 6.

The update performance of the Bx-tree degrades when skew is extremely high. This is due to rare updates, as
objects move straight almost all the time which has the effect that the predicted velocities are similar to the actual
velocities.

When position and velocity skew is average or low, the query performance of the Bx-tree is worse than the
query performance of the TPR- and TPR*-trees. The average amount of I/Os per query is approximately double
for the Bx-tree compared to the TPR- and TPR*-trees. This differs fromearlier results [8].

Hypothesis H21 is not confirmed. The query and update performance of the TPR- and TPR*-trees are the best
with average position and velocity skew, slightly worse with low skew, and significantly worse with very high
skew. Hypothesis H22 is confirmed.

6.3.3 Experiment 3—Speeds of Objects

Hypotheses H31, H32, and H33 are examined in this experiment. The results are shown in Figure 6.
The query performance of the TPR- and TPR*-trees remain almost stable when the proportion of fast- and

slow-moving objects changes. With only 2% fast-moving objects, the query performance is slightly better. When
the number of fast-moving objects increases, the query performance slightly degrades in the beginning and then

14

0
10
20
30
40
50

2 6 10 14 18

Number of hubs

Exp. 2.1. Avg I/O per update

0
2
4
6
8

10
12
14

20015010050

Number of hubs

Exp. 2.2. Avg I/O per update

1
3
5
7
9

unif.54321

Number of hubs, K

Exp. 2.3. Avg I/O per update

0
1
2
3
4
5
6

2 6 10 14 18

Number of hubs

Exp. 2.1. Avg CPU per update

0
1
2
3
4

20015010050

Number of hubs

Exp 2.2. Avg CPU per update

0
0.2
0.4
0.6
0.8

1
1.2
1.4

unif.54321

Number of hubs, K

Exp. 2.3. Avg CPU per update

0
100
200
300
400
500
600

2 6 10 14 18

Number of hubs

Exp. 2.1. Avg I/O per query

0
20
40
60
80

20015010050

Number of hubs

Exp. 2.2. Avg I/O per query

0
10
20
30
40
50
60
70

unif.54321

Number of hubs, K

Exp. 2.3. Avg I/O per query

0
20
40
60
80

100
120
140

2 6 10 14 18

Number of hubs

Exp. 2.1. Avg CPU per query

0
20
40
60
80

20015010050

Number of hubs

Exp. 2.2. Avg CPU per query

0
10
20
30
40
50
60
70

unif.54321

Number of hubs, K

Exp. 2.3. Avg CPU per query

Bx TPR TPR*

Figure 5: Experiment 2—position and velocity skew

15

0
2
4
6
8

10
12
14

80604020

Fast objects, %

Exp. 3.1. Avg I/O per update

0
100
200
300
400

0 2 4 6 810 14 18

Maximum speed

Exp. 3.2. Avg I/O per update

0

4

8

12

16

30024018012060
Speed, m/s

Exp. 3.3. Avg I/O per update

0
0.4
0.8
1.2
1.6

2

80604020

Fast objects, %

Exp. 3.1. Avg CPU per update

0
0.4
0.8
1.2
1.6

0 2 4 6 810 14 18

Maximum speed

Exp. 3.2. CPU per update

0
0.5

1
1.5

2
2.5

30024018012060
Speed, m/s

Exp. 3.3. Avg CPU per update

0
100
200
300
400

80604020

Fast objects, %

Exp. 3.1. Avg I/O per query

0
10
20
30
40

0 2 4 6 810 14 18

Maximum speed

Exp. 3.2. Avg I/O per query

0
100
200
300
400
500

30024018012060
Speed, m/s

Exp. 3.3. Avg I/O per query

0
40
80

120
160

80604020

Fast objects, %

Exp. 3.1. CPU per query

0
10
20
30
40
50

0 2 4 6 810 14 18

Maximum speed

Exp. 3.2. CPU per query

0

40

80

120

30024018012060
Speed, m/s

Exp. 3.3. Avg CPU per query

Bx TPR TPR*

Figure 6: Experiment 3—speeds of objects

16

remains stable. Objects are assigned speeds independentlyon their position. One fast-moving object in an MBR is
enough for the MBR to expand rapidly. Therefore, even a few fast-moving objects is enough to make most MBRs
expand rapidly, which degrades the index performance.

