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tis E. Dyreson, Washington State University, USA; DengfengGao, Indiana University South Bend, USA; Fabio
Grandi, University of Bologna, Italy; Vijay Khatri, Indiana University, USA; Nick Kline, Microsoft, USA; Gerhard
Knolmayer, University of Bern, Switzerland; Carme Martı́n, Technical University of Catalonia, Spain; Thomas
Myrach, University of Bern, Switzerland; Kwang W. Nam, Chungbuk National University, Korea; Mario A. Nasci-
mento, University of Alberta, Canada; John F. Roddick, Flinders University, Australia; Keun H. Ryu, Chungbuk
National University, Korea; Dennis Shasha, New York University, USA; Paolo Terenziani, University of Torino,
Italy; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Siemens, USA; Jef Wijsen,
University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as bytheir precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because the
primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were perceived
by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

Mechanisms now exist that detect tampering of a database, through the use of cryptographically-strong hash
functions, as well as algorithms forforensic analysisof such tampering, thereby determining who, when, and
what. This paper shows that for one such forensic analysis algorithm, thetiled bitmap algorithm, determining
when and what, which goes far in determining who, has at its core computing the pre-image of bitwiseAND
functions. This paper introduces the notion ofcandidate set(the desired pre-image of a target binary number),
provides a complete characterization of the candidate set,and characterizes the cardinality as well as the average
cardinality. We then provide an optimal algorithm for computing the candidate set given a target. We show that
given an auxiliarycandidate array, the candidate set can be computed in constant time. This latter algorithm
is applicable when the target is a suffix of another target number for which a candidate set has already been
computed.1

1 Motivation

Due in part to recent federal laws (e.g., Health Insurance Portability and Accountability Act: HIPAA, Sarbanes-
Oxley Act), and in part due to widespread news coverage of collusion between auditors and the companies they
audit (e.g., Enron, WorldCom), which helped accelerate passage of the aforementioned laws, there has been inter-
est in built-in mechanisms to detect or even prevent database tampering.

We previously proposed an innovative approach in which cryptographically strong one-way hash functions
prevent an intruder, including an auditor or an employee or even an unknown bug within the DBMS itself, from
silently corrupting the audit log [5]. This is accomplishedby hashing data manipulated by transactions and peri-
odicallyvalidatingthe audit log database to detect when it has been altered. Validation involves sending the hash
value computed over all the database to an externalnotarization service, which will indicate whether that value
matches one previously computed. Should tampering have occurred, the two hash values will not match.

The question then arises, what do you do when an intrusion hasbeen detected? At that point, all you know
is that at some time in the past, data somewhere in the database has been altered.Forensic analysisis needed to
ascertainwhenthe intrusion occurred,whatdata was altered, and ultimately,whothe intruder is.

Validation provides a single bit of information: has the database been tampered with? To provide more in-
formation about when and what, during validation we hash across subsets of the database. As the database trans-
actions that are hashed occur in commit order, each set of values that is hashed is referred to as ahash chain.
Then, during forensic analysis of a subsequent validation that detected tampering, those chains can be rehashed to
provide a sequence of truth values (1 = Success and 0 = Failure), which can be used to narrow down where and
what.

We have proposed a variety offorensic analysis algorithms, differing in the amount of work necessary during
normal processing (computing additional hash chains during periodic validation) and the precision of when and
where during forensic analysis [2].

In the tiled bitmap algorithm[3], a variant of thepolychromatic algorithm[2], the hash chain groups are
aligned with the actual validation intervals. In Figure 1, validation occurs each 16 hours, during which time many
thousands or even millions of transactions occurred; this figure shows one 16-hour slice. (Time proceeds left to
right, with the hour shown asr = 0 to r = 15. This is the second slice, so hour 17 corresponds tor = 0 and hour
28 corresponds tor = 11.)

This figure illustrates acorruption eventin which the timestamp of a tuple in a relation was changed from hour
31 to hour 28. Consider that the relation records when privacy release authorizations were signed by a patient; in
this case the authorization was signed in hour 31. A doctor revealed health information to an insurance company
some confidential information on hour 29, then, later realizing his mistake, which is an offense under HIPAA,
backdated that authorization to hour 28, as shown by the left-pointing arrow. Thus, the database now implies that
authorization had been received before the confidential information was transferred. (The fact that this backdating
was done on hour 47 will be revealed by a separate part of the forensic analysis algorithm, not discussed here. The
details of this algorithm may be found elsewhere [2, 3].)

1The authors are at the Department of Computer Science, University of Arizona, Tucson, AZ,{kpavlou ,rts }@cs.arizona.edu
This research was supported in part by NSF grants IIS-0415101, IIS-0639106, and EIA-0080123 and with partial support from a grant from
Microsoft Corporation.
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Figure 1: Hash Chains in the Polychromatic Forensic Analysis Algorithm

We wish for forensic analysis to constrain the corruption towithin an hour, so the database administrator
configures the database management system to compute five hash chains,c0 throughc4, also shown in the figure.
The first hash chain,c0, hashes all transactions within the notarization intervalof 16 hours, in order, to compute a
hash value. (This hashing was done during a validation previous to the one that detected the corruption.) It is this
hash value that narrows down the corruption event to this particular validation interval. The second hash chain,
c1, hashes only the first 8 hours worth of transactions. The lasthash chain,c4, hashes every other hour’s worth.
The dotted line indicates linking of hash chains. For example, in hash chainc4, hash value of the last transaction
of hour 0 is hashed with the hash value of the first transactionin hour 2. Hash chain linking is discussed in more
detail elsewhere [5].

When the tampering is detected, sometime after hour 47, the hash value for each chain is recomputed, on the
tampered data and sent to the notarization server, which responds with “success” (the old and new values match)
or “failure”. Hash chainc0 reports failure, which means something that was stored during this 16-hour period
was tampered with. Changing the timestamp on a tuple is equivalent to removing that tuple from all hash chains
that cover the original time and adding that tuple to all hashchains that cover the inserted time. We have four
remaining hash chains, so we compute a 4-bit value from this corruption event: 1010 (reading fromc1 as the
high-order bit andc4 as the low-order bit). The reason is that the hash value of chainsc1 andc3 were not effected
by the corruption, as neither of these chains include hoursr = 11 or r = 14; the hash value of chainsc2 andc4 no
longer match those previously computed.

The truth values shown at the bottom of the figure indicate thetarget string that would result had the corruption
event tampered with data stored at the indicated hour. For example, changing the data of a tuple that was originally
stored in the first hour of this interval would have rendered all of the chains as failure, resulting in a value of 0000.
We term this value thetarget binary number, or target. The target is the input to the forensic analysis.

For our corruption event that occurred at hour 47, changing atimestamp from 31 to 28, the hash chains provide
a target of 1010. What could such a target indicate? One possibility is that only the data in hour 27 (r = 10) was
modified. Another is that the timestamp was moved from 28 (r = 11) to 31 (r = 14). A third possibility is that
the time was moved from 31 to 28. Other possibilities are a change from hour 27 (r = 10) to 31, a change from
hour 32 (r = 15) to hour 27, or a change in the other direction. All these possibilities result in a target of 1010.

