The Pre-images of Bitwise AND Functionsin
Forensic Analysis

Kyriacos E. Pavlou and Richard T. Snodgrass

October 10, 2006

TR-87

A TIMECENTER Technical Report

Title The Pre-images of BitwisAND Functions in Forensic Analysis

Copyright(© 2006 Kyriacos E. Pavlou and Richard T. Snodgrass. All rigbts
served.

Author(s) Kyriacos E. Pavlou and Richard T. Snodgrass

Publication History October 2006. A TME CENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark 5
Christian S. Jensen (codirector), Simoadtenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon, Sudha Ram

Individual participants

Yun Ae Ahn, Chungbuk National University, Korea; Michael Bbhlen, Free University of Bolzano, Italy; Cur-
tis E. Dyreson, Washington State University, USA; Dengf&@ap, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Vijay Khatri, IndiaiJniversity, USA; Nick Kline, Microsoft, USA; Gerhard
Knolmayer, University of Bern, Switzerland; Carme Maytirechnical University of Catalonia, Spain; Thomas
Myrach, University of Bern, Switzerland; Kwang W. Nam, Clgbak National University, Korea; Mario A. Nasci-
mento, University of Alberta, Canada; John F. Roddick, d#irs University, Australia; Keun H. Ryu, Chungbuk
National University, Korea; Dennis Shasha, New York Unsvigr USA; Paolo Terenziani, University of Torino,
Italy; Vassilis Tsotras, University of California, Rivéde, USA; Fusheng Wang, Siemens, USA; Jef Wijsen,
University of Mons-Hainaut, Belgium; and Carlo Zaniolo, i\rsity of California, Los Angeles, USA

For additional information, see ThaMe CENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viamE CENTERIs provided “as is” and without any express or implied wartes,
including, without limitation, the implied warranty of nefrantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” a&téers in the so-calleRune
alphabet used one millennium ago by the Vikings, as well athbir precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which havelanghapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be foundaatrig tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respedyive

Abstract

Mechanisms now exist that detect tampering of a databaseigh the use of cryptographically-strong hash
functions, as well as algorithms féorensic analysisf such tampering, thereby determining who, when, and
what. This paper shows that for one such forensic analyg@ithm, thetiled bitmap algorithm determining
when and what, which goes far in determining who, has at its computing the pre-image of bitwigeND
functions. This paper introduces the notioncahdidate sefthe desired pre-image of a target binary number),
provides a complete characterization of the candidateedtcharacterizes the cardinality as well as the average
cardinality. We then provide an optimal algorithm for cortipg the candidate set given a target. We show that
given an auxiliarycandidate array the candidate set can be computed in constant time. Thés Egorithm
is applicable when the target is a suffix of another targetbemfior which a candidate set has already been
computed:

1 Motivation

Due in part to recent federal laws (e.g., Health Insuranc&aBility and Accountability Act: HIPAA, Sarbanes-
Oxley Act), and in part due to widespread news coverage dfisioh between auditors and the companies they
audit (e.g., Enron, WorldCom), which helped acceleratsg@ge of the aforementioned laws, there has been inter-
est in built-in mechanisms to detect or even prevent datataaspering.

We previously proposed an innovative approach in which toymphically strong one-way hash functions
prevent an intruder, including an auditor or an employeeven&an unknown bug within the DBMS itself, from
silently corrupting the audit log [5]. This is accomplisheghashing data manipulated by transactions and peri-
odically validatingthe audit log database to detect when it has been altereidat/ah involves sending the hash
value computed over all the database to an extaratdrization servicewhich will indicate whether that value
matches one previously computed. Should tampering haugieat the two hash values will not match.

The question then arises, what do you do when an intrusioté&ais detected? At that point, all you know
is that at some time in the past, data somewhere in the datdldasbeen alteredrorensic analysiss needed to
ascertairwhenthe intrusion occurredyhatdata was altered, and ultimatelyhothe intruder is.

Validation provides a single bit of information: has theatstse been tampered with? To provide more in-
formation about when and what, during validation we hasbsgsubsets of the database. As the database trans-
actions that are hashed occur in commit order, each set oésdhat is hashed is referred to akash chain
Then, during forensic analysis of a subsequent validatiahdetected tampering, those chains can be rehashed to
provide a sequence of truth values (1 = Success and 0 = Baiuneh can be used to narrow down where and
what.

We have proposed a variety fufrensic analysis algorithmsliffering in the amount of work necessary during
normal processing (computing additional hash chains dys&riodic validation) and the precision of when and
where during forensic analysis [2].

In thetiled bitmap algorithm[3], a variant of thepolychromatic algorithni{2], the hash chain groups are
aligned with the actual validation intervals. In Figure aligtation occurs each 16 hours, during which time many
thousands or even millions of transactions occurred; thisré shows one 16-hour slice. (Time proceeds left to
right, with the hour shown as= 0to » = 15. This is the second slice, so hour 17 corresponas-o) and hour
28 correspondsto = 11.)

This figure illustrates aorruption evenin which the timestamp of a tuple in a relation was changechfnour
31 to hour 28. Consider that the relation records when pyivelease authorizations were signed by a patient; in
this case the authorization was signed in hour 31. A doctaaled health information to an insurance company
some confidential information on hour 29, then, later réadiis mistake, which is an offense under HIPAA,
backdated that authorization to hour 28, as shown by thetgfiting arrow. Thus, the database now implies that
authorization had been received before the confidentiaiimndtion was transferred. (The fact that this backdating
was done on hour 47 will be revealed by a separate part of teasa analysis algorithm, not discussed here. The
details of this algorithm may be found elsewhere [2, 3].)

1The authors are at the Department of Computer Science, tditiw@f Arizona, Tucson, AZ{kpavlou ,rts }@cs.arizona.edu
This research was supported in part by NSF grants 11S-041,3918-0639106, and EIA-0080123 and with partial suppastrfra grant from
Microsoft Corporation.

28 31

b 4

rr- 012 3 45 6 7 8 9 10 11 12 13 14 15

-

-
-

- n

C; 0O 0 0O0OO O OO TI1IT 129|311 1111
Cy 0O 0001 11 1 0 O0I0j|0j 1 1112
C3 0 01 1001 1 0 O 111 0 O |1/ 11
¢cq 010101010 1010 1]0][1
Target
bit pattern

rr- 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Hash Chains in the Polychromatic Forensic Analgdgorithm

We wish for forensic analysis to constrain the corruptiorwithin an hour, so the database administrator
configures the database management system to compute fivelrains ¢ throughe,, also shown in the figure.
The first hash chairy, hashes all transactions within the notarization inteo¥dl6 hours, in order, to compute a
hash value. (This hashing was done during a validation pusvio the one that detected the corruption.) It is this
hash value that narrows down the corruption event to thisqudar validation interval. The second hash chain,
c1, hashes only the first 8 hours worth of transactions. Thehlash chaing,4, hashes every other hour’s worth.
The dotted line indicates linking of hash chains. For exanipl hash chaiir,, hash value of the last transaction
of hour 0 is hashed with the hash value of the first transa@tidrour 2. Hash chain linking is discussed in more
detail elsewhere [5].

