The COST Benchmark—Comparison and
Evaluation of Spatio-Temporal Indexes

Christian S. Jensen and Dalia $y¢e and Nerius Tradauskas

July 17, 2006

TR-86

A TIMECENTER Technical Report

Title The COST Benchmark—Comparison and Evaluation of Spatiopbeah Indexes

Copyright(©) 2006 Christian S. Jensen and DaliaShite and Nerius Tra8auskas.
All rights reserved.

Author(s) Christian S. Jensen and Dalia $j#& and Nerius Tra8auskas

Publication History July 2006. A TME CENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark 5
Christian S. Jensen (codirector), Simo&asdtenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, Saba@tétrim, Bongki Moon, Sudha Ram, Stanley Yao

Individual participants

Yun Ae Ahn, Chungbuk National University, Korea; Michael Bbhlen, Free University of Bolzano, Italy; Cur-
tis E. Dyreson, Washington State University, USA; Dengf&@ap, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Heidi Gregersen, Aas School of Business, Denmark; Vijay Khatri, Indi-
ana University, USA; Nick Kline, Microsoft, USA; Gerhard Kimayer, University of Bern, Switzerland; Carme
Martin, Technical University of Catalonia, Spain; Thomas Myradniversity of Bern, Switzerland; Kwang W.
Nam, Chungbuk National University, Korea; Mario A. Nasciitee University of Alberta, Canada; John F. Rod-
dick, Flinders University, Australia; Keun H. Ryu, ChungbNational University, Korea; Dennis Shasha, New
York University, USA; Michael D. Soo, amazon.com, USA; Aeds Steiner, TimeConsult, Switzerland; Paolo
Terenziani, University of Torino, Italy; Vassilis Tsotrdgniversity of California, Riverside, USA; Fusheng Wang,
Siemens, USA; Jef Wijsen, University of Mons-Hainaut, Bety; and Carlo Zaniolo, University of California,
Los Angeles, USA

For additional information, see ThaMe CENTER Homepage:
URL: <htt p: // www. cs. aau. dk/ Ti meCent er >

Any software made available viame CENTERIs provided “as is” and without any express or implied wartss,
including, without limitation, the implied warranty of neérantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” a&tters in the so-calleRune
alphabet used one millennium ago by the Vikings, as well athbyr precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which havelamghapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be foundaatrig tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respedyive

Abstract

An infrastructure is emerging that enables the positioning of populatioos-tifie, mobile service users. In
step with this, research in the management of moving objects has attrabdrial attention. In particular,
quite a few proposals now exist for the indexing of moving objects, an@ @ underway. As a result, there is
an increasing need for an independent benchmark for spatio-tahipdexes.

This report characterizes the spatio-temporal indexing problem apmbges a benchmark for the perfor-
mance evaluation and comparison of spatio-temporal indexes. Ndtablyenchmark takes into account that the
available positions of the moving objects are inaccurate, an aspect lgggehgd in previous indexing research.
The concepts of data and query enlargement are introduced farssittly inaccuracy. As proof of concepts of
the benchmark, the report covers the application of the benchmarke® spatio-temporal indexes—the TPR-,
TPR*-, and B'-trees. Based on conceptual analyses of the indexes, perforrhgpotheses are formulated.
Experimental results and consequent guidelines for the usage ofitideses are reported.

1 Introduction

With the availability of mobile computing technologies,oggositioning, and wireless communication capabili-
ties, it has become possible to accumulate the changingidasaof populations of moving objects in real time.
Consumer electronics are affordable, current Global Pogitg System (GPS) [1] receivers are capable of geo-
positioning with an accuracy of up to a few meters, the Gdrieaaket Radio Service (GPRS) [2] and similar
technologies have become common and relatively cheap noéaneeless data transfer. It is thus possible for an
object to continually obtain and transmit its current gosito a central server.

Applications are emerging that require or may benefit fromttiacking of the locations of moving objects.
These occur in areas such as logistics, traffic managemehblicgransportation, and location-based services.
Current applications usually track only relatively smalinmbers of objects, but as the underlying technologies
continue to improve, applications that concern large nusib&objects are on the horizon.

The increasing interest in mobile location data has sersedadivation for the development of spatio-temporal
indexes for the current and near-future positions of mowahbgcts. A number of spatio-temporal indexes have
been proposed, such as R-tree-based indexes, e.g., thedd’[3}, the TPR*-tree [4], the STAR-tree [5], and the
REXP_tree [6]; the quadtree-based index STRIPES [7], and therBe-based Btree [8], to name but a few.

This continuing proliferation of indexing techniques de=aa need for a standard procedure for performance
evaluation and comparison. Although mathematical conityl@nalysis is valuable, empirical evaluation [9] is
indispensable for evaluation and comparison of spatigteal indexing techniques. The current state of affairs
is that indexes being proposed are being evaluated enlpirarad are being compared to, typically, one other
indexing technique. The empirical studies reported arelyaxhaustive and, not surprisingly, tend to focus on
the favorable qualities of the index being proposed. Thdahisty of an independent benchmark specification
establishes an equal footing for obtaining experimentllte and enables broader comparison.

This report proposes a benchmark specification, termed Cf&1ihe evaluation and comparison of spatio-
temporal indexes. The benchmark is independent in the dbasét is proposed independently of a specific
indexing technique. The benchmark aims to provide a unifiedgrlure that covers an extensive variety of possible
and realistic settings. In particular, the benchmark etals the index ability to accommodate uncertain object
positions. Queries and updates are considered, as are/®atind CPU performance.

The remainder of this report is outlined as follows. Relatedk is covered in Section 2. The addressed index-
ing problem is detailed in Section 3. Sections 4 and 5 conk@menchmark specification. Section 6 introduces to
spatio-temporal indexes, performs conceptual analysikesf performance, and reports on experimental results
that were obtained using the benchmark. Section 7 conchntgsffers directions of future work.

2 Related Work

We cover in turn existing benchmarks for spatio-tempor&h darevious work on the indexing of uncertain data,
and past empirical evaluations of spatio-temporal indexes

A number of benchmarks exist that measure transaction npeaface in traditional database systems. For
example, a set of benchmarks that evaluate system perfoarard price is provided by Gray [10]. However,
these benchmarks are not applicable to spatio-temporal dat

Of relevance to moving objects, Theodoridis [11] providdseachmark that includes a database description
and 10 non-predictive queries for the static and movingiahdata. Myllymaki and Kaufman [12] also propose a
benchmark for moving objects. The query and update perfocsmaeasure is CPU time, as a main-memory resi-
dentindex is assumed. Future queries on anticipated fldoagions are not considered. Werstein [13] proposes a
benchmark for 3-dimensional spatio-temporal data. Thelmark is oriented towards general operating system
and database system performance comparison, includihgatican of the spatio-temporal and 3-dimensional ca-
pabilities. Zobel et al. [9] provide general guidelinestioe comparison of indexing techniques. The authors list
criteria by which the indexing techniques should be comgarel give four comparison methodologies. Tzoura-
manis et al. [14] perform an extensive, rigorous experimesamparison of four types of quadtree-based spatio-
temporal indexes, using the same benchmark specificati@m wharforming experiments with the four indexes.
Their proposal concerns raster data, generated with th&RBTbenchmark tool.

The concept of data uncertainty for moving object positibas previously been studied quite extensively
(see, e.g., [15, 17, 18, 19]). While the bulk of this work hasrbeonducted independently of indexing, some
works (see, e.g., [16, 19]) offer insights into the indexafgincertain positions. The present work goes further
by proposing a simple and yet effective method for storing i@trieving position data with accuracy guarantees.
Existing indexes can straightforwardly be extended to awnodate such data.

Many authors of spatio-temporal indexes have compareditiagxes to usually one other competitive index
(e.0., [3, 4, 7, 8]). However, these comparisons tend tofaguexploring the properties of the new index being
proposed; and with the new index being the main topic, theexmntal specifications are relatively limited and
lack independence.

The benchmarks covered above consider neither uncertéénnda accuracy guarantees. DynaMark [12]
shares similarities with the COST benchmark with respethéogenerated traffic data, but it ignores aspects to
do with future positions. To the best of our knowledge, naejppehdent benchmark exists that has been designed
specifically for the evaluation of disk-based indexes fer¢hrrent and near-future uncertain positions of moving
objects.

3 Spatio-Temporal Indexing

This research is concerned with the indexing of large anwohturrent and near-future, 2-dimensional moving
object positions, and predictive spatial queries are aregt. In this setting, position data are received from
continuously moving objects capable of reporting theirifpms and velocity. Mobile applications—e.g., those

that provide location-enabled services to mobile usersueiggieries on this data.

3.1 Spatio-Temporal Data and Queries

The objects, represented as 2-dimensional points, upldeitepositions periodically. As the server is recording
the positions of a large amount of objects, updates shouldras rarely as possible. The current and anticipated
future positions of the objects can be queried at any timeardfore, continuous function that approximates the
actual object movements and enables predictive queriesiiged from the position data received.

An appropriate approximation function should satisfy tbkofving requirements: (1) the parameters of the
function can be obtained from the moving object; (2) the fiomcreduces the amount of updates; (3) predicted
positions are helpful in answering predictive queries; @)dhe function is easy to compute and its representation
is compact.

