
τXSchema - Support for Data- and
Schema-Versioned XML Documents

Shailesh Joshi

August 20, 2007

TR-89

A T IMECENTER Technical Report

Title τXSchema - Support for Data- and Schema-Versioned XML Documents

Copyright c© 2007 Shailesh Joshi. All rights reserved.

Author(s) Shailesh Joshi

Publication History May 2007, a TIMECENTER Technical Report

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, Sabah A.Currim, Bongki Moon, Sudha Ram, Stanley
Yao

Individual participants
Yun Ae Ahn, Chungbuk National University, Korea; Michael H.Böhlen, Free University of Bolzano, Italy;
Curtis E. Dyreson, Washington State University, USA; Dengfeng Gao, Indiana University South Bend,
USA; Fabio Grandi, University of Bologna, Italy; Heidi Gregersen, Aarhus School of Business, Denmark;
Vijay Khatri, Indiana University, USA; Nick Kline, Microsoft, USA; Gerhard Knolmayer, University of
Bern, Switzerland; Carme Martı́n, Technical University ofCatalonia, Spain; Thomas Myrach, University of
Bern, Switzerland; Kwang W. Nam, Chungbuk National University, Korea; Mario A. Nascimento, Univer-
sity of Alberta, Canada; John F. Roddick, Flinders University, Australia; Keun H. Ryu, Chungbuk National
University, Korea; Dennis Shasha, New York University, USA; Michael D. Soo, amazon.com, USA; An-
dreas Steiner, TimeConsult, Switzerland; Paolo Terenziani, University of Torino, Italy; Vassilis Tsotras,
University of California, Riverside, USA; Fusheng Wang, Siemens, USA; Jef Wijsen, University of Mons-
Hainaut, Belgium; and Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as bytheir precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of whichhave angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Thesis Statement

By utilizing schema-constant periods and cross-wall validation, it is possible to realize a com-
prehensive system for representing and validating data- and schema-versioned XML documents,
while remaining fully compatible with the XML standards.

1

Contents

1 Introduction 5

2 Motivation 7
2.1 Motivating example 7

3 Background 12
3.1 XML Schema .. . 12
3.2 Temporal Databases 13
3.3 Schema Versioning 14

4 Previous Work 15

5 Architecture 16

6 Theoretical Framework 19
6.1 Snapshot Validation Subsumption 19
6.2 SchemaPath 19
6.3 Content and Existence Variance 20
6.4 Items .. . 21
6.5 Versions 23
6.6 Extending Temporal XML Schema Constraints 23

7 Tools and Algorithms 25
7.1 Implementation Primitives 25

7.1.1 ThepushUp Function . 25
7.1.2 ThepushDown Function . 32
7.1.3 Thecoalesce Function . 32

7.2 SCHEMA MAPPER . 38
7.3 TEMPORAL VALIDATOR . 41
7.4 SQUASH . 43
7.5 UNSQUASH . 43
7.6 RESQUASH . 43

8 Representations 49

9 Schema Versioning 52
9.1 Architecture and Example 52
9.2 Theoretical Framework 61

9.2.1 Accommodating Evolving Keys 61
9.2.2 Accommodating Gaps 63
9.2.3 Semantics for mixed data and schema changes 65
9.2.4 Non-Sequenced Constraints 65

10 Implementation 67
10.1 Technology 67
10.2 Class Diagram 67

11 Support for Bitemporal Data 73

2

12 Evaluation and Conclusion 91

References 94

A Base Schemas 97
A.1 TBSchema: Schema for Temporal Bundle 97
A.2 TXSchema: Schema for Temporal Annotation 98
A.3 PXSchema: Schema for Physical Annotation 100
A.4 TVSchema: Schema for Timestamp Representations 102
A.5 ConfigSchema: Schema for Configuration Document 102

B Schema-Versioning Example 103
B.1 Snapshot Schemas 103

B.1.1 Snapshot Schema on2002-01-01 . 103
B.1.2 Snapshot Schema on2005-01-01 . 103

B.2 Temporal Annotations 104
B.2.1 Temporal Annotation on2002-01-01 . 104
B.2.2 Temporal Annotation on2005-01-01 . 105

B.3 Physical Annotations 105
B.3.1 Physical Annotation on2002-01-01 . 105
B.3.2 Physical Annotation on2005-01-01 . 106

B.4 Snapshot Documents 106
B.4.1 Snapshot Document on2002-01-01 . 106
B.4.2 Snapshot Document on2003-01-01 . 107
B.4.3 Snapshot Document on2005-01-01 . 107
B.4.4 Snapshot Document on2006-01-01 . 108

B.5 Temporal Bundle 109
B.6 Representational Schema 109

B.6.1 Representational Schema for [2002-01-01, 2005-01-01) 109
B.6.2 Representational Schema for [2002-01-01, 2005-01-01) 111
B.6.3 Final Representational Schema 113

B.7 Temporal Document 114

3

List of Figures

1 A fragment ofwinter.xml on2002-01-01 . 7
2 Kjetil won a Silver medal, as of2002-03-01 . 7
3 Kjetil won a Gold medal, as of2002-07-01 . 8
4 Snippet of a Temporal Document 8
5 winOlympic.xsd . 9
6 Overall Architecture 16
7 Sample WinOlympic Temporal Annotation 17
8 Sample WinOlympic Physical Annotation 18
9 Snapshot Validation Subsumption 20
10 Items and Versions 22
11 Snapshot Schema 26
12 Temporal Annotation 26
13 Physical Annotation 26
14 Example ofpushUp . 27
15 Example ofpushUp: Continued . 27
16 Example ofpushUp: Continued . 28
17 Example ofpushUp: Continued . 28
18 Example ofpushUp . 30
19 Algorithm: pushUp . 31
20 Algorithm: pushDown . 33
21 Algorithm: mergeVersions . 34
22 Algorithm: coalesce . 34
23 Example ofpushDown . 35
24 Example ofpushDown: Continued . 36
25 Example ofpushDown: Continued . 36
26 Example ofcoalesce . 37
27 Algorithm: SCHEMA MAPPER . 40
28 Validating a document with Time-Varying Data 41
29 τVALIDATOR – Checking the Schema . 42
30 τVALIDATOR – Checking the Instance . 42
31 Algorithm: τVALIDATOR . 44
32 Algorithm: SQUASH . 45
33 Algorithm: UNSQUASH . 46
34 Algorithm: RESQUASH . 47
35 Squash/UnSquash/ReSquash Commutativity Diagram 48
36 winOlympic.ver1.xsd . 53
37 winolympic temporal annotation.ver1.xml 53
38 winolympic physical annotation.ver1.xml 54
39 winOlympic.ver2.xsd . 55
40 winolympic temporal annotation.ver2.xml 55
41 winOlympic temporal bundle.xml . 56
42 T Diagram of Validation 57
43 tv winOlympic.xml . 58
44 winOlympic rep schema.xsd . 59
45 Validating a Document with Time-Varying Schema 60
46 Gluing and Bridging 61

4

47 Presence of Gaps 63
48 Cross Wall Gluing: Option 1 64
49 Cross Wall Gluing: Option 2 64
50 Non-Sequenced Constraints 66
51 Overview class diagram for the tools 68
52 Detailed class diagram fortau.xml . 69
53 Detailed class diagram fortau.time . 70
54 property.xsd . 73
55 property temporal annotation.xsd . 74
56 property physical annotation.xsd . 74
57 Mortgage being handled by other company. No customer 74
58 Eva purchased the flat on January 10 75
59 A bitemporal time diagram corresponding to Eva purchasing the flat, performed on January

10 . 76
60 Peter buys the flat, performed on January 15 76
61 Peter buys the flat, performed on January 15 77
62 Peter sells the flat, performed on January 20 78
63 Peter sells the flat, performed on January 20 78
64 Discovered on January 23: Eva actually purchased the flat on January 3 79
65 Discovered on January 26: Eva actually purchased the flat on January 5 79
66 Discovered on January 23: Eva actually purchased the flat on January 3 80
67 Discovered on January 26: Eva actually purchased the flat on January 5 81
68 January 28: Peter actually purchased the flat on January 12. 81
69 January 28: Peter actually purchased the flat on January 12. 82
70 Transaction Time Regions 83
71 Transaction Time[01-10, 01-15) . 83
72 Transaction Time[01-20, 01-23) . 84
73 Transaction Time[01-26, 01-28) . 85
74 Transaction Time[01-20, 01-23) . 86
75 Transaction-time splitting of regions 86
76 Temporal Document along both valid-time and transaction-time 87
77 Temporal Document along both valid-time and transaction-time. Continued 88
78 Temporal Document along both valid-time and transaction-time. Continued 89

5

Abstract

The W3C XML Schema recommendation defines the structure and data types for XML documents.
An XML document evolves as it is updated over time or as it accumulates from a streaming data source.
A temporal document records the entire history of a documentrather than just its current state or snap-
shot. Capturing a document’s evolution is vital to providing the ability to recover past versions, track
changes over time, and evaluate temporal queries. XML Schema lacks explicit support for time-varying
XML documents. Users have to resort to ad hoc, non-standard mechanisms to create schemas for time-
varying XML documents.

In this thesis we introduceτXSchema, which is an extension of XML Schema, infrastructure, and
a suite of tools to support the creation and validation of time-varying documents, without requiring
any changes to XML Schema. The data model and architecture support the creation of a temporal
schema from a non-temporal (snapshot) schema, a temporal annotation, and a physical annotation. These
annotations specify, respectively, which portion(s) of anXML document can vary over time, how the
document can change, and where timestamps should be placed.The advantage of using annotations to
denote the time-varying aspects is that logical and physical data independence for temporal schemas can
be achieved while remaining fully compatible with both existing XML Schema documents and the XML
Schema recommendation. A Temporal Validator (τVALIDATOR) augments a conventional validator to
more comprehensively check the validity constraints of a document, especially temporal constraints that
cannot be checked by a conventional XML Schema validator.

We then extendτXSchema to support versioning of the schema itself. When theschema is versioned,
the base schema and the temporal and physical annotations can themselves be time-varying documents,
each with their own (possibly versioned) schemas. We describe how a temporal data validator can be
extended to validate documents in this seeming precarious situation of data that changes over time, while
its schema and even its representation are also changing.

6

1 Introduction

XML is becoming an increasingly popular language for documents and data. XML can be approached
from two different orientations:document-centered(e.g., HTML) anddata-centered(e.g., relational and
object-oriented databases). Schemas are important for both. A schema defines the building blocks of an
XML document, such as the types of elements and attributes. An XML document can be validated against
a schema to ensure that the document conforms to the formatting rules for an XML document (is well-
formed) and to the types, elements, and attributes defined inthe schema (is valid). A schema also serves
as a valuable guide for querying and updating an XML documentor database. For instance, to correctly
construct a query, e.g., in XQuery, a user will (often) consult the schema rather than the data. Finally, a
schema can be helpful in query optimization, e.g., in constructing a path index.

Time-varying data naturally arises in both document-centered and data-centered orientations. A tempo-
ral document records the evolution of a document over time, i.e., all of the versions of the document. Cap-
turing a document’s evolution is vital to supporting time travel queries that delve into a past version [29],
and incremental queries that involve the changes between two versions.

In this thesis we consider how to accommodate and validate time-varying data within XML Schema.
One approach would have been to propose changes to XML Schemato accommodate time-varying data.
Indeed, that has been the approach taken by many researchersfor the relational and object-oriented models.
This approach inherently introduces difficulties with respect to document validation, data independence,
tool support, and standardization. The previous group working on TAU Project at the Computer Science
Department at the University of Arizona has proposed a novelapproach that retains the non-temporal XML
Schema for the document, utilizing a series of separate schema documents to achieve data independence, to
enable full document validation, and to enable improved tool support, while not requiring any changes to
the XML Schema standard.

The system, called Temporal XML Schema (τXSchema), aids in constructing and validating tempo-
ral documents. Temporal XML Schema extends XML Schema with the ability to define temporal element
types. A temporal element type denotes that an element can vary over time, describes how to associate
temporal elements across snapshots, and provides some temporal constraints that broadly characterize how
a temporal element can change over time. In Temporal XML Schema, any element type can be turned into
a temporal element type by including a simpletemporal annotationin the type definition. So a Temporal
XML Schema document is just a conventional XML Schema document with a few temporal annotations.
The second type of annotation is thephysical annotation, which describes how to represent the time-varying
aspects of the document. Atemporal bundle, the XML document that serves as a temporal schema bun-
dles together the non-temporal schema, temporal annotation and physical annotation. ThusτXSchema is
consistent and compatible with both XML Schema and the XML data model.

In our thesis research, we refineτXSchema and implement the tools used to construct and validate tem-
poral documents. A temporal document is validated by integrating a conventional validating parser with a
temporal constraint checker. To validate a temporal document, a temporal schema is first converted to a
representational schema, which is a conventional XML Schema document that describeshow the temporal
information is represented. The representational schema must be carefully constructed to ensure thesnap-
shot validation subsumptionof a temporal document, that is, it is important to guaranteethat each snapshot
of the temporal document conforms to the original, snapshotschema (without temporal annotations). A
conventional validating parser is then used to validate thetemporal document against the representational
schema.

As mentioned,τXSchema reuses rather than extends XML Schema.τXSchema is consistent and
compatible with both XML Schema and the XML data model. In ourapproach, a Temporal Validator (
τVALIDATOR) augments a conventional validator to more comprehensively check the validity constraints
of a document, especially temporal constraints that cannotbe checked by a conventional XML Schema

7

validator. We describe a means of validating temporal documents that ensures the desirable property of
snapshot validation subsumption. We show how a temporal document can be smaller and faster to validate
than the associated XML snapshots.

We then extendτXSchema to supportschema versioning. When the schema is versioned, the base
schema and temporal and physical schemas can themselves be time-varying documents, each with their
own (possibly versioned) schemas. In doing so, we leverage both conventional XML Schema and related
tools (principally, the conventional validator), as well as τVALIDATOR for data versioning. A challenge
with schema versioning is thatanythingcan change, and thus must be versioned: the snapshot documents,
the base schema, the temporal annotations, the physical annotations, the schema documents included by
these documents, even the schemas of these schema components. And, because the physical annotations
can change, the concrete representation within a temporal XML document can vary.

With the framework introduced in our research, we will show that we can

• Develop a comprehensive set of tools to support schema and data versioning of XML data or docu-
ments,

• Achieve logical data independence by specifying what can change in the temporal annotation,

• Achieve physical data independence by specifying the location of timestamps in the physical annota-
tion,

• Implement a set of tools using just three basic primitives, and

• Achieve code reuse by utilizing most of the code used for dataversioning to implement schema
versioning.

This thesis document is logically divided into two parts. The initial part concerns instance versioning;
the second part extends the approach to support schema versioning. We first provide a motivating example
that illustrates the challenges of data and schema versioning. In Part 1 we show how the three schemas (base
schema and the two annotations) and the temporal bundle interact to support time varying data; in Part 2
we extend this architecture to incorporate schema versioning. Each part elaborates a theoretical foundation,
architecture, and the design of the tools. It is followed by the implementation and testing details concerning
both data and schema versioning. We then discuss the supportfor multiple kinds of time, to be defined in
detail later, within this framework. The last section summarizes the contributions of this work.

8

2 Motivation

This section discusses whether conventional XML Schema is appropriate and satisfactory for time-varying
data. We first present an example that illustrates how a time-varying document differs from a conventional
XML document. We then pinpoint some of the limitations of theXML Schema in supporting temporal
documents and data. Then we state the desired properties of schemas for time-varying documents. We end
with a discussion of some real world applications that wouldbenefit from schema versioning as supported
in theτXSchema framework.

2.1 Motivating example

Assume that the history of the Winter Olympic games is described in an XML document called winter.xml.
The document has information about the athletes that participate, the events in which they participate, and
the medals that are awarded. Over time the document is editedto add information about each new Winter
Olympics and to revise incorrect information. Assume that information about the athletes participating
in the2002 Winter Olympics in Salt Lake City, USA was added on2002-01-01. On2002-03-01
the document was further edited to record the medal winners.Finally, a small correction was made on
2002-07-01.

To depict some of the changes to the XML in the document, we focus on information about the Norwe-
gian skier Kjetil Andre Aamodt. On2002-01-01 it was known that Kjetil would participate in the games
and the information shown in Figure 1 was added to winter.xml. Kjetil won a medal; so on2002-03-01
the fragment was revised as shown in Figure 2. The edit on2002-03-01 incorrectly recorded that Kjetil
won a silver medal in the Men’s Combined; Kjetil won a gold medal. Figure 3 shows the correct medal
information.

...
<athlete>

<athName>Kjetil Andre Aamodt</athName>
</athlete>
...

Figure 1: A fragment ofwinter.xml on2002-01-01

...
<athlete>

<athName>Kjetil Andre Aamodt</athName> won a medal in
<medal mtype="silver">Men’s Combined</medal>

</athlete>
...

Figure 2: Kjetil won a Silver medal, as of2002-03-01

A time-varying document records a version history, which consists of the information in each version,
along with the timestamps indicating the lifetime of that version. Figure 4 shows a fragment of the time-
varying document that captures the history of Kjetil. The fragment is compact in the sense that each edit re-
sults in only a small, localized change to the document. In Figure 4 the transaction-time lifetimes of each ele-
ment are represented with an optional
<tv:timestamp TransExtent> sub-element. If the timestamp is missing, the element has the same

9

...
<athlete>

<athName>Kjetil Andre Aamodt</athName> won a medal in
<medal mtype="gold">Men’s Combined</medal>

</athlete>
...

Figure 3: Kjetil won a Gold medal, as of2002-07-01

lifetime as its enclosing element. For example, there are two <athlete> elements with different life-
times since the content of the element has changed. The last version of<athlete> has two<medal>
elements because the medal information is revised. There are many different ways to represent the ver-
sions in a time-varying document; the methods differ in which elements are timestamped, how the elements
are timestamped, and how changes are represented (e.g., perhaps only differences between versions are
represented).

...
<athlete_RepItem>

<athlete_Version>
<tv:timestamp_TransExtent begin="2002-01-01" end="2002-03-01"/>
<athlete>

<athName>Kjetil Andre Aamodt</athName>
</athlete>

</athlete_Version>
<athlete_Version>

<tv:timestamp_TransExtent begin="2002-03-01" end="9999-12-31"/>
<athlete>

<athName>Kjetil Andre Aamodt</athName>won a medal in
<medal_RepItem>
<medal_Version>

<tv:timestamp_TransExtent begin="2002-03-01" end="2002-07-01"/>
<medal mtype="silver">Men’s Combined</medal>

<medal_Version>
<medal_Version>

<tv:timestamp_TransExtent begin="2002-07-01" end="9999-12-31"/>
<medal mtype="gold">Men’s Combined</medal>

<medal_Version>
</medal_RepItem>

</athlete>
</athlete_Version>

</athlete_RepItem>
...

Figure 4: Snippet of a Temporal Document

Keeping the history in a document or data collection is useful because it provides the ability to recover
past versions, track changes over time, and evaluate temporal queries [17]. But it also changes the nature
of validation against a schema. Assume that the filewinOlympic.xsd contains the snapshot schema
for winter.xml. The snapshot schema is the schema for an individual version. The snapshot schema is a
valuable guide for editing and querying individual versions. A fragment of the schema is given in Figure 5.
Note that the schema describes the structure of the fragmentshown in Figure 1, Figure 2, and Figure 3. The

10

problem is that although individual versions conform to theschema, the time-varying document does not.
So winOlympic.xsd cannot be used (directly) to validate thetime-varying document of Figure 4.
...
<element name="athlete">

<complexType mixed="true">
<sequence>

<element name="athName" type="string"/>
<element ref="medal" minOccurs="0" maxOccurs="unbounded"/>
<element name="birthPlace" type="string" minOccurs="0"

maxOccurs="1"/>
</sequence>
<attribute name="age" type="nonNegativeInteger" use="required"/>

</complexType>
</element>
...

Figure 5:winOlympic.xsd

The snapshot schema could be used indirectly for validationby individually reconstituting and validat-
ing each version. But validating every version can be expensive if the changes are frequent or the document
is large (e.g., if the document is a database). While the Winter Olympics document may not change often,
contrast this with, e.g., a Customer Relationship Management database for a large company. Thousands
of calls and service interactions may be recorded every day.This would lead to a very large number of
versions, making it expensive to instantiate and validate each individually. The number of versions could
further be increased by the presence of both valid and transaction time.