When the tampering is detected, sometime after hour 47,akl Yalue for each chain is recomputed, on the
tampered data and sent to the notarization server, whighonels with “success” (the old and new values match)
or “failure”. Hash chairc, reports failure, which means something that was storechduhis 16-hour period
was tampered with. Changing the timestamp on a tuple is abnt/to removing that tuple from all hash chains
that cover the original time and adding that tuple to all halsins that cover the inserted time. We have four
remaining hash chains, so we compute a 4-bit value from thisuption event: 1010 (reading from as the
high-order bit and, as the low-order bit). The reason is that the hash value dfshaandcs were not effected
by the corruption, as neither of these chains include houtsl 1 or r = 14; the hash value of chairg andc, no
longer match those previously computed.

The truth values shown at the bottom of the figure indicatéatget string that would result had the corruption
event tampered with data stored at the indicated hour. Fanple, changing the data of a tuple that was originally
stored in the first hour of this interval would have rendeiédfahe chains as failure, resulting in a value of 0000.
We term this value th&arget binary numberor target The target is the input to the forensic analysis.

For our corruption event that occurred at hour 47, changimgestamp from 31 to 28, the hash chains provide
a target of 1010. What could such a target indicate? Onelmligsis that only the data in hour 27 (= 10) was
modified. Another is that the timestamp was moved from28-(11) to 31 (- = 14). A third possibility is that
the time was moved from 31 to 28. Other possibilities are anghdrom hour 27+ = 10) to 31, a change from
hour 32 ¢ = 15) to hour 27, or a change in the other direction. All these jbi&ges result in a target of 1010.

Because the “from” time and the “to” time both occur withiretkame validation interval and because the

hash chains are linked together, then the bit patterns gibewe areANDed, and the resulting target 010
corresponds to the existence of (a) either a single suspsgctfor a data corruption, or (2) two suspect days,
for a pre- or post-dating corruption, or (3) some combirmatitereof. It is important to note that corruptions on
some hours could not have produced this target. For exagipt) thatcs succeeded, we know that nothing was
affected in hours 0, 1, 4,5, 8,9, 12, or 13.

In reality the situation is more complicated since when idgalith multiple corruption events there might be
many combinations of bit patterns that can yield the singlpdttern the forensic analysis will produce (target bit
pattern). This is also true even in the simple case whereghespost/backdating corruption evetdes nohave
its endpoints in distinct hash chain groups. In other wattiis pre-image of the target bit pattern under AND
function is not unique. We address this complication in #raaining of this paper. Our task is to extract from a
single target all the possible corruption events, the coreputation of which is determining the pre-image.

2 Problem Formulation

We define the lengthof a binary numbeb, denoted byb| = [, as the number of its digits. From this point forward
we considef to be fixed. We seek to find the pre-images of all the binary remnbf length, B = {b: |b| = [},
under a family of bitwiséAND functions whose domain is a finite Cartesian product.

AND; : B — B

ANDk((bl7b277bk)) :bl /\bQ/\ /\bk

Observe that the maximum numbepf sets participating in the Cartesian productissince ifk is allowed to
take a value beyond that, it will force a repetition of onetaf binary numbers. This is not informative or useful in
any way since repeatéNDing operations with theamebinary number leave the result invariant (the operation is
idempotent In other words, repetition is not allowed and hence fonagi-tuple all its components are distinct.
Also note that the value df uniquely identifies a specifieNDj, function in the above family.

We name the set of all binary numbers which appear as compoireat least one of the pre-images (i.e.,
k-tuples) of a specific target binary numbe¢he candidate set

Ct,k = {b eB:dby,bo, ..., b1 S.t.ANDk((b, b1,bs, ... ,bk—l)) = t}

The A operation is commutative: the order of the operands doesatier, and that is why this is a set. The word
“candidate” was used to hame this set because, in the orfgimaulation of the problem, its elements correspond
bijectively to granules (the units of time a database isifi@ned into, e.g., the hours indicated in Figure 1), which
are candidates where corruption may potentially be dede¢ter the example provided before, the candidate set
would be the hours 27, 28, 31, and 32 thatrisz 10, r = 11, r = 14, andr = 15. In this forensic analysis
context, the value of represents thactualnumber of granules corrupted.

For convenience we can express these sets in decimal, tlmugiigorithms read and write in binary. For
example:

Cio10.1 = {1010} = {10}

Cio10.2 = {1010,1011,1110, 1111} = {10, 11, 14,15}
1001 is not inC1p10,2 because 1001 cannot be in the pre-imageddd. Note that even though two binary target
strings may have the same numerical value, if their lengthifisrent then their candidate sets will be different.
For example, the candidate &y - is different fromCoggg 2.

We wish to characterize formally the candidate set and devallgorithms for efficiently calculating this set,
givent andk.

3 Characterizing the Candidate Set

Let z(t) be the number of zeros in the binary numher.g.,2(1010) = 2. By definition1 < k < 2'and0 < z < 1.
The behavior of’; j, for increasing is interesting. Ag: increases the candidate set for a fixedmains invariant
and equal to the candidate set for= 2, until some threshold valuzs(*) after which it becomes empty. Simply
put, C; . obeys an all-or-none law. A complete characterization efddindidate sets is given below.

Theorem 1.

{t} , k=1 (1)
o 0 , 2(t)=0Ak>1 (2)
BFTY G A0, 1>2(t)>0A2<k<25® (3)
0 , 1> z(t) > 0Nk > 250 (4)

Proof. Case (1)k =1

We want to find the binary numbers that mapttoln this casek = 1, i.e., the pre-image is unique and not
ANDed with another number to produteThe function is essentially the identity function so thedidate set is
Ciq = {t}.

Case (2)z2(t) =0,k > 1
Sincez(t) = 0 the target binary numberis= 111 - - - 1. We require thak (at least 2) binary numbers aféNDed
in order to produce. Suppose these numbers exist. Also, the formulation of tbblem requires that they are
all distinct. Then at least one of them will have a ‘0’ as a tiggcausd 11 - - - 1 is the only number of length
with no zeros. But this implies that their image under AND function will also have at least one ‘0’ digit which
contradicts the fact that the target binary numbkasz(t) = 0. Therefore, no such numbers can exist. Thus
Citeak = 0 for k > 1.

We argue cases (3) and (4) together because they are cleksbd:

Case (3) > z(t) > 0A2 < k < 2%(Y) and Case (4) > 2(t) > 0 A k > 22():

In both cases the target binary number has at least one ‘Ovarr@équire at least 2 binary numbers toAdDed

in order to produce. Only binary numbers which have at least as many ‘1’s, anti@same positions, as the
target string can achieve this. Thus the positions of the até fixed and only the positions with zeros inan
have variations, i.e., 1 or 0. This explains why the cardtiyal the candidate set &*(*): there arex(t) positions
(the number of zeros) and each can independently take twesalfk exceeds the cardinality ¢€; »| then we
are trying to findk-tuples which have a greater number of components than takrtomber of distinct binary
numbers inC}; ». This would force repetition in the components and this bijndt@n is prohibited. Thus no such
k-tuples can exist an@; » will be empty. The only thing that remains to provels;, = C; 5 if I > z(t) > 0 and

2 < k < 2 In other words, the candidate set remains invariant gikahthe above conditions are met.