Even with few fast-moving objects, the query performance ofthe Bx-tree degrades significantly. The combi-
nation of a longer index lifetime (due to low speeds and infrequent updates) and high maximum speeds yield a
significant degradation of the query performance. When the index lifetime decreases (due to more fast-moving ob-
jects that are updated often), the query performance improves. However, when the amount of fast-moving objects
increases further (above 30% of all objects), the performance again degrades due to large query expansions.

The query and update performance of the TPR- and TPR*-trees degrades only slightly when the maximum
speeds increase, while the query performance of the Bx-tree degrades significantly. With the maximum speed of
300 m/s, the query I/O and CPU performance of the Bx-tree is more than 5 times worse than for the TPR- and
TPR*-trees. This is due to large query expansions caused by fast-moving objects.

When speeds are very high, updates are very frequent, as the updates are generated according to the shared-
prediction based update policy (Section 3.2). This helps tokeep the MBRs tight; thus, the query and update
performance of the TPR- and TPR*-trees degrades only slightly when the speeds of objects grow.

When the maximum speeds are extremely low (0.05 m/s), the update I/O performance of the Bx-tree is almost
100 times worse than the usual update performance of the Bx-tree. This is due to rare updates and the resulting
high migration rate. The query performance does not degrade. With low speeds, query expansion is very small.

Hypothesis H32 does not hold. The performance of the TPR- andTPR*-trees are affected evenly by the
presence of a small amount of fast-moving objects. Hypotheses H31 and H33 are confirmed.

6.3.4 Experiment 4—Accuracy Threshold

This experiment examines Hypotheses H41, H42, and H43. The results are shown in Figure 7.
The query performance of the Bx-tree is only affected slightly by a small fraction of large thresholds and

is affected significantly more by the presence of many objects with large thresholds (above 60% of all objects)
(Experiment 4.1). When the maximum threshold increases (Experiment 4.2), the query performance degrades
gradually. Rare updates affect both query and update performance, due to migration and an increased index
lifetime. This is discussed in the results of Experiments 4.2, 5.2, and 6.

The query performance of the TPR- and TPR*-trees degrade as well due to less frequent updates and thus
larger MBRs. The update performance of the TPR- and TPR*-trees degrade when thresholds increase, a result of
the MBRs being tightened less frequently. The update performance of the Bx-tree degrades when updates are rare,
due to migration.

The query performance of all the indexes degrades when threshold values grow. However, the Bx-tree is more
sensitive to increasing thresholds than the TPR- and TPR*-trees. When the threshold is 1 km, the average amount
of I/Os per query is about 4 times higher for the Bx-tree than for the TPR- and TPR*-trees.

Hypothesis H43 does not hold. When the number of objects with high thresholds increases, the query perfor-
mance of the TPR- and TPR*-trees degrades gradually. The query performance of the Bx-tree degrades signifi-
cantly when there are many objects with large thresholds, but only slightly when there are few objects with large
thresholds.

Hypothesis H41 is not confirmed. It states that the update performance is not affected when query enlargement
is used. This is not true for the Bx-tree. In the Bx-tree, the update and query performance are affected due to more
rare updates.

Hypothesis H42 is confirmed in part. The Bx-tree performs worse when there is at least one object with a high
threshold. However, when the amount of objects with high thresholds increases, the query and update performance
degrade as well.

6.3.5 Experiment 5—Update Arrival Interval

We next examine Hypotheses H51, H52, H53, and H54. The results are shown in Figure 8.
The query and update performance of all the indexes degradeswhen the update frequency decreases. The

results differ from the expectations. Even very short update intervals (20 s) have a positive influence on the query
and update performance of the TPR- and TPR*-trees. Frequentaccess of MBRs is compensated by tight MBRs.