To validate a time-varying document, a new, different schema is needed. The schema for a time-varying
document should take into account the elements (and attributes) and their associated timestamps, specify the
kind(s) of time involved, provide hints on how the elements vary over time, and accommodate differences
in version and timestamp representation. Since this schemawill express how the time-varying information
is represented, we call it therepresentational schema. The representational schema will be related to the
underlying snapshot schema, and will allow the time-varying document to be validated using a conventional
XML Schema validator (though not fully, as discussed in the further sections). The representational schema
will also be important in constructing, evaluating, and optimizing temporal queries. Both the person who is
formulating a query and the database need to know which elements in the document are temporal elements
since additional operations, like temporal slicing, are applicable to the temporal elements. Thus the schema
language should have some capability of designating temporal elements.

Finally, temporal elements can have additional constraints. For instance, it might be important to stipu-
late that an athlete can win only a single medal in an event, although the existence and/or type of medal may
change over time (for instance if the athlete is disqualified). Thevalid timecomponent of this constraint
is that only one medal appears in an<athlete> element at any point in time. But thetransaction time
component of the constraint is that multiple versions can bepresent (as the element is modified). A schema
language for a temporal document needs to have some way of specifying and enforcing such constraints.

The conventional XML Schema validator is also incapable of fully validating a time-varying document
using the representational schema. First, XML Schema is notsufficiently expressive to enforce temporal
constraints. For example, XML Schema cannot specify the following (desirable) schema constraint: the
transaction-time lifetime of a<medal> element should always be contained in the transaction-timelife-
time of its parent<athlete> element. Second, a conventional XML Schema document augmented with
timestamps to denote time-varying data cannot, in general,be used to validate a snapshot of a time-varying
document. A snapshot is an instance of a time-varying document at a single point in time. For instance, if

11

the schema asserts that an element is mandatory (minOccurs=1) in the context of another element, there is
no way to ensure that the element is in every snapshot since the elements timestamp may indicate that it has
a shorter lifetime than its parent (resulting in times during which the element is not present, violating this
integrity constraint); XML Schema provides no mechanism for reasoning about the timestamps.

Even though the representational and snapshot schemas are closely related, there are no existing tech-
niques to automatically derive a representational schema from a snapshot schema (or vice-versa). The lack
of an automatic technique means that users have to resort to ad hoc methods to construct a representational
schema. Relying on ad hoc methods limit data independence. The designer of a schema for time-varying
data has to make a variety of decisions, such as whether to timestamp with periods or with temporal el-
ements [32], which are sets of non-overlapping periods and which elements should be time-varying. By
adopting a tiered approach, where the snapshot XML Schema, temporal annotations, and physical anno-
tations are separate documents, individual schema design decisions can be specified and changed, often
without impacting the other design decisions, or indeed, the processing of tools. For example, a tool that
computes a snapshot should be concerned primarily with the snapshot schema; the logical and physical as-
pects of time-varying information should only affect (perhaps) the efficiency of that tool, not its correctness.
With physical data independence, only a few applications that are concerned with representational details
would need to be changed.

Hence, an improved tool support for representing and validating time-varying information is needed.
Creating a time-varying XML document and representationalschema for that document is potentially labor-
intensive. Currently a user has to manually edit the time-varying document to insert timestamps indicating
when versions of XML data are valid (for valid time) or are present in the document (for transaction time).
The user also has to modify the snapshot schema to define the syntax and semantics of the timestamps.
The entire process would be repeated if a new timestamp representation were desired. It would be better
to have automated tools to create, maintain, and update time-varying documents when the representation of
the timestamped elements changes.

Schemas designers often edit their schemas, refining and adding element and attribute types. As an
example, in2003-01-01, the designers of Winter Olympic schema figure out that they also need the
name of the sport in which the athlete has won the medal. And they decide to add that as a “required”
attribute of the<medal> element. As new release of this schema is developed, all XML documents that
were instances of its earlier version will be rendered invalid, with the maintainers responsible for updating
their XML documents.

One challenge with schema versioning is that, in this potential quicksand, anything can change, and
thus must be versioned: the snapshot documents, the base schema, the temporal annotations, the physical
annotations, the schema documents included by these documents, even the schemas of these schema com-
ponents. And, because the physical annotations can change,the concrete representation within a temporal
XML document can vary. Thus, it becomes even more difficult toeven define validation in such a fluid
environment.

Schema versioning should offer a solution to the above problem by enabling intelligent handling of any
temporal mismatch between data and its schemas. A frameworkis needed that would retain past data and
past schemas, while allowing the current data and schema to be extracted.

This work has many real-world applications. As an example, the Botanic Garden and Botanical Museum
in Berlin-Dahlem (BGBM1) maintains a repository of XML Schemas2 related to index terms, keywords,
biodiversity data about specimens and observations, meta-level data about collections, organizations, and
networks, and various wrapper and configuration files. Most of these XML schemas have had multiple
versions over the last two to three years. The BioCASE Collection Profile is up to version 1.24; the Access

1http://www.bgbm.org
2http://www.bgbm.org/biodivinf/schema/default.asp

12

to Biological Collection Data is up to version 2.06.
As another example, thePharmacogenetics Knowledge Base(PharmGKB3) “contains genomic, pheno-

type and clinical information collected from ongoing pharmacogenetic studies.” Its schema is up to version
4.0; its evolution is documented.4 The PHARMGKB XML schema was designed conventionally, not utiliz-
ing an architecture that supports schema versioning. As newreleases of this schema were developed (for
example, on May 12, 2004 Version 4.0, the latest version, wasreleased), all XML documents that were
instances of this schema were rendered invalid, with the maintainers responsible for updating their XML
documents. The architecture proposed in this thesis retains past data and past schemas, while always al-
lowing the current data and schema to be extracted, for toolsthat are not schema-versioning aware. This
example was discussed further in detail elsewhere [13].

3http://www.pharmgkb.org/
4http://www.pharmgkb.org/schema/history.html

13

3 Background

3.1 XML Schema

The extensible markup language XML has recently emerged as anew standard for information representa-
tion and exchange on the Internet. It has gained popularity for representing many classes of data, including
structured documents, heterogeneous and semi-structuredrecords, data from scientific experiments and sim-
ulations, digitized images, among others. Since XML data isself-describing, XML is considered one of the
most promising means to define semi-structured data, which is expected to be ubiquitous in large volumes
from diverse data sources and applications on the web. XML allows users to make up any new tags for
descriptive markup for their own applications. Such user-defined tags on data elements can identify the
semantics of data. The relationships between elements can be defined by nested structures and references.

In the relational data model, aschemadefines the structure of each relation in a database. Each relation
has a very simple structure: a relation is a list of attributes, with each attribute having a specified data type.
The schema also includes integrity constraints, such as thespecification of primary and foreign keys. In a
similar manner, an XML Schema document defines the valid structure for an XML document. But an XML
document has a far more complex structure than a relation. A document is a (deeply) nested collection of
elements, with each element potentially having (text) content and attributes.

XML Schema, published as a W3C Recommendation in May 2001 [37], is one of the several XML
schema languages. It was the first separate schema language for XML to achieve recommendation status
by the W3C. An XML schema is a description of a type of XML document, typically expressed in terms
of constraints on the structure and content of documents of that type, beyond the basic syntax constraints
imposed by XML itself. Thus an XML schema provides a view of the document type at a relatively high
level of abstraction. The XML Schema language is also referred to as XML Schema Definition (XSD).

The Document Type Definition (DTD) language [10], which is native to the XML specification, was
being used as a schema language before XML Schemas were introduced. XML Schema language was
introduced in order to overcome some of the limitations of DTDs like different syntax from that of XML,
limited data type capability, and limited data types compatibility with those found in the databases.

XML Schema has many advancements over DTDs. Schemas are written in the same syntax as the
instance documents. They have more than 44 built-in data types available, over only 10 data types for
DTDs. A schema designer can also create his/her own data types if required. XML 1.1 introduced object-
oriented data types that support inheritance and can extendor restrict a type. It also has a support for
different keys like primary key and referenced key as opposed to only ID and IDREF support in DTDs.

The process of checking to see if an XML document conforms to aschema is calledvalidation, which is
separate from XML’s core concept of syntactic well-formedness. All XML documents must be well-formed,
but it is not required that a document be valid unless the XML parser is “validating”, in which case the
document is also checked for the conformance with its associated schema. A well formed document obeys
the basic rules of XML established for the structural designof a document. Moreover a valid document also
respects the rules dictated by its corresponding XML Schema.

The parser, XML’s one of the core technologies provides an interface to an XML document, exposing its
contents through a well-specified API. At present, two majorAPI specifications define how XML parsers
work: SAX [25] and DOM [9]. The DOM specification defines a tree-based approach to navigating an
XML document. It processes XML data and creates an object-oriented hierarchical representation of the
document that can be navigated at run-time. The tree-based W3C DOM parser creates an internal tree based
on the hierarchical structure of the XML data. It can be navigated and manipulated from the software,
and it stays in memory until it is released. DOM uses functions that return parent and child nodes, giving
programmer full access to the XML data and providing the ability to interrogate and manipulate these nodes.

The SAX specification defines an event-based approach whereby parser scans through XML data, call-

14

ing handler functions whenever certain parts of the document (e.g., text nodes or processing instructions)
are found. In SAX’s event-based system, the parser doesn’t create any internal representation of the doc-
ument. Instead, the parser calls handler functions when certain events (defined by the SAX specification)
take place. These events may include the start and the end of the document, finding a text node, finding
child elements, and hitting a malformed element.

3.2 Temporal Databases

Most applications of database technology are temporal in nature [18]. Some examples include financial
applications such as banking and accounting; record-keeping applications such as personnel, and inventory
management; scheduling applications such as airline, train, and hotel reservations; and scientific applica-
tions such as weather monitoring and forecasting. Applications such as these rely on temporal databases,
which record time-referenced data.

A temporal database is a database with built-in support for time aspects, e.g. a temporal data model and
a temporal version of a structured query language. In a regular database, there is no concept of time. The
database has a current state, and that’s all can be asked about. In a temporal database, the database includes
information about when things happened.

More specifically the temporal aspects usually include two orthogonal time dimensions: valid time and
transaction time. These two kinds together formbitemporal data[17].

Valid Time : Valid time associates with a fact the time period during which the fact is true with respect
to the real world. Valid time thus captures the time-varyingstates of the mini-world. All facts have
a valid time by definition. However, the valid time of a fact may not necessarily be recorded in the
database, for any of a number of reasons.

Transaction Time: Transaction time associates with the fact the time period during which the fact is
stored in the database. This enables queries that show the state of the database at a given time. Unlike
valid time, transaction time may be associated with any database entity, not only with facts. Thus,
all database entities have a transaction-time aspect. Thisaspect may or may not, at the database
designers discretion, be captured in the database. The transaction-time aspect of a database entity has
a duration: from insertion to deletion, with multiple insertions and deletions being possible for the
same entity. Transaction time captures the time-varying states of the database, and applications that
demand accountability or ”traceability” rely on databasesthat record transaction time.

Bitemporal Relations: A bi-temporal relation contains both valid and transaction time. Thus, it provides
both temporal rollback and historical information.

Consider the following example emphasizing the use of both valid time and transaction time in a
database table:
Joe was born on Jan 1st, 2002. His father happily registered his son’s birth-date on Jan 2nd, 2002. In the Cit-
izen table, two columnsValidBegin andValidEndwould be present to record the date when a citizen
is alive. Although the registration was done on Jan 2nd, the database states that the information is valid since
Jan 1st. SoValidBegin contains Jan 1st. Joe’s record is valid while he is alive. So,ValidEnd contains
an infinity value. To keep a track of the date when the record was inserted into the table two more fields are
added to the Citizen table:TransactionStart andTransactionStop. TransactionStart is
the time a transaction inserted that data, andTransactionStop is the time that a transactionsuperseded
that data (or “until changed” if it has not yet been superseded). For this record, theTransactionStart
would contain Jan 2nd while TransactionStop would contain “until changed”. What happens if the
data entry operator enters Joe’s birth date as Jan 1st, 2001 instead of Jan 1st, 2002? When this is realized

15

e.g., on Jan 10th, 2002, the old transaction started on Jan 2nd, 2002 containingValidEnd date as Jan 1st,
2001 would be terminated and a new record containing correctbirth date inValidBegin column would
be inserted. TheTransactionStop column for this record would have a value Jan 10th, 2002.

In the above example, the Citizen table is a bitemporal table, since it maintains both valid and transaction
times for a every record. Thus, it is possible to rollback a particular record to a past date. In addition , it
also provides all historical information about a record.

3.3 Schema Versioning

Software systems and especially databases undergo frequent changes following an initial implementation.
Lientz has shown that 50% or more of programmer effort arisesas a result of system modifications after
the implementation [19]. Sjoberg has also shown that the system modifications that cause changes to the
structure of the data are relatively frequent [26, 27]. As a result, modifying the database schema is a
common but often a troublesome occurrence in database administration.

Schema versioningdeals with the need to retain current data and software system functionality in the
face of changing structure of the data [24]. It is often not practical to simultaneously replace all the de-
ployments of the old schemas with the new ones. So applications will need to cope with different versions
coexisting in the system. Hence, versioning mechanisms in XML Schema should support creation of new
versions, and the schema processors should be able to handlethe instances defined by different versions.
Thus schema versioning should offer a solution to the problem by enabling intelligent handling of any
temporal mismatch between data and the data structures.

Schema versioning has been previously researched in the context of temporal databases [23]. But an
XML schema is a grammar specification, unlike a (relational)database schema, so new techniques are
required to handle schema versioning.

Since XML Schema changes are very common in the industry, there has been some effort to address
this issue. Some white papers [14, 7] discuss the need for schema versioning and some common techniques
used in the industry to handle it. According to Gabriel, someof the important reasons for changes in the
XML schema are as follows [14].

• Extending the scope of a schema.

• Changing constraints.

• Bug-fixing.

• Enabling collaborative development.

The previous literature also discusses some of the common techniques and the best practices currently used
to reduce the effects of schema changes on the system maintenance and recommend that schema versioning
should be a part of an integrated system evolution plan.

16

4 Previous Work

Methods to represent temporal data and documents on the web have been actively researched. This research
has covered a wide range of issues that include architectures for collecting document versions [11], strategies
for storing versions [6], studies on the frequency of data change [6], and temporal query languages [15].
The logical representation of deltas between the versions and the aspects of physical storage policy for
storing those versions have been proposed so as to maximize the space utilization [21]. Grandi has created
a bibliography of previous work in this area [16].

A logical data model based on XPath for capturing the entire history of an XML document is also
proposed [1]. The paper discusses physical representations of the document and proposes two specific
representations. Although the paper examines the consistency of a XML document in a limited context,
it does not mention modified XML schema for representation and its validation, nor does it consider the
general problem of validating against a temporal schcema. The approach does not provide logical and
physical data independence. It cannot check temporal constraints as well since there is no notion of temporal
constraint.

Version and source control for schemas and schema objects isneeded, especially in complex, multi-
enterprise development environments. The XML Schema working group at W3C has discussed desirable
behaviors for use cases that involve schema versioning in XML [36]. Various techniques to support evolu-
tion of XML schemas, where they allow for extensibility in the original design have also been proposed [14].
The emphasis of the paper is to avoid changes to the existing applications by anticipating changes to the
schemas and then designing them for evolution. This is typically achieved through a careful use of wild-
cards, allowing extensions through namespaces, allowing applications to ignore unknown objects, and forc-
ing applications to understand unknown objects when no other option is available. This approach does not
address the whole problem, as many schema changes cannot be expressed in their limited notations.

Some version control tools (that are designed for text files)have also been developed for data and
schema varying XML documents (e.g., [20]). But, since the tree-structured data has very different semantics
as compared to text, these tools are not very effective. Suchan approach also lacks the support for any
mechanisms for their validation.

Schema versioning has been previously researched in the context of temporal databases [23]. But an
XML schema is a grammar specification, unlike a (relational)database schema, so new techniques are
required. Although various XML schema languages have been proposed in the literature and in the com-
mercial arena, none model schema changes nor provide versioning. We chose to base our research on XML
Schema because it is backed by the W3C and is the most widely-used schema language.

The previous group working on the TAU Project at the ComputerScience Department at the Univer-
sity of Arizona has developed a theoretical framework for data versioning in XML documents. The basic
architecture of the system along with base schemas for temporal annotation, physical annotation, and the
temporal bundle were also created. The initial implementation of the τVALIDATOR , SQUASH and UN-
SQUASH tools to handle data versioning was also developed.

To summarize, in this research we extend the existingτXSchema system in following ways.

• Reimplement the toolsτVALIDATOR , SQUASH and UNSQUASH for XML 1.1 specification with a
new design keeping schema versioning in mind.

• Propose a new representation,non-decomposed representation, for temporal documents.

• Extend the tools to support schema versioning.

17

5 Architecture

In this section we describe the overall architecture ofτXSchema and illustrate with an example. The design
and implementation details of the tools are explained further in Section 7.

Mapper

9. Temporal Data
10. Representational

Schema

5. Temporal Bundle

4. Base Schema

1. TB Schema 3. PX Schema

0. XML Schema

Squash

8. Non−Temporal Data

2. TX Schema

6. Temporal Annotation 7. Physical Annotation

Legend of Arrows

Input/Output References Namespace

Schema

Figure 6: Overall Architecture

Figure 6 illustrates the architecture ofτXSchema. Only those components shaded in the figure are spe-
cific to an individual time-varying document and need to be supplied by a user. The designer annotates the
snapshot schema with temporal annotations (box 6). The temporal annotations together with the snapshot
schema form the logical schema.

Figure 7 provides an extract of the temporal annotations on the winOlympic schema. The temporal
annotations specify a variety of characteristics such as whether an element or attribute varies over valid time
or transaction time, whether its lifetime is described as a continuous state or a single event, whether the item
itself may appear at certain times (and not at others), and whether its content changes. Annotations can be
nested, enabling the target to be relative to that of its parent, and inheriting as defaults the kind, content, and
existence attribute values specified in the parent. The attribute ‘existence’ indicates whether the element can
be absent at some times and present at others. As an example, the presence of existence=“varyingWithGaps”
for anathleteTeam indicates that a team for a country may be present at some points in time and not
at other points in time. The attribute ‘content’ indicates whether the element’s content can change over the
time. An elements content is a string representation of its immediate content, i.e., text, sub-element names,
and sub-element order. Elements that are not described as time-varying are static and must have the same
content and existence across every XML document in box 8. Theschema for the temporal annotations
document is given by TXSchema (box 2).

18

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema
TXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="gDay"/>

</default>
...

<item target="/winOlympic/country/athleteTeam">
<transactionTime content="constant" existence="varyingWithGaps">

<maximalExistence begin="1924-01-01" />
</transactionTime>
<itemIdentifier name="teamName" timeDimension="transactionTime">

<field path="./teamName"/>
</itemIdentifier>

</item>
...

<item target="/winOlympic/country/athleteTeam/athlete/medal">
<validTime/>
<transactionTime/>
<itemIdentifier name="medalId1" timeDimension="bitemporal">

<field path="./text"/>
<field path="../athName"/>

</itemIdentifier>
</item>

...
</temporalAnnotations>

Figure 7: Sample WinOlympic Temporal Annotation

The next design step is to create the physical annotations (box 7). The physical annotations specify
the timestamp representation options chosen by the user. Anexcerpt of the physical annotations for the
winOlympic schema is given in Figure 8

Physical annotations play two important roles.

• They help to define where the physical timestamps will be placed (versioning level). The location
of the timestamps is independent of which components vary over time (as specified by the temporal
annotations). Two documents with the same logical information will look very different if we change
the location of the physical timestamp. For example, although the elements athleteTeam and medal
are time-varying, the user may choose to place the physical timestamp at the country and athlete level.
Whenever any element below medal changes, the entire athlete element is repeated.

• The physical annotations also define the type of timestamp (for both valid time and transaction time).
A timestamp can be one of two types:stepor extent. An extent timestamp specifies both the start and
end instants in the timestamps period. In contrast a step-wise constant (step) timestamp represents
only the start instant. The end instant is implicitly assumed to be just prior to the start of the next
version, ornowfor the current version. However, one cannot use step timestamps when there might be
“gaps” in time between successive versions. Extent timestamps do not have this limitation. Changing
even one timestamp from step to extent can make a big difference in the representation.

The schema for the physical annotations document is PXSchema (box 3).τXSchema supplies a default

19

<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema
PXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="days"/>

</default>
...

<stamp target="/winOlympic/country">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>
...

<stamp target="/winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension="transactionTime" stampBounds="step"/>

</stamp>
...
</physicalAnnotations>

Figure 8: Sample WinOlympic Physical Annotation

set of physical annotations, which is to timestamp the root element with valid and transaction time using
step timestamps, so the physical annotations are optional.