First we show tha€; , C Ct 5. Let ANDg((b1, b, ..., b)) = ¢ for somet. Thenby, bs, ..., by € Cpp. This
k-tuple though is “equivalent” to the following 2-tuplés;, t), (b2,t), ..., (b, t) since if we apply theAND,
function to each 2-tuple the resultfisand thus all oby, bo, . . ., b, are inC; 5.

Conversely, we show thdt; , O C;». Given a series of 2-tupld$y, b2), (bs, bs), ..., (bx—1,br) Which are
pre-images of under the functiolAND,, and thereforé,, bs, .. ., bi, € C; 2, we can create the followinkrtuple
(b1, ba, ..., bg) which is a pre-image afunder theAND;, function. The reason for this is because bitwAd¢Ding
is an associative operation. Thiusbo, . . ., by, € C; ;. Therefore we have proved th@t , = Cy o. O

This proof reveals a very simple characterization for thedidate sets. A candidate set, in essence, comprises
all the binary numbers which have ‘1’s at the same positierthatarget and have at least as many total number
‘1's ast. Starting with our example target string= 1010, all the elements it€1910,2 will have the form 1.1
where. could be 1 or 0. More specificall{ 19102 = {1010,1011,1110,1111}. This explains whyll---1
appears in all the candidate séfs, (except its own, i.e.C;...1,2), whereasp0 - - -0 appears only in its own
candidate set. And this also implies that the target binamlmer will always be an element of its own candidate
set, and actually the smallest such element, t.e<, min{C, ;. } (other elements will have one or more ‘1’s in
positions that have ‘0’s in, and thus will be larger thar). This puts a lower bound @8(2*(*)) on the creation of
a specific candidate set. This is because one must é€ndime to create all of theé*(*) combinations.

Corollary 1.
1 . k=1
Coxl = 0 , 2(t)=0Ak>1
ol =0 920 L 1> 2(t) >0N2 < k<250
0 ;1> 2(t) > 0Nk > 270
Proof. This follows directly from Theorem 1. O

For example, with our target bit pattern o= 1010, we havez(t) = 2 and thecandidate seis C1p10,2 =
{10, 11, 14, 15} with |01010,2| =22 =4,

We define thesummary seas the set of all candidate sets of all binary numbers of kehgt

Stk = {Ot,k :Vt € Bs.t. |t| = l}
Forl = 4 andk = 2, the last column in the table below provides the elements,; of

Binary Numbett | [Cy 2| | Ci2
0000 16 | {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
0001 8 |{1,3,5,7,9,11,13,15}
0010 8 |{2,3,6,7,10,11,14,15}
0011 4 | {3,7,11,15}
0100 8 | {4,5,6,7,12,13,14,15}
0101 4 | {5,7,13,15}
0110 4 [{6,7,14,15}
0111 2 [{7,15}
1000 8 | {8,9,10,11,12,13,14,15}
1001 4 | {9,11,13,15}
1010 4 | {10,11,14,15}
1011 2 | {11,15}
1100 4 | {12,13,14,15}
1101 2 | {13,15}
1110 2 | {14,15}
1111 0 [}

4 Properties of Candidate Sets

We now show three useful properties of candidate sets. Tétectincerns the size of these sets.

Lemma 1. The average cardinality of the candidate setskot 2 and for a giverl is |C| = %

(=)
Proof. The average ifC| = z .

Pl

>, (i) - 2% is the binomial expansion @2 + 1)! = 3¢, So|C| = % a

Note thatm = % < 1.5' = O(1.5"). Forl = 10 a candidate set will contain on average about 5% of the
possible binary numbers of lengthFor/ > 20 a candidate set will contain on average only about 0.3% of the
possible strings. This is expected since the fracﬁ?ﬁlq decreases dsincreases. Note also that| is an upper
bound for the mean of the cardinalities of all the elements; jp, wherek > 2. This is because all the elements
in S; 2 have their maximum achievable cardinality, andkaiscreases more and more elementsSin. become
empty. For example, initiall1910,2 = {10,11, 14,15} but C1010,x>5 = 0.

This decrease in candidate set cardinality mreases has implications for forensic analysis. Rebatlthe
goal is to determine the set of possible corruption evenpdiéd by a provided target binary number. While the
number of possibilities grows dgets larger, thpercentagef possible granules declines.

The second property concerns the elements of the summaripsét = 2, there are2! candidate sets of the
binary numbers of length i.e., |S; 2| = 2!. This is a direct result (under the assumptionskoand!) of the
unigueness of candidate sets.

Lemma 2. For k = 2, the candidate sets of all the binary numbers of lerigite unique.

Proof. Case (1) We hav€; » andCy o with t # ¢’ andz(¢') # z(t) wherez(t) andz(t’) are the number of zeros
of targetst andt’ respectively. Assume without loss of generality thét) > z(¢'). Then, since both numbers
have the same length there exists at least one positiowireret has a ‘0’ and’ has a ‘1’. Sincé’ has a ‘1’ at
that position themll the numbers in its candidate set will have a ‘1’ at that sans#fipa. This is not the case with
the numbers irC; ;, since they can have either a ‘0’ or a ‘1’ at that position. HiereC, 5 # Cy .

Case (2) We hav€, » andC). o with t # ¢’ and botht’ andt have the same number of zerds). This implies
they also have the same number of ‘1’s since they both havesatine length. However, for the two numbers to be
different, there must exist at least one position wheret has a ‘0’ and’ has a ‘1’. Using the same argument as
before this implies tha®’y: 5 # C; 2. O

Candidate sets also exhibit the following fundamental prop they are related (specifically, through set
intersection) to the candidate sets of the constituentpimambers that combine (through logi€R) to form the
target.

Lemma3. LetCiy,t € B, andas, as,. .., an, € Bst. \/7_ a; = t for somem < 2th and let also2 < k <
22 Then:

Cik =Cym a0k = ﬂ Caj k

Proof. Forward direction=>: Let by,ba,...,b; € C . We need to show thdt, bo, ..., b, € ﬂ;” 1Ca; k-
By definition we know that; A b2 A ... A by = t. However, we are also given th@t _,a; = t. Thus,