It is common to predict an object’s near-future positiomgsa linear function of time [3, 4, 7, 8]. An object’s
position at timef is denoted by a 2-dimensional vectdr, and its velocity is given by a 2-dimensional vecidr
The function takes time as an argument, and returns thetsbjesition:

P(t) = Pltup) + V (tup)(t — tup) - @)

Heret,,, is the time of the last update, at which the object’s posivimsl_ﬁ(tup); v(tup) is the velocity at time
tup, andI_D)(t) is the predicted position at tinte

This function may be represented as a tu(tﬁ(tref), 7(tup)), where timet,.¢ is an agreed upon, global
reference time at which the object’s position is stored. Wdrenpdate of an object arrives at timg, its position

P(t,ef) at timet, is calculated using (1).

The linear function satisfies the four requirements for ggraximation function. Velocity and position val-
ues are easy to obtain—they are output by GPS receivers [d]thenvelocity can also be estimated based on
previous positions (first requirement). The function'sueais calculated in a constant time, and the representation
is compact (fourth requirement). Studies show that usitgftinction for vehicle positions, the average num-
ber of updates is reduced by more than a factor of two for @aoyuthresholds below 200 meters, in comparison
to the standard approach where the current position is asstonbe given by the most recently reported posi-
tion [17] (second requirement). Finally, linear movemergdiction offers better approximations of near-future
positions than does stationary position prediction, yigjdnore reasonable answers to predictive queries (third
requirement).

Three types of queries that a spatio-temporal index shayggart can be distinguished [3]. L&tt;, andi,
be time points and let,, ¢;,, andg,, be 2-dimensional rectangles.

Q1 Timeslice quen@1 = (¢, t) returns the objects that intersect withat timet.

Q2 Window queryQ2 = (g, t1,t2) returns objects that intersect withat some time during time intervgh , t-].
This query generalizes the timeslice query.

Q3 Moving window query@3 = (¢, ,qr,,t1,t2) returns the objects that intersect, at some time duing.],
with the trapezoid obtained by connecting rectanglesndg,, at timest; andt,, respectively. This query
generalizes the window query.

Figure 1 offers an example encompassing four objects aee tlueries in 1-dimensional space. Hiows
in the figure represent object movement. The querieg2, andq3 are timeslice, window, and moving window

Figure 1:Example of objects and queries in a 1-dimensional space

queries, respectively. Quer has spatial rangeg3,., = [—20, —10], ¢3,., = [—25, —10], and time rangé5, 6].
The result of the query depends on when the query is issueidsuéd before time = 3, the result is{o1}.

If issued between time = 3 and timet = 4, the result is the empty sét because object4 has not yet been
inserted. Otherwise, the result{is4}. Objectol is updated at tim8 and its predicted trajectory changes. Its new
trajectory does not intersect with the query.

3.2 Update Policies

The inaccuracy of the moving object positions availabléhatgerver side stems from two sources. The positions
measured by the moving objects (e.g., using GPS) are inate;uamd the use of sampling introduces inaccuracy.
Because the measurement inaccuracy is much smaller thaarti@ing inaccuracy in a typical setting, we assume
that the measurements are accurate and focus on the inegdurato sampling.

In particular, we assume an approach where, at any poinmhig the actual position of an object deviates from
the position assumed on the sever side, the predicted gadity no more than a chosen distance threskotd
An update policy should be adopted that satisfies the acggarantee with as few updates as possible.

The so-callecpoint-basedupdate policy requires an object to issue an update whenigkende between the
object’s current and its most recently reported positi@esches the threshold value. With this policy, the server
assumes that an object remains where it was when it mosttheceported its position. Frequent updates result.

To reduce the cost of updatesector-basegolicy may be adopted [17], where each moving object shares a
linear prediction, as given by (1), of its position with theger. When the distance between an object’s actual and

predicted positions exceeds the distance threstialdthe object issues an update to the server. The point-based
policy is the special case of the vector-based policy, whieedinear prediction function is constali_Y?(: 0,
where 0 is the zero vector).

The point-based update policy is shown in Figure 2 (a). Hbmpositionl_j(ti) is updated at time;, and the
actual position remains in the circle with cenﬂ_él(ti) and radiughr for some time, yielding a predicted position
of TD)(ti). At time ¢, 1, the difference between the actual and predicted positeasheghr, and an update is

issued.
@) (b W
F?(tiﬂ) i‘ I?(tiﬂ)

Figure 2:Point-based (a) and vector-based (b) update policies with accurashtidthr

Next, the vector-based policy is illustrated in Figure 2 ¢jst, at timef;, the object reports its actual position
}_3(151-) and veIocityV(ti) to the server. The server's prediction is illustrated by $éd horizontal vectar
The object shares this prediction with the server. In addijtit repeatedly compares its actual position with
the predicted positiorl_jpr. When at timef; 1, the object’s position isP (t;+1), the distance between the two
positions isthr, and an update is generated. Again updates are sent only neeeled in order to maintain the
accuracy guarantees.

As discussed in Section 3.1, the vector-based policy yiieder updates than the point-based policy for the
same accuracy guarantees and therefore is preferable.

3.3 Query and Data Enlargement

The notions ofrecision(p) andrecall (r) [20] are commonly used for measuring the accuracy of a qresyit.
The precision is the fraction of the objects in the result Hwually satisfy the query predicate, and the recall is
the fraction of the objects that satisfy the query preditiaae are in the query result. Ideally= r = 1, meaning
that the query result contains exactly the objects thasfyatie query.

However, the data are inaccurate—the positions of the abggetonly known with accuraayir. It is thus not
possible to achieve = r = 1; however, perfect recall-(= 1) can be achievédand is a desirable requirement for
an index. Thus, the query result is guaranteed to contaobgkts that may satisfy the query predicate.

To achieve perfect recall, it is necessary to take the imracyuof the predicted positions into account. This
may be done by means of either data or query enlargement.

Query enlargement addresses position inaccuracy by ekgatite query area byhr in all directions. If
different objects have different thresholds, the maximbreghold must be used. Perfect recall is achieved as all
the objects that are actually in the query area have pretjsitions that are no further thatr- away from their
actual positions.

The “fattened” query rectangle may be obtained as the Miskoaum [21] of the two sets. Each pomf that
belongs to the query rectangjeis added to each poipt that belongs to the segmenof lengththr:

Qr@sz{pq +ps|pq € qr N\ ps 63}

Figure 3 (a) shows query enlargement in a 2-dimensionakspac

Next, with data enlargement object positions are expanaiedspatial regions with extent. In particular, an
object’s position becomes a circle with radiias, instead of being a point. The center of the circle is theipted
position. The object’s actual position is always inside ¢hrele. If the circle intersects with the query area, the
object must be included in the query result. Figure 3 (bytHates data enlargement. The shaded area denotes the
movement of the object.

A spatio-temporal index should support either query or datiargement. However, existing indexes tend
to ignore position inaccuracy and simply assume that theykilie exact position of each object, meaning that
thr = 0. Such indexes must be adjusted to index positions with moo-threshold values.

1We note that perfect recall for queries that concern futiames is only possible when updates that occur between the tijaers is issued
and the future times specified in the query cannot affect tieeygqesult.

TSR TR
@7V (hy

y \ y
X

%

NN
NAVAVAYAY, thr X
aY d

Figure 3:Example of query (a) and data (b) enlargement

4 Benchmark Data and Settings

The workload for an index consists of a sequence of the updaie queries. The benchmark specification contains
definitions of workloads and procedures of using them. Tlerel@ properties of the workloads and workload
generation are discussed first. Definitions of benchmarkgahores, termeexperimentsthen follow.

4.1 Workload Parameters

A set of update and query parameters defines the benchmaklioads. The workloads aim to simulate a wide
range of situations in which an index may be used. The folgwiarameters are of interest:

Number of Objects The number of objects largely determines the size of thexiade may be used to examine
the scalability of the index.

Position and Velocity Skew These parameters determine the distribution in space adlifext positions and
velocities. They are highly related, as velocity skew lgadsosition skew. An example of skew is the concentra-
tion of stationary vehicles in the suburbs at night and inrmss districts during working hours, and many moving
vehicles during the morning and afternoon rush hours.

Update Arrival Pattern The rate of updates depends on the chosen update policy @#bdesin Section 3.2.
With the vector-based policy, the durations in-betweeratgslvary greatly. The update frequency depends on the
movement trajectories and speeds of the objects. This gaeamllows examination of how an index accommo-
dates different frequencies of updates.

Position Accuracy Threshold The distance thresholdr (defined in Section 3.2) affects the update arrival rate
and the query or data extents. By varying this parameteiindex ability to support various update frequencies
as well as data and query sizes can be studied.

Query Parameters The required query types, their spatial and temporal extamd their time intervals are the
guery parameters of interest. The types of queries coresicine described in Section 3.1.

Workload Duration The workload duration is measured as a number of updatesitexeby the index. This
parameter allows examination of how an amount of updatestafthe performance of an index.

4.2 Workload Generator

The workloads in the COST benchmark are generated using klogdrgenerator that extends the generator de-
veloped bySaltenis et al. [22]. That generator was chosen as thergigstiint because it is capable of easily
creating workloads according to many of the parametersigésd in Section 4.1 and because it is fast in compari-
son to such generators as CitySimulator [23, 24] and GSTDJ&E which use complex functions, e.g., functions
that control the interactions among the objects. We proteedkplain the original generator, then describe the
extensions implemented.