We emphasize that the focus of physical annotation is on capturing relevant aspects of physical repre-
sentations, not on the specific representations themselves, the design of which is itself challenging and is
described in detail in Section 8

The temporal and physical annotations are orthogonal and serve two separate goals. A user can change
where the timestamps are located, independently of specifying the temporal characteristics of that particular
element. Thus two documents with the same logical information will look very different if we change
the location of the physical timestamp in physical annotation. The temporal bundles (box 5) tie the base
schema, temporal annotations and physical annotations together. Each bundle in this document contains
sub-elements that associate a specific snapshot schema withtemporal and physical annotations, along with
the time span during which the association was in effect.

At this point, the designer is finished. She has written one conventional XML schema (box 4), specified
two sets of annotations (boxes 6 and 7) and provided the linking information via the bundle document (box
5). The boxes 1, 2, and 3 are provided by us while, XML Schema (box 0) is provided by W3C. Thus new
time-varying schemas can be quickly and easily developed and deployed.

20

6 Theoretical Framework

This section sketches the process of constructing a schema for a time-varying document from a snapshot
schema. The goal of the construction process is to create a schema that satisfies the snapshot validation
subsumption property, which is described in detail below.

6.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped elements. A timestamped element is an element
that has an associated timestamp. (A timestamped attributecan be modeled as a special case of a times-
tamped element.) Logically, the timestamp is a collection of times (usually periods) chosen from one or
more temporal dimensions (e.g., valid time, transaction time). Without loss of generality, we will restrict
the discussion in this section to lifetimes that consist of asingle period in one temporal dimension. The
timestamp records (part of) the lifetime of an element. We will use the notationxT to signify that element
x has been timestamped. Let the lifetime ofxT be denoted as lifetime (xT). One constraint on the lifetime
is that the lifetime of an element must be contained in the lifetime of each element that encloses it.

The snapshot operation extracts a complete snapshot of a time-varying document at a particular instant.
Timestamps are not represented in the snapshot. A snapshot at time t replaces each timestamped element
xT with its non-timestamped copyx if t is in lifetime(xT) or with the empty string, otherwise. The snapshot
operation is denoted as

snp(t,DT) = D

where D is the snapshot at time t of the time-varying documentDT .
Let ST be a representational schema for a time-varying documentDT . The snapshot validation sub-

sumption property captures the idea that, at the very least,the representational schema must ensure that
every snapshot of the document is valid with respect to the snapshot schema. Letvldt(S,D) represents the
validation status of documentD with respect to schemaS. The status is true if the document is valid but
false otherwise. Validation also applies to time-varying documents, e.g.,vldtT (ST ,DT) is the validation
status ofDT with respect to a representational schema,ST , using a temporal validator.

Property [Snapshot Validation Subsumption] Let S be an XML Schema document,DT be a time-
varying XML document, andST be a representational schema, also an XML Schema document.ST is said
to have snapshot validation subsumption with respect to S if

vldtT (ST ,DT)⇔ ∀t[∃lifetime(DT)⇒ vldt(S, snp(t,DT)]

Intuitively, the property asserts that a good representational schema will validate only those time-varying
documents for which every snapshot conforms to the snapshotschema. The subsumption property is de-
picted in Figure 9.

6.2 SchemaPath

SchemaPath is a language for locating element definitions ina snapshot schema. Physical and temporal
annotations annotate element definitions in the snapshot schema. Each annotation has a “target” attribute
that designates the location of an element in the schema. Thevalue of the target attribute is a SchemaPath
expression. SchemaPath is very similar to XPath, but has a different data model and a reduced functionality.
XPath’s data model is tree-like structure that is created byparsing an instance of a schema, i.e., an XML
document, but SchemaPath’s data model is a graph that is created by parsing the schema itself. The data
model is created as follows. Each element and the attribute definition is a node in the graph. A “child” edge
is added from a node to each node that represents a possible sub-element of the node. There is also a special
“attribute” edge from a node to each attribute of that node.

21

T

D

D
T

w

v

snp(t,D)T

vldt(S,D)

vldt (S ,D)T

v w

T

Figure 9: Snapshot Validation Subsumption

SchemaPath expressions, like XPath expressions, are composed of a number of steps. Each step consists
of an axis (again, like XPath, with the exception that predicates are not supported). SchemaPath supports
only three axes: parent, child and attribute (unlike XPath which supports many; in particular there is no
descendant axis, or the “any element wild-card” axis that explores non-neighbors of the context node in the
graph). The abbreviated syntax ‘.’ may be used to specify the current context node.

SchemaPath does allow two wildcards, the ‘*’ to select all elements and the ‘|’ union operation.
Schemas can be recursive. Using ‘*’ and ‘|’ in combination provides a way to specify elements in a
recursive schema that is more specific than the XPath “//” wildcard. So “C | */*/C | */*/*/*/C”
could specify the same elements as “//C”. The ‘*’ may not be in the final step or be the entire expression.
The union operation is only be allowed if the final labels match. ‘*’ and ‘|’ constructs are not supported in
the current implementation.

SchemaPath expressions are evaluated exactly like XPath expressions. Each step is evaluated with re-
spect to a context node. For instance the expression ‘/child::name(winolympics)’ locates the
winolympics child relative to the schema root. SchemaPath has an abbreviated syntax similar to XPath, so
the above expression can be succinctly composed as ‘/winolympics’. As another example, the expres-
sion ‘attribute::name(age)’, which locates the age attribute of the current node, can beabbreviated
as ‘@age’.

6.3 Content and Existence Variance

The data stored in XML documents may change over time. It is useful to be able to validate the way data
can change. The XSchema standard provides a way to validate XML documents, but does not define how an
XML document is allowed to change with time. To meet this need, τXSchema was created as an extension
of the XML standard that validates time-varying XML documents.

The two ways that a node in an XML document can vary with time are (1) in its content or (2) in its
existence. The content of an item includes the entire sub-tree rooted at a node. Each branch in the sub-tree
terminates at the first item on the branch, or at a leaf (text value, attribute, empty element). Some nodes,
especially those containing loose text, will change their content. Some nodes will exist in one version of an
XML instance document but will not be present in another version. Other nodes will have both their content
and existence change over time.

An item definition specifies how a data node may vary in its content and its existence. Let’s first
consider how an item specifies existence. There are three possible alternatives. The first is “varying with
gaps”, which means that each of its corresponding data nodesmay be present in some versions of the XML
instance document and absent in others. A second, more restrictive form is “varying without gaps.” The data

22

node is not required to always be present. When it is present there may not be any gaps in its existence. The
third value is “constant”. Then the corresponding data nodeis either always present or never present. Again
the existence-constant can have many different semantics.We have identified three of them and provide
support for the first two in our implementation.

• Existence is constant over all time (exists in every instantin lifetime of universe).

• Existence is constant over document lifetime (document lifetime may have gaps).

• Existence is constant over immediate ancestors items’ lifetimes.

The other aspect an item may specify is content. The content of a data node depends on its node type.
The content may change in the data node at any time if the corresponding item specifies content as varying.
There are restrictions on how a data nodes content may changeover time when the corresponding item
specifies content as constant. The restrictions are different for each of the type of content (e.g., elements,
attributes and loose text). The detailed explanation of therestrictions can be found in [30].

Content-varying and existence-varying are orthogonal concepts. The only restriction is that, when an
item is content-constant, the item’s immediate descendants should be existence-content, but switching of
parents is allowed. When an item specifies content or existence as varying, the corresponding data node
may vary with time, but is not required to.

6.4 Items

τXSchema introduces the concept of “items.” An item is a collection of XML elements that represent the
same real-world entity. An item is a logical entity that evolves over time through various versions. An Item
can be composed of any number of elements. Several elements that compose the same item may exist in the
same snapshot document.

In a temporal database, a pair of value-equivalent tuples can be coalesced, or replaced by a single
tuple that has a lifespan equivalent to the union of the pair’s lifespans.Coalescingis an important process
in reducing the size of a data collection (since the two tuples can be replaced by a single tuple) and in
computing the maximal temporal extent of value-equivalenttuples. In a similar manner, elements in two
snapshots of a temporal XML document can betemporally-associated. A temporal association between the
elements is possible when the element has the sameitem identifierin both snapshots. We will sometimes
refer to the process of associating a pair of elements asgluing the elements. When two or more elements is
glued, an item is created.

Only temporal elements (that is, elements of types that havea temporal annotation) are candidates for
gluing. Determining which pairs should be glued depends on two factors: the type of the element, and the
item identifier for the elements type. The type of an element is the elements definition in the schema. Only
elements of the same type can be glued. An item identifier serves to semantically identify elements of a
particular type. The identifier is a list of XPath expressions (much like a key in XML Schema) so we first
define what it means to evaluate an XPath expression.

Definition [XPath evaluation] LetEval(n,E) denote the result of evaluating an XPath expression
E from a context noden. Given a list of XPath expressions,L = (E1, , Ek), then Eval(n,L) =
(Eval(n,E1), , Eval(n,Ek)).

Since an XPath expression evaluates to a list of nodes,Eval(n,L) evaluates to a list of lists.
Definition [Item identifier] An item identifier for a type,T , is a list of XPath expressions,L, such that

the evaluation ofL partitions the set of typeT elements in a (temporal) document. Each partition is an item.
An item identifier has a target and at least one field, an itemref or a keyref. A target is a SchemaPath

expression that specifies an element’s location in the snapshots. A field, itemref and a keyref each specify

23

part of an item identifier. A field contains a path, a SchemaPath expression that specifies an element or
attribute that is part of the item identifier. A keyref references a snapshot key and an itemref references an
item identifier. This way an item may be specified in terms of anexisting item or schema key. An itemref
and keyref use the name of an item/key and are not SchemaPath expressions. The item identifier may consist
of any combination of field(s), itemref(s) and keyref(s). Each field expression specifies either an attribute
or an element. If an attribute is indicated, then the item identifier uses the attribute’s value. If an element is
indicated, then the item identifier uses the element’s loosetext. The current implementation supports only
fields.

A schema designer specifies the item identifiers for the temporal elements. As an example, a designer
might specify the following item identifiers for the temporal elements<athlete> and<medal>.

• <athlete> ⇒ [athName/*]

• <medal> ⇒ [../athName/*, ./*]

The item identifier for an<athlete> is the name of the athlete, while the item identifier for<medal>
is the athlete’s name (the parent’s item identifier) combined with the description of the event (the text within
the medal element). An item identifier is similar to a (temporal) key in that it is used for identification.
Unlike a key however, an item identifier is not a constraint; rather it is a helpful tool in the complex process
of computing versions.

Over time, many elements in a temporal document may belong tothe same item as the item evolves.
The association of these elements in an item is defined below.

Definition [Temporal association] Letx be an element of typeT in the ith snapshot of a temporal
document. Lety be an element of typeT in the jth snapshot of the document. Finally letL be the
item identifier for elements of typeT . Then x is temporally-associated toy if and only if Eval(x,L) =
Eval(y, L) and it is not the case that there exists an elementz of typeT in a snapshot between theith and
jth snapshots such thatEval(z, L) = Eval(x,L).

A temporal association relates elements that are adjacent in time and that belong to the same item. For
instance, the athlete element in Figure 1 is temporally associated to the athlete element in Figure 2 but not
the athlete element in Figure 3 (though the athlete element in Figure 2 is temporally related to the one in
Figure 3).

athName

athlete

medal medal

athlete athlete

doc doc doc

athName athName texttext

Kjetil Kjetil Kjetil

silver gold

2002−01−01 2002−03−01 2002−07−01

athlete

Figure 10: Items and Versions

24

6.5 Versions

When an item is temporally associated to an element in a new snapshot, the association either creates a new
version of the item or extends the lifetime of the latest version within the item. A version is extended when
“no difference” is detected in the associated element. Differences are observed within the context of the
Document Object Model (DOM).

Definition [DOM equivalence] A pair of elements is DOM equivalent if thepair meets the following
conditions.

• Their parents are the same item or their parents are non-temporal elements.

• They have the same number of children.

• For each child that is a temporal element, the child is the same item as the corresponding child of the
other (in a lexical ordering of the children).

• For each child that is something other than a temporal element the child is the same value as the
corresponding child of the other (in a lexical ordering of the children).

• They have the same set of attributes (an attribute is a name, value pair).

As an aside, we observe that DOM equivalence in a temporal XMLcontext is akin to value equivalence
in a temporal relational database context [17]. DOM equivalence is used to determine versions of an item,
as follows.

Definition [Version] Let x be an item of typeT in a temporal document, with a lifetime that ends at
time t. Let y be an element of typeT in a snapshot at timet + k that is temporally associated to the latest
version ofx, vt. If vt is DOM equivalent toy then the lifetime ofvt is extended to includet+k. Otherwise,
versionvt + 1, consisting ofy, is added to itemx.

A version’s lifetime is extended when the element from the next snapshot (or a future snapshot) is DOM
equivalent (the lifetime can have gaps or holes, although having a gap may violate a schema constraint as
described in section 6.3). A new version is created when a temporal association is not DOM equivalent.

Figure 10 depicts the items and versions in the example. An abstract representation of the DOM for
each snapshot of the document is shown. The items in the sequence of snapshots are connected within
each shaded region. There is one athlete item and one medal item. The athlete item has two versions; the
transition between versions is shown as a black stripe between the regions.

6.6 Extending Temporal XML Schema Constraints

In this section we briefly discuss XML Schema constraints andtheir temporal extensions. XML Schema
provides four types of constraints.

1. Identity constraints

2. Referential Integrity constraints

3. Cardinality constraints (in the form of minOccurs and maxOccurs for sub-elements and required /
optional for attributes)

4. Datatype restrictions (which constrain the content of the corresponding element or attribute)

25

The XML Schema constraints are snapshot constraints since they are restricted to a specific snapshot docu-
ment. These constraints need to be augmented forτXSchema.

The time frame over which a constraint is applicable classifies it into one of two types, eithersequenced
or non-sequenced. A temporal constraint is sequenced with respect to a similar snapshot constraint in the
schema document, if the semantics of the temporal constraint can be expressed as the semantics of the
snapshot constraint applied at each point in time. A constraint is non-sequenced if it is applied to a temporal
element as a whole (including the lifetime of the data entity) rather than individual time slices.

Given a snapshot XML Schema constraint, we define the corresponding temporal semantics inτXSchema
in terms of a sequenced constraint. For example, a snapshot (cardinality) constraint, “There should be be-
tween zero and four website URLs for each supplier,” has a sequenced equivalent of: “There should be
between zero and four website URLs for each supplier at everypoint in time.”

Non-sequenced constraints are not defined based on snapshotXML Schema equivalents. An example
of a non-sequenced (cardinality) constraint is: “There should be no more than ten website URLs for each
supplier in any year.”

Non-sequenced constraints are listed in the temporal annotations document. In a few cases (when
we extend a particular XML Schema constraint for additionalfunctionality), sequenced constraints are
also listed in the temporal annotations document. Technical Report document [33] further discusses the
sequenced and non-sequenced temporal annotations to the XML schema constraints in detail.

26

7 Tools and Algorithms

Our three-level schema specification approach enables a suite of tools operating both on the schemas and
the data they describe. This section gives an overview of thesuite of tools and the algorithms used by them.

The tools are open-source and beta versions are available [33]. The tools have been implemented in
Java using the DOM API [9]. The DOM API was chosen over SAX API due to its ability to create an
object-oriented hierarchical representation of the XML document that can be navigated and manipulated
at the run-time. The primitives explained below use this ability of the DOM API to easily manipulate the
document-tree.

We first describe the details of the implementation primitives pushUp, pushDown and coalesce.
These primitives are used byτVALIDATOR , SQUASH, UNSQUASH, and RESQUASH tools for manipulating
XML trees. SCHEMA MAPPER, a logical-to-representational mapper, is introduced next. This tool takes
as input the snapshot schema, temporal and physical annotations and generates a representational schema.
This representational schema is used byτVALIDATOR to validate the given temporal document using a
conventional XML Schema validator.τVALIDATOR does the actual temporal schema and data validation.
Temporal data validation is a several-step process, a majorpart of this process being gluing elements to
form items. The items are then validated individually.

Other tools in the suite squash, unsquash and resquash the documents. Given a temporal schema (bun-
dle) and a set of snapshot documents, SQUASH combines all of the snapshot documents into a single tem-
poral document. UNSQUASH performs the opposite operation, breaking the single temporal document into
multiple snapshot documents. RESQUASH is just a combination of UNSQUASH and SQUASH; given a
temporal document, an old physical annotation and a new physical annotation, RESQUASH changes the
representation of the given document as per the new physicalannotation.

7.1 Implementation Primitives

As mentioned earlier, the temporal and physical annotations are orthogonal in nature; a user can change the
location of timestamps, independent of specifying the temporal characteristics of a particular element. The
representation of the temporal document will change accordingly. Thus, two documents having a single
temporal annotation can have different physical annotations and hence different representations.

While processing a temporal document, one of the most frequently needed operations on the temporal
document moves the timestampsupor downin the hierarchy of XML elements defined by original snapshot
schema. Another operation needed by bothτVALIDATOR and SQUASH utilities coalesces the adjacent
versions from a given item. We decided to write primitive functions for these operations so that they could
be reused for building the tools with minimum efforts.We nowdescribe the primitive functions representing
these operations.

7.1.1 ThepushUp Function

Although temporal and physical annotations are orthogonalin nature, one restriction on the physical anno-
tation is that, at least a single timestamp should be locatedat or above the topmost temporal element in the
XML schema hierarchy. If a given physical annotation has timestamps at locations other than the temporal
elements, thepushUp function moves the timestamps up in the hierarchy after coalescing the items.

Consider the snapshot schema in Figure 11 and correspondingtemporal annotation (Figure 12) and
physical annotation (Figure 13). Figures 14–17 depict stepby step working of thepushUp function when
applied to a temporal document having timestamps at the temporal elements.

The first tree representation in Figure 14 represents the original document before applying thepushUp
function. The timestamps are present at element, which is temporal in nature (i.e., present in the

27

temporal annotation). ThepushUp function moves the timestamp to element<A>, which is present in the
physical annotation. It results in the three copies of element<A> corresponding to the three versions of item
B. Elements<A>, <C> and<D> are non-temporal in nature. Thus their contents are the sameand hence are
duplicated in all the three versions.

...
<element name="A">

<complexType mixed="true">
<sequence>
<element name="B" type="string"/>
<element name="C" type="string"/>
<element name="D" type="string"/>

</sequence>
</complexType>

</element>
...

Figure 11: Snapshot Schema

...
<item target="/A/B">

<transactionTime/>
<itemIdentifier name="A_id" timeDimension="transactionTime">

<field path="./text"/>
</itemIdentifier>

</item>
...

Figure 12: Temporal Annotation

...
<stamp target="/A" dataInclusion="expandedVersion">

<stampKind timeDimension="transactionTime" stampBounds="extent"/>
</stamp>
...

Figure 13: Physical Annotation

28

Original Document

item

Aversion1

A

C DB item

B1 B3B2

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

A

C DB item

B1 B3B2

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

[t1−t5)

pushUpBefore call (Aitem), physicalAnnotation

A

Figure 14: Example ofpushUp

After first iteration of third

item

Aversion1

B1 B3B2

version3B

 [t4−t5)
ver1C

 [t2−t5)
ver1D

 [t2−t5)
version2B

 [t2−t3)
ver1C

 [t1−t2)

A

B item

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

C

C

D

D

version1 version1

itemDC item

[t1−t5) [t1−t5)

[t1−t5)

Before call to function splitChildVersions

Aversion2

A item

A

 [t2−t5)

B item

B2

Aversion1

A

B1

[t1−t2)

B3C

itemC

D

itemD

 [t1−t2)

D

item

C

itemC D

ver1D

loop in function for splitChildVersions(Aitem , physicalAnnotation)

A

Figure 15: Example ofpushUp: Continued

29

splitChildVersions

A item

Aversion2

A

B2

Aversion2

A

B3

 [t2−t3)

Aversion1

A

B1

[t1−t2) [t4−t5)

C
ver1

[t1−t2)

C
item D

item

Dver1

C D

[t1−t2)

C
ver1

[t2−t3)

C
item D

item

Dver1

C D

[t2−t3)

C
ver1

[t4−t5)

C
item D

item

Dver1

C D

[t4−t5)

iteration of third for loop in functionAfter second

Figure 16: Example ofpushUp: Continued

Final Result

A item

DC

Aversion2

A

B2 DC

Aversion2

A

B3

 [t2−t3)

DC

Aversion1

A

B1

[t1−t2) [t4−t5)

Figure 17: Example ofpushUp: Continued

30

ThepushUp function is used in SQUASH and RESQUASH tools. These tools first construct the temporal
document with the timestamps located at the temporal elements. The timestamps are then moved up in the
hierarchy to the elements present in the physical annotation.