Because the “from” time and the “to” time both occur within the same validation interval and because the
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hash chains are linked together, then the bit patterns givenabove areANDed, and the resulting target of1010
corresponds to the existence of (a) either a single suspect day, for a data corruption, or (2) two suspect days,
for a pre- or post-dating corruption, or (3) some combination thereof. It is important to note that corruptions on
some hours could not have produced this target. For example,given thatc3 succeeded, we know that nothing was
affected in hours 0, 1, 4, 5, 8, 9, 12, or 13.

In reality the situation is more complicated since when dealing with multiple corruption events there might be
many combinations of bit patterns that can yield the single bit pattern the forensic analysis will produce (target bit
pattern). This is also true even in the simple case where a single post/backdating corruption eventdoes nothave
its endpoints in distinct hash chain groups. In other words,the pre-image of the target bit pattern under theAND
function is not unique. We address this complication in the remaining of this paper. Our task is to extract from a
single target all the possible corruption events, the core computation of which is determining the pre-image.

2 Problem Formulation

We define the lengthl of a binary numberb, denoted by|b| = l, as the number of its digits. From this point forward
we considerl to be fixed. We seek to find the pre-images of all the binary numbers of lengthl, B = {b : |b| = l},
under a family of bitwiseAND functions whose domain is a finite Cartesian product.

ANDk : B
k −→ B

ANDk((b1, b2, . . . , bk)) = b1 ∧ b2 ∧ . . . ∧ bk

Observe that the maximum numberk of sets participating in the Cartesian product is2l, since ifk is allowed to
take a value beyond that, it will force a repetition of one of the binary numbers. This is not informative or useful in
any way since repeatedANDing operations with thesamebinary number leave the result invariant (the operation is
idempotent). In other words, repetition is not allowed and hence for a givenk-tuple all its components are distinct.
Also note that the value ofk uniquely identifies a specificANDk function in the above family.

We name the set of all binary numbers which appear as components in at least one of the pre-images (i.e.,
k-tuples) of a specific target binary numbert thecandidate set:

Ct,k = {b ∈ B : ∃ b1, b2, . . . , bk−1 s.t. ANDk((b, b1, b2, . . . , bk−1)) = t}

The∧ operation is commutative: the order of the operands does notmatter, and that is why this is a set. The word
“candidate” was used to name this set because, in the original formulation of the problem, its elements correspond
bijectively to granules (the units of time a database is partitioned into, e.g., the hours indicated in Figure 1), which
are candidates where corruption may potentially be detected. For the example provided before, the candidate set
would be the hours 27, 28, 31, and 32 that is,r = 10, r = 11, r = 14, andr = 15. In this forensic analysis
context, the value ofk represents theactualnumber of granules corrupted.

For convenience we can express these sets in decimal, thoughour algorithms read and write in binary. For
example:

C1010,1 = {1010} = {10}
C1010,2 = {1010, 1011, 1110, 1111}= {10, 11, 14, 15}

1001 is not inC1010,2 because 1001 cannot be in the pre-image of1010. Note that even though two binary target
strings may have the same numerical value, if their length isdifferent then their candidate sets will be different.
For example, the candidate setC000,2 is different fromC0000,2.

We wish to characterize formally the candidate set and develop algorithms for efficiently calculating this set,
givent andk.

3 Characterizing the Candidate Set

Letz(t) be the number of zeros in the binary numbert, e.g.,z(1010) = 2. By definition1 ≤ k ≤ 2l and0 ≤ z ≤ l.
The behavior ofCt,k for increasingk is interesting. Ask increases the candidate set for a fixedt remains invariant
and equal to the candidate set fork = 2, until some threshold value2z(t) after which it becomes empty. Simply
put,Ct,k obeys an all-or-none law. A complete characterization of the candidate sets is given below.
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Theorem 1.

Ct,k =















{t} , k = 1 (1)
∅ , z(t) = 0 ∧ k > 1 (2)
Ct,2 6= ∅ , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t) (3)

∅ , l ≥ z(t) > 0 ∧ k > 2z(t) (4)

Proof. Case (1):k = 1
We want to find the binary numbers that map tot. In this casek = 1, i.e., the pre-image is unique and not
ANDed with another number to producet. The function is essentially the identity function so the candidate set is
Ct,1 = {t}.

Case (2):z(t) = 0, k > 1
Sincez(t) = 0 the target binary number ist = 111 · · ·1. We require thatk (at least 2) binary numbers areANDed
in order to producet. Suppose these numbers exist. Also, the formulation of the problem requires that they are
all distinct. Then at least one of them will have a ‘0’ as a digit because111 · · · 1 is the only number of lengthl
with no zeros. But this implies that their image under theAND function will also have at least one ‘0’ digit which
contradicts the fact that the target binary numbert hasz(t) = 0. Therefore, no suchk numbers can exist. Thus
C11···1,k = ∅ for k > 1.

We argue cases (3) and (4) together because they are closely related.
Case (3)l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t) and Case (4)l ≥ z(t) > 0 ∧ k > 2z(t):

In both cases the target binary number has at least one ‘0’ andwe require at least 2 binary numbers to beANDed
in order to producet. Only binary numbers which have at least as many ‘1’s, and at the same positions, as the
target string can achieve this. Thus the positions of the ‘1’s are fixed and only the positions with zeros int can
have variations, i.e., 1 or 0. This explains why the cardinality of the candidate set is2z(t): there arez(t) positions
(the number of zeros) and each can independently take two values. Ifk exceeds the cardinality of|Ct,2| then we
are trying to findk-tuples which have a greater number of components than the total number of distinct binary
numbers inCt,2. This would force repetition in the components and this by definition is prohibited. Thus no such
k-tuples can exist andCt,2 will be empty. The only thing that remains to prove isCt,k = Ct,2 if l ≥ z(t) > 0 and
2 ≤ k ≤ 2z(t). In other words, the candidate set remains invariant given that the above conditions are met.

First we show thatCt,k ⊆ Ct,2. Let ANDk((b1, b2, . . . , bk)) = t for somet. Thenb1, b2, . . . , bk ∈ Ct,k. This
k-tuple though is “equivalent” to the following 2-tuples(b1, t), (b2, t), . . ., (bk, t) since if we apply theAND2

function to each 2-tuple the result ist, and thus all ofb1, b2, . . . , bk are inCt,2.
Conversely, we show thatCt,k ⊇ Ct,2. Given a series of 2-tuples(b1, b2), (b3, b4), . . ., (bk−1, bk) which are

pre-images oft under the functionAND2, and thereforeb1, b2, . . . , bk ∈ Ct,2, we can create the followingk-tuple
(b1, b2, . . . , bk) which is a pre-image oft under theANDk function. The reason for this is because bitwiseANDing
is an associative operation. Thusb1, b2, . . . , bk ∈ Ct,k. Therefore we have proved thatCt,k = Ct,2.