A workload intermixes queries and updates with a chosengutiom. An index is then subjected to these
operations. In the generator, object movement is eitheta@nor network-based. To accommodate the latter, a
number of “hubs” with random positions and links betweerséhiorm a complete, bi-directional, spatial graph.
Objects move between hubs until the end of a simulation. Taeimum speed of an object is chosen randomly
from a set of maximum speeds. An object accelerates andetated when moving from one hub to another. Up-
dates are generated in average interval&fatelnterval time durations. For any kind of data, these parameters
can be set:

Objects Total number of moving objects.
Space The extent of the space where the objects are moving.

Speed;,i = 1,...,50 Set of maximum speeds of the objects. For each object, itsmmuax speed is chosen at
random.

TotalUpdates The number of update operations performed in the simulation
UpdatelInterval The average duration between two successive updates ofeat.ob

Hubs The number of destinations between which the objects arangowalue 0 implies uniform (random)
distribution.

QuerySize The maximum spatial extent of a query in percentages of tihexied space.

QueryTypes The fractions of timeslice, window, and moving window gesr{see Section 3.1). The sum of the
three fractions must be equalto

QueryTime The maximum temporal extents of window and moving windowrzase
QueryWindow The maximum duration of time that queries may reach into titeré.
QueryingInterval Querying frequency relative to update operations.

QueryQuantity The number of queries generated at each query generatioh eve

The generator was extended, enabling it to choose betwseanidfinal update policy and the vector-based
policy (as described in Section 3.2). The original policyswatended so that it is able to randomly select a different
update interval for each object. Specifically, the genenatis extended to accommodate three parameters:

Update PolicySpecifies if the shared prediction based vector policy (@Gheroriginal time-based (1) policy is
used.

Threshold, i = 1, ..., 50 The threshold distance between the predicted and the gudsitibns, used in the vector
policy. Up to 50 thresholds may coexist. For each objecthitsshold is chosen at random. This parameter
is used wherdpdate Policy=0.

Update Interva),i = 1,...,50 The average duration between two successive updates ofjact ¢as in the
original generator). Up to 50 update intervals are possible each object, its average update interval is
chosen at random. This parameter is used only wthate Policy=1.

With the vector-based update policy, updates are genewdied the distance between the actual position of
an object and the predicted position reachiegeshold. An additional update is generated when an object reaches
a hub.

4.3 Evaluation Metrics

The COST benchmark uses two types of performance metriesaswerage number of 1/0O operations per index
operation, and the average CPU time per index operatiorafapduery). One 1/O operation is one read of a page
from disk or one write of a page to disk. Reads from and writethe available main memory buffer are not
counted as I/O operations. The CPU time for one operatidmeisiine of CPU usage from the moment when the
operation is issued to the moment when the result of the tperis computed. CPU measure is average time
in milliseconds per operation. /O is typically considetedbe the main cost factor in determining an index’s
performance, while the CPU time is a minor factor.

5 Definitions of Experiments

A benchmark experiment is defined by a set of workload paramseind disk page and main memory buffer size
settings. In each experiment, one parameter, or a set tdédgdarameters, as defined in Section 4.1, is varied. The
set of experiments was chosen with the objective of varyiegmportant workload parameters from Section 4.1.
Parameter values are chosen so that the workloads coveeaarigty of situations. To ensure that the benchmark
stress-tests the indexes under study, some experimenextisene parameter values. The page and buffer size
settings are kept constant for all experiments.

The default values for all workload parameters and settargslisted in Table 1. The chosen values are
commonly used in existing evaluations of spatio-tempardkekes (e.g., [4, 8]). The default speeds are typical
speeds of vehicles, and the number of hubs simulates a mrd-woad network with a substantial number of
destinations. The page and buffer sizes are relatively|siha@ objective being to obtain the effects of large
indexes with relatively small volumes of data. For each expent, described shortly, only parameters with
values that differ from the defaults are listed. Note thés jpossible to use only a subset of paramegérsd;,
Threshold;, and Updatelnterval;, i = 1,...,50, e.g., it is possible to assign the same speed to all objgcts b
settingSpeed, and omitting parametetSpeed;, i = 2, ..., 50.

All experiments measure the average CPU time and numbeDf er operation.

Table 1: Default workload parameters and settings usedgarérents

Parameter Value| Parameter Value
Page, Buffer 1KB, 50KB (50 pages) | QueryingInterval 400 updates
Objects 100,000 | QueryQuantity 2 (in total 1000)
Space 100,000 x 100,000 m? QueryTime 10s
Speed;, i =1,...,4 12.5, 25, 37.5,50 m/s| QuerySize 0.25% of Space
TotalUpdates 200,000 | QueryWindow 50s
Hubs 500 | QueryTypes 0.6:0.2:.0.2
UpdatePolicy 0 | Threshold; 100 m

Experiment 1. Number of Objects Objective:Examine index scalability.
Parameter valuesPoints = 100, 200, ..., 1000 K.
Number of workloadsi0.

Experiment 2. Position and Velocity Skew Objective:Examine the effects of position and velocity skew.
Parameter valuesPart 1 (very high skew)Hubs = 2,4, ...,20. Part 2 (average skewHubs = 20, 40, ..., 200.
Part 3 (low skew):Hubs = 500, 1000, ..., 5000, and0 hubs (uniform distribution).

Number of workloads10 for parts 1 and 2, 11 for part 3.

Experiment 3. Maximum Speeds of Objects Objective: Examine the effects of varying maximum speeds as
well as varying distributions of speeds among the objecssfait objects are more likely to be updated than slow
ones per given time unit, the update frequency increasésimdteasing speeds.

Parameter valuesPart 1 (distribution of speeds): All objects are assignéldeeispee®5 m/s or200 m/s, and
workloads are generated so that the fractions of objects syieed200 m/s are: 0.02; 0.1; 0.2; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8; 0.9; 0.98. Thus, allpeed; are assigned eithés m/s or200m/s, and for each workload, the
smallesti is chosen that allows us to obtain the needed fraction ofdljetcts. Part 2 (low maximum speeds):
Speed, = 0.05; 2;4;6;8;10; 12; 14; 16; 18. Part 3 (high maximum speedsjpeed, = 30,60, ..., 300 m/s.

Number of workloadsi1 for part 1, 10 for the parts 2 and 3.

Experiment 4. Position Accuracy Threshold Objective: Examine the influence of varying thresholds as well
as the distribution of varying thresholds among the objddtse that the update rate depends on the threshold and
that the simulation time increases as updates become urgntq

Parameter valuesPart 1 (distribution of thresholds): All objects are assigreither a threshold af00 m or a

1000 m, and workloads are generated so that the fractions of @bjdth speed 000 m are : 0.02; 0.1; 0.2; 0.3;
0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus dlhreshold; are assigned eithéH0 m or 1000 m, and for each workload

the minimumi is chosen that allows us to obtain the needed fraction ofctdbjgith large (and small) threshold.

Part 2 (equal thresholds for all object§)hreshold; = 100, 200, ..., 1000 m.
Number of workloadsi1 for part 1, 10 for part 2.

Experiment 5. Update Arrival Interval ~ Objective: Examine the influence of varying update intervals as well
as distribution of update intervals. The update frequeffece the time duration of a workload.

Parameter values:UpdatePolicy = 1. Part 1 (distribution of update intervals): Similarly teetbwo previous
experiments, two values of a parameter, h&@latelnterval,, are used-60s (frequent) an@00s (rare). The
value ofi is chosen so that workloads are obtained where the fraatiotgects with an interval d300 s are: 0.02;
0.1;0.2;0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Part 2 (et updates)Updatelnterval, = 20,40, ...,200s. Part

3 (rare updates)Updatelnterval; = 120,240, ...,1200s.

Number of workloadsi1 for part 1, 10 for parts 2 and 3.

Experiment 6. Index Lifetime Objective:Examine the effect of varying index lifetime (in numbers ptiates).
Parameter valuesTotalUpdates = 100, 200, ..., 1000 K.
Number of workloadsi0.

Experiment 7. Query Types Objective:Examine the differences in performance for different typegueries:
timeslice, window, and moving window queries.

Parameter valuesQueryTypes =1:0:0,0:1:0,0:0: 1.

Number of workloads3.

Experiment 8. Query Parameters Objective:Examine the effects of varying spatial extents, temportdres,
and time windows of queries.

Parameter values:Part 1 (spatial extents)QueryTypes = 0 : 1 : 0, QuerySize = 0.05,0.15, ...,0.95%.
Part 2 (temporal extents)QueryTypes = 0 : 1 : 0, QueryTime = 0,20, ...,120s. Part 3 (time windows):
QueryTypes = 1:0: 0, QueryWindow = 0, 20, ...,120 s.

Number of workloadsiO0 for part 1 and 7 for parts 2 and 3.

6 Application of the COST Benchmark

In order to ensure that the benchmark was well specified agldsyuseful results, it was applied for evaluating
and comparing three existing indexes, namely the TPR-, TR B-trees [3, 4, 8]. The TPR*- and*Btrees
were chosen because they are recent and represent thefdtateadt, and the TPR-tree is the predecessor of a
dozen proposals for spatio-temporal indexes.