The recursive algorithm forpushUp is given in Figure 19. The function accepts an item representation
of an XML element as one of its parameters. The algorithm is called on the root item in the temporal XML
document. If the root element is not an item, it is converted into an item usingcreateItem function before
pushUp is called. ThepushUp function recurses until it reaches the bottom of the XML tree. At that
point, it moves timestamps up in the hierarchy by using the function splitChildVersions. The nestedfor
loop in the functionsplitChildVersions may multiply the existing versions of the item by splitting them
depending upon its versions’s overlap with its child items’versions. The child items from the versions of
the parent item are replaced by the child items’ versions removing the child items not present in the physical
annotation. The timestamp is thus pushed one level up in the hierarchy, closer to the elements present in the
physical annotation.

Other helper functions used in the algorithm are as follows.

• isItem (e): The function checks whether the given XML elemente has a representation of an item.

• createItem (e, timePeriod): The function creates a new XML element with the representation of an
item and adds the given elementeas the (single) version of newly create item with the time period of
the version beingtimePeriod

• replace (src, target): The function replaces thesrc element with thetargetelement.

• getTimePeriod (itm): The function returns the complete time-period of an item.i.e., The time-period
with start time equal to the start time of the first version andend time equal to the end time of the last
version of an item.

Figure 18 shows a slightly more complicated case, where two temporal elements are siblings of each
other. In this case, movement of timestampsUp in the hierarchy could result in the multiplication of the
total number of versions depending upon the time overlap of individual versions from the sibling items. In
this case, two versions of and two versions of<C> give six versions of<A> after the application of
pushUp function.

31

C2

A

B1

[t1−t2)
version1A

A

B1 C1

[t2−t3)
version2A Aversion6

A

C2

[t7−t8)

Aversion5

A

B2 C2

[t6−t7)

A

B2

[t5−t6)

Aversion4

A

C1

[t3−t4)

Aversion3

A item

& t5 < t6 < t7 < t8t1 < t2 < t3 < t4

A

B1

B item itemC

Bversion2

[t1−t3) [t5−t7) [t2−t4) [t6−t8)

B C Cversion2version1version1

B2 C1

Figure 18: Example ofpushUp

32

Figure 19: Algorithm:pushUp

//Inputs
// itm - An element from a temporal document which is an item
// physicalAnnotation- Parsed physical annotation document
//Output
// Modified itm element
function pushUp (itm, physicalAnnotation):

for each versionv of itm do
for each child elementc of v do

if isItem(c)
replace(c, pushUp(c, physicalAnnotation))

else
ci← createItem(c, getTimePeriod(itm))
replace(c, pushUp(ci, physicalAnnotation))

splitChildVersions(itm, physicalAnnotation)
return itm

//Inputs
// itm - An element from a temporal document which is an item
// physicalAnnotation- Parsed physical annotation document
function splitChildVersions (itm, physicalAnnotation):

for each versionv of itm do
for each child elementci of v do

if ci not in physicalAnnotation
for each versioncv of ci do

tpChild← timePeriod(cv)
for each versionv’ of itm do

tp← timePeriod(v’)
if tpChild coincides withtp

ci’ ← the child item ofv’ corresponding tocv
replace(ci’ , cv)

else iftpChild andtp overlap
partition tp andtpChild
tp’ andtpChild’← the partitions that coincide
v” ← the version corresponding totp’
ci’ ← the child item ofv” corresponding tocv
replace(ci’ , cv)

33

7.1.2 ThepushDown Function

ThepushDown function behaves exactly opposite of thepushUp function. If a given physical annotation
has timestamps at locations above the temporal elements, thepushDown function moves these timestamps
down the hierarchy. After executing this function on the temporal document, timestamps will be located at
the temporal elements. At this point, since the temporal characteristics and the representation coincide, it
becomes easier to perform coalescing on the resultant temporal document.

Consider the example in Figures 14–17. According to the physical annotation in Figure 13, the tree-
structured representation of the temporal document is given in Figure 17. Although is a temporal
element, timestamp is present at the element<A> higher up in the hierarchy. This results in the duplication
of elements<A>, <C> and <D>. WhenpushDown function is applied to the above document, the
timestamps are moved down the hierarchy, the redundancy is eliminated and the final document looks as
shown in the first tree of Figure 14. At this point, the user might be wondering, what if the elements<C>
and<D> are not the same in three different versions of<A> in the given temporal document. This would
not happen, since the elements<C> and<D> are not defined to be time-varying in the temporal annotation;
so they better be the same. If they are different, the algorithm would report this as an error.

The recursive algorithm for thepushDown function is given in Figure 21. The algorithm is called on
the root element in the temporal XML document. If the root element is not an item, it is first converted
to an item element using functioncreateItem function. The algorithm moves the timestamps down the
hierarchy one level at a time. If an item is not a time-varyingelement and if it has multiple versions (e.g.
element<A> of Figure 16), it is converted into a single version by using themergeVersions function. The
function groups corresponding child elements having the same item-identifier from its different versions
into the same child item. The child element from the first version is then replaced by its corresponding child
item XML element. After merging, since the parent item has only single version, the item is replaced by its
single version.

Other helper functions used in the algorithm are as follows.

• isTimeVarying (itm, temporalAnnotation): The function returnstrue if itm definition is present in
the temporal annotation.

• versionCount (itm): The function returns the number of versions present in thegiven itm element.

• GetVersion (itm, n): The function returns thenth version of the givenitm element.

Figures 23, 24 and 25 depict the stepwise working of functionpushDown. For the given tree, element
<D> is temporal in nature but the timestamp is present at the element<A> which is two levels up in the
hierarchy. In the first step, the timestamp is moved to element , while in the next step, the timestamps
are moved to element<D>, which is actually a time-varying element.

7.1.3 Thecoalesce Function

As explained in Section 6, elements in two snapshots of a temporal XML document can be temporally-
associated. If the elements are DOM-equivalent and the snapshot periods are contiguous, those two elements
could be replaced by a single element with the time period extending from the start time of the first element
to the stop time of the last element. This process is termedcoalescingand is an integral part of SQUASH to
compact the document.

After the snapshots are glued and the items are formed,coalesce is called for each item. The algorithm
for coalesce is given in Figure 22. The algorithm compares the time-periods of the two contiguous ver-
sions. If they meet, and if the contents of the two versions are the same (i.e., if they are DOM-Equivalent as

34

Figure 20: Algorithm:pushDown

//Inputs
// itm - An element from a temporal document which is an item
// temporalAnnotation- Parsed temporal annotation document
//Output
// Modified itm element
function pushDown (itm, temporalAnnotation):

if isTimeVarying(itm, temporalAnnotation)
processChildElements(itm)
return itm

else
if versionCount(itm) = 1

processChildElements(itm)
return GetVersion(itm, 1)

else
mergeVersions(itm, temporalAnnotation)
processChildElements(itm)
return GetVersion(itm, 1)

//Input
// itm - An element from a temporal document which is an item
function processChildElements (itm):

for each versionv of itm do
childElementList← {}
for each child elementc of v do

if isItem(c)
c’ ← pushDown(c, temporalAnnotation)

else
ci← createItem(c, getTimePeriod(itm))
c’ ← pushDown(ci, temporalAnnotation)

childElementList← childElementList∪ c’
for each child elementc of v do

replace(c, c’)

35

Figure 21: Algorithm:mergeVersions

//Inputs
// itm - An element from a temporal document which is an item
// temporalAnnotation- Parsed temporal annotation document
function mergeVersions (itm, temporalAnnotation):

let v1← GetVersion(itm, 1)
for each child c of v1do

if isTimeVarying(c, temporalAnnotation)
ci← createItem(c, getTimePeriod(itm))
replace(c, ci)

else
retainc

for each versionv of itm starting from GetVersion(itm, 2) do
for each child c of v do

if isTimeVarying(c, temporalAnnotation)
evaluate item-identifier forc
addc as a version to itemci from v1

remove versionv from itm

Figure 22: Algorithm:coalesce

//Input
// itm - An element from a temporal document which is an item.
function coalesce(itm):

let v1← GetVersion(itm, 1)
for each versionv of itm starting GetVersion(itm, 2) do

v2← v
if (v1.time-periodmeetsv2.time-periodand DOM-Equivalent(v1, v2))

v1.time.end← v2.time.end
remove versionv2 from itm

else
v1← v2

36

[t3−t4)

D1 D2
E E

F G

C

A

B item

B Bversion1 version2

B B

version1A

itemA

A item

A Aversion1 version2

A A

B B CC

D1 E F G D2 E F G

Original Document

(Aitem)mergeVersionsAfter return from

[t1−t2) [t3−t4)

[t1−t4)

[t1−t2)

Figure 23: Example ofpushDown

37

D

D1 D2

D
Dversion1

itemD

version2

Bversion1

(After return from function pushDown Bitem)

version2

C

F G

item

version1A

A

A

C

F G

itemB

item

version1A

A

A

E

B

E

mergeVersions (Bitem)After return from function

B

[t1−t4)

[t1−t4)

[t1−t2) [t3−t4)

[t1−t4)

[t3−t4)[t1−t2)

D1 D2

D

itemD

version1

Figure 24: Example ofpushDown: Continued

D

pushDown (Aitem)()

version2

C

F G

A

E

Final Document

B

[t1−t2) [t3−t4)

D1 D2

D

itemD

version1

After return from function

Figure 25: Example ofpushDown: Continued

38

item

A version1

A

B C

D E

F

item

A version3

A

C

D E

B’item

(t1−t2)

A version1

A

B C

D E

F

item

(t2−t3)

A version2

A

C

D E

F

B item

(t3−t4)

A version3

A

C

D E

B’item

A item

(t1−t3) (t3−t4)

A

Figure 26: Example ofcoalesce

explained in Section 6.5), the stop time of the first version is then extended to the stop time of the second
version.

Figure 26 shows the process of applying coalescing on Item A.In the tree-representation of the doc-
ument, versionsA1 [t1-t2) andA2 [t2-t3) are contiguous. They are also DOM-Equivalent (Sec-
tion 6.5). Thus the two versions are replaced by a single version with time period(t1-t3). After merging
A1 andA2, although the resulting version is contiguous with the nextversionA3 [t3-t4), they are not
merged, as they are not DOM-Equivalent. Thus, in the resulting document, there remain two versionsA1
andA2.

39

7.2 SCHEMA MAPPER

Once the annotations are found to be consistent, the logical-to-representational mapper generates the rep-
resentational schema from the original snapshot schema andthe temporal and physical annotations. The
representational schema is needed to serve as the schema fora time-varying document/data.

Once the annotations are found to be consistent, the logical-to-representational mapper (software oval
of Figure 6) generates the representational schema (box 10)from the original snapshot schema and the
temporal and physical annotations. The representational schema is needed to serve as the schema for a
time-varying document/data (box 9). The time-varying datacan be created in four ways:

• Automatically from the non-temporal data using SQUASH tool.

• Automatically from the data stored in a database, i.e., as the result of a “temporal” query or view.

• Automatically from a third-party tool, or

• Manually.

Every time-varying element is given a timestamp for the valid time and/or the transaction time as ap-
propriate. Non-temporal elements and attributes are translated as is. The process of converting a snapshot
schema into the representational schema is explained in thenext few paragraphs.

An XML Schema specification defines the types of elements and attributes that could appear in a docu-
ment instance. More generally, the specification can be viewed as a (tree) grammar. The grammar consists
of productions of the following form for each element type.

S⇒ <S>α</S>

In the above production, ‘α’ describes the contents of elements of typeS.
A temporal schema denotes that some of the element types are time-varying. To construct a repre-

sentational schema, several productions are added to the snapshot schema for each temporal element. No
productions are removed from the non-temporal schema though some are modified. Since only elements
can be temporal, this section focuses on the element-related components of a schema. The construction
process consists of several steps. We will illustrate the process by describing what is done for a single,
representative temporal element type,S.

The first step is to add a production to indicate that the element typeS is time varying. i.e. an item. The
production has following form:

SItem⇒ <SItemitemId="n" > SVersion+ </SItem>

An item has a uniqueitemId value, and consists of a list of versions. The third step is toadd a
production to specify each version of typeS. The production for a version of an element of typeShas the
following form:

SVersion⇒ <SVersion> t S</SVersion>

where t is the definition of timestamp element andS is the non-temporal definition of the element’s
type. We do not impose a particular schema for a timestamp, rather we assume that the schema is given
separately and imported into the temporal document’s schema. Each timestamp can have either or both of
the following forms.

t⇒ <transactionTime start="..." stop="..."/>

40

OR

t⇒ <validTime begin="..." end="..."/>

The next step is to modify the context in which a temporal element appears. For each temporal element
type,S, that appears in the left-hand-side of a production, replace Swith SItem. For example, assume that
the schema has a production of the following form:

X⇒ <X> β Sγ </X>

whereβ andγ describe arbitrary content before and afterS, respectively. The production is replaced by
the following production.

X⇒ <X> β SItemγ </X>

Only the element type is replaced, any other constraints on the element are kept (e.g., minoccurs and
maxoccurs are unaffected).

The final step is to relax the uniqueness constraint imposed by a DTD identifier or XML Schema key
definition. Since the same identifiers and key values can appear in multiple versions of an element, such
values are no longer unique in a temporal document, even though they are unique within each snapshot.
In temporal relational databases, the concept of a temporalkey, which combines a snapshot key with a
time, has been introduced. Temporal keys can be enforced by atemporal validating parser, but not by a
conventional parser. So constraints that impose uniqueness within a snapshot must be relaxed or redefined
as follows. The value of each id type attribute in a time-varying element is rewritten to be a unique value.
Finally, schema keys are rewritten to include itemIds and version start and end times, creating a temporal
key.

The algorithm for SCHEMA MAPPER is shown in Figure 27. The algorithm uses the same procedure
explained in the above paragraphs to create the representational schema from the snapshot schema. The
helper functionisConsistent checks whether the physical annotation is consistent with the given snapshot
schema. As part of consistency, it checks whether all the targets in the physical annotation are present in
the snapshot schema.

41

Figure 27: Algorithm: SCHEMA MAPPER

//Inputs
// snapshotSchema- Parsed snapshot schema document
// physicalAnnotation- Parsed physical annotation document
//Output
// Modified snapshotSchemadocument
function doSchemaMapping (snapshotSchema, physicalAnnotation):

if isConsistent(snapshotSchema, physicalAnnotation)
for each elemente in physicalAnnotationdo

add following definitions tosnapshotSchema

<xs:element name="eItem">
<xs:complexType>

<xs:sequence>
<xs:element name="eVersion">

<xs:complexType>
<xs:sequence>

<tv:element ref="timeStamp"/>
<xs:element ref="e” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="itemID" type="ID"/>

</xs:complexType>
</xs:element>

for each referenceof edo
replace<xs:element ref="e" /> with <xs:element ref="eItem" />

add following definition to thesnapshotSchema
<xs:element name="timeVaryingRoot">

<xs:complexType>
<xs:element ref="currentRoot” />

</xs:complexType>
</xs:element>

return modifiedsnapshotSchema
else

display error

42

7.3 TEMPORAL VALIDATOR

Figure 28 provides the validation procedure used byτVALIDATOR . The temporal bundle document (box 5
of Figure 6) is passed through theτVALIDATOR which first checks to ensure that the temporal and physical
annotations are consistent with the snapshot schema and with each other. Once the annotations are found
to be consistent, the logical-to-representational Mapper(SCHEMA MAPPER) generates the representational
schema (box 10) from the original snapshot schema and the temporal and physical annotations. The repre-
sentational schema is needed to serve as the schema for a time-varying document and is used to validate the
temporal document using conventional validator.

Schema
Schema

Mapper

Conventional

Validator

Temporal
Constraint
Validator
Module

Temporal
Document

Error
Messages

Bundle
Representational

Figure 28: Validating a document with Time-Varying Data

Once the representational schema is ready, a conventional validator is used to parse and validate the
time-varying data. TheτVALIDATOR utilizes the conventional validator for many of its checks.For in-
stance, it validates the temporal annotations against the TXSchema and physical annotation against the
PXSchema. But using a conventional XML Schema validating parser is not sufficient due to the limita-
tions of XML Schema in checking temporal constraints. So thesecond step is to pass the temporal data
to Temporal Constraint Validator Module. The module, by checking the temporal data, effectively checks
the non-temporal constraints specified by the snapshot schema simultaneously on all the instances of the
non-temporal data (box 8), as well as the (non-sequenced temporal) constraints between snapshots, which
cannot be expressed in a snapshot schema.

Figures 29 and 30 depict the two tasks performed by theτVALIDATOR . (i) validating the consistency of
a temporal schema and (ii) validating the instance of a temporal document against the temporal schema.

The time-varying data is validated against the representational schema in two stages. First, a conven-
tional XML Schema validating parser is used to parse and validate the time-varying data since the represen-
tational schema is an XML Schema document that satisfies the snapshot validation subsumption property.
But using a conventional XML Schema validating parser is notsufficient due to the limitations of XML
Schema in checking temporal constraints. For example, a regular XML Schema validating parser has no
way of checking something as basic as “the valid time boundaries of a parent element must encompass
those of its child”. These types of checks are implemented inthe Temporal Constraint Validator Module
of τVALIDATOR . So the second step is to pass the temporal data toτVALIDATOR as shown in Figure 28.
A temporal XML data file (box 9 of Figure 6) is essentially a timestamped representation of a sequence

43

MessagesValidatorT5.Temporal Bundle6.Temporal Annotation

7.Physical Annotation

4.Snapshot Schema

Error

Figure 29:τVALIDATOR – Checking the Schema

5.Temporal Bundle

T Validator Error Messages

9.Temporal Data

Figure 30:τVALIDATOR – Checking the Instance

of non-temporal XML data files (box 8). The namespace is set toits associated XML Schema document
(i.e. representational schema). The timestamps are based on the characteristics defined in the temporal and
physical annotations (boxes 6 and 7).

τVALIDATOR has agluing componentthat creates all the items and their item identifiers. Two elements
with the same item identifiers should be glued together. It concatenates all of the fields together. It creates
one string that is the schema for all the fields and a second string that is the value of all the fields. Ele-
ment and attribute names cannot contain the ‘|’ symbol since it is used to separate each field string in the
concatenated string. The fields are concatenated in the order specified in the item identifier.

τVALIDATOR maintains a hash map to hold all the items. Each item containsa reference to each of its
constituent elements. Two elements are glued if their item identifiers match exactly. Both the schema and
instance strings must be equal. Even the amount and locationof white spaces in a field elements loose text
must be identical. For every time-varying element, the gluing component determines whether to create a
new item or to glue this element to an existing item.

Once the items are created, theTemporal Constraint Validator Modulevalidates individual item to check
whether it satisfies the following constraints, if applicable to that item.

Content Constant: Content of an element cannot vary over time.

Existence Constant: The element cannot disappear and reappear again.

Content Varying Applicability: The contents of an item cannot change beyond the period specified by the
contentVaryingApplicability element in the temporal annotation.

Valid Time Frequency: The element cannot change more than specified number of timesspecified by the
frequency element.

44

Maximal Existence Period: The element can exist only within the period specified by the
maximalExistence element.

By checking the constraints on all the items, the module effectively checks for all the sequenced and non-
sequenced constraints on the entire temporal document.

The algorithm forτVALIDATOR is given in Figure 31. The algorithm uses a hash-map to maintain
a mapping between item-identifier and the corresponding item. After checking the consistency of the
schemas, the function creates a representational schema using the SCHEMA MAPPER. The given temporal
document is parsed against this schema using the conventional validator. The for loop creates the items by
gluing together the elements with the same item-identifier.Each item is then validated for sequenced and
non-sequenced constraints explained in Section 6.6.

7.4 SQUASH

TheSQUASH utility takes a sequence of XML documents, a temporal annotation and a physical annotation
as input and generates a temporal XML document consistent with the physical annotation.

The algorithm for SQUASH tool is given in Figure 32. It cleverly reusespushUp, pushDown and
coalesce primitives to create a compressed document from a set of snapshot documents as per the given
temporal schema.

The algorithm first checks for the consistency of the temporal and the physical annotations with the
snapshot schema. It then creates a new XML document with<timeVaryingRoot> as its root and at-
tachesroot elements of the snapshot documents as its versions. At this point, the timestamps are present
at the root level element.pushDown function then moves these timestamps down the hierarchy to the ele-
ments present in the temporal annotation. Every item is thencoalesced to create its compact representation.
ThepushUp function then moves the timestamps up in the hierarchy up to the elements present in the actual
physical annotation.

7.5 UNSQUASH

The UNSQUASH utility performs the opposite operation of SQUASH. It takes a temporal XML document, a
temporal bundle and generates multiple non-temporal XML documents. It also provides the functionality of
extracting a particular snapshot from the given temporal document using UNSQUASH utility. The algorithm
for UNSQUASH is given in Figure 33.