This proof reveals a very simple characterization for the candidate sets. A candidate set, in essence, comprises
all the binary numbers which have ‘1’s at the same positions as the targett and have at least as many total number
‘1’s as t. Starting with our example target stringt = 1010, all the elements inC1010,2 will have the form 1 1
where could be 1 or 0. More specificallyC1010,2 = {1010, 1011, 1110, 1111}. This explains why11 · · · 1
appears in all the candidate setsCt,2 (except its own, i.e.,C11···1,2), whereas,00 · · · 0 appears only in its own
candidate set. And this also implies that the target binary number will always be an element of its own candidate
set, and actually the smallest such element, i.e.,t = min{Ct,k} (other elements will have one or more ‘1’s in
positions that have ‘0’s int, and thus will be larger thant). This puts a lower bound ofΩ(2z(t)) on the creation of
a specific candidate set. This is because one must spend2z(t) time to create all of the2z(t) combinations.

Corollary 1.

|Ct,k| =















1 , k = 1
0 , z(t) = 0 ∧ k > 1
2z(t) , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t)

0 , l ≥ z(t) > 0 ∧ k > 2z(t)

Proof. This follows directly from Theorem 1.

For example, with our target bit pattern oft = 1010, we havez(t) = 2 and thecandidate setis C1010,2 =
{10, 11, 14, 15}with |C1010,2| = 22 = 4.
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We define thesummary setas the set of all candidate sets of all binary numbers of length l.

Sl,k = {Ct,k : ∀t ∈ B s.t. |t| = l}

For l = 4 andk = 2, the last column in the table below provides the elements ofS4,2.

Binary Numbert |Ct,2| Ct,2

0000 16 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
0001 8 {1, 3, 5, 7, 9, 11, 13, 15}
0010 8 {2, 3, 6, 7, 10, 11, 14, 15}
0011 4 {3, 7, 11, 15}
0100 8 {4, 5, 6, 7, 12, 13, 14, 15}
0101 4 {5, 7, 13, 15}
0110 4 {6, 7, 14, 15}
0111 2 {7, 15}
1000 8 {8, 9, 10, 11, 12, 13, 14, 15}
1001 4 {9, 11, 13, 15}
1010 4 {10, 11, 14, 15}
1011 2 {11, 15}
1100 4 {12, 13, 14, 15}
1101 2 {13, 15}
1110 2 {14, 15}
1111 0 ∅

4 Properties of Candidate Sets

We now show three useful properties of candidate sets. The first concerns the size of these sets.

Lemma 1. The average cardinality of the candidate sets fork = 2 and for a givenl is |C| = 3l−1
2l .

Proof. The average is|C| =

(

P

l
z=0

(

l

z

)

· 2z
)

− 1

2l .
∑l

z=0

(

l

z

)

· 2z is the binomial expansion of(2 + 1)l = 3l. So|C| = 3l−1
2l .

Note that|C| = 3l−1
2l < 1.5l = O(1.5l). For l = 10 a candidate set will contain on average about 5% of the

possible binary numbers of lengthl. For l > 20 a candidate set will contain on average only about 0.3% of the
possible strings. This is expected since the fraction1.5l

2l decreases asl increases. Note also that|C| is an upper
bound for the mean of the cardinalities of all the elements inSl,k, wherek > 2. This is because all the elements
in Sl,2 have their maximum achievable cardinality, and ask increases more and more elements inSl,k become
empty. For example, initiallyC1010,2 = {10, 11, 14, 15} butC1010,k≥5 = ∅.

This decrease in candidate set cardinality asl increases has implications for forensic analysis. Recall that the
goal is to determine the set of possible corruption events implied by a provided target binary number. While the
number of possibilities grows asl gets larger, thepercentageof possible granules declines.

The second property concerns the elements of the summary set: for k = 2, there are2l candidate sets of the
binary numbers of lengthl, i.e., |Sl,2| = 2l. This is a direct result (under the assumptions onk and l) of the
uniqueness of candidate sets.

Lemma 2. For k = 2, the candidate sets of all the binary numbers of lengthl are unique.

Proof. Case (1) We haveCt,2 andCt′,2 with t 6= t′ andz(t′) 6= z(t) wherez(t) andz(t′) are the number of zeros
of targetst andt′ respectively. Assume without loss of generality thatz(t) > z(t′). Then, since both numbers
have the same length there exists at least one position int wheret has a ‘0’ andt′ has a ‘1’. Sincet′ has a ‘1’ at
that position thenall the numbers in its candidate set will have a ‘1’ at that same position. This is not the case with
the numbers inCt,k since they can have either a ‘0’ or a ‘1’ at that position. ThereforeCt,2 6= Ct′,2.
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Case (2) We haveCt,2 andCt′,2 with t 6= t′ and botht′ andt have the same number of zerosz(t). This implies
they also have the same number of ‘1’s since they both have thesame length. However, for the two numbers to be
different, there must exist at least one position int wheret has a ‘0’ andt′ has a ‘1’. Using the same argument as
before this implies thatCt′,2 6= Ct,2.

Candidate sets also exhibit the following fundamental property: they are related (specifically, through set
intersection) to the candidate sets of the constituent binary numbers that combine (through logicalOR) to form the
target.

Lemma 3. Let Ct,k , t ∈ B, anda1, a2, . . . , am ∈ B s.t.
∨m

j=1 aj = t for somem ≤ 2|t| and let also2 ≤ k ≤

2z(t). Then:

Ct,k = CW

m
j=1 aj ,k =

m
⋂

j=1

Caj ,k

Proof. Forward direction=⇒: Let b1, b2, . . . , bk ∈ Ct,k. We need to show thatb1, b2, . . . , bk ∈
⋂m

j=1 Caj ,k.
By definition we know thatb1 ∧ b2 ∧ . . . ∧ bk = t. However, we are also given that

∨m

j=1 aj = t. Thus,
∨m

j=1 aj = t =
∧k

i=1 bi. Therefore, we must prove that for everybi (1 ≤ i ≤ k) there exists a series ofk − 1
distinct binary numbers (and different frombi), d1, d2, . . . , dk−1 such thatbi ∧ d1 ∧ d2 ∧ . . . ∧ dk−1 = aj ⇒
bi, d1, d2, . . . , dk−1 ∈ Caj ,k for eachaj , 1 ≤ j ≤ m. In other words, each one of thebis must appear in the
pre-image of each one of theajs.