17

0
4
8

12
16

10.80.60.40.2

Threshold, km

Exp. 4.1. Avg I/O per update

0
4
8

12
16

10080604020

High thresholds, %

Exp. 4.2. I/O per update

0
0.5

1
1.5

2
2.5

10.80.60.40.2

Threshold, km

Exp. 4.1. CPU per update

0
0.5

1
1.5

2
2.5

10080604020

High thresholds, %

Exp. 4.2. CPU per update

0
50

100
150
200
250

10.80.60.40.2

Threshold, km

Exp. 4.1. Avg I/O per query

0
40
80

120
160
200

10080604020

High thresholds, %

Exp. 4.2. Avg I/O per query

0

40

80

120

10.80.60.40.2

Threshold, km

Exp. 4.1. CPU per query

0

40

80

120

10080604020

High thresholds, %

Exp. 4.2. CPU per query

Bx TPR TPR*

Figure 7: Experiment 4—accuracy threshold

18

0
5

10
15
20
25

98806040202

Long update intervals, %

Exp. 5.1. Avg I/O per update

0

4

8

12

2001601208040

Update interval, s

Exp. 5.2. Average I/O per update

0

10

20

30

4 8 12 16 20

Update interval, min

Exp. 5.3. Avg I/O per update

0

1

2

3

98806040202

Long update intervals, %

Exp. 5.1. Avg CPU per update

0
0.4
0.8
1.2
1.6

2

2001601208040

Update interval, s

Exp. 5.2 Avg CPU per update

0
1
2
3
4

4 8 12 16 20

Update interval, min

Exp. 5.3. Avg CPU per update

0
100
200
300
400

98806040202

Long update intervals, %

Exp. 5.1. Avg I/O per query

0

40

80

120

2001601208040

Update interval, s

Exp. 5.2 Avg I/O per query

100
300
500
700
900

4 8 12 16 20

Update interval, min

Exp. 5.3. Avg I/O per query

0
40
80

120
160
200

98806040202

Long update intervals, %

Exp. 5.1. Avg CPU per query

0
20
40
60
80

100

2001601208040

Update interval, s

Exp. 5.2 Avg CPU per query

0
50

100
150
200
250
300

4 8 12 16 20

Update interval, min

Exp. 5.3. Avg CPU per query

Bx TPR TPR*

Figure 8: Experiment 5—update arrival interval

19

The query performance of the Bx-tree degrades significantly when the update interval increases. This con-
trasts the expectation that the query performance remains stable (Hypothesis H53). It is interesting to notice that
there usually is a jump in the query and update performance when the average update interval length reaches the
timestamp of a new index partition. This is true when the update interval is rather short (Experiment 5.2). In the
generated data, each object receives 2 updates on average. With an update interval length of 20 s, at most two index
partitions are used. As a result, the queries need to traverse only two partitions. When the update interval length
grows, the third partition comes into use. After the first partition expires, migration is introduced. The objects
that are migrated to a new partition update the histogram of velocities (defined in Section 6.1). This increases the
query expansion in the new partition.

The update performance of the Bx-tree degrades as the update interval increases, due to migration.
Hypotheses H51, H52, H53, and H54 do not hold. The query and update performance of all the indexes

degrades when the update frequency decreases. The query performance of the Bx-tree degrades significantly,
while the query performance of the other indexes degrade only slightly. The update performance of the TPR- and
TPR*-trees degrade more than that of the Bx-tree.

6.3.6 Experiment 6—Index Lifetime

Next, we examine Hypotheses H61, H62, and H63. The results are shown in Figure 9.

2
6

10
14
18

1 2 3 4 5 6 7 8 910

Number of updates, 100 K

Exp. 6. Avg I/O per update

100
300
500
700
900

1 2 3 4 5 6 7 8 910

Number of updates, 100 K

Exp. 6. Avg I/O per query

0

20

40

60

Q3Q2Q1

Query types

Exp. 7. Avg I/O per query

0
0.5

1
1.5

2
2.5

1 2 3 4 5 6 7 8 910

Number of updates, 100 K

Exp. 6. Avg CPU per update

0

100

200

300

1 2 3 4 5 6 7 8 910

Number of updates, 100 K

Exp. 6. Avg CPU per query

0

20

40

60

Q3Q2Q1

Query types

Exp. 7. Avg CPU per query

Bx TPR TPR*

Figure 9: Experiment 6—index lifetime; and Experiment 7—query types

The query performance of the Bx-tree degrades significantly as the index lifetime increases, while the update
performance is not affected. The query performance degradation is also observed and discussed in Experiments
4.2 and 5.2.

The update and query performance of the TPR- and TPR*-trees degrade slightly as the index lifetime increases.
The degradation is the most visible for the TPR*-tree. As time passes, the MBRs in both trees expand. The update
operations in the TPR*-tree become more costly because morepaths need to be traversed.

With 100 K updates, the index lifetime is approximately 140 s. As ∆tmu = 120, migration is needed only
once. With 1,000 K updates, the index lifetime is about 40 min. With a small amount of updates, the objects do
not have enough time to accelerate (see the generator description in Section 4.2). After some time, their speeds
are likely to be higher and lead to a bigger query expansion. The reasons for the low performance when the index
lifetime increases are discussed further in Experiment 5.2.