The algorithm first checks for the consistency of the temporal and physical annotations with the snap-
shot schema. It then constructs the representational schema using SCHEMA MAPPERand parses the given
temporal document against the representational schema using the conventional validator. ThepushDown
function is first called on the given document to move the timestamps to the temporal elements. A new
physical annotation, containing only the root element, is created and passed to the functionpushUp. The
purpose is to move all the timestamps to theroot element. At this moment every version of theroot item
element is a snapshot document. These individual versions are then written to the separate files.

7.6 RESQUASH

The RESQUASH utility takes the temporal XML data and the two physical annotated schemas (the original
schema and the target one) and converts the temporal XML document based on the target physical annotated
schema. The algorithm for RESQUASH is given in Figure 34.

The algorithm first checks for the consistency of the temporal annotation and the source and target physi-
cal annotations with the snapshot schema. It then performs the operationpushDown on the given temporal
document. The given temporal document has the representation as per thesrcPhysicalAnnotation. The

45

Figure 31: Algorithm:τVALIDATOR

//Inputs
// snapshotSchema- Parsed snapshot schema document
// temporalAnnotation- Parsed temporal annotation document
// physicalAnnotation- Parsed physical annotation document
// temporalDocument- Parsed temporal document
function doTemporalValidation (snapshotSchema, temporalAnnotation, physicalAnnotation,

temporalDocument):
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(snapshotSchema, temporalAnnotation, physicalAnnotation)

repSchema← doSchemaMapping(snapshotSchema, physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

for each elemente in the temporalDocumentdo
if isTimeVarying(e, temporalAnnotation)

evaluate the item-identifier
if item-identifierin hash-table

if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version

else
create a new version

else
create a new item inhash-table, with one version

for each item in hash-tabledo
for each sequenced and non-sequenced constraintin temporalAnnotationdo

if the constraint is not satisfied
display errors

else
display errors generated by the conventional validator

else
display errors

46

Figure 32: Algorithm: SQUASH

//Inputs
// snapshotSchema- Parsed snapshot schema document
// temporalAnnotation- Parsed temporal annotation document
// physicalAnnotation- Parsed physical annotation document
// snapshotSet- Set of snapshot documents
//Output
// temporalDocument- Temporal document created from snapshotSet
function doSquash (snapshotSchema, temporalAnnotation, physicalAnnotation, snapshotSet):

if Consistent(snapshotSchema, temporalAnnotation, physicalAnnotation)
repSchema← doSchemaMapping(snapshotSchema, physicalAnnotation)
create element<timeVaryingRoot

beginDate="beginDate of first snapshot document"
endDate="endDate of last snapshot document">

create elementrootItm corresponding to root level elementroot
for each snapshotin the setof snapshotSetdo

add root elementroot of snapshot as a version ofrootItm
root← pushDown(rootItm, temporalAnnotation)
for each item itm in temporalDocdo

coalesce(itm)
if isItem(root)

rootItm← root
else

rootItm← createItem(root)
rootItm← pushUp(rootItm, physicalAnnotation)
if rootItm not in physicalAnnotation

replace(rootItm, getVersion(rootItm, 1))
return temporalDoc

else
display errors.

47

Figure 33: Algorithm: UNSQUASH

//Inputs
// snapshotSchema- Parsed snapshot schema document
// temporalAnnotation- Parsed temporal annotation document
// physicalAnnotation- Parsed physical annotation document
// temporalDocument- Temporal document created from above
//Output
// snapshotSets- Set of snapshots extracted from temporalDocument
function doUnSquash(snapshotSchema, temporalAnnotation, physicalAnnotation,

temporalDocument):
if Consistent(snapshotSchema, temporalAnnotation,physicalAnnotation)

repSchema← doSchemaMapping(snapshotSchema,physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

newPhysicalAnnotation← root element definition of thesnapshotSchema
root← temporalDocument.rootElement
if isItem(root)

rootItm← root
else

rootItm← createItem(root)
root← pushDown(rootItm, temporalAnnotation)
if isItem(root)

rootItem← pushUp(root, newPhysicalAnnotation)
else

rootItem← newItem(root)
replace (root, pushUp(rootItem, newPhysicalAnnotation))

snapshotSet← {}
for each versionrootVerof rootItemdo

add elementrootVeras a snapshot document tosnapshotSet
return snapshotSet

else
display errors generated by the conventional validator

else
display errors

48

pushDown function moves all the timestamps to the actual time-varying elements as per thetemporalAn-
notation. The functionpushUp is then called with thetargetPhysicalAnnotationas its parameter, which
then moves the timestamps up in the hierarchy to the elementsmentioned in the new physical annotation.

Figure 34: Algorithm: RESQUASH

//Inputs
// snapshotSchema- Parsed snapshot schema document
// temporalAnnotation- Parsed temporal annotation document
// temporalDocument- Temporal document to be resquashed
// srcPhysicalAnnotation- Parsed physical annotation document used for creating

temporalDocument
// targetPhysicalAnnotation- Parsed physical annotation document to be used

for creating new temporalDocument
//Output
// temporalDocument- resquashed temporal document
function doReSquashing (snapshotSchema, temporalAnnotation, srcPhysicalAnnotation,

targetPhysicalAnnotation,temporalDocument):
if Consistent(snapshotSchema, temporalAnnotation, srcPhysicalAnnotation) and

Consistent(snapshotSchema, temporalAnnotation, targetPhysicalAnnotation)
root← temporalDocument.rootElement
if isItem(root)

rootItem← pushDown(root, temporalAnnotation)
else

rootItem← newItem(root)
replace(root, pushDown(rootItem, temporalAnnotation))

rootItem← pushUp(rootItem, targetPhysicalAnnotation)
if rootItm not in physicalAnnotation

replace(rootItm, getVersion(rootItm, 1))
return temporalDocument

else
display errors

49

It is also possible logically to supply two temporal annotated schemas (the original one and the tar-
get one) instead of physical ones and convert the temporal XML document based on the target temporal
annotated schema. The only restriction with the temporal annotated schemas is that the data needs to be
consistent according to both temporal annotated schemas. This constraint does not exist with the physical
annotated schemas because only the representation of a temporal document is changing. This could be
easily achieved by using the combination of UNSQUASH and SQUASH tools. The given temporal docu-
ment will be unsquashed to retrieve the original snapshot documents. These snapshot documents will then
be squashed using the target temporal annotation and the original physical annotation. Since the physical
annotation remains the same, the new document will be the same as the original one. Although, while per-
forming the squashing using the target temporal annotation, the SQUASH tool would find out any violations
of the sequenced and non-sequenced constraints enforced bythe target temporal annotation.

Squash
Sequence of
Non−temporal
Documents

Temporal
Document

Temporal
Document
(New
Representation

ReSquash

UnSquash

Figure 35: Squash/UnSquash/ReSquash Commutativity Diagram

SQUASH, UNSQUASH and RESQUASH tools retain snapshot reducibility [3] in that the commutativity
diagram in Figure 35 is maintained. Specifically, if we take aparticular sequence of static XML documents,
each associated with a time slice, and squash them into a temporal XML document, then resquash that
into a separate temporal XML document, with a different physical schema, and then unsquash it again,
we will get exactly the same sequence of static XML documents. This of course assumes that the static
documents corresponding to the non-temporal schema provided and that the temporal XML documents are
valid instances of the schema produced by the logical-to-representational mapper.

50

8 Representations

In this section we present a canonical (physical) representation for temporal documents. A single tempo-
ral document has many possible physical representations. The choice of a representation is dictated by a
temporal document’s physical annotation.τVALIDATOR and other utilities are designed to generate and
recognize multiple representations of temporal document.Among the many physical representations, some
are more conducive than others in representing the meaning of a document. The canonical representation
is intended to make manifest in the physical representationthe temporal semantics of a document. One use
of the representation is to compare whether two documents are the same (semantically). If both documents
are rendered in the canonical representation they can be physically compared to determine whether they are
the same.

Coming up with a canonical representation turns out to be quite involved. We considered the following
criteria to select a candidate.

• Size is unimportant - The temporal document(s) may grow or shrink in size with respect to the se-
quence of snapshot documents.

• Versions of a time-varying element must be explicitly represented. The representation must capture
the version history by representing both the time-varying element and its versions.

• A version could have an N-dimensional temporal lifetime. Ingeneral there could be many temporal
dimensions, with one or two being the norm. The versioning could occur in any of the dimensions. A
version lifetime is an N-dimensional temporal element, that is, a set of regions in the N-dimensional
temporal space described by the dimensions.

• The “tree structure” of a document should be retained when possible. The value of retaining the
tree structure is that XML parsers, query languages, schemavalidators, etc. have a better chance of
working.

• Whitespace, attributes, text, comments, processing instructions, and sub-elements should be explic-
itly captured within each version. It should be possible to exactly reconstruct any desired snapshot
document (with the exception of information that is discarded by an XML parser such as the ordering
of the attributes, whitespace within an element, and empty content tags).

• The representation should not adversely impact the range oftemporal or non-temporal queries in
XPath/XQuery/XSLT/DOM that can be expressed or evaluated.

• Every copy of a time-varying element and version must have the same information and lifetime (there
are no partial versions). If a time-varying element is represented in multiple locations in a temporal
document, the element’s version history must be the same forevery copy.

• The representation of a versions lifetime must be unique. Two lifetimes that are the “same” time (i.e.,
two or more copies of the version of an item present at two different places in a temporal document)
must have the “same” representation.

After applying all the above criteria, two representationswere considered for the initial implementa-
tion. The final choice between them was a trade-off between processing complexity and the document
compression.

51

Decomposed Representation In this representation, every item is present as a child of the top level
<timeVaryingRoot> element and is given a uniqueID. All possible occurrences of the corresponding
item in the document are replaced by the elements referencing correspondingID. XML datatypeIDREF is
used for referencing.

The decomposed representation works best when the timestamps are present at the time-varying el-
ements. In this cases it is more space-efficient since duplication of items if any is avoided by using its
referencing capability to the fullest.

Non-decomposed Representation In this representation, an item can occur at any level in the XML tree
hierarchy. Every occurrence of the actual time-varying element from the snapshot document is replaced
by its corresponding item. Multiple XML elements corresponding to thesameitem (i.e., item with the
same item-identifier) may exist at multiple places in the document. This happens if the same element is
being referenced at multiple locations in the original snapshot document. In that case, even though the
item-identifier for all the item elements is the same, each may contain different sets of versions depending
upon the time-period of enclosing items. All sets of versions must be consistent with each other and when
combined, denote a single item with non-overlapping versions. The grammar for this representation is
explained in detail in Section 7.2.

This representation is better from the processing complexity point of view and hence is easier to imple-
ment. It gives the same space-efficiency in most cases as the decomposed representation.

Both above representations have the following features.

• Only elements are time-varying and can have versions. The immediate content, that is text and at-
tributes, is considered to be an integral part of an element and therefore does not have a separate
time-varying lifetime.

• A version of an element is created if/when any of the following happen.

– any attribute value changes,

– an attribute is deleted,

– an attribute is inserted,

– the element namespace changes,

– a sub element is inserted,

– a sub element is deleted,

– a sub element changes position, or

– the text content changes.

The above conditions capture the idea that a version is any change to the element from the previous
state of the element. The change must be observable through DOM: only changes observable through
DOM create a new version.

• If an element is glued but remains unchanged, then the lifetime of the current version of the element
is extended; no new version is created. This implies that versions are coalesced.

• The timestamp that represents the version’s lifetime is a N-dimensional temporal element. It may
include now, until changed, and/or indeterminate times.

We decided to support the non-decomposed representation since it is easier to implement and has the
same space-efficiency as the decomposed representation in most cases. In this representation, the lexical

52

order of versions is important. The order is by transaction-time first, and within transaction-time by valid
time, and within valid-time by other time dimensions. The reasoning behind this design decision is given at
the end of Section 11 when we discusstransaction-timeandvalid-time splitting.

53

9 Schema Versioning

Much of the power of a database management system stems from the presence of a schema that describes
the structure of the database. When the data is versioned, a schema helps even more, because it expresses
the commonality among the different versions, as well as indicating which parts of the data can change, and
how. The schema is the solid ground upon which the data structures can stand. When the schema itself is
versioned, there is no solid ground. How schema versioning is supported makes the difference between a
fluid motion between versions and awkward struggling against quicksand.

One challenge is that in this potential quicksand, anythingcan change, and thus must be versioned:
the snapshot documents, the base schema, the temporal annotations, the physical annotations, the schema
documents included by these documents, even the schemas of these schema components. And, because the
physical annotations can change, the concrete representation within a temporal XML document can also
vary.

We now extendτXSchema to also support schema versioning. In doing so, we leverage both con-
ventional XML Schema and related tools (principally, the validator), as well as theτVALIDATOR for data
versioning.

In this section, we first explain the extensions toτXSchema architecture followed by the theoretical
foundation for schema-versioning.

Before that, we introduce a key idea first appeared in a paper on temporal aggregation [31], that we
will call here, schema-constant periods. It is possible, even with versioned schemas having themselves
versioned schemas, to identify contiguous periods of time when there are no schema changes, anywhere.
These are termed as schema-constant periods. These periodsare non-overlapping and continuous; between
the periods are schema changewalls. Now, during these periods the data may be (and probably is) versioned,
but at least we have a fixed base schema and fixed temporal annotations, each of which has a fixed schema.
And since the physical annotations are fixed, the representation is also fixed, so it is possible to read and
interpret the temporal document during that schema-constant period, and even to validate that portion of
the document. So a general temporal document can be viewed asa sequence of data-varying documents,
each over a single schema-constant period. Since we can validate each schema-constant period, given the
approaches elaborated on earlier, all we have to do is validate across schema changes.

While schema versioning has been considered in the context of valid time [8], doing so is quite complex
and in our opinion not worth this complexity. Thus inτXSchema schemas vary and are versioned only over
transaction time.

9.1 Architecture and Example

We now generalize the architecture explained in Section 5 tosupport versioned schemas. Consider the
Winter Olympic example explained in Section 2. We extend this example for schema versioning. All the
files mentioned in this example are available in the examplesdirectory in the distribution [33]. The example
is also present in the Appendix B.

Consider the snapshot schema in Figure 5. This schema was initially designed on2002-01-01. The
schema has been reproduced again in Figure 36 for convenience. This snapshot schema undergoes a series
of changes. The corresponding temporal and physical annotations are given in Figures 37 and 38.

Now, assume that the designers decide to add a new element<phone> to the schema before beginning
of Torino, Italy Olympics in 2006. The changes to the schema are done on2005-01-01. The modified
schema is given in Figure 39. In the new schema, a new element<phone> for a phone number of an athlete
is added as a child of<athlete> element. The existence of multiple versions of the base schema implies
that box 4 of Figure 6 is actually asequenceof base schemas. Not only does the base schema changes over
time, but the schemas included by it if any, could also vary over time. Similarly, the temporal annotations

54

...
<element name="athlete">

<complexType mixed="true">
<sequence>

<element name="athName" type="string"/>
<element ref="medal" minOccurs="0" maxOccurs="unbounded"/>
<element name="birthPlace" type="string" minOccurs="0"

maxOccurs="1"/>
</sequence>
<attribute name="athID" type="nonNegativeInteger" use="required"/>
<attribute name="age" type="nonNegativeInteger" use="required"/>

</complexType>
</element>
...

Figure 36:winOlympic.ver1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema

TXSchema.xsd">
<default>
<format plugin="XMLSchema" granularity="gDay"/>

</default>
...

<item target="/winOlympic/country/athleteTeam/athlete">
<transactionTime content="varying" existence="constant" />
<itemIdentifier name="athID" timeDimension="transactionTime">

<field path="@athID"/>
</itemIdentifier>

</item>
...

<item target="/winOlympic/country/athleteTeam/athlete/medal">
<transactionTime content="varying" existence="constant" />
<itemIdentifier name="medalId1" timeDimension="bitemporal">

<field path="./text"/>
<field path="../@athID"/>

</itemIdentifier>
</item>

...
</temporalAnnotations>

Figure 37:winolympic temporal annotation.ver1.xml

55

<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema
PXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="days"/>

</default>
...

<stamp target="/winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>
...

<stamp target="/winOlympic/country/athleteTeam/athlete/medal">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>
</physicalAnnotations>
...

Figure 38:winolympic physical annotation.ver1.xml

(box 6) and those annotations included by them and the physical annotations (box 7) and those annotations
included by them all can vary over time, resulting in multiple versions.

As an example, on2005-01-01, the designers also decide to make<phone> time-varying and hence
the temporal annotation also undergoes a change. The modified temporal annotation is represented in Fig-
ure 40. A new item corresponding to the element<phone> is added to the temporal annotation. For this
example, lets assume that the original physical annotationon2002-01-01 remains as it is. Thus, even for
the new schema, the timestamps will be represented at the elements<athlete> and<medal>.

This versioning is handled by timestamping the<schemaAnnotation> element in the temporal
bundle. To each such element is added a<tTime> element that specifies when that annotation element
became applicable. The sample temporal bundle document is given in Figure 41. The bundle contains two
<schemaAnnotation> elements. They refer to the two versions of snapshot schemasand their corre-
sponding temporal annotations. The first<schemaAnnotation>element contains<itemIdentifierCorresponde
element as its child, which will be explained in detail in Section 9.2.1.

One approach to handle this schema versioning is to have a different document (file) for each version,
similar to what is shown in box 8. While this approach is allowed, τXSchema also permits temporal
schemas, in place of multiple versions of conventional schemas. As one possibility, the sequence of snapshot
schemas could be squashed together to produce a single temporal documenttv snapshot.xml, which
would then be referenced by multiple schema annotation elements. Similarly, the SQUASH utility could be
used to generate temporal schemas for the schemas included by the main snapshot schema.

This rather involved state of affairs, with time-varying documents and time-varying schemas, is illus-
trated with a T Diagram in Figure 42. In this notation, first described almost forty years ago [4], the input of
a translator is given on the left arm of the “T” (for example, for SCHEMAMAPPER in the upper right-hand-
side of the figure, the input is the logical schema document,bundle.xml), the name of the translator is
given at the base of the “T” (here, “SchemaMapper”), and the output of the translator is given on the right
arm of the “T” (here, a representational schema,rep.xml). The name of these diagrams was to the best
of our knowledge given by McKeeman, Horning, and Wortman in their classic compiler book [22].

We extend these diagrams to allow multiple inputs, which unfortunately complicates them somewhat.
As shown in Figure 42, SQUASH takes both a bundle and a sequence of snapshot documents and produces a

56

...
<element name="athlete">

<complexType mixed="true">
<sequence>

<element name="athName" type="string"/>
<element ref="medal" minOccurs="0" maxOccurs="unbounded"/>
<element name="birthPlace" type="string" minOccurs="0"

maxOccurs="1"/>
<element ref="phone" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="athNumber" type="nonNegativeInteger" use="required"/>
<attribute name="age" type="nonNegativeInteger" use="required"/>

</complexType>
</element>
...

Figure 39:winOlympic.ver2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema
TXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="gDay"/>

</default>
...

<item target="/winOlympic/country/athleteTeam/athlete">
<transactionTime content="varying" existence="constant" />
<itemIdentifier name="athNumber" timeDimension="transactionTime">

<field path="@athNumber"/>
</itemIdentifier>

</item>
...

<item target="/winOlympic/country/athleteTeam/athlete/phone">
<transactionTime/>
<itemIdentifier name="phoneId" timeDimension="transactionTime">

<field path="./countryCode"/>
<field path="./phoneNumber"/>

</itemIdentifier>
</item>

...
</temporalAnnotations>

Figure 40:winolympic temporal annotation.ver2.xml

57

<?xml version="1.0" encoding="UTF-8"?>
<temporalBundle xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"

xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<format plugin="XMLSchema" granularity="date"/>
<bundleSequence defaultTemporalAnnotation="defaultTA.xml"

defaultPhysicalAnnotation="defaultPA.xml">
<schemaAnnotation snapshotSchema="winOlympic.ver1.xsd"
temporalAnnotation="winolympic_temporal_annotation.ver1.xml"
physicalAnnotation="winolympic_physical_annotation.ver1.xml">

<tTime>2002-01-01</tTime>
<itemIdentifierCorrespondence oldRef="athID" newRef="athNumber"

mapping="useBoth">
</schemaAnnotation>
<schemaAnnotation snapshotSchema="winOlympic.ver2.xsd"
temporalAnnotation="winolympic_temporal_annotation.ver2.xml"
physicalAnnotation="winolympic_physical_annotation.ver1.xml">

<tTime>2005-01-01</tTime>
</schemaAnnotation>

</bundleSequence>
</temporalBundle>

Figure 41:winOlympic temporal bundle.xml

temporal document, and UNSQUASH does just the opposite (this is illustrated for the temporalannotations,
which are SQUASHed into a singletv temp anno.xml document, then UNSQUAHed back into their
constituent time slices.