We proceed to show how to produce all the requisitebi, d1, . . . , dk−1 given a specificbi andaj pair. Letx be
the number of ‘1’s in the binary numbert, y be the number of ‘1’s in a specificbi, andw the number of ‘1’s in
a specificaj . Theny ≥ x sincebi must have at least the same number of ‘1’s, and at the same positions, as the
target numbert. This is true for allbi since for a ‘1’ to appear at a specific position int thenall the binary numbers
bi, which whenANDed producet, must have a ‘1’ at the same position. Likewise,x ≥ w sinceaj must have at
most the same number of ‘1’s as the target numbert. Again, this is true for allaj since for a ‘1’ to be preserved at
a specific position int at least one of theaj must have a ‘1’ at that same position. Using the observation above we
begin with somebi and pickd1 to beaj . This works because we want a numberd1 which has a zero at the same
positions asaj does, in order to mask any ‘1’sbi has at those positions.d1 should also have a ‘1’ whereveraj does,
so that the ‘1’is preserved after theANDoperation. Note that ifaj has a ‘1’ at a certain position we are guaranteed
to have a ‘1’ at the same position inbi becauset will have a ‘1’ at that position (as discussed previously). All the
rest of thek− 2 binary numbers can be created fromaj and there are enough of them:2z(aj)− 1 (the ‘-1’ is there
because we are excludingaj itself) wherez(aj) is the number of zeros inaj . We are given thatk ≤ 2z(t) and since
w+z(aj) = x+z(t) = l andx ≥ w thenz(t) ≤ z(aj). Thus,k−2 < k ≤ 2z(t) ≤ 2z(aj) ⇒ k−2 ≤ 2z(aj)−1.
This implies that each of thebi is an element of each of theCaj ,k and therefore an element of their intersection.
Thus,CW

m
j=1 aj ,k ⊆

⋂m

j=1 Caj ,k.

Backward direction⇐=: Conversely, letb ∈
⋂m

j=1 Caj ,k. Then(b ∈ Ca1,k) ∧ (b ∈ Ca2,k) ∧ . . . (b ∈ Cam,k).
This implies thatb has a ‘1’ at the same positions asa1, b has a ‘1’ at the same positions asa2 and so on untilam.
Thus the fact thatb belongs to all the candidate sets of theais, fixes the positions of the ‘1’s while the remaining
positions could be ‘0’ or ‘1’. Thusb captures a certain set of numbers. Now, consider

∨m

j=1 aj = t. We know that
t, as a result of anORoperation, will have a ‘1’ wherever at least oneai has a ‘1’ at that position, and a ‘0’ wherever
all ais have a ‘0’ at that position. The candidate set of targett comprises all the numbers which have a ‘1’ at the
same position ast and at least as many ‘1’s ast, i.e., wherevert has a ‘0’ the pre-images can have a ‘0’ or a ‘1’.
But this is exactly the same set of numbers captured byb sob ∈ Ct,k. Therefore,CW

m
j=1 aj ,k ⊇

⋂m

j=1 Caj ,k.

This provides a pleasing symmetry between the logicalAND in the definition of the candidate set and the logical
ORused above to form the target.

We now turn to ways in which the candidate set may be computed.We first give an algorithm that is optimal in
time, except for a very few cases. Following some further observations on the summary set, we show how, given
a candidate set, one can calculate all summary sets with a smaller l in constant time.
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5 Computing the Candidate Set

We now give an optimal algorithm for computing the candidateset given the target stringt andk, and again
assuming a fixedl. This algorithm generates the elements in the candidate setin numeric order, interestingly,
using a linear-time sort. All arrays and strings use zero-based indexing. All parameters are passed by value (the C
code uses the more efficient pass-by-reference for arrays and strings).

// input: a binary target numbert, its lengthl, and a function indexk for ANDk

// output:Ct,k, an array of binary numbers (also created is an array of zeros, Z)
1: candidateSet(unsigned intt, int l, int k)
2: Ct,k ← new array()
3: z ← 0
4: Z← new array()
5: for i← l− 1 to 0
6: if t & (1 << i) = 0 then z ← z + 1
7: Z[l − i− 1]← z

8: if k < 1 ∨ k > 2l then report NOT DEFINED
9: else if k = 1 then Ct,k ← {t}
10: else if (z = 0 ∧ k > 1) ∨ (l ≥ z > 0 ∧ k > 2z) then Ct,k ← ∅
11: else if (l ≥ z > 0) ∧ (2 ≤ k ≤ 2z) then
12: rightmost← createRightmost(t, l)
13: Ct,k ← generate(t, rightmost[l], l, Ct,k)
14: Ct,k ← funkySort(z, Ct,k)
15: return Ct,k

// fill in array Ct,k

1: generate(unsigned intt, int p, int l, arrayCt,k)
2: if p = −1 then Ct,k.append(t)
3: else
4: Ct,k ← generate(t, rightmost[p], l, Ct,k)
5: Ct,k ← generate(t + (1 << (l − p− 1)), rightmost[p], l, Ct,k)
6: return Ct,k

// fill in array rightmost
1: createRightmost(unsigned intt, int l)
2: int i, j, flag
3: j ← −1
4: flag← FALSE
5: rightmost← new array()
6: for i← l− 1 to −1
7: if flag= TRUEthen j ← l− i− 2
8: if t & (1 << i) = 0 then flag← TRUE
9: else flag← FALSE
10: rightmost[l − i− 1]← j

11: return rightmost

// input: z, the number of zeros
// Ct,k an unsorted array
// output:Ct,k in ascending order
1: funkySort(intz, arrayCt,k)
2: sorted← new array()
3: indices← new array()
4: indices[0]← 0
5: int i, offset, power
6: offset← 0
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7: power← 1 << z

8: for i← 1 to (1 << z)− 1
9: if (i & (i− 1)) = 0 then
10: power← power>> 1
11: offset← 0
12: indices[i]← indices[offset] + power
13: offset← offset+ 1
14: for i← 0 to (1 << z)− 1
15: sorted[i]← Ct,k.get(indices[i])
16: return sorted

Let us now briefly examine this algorithm. We first start by looking at the candidateSet function and discuss each
different function as we encounter it.

• The use of theZ array on lines 4 and 7 will be explained later in the discussion following the proof of
Theorem 2.

• Lines 8–11 follow the result of Theorem 1.

• Then on line 12 the createRightmost helper function is called to preprocess the target binary numbert and
to fill the rightmostarray in order to answer the “rightmost zero” query in constant time. More specifically,
rightmost[p] is the index (bit position) of the rightmost zero to the left of indexp non-inclusive. Within this
functioni iterates overt from left to right (high-order to low-order bits). The flag isrequired because we
must remember what we saw in the previous iteration: ifflag = TRUE we saw a 0, otherwise we saw a 1.
This runs inΘ(l).

• On line 13 the generate function is called. This is a recursive function which creates the candidate set
elements. Given a positionp, which is a specific index in the zero-based enumeration (left to right) of the
binary numbert, it finds the index of the rightmost zero to the left ofp using therightmostarray. It first
recurses on that index maintaining the same binary number (line 4) and then sets the digit at positionp

to 1 and recurses on the same indexrightmost[p] but with this new number (line 5). We can consider the
input target stringt as capturing all the2z(t) number that must be generated during the recursion, so we can
consider the input size to ben = 2z(t). Also, at each recursive call the position of the zero processed is
never revisited so the input size at each call is essentiallyhalved. Moreover, the amount of work done at each
stage of the recursion is constant hence the formula that captures this recursion isT (n) = 2T (n

2 ) + Θ(1).
The solution of this formula isΘ(n) so the running time of the generate function isΘ(2z(t)). However, a
side-effect of this recursive creation of the candidate setelements is that the elements are not in numeric
order.