\/;.":1 a; =t = /\f:1 b;. Therefore, we must prove that for every(l1 < ¢ < k) there exists a series &f— 1
distinct binary numbers (and different froby), dy,ds, ..., d,_1 suchthat; Ady Ada A ... ANdp_1 = a; =

bi,dy,da,...,d,_1 € Cg 1 for eacha;,1 < j < m. In other words, each one of tibgs must appear in the
pre-image of each one of thes.
We proceed to show how to produce all the requisit€s, . . ., di—1 given a specifid; anda; pair. Letx be

the number of ‘1’s in the binary numbery be the number of ‘1’s in a specifig, andw the number of ‘1's in

a specifica;. Theny > 2 sinceb; must have at least the same number of ‘1’s, and at the samiopssias the
target numbet. This is true for alb; since for a ‘1’ to appear at a specific positiort ithenall the binary numbers
b;, which whenANDed produce, must have a ‘1’ at the same position. Likewise> w sincea; must have at
most the same number of ‘1’s as the target numibggain, this is true for alk; since for a ‘1’ to be preserved at
a specific position irt at least one of the; must have a ‘1’ at that same position. Using the observatiovewe
begin with someé; and pickd; to bea;. This works because we want a numbemwhich has a zero at the same
positions as,; does, in order to mask any ‘1s has at those positiong; should also have a ‘1’ wherevey does,

so that the '1’is preserved after tAéND operation. Note that it; has a ‘1’ at a certain position we are guaranteed
to have a ‘1’ at the same position dnbecause will have a ‘1’ at that position (as discussed previouslyi).the
rest of thek — 2 binary numbers can be created framand there are enough of the@w(?) — 1 (the ‘-1’ is there
because we are excluding itself) wherez (a;) is the number of zeros im;. We are given that < 2*(*) and since
w+z(a;) = v+ 2(t) = landz > w thenz (¢) < z(a;). Thusk —2 < k < 250 < 22(a3) = |2 < 22(a5) 1,
This implies that each of thig is an element of each of th&,, ; and therefore an element of their intersection.
-|—|'1l.IS,C'\/;n:1 aj.k - m;n:1 Caj,k-

Backward direction—: Conversely, leb € (L, Co, . Then(b € Cy, k) A (b € Cop k) A ... (b € Ca,, k)
This implies thab has a ‘1’ at the same positionsas b has a ‘1’ at the same positions@sand so on untik,,,
Thus the fact thal belongs to all the candidate sets of the, fixes the positions of the ‘1’s while the remaining
positions could be ‘0’ or *1’. Thus captures a certain set of numbers. Now, consid€r, a; = ¢. We know that
t, as aresult of a@Roperation, will have a ‘1’ wherever at least anyehas a ‘1’ at that position, and a ‘0’ wherever
all a;s have a ‘0’ at that position. The candidate set of tatgetmprises all the numbers which have a ‘1’ at the
same position asand at least as many ‘1’s asi.e., wherever has a ‘0’ the pre-images can have a ‘0’ ora ‘1.
But this is exactly the same set of numbers capturebldns € C; . ThereforeC\/;n:1 ajk 2 ﬂ}”:l Coj. O

This provides a pleasing symmetry between the loghteD in the definition of the candidate set and the logical
ORused above to form the target.

We now turn to ways in which the candidate set may be computedirst give an algorithm that is optimal in
time, except for a very few cases. Following some furtheeolzions on the summary set, we show how, given
a candidate set, one can calculate all summary sets with lesthia constant time.

5 Computing the Candidate Set

We now give an optimal algorithm for computing the candidsde given the target stringand &, and again
assuming a fixed. This algorithm generates the elements in the candidatim seimeric order, interestingly,
using a linear-time sort. All arrays and strings use zergeandexing. All parameters are passed by value (the C
code uses the more efficient pass-by-reference for arrajystengs).

/l'input: a binary target numbeyrits length/, and a function index for ANDy
I/l output: Cy i, an array of binary numbers (also created is an array of z&jos

1. candidateSet(unsigned intint Z, int k)

2 Ct.r, < new array()

3 z+0

4: Z — new array()

5: fori—1—1to0

6: ift& (1 <<i)=0thenz «— z+1

7 Zl—i—1] <z

8 if k < 1V E > 2'then report NOT_DEFINED
9: elseif k = 1then C, — {t}

10: eeif(z=0AEk>1)V(I>2>0Ak>2%)thenCpy — 0
11: eseif ((> 2> 0) A (2 <k < 2% then

12: rightmost« createRightmost(/)

13: Cy., < generatef, rightmosf{l], [, C, 1)
14: Cy 1 < funkySorte, Ct 1)

15: return Cy

I fillin array Cy
generate(unsigned intint p, int{, arrayCt)
if p = —1then C, ;.appendf)
else
C < generatef, rightmosfp], I, C 1)
Cyk < generate(+ (1 << (I —p — 1)), rightmostp], I, C; k)
return Cy i,

ouahrwnkE

/[fill in array rightmost
createRightmost(unsigned intint [)
ints, 7, flag
Je—-1
flag — FALSE
rightmost«— new array()
fori—1—1to—1
if flag= TRUEthen j « [—¢ —2
if t& (1 << i) = 0then flag — TRUE
: elseflag +— FALSE
0: rightmosfl — i — 1] « j
1 return rightmost

RBROoONOORWNE

/linput: z, the number of zeros
I Cy,r, an unsorted array
Il output: Cy , in ascending order
funkySort(intz, arrayCs)
sorted«— new array()
indices— new array()
indiceg0] < 0
int ¢, offset power
offset— 0

ouakrwnkE

7.
8:
9.

10:
11:
12:
13:
14:
15:
16:

power— 1 << z
fori—1to(l<<z)—1
if (1& (i—1)) =0then
power«— power>> 1
offset— 0
indicegi] < indicedoffset + power
offset— offset+ 1
fori—0to(l <<z)—1
sortedi] «— C x.getindicedi])
return sorted

Let us now briefly examine this algorithm. We first start bykioy at the candidateSet function and discuss each
different function as we encounter it.

e The use of theZ array on lines 4 and 7 will be explained later in the discussalowing the proof of

Theorem 2.

e Lines 8-11 follow the result of Theorem 1.

e Then on line 12 the createRightmost helper function is datbepreprocess the target binary numband

to fill the rightmostarray in order to answer the “rightmost zero” query in consteme. More specifically,
rightmosfp] is the index (bit position) of the rightmost zero to the Idftralex p non-inclusive. Within this
functioni iterates ovet from left to right (high-order to low-order bits). The flagrsquired because we
must remember what we saw in the previous iteratioflaf = TRUE we saw a 0, otherwise we saw a 1.
This runs inG(7).

e On line 13 the generate function is called. This is a recerfinction which creates the candidate set

elements. Given a positign which is a specific index in the zero-based enumeratioht@dafight) of the
binary numbet, it finds the index of the rightmost zero to the leftplising therightmostarray. It first
recurses on that index maintaining the same binary numher 4) and then sets the digit at positipn

to 1 and recurses on the same indighhtmostp| but with this new number (line 5). We can consider the
input target string as capturing all the*(*) number that must be generated during the recursion, so we can
consider the input size to be = 2*(Y), Also, at each recursive call the position of the zero prseess
never revisited so the input size at each call is essentiallyed. Moreover, the amount of work done at each
stage of the recursion is constant hence the formula thaneegpthis recursion i'(n) = 27'(5) 4+ ©(1).
The solution of this formula i®(n) so the running time of the generate functior6ig2*(Y)). However, a
side-effect of this recursive creation of the candidateet®ents is that the elements are not in numeric
order.