In this figure we show a bundle (bundle.xml, right in the middle of the figure, with the arrows
pointing left) referencing two temporal schemas, one of thebase schema and one of the physical annotations;
the bundle also references several temporal annotation documents. Note that the base schema for the base
schema (!) is XSchema, which has as its base schemaXSchema.xsd.

τVALIDATOR treats each URI it encounters as the specification of a temporal timeslice operation to
select the appropriate version. The timeslice is as of the time of the document or context that contains
the URI. If the URI represents a temporal document, theτVALIDATOR calls UNSQUASH, passing it (a)the
corresponding bundle, (b) the temporal document, and (c)a timestamp. It would do so as well, for all the
schemas included by that schema if any. The underlying semantics ensures that at any point in time, there
is a single base schema, a single temporal annotation, and a single physical annotation. TheτVALIDATOR

recursively calls UNSQUASH so that at any point in time, there is a single schema in effect.
The snippet of a sample temporal document generated by the SQUASH utility is shown in Figure 43.

The document uses two representational schemas http://www.cs.arizona.edu/tau/RepSchema0 and http://
www.cs.arizona.edu/tau/RepSchema0 for schema constant periods[2002-01-01, 2005-01-01) and
[2005-01-01, 9999-12-31), respectively. The data versioned temporal documents for those schema-
constant periods are embedded inside<schemaVersion0> and<schemaVersion1> elements.

What would the representational schema look like for this temporal document? We could see that
schema directly by running SCHEMAMAPPER on the bundle. The SCHEMAMAPPER for the schema ver-
sioned documents generates<schemaVersioni> element within<schemaItem> for every change of
the base schema or the physical annotation. The representational schema is given in the Figure 44. The final
representational schema for the schema-versioned temporal document is a sequence of<schemaVersioni>
elements corresponding to different schema-constant periods.

58

tValidator

rep.xml rep.xml

bundle.xml

UnSquash

Squash

Schema
Mapper

bundle.xml rep.xsd

XSchema_bundle.xml tv_snapshot.xml

TXSchema_bundle.xml

temp_anno.ver1.xml

temp_anno.ver2.xml

temp_anno.ver3.xml

tv_temp_anno.xml
tv_temp_anno.xml

temp_anno.ver1.xml
temp_anno.ver2.xml
temp_anno.ver3.xml

bundle.xml

data1.ver1.xml

data1.ver2.xml

data2.ver2.xml

data1.ver3.xml

Messages
Error

PXSchema_bundle.xml

phy_anno.ver1.xml

phy_anno.ver3.xml

phy_anno.ver2.xml

tv_phy_anno.xml

Squash

Squash

Squash

_bundle.xml

winOlympic.ver1.xsd

winOlympic.ver2.xsd

winOlympic.ver3.xsd

TXSchema data2.ver1.xml

Figure 42: T Diagram of Validation

59

<?xml version="1.0" encoding="UTF-8" ?>
<rep:sv_root

xmlns:rep="http://www.cs.arizona.edu/tau/RepSchema"
bundle="winolympic_bundle.xml"
xmlns:rep0="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns:rep1="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/RepSchema

winolympic_rep1.xsd">
<schemaItem>

<schemaVersion0>
<tv:timestamp_TransExtent begin="2002-01-01" end="2005-01-01" />
<rep0:tv_root>

<rep0:winOlympic_RepItem originalElement="winOlympic">
...

...
</rep0:winOlympic_RepItem>

</rep0:tv_root>
</schemaVersion0>

<schemaVersion1>
<tv:timestamp_TransExtent begin="2005-01-01" end="9999-12-31" />
<rep1:tv_root>

<rep1:winOlympic_RepItem originalElement="winOlympic">
...

...
</rep1:winOlympic_RepItem>

</rep0:tv_root>
</schemaVersion1>

</schemaItem>
</rep:sv_root>

Figure 43:tv winOlympic.xml

60

<?xml version="1.0" encoding="UTF8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified"
targetNamespace="http://www.cs.arizona.edu/tau/RepSchema"
xmlns="http://www.cs.arizona.edu/tau/RepSchema"
xmlns:rep0="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns:rep1="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema">

<xsd:import namespace="http://www.cs.arizona.edu/tau/TVSchema"
schemaLocation="TVSchema.xsd" />

<xsd:import namespace="http://www.cs.arizona.edu/tau/RepSchema0"
schemaLocation="rep0.xsd" />

<xsd:import namespace="http://www.cs.arizona.edu/tau/RepSchema1"
schemaLocation="rep1.xsd" />

<xsd:element name="sv_root">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="schemaItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="schemaVersion0">

<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1"

ref="tv:timestamp_TransExtent" />
<xsd:element maxOccurs="1" minOccurs="1"

ref="rep0:tv_root" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element maxOccurs="1" minOccurs="1" name="schemaVersion1">

<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1"

ref="tv:timestamp_TransExtent" />
<xsd:element maxOccurs="1" minOccurs="1"

ref="rep1:tv_root" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="bundle" type="xsd:string" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

Figure 44:winOlympic rep schema.xsd

61

Slice

Messages

Schema

Mapper

Conventional

Validator

Constraint
Validator
Module

Temporal
Document

Error

Bundle
Representational

Schema

Data Validator

Time Varying

Temporal

Bundle

Figure 45: Validating a Document with Time-Varying Schema

Figure 45 shows the method for validating a document with time-varying schema. To validate such
a document,τVALIDATOR applies the conventional validator to the document, using the representational
schema produced by SCHEMAMAPPER. It then determines the times when the schema changes, thus deter-
mining schema-constant periods. For each such period, the time-varying data checker is invoked to check
the temporal integrity constraints over the time-varying data, with the single base schema, temporal annota-
tion, and physical annotation. Then thetemporal constraint checkerglues across the schema change walls
and performs the temporal checks across these walls.

62

9.2 Theoretical Framework

The above arrangement works very well. However, there are four remaining aspects that do not show up
with time-varying data, but rather are unique to versioned schemas: (1) an evolving definition of keys, (2)
accommodating gaps in lifetimes, (3) the semantics of mixeddata and schema changes, and (4) checking
non-sequenced constraints across schema changes. We examine each in turn in this section.

9.2.1 Accommodating Evolving Keys

When documents vary over time, it is important to identify which elements in successive snapshots are
in actuality the same item, varying over time. We refer to theprocess of associating elements that persist
across various snapshots asgluing the elements. SQUASH must do this gluing; the time-varying data checker
within τVALIDATOR must also on occasion glue elements.

When a pair of elements is glued, anitem is created. An item is an element that evolves over time
through various versions. Determining which elements should be glued depends on two factors: thetypeof
the element, and theitem identifierfor that element’s type. The item identifiers and gluing of elements to
form items is already explained in detail in Section 6.4.

When a schema-change wall is encountered, items across the wall need to be associated. This process
is called ascross-wall gluing, or bridging. Figure 46 depicts the concepts of gluing and bridging.

Gluing
 two

Versions Versions
 two

Gluing

 Item A

 Wall

Bridging

v1

v2

v3
v1

v2

v3

Item A1 Item A2

Figure 46: Gluing and Bridging

In this figure, individual elements in individual versions of an XML document are depicted as small
circles in the center of the figure. Here we see six elements, three of which are determined to be versions
of the same item (A1) and three of which are determined to be versions of another item (A2). The wall
indicates that the schema was changed between the third and fourth version of the document.

Gluing uses the item identifier to associate the first three elements with an item and likewise the next
three elements. Bridging determines that the element that is version 3 of item A1 and the element that is
version 1 of item A2 are actually versions of the same item, item A. So in fact item A hassix versions,
the three elements before the schema change and the three elements after the schema change. Gluing
and bridging occur in different stages within the validator; both conspire to realize an item across schema

63

changes, which is the first step in checking the temporal constraints associated with that item’s definition in
the schema.

What is relevant for our purposes here is that item identifiers specified in the temporal annotations, are
usually the (snapshot) key of the element type [5] given in the base schema, and are used byτVALIDATOR

to extract the items from the temporal document and then check the temporal constraints on those items.
What if either the snapshot key (specified in the base schema)upon which an item identifier is defined,

or if the item identifier itself (specified in the temporal annotation) changes? This is a particularly insidious
kind of quicksand. Even worse is when the underlying elementtype of an item changes. As an example,
if the <athlete> element in thewinolympic.ver1.xsd is replaced by<player> in the future
versions, an item that was a particular<athlete> element before the schema change could be associated
with a particular<player> element in the snapshot document associated with the later schema.

Our solution is to put in the<schemaAnnotation> element, which signals a change in some aspect
of the schema, an<itemIdentifierCorrespondence>element, specifying how old item identifiers
are to be mapped to new item identifiers. This element has fourattributes:oldRef, a string naming an
item that appears in the old schema,newRef, a string naming an item that appears in the new schema,
mappingType, an XML Schema enumeration, and optionally amappingLocation, which is a URI.
We have defined four mutually exclusive mapping types.

• useNew: The new identifier must also be present in the old element.

• useOld: The old identifier must also be present in the new element.

• useBoth: An attribute’s name is changed, but its value isn’t.

• replace: Use an externally-defined mapping.

This could be best described with an example. Say that in 2002the item identifier is theathID attribute
of the<athlete>element. In January 2005, this attribute is renamedathNumber; we specify a mapping
type ofuseBoth. In March 2005, the item identifier is changed to theathName element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wasn’t used as a key until January 2005.)
Assume that, in June 2005 we add a new attribute,athKey, and specify that as the item identifier, with
a mapping type ofuseOld. Finally, in July 2005, just before the beginning of the games, we replace the
<athlete> element with a<player> element, with aplayerID attribute as the item identifier and a
mapping type ofreplace.

The gluing of elements into items is then done the following way. Before 2005, theathID is used for
gluing. When the schema change occurs sometime in January 2005, we glue across the schema change by
matching theathID value of the element before the schema change with theathNumber value after the
change: these (integer) values must match for the two elements to be glued. In March 2005, we glue across
the schema change by matching up old elements and new elements that have the same (string) value for
theirathName element, the new item identifier. The only difference is thatbefore the schema change, that
element was present but wasn’t being used as a key. In a consistent fashion, in June we also glue using the
athName element, which was theold item identifier.

July is the most complex. We need to glue an<athlete> element with an item identifier ofathKey
with a<player>element with an item identifier ofplayerID. For this, we use theMappingLocation
attribute in the bundle to access a mapping table that provides a list of pairs, each with anathKey and a
playerID value.

This list of pairs is termed areplace mapping list. As it is instance-based, containing as it does a list of
key values, the replace mapping list should only be used as a last resort. Its role is to allow bridging for all
cases in which the other three mapping types, which have no need for storing instance information in the
schema, are not appropriate.

64

Of course, the mapping location document can also be time-varying; τVALIDATOR extracts the relevant
timeslice with UNSQUASH.

9.2.2 Accommodating Gaps

Bridging is more involved when there aregapsin the lifetime of an item. Gaps make the process of finding
the correspondence between the items from consecutive schema-constant periods more difficult. If there are
gaps in the lifetime of an item, bridging becomes even more complex.

Figure 47 shows three cases that may arise while bridging theitems from consecutive schema-constant
periods. It shows the data and schema changes along the transaction-time dimension, from left to right.
The schema-change walls are shown as bold vertical lines. The horizontal lines depicts the evolution of
a particular item (in this case, three separate items). The bridging process is shown by the jumpers over
schema change walls. An absence of a line indicates when the item did not exist in the database. The first
item existed during the entire transaction time period depicted in this figure. There is a single gap in the
existence time of the second item: it ceased to exist sometime duringP1 but reappeared inP2. The third
item had a much longer gap, reappearing only inP3.

A

1
P 2 P 3

Gap in
the existence

Gap in
the existence

Transaction Time

B

C

P

Figure 47: Presence of Gaps

We now now examine each item in turn.

1. The itemA (the first horizontal line) is present throughout schema-constant periodsP1 andP2. Thus
the last snapshot ofP1 and the first snapshot ofP2 contains versions of itemA.

2. The itemB (the second horizontal line) disappeared for some time inP1 and reappeared about
halfway through inP2. Thus the last snapshot ofP1 and first snapshot ofP2 will not contain ver-
sions of itemB.

3. An item could also disappear for one or more schema-constant periods and then reappear again. Item
C (the bottom horizontal line) was present for initial part ofP1. It then disappeared over entire period
P2 and again appeared in the later half ofP3.

For the first case, no extra work is needed as the items can be bridged directly using one of the above
four methods.

But, to handle cases 2 and 3, the following two approaches were considered.

65

P 1
P 2 P 3

Transaction Time

B

C

A

Figure 48: Cross Wall Gluing: Option 1

Possible

1
P 2 P 3

Transaction Time

B

C

A

No Bridging
Possible

No Bridging

P

Figure 49: Cross Wall Gluing: Option 2

• Associate the pieces of an item across a schema change wall byvirtually extending period of versions
of the item. As an example, in Figure 48, bridging the two pieces of itemB involves virtually extend-
ing period of itemB’s last version until the end ofP2 as if it were present during the last snapshot;
and virtually extending its first version’s period until thestart ofP3; and then performing the bridging
using one of the above four methods. Similarly, for the item corresponding to the third line, bridging
involves virtually extending the period of the itemC ’s last version fromP1 over multiple schema-
constant periods followed by bridging using one of above methods. SoP1’s version is extended to
the wall, then bridged to a virtual element over all ofP2, then bridged to the extended element inP3.

• The second option is not to extend the “item” across a schema change wall if it does not exist. So
the item matching semantics, e.g., “useNew” matches only those items that exist immediately before
the wall with those that exist immediately after the wall. Asan example, in Figure 49, bridging the
two pieces of itemsB andC having gaps in their existence across the schema change walls is not
possible.

66

We decided to take the second approach, since we couldn’t really “know” a priori if an item that reap-
pears is the same item or a different one from the earlier one.

9.2.3 Semantics for mixed data and schema changes

A data change in XML documents can co-exist with schema changes within a single transaction, and hence
can occur at exactly the same (transaction commit) time. With schema changes coming into picture, we
also need to consider other factors like name and relative path changes for item identifier fields and other
elements that constitute the content of an item, complicating the process of bridging and hence validation.

We considered three ways to handle this situation.

1. Not allow any data change in a transaction containing schema changes. This is the most stringent
option and makes the user’s job more difficult, forcing him tosplit the task into multiple transactions.
This may not be always feasible from real world point of view.Consider a situation where an element
is modified to have a new ‘required attribute’, data change ismandatory in this case and hence cannot
be separated from schema change. It could be argued that thisis achievable with addition of a new
‘optional’ attribute, followed by required data changes and then making the attribute required. But it
requires more work from the user’s side.

2. Allow schema changes to coexist with data changes, exceptfor schema changes to item identifier
fields. This will eliminate the need of replace mapping list and the bridging could always be done
using one of the three options ‘useNew’, ‘ useOld’, or ‘useBoth’.

3. Allow data changes to coexist with schema changes within atransaction without any restrictions.

We decided to go with the third approach, as it is the most general. A schema change for an element
can consist of changes to its structure or its attributes or to the element definitions nested within it. Thus,
given two schemas, it becomes very difficult to find the difference between the schemas and to validate the
versions. So, we decided not to validate versions of an item across schema change walls if a schema change
is detected for it.

9.2.4 Non-Sequenced Constraints

A constraint isnon-sequencedif it is applied to a temporal item as a whole (including the lifetime of the
data entity) rather than to individual time slices. They aredefined in the temporal annotation as an extension
of snapshot XML Schema constraints. An example of a non-sequenced (cardinality) constraint is: “An item
cannot change more than three times in a year.”. This type of constraint cannot be validated using the
conventional validator and thus needs to be validated usingthe ‘Temporal Constraint Checker’ module of
τVALIDATOR .

As mentioned earlier, schemas vary only over transaction time. Hence, non-sequenced constraint vali-
dation is easier in valid time, as schema changes cannot occur.

We considered two alternatives for the applicability of a non-sequenced constraint across schema changes:

• The constraint is applicable only within the schema-constant period in which it is defined.

• The constraint once defined becomes applicable to the entiredocument.

As per the first approach, any violation of a constraint during previous schema-constant-periods is ig-
nored, while in the second approach, the constraint may be violated even when first defined.

67

Consider a situation shown in Figure 50. It maintains the same conventions as Figure 48. Changes to an
item are shown by X’s. A new non-sequenced constraint is introduced during third schema-constant period
P3 stating that “An item cannot change more than three times in ayear.” But the item has already undergone
four changes during previous schema-constant periodsP1 andP2.

Constraint
"No more than
3 changes in a year"
introduced

Constraint
dropped

P 1 P 2 P 3

Transaction Time

January March May August

Figure 50: Non-Sequenced Constraints

According to first alternative listed above, the constraintis not violated as long as the item does not
change more than three times in the third schema-constant period. Until there are four changes made after
the schema change, the constraint is not considered to be violated.

According to the second alternative semantics, there is immediately a violation of the constraint, due to
activity during the previous two schema-constant periods.

We decided on the first alternative: to apply a non-sequencedconstraint only within the schema-constant
period in which it is defined. Thus the non-sequenced constraints are “turned off” on any schema change.
So for instance a constraint that says that the content must be constant is checked only up to the schema
wall, and then checked within the new schema starting from the wall. In effect the schema change deletes
all the old constraints and then adds them back as new constraints.

68

10 Implementation

10.1 Technology

τVALIDATOR and other tools have been written in Java and have been developed using Java 2, Standard
Edition, v1.4. They use W3C specifications APIs for parsing the XML documents, building DOM trees
and processing XPath expressions. ‘W3C DOM API’ is used for parsing the XML documents. ‘XML Path
Language (XPath) Specification Version 1.0’ is used for processing XPath expressions. Third party imple-
mentations of these APIs from Apache Software Foundation available as part of Apache XML project [2]
were used. The details of these implementations are given below.

• XERCES, a part of the Apache XML project is a family of software packages for parsing and manip-
ulating XML documents. Xerces provides both XML parsing andgeneration. Xerces provides the
implementation for the W3C DOM API. The implementation is available under ‘Apache Software
License’ and is available freely [35].

• XALAN , a popular open source software library from the Apache Software Foundation, is used as
an implementation of XPath API. It implements the XSLT XML transformation language and the
XPath XML query language. The implementation is available under ‘Apache Software License’ and
is available freely [34].

10.2 Class Diagram

The class diagrams for the tool implementation are given in the Figures 51–53. The classes are divided into
three packages.

69

Figure 51: Overview class diagram for the tools

70

Figure 52: Detailed class diagram fortau.xml

71

Figure 53: Detailed class diagram fortau.time

72

tau.xml This package contains interfaces and classes corresponding to toolsτVALIDATOR , SCHEMAMAP-
PER, SQUASH, and UNSQUASH. The details of the important classes used for data versioning are given
below.

• Item: Provides an abstraction for a logical item. It contains methods for manipulating versions, their
coalescing validation.

• RepItem: Provides an abstraction for actual representation item element in the XML document.
It provides methods for conversion of an XML element to/froma logical item. Both these classes
extend from the base classBaseItem, which provides common functionality.

• ItemIdentifier: Provides an abstraction for item-identifier.

• Primitives: Provides implementation for primitives explained in Section 7.1.

• TemporalAnnotationValidatorandPhysicalAnnotationValidator: Provide checks
for the consistency of temporal and physical annotations with the snapshot schema.

• DoSchemaMapping, DoSquashing, DoUnSquashing, DoTemporalValidation: Pro-
vide the implementation for the algorithms explained in Section 7. Each of the classes implement
corresponding interfaces preceding their name by ‘I’. As an example,DoSquashing implements
IDoSquashing.

The extended tools for schema versioning use these classes internally to manipulate schema-versionsed
XML documents. The classes used for schema-versioning areDoSVDataSquashing,DoSVDataUnSquashing,
DoSVTemporalValidation, andDoSVSchemaMapping,where ‘SV’ stands for ‘schema-versioned’.
The implementation of these classes first identify schema-constant-periods and call corresponding data-
versioning classes on individual schema-constant-periods.