• On line 14 we call the sorting function. Even though the elements are not sorted there does exist a pattern
in the order in which they are created. This funkySort function creates the sequence of indices which
when used to index into theCt,k array will result in the ordering of the candidate set elements. This is
achieved by performing a single pass over theindicesarray and creating each new index by manipulating
appropriately previous ones (lines 8–13) within the funkySort function. For example, with a target string
of t = 10000, i.e., 16 in decimal, after the generate function finishes the candidate set will beCt,k =
{16, 24, 20, 28, 30, 17, 25, 21, 29, 19, 27, 23, 31} in this order. Examining closely the set we see that in
order to create thesortedarray we must recursively visit the first element of each subsequent half ofCt,k.
Line 12 creates this sequence of indices: 0, 8, 4, 12, 2, 10, 6,14, 1, 9, 5, 13, 3, 11, 7, 15. More specifically,
by starting from 0 the 8 can be created by0 + 2z(t) wherez(t) = 3. Then, 4 and 12 can be obtained by
adding22 to each of 0 and 8. Then 2, 10, 6 and 14 are obtained by adding21 to 0, 8, 4, 12 respectively.
Finally, the last 8 numbers are obtained by adding20 to the first 8 numbers. This explains why at elements
appearing at indices which are powers of 2 in theindicesarray, theoffsetis reset to zero and thepower is
halved. On lines 14–15 we use the sequence of indices we created and the actual sorting happens. Note that
on line 9 even though the test(i & (i− 1)) = 0 accepts 0 as a power of 2 in this case this is exactly what we
want. This pass over theindicesarray runs inΘ(2z(t)).
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The running time of candidateSet isΘ(l + 2z(t)). Thus the algorithm is optimal most of the time, using the lower
bound given earlier, except for the very few cases whenl > 2z(t). In terms of space complexity the algorithm
given here requiresO(l + 2z(t)) space, as does the C code implementation given in the appendix, which requires
l + max{l, 2z(t)}+ 2z(t) space.

6 A Second Algorithm, Given a Summary Set

We now show that for fixedk and givenSl,k one can calculate allSl′,k s.t. l′ < l without resorting to the algorithm
given previously. The technique shown below can be potentially faster. We define thecandidate array, denoted
At,k, to be an array which contains the elements ofCt,k sorted in ascending numerical value. Then,At,k[x : y]
selects all elements in the candidate array from indexx to y. (NB: At,k[i] = At,k[i : i]). Also, for reasons of
ease and precision we annotateA with the length of the binary number whose value was previously implicit, as a
leading subscript.

Given a candidate arraylAy,k for a specific target stringy, we wish to compute the candidate arrayl−xAt,k

wheret is a suffix (l = |y| > l − x = |t| ≥ 1) of y. EachSl,k captures all the candidate sets for alll′ < l.
This method creates each element ofSl′,k by exploiting the fact that each of the binary numbers of length l′ is a
suffix of more than one corresponding binary number of lengthl . For example, the candidate setC1010,2 can be
computed from the candidate sets of01010, 001010, 101010 and so on. Lety = p • t = {0, 1}xt for some prefix
p of lengthx. Let Suffixi(s) denote the suffix of strings starting at positioni.

Let us look at some examples to develop some intuition. Given4A0010,2 = [0010, 0011, 0110, 0111, 1010,

1011, 1110, 1111] we wish to compute3A010,2. Observe thatt = 010 is y = 0010 with the leftmost ‘0’ removed.
Removing the leading ‘0’ fromy results in a stringt which cannot encode any numbers in the range23 to 24 − 1.
Thus the candidate array of3A010,2 will have the same elements as the candidate array of4A0110,2 except for the
numbers encoded by the extra leading digit. We know that eachadditional ‘0’ present in the target string doubles
the cardinality of the candidate set, thus a removal of the zero will halve the number of candidate set elements.
Observe also that the elements in the second half of4A0010,2 have essentially the same bit pattern as the elements
in the first half but with a ‘1’ at the leftmost position instead of a ‘0’, e.g., 1110 has the same bit pattern as 0110
apart from the bit in the leftmost position. Thus in order to compute3A010,2 we can truncate the leftmost digit
from all the elements in the original candidate set. By removing the leftmost digit from each of the elements
in 4A0010,2, we get 010, 011, 110, 111, 010, 011, 110, 111. The first half ofthe elements will have a leading
‘0’ removed, something which will not change their numerical value, while the second half which will have a
leading ‘1’ removed will produce identical numbers of length 3 to the truncated numbers in the first half. Since
the cardinality of3A010,2 is half that of4A0010,2, and since the two halves of4A0010,2 have the same elements
after the truncation and by knowing that3A010,2 = [010, 011, 110, 111] we can verify that:

3A010,2 = [Suffix1(4A0010,2[0]), Suffix1(4A0010,2[1]), Suffix1(4A0010,2[2]), Suffix1(4A0010,2[3])]

= [010, 011, 110, 111] = [2, 3, 6, 7]

Let us consider a different example in which the original target string isy = 1010 and the same suffixt = 010.
In this case4A1010,2 = [1010, 1011, 1110, 1111] all elements necessarily start with a ‘1’. Since removing the
leading ‘1’ fromy to gett does not affect the number of zeros in the strings the cardinalities of the two candidate
set is the same. Removing the leftmost ‘1’ from all the elements of4A1010,2 will yield directly the desired elements
of the new candidate set:

3A010,2 = [Suffix1(4A1010,2[0]), Suffix1(4A1010,2[1]), Suffix1(4A1010,2[2]), Suffix1(4A1010,2[3])]

= [010, 011, 110, 111] = [2, 3, 6, 7]

With these valuable observations we can now state the theorem and its proof.

Theorem 2. Assumey = p • t = {0, 1}xt, 0 < x < l, 0 ≤ z(t) ≤ l − x andq = 2z(t). Then:

l−xAt,k =























N/A , k > 2l−x (1)
[t] , k = 1 (2)
∅ , z(t) = 0 ∧ 1 < k ≤ 2l−x (3)
⋃

0≤i<q[Suffixx(lAy,2[i])] , l − x ≥ z(t) > 0 ∧ 2 ≤ k ≤ q (4)

∅ , l − x ≥ z(t) > 0 ∧ k > q (5)
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Proof. Case (1):
The candidate set is not defined when we try to deduce a candidate set for a binary number of lengthl − x given
that the (original)k is greater than the total number of possible numbers that canbe created usingl− x digits, i.e.,
2l−x. This is true since as discussed at the beginning of the paperthis would force repetition of a binary number.

Case (2), Case (3) and Case (5):
These follow directly from the proof of Theorem 1.

Case (4):
It is worth elucidating here the nature of the numberq. This number can be thought of as the cardinality of the
candidate set of the suffixt: q = 2z(t) according to Corollary 1. It can alternatively be defined asq = 1

2z(p) |lCy,2|,
that is, it is the cardinality of the candidate set of the original targety scaled down by a power of 2. This power
of 2 is given by the number of zeros present in the truncated prefix p. Regardingq in this respect is consistent
with the its initial assumption asq = 2z(t). This is true sincey = {0, 1}xt ⇒ z(y) = z(p) + z(t), which in turn

implies thatq = 1
2z(p) |lCy,2| =

2z(y)

2z(p) = 2z(t).
We prove case (4) by induction onx. Define proposition:

P (x) : l−xAt,k =
⋃

0≤i<q[Suffixx(lAy,2[i])] for (l − x ≥ z(t) > 0) ∧ (2 ≤ k ≤ 2z(t)) andq = 2z(t).