6.1 Introduction to the TPR-, TPR*-, and B*-Trees

The TPR-tree (Time Parametrized R-tree) [3] and its desar@nthe TPR*-tree [4], are based on the R*-tree [27].
These indexes are adapted for time-parametrized data anigsjuData objects are assigned to minimum bounding
rectangles (MBRs) as in the R*-tree. Additionally, the TRid TPR*-trees use linear functions of time to
represent the movements of the objects and MBRs.

Operations in the TPR-tree are handled similarly to the afmars in the R*-tree, except that the penalty
metrics of the R*-tree (e.g., MBR enlargement) are genegdlio being integrals over a time period ranging from
the current time and time units into the future (calculated based on the updagy.rahe TPR-tree is optimized
for timeslice queries.

The authors of the TPR*-tree have modified the TPR-tree hydiicing new insertion and deletion algo-
rithms. An additional heap structure is used during ineagiwith the objective of achieving better insertions.
Thechoosepathalgorithm selects an “optimal” (according to the paperHipalar definition) path down the tree
in insert operations. Instead of the integral used in the-TiéR, the TPR*-tree calculates penalty metrics based
on sweeping regions (the area covered by a moving MBR fronsuhrent time andd time units into the future).
The TPR*-tree is optimized for moving-window queries.

The B*-tree uses the B-tree structure and algorithms to store and retrieve daiati® data are transformed
into 1-dimensional data using space-filling curves, elg Hilbert or Z curves.

The B*-tree partitions the time axis into intervals with a durategual to the maximum duration in-between
two updates of any objeci\t,,,,,. Each such interval is further partitioned intgphases. For each phase, an index
partition is created. At any point of time, there exist at mos- 1 partitions. The partition in which to insert an

object is chosen according to the object’s insertion timgtife passes, partitions expire, and new partitions are
created. Objects in an expiring partition are reinsertéaltime newest partition.

Insertions, updates, and deletions are as in tterBe. The index key of an object is calculated using the
update time and the position of the object, which is storeaf #ise reference time of object’s partition.

Queries in the B-tree must check each existing partition for qualifyingesitg. In one partition, the query area
is first expanded by a factor of the current maximﬁmx and minimumV,.,;, projections and of the velocities
of all objects:

Vmax = (max{v"}, max{v¥}),
GV Gev

Vin = (min{v”}, min{v¥}),
veV vev

wherev® andv? are the projections of velocitiesonx andy axes, and’ is the set of velocities of current objects.
Next, the expanded query rectangle may be reduced if themmamwiand minimum velocities of the objects that
fall into the expanded query area are smaller tﬁgg}x or larger thanﬁmin. These velocities are stored for each
cell and each partition in@elocity histogranthat is maintained in main memory.

For the experimental evaluation, the TPR- and TPR*-tregg wetended to support data enlargement, and the
B*-tree was extended to support query enlargement. Enla@acdd query objects are approximated to squares
and rectangles, respectively.

6.2 Conceptual Analysis of the TPR-, TPR*-, and B-Trees

With the aim of explicitly formulating expectations to thé?Q and I/O performance of the indexes before ex-
periments are conducted, this section presents conceguiailses of the indexes. Section 6.3 experimentally
evaluates the indexes.

In the ensuing discussion, we use “index performance” terref both CPU and I/O performance, unless
explicitly stated otherwise. The workloads defined in Setb for the benchmark specification are considered.
The analyses are based on the specifications of the indegethe@performance results provided in the articles
that introduce to these indexes [3, 4, 8].

The papers that introduce to the indexes considered repaxgerimental evaluations and comparisons with
one other index each. The authors of the TPR*-tree find thaudst cases, the TPR*-tree performs better than the
TPR-tree. The authors of the*Bree report that the Btree outperforms the TPR-tree by a factorl6fin many
cases.

6.2.1 Index Size

The update and query performance of the TPR- and TPR*-tneesx@ected to degrade noticeably when the
numbers of objects grow. As the space in which the objectsraméng is limited, the density of the objects
increases together with their numbers; thus, the overladBiRs is also expected to increase. Higher overlap
presumably increases the 1/0Os and CPU time required fori@pjeas searches need to traverse more paths and
inspect more nodes. For updates, theosepathalgorithm of the TPR*-tree might need to traverse more paths

The B*-tree is based on the'Btree, which degrades only slightly for both queries andatgsl when the
amount of indexed objects grows. Thé-Bee is expected to experience only a slight update andyqesfor-
mance degradation with a growing amount of objects.

Hypotheses

H11 The update and query performance of the TPR- and TPR&ttegrade noticeably when index size grows.
The update performance of the TPR*-tree degrades more théimef TPR-tree, while the query performance
of the TPR-tree degrades more compared to the TPR*-tree.

H12 The update and query performance of theti2e degrades only slightly with increasing index size.

6.2.2 Position and Velocity Direction Skew

Increasing position and velocity skew are expected to pegjteffect the update and query performance of the
TPR- and TPR*-trees. These trees index the data, not thelyimdespace, and they are balanced trees indepen-
dently of the position distribution of the objects. Positiand velocity skew are expected to concentrate MBRsS
in some areas, leading to smaller MBRs and less overlap ai@&iRs than for uniform data. An MBR expands
more slowly if the movement directions of the objects in & aimilar. With smaller MBRs that overlap less, fewer
paths need to be traversed by queries and updates, yietdprgved performance.

Position skew is only expected to slightly affect the update query performance of the*Bree. Delete
operations (also part of updates) may experience a prolflemany objects in the same index partition fall into
the same cell. Such objects are all assigned the same ingeXlkis may result in many leaf nodes having to be
read, until the required object is found. Query performaneg be negatively affected by a high position skew, as
all the objects that are in the cells that overlap with a queea have to be read from the disk. Many objects are
then filtered out.

Direction skew should have no influence on the query perfanaaf the B-tree, unless nearly all objects are
moving in the same direction. A query region is expanded gutignally to the current maximum and minimum
velocities,Vmax, Vmin, of the objects that fall into the expanded query area. Ifrelcandidate objects move in
the same direction, the query expansion is smaller in coisgrawith data with uniform velocity. However, if the
objects are moving in several directions, skew should haviefltuence on the query performance.

Hypotheses

H21 The update and query performance of the TPR- and TPR&treproves as the position skewed of the data
increases.

H22 The update and query performance of thetige is best for data with no or low position skew. If the skew
is high, the update and query performance degrades. EXiréigb skew may improve query performance.

6.2.3 Speed Skew and Maximum Speeds

The speeds at which the objects move are expected to hava afligence on the performance of the indexes.

The growth rates of the MBRs of the TPR- and TPR*-trees deperitie speeds of the objects in the MBRs.
The presence of a fast-moving object results in the MBR dE#$ node and the MBRs that are in the path from
the root to the leaf growing fast. However, no other MBRs dfected. The required 1/0Os and CPU time are
expected to increase as the number of fast-moving objectsdses, as more and more MBRs are affected.

The B*-tree’s performance depends on the global maximum and mimivelocities of the indexed objects.
A query rectangle has to be expanded proportionally to theémmam and minimum velocities in all dimensions.
If at least one very fast-moving object falls into the irifleexpanded query area, it is not possible to reduce the
query in the object’s movement direction. It is possiblegduce the query area only if the query covers cells with
objects that move slower than the fastest objects amonlgeaihtlexed objects (in all dimensions).

In general, all the indexes are expected to benefit from tbjbat move slowly.

Hypotheses

H31 The update and query performance of the TPR- and TPR&@ad the query performance of thé-tee
degrade when the maximum speeds of objects increase.

H32 The update and query performance of the TPR- and TPR&tlegrade gradually when the numbers of
fast-moving objects increase.

H33 The query performance of the'Bree degrades significantly for even a small number of dbjeith high
velocities, compared to the situation when all the objeetgeow velocities. The update performance is
not affected by the speeds of the objects.

10

6.2.4 Position Accuracy Threshold

The TPR- and TPR*-trees can use either query enlargemenatareahlargement to support perfect recall, as
described in Section 3.2. With data enlargement, it is jptes$0 store different thresholds for different objects,
and so data enlargement is expected be superior, and weleppsily data enlargement. With data enlargement,
increasing thresholds should degrade both update and pagigrmance, as larger MBRs result.

The B*-tree is capable only of query enlargement. When threshdleesaare different for different objects
and/or parts of the space, the index must increase the quedow by the maximum accuracy threshold in all
directions. As a result, the*Btree should have worse query performance with larger timlds than with smaller
thresholds. The update performance should not be influenced

Hypotheses

H41 Allthe indexes perform best when the upper bound of thestiold value is low. When query enlargement is
used, only the query performance is affected. With datageiaent, both the update and query performance
are affected.

H42 The B-tree’'s query performance degrades when there is at leasbloject that has a threshold value,
compared to the situation where all threshold values are low

H43 Due to data enlargement, the query performance of the 8R&® TPR*-trees is affected less by a small
amounts of objects with high thresholds than is the querfopmance of the B-tree.