The classesSquash, UnSquash and TempralValidator provide commond-line tools for the
end-user. These classes accept temporal bundle and configuration files as command line parameters and in-
ternally invoke schema-versioning or data-versioning tools depending upon whether the schema is versioned
or not.

tau.time This package contains the implementation of classes to handle time. It provides implementation
for both TimePeriod (used for single time dimension) andTemporalRegion (used for bitemporal
elements).

tau.util This package contains utility classes.SchemaPathEvaluator provides abstraction for eval-
uating schemapath expressions explained in Section 6.2. Given a target and reference element, the function
checks for the consistency of the target according to the snapshot schema. This functionality is used by both
TemporalAnnotationValidator,
PhysicalAnnotationValidator andItemIdentifier.

As explained, the class for every tool implements its corresponding interface. Thus, it is easily pos-
sible to accommodate a new implementation of these tools fora new representations without necessi-
tating many changes to the overall picture. Use of ‘AbstractFactory’ design pattern makes the inte-
gration and selection of the new representation seamless byaddition of just a few lines of codes to the
RepresentationFactory class.

To add a new representation, we need to add new classes implementing the new representation for each
tool. Each class needs to implement the corresponding interface mentioned earlier. Once these classes are

73

added, a small addition of code is needed to theRepresentationFactory class. Then, any represen-
tation can be easily selected by providing corresponding parameter to theRepresentationFactory
class.

74

11 Support for Bitemporal Data

Up to this point, all the examples we have seen consider only transaction time. But as explained in Sec-
tion 3.2, valid time also plays an important role in modelingentities which need to maintain the historical
information. If an entity needs to maintain both the historical information as well as the history of changes,
bitemporal support is needed. In this section, we consider aconceptual extension ofτXSchema to provide
support for bitemporal data and procedure for squashing thesnapshot documents along both time dimen-
sions.

For illustration, we consider a modified example from the chapter 10 of the bookDeveloping Time-
Oriented Database Applications in SQL[28].

Nykredit is a major Danish mortgage bank. It maintains the information about properties and customers
into bitemporal tables for historical information and to provide tracking support. Traditionally, its been
using relational database tables to maintain this information. If this information needs to be migrated to
XML, τXSchema with the support for bitemporal data would be useful.

In their database, the information about Property, Customers and their relationship is maintained in the
following three tables.

Property (property number, address, VT Begin, VT End, TT Start,
TT End)

Customer (name, VT Begin, VT End, TT Start, TT End)
Prop Owner (customer number, property number, VT Begin, VT End,

TT Start, TT End)

Let us assume that, the information about the property is represented in XML using the schema given
in Figure 54. For simplicity, onlyproperty number andaddress attributes of theProperty are
considered. Property is associated with a owner by theowner name attribute of the<property> ele-
ment. To simplify the things a little, we assume that the owner is uniquely represented by theowner name
attribute.

Corresponding temporal and physical annotations are givenin Figures 55 and 56. As can be seen from
the temporal annotation, the<property> element is content varying both in transaction-time and valid-
time.

...
<element name="property">

<complexType mixed="true">
<sequence>

<element name="address" type="string" minOccurs="1" maxOccurs="1" />
</sequence>
<attribute name="property_number" type="nonNegativeInteger" use="required"/>
<attribute name="owner_name" type="string" use="optional"/>

</complexType>
</element>
...

Figure 54:property.xsd

To illustrate the process of gluing in two dimensions, we consider the history, over both valid time and
transaction time, of a flat in Aalborg, at Skovvej 30 for the month of January 1998. All its transactions are

75

...
<item target="/properties/property">

<transactionTime content="varying" existence="constant" />
<validTime content="varying" existence="constant" />
<itemIdentifier name="property_number" timeDimension="bitemporal">
<field path="@property_number"/>

</itemIdentifier>
</item>
...

Figure 55:property temporal annotation.xsd

...
<stamp target="/properties/property">

<stampKind timeDimension="bitemporal" stampBounds="extent"/>
</stamp>
...

Figure 56:property physical annotation.xsd

listed below in the chronological order of transaction-time. The corresponding bitemporal-time diagrams
and snippets of snapshot XML documents are also given for understanding.

Assume that, initially, the mortgage for the flat was being handled by some other company. So, although
Nykredit maintained the property information, no information about the owner is stored in the database. We
also assume that the flat exists in Nykredit’s database from January 1. The snippet of the snapshot document
corresponding to this period is shown in Figure 58.

Transaction Time [01-01, UC) (Will be altered to [01-01, 01-10))

• Valid Time [01-01, Forever)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 57: Mortgage being handled by other company. No customer

On January 10, this flat was purchased by Eva Nielsen. We record this information at a current valid-
time(01-10), current transaction-time (01-10). The snippets of the snapshot documents corresponding to
this transaction period starting on01-10 are shown in Figure 58.

This information is valid starting now, and was inserted now. We will see that the transaction-time extent
of all modifications is “now” to “until changed,” which we encode as“forever.”

The interplay between valid time and transaction time can beconfusing, so it is useful to have a visual-
ization of the information content of a bitemporal table. Figure 59 shows thebitemporal time diagram, or
simply time diagram, corresponding to the above insertion.

In this figure, the horizontal axis tracks transaction time and the vertical axis tracks the valid time. In-
formation about the owners associated with the property aredepicted as two-dimensional polygonal regions
in the diagram. Arrows extending rightward denote “until changed” in transaction time; arrows extending

76

Transaction Time [01-10, UC) (Will be altered to [01-10, 01-15))

• Valid Time [01-01, 01-10)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-10, Forever)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 58: Eva purchased the flat on January 10

upward denote “forever” in valid time. Here we have but one region, associated with Eva Nielsen, that
starts at time 10 (January 10) in transaction time and extends to “until changed,” and begins also at time 10
in valid time and extends to “forever.” The arrow pointing upward extends to the largest valid time value
(“forever”); the arrow pointing to the right extends to “now,” that is, it advances day by day to the right (a
transaction time in the future is meaningless).

On January 15 Peter Olsen buys this flat; this legal transaction transfers ownership from Eva to him.
Figure 60 illustrates how this update impacts the time diagram. The valid-time extent of this modification
is always “now” to “forever,” so from time 15 on, the propertyis owned by Peter; at the rest of the time,
from time 10 to 15, the property was owned by Eva. Both regionsextend to the right to “until changed.”
This time diagram captures two facts: Eva owning the flat and Peter owning the flat, each associated with a
bitemporal region.
The snippets of the snapshot documents corresponding to this transaction are shown in Figure 61.

On January 20, we find out that Peter has sold the property to someone else, with the mortgage again
being handled by another mortgage company. From Nykredit’spoint of view, the property no longer has a
owner as of (a valid time of) January 20.

Figure 62 shows the resulting time diagram. If we now requestthe valid-time history as best known,
we will learn that Eva owned the flat from January 10 to January15, and Peter owned the flat from January
15 to January 20. All prior states are retained. We can still time travel back to January 18 and request the
valid-time history, which will state that on that day we thought that Peter still owned the flat.
The snippets of the snapshot documents corresponding to this transaction are shown in Figure 63.

On January 23, we find out that Eva had purchased the flat not on January 10, but on January 3, a week
earlier. So we insert those additional days, to obtain the time diagram shown in Figure 64. Corresponding
snippets of the snapshot documents are given in Figure 66

We learn on January 26 that Eva bought the flat not on January 10, as initially thought, nor on January
3, as later corrected, but on January 5. We specify a period ofapplicability of January 3 through 5, with the
result shown in the time diagram in Figure 65. Correspondingsnapshot snippets are given in Figure 67

Finally, we learn on January 28 that Peter bought the flat on January 12, not on January 15 as previously
thought. This change requires a period of applicability of January 12 through 15, setting theowner name
to Peter, which results in the time diagram in Figure 68. Effectively, the ownership must be transferred from

77

5

10

15

20

25

30

5 10 15 20 25 30

Eva

Valid
Time

Transaction
 Time

Figure 59: A bitemporal time diagram corresponding to Eva purchasing the flat, performed on January 10

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 60: Peter buys the flat, performed on January 15

Eva to Peter for those three days, resulting in the snapshot documents given in Figure 69.
Gluing elements in two dimensions involves gluing them along one dimension (e.g., valid-time) fol-

lowed by their gluing along the other dimension (e.g., transaction-time). The last timing diagram on January
28 in Figure 68 could be divided into 7 time-periods along thetransaction time dimension as shown in Fig-
ure 70, i.e.,[01-01 - 01-10), [01-10 - 01-15), [01-15 - 01-20), [01-20 - 01-23),
[01-23 - 01-26), [01-26 - 01-28), [01-28 - UC).

All above snapshot documents are first squashed along valid-time dimension as explained soon to give
seven temporal documents corresponding to each of the aboveperiods. The sample sample representa-
tion of these documents corresponding to periods[01-10, 01-15), [01-20, 01-23), [01-26,
01-28) are given below in Figure 71, Figure 72 and Figure 73 respectively. These documents are tempo-
ral documents themselves.

Other representations are also possible for these documents. As an example, The document in Figure 72
could also be represented as shown in Figure 74. In this representation, multiple DOM-equivalent versions
of the<property> are merged into a single version and their time periods are represented as a single

78

Transaction Time [01-15, UC) (Will be altered to [01-15, 01-20))

• Valid Time [01-01, 01-10)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-10, 01-15)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-15, Forever)

...
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 61: Peter buys the flat, performed on January 15

temporal element, i.e., a set of periods.
These temporal documents then act as snapshot documents while performing squashing along transaction-

time dimension. When squashed along transaction-time dimension, they give the final temporal document
shown in Figures 76, 77 and 78.

When we were concerned with only valid-time or only transaction-time in earlier examples, the coalesc-
ing of content-constant versions was done by lengthening the version periods. But when the interplay of two
dimensions comes into picture, the periods in a single dimension generalize toregionsin the time diagram,
which are considerably more involved than one-dimensionalperiods. In terms of time diagram, an item ver-
sion with two valid-time instants,VT Begin andVT End, and two transaction-time instants,TT Start
andTT Stop, encodes arectanglein bitemporal space. Such two rectangle can be coalesced when either
their valid-time instantsVT Begin andVT End match or their transaction-time instantsTT Start and
TT Stop match.

While representing these regions in the XML document, they could be split with the vertical lines
(termed astransaction-time splittingshown in Figure 75) or horizontal lines(termed asvalid-time splitting).
Due to the semantics of transaction time, regions are often split with vertical lines in the timing diagram.

The temporal document in Figures 76–78 uses the first approach, since it minimizes the representation
of the document.

79

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 62: Peter sells the flat, performed on January 20

Transaction Time [01-20, UC) (Will be altered to [01-20, 01-23))

• Valid Time [01-01, 01-10)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-10, 01-15)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-15, 01-20)

...
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-20, Forever)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 63: Peter sells the flat, performed on January 20

80

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 64: Discovered on January 23: Eva actually purchasedthe flat on January 3

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 65: Discovered on January 26: Eva actually purchasedthe flat on January 5

81

Transaction Time [01-23, UC) (Will be altered to [01-23, 01-26))

• Valid Time [01-01, 01-03)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-03, 01-15)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-15, 01-20)

...
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-20, Forever)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 66: Discovered on January 23: Eva actually purchasedthe flat on January 3

82

Transaction Time [01-26, UC) (Will be altered to [01-26, 01-28))

• Valid Time [01-01, 01-05)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-05, 01-15)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-15, 01-20)

...
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-20, Forever)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 67: Discovered on January 26: Eva actually purchasedthe flat on January 5

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 68: January 28: Peter actually purchased the flat on January 12

83

Transaction Time [01-28, UC)

• Valid Time [01-01, 01-05)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-05, 01-12)

...
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-12, 01-20)

...
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>
...

• Valid Time [01-20, Forever)

...
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>
...

Figure 69: January 28: Peter actually purchased the flat on January 12

84

Time

Time

Eva

Peter

15 20 25 305 10

5

10

20

15

25

30

35

35

321 4 5 6 7

Valid

Transaction

Figure 70: Transaction Time Regions

...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-10" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-10" end="9999-12-31" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>
</property_RepItem>
...

Figure 71: Transaction Time[01-10, 01-15)

85

...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-10" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-10" end="1998-01-15" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-15" end="1998-01-20" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-20" end="9999-12-31" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

</property_RepItem>
...

Figure 72: Transaction Time[01-20, 01-23)

86

...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-05" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-05" end="1998-01-12" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-12" end="1998-01-20" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-20" end="9999-12-31" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

</property_RepItem>
...

Figure 73: Transaction Time[01-26, 01-28)

87

...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-10" />
<timestamp_ValidExtent begin="1998-01-20" end="9999-12-31" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-10" end="1998-01-15" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_ValidExtent begin="1998-01-15" end="1998-01-20" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

</property_RepItem>
...

Figure 74: Transaction Time[01-20, 01-23)

12

Time

Transaction
Time

Eva

Peter

1 2

3

4

5

7

6

8

9

15 20 25 305 10

5

10

20

15

25

30

35

35

10
13

11

Valid

Figure 75: Transaction-time splitting of regions

88

...
<property_RepItem>

<property_Version>
<timestamp_TransExtent start="1998-01-01" stop="1998-01-10" />
<timestamp_ValidExtent begin="1998-01-01" end="9999-12-31" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-10" stop="1998-01-15" />
<timestamp_ValidExtent begin="1998-01-10" end="9999-12-31" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-10" stop="1998-01-23" />
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-10" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-15" stop="1998-01-20" />
<timestamp_ValidExtent begin="1998-01-15" end="9999-12-31" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-15" stop="1998-01-23" />
<timestamp_ValidExtent begin="1998-01-10" end="1998-01-15" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

Figure 76: Temporal Document along both valid-time and transaction-time

89

<property_Version>
<timestamp_TransExtent start="1998-01-20" stop="9999-12-31" />
<timestamp_ValidExtent begin="1998-01-20" end="9999-12-31" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-20" stop="1998-01-28" />
<timestamp_ValidExtent begin="1998-01-15" end="1998-01-20" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-23" stop="1998-01-26" />
<timestamp_ValidExtent begin="1998-01-03" end="1998-01-15" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-23" stop="1998-01-26" />
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-03" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-26" stop="1998-01-28" />
<timestamp_ValidExtent begin="1998-01-05" end="1998-01-15" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

Figure 77: Temporal Document along both valid-time and transaction-time.Continued

90

<property_Version>
<timestamp_TransExtent start="1998-01-26" stop="9999-12-31" />
<timestamp_ValidExtent begin="1998-01-01" end="1998-01-05" />
<property property_number="7797">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-28" stop="9999-12-31" />
<timestamp_ValidExtent begin="1998-01-12" end="1998-01-20" />
<property property_number="7797" owner_name="Peter">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

<property_Version>
<timestamp_TransExtent start="1998-01-28" stop="9999-12-31" />
<timestamp_ValidExtent begin="1998-01-05" end="1998-01-12" />
<property property_number="7797" owner_name="Eva">

<address> Skovvej 30, Alborg </address>
</property>

</property_Version>

</property_RepItem>
...

Figure 78: Temporal Document along both valid-time and transaction-time.Continued

91

In order to support bitemporal data, we anticipate following architectural and implementational changes
to the existing tools.

SCHEMAMAPPER : SCHEMAMAPPERwould need very little change. As the representation of a temporal
document is going to remain the same, it needs to add both transaction and valid-time elements from
the TVSchema for the elements from physical annotation which are time-varying along both the
dimensions.

τVALIDATOR : τVALIDATOR would also need little change to support bitemporal data. Since the repre-
sentation of items in a XML document is not going to change, the gluing procedure, which is the first
part of theτVALIDATOR algorithm, would remain the same. Next step is to validate the individual
items identified during gluing. In the existingItem class, the validation procedure for the item needs
to be extended to perform the validation of items varying along both valid and transaction time.

SQUASH : To perform squashing of bitemporal data we anticipate a need of a wrapper class, e.g.,DoBitemporalSquashi
to the existing architecture. This class would use the existing DoSquashing class to perform the
squashing of documents along valid-time for identified transaction-time periods. This will generate
the series of temporal documents, which will act as snapshotdocuments for squash along transaction-
time. The existingDoSquashing class and other primitive functions will not be able to handle these
temporal documents, since they were not designed anticipating the existence of items in the snapshot
documents. Thus theDoSquashing class would need some changes to handle these documents.
Also, although the conceptual algorithms for the primitivefunctions remains the same, some imple-
mentation level changes would be needed. The existingItem class has the support for bitemporal
time. But the coalescing algorithm handles only time-periods. It does not handle regions. The current
coalesce function needs an extension to perform coalescing of regions.

UNSQUASH : UNSQUASH tool would also need some changes similar to the SQUASH tool. A new wrap-
per class (e.g.,DoBitemporalUnSquashing) could be added. This class would first unsquash
the given bitemporal document along the transaction-time dimension to give multiple temporal doc-
uments along valid-time. Each of these documents need to be unsquashed along the valid-time di-
mension giving multiple snapshot documents. ExistingUnSquashwould work without any changes
for performing unsquashing along the valid-time dimension. Some modifications would be needed to
UnSquash class to perform the unsquashing along the transaction-time dimension.

Thus, although the tools would be based on the existing classes, addition of some new classes and
modifications to the primitive functions would be necessaryin order to provide the support for bitemporal
data.

92

12 Evaluation and Conclusion

In this thesis we have considered how to accommodate and validate time-varying data within XML Schema.
We have presented Temporal XML Schema (τXSchema), which is an extension of XML Schema, infras-
tructure, and a suite of tools to support the creation and validation of time-varying documents, without
requiring any changes to XML Schema.τXSchema provides an efficient way to define temporal element
types; specifically, an element type that can vary over time,describes how to associate temporal elements
across snapshots, and provides some temporal constraints that broadly characterize how a temporal element
can change over time. Our design conforms to W3C XML Schema definition and is built on top of XML
Schema.

Our approach ensures data independence by separating (i) the snapshot schema document for the in-
stance document, (ii) information concerning what portion(s) of the instance document can vary over time,
and (iii) where timestamps should be placed and precisely how the time-varying aspects should be repre-
sented. Since these three aspects are orthogonal, our approach allows each aspect to be changed indepen-
dently.

This three-level schema specification approach is exploited in supporting tools; several new, quite useful
toolsτVALIDATOR , SCHEMAMAPPER, SQUASH, UNSQUASH, and RESQUASH are introduced that require
the logical and physical data independence provided by our approach. Additionally, this independence en-
ables existing tools (e.g., the XML Schema validator, XQuery, and DOM) to be used in the implementation
of their temporal counterparts.

We have then extendedτXSchema to support schema versionoing. We showed how schemaversioning
can be integrated with support for time-varying documents in a fashion consistent and upwardly-compatible
with XML, XML Schema, and conventional XML validators. Schema versioning in its full generality is
supported, including (time-varying) schemas that includeor reference other (time-varying) schemas. In
doing so, we leveraged both conventional XML Schema and related tools (principally, the conventional
validator), as well asτVALIDATOR for data versioning.

To summarize, in this work we introduced toolsτVALIDATOR , SCHEMAMAPPER, SQUASH, UN-
SQUASH, and RESQUASH and extended them to support schema versioning. The tools comprise the code
of somewhat more than 8000 lines including comments. Five new schemasTBSchema, TXSchema,
PXSchema, TVSchema, andConfigSchema are introduced and comprise around 400 lines of XML
code. The framework contains total 44 interfaces and classes.

τXSchema andτVALIDATOR can be further enhanced to provide a better system and more features.

• Future work includes extending theτXSchema model to fulfill the issues not addressed during the
initial implementation. Indeterminacy and granularity are two significant and related issues, and
should be fully supported byτXSchema. We anticipate that providing this support would require
additions to the TVSchema / TXSchema / PXSchema, but no changes to the user-designed schemas
would be needed. These augmentations would maintain upwardcompatibility with previous versions
of τXSchema and be transparent to the user.

• Another broad area of work is optimization and efficiency. Although we do talk about the space-
efficiency of the tools described in Section 7, we haven’t given much attention to their performance.
New representations can be proposed, incorporated and evaluated to improve the space-efficiency of
the temporal document. We anticipate that the DOM API could prove to be a memory bottleneck
for huge documents. So instead of parsing the complete document at once, other options need to be
evaluated.

One option is to validate the document in parts, bringing only one item at a time in the memory. This
could be achieved by replacing the immediate descendant item elements by their dummy equivalents

93

and then validating the item for its sequenced and non-sequenced constraints. This would result in
less memory utilization since only a part of the document is being kept in the memory. As few
changes would be required to manage the items one at a time, a major part of the existing algorithm
for τVALIDATOR could be reused. Here, if a DOM-based parser is used, the whole document needs
to be parsed at least once, even if we are validating one item at a time. This could be avoided by using
an event-based SAX parser and building an in-memory tree of only the required elements in order to
perform those aspects of the validation that are synchronized with the parsing. This approach would
require complex memory management and parsing of the document multiple times, but memory use
would be greatly reduced.