Basis of induction: ProveP (1) is true.
Let x = 1. Here the prefixp is a single bit. We have thatq = 1

2z({0,1}) |lCy,2| = 2z(t), y = {0, 1} • t and we want
to prove thatl−1At,k =

⋃

0≤i<q[Suffix1(lAy,2[i])].
Thus,l−1At,k = [Suffix1(lAy,2[1]), Suffix1(lAy,2[2]), . . . , Suffix1(lAy,2[q])]. WhatP (1) essentially claims is that
the new candidate arrayl−xAt,k can be computed by simply selecting the firstq elements of the candidate array
lAy,k and removing the leftmost digit from each such element selected.

Case (i) Assume thatp = 0 (this corresponds to the first example, above). With respectto this first digit of the
target binary stringy we can divide the elements of its candidate array into two groups: those which have a ‘1’,
and those which have a ‘0’ at that leftmost position. Due to the way these elements are created, resulting in the
elements of the candidate array being sorted in increasing order, the elements with a ‘1’ for a leftmost digit must all
appear after those with a ‘0’ at the same position. Dependingupon its position, each digit encodes the numbers in
the range2i−1 to 2i−1 wherei (1 ≤ i ≤ l) is the position of the digit numbering the string from rightto left. So by
removing the leading ‘0’ fromy results in a stringt which cannot encode any numbers in the range2l−1 to 2l− 1.
Thus the candidate array ofl−1At,k will have the same elements as the candidate array oflAy,k = lAy,2 except
for the numbers encoded by the extra leading digit. But we know that each additional ‘0’ introduced doubles (the
position can be filled by a ‘0’ or a ‘1’) the count of numbers that can be encoded which implies removing a ‘0’ will
halve the count of numbers encoded:z(p) = 1 ⇒ z(t) = z(y)− 1 ⇒ |l−1Ct,k| = 2z(t) = 2z(y)−1 = 1

2 |lCy,k|.
Thus the two groups of elements mentioned in the beginning will be equinumerous: the elements in the second
half have essentially the same bit pattern as the elements inthe first half but with a ‘1’ at the leftmost position
instead of a ‘0’. By removing the leftmost digit from each of the elements inlAy,k, the first half will have a
leading ‘0’ removed, something which will not change their numerical value, while the second half which will
have a leading ‘1’ removed will produce identical numbers oflengthl − 1 to the truncated numbers in the first
half. This is the reason whyl−1At,k will comprise the suffixes starting at position 1, of the elements in the first
half (i.e., 1

21 |lCy,2| = q) of the numbers in the arraylAy,2.
Case (ii) Assume thatp = 1 (this corresponds to the second example, above). In this case the situation is

simpler since all the elements inlAy,k can only start with a ‘1’. Since the number of zeros int remains unaltered
(z(p) = 0 ⇒ z(y) = z(t)), this implies that|l−1Ct,k| = |lCy,k|. Thus removing the leftmost digit from all the
elements oflAy,k will yield directly the desired elements of the new candidate set since each of the truncated
elements will have the same numerical value as their binary number counterparts of lengthl with a ‘0’ at the
leftmost position. Again the new candidate arrayl−1At,k will comprise the suffixes starting at position 1, of theq

(= 1
20 |l−1Ct,k|) first elements (in this case all of them) oflAy,k.

Inductive step: Prove thatP (x) −→ P (x + 1)
We assume thatl−xAt,k =

⋃

0≤i<q[Suffixx(lAy,2[i])], whereq = 1
2z(p) |lCy,2|, andy = p • t = {0, 1}xt is true

and seek to use this inductive hypothesis to provel−(x+1)At′,k =
⋃

0≤i<q′ [Suffixx+1(lAy,2[i])] where{0, 1}t′ =
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t⇒ y = {0, 1}xt = {0, 1}x{0, 1}t′ = {0, 1}x+1t′, andq′ = 1
2z(p)+z({0,1}) |lCy,2|. Thus:

l−(x+1)At′,k = (l−x)−1At′,k apply basis of induction

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,2[i])] whereq̂ =
1

2z({0,1})
|l−xC{0,1}t′,2|

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,k[i])] candidate set is invariant whenk ≤ 2z(t′)

=
⋃

0≤i<q̂

[Suffix1(l−xAt,k[i])] since{0, 1} • t′ = t

=
⋃

0≤i<q̂

[Suffix1(
(

⋃

0≤j<q

[Suffixx(lAy,2[j])]
)

[i])] by inductive hypothesis

=
⋃

0≤i<q̂

[(
⋃

0≤j<q

[Suffix1(Suffixx(lAy,2[j])])[i])] the suffix and union operations commute

=
⋃

0≤i<q′

[Suffix1(Suffixx(lAy,2[i]))]

=
⋃

0≤i<q′

[Suffixx+1(lAy,2[i])]

By the first principle of mathematical induction the initialproposition is true.

The algorithm for computing the candidate sets using this new method is given below. Note thattstart is the
index in the original stringy where the suffixt starts.

// input: initial candidate setCy,k

// bit positiontstart at which the suffixt starts iny
// length of original target stringly
// output: the candidate setCt,k

1: candidateSetSuffix ( arrayCy,k, int tstart, int k, int ly, arrayZ )
2: Ct,k ← new array()
3: lt ← ly − tstart

4: zt ← zy − Z[tstart − 1]
5: mask← (1 << lt)− 1
6: y ← Cy,k[0]
7: t← y & mask
8: if k < 1 ∨ k > 2lt then report NOT DEFINED
9: else if k = 1 then Ct,k ← {t}
10: else if (zt = 0 ∧ 1 < k ≤ 2lt ) ∨ (lt ≥ zt > 0 ∧ k > 2zt) then Ct,k ← ∅
11: else if (lt ≥ zt > 0) ∧ (2 ≤ k ≤ 2zt) then
12: for i← 0 to 2z(t) − 1
13: Ct,k.append(Cy,k[i] & mask)
14: return Ct,k

Since creating the candidate set fory involves scanning all ofy to find the zeros we can at the same time maintain
an array which accumulates the number of zeros encountered so far during the scan. This array is theZ array
which was created in the function candidateSet (lines 4, 7).We can index into this array using the position which
suffix t starts iny and thus get the number of zeros in constant time. For example, for y = 01101010 andt = 1010
given in terms oftstart which is the start position oft in y, we can scany from left to right and create the array
Z = [1, 1, 1, 2, 2, 3, 3, 4]. This arrays gives the number zeros in every suffix ofy. Thus,z(t) = z(y)−Z[tstart−1].
In this casetstart = 4, and soz(1010) = z(01101010)− Z[4− 1] = 4− 2 = 2.