On line 14 we call the sorting function. Even though the eletmare not sorted there does exist a pattern
in the order in which they are created. This funkySort fumttcreates the sequence of indices which
when used to index into th€; ; array will result in the ordering of the candidate set eletaeThis is
achieved by performing a single pass overitigicesarray and creating each new index by manipulating
appropriately previous ones (lines 8-13) within the fundst$unction. For example, with a target string
of ¢ = 10000, i.e., 16 in decimal, after the generate function finishesaandidate set will b€’; , =
{16, 24, 20, 28, 30,17, 25, 21,29, 19, 27,23, 31} in this order. Examining closely the set we see that in
order to create theortedarray we must recursively visit the first element of each sgbent half ofC; ;.
Line 12 creates this sequence of indices: 0, 8, 4, 12, 2, 14,6, 9, 5, 13, 3, 11, 7, 15. More specifically,
by starting from 0 the 8 can be created by 2*(Y) wherez(t) = 3. Then, 4 and 12 can be obtained by
adding2? to each of 0 and 8. Then 2, 10, 6 and 14 are obtained by additg 0, 8, 4, 12 respectively.
Finally, the last 8 numbers are obtained by addifigo the first 8 numbers. This explains why at elements
appearing at indices which are powers of 2 in ilndicesarray, theoffsetis reset to zero and thmoweris
halved. On lines 14-15 we use the sequence of indices weedraatl the actual sorting happens. Note that
on line 9 even though the te@t& (i — 1)) = 0 accepts 0 as a power of 2 in this case this is exactly what we
want. This pass over thiadicesarray runs in9(2*),

The running time of candidateSetég + 2*(*)). Thus the algorithm is optimal most of the time, using thedow
bound given earlier, except for the very few cases when2*(Y). In terms of space complexity the algorithm
given here require®(l + 2*(!)) space, as does the C code implementation given in the appevidch requires

1 + max{l, 25} 4+ 2*(*) space.

6 A Second Algorithm, Given a Summary Set

We now show that for fixe& and givenS; ,, one can calculate afl;s , s.t.I’ < [without resorting to the algorithm
given previously. The technique shown below can be potignfaster. We define theandidate array denoted
A, ., to be an array which contains the element€9f, sorted in ascending numerical value. Then[z : y]
selects all elements in the candidate array from indéa y. (NB: A, x[i] = A, x[i : i]). Also, for reasons of
ease and precision we annotatevith the length of the binary number whose value was preWaosplicit, as a
leading subscript.

Given a candidate arrgy, j for a specific target string, we wish to compute the candidate arjay A;
wheret is a suffix (= |y| > 1 —xz = [¢| > 1) of y. EachS, captures all the candidate sets forialk I.
This method creates each elementSef;, by exploiting the fact that each of the binary numbers of targis a
suffix of more than one corresponding binary number of leigtRor example, the candidate &fy;0,2 can be
computed from the candidate sets)af10, 001010, 101010 and so on. Leyy = p ¢ t = {0, 1}*t for some prefix
p of lengthz. Let Suffix(s) denote the suffix of string starting at position.

Let us look at some examples to develop some intuition. Gjv&10,2 = [0010,0011, 0110, 0111, 1010,
1011,1110,1111] we wish to computgAg19,2. Observe that = 010 is y = 0010 with the leftmost ‘0’ removed.
Removing the leading ‘0’ frong results in a string which cannot encode any numbers in the ra2ige 24 — 1.
Thus the candidate array 19,2 will have the same elements as the candidate arraygfio > except for the
numbers encoded by the extra leading digit. We know that edditional ‘0’ present in the target string doubles
the cardinality of the candidate set, thus a removal of thie mall halve the number of candidate set elements.
Observe also that the elements in the second halflg§io » have essentially the same bit pattern as the elements
in the first half but with a ‘1’ at the leftmost position insteaf a ‘0’, e.g., 1110 has the same bit pattern as 0110
apart from the bit in the leftmost position. Thus in order tampute; Ag10,2 We can truncate the leftmost digit
from all the elements in the original candidate set. By reimgpthe leftmost digit from each of the elements
in 4A010,2, We get 010, 011, 110, 111, 010, 011, 110, 111. The first halfi@elements will have a leading
‘0’ removed, something which will not change their numeriealue, while the second half which will have a
leading ‘1’ removed will produce identical numbers of lem@tto the truncated numbers in the first half. Since
the cardinality of; Ag19,2 is half that of4 Agp10,2, and since the two halves g#yo10,2 have the same elements
after the truncation and by knowing thato10 2 = [010,011, 110, 111] we can verify that:

3Ao102 = [Suffix (440010,2[0]), Suffix (4 Aoo10,2[1]), Suffix (4 Aoo10,2[2]), Suffix (4 A0010,2[3])]
[010,011,110,111] = [2,3,6,7]
Let us consider a different example in which the originayéastring isy = 1010 and the same suffix= 010.
In this case;A19102 = [1010,1011,1110,1111] all elements necessarily start with a ‘1’. Since removing th
leading ‘1’ fromy to gett does not affect the number of zeros in the strings the cditiézeof the two candidate

setis the same. Removing the leftmost ‘1’ from all the eletmefy A1, will yield directly the desired elements
of the new candidate set:

340102 = [Suffix(s441010,2(0]), Suffix (4 A1010,2[1]), Suffix (4 A1010,2(2]), Suffix (441010,2(3])]
[010,011,110,111] = [2,3,6,7]
With these valuable observations we can now state the tiveane its proof.
Theorem 2. Assumey =pet ={0,1}*t,0 <z <1,0 < 2(t) <1 —z andq = 2*®. Then:

N/A . k>ol® (1)
[t] , k=1 (2)
eAig =14 0 , 2(t)=0A1<k<2l-® (3)
Uo<icg[SUffix. 1Ay 2i])] , I—2>2(t)>0A2<k<q (4
0 , l—2>2(t) >0ANk>q (5)

Proof. Case (1):
The candidate set is not defined when we try to deduce a caadidafor a binary number of length- z given
that the (original} is greater than the total number of possible numbers thabeaneated using— x digits, i.e.,
2!~ This is true since as discussed at the beginning of the pljsarould force repetition of a binary number.
Case (2), Case (3) and Case (5):
These follow directly from the proof of Theorem 1.
Case (4):
It is worth elucidating here the nature of the numbeiThis number can be thought of as the cardinality of the
candidate set of the sufftx ¢ = 2*() according to Corollary 1. It can alternatively be defineg as ﬁ [1CYy 2],
that is, it is the cardinality of the candidate set of the imiddjtargety scaled down by a power of 2. This power
of 2 is given by the number of zeros present in the truncatetixop. Regarding; in this respect is consistent
with the its initial assumption ag= 2*(*). This is true sincey = {0, 1}t = z(y) = z(p) + z(t), which in turn
implies thaty = 5245 |0, 2| = 2o = 25,
We prove case (4) by induction an Define proposition:
P(x) s 1—eArk = Upeicq[SUffix 1Ay 2[i])] for (1 —z > 2(t) > 0) A (2 < k < 2°()) andg = 271,

Basis of induction: Prové(1) is true.

Letx = 1. Here the prefip is a single bit. We have that= o—=15[:Cy 2| = 2°), y = {0,1} e t and we want
to prove thai 1 A; r = U<, [Suffix (14, 2[i])].