6.2.5 Update Arrival Pattern

The update arrival frequency affects the growth of MBRs i TiPR- and TPR*-trees. If updates are frequent,
the MBRs are likely to be adjusted often, which improves tberg performance. Because of #thoosepath
algorithm, the TPR*-tree is likely to adjust more MBRs thédme tTPR-tree during one update; thus, a lower
number of objects that send updates frequently are neededitdain tight MBRs. However, if updates are too
frequent, access to the MBRs is likely to cost extra I/Os atthsignificant benefits being obtained from the
adjusting of the MBRs—the MBRs are tightened too often. If bfeot is updated in an MBR and not all of its
objects are stationary, it grows infinitely large. Therefarare updates are expected to degrade the update and
query performance of both the TPR- and TPR*-trees, espetie TPR-tree, as it tightens MBRs less frequently.

For the B-tree, objects that are updated rarely need to be migrated &h index partition expires. The'B
tree reinserts objects that were not updated during thermawiupdate intervaht,,,. If many objects need to be
migrated, this will affect the average update performaasehe 1/Os and the CPU time for migration are added
as an update overhead in our evaluation. The query perfaenstrould not be affected by the update frequency.
Only when the updates are extremely frequent and all objeside in one index partition, the query performance
should improve.

Hypotheses

H51 The update and query performance of the TPR- and TPR&-ttegrade when updates arrive very frequently
or rarely. The best case lies somewhere in-between.

H52 The TPR-tree requires more updates to maintain tight MBRomparison to the TPR*-tree. The optimal
update arrival frequency is higher for the TPR-tree thantierTPR*-tree.

H53 The update performance of th&-Bee is better when updates arrive at the intervals equai shorter than
the maximum update intervalt,,,, compared to longer intervals.

H54 The query performance of théBree improves when updates are much more frequent thandkiemam
update interval, compared to more rare updates. Otherttisgyuery performance is not affected by the
update arrival frequency.

11

6.2.6 Index Lifetime

The TPR- and TPR*-trees are expected to experience upddtqueary performance degradation as the time of
index usage passes because MBRs become less optimal wipagking of time. The TPR-tree may exhibit a
higher performance degradation than the TPR*-tree, as®i+-free tightens MBRs more often.

The Bf-tree’s performance is nearly time-independent [8]. Asititex lifetime increases, the*Bree is
expected to experience only a very slight update and quefgrmpeance degradation. The query performance of
the B*-tree is expected to be better at the very beginning of thexindage. This is so because when the index is
first created, there exists only one index partition, andigaeneed to look for objects only in that partition. As
time passes, more partitions are created that queries Teesa

Hypotheses
H61 The update and query performance of the TPR- and TPR&ttegrade as time passes.
H62 The update and query performance degrade faster folRRetfiee than for the TPR*-tree as time passes.

H63 The update performance of th&-Bee degrades very slightly as time passes. The queryrpeafce of the
B*-tree degrades faster at the very beginning of index usagjerly very slightly later on.

6.2.7 Query Types

The TPR-tree is optimized for timeslice queries, while tH&RF-tree is optimized for window queries. In both

indexes, queries are optimized for a time radgdtime horizon, defined in Section 6.1). Window and moving
window queries have larger extents (with respect to timah ttimeslice queries, and window and moving win-
dow queries require more complex computation to determihetler the query area intersects with an MBR.
Therefore, they are expected to require more 1/0s and motétidie in both trees.

The TPR*-tree is optimized for window queries. As a resuig tifference between the performance of
timeslice queries and the performance of window queriesanTiPR*-tree is likely to be smaller compared to the
TPR-tree. Still, timeslice queries should be executed lggk 1/0s, as they have no temporal extents.

The B*-tree uses query expansion for all types of queries. Theyquemformance depends on the query start
and end times. Window queries are likely to be expanded nizne timeslice queries, as they are expanded by
the maximum expansion required for the query start and emekti Moving window queries are also expanded by
the maximum expansion required for the query start and emelsti but their area covers all regions in which the
guery rectangle moves. Timeslice queries are expected)tiresthe least amount of I/Os and CPU time, window
gueries are expected to need slightly more, and moving wirgleeries are expected to be the most expensive.

Hypotheses

H71 The query performance of the TPR- and TPR*-trees is besinfieslice queries, worse for window queries,
and worst for moving window queries.

H72 The query performance of the TPR*-tree is affected lgshé query types in comparison to the TPR-tree.

H73 The query performance of th&Bree is best for timeslice queries, worse for window queraad worst for
moving window queries.

6.2.8 Temporal Extents, Spatial Extents, and Time WindowsfdQueries

The TPR- and TPR*-trees are optimized for a time horizb(see Section 6.1). The further into the future queries
extend beyondd, the less optimal the query performance is expected to bealagpanding MBRs. A larger
temporal extent is expected to require more 1/Os and CPU ttiaue a smaller extent.

In the B*-tree, queries are expanded so that the fastest of all slijeat might be in the query area is part of
the query result. TheBtree can have at most one partition that has a referencadrithe past. Other partitions
have future reference times. That is, th&tBee is optimized for predictive queries. The query perfance of
the B*-tree is expected to be better with queries that look furititerthe future than with queries that have a time
close to the current time. An increasing temporal extentkhdegrade the index performance only slightly.

12

The B¢-tree partitions space into grid cells and uses a spacegfitiurve to enumerate the cells. Use of a high
space granularity yields a small cell size and vice versa spface-filling curve orders the cells. All the objects
in the same index partition that fall into the same cell adoay to their positions are assigned the same index
key. No matter how big the overlap between an expanded geetsirgle and a cell is, all the objects that are
in that cell have to be checked to determine whether theyrfithe query area. For this reason, small queries
(compared to the chosen space granularity) are expectaéoahlarge overhead.

The TPR- and TPR*-trees do not need to choose any paramateetation to the space granularity. The
required I/Os and CPU time should increase gradually aspiied extents of the queries increase.

Hypotheses

H81 The query performance of the TPR- and TPR*-trees areffett queries with a time close to the current
time than for queries that look far into the future.

H82 The query performance of the TPR- and TPR*-trees aredett queries with shorter temporal extent than
for queries with longer temporal extent.

H83 The performance of the*Rree is better for queries that look further into the futthan for queries that
have a time close to the current time.

H84 The query performance of the TPR- and TPR*-trees deengaportionally to the query size.

H85 The performance of the*Bree has a large overhead for small queries and a smalleneae for larger
queries.

6.3 Experimental Evaluation Using the COST Benchmark

Implementations of the three indexes were obtained fronm thehors and modified where needed in order to
perform the benchmark experiments. The indexes requirerdoauof parameters to be set. For thetiee, the
maximum update interval is 120 s, there are 2 phases, anelirsze is100 x 100 m?. For the TPR and TPR*-
trees,H =120s. All experiments were performed on a Sun Fire V880esdraving 8x900 MHz CPU and 32 GB
RAM running the Solaris 9 (SPARC) operating system.

6.3.1 Experiment 1—Index Size

Hypotheses H11 and H12 are examined in this experiment. 8héts are shown in Figure 4.

In comparison to the TPR*-tree, the TPR-tree exhibits dWdetter performance for updates, a visibly better
CPU performance for queries, and a slightly better /O penmce for queries. The TPR*-tree was expected to
perform better than the TPR-tree, as this was reported ipdbper that presents the TPR*-tree [4]. The different
results might be due to the different workloads that are uisetle experiments. The density of objects in the
experiments in [4] is 100 times higher than in our defaultisgt

As expected (Hypothesis H11), the update performance offtie*-tree degrades more than that of the TPR-
tree. The TPR*-tree needs to traverse more branches thafPRetree during an insertion. When the overlap
between MBRs increases, more branches might have to bedealvéHowever, contrary to expectation, the query
performance of the TPR*-tree also degrades slightly maatighthe case for the TPR-tree.

The B*-tree, as expected (Hypothesis H12), degrades only slifitiqueries and almost negligibly for up-
dates when the index size grows, while the query performafitee TPR- and TPR*-trees (Hypothesis H11)
degrade approximately linearly when the amount of objeas/g. The reason is likely to be the greater overlaps
among MBRs, resulting in more paths to be searched.

Hypothesis H11 is partially confirmed. The query perforneatthe TPR*-tree degrades slightly more than
the query performance of the TPR-tree. Hypothesis H12 ifircoed.

13

Exp. 1. Avg I/O per update Exp. 1. Avg I/O per query

14 o,e—@ﬁ&efe—o--g 200

121 160

8 120

6

4 ==F—+-+-+-++-+-+ 28

(2) T I 0 O I

2 4 6 8 10 2 4 6 8 10
Amount of objects, 100 K Amount of objects, 100K

Exp. 1. Avg CPU per updateExp. 1. Avg CPU per query

2.5
2 00 ©0-0-0- 000
PR R R,
154 .+

1+
20 o +
0.5 o e
18 St
2 4 6 8 10 2 4 6 8 10

Amount of objects, 100K Amount of objects, 100K
B* —— TPR—+— TPR*=-

Figure 4: Experiment 1—index size

6.3.2 Experiment 2—Position and Velocity Skew

This experiment examines Hypotheses H21 and H22. The sem@tshown in Figure 5.

The query performance of the TPR- and TPR*-trees are signifi¢ worse when position and velocity skew
is very high compared to average and low skew. When the skexealss from average to low, the query perfor-
mance degrades slightly. Better performance was expedied the skew is high (Hypothesis H21). However,
when the objects are concentrated in just a few places inpdiees the overlap between the MBRs is likely to be
very high, which leads to many paths having to be traversgdémies and updates. For settings with high position
and velocity skew, updates become rare; thus, MBRs aretadjiess frequently and thus grow bigger.