In addition, themaskis used as a means of setting the firstx bits of each original candidate set element to
zero, which is the equivalent in a sense of taking the suffix ofthe corresponding binary string. For example, if
the candidate set element is18, with binary representation10010, and we want to take the suffix starting at index
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2, then themask= 7 (00111 in binary). Thus, by bitwiseANDing themaskand the element, we get010 = 2.
Note that the masking does not simply set the higher order bits to zero but it truncates the number, i.e. the length
actually decreases. This is important because we seek to derive from the candidate set of10010 the candidate
set of010 and not the set for00010. The latter is impossible to derive in the way described in this section since
C00010,2 is asupersetof C10010,2.

The “for” loop on line 12 dominates the running time of the above algorithm. Hence, the algorithm, in the
worst case, runs inΘ(2z(t)), which is optimal.

However, we can do better by using a different representation for the candidate set of the suffixt. Since the
elements ofCt,k are contiguous elements ofCy,k starting at position 0 then the candidate set oft can be given as
a range of values. This is achieved just by maintaining a pointer to the positionq − 1 in the candidate array ofy
marking the last element ofCt,k. Thus, only two numbersmask, andq = 2z(t), both of which can be computed
in constant time, are needed to capture the candidate set of any suffix of targety. To create themaskwe uselt
(as seen on line 5) which was computed from the input integertstart on line 3. Obtainingq is easy since we have
already computedz(t) on line 4. Thus, the first and last elements of the candidate set for the suffix can be given
asCy,k[0] & maskandCy,k[q − 1] & maskrespectively. This approach avoids the expensive “for” loop on line 12
and makes the algorithm run inΘ(1).

For this reason it is preferable to use the candidateSetSuffix algorithm in one particular situation: to find
the candidate set for the suffix ofy whenever we already have the candidate set fory. Consider the following
examples.
For l = 4 we want to calculateC1010,7 andC010,3. C1010,7 = ∅ since|C1010,7| = 22 = 4 < k = 7. In the case of
C010,3 we have3 ≥ z(t) = 2 > 0 and2z(t) = 4 > k = 3 so

3A010,3 =
⋃

1≤i≤4[Suffix1(4A1010,2[i])] =
⋃

1≤i≤4[Suffix1[1010, 1011, 1110, 1111]] = [010, 011, 110, 111]
and thusC010,3 = {2, 3, 6, 7}. If we decide to use the faster constant running time approach the result will be given
asmask= 0111 andq = 22 = 4 and hence the first element inC010,3 is 4A1010,2[0] & 0111 = 1010 & 0111 =
010 = 2 while the last element is4A1010,2[4− 1] & 0111 = 1111 & 0111 = 111 = 7.

Assume that we are auditing a variety of databases, each witha particularl value (for the example in this paper,
l = 4). Within the forensic analyzer, we could precompute a summary set forlmax, which is the maximum of thel
values that were specified for the databases that were being audited. During forensic analysis of a specific database
corruption that was detected using the polychromatic algorithm discussed in Section 1, given the resulting target
string and thel value for this particular database (withl ≤ lmax), this algorithm could calculate in constant time
the candidate set, which consists of all the possible corrupted granules that could have yielded that target number
for that value ofl.

7 Previous Work

Elsewhere we have introduced the approach of using cryptographic hash functions to detect database tampering [5]
and of introducing additional hash chains to improve forensic analysis [2].

Strachey has considered table lookup to increase the efficiency of bitwise operations [6]. He provides a log-
arithmic time/logarithmic space algorithm for reversing the bits in a word. Our second algorithm requires only
constant time, but the table must be of exponential space.

Enumerating all solutions (pre-images) is a key step in formal verification. Sheng and others have developed
efficient pre-image computation algorithms [4, 1]. These algorithms are similar to the ones introduced in this
paper in that they all enumerate all possible solutions. Theformal verification algorithms differ in that they are
computing pre-images of a state transition network, ratherthan of bitwiseAND functions, as in our paper.

8 Summary

We have developed a method that allows us to find all the database partition granules that might have been cor-
rupted when that database has been tampered. To this end we have used the notion of a candidate set which is
associated with a target binary number obtained from the polychromatic forensic analysis algorithm; this candidate
set captures all the potentially corrupted granules. We observed that the candidate set comprises all the pre-images
(granules) of the target number, under an appropriate bitwiseAND function specified by an indexk. We have
analyzed completely the behavior of the candidate sets, depending onk and the target binary number, and then
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developed an optimal algorithm to produce these candidate sets. We then introduced a constant-time algorithm
which is preferable in the case when the target binary numberis a suffix of another binary number for which a
candidate set already exists. We provided proofs of correctness for both algorithms and a thorough space and time
complexity analysis. These algorithms compute the possible database corruptions given information on which
hash chains matched those computed before the tampering, thereby providing important information on what data
was tampered with, helping to identify who did the tamperingand why.
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Appendix: C Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h> // compile using -lm
#define FALSE 0
#define TRUE 1
#define NOT_DEFINED -999
#define GENERATE -1

// Function Prototypes
void generate(unsigned int i, int pos);
int find_rightmost(unsigned int i, int p);
void * mymalloc(int size);
void funky_sort(void);
void create_rightmost(unsigned int target_number);
void candidateSet(int k, unsigned int target_number, int l ength);
void candidateSetSuffix(int suffix_start, int length, in t k, int z, int * Zarray, int * candidates);

// Globals
int length; // the length of the target binary number
int * candidates; // this array plays a triple role: first it is use d in the

// create_rightmost function; then it holds the sequence of
// indices of the aux array that when traversed would yield
// the sorted candidate set elements. In the end it holds the
// sorted candidate set elements

int * aux; // this array holds temporarily the unsorted candidate set
// elements which are created by the generate function

int tail_index = 0; // this maintains the logical size of the a ux array
int logical_size = 0; // logical size of candidates array
int z=0; // this is the number of zeros in the target binary num ber
int * Zarray; // this Zarray[i] gives you the the number of zeros se en to

// the left of target_number[i] inclusive
// Total RT: O(length + 2ˆz) -- this is optimal most of the time except in the
// cases when l > 2ˆz
int main(int argc, char * argv[])
{

if(argc != 5)
{

fprintf(stderr, "Usage: targetbinarynumber length numco mponents suffixstart\n");
fprintf(stderr, "Example:\n \t 10 4 5 3\nPlease retry!\n") ;
exit(1);

}
unsigned int target_number = atoi(argv[1]); // the numeric al representation

// of the binary target number in decimal
length = atoi(argv[2]); // the length of the target number
int k = atoi(argv[3]); // k is the number of components

// in the tuple; k takes values
// between 1 and 2ˆ(l)

int suffix_start = atoi(argv[4]); // the bit position /inde x at which
// the suffix of the target number begins

if(suffix_start < 0 || length < 1 || k < 0 || target_number < 0)
{

fprintf(stderr, "Negative input is not allowed, and length must be at least 1\n");
exit(1);

}

if(suffix_start < 0 || suffix_start >= length) // check if th e starting index for

14



// the suffix is valid
{

fprintf(stderr, "suffixstart must be between 0 and %d\n", l ength-1);
exit(1);