Thus,;_1 A¢ i, = [Suffix (l/fygfl]),Suffi>g(lAy72[2]), ..., Suffix (1A, 2[q])]. WhatP(1) essentially claims is that
the new candidate array, A, can be computed by simply selecting the firgtlements of the candidate array
1A, and removing the leftmost digit from each such element sadec

Case (i) Assume that = 0 (this corresponds to the first example, above). With redpetis first digit of the
target binary stringy we can divide the elements of its candidate array into twaigso those which have a ‘1’,
and those which have a ‘0’ at that leftmost position. Due ®whay these elements are created, resulting in the
elements of the candidate array being sorted in increasdeydhe elements with a ‘1’ for a leftmost digit must all
appear after those with a ‘0’ at the same position. Depenglag its position, each digit encodes the numbers in
the range’~! to 2’ — 1 wherei (1 < i < 1) is the position of the digit numbering the string from rigiiteft. So by
removing the leading ‘0’ frony results in a string which cannot encode any numbers in the ra2ige to 2! — 1.
Thus the candidate array pf; A; ;, will have the same elements as the candidate arrafpf, = ;4,2 except
for the numbers encoded by the extra leading digit. But wenkiat each additional ‘0’ introduced doubles (the
position can be filled by a ‘0’ or a ‘1’) the count of numbersttban be encoded which implies removing a ‘0’ will
halve the count of numbers encodedp) = 1 = 2(t) = 2(y) — 1 = [;_1Cy x| = 2°) = 221 = 1|,C, 4.
Thus the two groups of elements mentioned in the beginnifigo@iequinumerous: the elements in the second
half have essentially the same bit pattern as the elemenitifirst half but with a ‘1’ at the leftmost position
instead of a ‘0’. By removing the leftmost digit from each betelements inA, x, the first half will have a
leading ‘0’ removed, something which will not change thaimerical value, while the second half which will
have a leading ‘1’ removed will produce identical numbergeofgth! — 1 to the truncated numbers in the first
half. This is the reason why ;1 A, , will comprise the suffixes starting at position 1, of the etats in the first
half (i.e.,Q%|lC‘ 2| = ¢g) of the numbers in the arrayl, ».

Case (ii) Assume that = 1 (this corresponds to the second example, above). In thes thassituation is
simpler since all the elementsid,, , can only start with a ‘1". Since the number of zeros iemains unaltered
(z(p) = 0 = z(y) = =(t)), this implies that;_1Cy x| = |;Cy x|. Thus removing the leftmost digit from all the
elements of A, ; will yield directly the desired elements of the new candidseét since each of the truncated
elements will have the same numerical value as their binangler counterparts of lengthwith a ‘0’ at the
leftmost position. Again the new candidate arrayA; , will comprise the suffixes starting at position 1, of the
(= 2—10|171Ct,k|) first elements (in this case all of them)of, ;.

Inductive step: Prove tha(z) — P(x + 1)

We assume that ; A: . = Uy<; -, [Suffix (1 Ay 2[i])], whereq = 56711Cy 2], andy = p et = {0,1}"¢ is true
and seek to use this inductive hypothesis to prayg; 1) A x = U<y [SUffiX 41 (14,,2[i])] where{0, 1}¢" =

10

t =y =1{0,1}"t = {0,1}7{0, 1}¢' = {0,1}**¢, andq’ = 5-Lroy7 11 Cy 2| Thus:
I—e+)Av ke = (—2)—14v k apply basis of induction

. . R 1
= U [Suffix (1—s Ago,13e7,2[i])] whereg = mhﬂcc{o,l}t/,ﬂ

0<i<d

= | Isuffix(,_+Agay.lil)] candidate set s invariant whén< 2=(*)
0<i<d

= | [suffix (1o Ark[i])] since{0,1} et =1
0<i<d

= Y Isuffix((| [Suffix.(4y.2(3])])[i])] by inductive hypothesis
0<i<q 0<j<q

= | | [suffix(Suffix, (14, 2[j)])[i])] the suffix and union operations commute

0<i<q 0<j<q

= U [Suffix (Suffix, (14, 2i]))]

0<i<q’

= U [Sum)&Jrl(lAy,Q[Z])]

0<i<q’
By the first principle of mathematical induction the initfoposition is true. O

The algorithm for computing the candidate sets using thie method is given below. Note that,,,; is the
index in the original string where the suffix starts.

/linput: initial candidate sef',

1 bit positiont;,+ at which the suffix starts iny
1 length of original target string,

I/l output: the candidate sét, ;,

1: candidateSetSuffix (arrayy i, int tgeqre, it k, intl,, arrayZ)
2 Cy 1 < new array)

3 lt — ly - tstart

4. 2t 2y — Z[tstart — 1]

5: mask— (1 << ;) —1

6: Yy < Cy k0]

7 t — y & mask

8 if k < 1V k> 2" then report NOT_DEFINED

9: eseif k = 1then Cyj — {t}

10: dseif (= 0A1<k<2%)V (I >2>0Ak>2%)then Cpp — 0
11: eseif (I; > z; > 0) A (2 < k < 2%) then

12 for i — 0to2=() — 1

13: C x.appendC, x[i] & mask

14: return Cy

Since creating the candidate set fanvolves scanning all of to find the zeros we can at the same time maintain
an array which accumulates the number of zeros encounteréat sluring the scan. This array is tEearray
which was created in the function candidateSet (lines A\VE) can index into this array using the position which
suffix ¢ starts iny and thus get the number of zeros in constant time. For exafaple = 01101010 andt = 1010
given in terms of .. which is the start position ofin y, we can scamy from left to right and create the array
Z=11,1,1,2,2,3,3,4]. This arrays gives the number zeros in every suffix.ofhus,z(t) = z(y) — Z[tstart — 1]
In this cas€ i+ = 4, and saz(1010) = 2(01101010) —Z[4 — 1] =4 —2 = 2.

In addition, themaskis used as a means of setting the firdbits of each original candidate set element to
zero, which is the equivalent in a sense of taking the suffithefcorresponding binary string. For example, if
the candidate set elementli8, with binary representatiotN010, and we want to take the suffix starting at index

11

2, then themask= 7 (00111 in binary). Thus, by bitwiséANDing themaskand the element, we géi0 = 2.
Note that the masking does not simply set the higher ordsitbdizero but it truncates the number, i.e. the length
actually decreases. This is important because we seek itedsym the candidate set D010 the candidate
set 0of010 and not the set fo0010. The latter is impossible to derive in the way described ia fection since
00001072 is aSUpersebf 010010_’2.

The “for” loop on line 12 dominates the running time of the ebalgorithm. Hence, the algorithm, in the
worst case, runs i®(2*(*)), which is optimal.

However, we can do better by using a different represemtditiothe candidate set of the suffix Since the
elements of’ ;. are contiguous elements 6, ;. starting at position 0 then the candidate set oén be given as
a range of values. This is achieved just by maintaining atpoto the positiony — 1 in the candidate array of
marking the last element @f; ;. Thus, only two numbemask andg = 2*(*), both of which can be computed
in constant time, are needed to capture the candidate selyafudfix of targety. To create thenaskwe usel,

(as seen on line 5) which was computed from the input integgr;, on line 3. Obtaining; is easy since we have
already computed(¢) on line 4. Thus, the first and last elements of the candidat®sthe suffix can be given
asC, 1[0] & maskandC, ;[¢ — 1] & maskrespectively. This approach avoids the expensive “forploa line 12
and makes the algorithm run é(1).