20

Hypothesis H61 is confirmed. Hypothesis H62 does not hold. The update and query performance of the
TPR- and TPR*-trees degrade at the same rate as time passes. Hypothesis H63 also does not hold. The query
performance of the Bx-tree degrades significantly as time passes, while the update performance remains stable.

6.3.7 Experiment 7—Query Types

We now consider Hypotheses H71, H72, and H73. The results areshown in Figure 9.
The query performance of all the indexes are almost independent of the query type. However, the slight

differences for the different types that are seen are as expected.
Hypotheses H71 and H73 are confirmed. Hypothesis H72 does nothold. The performance of the TPR- and

TPR*-trees change equally when the query types change.
The influences of the time windows and temporal extents of queries on the query performance are discussed

in Experiments 8.2 and 8.3.

6.3.8 Experiment 8—Spatial Extents, Temporal Extents, and Time Windows of Queries

This section examines the last hypotheses: Hypotheses H81,H82, H83, H84, and H85. The results are shown in
Figure 10.

0
20
40
60
80

0.950.60.40.05

Query spatial extent, %

Exp. 8.1. Avg I/O per query

0

20

40

60

0 40 80 120

Query temporal extent, s

Exp. 8.2. Avg I/O per query

0
20
40
60
80

0 40 80 120

Query window, s

Exp. 8.3. Avg I/O per query

0
20
40
60
80

0.950.60.40.05

Query spatial extent, %

Exp. 8.1. Avg CPU per query

0

20

40

60

0 40 80 120

Query temporal extent, s

Exp. 8.2. CPU per query

0

20

40

60

0 40 80 120

Query window, s

Exp. 8.3. Avg CPU per query

Bx TPR TPR*

Figure 10: Experiment 8—spatial extents, temporal extents,and time windows of queries

The I/O and CPU performance of the TPR- and TPR*-trees increases approximately proportionally to an
average spatial extent of queries. This means that small queries do not have a noticeable overhead. For small
queries, the TPR- and TPR*-trees perform significantly better than the Bx-tree.

The Bx-tree is less sensitive to changes in spatial extents of queries than are the TPR- and TPR*-trees. When
the initial query area is small, the query enlargement of theBx-tree due to thresholds and velocities introduce large
overheads. With large spatial extents (above 0.8% of the space), the average number of I/Os per query is almost
equal for all the indexes. However, the CPU time of the Bx-tree is relatively higher.

The query performance of the indexes are almost independentof the temporal extents of the queries. This
was expected for the Bx-tree. The TPR- and TPR*-trees were expected to perform better for queries with shorter
temporal extents (Hypothesis H82). This can be explained asfollows. Timeslice and window queries select about
the same amount of objects. The average spatial extents of queries (5×5 km) is much larger than the distance an
object can travel during the maximum temporal extents of queries (250 m).

21

The TPR- and TPR*-trees, as expected (Hypothesis H81), perform better when the time windows of queries
are small. When the times are closer to the current time, the MBRs for such queries are smaller than for queries
that look far into the future. However, the difference in performance is very slight.

As expected (Hypothesis H83), the performance of the Bx-tree improves when the time windows of queries
increase and become close to the reference timestamp of the last phase. It is expected that objects update their
positions within the maximum update interval∆tmu, and the majority of the objects are indexed in the partitions
with the latest future timestamps. Therefore, the queries that look further into the future have to be expanded less
than the queries with timestamps close to the current time.

Hypotheses H81, H83, H84, and H85 are confirmed. Hypothesis H82 is confirmed partially. The query
performance of the TPR-, TPR*-, and Bx-trees degrade when the temporal extents of queries increase, but the
degradation is hardly noticeable.

6.4 Summary of the Experimental Evaluation

The experiments demonstrate that the benchmark fulfills itspurpose: it is capable of uncovering strengths and
weaknesses of the indexes (only some of which are reported bythe papers that introduce the indexes). For example,
the experimental results identify situations in which the Bx-tree has lower query performance than the TPR-tree.
As another example, the benchmark shows that situations exist where the TPR-tree outperforms the TPR*-tree for
updates.