As expected in Hypothesis H22, the query performance of thzd is slightly better with low skew than with
high skew. Extremely high skew (2 hubs) does not influenceytleey performance negatively. This may be due
to the similar movement directions of the objects. When thetjpm and velocity distribution of the data approach
uniform, the query performance improves significantly. Asen for this might be he shorter time that passes
during the index lifetime. The effect of the index lifetimedbserved and discussed in Experiments 4.2, 5.2, and 6.

The update performance of th&Bee degrades when skew is extremely high. This is due eoupdates, as
objects move straight almost all the time which has the effeat the predicted velocities are similar to the actual
velocities.

When position and velocity skew is average or low, the querfopmance of the B-tree is worse than the
qguery performance of the TPR- and TPR*-trees. The averageiainof I/Os per query is approximately double
for the B*-tree compared to the TPR- and TPR*-trees. This differs feamier results [8].

Hypothesis H21 is not confirmed. The query and update pedonomof the TPR- and TPR*-trees are the best
with average position and velocity skew, slightly worsehalilw skew, and significantly worse with very high
skew. Hypothesis H22 is confirmed.

6.3.3 Experiment 3—Speeds of Objects

Hypotheses H31, H32, and H33 are examined in this experirméetresults are shown in Figure 6.

The query performance of the TPR- and TPR*-trees remain stlistable when the proportion of fast- and
slow-moving objects changes. With only 2% fast-moving otgethe query performance is slightly better. When
the number of fast-moving objects increases, the queryppaence slightly degrades in the beginning and then

14

Exp. 2.1. Avg I/O per updateExp. 2.2. Avg I/O per update

50

®06-o-6-0-0-6o

2 6 10 14 18
Number of hubs

14
12
10

N\,
S o0-g-0-0-G-0-00

IS
\ \ \ |

50 100 150 200
Number of hubs

ONPLOO

Exp. 2.3. Avg I/O per update

oo oo0Goo00-°

ErTTTEl

WOl O
éf

L1
1 2 3 4 S5unif.

Number of hubs, K

Exp. 2.1. Avg CPU per updateExp 2.2. Avg CPU per updatExp. 2.3. Avg CPU per update

o<
©-6-6-o0-0-0-c-0

ORLNWAOIO

2 6 10 14 18
Number of hubs

4

3 = O-0-0-0-G 92

2 +-+
— AR /+

1 Yoo

Ddoloodoolosd

50 100 150 200
Number of hubs

B o000 000a-P°

Attt

0000 =
S NTNe Yo oI NI

bdododobod J
1 2 3 4 5unif.

Number of hubs, K

Exp. 2.1. Avg I/O per query Exp. 2.2. Avg I/O per query Exp. 2.3. Avg I/O per query

600
500
200
i
100 Loz
0
2 6 10 14 18

Number of hubs

R T
| | | |
50 100 150 200
Number of hubs

I A R
1 2 3 4 5unif.

Number of hubs, K

Exp. 2.1. Avg CPU per querfxp. 2.2. Avg CPU per quenExp. 2.3. Avg CPU per query

2 6 10 14 18
Number of hubs

20 N S‘Gﬂ—e—eﬂe—GQ
0 A Tl IO MO

50 100 150 200
Number of hubs

29998999 %
1 2 3 4 S5unif.
Number of hubs, K

B —— TPR—+— TPR*<%-

Figure 5: Experiment 2—position and velocity skew

15

Exp. 3.1. Avg I/0 per update Exp. 3.2. Avg I/O per updaté=xp. 3.3. Avg I/O per update

14 0 4004 16 o
1 [oooeoe ™ 300 12 oo
8r 200 8l
0 0 .5._:_5:,.. BB B 4 0 I

20 40 60 80 0246810 14 18 60 120180240300

Maximum speed Speed, m/s

Fast objects, %

Exp. 3.1. Avg CPU per update Exp. 3.2. CPU per update Exp. 3.3. Avg CPU per update
2 1.6 2.5

Y Pty 20 -G og-0-GO0-6O
1.6 Seoe 1.2 2

L2ttt 08

o
o
o
20—

1.5¢0-0

0.8 1+
0.4 0.4 0.5
0 At 0 Obbodododod
20 40 60 80 0246810 14 18 60 120180240300
Fast objects, % Maximum speed Speed, m/s

Exp. 3.1. Avg I/O per query Exp. 3.2. Avg I/O per query EXxp. 3.3. Avg I/O per query

40 500

30 0

ig 200

oLl 11111 100 i
20 40 60 80 0246810 14 18 60 120180240300
Fast objects, % Maximum speed Speed, m/s

Exp. 3.1. CPU per query

Fast objects, %

BX —¢— TPR-——

Exp. 3.2. CPU per query Exp. 3.3. Avg CPU per query

50
40
30
20

Dereeeeeees

0246810 14 18

Maximum speed

TPR* G~

120
80
40

b9 09 eeePeY
60 120180240300
Speed, m/s

Figure 6: Experiment 3—speeds of objects

16

remains stable. Objects are assigned speeds independetitigir position. One fast-moving object in an MBR is
enough for the MBR to expand rapidly. Therefore, even a fest+fimoving objects is enough to make most MBRs
expand rapidly, which degrades the index performance.

Even with few fast-moving objects, the query performancthefB*-tree degrades significantly. The combi-
nation of a longer index lifetime (due to low speeds and pfient updates) and high maximum speeds yield a
significant degradation of the query performance. When ttextifetime decreases (due to more fast-moving ob-
jects that are updated often), the query performance inggtddowever, when the amount of fast-moving objects
increases further (above 30% of all objects), the perfoneagain degrades due to large query expansions.

The query and update performance of the TPR- and TPR*-tregsades only slightly when the maximum
speeds increase, while the query performance of thed&: degrades significantly. With the maximum speed of
300 m/s, the query I/O and CPU performance of theti®e is more than 5 times worse than for the TPR- and
TPR*-trees. This is due to large query expansions causeddtyrioving objects.

When speeds are very high, updates are very frequent, as dla¢espare generated according to the shared-
prediction based update policy (Section 3.2). This helpkeep the MBRs tight; thus, the query and update
performance of the TPR- and TPR*-trees degrades only §figliten the speeds of objects grow.

When the maximum speeds are extremely low (0.05 m/s), the@pdaperformance of theBtree is almost
100 times worse than the usual update performance of thiee®®. This is due to rare updates and the resulting
high migration rate. The query performance does not deghafth low speeds, query expansion is very small.

Hypothesis H32 does not hold. The performance of the TPR-T&*-trees are affected evenly by the
presence of a small amount of fast-moving objects. Hypethet81 and H33 are confirmed.

6.3.4 Experiment 4—Accuracy Threshold

This experiment examines Hypotheses H41, H42, and H43. &hdts are shown in Figure 7.

The query performance of the*Bree is only affected slightly by a small fraction of lardgedsholds and
is affected significantly more by the presence of many objedth large thresholds (above 60% of all objects)
(Experiment 4.1). When the maximum threshold increasesdiixgnt 4.2), the query performance degrades
gradually. Rare updates affect both query and update pesioce, due to migration and an increased index
lifetime. This is discussed in the results of Experimengs 8.2, and 6.

The query performance of the TPR- and TPR*-trees degradesfisiue to less frequent updates and thus
larger MBRs. The update performance of the TPR- and TPRestdegrade when thresholds increase, a result of
the MBRs being tightened less frequently. The update pmdoce of the B-tree degrades when updates are rare,
due to migration.

The query performance of all the indexes degrades wherhibicbgalues grow. However, the*Bree is more
sensitive to increasing thresholds than the TPR- and TiR&¥st When the threshold is 1 km, the average amount
of 1/0s per query is about 4 times higher for th&-Bee than for the TPR- and TPR*-trees.

Hypothesis H43 does not hold. When the number of objects vigh thresholds increases, the query perfor-
mance of the TPR- and TPR*-trees degrades gradually. They queeformance of the Btree degrades signifi-
cantly when there are many objects with large thresholdsply slightly when there are few objects with large
thresholds.

Hypothesis H41 is not confirmed. It states that the updatiepeance is not affected when query enlargement
is used. This is not true for the*Bree. In the B-tree, the update and query performance are affected duer® m
rare updates.

Hypothesis H42 is confirmed in part. Thé&&ee performs worse when there is at least one object witgra h
threshold. However, when the amount of objects with higbgholds increases, the query and update performance
degrade as well.

6.3.5 Experiment 5—Update Arrival Interval

We next examine Hypotheses H51, H52, H53, and H54. The seardtshown in Figure 8.

The query and update performance of all the indexes degraldes the update frequency decreases. The
results differ from the expectations. Even very short updatervals (20 s) have a positive influence on the query
and update performance of the TPR- and TPR*-trees. Frequents of MBRs is compensated by tight MBRs.