For this reason it is preferable to use the candidateSetSalfforithm in one particular situation: to find
the candidate set for the suffix gfwhenever we already have the candidate setfo€onsider the following
examples.

For! = 4 we want to calculat€’;p10.7 andCoig.3. Cio10.7 = 0 since|Cio10.7| = 2% = 4 < k = 7. In the case of
Coi0.3 We have3 > z(t) =2 > 0and2*) =4 > k = 3 s0

340103 = Uy <4 [SUFfi% (4 41010,2[i])] = U, <;<4[Suffix [1010,1011, 1110, 1111]] = [010, 011,110, 111]
and thusCy10.3 = {2, 3,6, 7}. If we decide to use the faster constant running time apbrtrecresult will be given
asmask= 0111 andq = 2% = 4 and hence the first element @10 3 iS 4 A41010.2[0] & 0111 = 1010& 0111 =
010 = 2 while the last element igA1910,2[4 — 1] & 0111 = 1111 & 0111 = 111 = 7.

Assume that we are auditing a variety of databases, eaclapiinticular value (for the example in this paper,

[= 4). Within the forensic analyzer, we could precompute a sumiset forimayx which is the maximum of the
values that were specified for the databases that were baidliigd. During forensic analysis of a specific database
corruption that was detected using the polychromatic élyordiscussed in Section 1, given the resulting target
string and théd value for this particular database (with< Imay), this algorithm could calculate in constant time
the candidate set, which consists of all the possible céetlgranules that could have yielded that target number
for that value of.

7 Previous Work

Elsewhere we have introduced the approach of using crygptge hash functions to detect database tampering [5]
and of introducing additional hash chains to improve foieasalysis [2].

Strachey has considered table lookup to increase the efficief bitwise operations [6]. He provides a log-
arithmic time/logarithmic space algorithm for reversihg tits in a word. Our second algorithm requires only
constant time, but the table must be of exponential space.

Enumerating all solutions (pre-images) is a key step in &werification. Sheng and others have developed
efficient pre-image computation algorithms [4, 1]. Thesgodathms are similar to the ones introduced in this
paper in that they all enumerate all possible solutions. féhmal verification algorithms differ in that they are
computing pre-images of a state transition network, ratem of bitwiseAND functions, as in our paper.

8 Summary

We have developed a method that allows us to find all the dsgajpartition granules that might have been cor-
rupted when that database has been tampered. To this endve@ided the notion of a candidate set which is
associated with a target binary number obtained from thgghobmatic forensic analysis algorithm; this candidate
set captures all the potentially corrupted granules. Weiesl that the candidate set comprises all the pre-images
(granules) of the target number, under an appropriate $8t%ND function specified by an indek. We have
analyzed completely the behavior of the candidate setenikpg onk and the target binary number, and then

12

developed an optimal algorithm to produce these candiddse $Ve then introduced a constant-time algorithm
which is preferable in the case when the target binary nunsbersuffix of another binary number for which a
candidate set already exists. We provided proofs of caresstfor both algorithms and a thorough space and time
complexity analysis. These algorithms compute the passibtabase corruptions given information on which
hash chains matched those computed before the tamperémgbthproviding important information on what data
was tampered with, helping to identify who did the tampeand why.

References

[1] B.Li, M. S. Hsiao, and S. Sheng, “A Novel SAT All-Solutiersolver for Efficient Preimage Computation,”
in Proceedings of the IEEE International Conference on Desfgriomation and Test in Europ€olume 1,
February 2004.

[2] K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis ofdbase Tampering,” iRroceedings of the ACM
SIGMOD International Conference on Management of i&i&MOD), pp. 109-120, Chicago, June, 2006.

[3] K. E. Pavlou, R. T. Snodgrass, and S. S. Yao, “Detectioth Borensic Analysis of Database Tampering,”
TIMECENTER Technical Report, forthcoming.

[4] S. Sheng and M. S. Hsiao, “Efficient Preimage Computati®ing A Novel Success-Driven ATPG,” in
Proceedings of the IEEE International Conference on Desfgrtomation and Test in Europ®olume 1,
March 2003.

[5] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper Dietedn Audit Logs,” in Proceedings of the
International Conference on Very Large Databaggs 504-515, Toronto, Canada, September 2004.

[6] C. Strachey, “Bitwise operationsZommunications of the ACM(3):146, March 1961.

13

Appendix: C Code

#include <stdio.h>

#include <stdlib.h>

#include <math.h> /I compile using -Im
#define FALSE 0

#define TRUE 1

#define NOT_DEFINED -999

#define GENERATE -1

/I Function Prototypes

void generate(unsigned int i, int pos);

int find_rightmost(unsigned int i, int p);

void *mymalloc(int size);

void funky_sort(void);

void create_rightmost(unsigned int target_number);

void candidateSet(int k, unsigned int target_number, int | ength);

void candidateSetSuffix(int suffix_start, int length, in t k, int z, int * Zarray, int
/I Globals

int length; /I the length of the target binary number

int *candidates; /I this array plays a triple role: first it is use d in the

I/l create_rightmost function; then it holds the sequence of

/I indices of the aux array that when traversed would yield
/I the sorted candidate set elements. In the end it holds the
/I sorted candidate set elements

int *aux; /I this array holds temporarily the unsorted candidate set
/I elements which are created by the generate function
int tail_index = 0; /I this maintains the logical size of the a ux array
int logical_size = 0; // logical size of candidates array
int z=0; /I this is the number of zeros in the target binary num ber
int *Zarray; /I this Zarray[i] gives you the the number of zeros se en to
/I the left of target_number[i] inclusive
/I Total RT: O(length + 2°z) -- this is optimal most of the time except in the
/I cases when | > 2°z
int main(int argc, char *argvl])
{
if(argc != 5)
fprintf(stderr, "Usage: targetbinarynumber length numco mponents suffixstart\n");
fprintf(stderr, "Example:\n \t 10 4 5 3\nPlease retry!\n") ;
exit(1);
}
unsigned int target_number = atoi(argv[1]); /I the numeric al representation
/I of the binary target number in decimal
length = atoi(argv[2]); /I the length of the target number
int k = atoi(argv[3]); /I k is the number of components
/I in the tuple; k takes values
/I between 1 and 27(l)
int suffix_start = atoi(argv[4]); /I the bit position /inde x at which

/I the suffix of the target number begins

if(suffix_start < O || length < 1 || k < O || target_number < 0)

* candidates);

{
fprintf(stderr, "Negative input is not allowed, and length must be at least 1\n");
exit(1);

}

if(suffix_start < 0 || suffix_start >= length) // check if th e starting index for

14

/I the suffix is valid

{
fprintf(stderr, "suffixstart must be between 0 and %d\n", | ength-1);
exit(1);
}
int min_length = (target_number & (target_number - 1)) ? (in t)ceil(log(target_number)/log(2))

: (int)(1 + ceil(log(target_number)/log(2)));
if(min_length > length)

{
fprintf(stderr, "The length of the targetbinarynumber mus t be at least %d\n", min_length);
exit(1);
}
candidateSet(k, target_number, length); /I create and out put the candidate set
/I of target_number
candidateSetSuffix(suffix_start, length, k, z, Zarray, c andidates); // create and
/I output the andidate set of the suffix
free(aux);
free(candidates);
free(Zarray);
return O;
}
/I This function creates and outputs the candidate set of the original target_number
void candidateSet(int k, unsigned int target_number, int | ength)
{

int i; // iteration variable
/I find z the number of zeros in the input target_number.