The Bx-tree exhibits a substantial query performance degradation when the maximum speeds of objects in-
crease, when the intervals in-between the updates grow to belong, when the position accuracy threshold becomes
very large, or when the index lifetime is long. The index performs well for both queries and updates when the in-
dex lifetime is very short and speeds are low or average. The main reasons for the query performance degradation
are likely to be the unadjusted maximum update interval and the large query expansion. The reasons for the large
expansions are the high maximum and the low minimum velocities recorded in the histogram of velocities, and a
high threshold.

The TPR- and TPR*-trees exhibit very similar query performance in most cases, which is somewhat contrary
to earlier experimental results [4]. The most likely reasonfor this mismatch is the different types of workloads
used. The queries used in the earlier experimental evaluation of the TPR*-tree are not only moving, but also
expanding. In addition, the underlying space 100 times smaller than in the present study. This is likely to result in
many overlapping MBRs. High maximum speeds of objects result in overlapping MBRs as well. Figure 6 shows
the results of Experiment 3.3, where the maximum speeds of objects are high. In this experiment, the TPR*-tree
performs slightly better than the TPR-tree.

The Bx-tree seems to be a good choice when the number of objects is big, the maximum interval in-between
the updates is known, the accuracy threshold is low, and the speeds of the objects do not exceed the usual speeds
of vehicles.

In other cases, the TPR- or TPR*-trees should be chosen. The choice between the TPR- and TPR*-trees should
be made by taking into account the expected query workload and the density of objects: the TPR-tree performs
better with timeslice queries and low object densities, while the TPR*-tree performs better with expanding queries
and high object densities (according also to experimental results reported elsewhere [4]).

The TPR- and TPR*-trees appear to be the most versatile indexes; however, the Bx-tree is based on the B+-
tree, which is already available in many DBMSs. Therefore, the creation of a more robust version of the Bx-tree
may be a promising research direction.

7 Conclusions and Future Work

A number of indexes for the current and near-future positions of moving objects exist, and more are underway.
This state of affairs creates an increasing need for a neutral and well-articulated experimental setting for evaluating
and comparing these indexes.

This report proposes a benchmark, termed COST, that is targeted specifically toward the evaluation of such
indexes. The benchmark aims to make realistic assumptions about the experimental settings—data is inherently
inaccurate, predictive queries that reach into the future are covered, the indexes are assumed to be stored persis-
tently on disk. More specifically, an update technique is assumed where positions are guaranteed to be accurate

22

within agreed-upon thresholds and where updates occur onlywhen necessary in order to satisfy the guarantees.
The indexes may use either query or data enlargement to account for the inaccurate data. The benchmark includes
a workload generator, definitions of experiments, and evaluation metrics. It considers a wide range of workload
parameters that cover many real-world situations.

As proof of concept and to evaluate the benchmark, it was applied to the TPR-, TPR*-, and Bx-trees. The ex-
periments demonstrate that the benchmark is well-specifiedand is capable of covering a wide range of situations.
Weaknesses and strengths of the indexes were detected by examining the sensitivity of the indexes to workloads
with varying parameter values, including workloads with extreme settings. The experimental results cover situ-
ations that were not covered in the papers that introduced the indexes, due to more extensive experiments. The
obtained results provide guidance as to when each of the indexes should and should not be used.

The benchmark may be extended by inclusion of such aspects asindex size in disk pages, I/Os and CPU time
for bulkloading and bulk operations, and evaluation of concurrent accesses.

Further analysis of the support for uncertainty in the indexes is also warranted. In this paper, variation among
the thresholds of the objects was considered. As an extension of this, thresholds may be varied across time and
space. The development of update, as well as query and data enlargement policies, for such workloads is an
interesting research direction.

Further studies of existing spatio-temporal indexes are also warranted, possibly including detailed studies of
special cases and aspects specific to individual indexes. Examples include detailed studies of overlaps among
MBRs, growth rates of MBRs, and the grouping of objects into MBRs in R-tree-based indexes. For the Bx-
tree, such studies may cover query enlargement aspects and migration loads. For all indexes, it is of interest to
investigate aspects such as tree depths and node fanouts. Studies such as these have the potential to offer insights
that may guide the development of improved indexes.

Acknowledgments

This research was conducted within the project Telematics Applications Based on Ubiquitous Sensor Networks,
funded by the Electronics and Telecommunications ResearchInstitute, South Korea. C. S. Jensen is also an adjunct
professor in Department of Technology, Agder University College, Norway.