17

Exp. 4.1. Avg I/O per update

0.20.40.60.8 1
Threshold, km

Exp. 4.1. CPU per update

Exp. 4.2. 1/O per update
16

ol 1 1 1
20 40 60 80100

High thresholds, %

Exp. 4.2. CPU per update

0.20.40.60.8 1
Threshold, km

20406080100
High thresholds, %

Exp. 4.1. Avg I/O per query Exp. 4.2. Avg I/O per query

250
200
150

0.20.40.60.8 1
Threshold, km

Exp. 4.1. CPU per query

120
80
40
-©0-G-©
0 -
0.20.40.60.8 1

Threshold, km
B* —¢— TPR—+—

200
160
120
80
40
0

20 40 60 80100
High thresholds, %

Exp. 4.2. CPU per query

120
80
40

0

o

20406080100
High thresholds, %
TPR*-&-

Figure 7: Experiment 4—accuracy threshold

18

Exp. 5.1. Avg I/O per updatExp. 5.2. Average I/O per updakep. 5.3. Avg I/O per update

25
20
15
10

2 20 40 60 80 98
Long update intervals, %

40 80 120160200
Update interval, s

[
4 8 12 16 20

Update interval, min

Exp. 5.1. Avg CPU per updat&xp. 5.2 Avg CPU per updaté&xp. 5.3. Avg CPU per update

+
2 ﬂ}i
1
0¢

-t Rea-2

dododod o)
2 20 40 60 8098

Long update intervals, %

Exp. 5.1. Avg I/O per query

400
300
200
100
0]

2 20 40 60 8098
Long update intervals, %

1 % e,@'-@
pcg

12¢e g i re

0.8

0.4

0ddodobodoad
40 80120160200

Update interval, s

Exp. 5.2 Avg I/O per query

120

40 80120160200
Update interval, s

OFrL, NWAPH

4 8 12 16 20
Update interval, min

Exp. 5.3. Avg I/O per query

900
700
500
300
100

4 8 12 16 20
Update interval, min

Exp. 5.1. Avg CPU per query Exp. 5.2 Avg CPU per query Exp. 5.3. Avg CPU per query

200
160
120
80
40
0

2 20 40 60 8098
Long update intervals, %

100
80
60
40.

40 80120160200
Update interval, s

.

300
250
200
150
100
50
0

4 8 12 16 20
Update interval, min

B —— TPR—+— TPR*<%-

Figure 8: Experiment 5—update arrival interval

19

The query performance of the*Bree degrades significantly when the update interval as@s. This con-
trasts the expectation that the query performance remtabegHypothesis H53). It is interesting to notice that
there usually is a jump in the query and update performananie average update interval length reaches the
timestamp of a new index partition. This is true when the tpdaerval is rather short (Experiment 5.2). In the
generated data, each object receives 2 updates on averdgenWpdate interval length of 20 s, at most two index
partitions are used. As a result, the queries need to treaely two partitions. When the update interval length
grows, the third partition comes into use. After the firsttip@n expires, migration is introduced. The objects
that are migrated to a new partition update the histogranelafcities (defined in Section 6.1). This increases the
guery expansion in the new partition.

The update performance of théfee degrades as the update interval increases, due tatioigr

Hypotheses H51, H52, H53, and H54 do not hold. The query adtepperformance of all the indexes
degrades when the update frequency decreases. The quéynmeice of the B-tree degrades significantly,
while the query performance of the other indexes degradedightly. The update performance of the TPR- and
TPR*-trees degrade more than that of thetBee.

6.3.6 Experiment 6—Index Lifetime

Next, we examine Hypotheses H61, H62, and H63. The res@tstaown in Figure 9.

Exp. 6. Avg I/O per update Exp. 6. Avg I/O per query Exp. 7. Avg I/O per query

18 - s 900
14 |- eﬂ@f@ 700
10 ¢-o-°" et 500
6, ottty 300
20 100 &5 o9 4499
12345678910 12345678910
Number of updates, 100 K Number of updates, 100 K Query types

Exp. 6. Avg CPU per update Exp. 6. Avg CPU per query Exp. 7. Avg CPU per query

2.523 s 60'%9\0
~
15400 porttt 40 -
1 t -+ —
05 20
'0 YOO UUOUWY > - . Ofi:f_t::i:_‘_?f_fjﬁ
12345678910 12345678910 Q1 Q2 Q3
Number of updates, 100 K Number of updates, 100 K Query types

B* —— TPR—+— TPR*=-
Figure 9: Experiment 6—index lifetime; and Experiment 7—qugpes

The query performance of the*Bree degrades significantly as the index lifetime increaaile the update
performance is not affected. The query performance deticadia also observed and discussed in Experiments
4.2 and 5.2.

The update and query performance of the TPR- and TPR*-tisgrsde slightly as the index lifetime increases.
The degradation is the most visible for the TPR*-tree. Atjpasses, the MBRs in both trees expand. The update
operations in the TPR*-tree become more costly because padhs need to be traversed.

With 100K updates, the index lifetime is approximately 14®s At,,, = 120, migration is needed only
once. With 1,000 K updates, the index lifetime is about 40.nfith a small amount of updates, the objects do
not have enough time to accelerate (see the generator méstiin Section 4.2). After some time, their speeds
are likely to be higher and lead to a bigger query expansibe.réasons for the low performance when the index
lifetime increases are discussed further in Experiment 5.2

20

Hypothesis H61 is confirmed. Hypothesis H62 does not holde Tijpdate and query performance of the
TPR- and TPR*-trees degrade at the same rate as time pasgpsthekis H63 also does not hold. The query
performance of the Btree degrades significantly as time passes, while the egdaformance remains stable.

6.3.7 Experiment 7—Query Types

We now consider Hypotheses H71, H72, and H73. The resultsharen in Figure 9.

The query performance of all the indexes are almost indegprenaf the query type. However, the slight
differences for the different types that are seen are ascéaghe

Hypotheses H71 and H73 are confirmed. Hypothesis H72 dodsafeht The performance of the TPR- and
TPR*-trees change equally when the query types change.

The influences of the time windows and temporal extents ofigsi®n the query performance are discussed
in Experiments 8.2 and 8.3.

6.3.8 Experiment 8—Spatial Extents, Temporal Extents, and ime Windows of Queries

This section examines the last hypotheses: HypothesesH&2],,H83, H84, and H85. The results are shown in
Figure 10.

Exp. 8.1. Avg I/O per query Exp. 8.2. Avg I/O per query Exp. 8.3. Avg I/O per query

80
60
207
20 L&
0
0.05 0406 0.95 0 40 80 120 0 40 80 120

Query spatial extent, % Query temporal extent, s Query window, s

Exp. 8.1. Avg CPU per query Exp. 8.2. CPU per query Exp. 8.3. Avg CPU per query

80

60

40

20 000

0 ,ﬁ?»ﬁ%?—f%‘ﬁ*‘r A S S 0F=9-9-9-99°%
0.05 0406 0.95 0 40 80 120 0 40 80 120

Query spatial extent, % Query temporal extent, s Query window, s
B —¢— TPR—t+— TPR*-G-

Figure 10: Experiment 8—spatial extents, temporal extemtd, time windows of queries

The 1/0 and CPU performance of the TPR- and TPR*-trees ise®approximately proportionally to an
average spatial extent of queries. This means that smallesugo not have a noticeable overhead. For small
queries, the TPR- and TPR*-trees perform significantlydrettan the B-tree.

The B*-tree is less sensitive to changes in spatial extents ofegitiran are the TPR- and TPR*-trees. When
the initial query area is small, the query enlargement oBthi¢ree due to thresholds and velocities introduce large
overheads. With large spatial extents (above 0.8% of theedpthe average number of I/Os per query is almost
equal for all the indexes. However, the CPU time of tietie is relatively higher.

The query performance of the indexes are almost indeperudehe temporal extents of the queries. This
was expected for the’Btree. The TPR- and TPR*-trees were expected to perforneibieit queries with shorter
temporal extents (Hypothesis H82). This can be explainddiiasvs. Timeslice and window queries select about
the same amount of objects. The average spatial extentseaegqu5<5 km) is much larger than the distance an
object can travel during the maximum temporal extents ofigag250 m).

21

The TPR- and TPR*-trees, as expected (Hypothesis H81)pmmerbetter when the time windows of queries
are small. When the times are closer to the current time, th&8MBr such queries are smaller than for queries
that look far into the future. However, the difference infpemance is very slight.

As expected (Hypothesis H83), the performance of thdrBe improves when the time windows of queries
increase and become close to the reference timestamp aidhpHase. It is expected that objects update their
positions within the maximum update intervat,,,,,, and the majority of the objects are indexed in the partition
with the latest future timestamps. Therefore, the quehaslbok further into the future have to be expanded less
than the queries with timestamps close to the current time.

Hypotheses H81, H83, H84, and H85 are confirmed. Hypothe8® il confirmed partially. The query
performance of the TPR-, TPR*-, andBrees degrade when the temporal extents of queries irerbas the
degradation is hardly noticeable.

6.4 Summary of the Experimental Evaluation

The experiments demonstrate that the benchmark fulfillputpose: it is capable of uncovering strengths and
weaknesses of the indexes (only some of which are reportéeelpapers that introduce the indexes). For example,
the experimental results identify situations in which thetBe has lower query performance than the TPR-tree.
As another example, the benchmark shows that situatiosswkire the TPR-tree outperforms the TPR*-tree for
updates.