/I at the same time create the Zarray: Zarray[i] gives you the number of zeros
/I seen to the left of target_number][i] inclusive
Zarray = (int *)mymalloc(length * sizeof(int));
for(i = length-1; i >= 0; i--) /I O(length)

if((target_number & (1<<i)) == 0)

Z++;

Zarray[length-i-1] = z;
} /I note that Zarray[length-1] equals z
/I depending on the role it plays the candidates array needs d ifferent capacities.

int max_cap = (1 << z) > length ? (1 << z) : length;

candidates = (int *)mymalloc((max_cap + 1) * sizeof(int));
aux = (int *)mymalloc((1<<z) *sizeof(int));
if (k <1) |l (k> (1 << length)))
candidates[0] = NOT_DEFINED;
else if (k == 1)
{
logical_size = 1;
candidates[0] = target_number;

else if ((z == 0 & & k > 1) || (length >= z && z > 0 && k > (1 << 2)))
logical_size = 0;
else if (length >= z && z >0 && 2 <= k && k <= (1 << 2))

{
logical_size = 1 << z;
/I preprocessing required to answer "rightmost zero" query in constant time
create_rightmost(target_number); /I O(length)
generate(target_number, candidates[length]); // genera te the candidate set

15

/I elements recursively in
/I O(2°z) time
funky_sort(); /I sort the generated candidate
/I set elements O(2°z)
}
if(candidates[0] == NOT_DEFINED)
printf("Candidate set not defined\n");

else
{
/I Print the candidates array contents
printf("The Candidate set C_{%d,%d} = { ", target_number, k);
for(i=0; i < logical_size; i++) Il O(2°2)
printf("%d ", candidates][i]);
printf("\n");
}
}
/I Finding candidate set for suffixes of original target bin ary number.
void candidateSetSuffix(int suffix_start, int length, in t k, int z, int * Zarray, int * candidates)
{
/I Note that this entire if clause, the for loop in the last els e clause
/I notwithstanding, runs in constant time
/I Also, the original target_number and its candidate set ar e not altered in any way
if(suffix_start != 0) /I if the suffix is the same as the
/I original number there’'s no need to execute this
{
int max; /I the max element in the suffix candidate set
int i /I iteration variable
int suffix_length = length - suffix_start;
int z_suffix = z - Zarray[suffix_start-1] ; // z_suffix is th e number of zeros
/I in the suffix
unsigned int mask = (1 << suffix_length)-1; // this mask of th e from

/l 000...01111..1 (with
/I suffix_length number of '1's)
/I will be used to take the
/I "suffix" of a binary number
/I perform checks
if (k<1)] (k> (1 << suffix_length)))
candidates[0] = NOT_DEFINED;
else if (k == 1)
max = candidates[0] & mask; // no need to set logical_length s ince it was
/I set above -- this is because k is not variable;
/I also, the max candidate element is the
/I only element
else if ((z_suffix == 0 && k > 1 && k <= (1 << suffix_length))

|| (suffix_length >= z_suffix && z_suffix > 0 && k > (1 << z_suf fix)))
logical_size = 0; /I the candidate set is empty
else if (suffix_length >= z_suffix && z_suffix > 0 && 2 <= k && k <=(1<< z_suffix))
max = candidates[(1 << z_suffix) - 1] & mask; // find the max el ement and

/I take its suffix
if(candidates[0] == NOT_DEFINED)
printf("Candidate set not defined\n");

else if (logical_size == 0)
printf("The Candidate set is empty\n");

else
printf("The Candidate set of the suffix:\nC_{%d,%d} = { ", ¢ andidates[0] & mask, Kk);
for(i = 0; i < (1<<z_suffix); i++) Il O(2°z_suffix)

printf("%d ", candidates[i] & mask);

16

printf("A\n");
char *mes = "The mask and g-1 (the index of the last element) are:";
printf("%s \n mask=%d g-1=%d \n", mes, mask , (1 << z_suffix) -1);
/I can output the suffix
/I candidate set by giving the
/I two defining numbers q and mask

}
}
}
/I This function recursively computes the candidate set ele ments (albeit unsorted). RT: O(2°z)
void generate(unsigned int i, int p)
{
if (p == GENERATE)
{
aux[tail_index] = i; // keep the generated elements in the au X array
tail_index++;
}
else
{
/I the candidate set at this point holds the indices of the rig htmost 0
/I to the left of given position
int pos = candidates[p]; /I find index of rightmost 0 to the le ft of
/I position p
generate(i, pos);
generate(i + (1 << (length - p - 1)), pos); /l set the 0 to a 1 and r ecurse
}
}
/I This function performs pre-processing using the target_ number and fills the candidates array
/I in order to answer the "rightmost zero" query in constant t ime.
/I More specifically, candidates[p] is the index of the righ tmost zero to the left of index p

/I NON-INCLUSIVE. RT: O(length)
void create_rightmost(unsigned int target_number)

{
int i,j,flag;
i = GENERATE;
flag = FALSE; /I the flag is required because we must remember what
/I we saw in the previous iteration;
/I if flag = TRUE we saw a 0 otherwise we saw a 1
for(i = length-1; i >= -1; i--)
{
if(flag)
j = length-i-2;
if((target_number & (1 << i)) == 0)
flag = TRUE;
else
flag = FALSE;
candidates[length-i-1] = j;
}
}
/I This function sorts the candidate set elements. RT: O(2°z)
void funky_sort(void)
{
candidates[0] = 0; // the Oth index is always the first one to b e visited
int i, offset, power;
offset = 0;

power = 1 << z;

17

/I this algorithm performs a single pass over the candidates array and

/I creates each new index by manipulating appropriately pre vious ones
fori = 1; i < (1 << 2); i+4) /I O(2°z) time
{

/I if i is a power of 2 reset offset and adjust power

if((i & (i - 1))== 0) /I even though this test accepts
/I 0 as a power of 2 in this case
/I this is exactly what we want!!!

{
power = power >> 1;
offset = 0;
candidates[i] = candidates[offset] + power; /I this create s the sequence of
/I indices which when used to
/l index in the aux array will
/I sort the candidate set elements
offset++;
}
fori = 0; i < (1 << z); i+4) /I O(2°z) time
candidates|[i] = aux[candidates][i]]; /I this is where the so rting happens
}
/I Wrapper of malloc which performs a check after the system c all
void *mymalloc(int size)
{
void *p= malloc(size);
if(p == NULL)
{
fprintf(stderr, "Memory allocation failed\n");
exit(1);
}
return p;
}

18