}

int min_length = (target_number & (target_number - 1)) ? (in t)ceil(log(target_number)/log(2))
: (int)(1 + ceil(log(target_number)/log(2)));

if(min_length > length)
{

fprintf(stderr, "The length of the targetbinarynumber mus t be at least %d\n", min_length);
exit(1);

}

candidateSet(k, target_number, length); // create and out put the candidate set
// of target_number

candidateSetSuffix(suffix_start, length, k, z, Zarray, c andidates); // create and
// output the andidate set of the suffix

free(aux);
free(candidates);
free(Zarray);
return 0;

}

// This function creates and outputs the candidate set of the original target_number
void candidateSet(int k, unsigned int target_number, int l ength)
{

int i; // iteration variable
// find z the number of zeros in the input target_number.
// at the same time create the Zarray: Zarray[i] gives you the number of zeros
// seen to the left of target_number[i] inclusive
Zarray = (int * )mymalloc(length * sizeof(int));
for(i = length-1; i >= 0; i--) // O(length)
{

if((target_number & (1<<i)) == 0)
z++;

Zarray[length-i-1] = z;
} // note that Zarray[length-1] equals z

// depending on the role it plays the candidates array needs d ifferent capacities.
int max_cap = (1 << z) > length ? (1 << z) : length;

candidates = (int * )mymalloc((max_cap + 1) * sizeof(int));
aux = (int * )mymalloc((1<<z) * sizeof(int));
if ((k < 1) || (k > (1 << length) ))

candidates[0] = NOT_DEFINED;
else if (k == 1)
{

logical_size = 1;
candidates[0] = target_number;

}
else if ((z == 0 && k > 1) || (length >= z && z > 0 && k > (1 << z)))

logical_size = 0;
else if (length >= z && z >0 && 2 <= k && k <= (1 << z))
{

logical_size = 1 << z;
// preprocessing required to answer "rightmost zero" query in constant time
create_rightmost(target_number); // O(length)
generate(target_number, candidates[length]); // genera te the candidate set
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// elements recursively in
// O(2ˆz) time

funky_sort(); // sort the generated candidate
// set elements O(2ˆz)

}
if(candidates[0] == NOT_DEFINED)

printf("Candidate set not defined\n");
else
{

// Print the candidates array contents
printf("The Candidate set C_{%d,%d} = { ", target_number, k );
for(i=0; i < logical_size; i++) // O(2ˆz)

printf("%d ", candidates[i]);
printf("}\n");

}
}

// Finding candidate set for suffixes of original target bin ary number.
void candidateSetSuffix( int suffix_start, int length, in t k, int z, int * Zarray, int * candidates)
{

// Note that this entire if clause, the for loop in the last els e clause
// notwithstanding, runs in constant time
// Also, the original target_number and its candidate set ar e not altered in any way
if(suffix_start != 0) // if the suffix is the same as the

// original number there’s no need to execute this
{

int max; // the max element in the suffix candidate set
int i; // iteration variable
int suffix_length = length - suffix_start;
int z_suffix = z - Zarray[suffix_start-1] ; // z_suffix is th e number of zeros

// in the suffix
unsigned int mask = (1 << suffix_length)-1; // this mask of th e from

// 000...01111..1 (with
// suffix_length number of ’1’s)
// will be used to take the
// "suffix" of a binary number

// perform checks
if ((k < 1) || (k > (1 << suffix_length)))

candidates[0] = NOT_DEFINED;
else if (k == 1)

max = candidates[0] & mask; // no need to set logical_length s ince it was
// set above -- this is because k is not variable;
// also, the max candidate element is the
// only element

else if ((z_suffix == 0 && k > 1 && k <= (1 << suffix_length))
|| (suffix_length >= z_suffix && z_suffix > 0 && k > (1 << z_suf fix)))

logical_size = 0; // the candidate set is empty
else if (suffix_length >= z_suffix && z_suffix > 0 && 2 <= k && k <=(1<< z_suffix))

max = candidates[(1 << z_suffix) - 1] & mask; // find the max el ement and
// take its suffix

if(candidates[0] == NOT_DEFINED)
printf("Candidate set not defined\n");

else if (logical_size == 0)
printf("The Candidate set is empty\n");

else
{

printf("The Candidate set of the suffix:\nC_{%d,%d} = { ", c andidates[0] & mask, k);
for(i = 0; i < (1<<z_suffix); i++) // O(2ˆz_suffix)

printf("%d ", candidates[i] & mask);
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printf("}\n");
char * mes = "The mask and q-1 (the index of the last element) are:";
printf("%s \n mask=%d q-1=%d \n", mes, mask , (1 << z_suffix) -1);

// can output the suffix
// candidate set by giving the
// two defining numbers q and mask

}
}

}

// This function recursively computes the candidate set ele ments (albeit unsorted). RT: O(2ˆz)
void generate(unsigned int i, int p)
{

if (p == GENERATE)
{

aux[tail_index] = i; // keep the generated elements in the au x array
tail_index++;

}
else
{

// the candidate set at this point holds the indices of the rig htmost 0
// to the left of given position
int pos = candidates[p]; // find index of rightmost 0 to the le ft of

// position p
generate(i, pos);
generate(i + ( 1 << (length - p - 1)), pos); // set the 0 to a 1 and r ecurse

}
}

// This function performs pre-processing using the target_ number and fills the candidates array
// in order to answer the "rightmost zero" query in constant t ime.
// More specifically, candidates[p] is the index of the righ tmost zero to the left of index p
// NON-INCLUSIVE. RT: O(length)
void create_rightmost(unsigned int target_number)
{

int i,j,flag;
j = GENERATE;
flag = FALSE; // the flag is required because we must remember what

// we saw in the previous iteration;
// if flag = TRUE we saw a 0 otherwise we saw a 1

for(i = length-1; i >= -1; i--)
{

if(flag)
j = length-i-2;

if((target_number & (1 << i)) == 0)
flag = TRUE;

else
flag = FALSE;

candidates[length-i-1] = j;
}

}

// This function sorts the candidate set elements. RT: O(2ˆz )
void funky_sort(void)
{

candidates[0] = 0; // the 0th index is always the first one to b e visited
int i, offset, power;
offset = 0;
power = 1 << z;
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// this algorithm performs a single pass over the candidates array and
// creates each new index by manipulating appropriately pre vious ones
for(i = 1; i < (1 << z); i++) // O(2ˆz) time
{

// if i is a power of 2 reset offset and adjust power
if((i & (i - 1))== 0) // even though this test accepts

// 0 as a power of 2 in this case
// this is exactly what we want!!!

{
power = power >> 1;
offset = 0;

}
candidates[i] = candidates[offset] + power; // this create s the sequence of

// indices which when used to
// index in the aux array will
// sort the candidate set elements

offset++;
}
for(i = 0; i < (1 << z); i++) // O(2ˆz) time

candidates[i] = aux[candidates[i]]; // this is where the so rting happens
}

// Wrapper of malloc which performs a check after the system c all
void * mymalloc(int size)
{

void * p= malloc(size);
if(p == NULL)
{

fprintf(stderr, "Memory allocation failed\n");
exit(1);

}
return p;

}
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