References

[1] Blewitt, G.: Basics of the GPS technique: observation equations. Geodetic Applications of GPS (1997)
10–54

[2] Wikipedia: GPRS (2001–2005)http://en.wikipedia.org/wiki/GPRS.

[3] Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving
objects. In: Proceedings of the 21st ACM SIGMOD International Conference on Management of Data.
(2000) 331–342

[4] Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive
queries. In: Proceedings of the 30th International Conference on Very Large Data Bases. (2003) 790–801

[5] Procopiuc, C.M., Agarwal, P.K., Har-Peled, S.: STAR-tree: an efficient self-adjusting index for moving
objects. In: Revised Papers from the 4th International Workshop on Algorithm Engineering and Experiments.
(2002) 178–193

[6] Šaltenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services. In: Proceedings of the
18th International Conference on Data Engineering. (2002)463–472

[7] Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P.: STRIPES:an efficient index for predicted trajectories. In:
Proceedings of the 23rd ACM SIGMOD International Conference on Management of Data. (2004) 635–646

[8] Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree based indexing of moving objects. In:
Proceedings of the 30th International Conference on Very Large Data Bases. (2004) 768–779

23

[9] Zobel, J., Moffat, A., Ramamohanarao, K.: Guidelines for presentation and comparison of indexing tech-
niques. SIGMOD Rec.25 (1996) 10–15

[10] Gray, J., ed.: The Benchmark Handbook for Database and Transaction Processing Systems. Morgan Kauf-
mann Publishers, Inc. (1993)

[11] Theodoridis, Y.: Ten benchmark database queries for location-based services. The Computer Journal46
(2003) 713–725

[12] Myllymaki, J., Kaufman, J.: DynaMark: A Benchmark for Dynamic Spatial Indexing. In: Proceedings of
the 4th International Conference on Mobile Data Management. (2003) 92–105

[13] Werstein, P.F.: A performance benchmark for spatiotemporal databases. In: Proceedings of the 10th Annual
Colloquium of the Spatial Information Research Centre. (1998) 365–373

[14] Tzouramanis, T., Vassilakopoulos, M., Manolopoulos,Y.: Benchmarking access methods for time-evolving
regional data. Data Knowl. Eng.49 (2004) 243–286

[15] Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Queryingimprecise data in moving object environments. IEEE
Trans. on Knowl. and Data Eng.16 (2004) 1112–1127

[16] Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In: Proceedings of the 31st International Conference on Very
Large Data Bases. (2005) 922–933

[17] Čivilis, A., Jensen, C.S., J. Nenortaitė, J., Pakalnis, S.: Efficient tracking of moving objects with precision
guarantees. In: Proceedings of the 1st Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services. (2004) 164–173

[18] Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.:Updating and querying databases that track mobile
units. Distrib. Parallel Databases7 (1999) 257–387

[19] Pfoser, D., Jensen, C.S.: Capturing the uncertainty ofmoving-object representations. In: Proceedings of the
6th International Symposium on Spatial Databases. (1999) 111–132

[20] Lazaridis, I., Mehrotra, S.: Approximate selection queries over imprecise data. In: Proceedings of the 20th
International Conference on Data Engineering. (2004) 140–152

[21] Weisstein, E.W.: Minkowski sum. From MathWorld—A Wolfram web resource (1999–2005)http://
mathworld.wolfram.com/MinkowskiSum.html.

[22] Šaltenis, S., Jensen, C.S., Leutenegger, S., Lopez, M.: Indexing the positions of continuously moving
objects. Technical report, Aalborg University (November 1999)

[23] Kaufman, J., Myllymaki, J., Jackson, J.: CitySimulator (2001)
https://secure.alphaworks.ibm.com/aw.nsf/techs/citysimulator.

[24] Myllymaki, J., Kaufman, J.: LOCUS: A testbed for dynamic spatial indexing. IEEE Data Eng. Bull. (Special
Issue on Indexing of Moving Objects).25 (2002) 48–55

[25] Theodoridis, Y., Nascimento, M.A.: Generating spatiotemporal datasets on the WWW. SIGMOD Rec.29
(2000) 39–43

[26] Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Pro-
ceedings of the 6th International Symposium on Advances in Spatial Databases. (1999) 147–164

[27] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method
for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on Man-
agement of Data. (1990) 322–331

[28] Jensen, S., Tiěsyṫe, D., Tradǐsauskas, N.: Spatio-temporal workload generator (2004)http://www.cs.
aau.dk/∼dalia/generator.htm.

24