The B*-tree exhibits a substantial query performance degradatiten the maximum speeds of objects in-
crease, when the intervals in-between the updates growltmgewhen the position accuracy threshold becomes
very large, or when the index lifetime is long. The index peris well for both queries and updates when the in-
dex lifetime is very short and speeds are low or average. Tdie rrasons for the query performance degradation
are likely to be the unadjusted maximum update interval hedarge query expansion. The reasons for the large
expansions are the high maximum and the low minimum vekscitecorded in the histogram of velocities, and a
high threshold.

The TPR- and TPR*-trees exhibit very similar query perfoncein most cases, which is somewhat contrary
to earlier experimental results [4]. The most likely reasamthis mismatch is the different types of workloads
used. The queries used in the earlier experimental evatuafi the TPR*-tree are not only moving, but also
expanding. In addition, the underlying space 100 timeslem@ian in the present study. This is likely to result in
many overlapping MBRs. High maximum speeds of objects té@saverlapping MBRs as well. Figure 6 shows
the results of Experiment 3.3, where the maximum speedsjettshbare high. In this experiment, the TPR*-tree
performs slightly better than the TPR-tree.

The B*-tree seems to be a good choice when the number of objectg, ithkbi maximum interval in-between
the updates is known, the accuracy threshold is low, andgbeds of the objects do not exceed the usual speeds
of vehicles.

In other cases, the TPR- or TPR*-trees should be chosen.idieechbetween the TPR- and TPR*-trees should
be made by taking into account the expected query workloddla density of objects: the TPR-tree performs
better with timeslice queries and low object densities Jevhie TPR*-tree performs better with expanding queries
and high object densities (according also to experimessallts reported elsewhere [4]).

The TPR- and TPR*-trees appear to be the most versatile ésglésowever, the Btree is based on the™8
tree, which is already available in many DBMSs. Therefdne,dreation of a more robust version of th&tee
may be a promising research direction.

7 Conclusions and Future Work

A number of indexes for the current and near-future positiohmoving objects exist, and more are underway.
This state of affairs creates an increasing need for a deutdawell-articulated experimental setting for evalugtin
and comparing these indexes.

This report proposes a benchmark, termed COST, that istéargpecifically toward the evaluation of such
indexes. The benchmark aims to make realistic assumptiomst ghe experimental settings—data is inherently
inaccurate, predictive queries that reach into the futueecavered, the indexes are assumed to be stored persis-
tently on disk. More specifically, an update technique izl where positions are guaranteed to be accurate

22

within agreed-upon thresholds and where updates occurvaimiyn necessary in order to satisfy the guarantees.
The indexes may use either query or data enlargement to miciordhe inaccurate data. The benchmark includes
a workload generator, definitions of experiments, and eao metrics. It considers a wide range of workload
parameters that cover many real-world situations.

As proof of concept and to evaluate the benchmark, it wadeghfd the TPR-, TPR*-, andBtrees. The ex-
periments demonstrate that the benchmark is well-spedifidds capable of covering a wide range of situations.
Weaknesses and strengths of the indexes were detected mynéx@the sensitivity of the indexes to workloads
with varying parameter values, including workloads withreme settings. The experimental results cover situ-
ations that were not covered in the papers that introducedhtitexes, due to more extensive experiments. The
obtained results provide guidance as to when each of theasdgould and should not be used.

The benchmark may be extended by inclusion of such aspentdessize in disk pages, I1/0Os and CPU time
for bulkloading and bulk operations, and evaluation of esrent accesses.

Further analysis of the support for uncertainty in the iredeis also warranted. In this paper, variation among
the thresholds of the objects was considered. As an exteo$ithis, thresholds may be varied across time and
space. The development of update, as well as query and dat@ement policies, for such workloads is an
interesting research direction.

Further studies of existing spatio-temporal indexes age alarranted, possibly including detailed studies of
special cases and aspects specific to individual indexeampbes include detailed studies of overlaps among
MBRs, growth rates of MBRs, and the grouping of objects intBR4 in R-tree-based indexes. For th&-B
tree, such studies may cover query enlargement aspects igration loads. For all indexes, it is of interest to
investigate aspects such as tree depths and node fanaudtesssuch as these have the potential to offer insights
that may guide the development of improved indexes.

Acknowledgments

This research was conducted within the project Telematjmsliéations Based on Ubiquitous Sensor Networks,
funded by the Electronics and Telecommunications Resdastitute, South Korea. C. S. Jensen is also an adjunct
professor in Department of Technology, Agder Universityi€ye, Norway.

References

[1] Blewitt, G.: Basics of the GPS technique: observationaipns. Geodetic Applications of GPS (1997)
10-54

[2] Wikipedia: GPRS (2001-200%it t p: / / en. wi ki pedi a. or g/ wi ki / GPRS.

[3] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez,: Mnlexing the positions of continuously moving
objects. In: Proceedings of the 21st ACM SIGMOD Internaglo@onference on Management of Data.
(2000) 331-342

[4] Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an op#uahigpatio-temporal access method for predictive
gueries. In: Proceedings of the 30th International Comfegeon Very Large Data Bases. (2003) 790-801

[5] Procopiuc, C.M., Agarwal, P.K., Har-Peled, S.: STARédr an efficient self-adjusting index for moving
objects. In: Revised Papers from the 4th International \&look on Algorithm Engineering and Experiments.
(2002) 178-193

[6] Saltenis, S., Jensen, C.S.: Indexing of Moving Objects fardtion-Based Services. In: Proceedings of the
18th International Conference on Data Engineering. (2@62y-472

[7] Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P.: STRIPE®:efficient index for predicted trajectories. In:
Proceedings of the 23rd ACM SIGMOD International Confeeean Management of Data. (2004) 635646

[8] Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efiiici+-tree based indexing of moving objects. In:
Proceedings of the 30th International Conference on Vergd.®ata Bases. (2004) 768—779

23

[9] Zobel, J., Moffat, A., Ramamohanarao, K.: Guidelines foesentation and comparison of indexing tech-
niques. SIGMOD Re@5(1996) 10-15

[10] Gray, J., ed.: The Benchmark Handbook for Database aads&ction Processing Systems. Morgan Kauf-
mann Publishers, Inc. (1993)

[11] Theodoridis, Y.: Ten benchmark database queries foation-based services. The Computer Jou#ital
(2003) 713-725

[12] Myllymaki, J., Kaufman, J.: DynaMark: A Benchmark foryBamic Spatial Indexing. In: Proceedings of
the 4th International Conference on Mobile Data Managen{2003) 92—-105

[13] Werstein, P.F.: A performance benchmark for spatigteral databases. In: Proceedings of the 10th Annual
Colloquium of the Spatial Information Research Centre98)865-373

[14] Tzouramanis, T., Vassilakopoulos, M., Manolopoulds,Benchmarking access methods for time-evolving
regional data. Data Knowl. Eng9 (2004) 243—-286

[15] Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Queryingrecise data in moving object environments. IEEE
Trans. on Knowl. and Data Engj6 (2004) 1112-1127

[16] Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prakhg S.: Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In: Procéegk of the 31st International Conference on Very
Large Data Bases. (2005) 922—-933

[17] Civilis, A., Jensen, C.S., J. Nenortajt)., Pakalnis, S.: Efficient tracking of moving objectshwitecision
guarantees. In: Proceedings of the 1st Annual Interndtidoaference on Mobile and Ubiquitous Systems:
Networking and Services. (2004) 164-173

[18] Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Ypdating and querying databases that track mobile
units. Distrib. Parallel Databas&41999) 257-387

[19] Pfoser, D., Jensen, C.S.: Capturing the uncertainty@iing-object representations. In: Proceedings of the
6th International Symposium on Spatial Databases. (1999}132

[20] Lazaridis, I., Mehrotra, S.: Approximate selectioreges over imprecise data. In: Proceedings of the 20th
International Conference on Data Engineering. (2004) 180

[21] Weisstein, E.W.: Minkowski sum. From MathWorld—A Wafn web resource (1999-2008)t p: / /
mat hwor | d. wol f ram com’ M nkowski Sum ht mi .

[22] Saltenis, S., Jensen, C.S., Leutenegger, S., Lopez, M.eximgl the positions of continuously moving
objects. Technical report, Aalborg University (Novemb88€9)

[23] Kaufman, J., Myllymaki, J., Jackson, J.: CitySimulat®001)
https://secure. al phaworks. i bm com aw. nsf/techs/ci tysi nul at or.

[24] Myllymaki, J., Kaufman, J.: LOCUS: A testbed for dynanspatial indexing. IEEE Data Eng. Bull. (Special
Issue on Indexing of Moving Object$)5 (2002) 48-55

[25] Theodoridis, Y., Nascimento, M.A.. Generating sptgioporal datasets on the WWW. SIGMOD R&86.
(2000) 39-43

[26] Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: Qmetgeneration of spatiotemporal datasets. In: Pro-
ceedings of the 6th International Symposium on Advancepati& Databases. (1999) 147-164

[27] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger,TBie R*-tree: an efficient and robust access method
for points and rectangles. In: Proceedings of the 1990 ACRIMBDD International Conference on Man-
agement of Data. (1990) 322—-331

[28] Jensen, S., T&yte, D., Tradsauskas, N.: Spatio-temporal workload generator (20Q4)p: / / ww. CS.
aau. dk/ ~dal i a/ generat or. htm

24