As described earlier, all the tools are based on the elementary functionspushUp, pushDown and
coalesce. If we can modify them to use a SAX parser instead of a document-object-model, we can
easily convert all the tools to use a SAX parser. We think that, convertingpushDown to use a SAX
parser woule be easier; the timestamps could be pushed down easily as the document is being parsed
from start to end. After initial thought it appears that,pushUp would need building of an in-memory
tree, pushing the timestamps up and then serializing the tree. This could also be achieved by building
the tree in parts resulting in more complexity.coalesce would also need to build a tree in memory.
But instead of building a complete tree at once, it can build asubtree for each item at a time and then
coalesce it.

• Although, the existing representation is easy to implementand space efficient in the average case,
it may become very space inefficient in certain cases. Certain new representations such as ‘diff’ or
‘zip’ could be added to tools to increase the space efficiencyof the temporal documents. The support
for these new representations could be built on top of the existing tools by first creating the temporal
documents in the decomposed or non-decomposed representations and then converting them to ‘diff’
or ‘zip’ format for efficient storage on the disk.

• Future work also includes enabling the legacy applicationsor the data inconsistent with a subsequently
changed schema, by exploiting information about the evolving schema that is already captured in the
temporal schema.

• Current implementation of tools does not support all described features ofτXSchema completely.
These features need to be implemented to provide completeness to the tools. The unimplemented
features, the anticipated changes and the estimated efforts required to implement them are listed
below. The estimated effort does not include becoming familiarized with the architecture and the
source code.

– Support for the ‘Step’ representation of timestamp: Some changes to the classes Item and
RepItem would be needed to support the ’Step’ representation. Some changes would also be
needed to the algorithms implemented in classPrimitives. 15–20 hours of work is antici-
pated.

– Support for the generic validation of non-sequenced constraints: Currently, the validation for
each non-sequenced constraints is implemented using a separated function insideItem class.
To provide a framework for the generic support of non-sequenced constraints, a ‘Visitor’ pattern
could be used. In that case, the validator for each non-sequenced constraint will be implemented
in a separate class and a reference to an Item element will be passed to it. The addition of a new
constraint could be made easier by some properties file; thiswill eliminate any changes to the
Item class for addition/modification of constraints. 15–20 hours of work is anticipated.

– Support for the schemaPath expressions containing ‘wildcards’ characters and shortcut rep-
resentation: This will change the way targets are being evaluated. Changes to the classes

94

SchemaPathEvaluator, Item andItemIdentifier would be needed. Around 30–
40 hours of work is anticipated.

– Support for the item-identifiers specified in terms of existing items or schema keys, and targets
containing ‘wildcard’ characters: Some changes to the classesItem andItemIdentifier
would be needed. Some changes to the functions from classPrimitive may also be needed
since the procedure for coalescing may change. 20–30 hours of work is anticipated for this
change.

– Support for nested time-varying schemas: We anticipate, this would result in a considerable
change to all the tools. A couple of weeks of work may be neededto support this feature.

– Support for RESQUASHing of a temporal document using a new temporal annotation: The
changes needed for this functionality are mentioned in the Section 7.6. 4–5 hours of work
should be sufficient for this change.

• In this work, only conceptual support for the bitemporal elements is defined. The tools need to be
extended to support bitemporal elements.

In the future,τXSchema should be integrated with a schema-aware XML-basededitor like XML-
Spy [38]. Schema-aware editors generate easy-to-use templates for updating each type of element defined in
a schema. But they do not track changes to either the schema orthe data. Enabling versioning for both will
support unlimited undo/redo, improve change tracking, andaid in cooperative editing. Another direction
of future work is to add versioning to XUpdate [39]. XUpdate is a language for specifying changes to the
XML document.

τXSchema can also be extended to support generic aspects [12]. In that approach, we generalized
τXSchema to represent any generic aspect instead of just timestamps.

A three-level schema specification approach introduced in this work byτXSchema, the infrastructure,
and a suite of tools provide a system for creation and validation of data-versioned XML documents, with-
out requiring any changes to the XML Schema specification. Byclever use of schema-constant periods
and cross-wall validation, schema versioning is also integrated in the framework with the support for time-
varying documents in a fashion consistent and upwardly-compatible with XML, XML Schema, and conven-
tional XML validators. The design conforms to W3C XML Schemadefinition and is built on top of XML
Schema. Thus, this research has shown that by utilizing schema-constant periods and cross-wall validation,
it is possible to realize a comprehensive system for representing and validating data- and schema-versioned
XML documents, while remaining fully compatible with the XML standards.

95

References

[1] T. Amagasa, M. Yoshikawa, and S. Uemura, “A Data Model forTemporal XML Documents,” inPro-
ceedings of Database and Expert Systems Applications, 11thInternational Conference, DEXA 2000,
pages 334–344, London, UK, September 2000.

[2] Apache XML Project, Official website, URL http://xml.apache.org, Viewed April 12, 2007.

[3] M. H. Bohlen, C. S. Jensen and R. T. Snodgrass, “Temporal Statement Modifiers,” inACM Transactions
on Database Systems25(4): 407-456, December 2000.

[4] H. Bratman, “An Alternate Form of the “UNCOL Diagram,” inCommunications of the ACM (CACM)
4(3):142, 1961.

[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan, “Keysfor XML,” in Computer Networks39(5):
473-487, 2002.

[6] S. Chien, V. Tsotras, and C. Zaniolo, “Efficient schemes for managing multiversionXML documents,”
Very Large Data Bases Journal, 11(4): 332–353.

[7] L. Costello and M. Utzinger, “Impact of XML Schema Versioning on System Design” URL http://www.
xfront.com/SchemaVersioning.html, Viewed February 7th,2007.

[8] C. De Castro, F. Grandi, and M. R. Scalas, “Schema Versioning for Multitemporal Relational
Databases,” inInformation Systems22(5): 249-290, 1997.

[9] Document Object Model, W3C. URL http://www.w3.org/DOM, Viewed March 26, 2007.

[10] Document Type Definition (DTD) language. URL http://www.w3.org/TR/REC-xml/dt-doctype,
Viewed March 25, 2007.

[11] C. Dyreson, H. L. Lin, and Y. Wang, “Managing Versions ofWeb Documents in a Transaction-time
Web Server,” inProceedings of World Wide Web, New York, NY, pp. 422–432, 2004.

[12] C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, and S.P. Joshi, “Weaving Temporal and Reliability
Aspects into a Schema Tapestry,” inData & Knowledge Engineering.

[13] C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, and S.P. Joshi, “Validating Quicksand: Schema
Versioning inτXSchema,” in22nd IEEE International Conference on Data Engineering Workshops,
2006.

[14] J. Gabriel, “How to Version Schemas,” inProceedings of XML 2004-Conference and Exhibi-
tion, Washington DC, November, 2004. URL http://www.idealliance.org/proceedings/xml04/papers/74/
howToVersionSchemas.html, Viewed February 7th, 2007.

[15] D. Gao and R. T. Snodgrass, “Temporal Slicing in the Evaluation of XML Queries,” inProceedings of
Very Large Data Bases (VLDB), pp. 632–643, 2003.

[16] F. Grandi, “A Bibliography on Temporal and Evolution Aspects in the World Wide Web,”TimeCenter
TR-75, 2003.

[17] C. S. Jensen and C. E. Dyreson (Editors), “The ConsensusGlossary of Temporal Database Concepts,”
February 1998 Version.

96

[18] C. S. Jensen and R. T. Snodgrass, “Temporal Database Management,”TimeCenterTR-17, 1997.

[19] B. P. Lientz, “Issues in software maintenance,” inACM Comput. Surv15(3):271–278, 1983.

[20] A. Marian, “Detecting Changes in XML Documents,” inProceedings of the 18th International Con-
ference on Data Engineering, pp. 41–53, 2002

[21] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet, “Change-Centric Management of Versions in an
XML Warehouse,” inProceedings of Very Large Data Bases (VLDB), Rome, Italy, pp. 581–590, 2001.

[22] W. M. McKeeman, J. J. Horning, and D. B. Wortman,A Compiler Generator, Prentice-Hall, Engle-
wood Cliffs, NJ, 1970.

[23] J. F. Roddick, “Schema Evolution in Database Systems—An Annotated Bibliography,”SIGMOD
Record21(4): 35–40, December, 1992.

[24] J. F. Roddick, “A Survey of Schema Versioning Issues forDatabase Systems,” inInformation and
Software Technology37(7):383-393, 1995.

[25] SAX project, Official website. URL http://www.saxproject.org, Viewed March 26, 2007.

[26] D. Sjoberg, “Measuring schema evolution”, Technical Report FIDE/92/36, Department of Computer
Science, University of Glasgow, 1992.

[27] D. Sjoberg, Quantifying schema evolution, inInf. Softw. Technol.35(1):35-44, 1993.

[28] R. T. Snodgrass,Developing Time-Oriented Database Applications in SQL, Morgan Kaufmann
Publishers, San Francisco, CA, 2000.

[29] R. T. Snodgrass, “The Temporal Query Language TQuel,” in ACM Transactions on Database Systems
12(2):247–298, June 1987.

[30] R. T. Snodgrass, C. Dyreson, F. Currim, S. Currim, and S.P. Joshi, “τXSchema: Support for Data and
Schema Versioned XML Documents,”TimeCenterTR, 2007.

[31] R. T. Snodgrass, S. Gomez, and E. McKenzie, “Aggregatesin the Temporal Query Language TQuel,”
in IEEE Transactions on Knowledge and Data Engineering5(5):826–842, October, 1993.

[32] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,Temporal Databases:
Theory, Design, and Implementation, Benjamin/Cummings Publiihing Company, 1993.

[33] TAU Project, τXSchema, Computer Science Department at the University of Arizona. URL http:
//www.cs.arizona.edu/projects/tau/txschema/index.htm, Viewed March 26, 2007.

[34] XALAN , Official website of Xalan-Java Version 2.7.0, URL http://xalan.apache.org, Viewed April 12,
2007.

[35] XERCES, Official website of Apache Xerces Project Version 1.4.4, URL http://xerces.apache.org/
xerces-j, Viewed April 12, 2007.

[36] XML Schema Versioning Use Cases “Framework for discussion of versioning” URL http://www.w3.
org/XML/2005/xsd-versioning-use-cases, Viewed January15th, 2006.

[37] XML Schema, W3C Recommendation, May 2001. URL http://www.w3.org/XML/Schema, Viewed
March 25, 2007.

97

[38] XMLSpy, “XML editor for modeling, editing, transforming, & debugging XML technologies.” URL
http://www.altova.com/products/xmlspy/xmleditor.html, Viewed April 18, 2007.

[39] XUpdate, XML Update Language. URL http://xmldb-org.sourceforge.net/xupdate, Viewed April 18,
2007.

98

A Base Schemas

A.1 TBSchema: Schema for Temporal Bundle
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"

xmlns:tb="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="May 5, 2004">

<xs:element name="temporalBundle">
<xs:annotation>

<xs:documentation>
XML Schema file for temporal bundle file.
currently mainly discusses identifier evolution

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="format" minOccurs="0">

<xs:complexType>
<xs:attribute name="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granularity" type="xs:string" use="optional"/>
<xs:attribute name="calendar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="valueSchema" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="bundleSequence" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="schemaAnnotation" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="tTime" type="xs:string" minOccurs="0"/>
<xs:element name="itemIdentifierCorrespondence" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="oldRef" type="xs:string"/>
<xs:attribute name="newRef" type="xs:string"/>
<xs:attribute name="mappingType" type="tb:mappingType"/>
<xs:attribute name="mappingLocation" type="xs:anyURI"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="snapshotSchema" type="xs:anyURI" use="required"/>
<xs:attribute name="temporalAnnotation" type="xs:anyURI" use="optional"/>
<xs:attribute name="physicalAnnotation" type="xs:anyURI" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="defaultTemporalAnnotation" type="xs:string" use="optional"/>
<xs:attribute name="defaultPhysicalAnnotation" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="defaultTemporalAnnotation" type="xs:string" use="optional"/>
<xs:attribute name="defaultPhysicalAnnotation" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:annotation>
<xs:documentation>

Datatype definitions for temporal bundle file follow
</xs:documentation>

</xs:annotation>
<xs:simpleType name="mappingType">

99

<xs:restriction base="xs:string">
<xs:enumeration value="useBoth"/>
<xs:enumeration value="useOld"/>
<xs:enumeration value="useNew"/>
<xs:enumeration value="replace"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

A.2 TXSchema: Schema for Temporal Annotation
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"

xmlns:ts="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" >

<xs:element name="temporalAnnotations">
<xs:annotation>

<xs:documentation>
XML Schema file for temporal annotations file
</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="include" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="annotationLocation" type="xs:anyURI"/>

</xs:complexType>
</xs:element>
<xs:element name="default" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="format" minOccurs="0">
<xs:complexType>
<xs:attribute name="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granularity" type="xs:string" use="optional"/>
<xs:attribute name="calendar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="valueSchema" type="xs:anyURI" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="item" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="validTime" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="contentVaryingApplicability" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="begin" type="xs:string" use="optional"/>
<xs:attribute name="end" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="maximalExistence" minOccurs="0">

<xs:complexType>
<xs:attribute name="begin" type="xs:string" use="optional"/>
<xs:attribute name="end" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="frequency" type="xs:string" minOccurs="0"/>
</xs:sequence>

<xs:attribute name="kind" type="ts:kindType" use="optional"/>
<xs:attribute name="content" type="ts:contentType" use="optional"/>
<xs:attribute name="existence" type="ts:existenceType" use="optional"/>

100

</xs:complexType>
</xs:element>
<xs:element name="transactionTime" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="frequency" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="kind" type="ts:kindType" use="optional"/>
<xs:attribute name="content" type="ts:contentType" use="optional"/>
<xs:attribute name="existence" type="ts:existenceType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="itemIdentifier" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="keyref" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="refName" type="xs:string" use="required"/>
<xs:attribute name="refType" type="ts:keyrefTypeII" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="field" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="path" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="timeDimension" type="ts:timeDimensionType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="attribute" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="validTime" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="contentVaryingApplicability" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="begin" type="xs:string" use="optional"/>
<xs:attribute name="end" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="frequency" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="kind" type="ts:kindType" use="required"/>
<xs:attribute name="content" type="ts:contentType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="transactionTime" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="frequency" type="xs:string" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="target" type="xs:anyURI" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:annotation>

101

<xs:documentation>
Datatype definitions for temporal annotations file follow
</xs:documentation>

</xs:annotation>
<xs:simpleType name="kindType">
<xs:restriction base="xs:string">

<xs:enumeration value="state"/>
<xs:enumeration value="event"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="keyrefTypeII">
<xs:restriction base="xs:string">

<xs:enumeration value="snapshot"/>
<xs:enumeration value="itemIdentifier"/>

</xs:restriction>
<!-- II in "keyrefTypeII" stands for ItemIdentifier -->

</xs:simpleType>
<xs:simpleType name="contentType">
<xs:restriction base="xs:string">

<xs:enumeration value="constant"/>
<xs:enumeration value="varying"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="existenceType">
<xs:restriction base="xs:string">

<xs:enumeration value="constant"/>
<xs:enumeration value="varyingWithGaps"/>
<xs:enumeration value="varyingWithoutGaps"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="timeDimensionType">
<xs:restriction base="xs:string">

<xs:enumeration value="validTime"/>
<xs:enumeration value="transactionTime"/>
<xs:enumeration value="bitemporal"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

A.3 PXSchema: Schema for Physical Annotation
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"

xmlns:ps="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="physicalAnnotations">
<xs:annotation>

<xs:documentation>XML Schema file describing the physical annotations XML file</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="include" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="annotationLocation" type="xs:anyURI"/>

</xs:complexType>
</xs:element>
<xs:element name="default" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="format" minOccurs="0">
<xs:complexType>
<xs:attribute name="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granularity" type="xs:string" use="optional"/>
<xs:attribute name="calendar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="valueSchema" type="xs:string" use="optional"/>

102

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="stamp" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="stampKind">
<xs:complexType>
<xs:sequence>

<xs:element name="format" minOccurs="0">
<xs:complexType>
<xs:attribute name="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granularity" type="xs:string" use="optional"/>
<xs:attribute name="calendar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="valueSchema" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="timeDimension" type="ps:timeDimensionType" use="optional"/>
<xs:attribute name="stampBounds" type="ps:stampType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="orderBy" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="field" maxOccurs="unbounded">
<xs:complexType>
<xs:choice>

<xs:element name="target" type="xs:string"/>
<xs:element name="time">

<xs:complexType>
<xs:attribute name="dimension" type="ps:timeDimensionType"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="target" type="xs:string" use="required"/>
<xs:attribute name="dataInclusion" type="ps:dataInclusionType" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:simpleType name="stampType">
<xs:restriction base="xs:string">

<xs:enumeration value="step"/>
<xs:enumeration value="extent"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="dataInclusionType">
<xs:restriction base="xs:string">

<xs:enumeration value="expandedEntity"/>
<xs:enumeration value="referencedEntity"/>
<xs:enumeration value="expandedVersion"/>
<xs:enumeration value="referencedVersion"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="timeDimensionType">
<xs:restriction base="xs:string">

<xs:enumeration value="validTime"/>

103

<xs:enumeration value="transactionTime"/>
<xs:enumeration value="bitemporal"/>

</xs:restriction>
</xs:simpleType>
<xs:annotation>
<xs:documentation>

Note: "referenced-entity" should not be used in conjunction with "contained" timeBoundary
</xs:documentation>

</xs:annotation>
</xs:schema>

A.4 TVSchema: Schema for Timestamp Representations
<xsd:schema targetNamespace="http://www.cs.arizona.edu/tau/TVSchema"

xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="timestamp_TransStep">
<xsd:complexType>

<xsd:attribute name="begin" type="xsd:date" />
</xsd:complexType>

</xsd:element>
<xsd:element name="timestamp_TransExtent">
<xsd:complexType>

<xsd:attribute name="begin" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />

</xsd:complexType>
</xsd:element>
<xsd:element name="timestamp_ValidStep">
<xsd:complexType>

<xsd:attribute name="begin" type="xsd:date" />
</xsd:complexType>

</xsd:element>
<xsd:element name="timestamp_ValidExtent">
<xsd:complexType>

<xsd:attribute name="begin" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

A.5 ConfigSchema: Schema for Configuration Document
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/tauXSchema/ConfigSchema"

xmlns:cs="http://www.cs.arizona.edu/tau/tauXSchema/ConfigSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" >

<xs:element name="config">
<xs:complexType>

<xs:sequence>
<xs:element name="snapshot" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="beginDate" type="xs:string"/>
<xs:attribute name="endDate" type="xs:string"/>
<xs:attribute name="file" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="bundle" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:schema>

104

B Schema-Versioning Example

B.1 Snapshot Schemas

B.1.1 Snapshot Schema on2002-01-01

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:element name="winOlympic">
<xsd:annotation>

<xsd:documentation>
Schema for recording non temporal country information

</xsd:documentation>
</xsd:annotation>
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element ref="country" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="country">
<xsd:complexType mixed="false">

<xsd:sequence>
<xsd:element ref="athleteTeam"/>

</xsd:sequence>
<xsd:attribute name="countryName" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="athleteTeam">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="teamName" minOccurs="1" maxOccurs="1" type="xsd:string"/>
<xsd:element ref="athlete" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="numAthletes" type="xsd:positiveInteger" use="optional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="athlete">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="athName" type="xsd:string"/>
<xsd:element name="phone" type="phoneNumType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:simpleType name="phoneNumType">
<xsd:restriction base="xsd:string">

<xsd:length value="12"/>
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

B.1.2 Snapshot Schema on2005-01-01

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:element name="winOlympic">
<xsd:annotation>

<xsd:documentation>
Schema for recording non temporal country information

</xsd:documentation>
</xsd:annotation>
<xsd:complexType mixed="true">

105

<xsd:sequence>
<!--numEvents added on Wednesday-->

<xsd:element name="numEvents" type="xsd:nonNegativeInteger"/>
<xsd:element ref="country" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="country">
<xsd:complexType mixed="false">

<xsd:sequence>
<xsd:element ref="athleteTeam"/>

</xsd:sequence>
<xsd:attribute name="countryName" type="xsd:string" use="required"/>
<xsd:attribute name="countryLead" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="athleteTeam">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="teamName" minOccurs="1" maxOccurs="1" type="xsd:string"/>
<xsd:element ref="athlete" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="numAthletes" type="xsd:positiveInteger" use="optional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="athlete">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="athName" type="xsd:string"/>
<xsd:element name="phone" type="phoneNumType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:simpleType name="phoneNumType">
<xsd:restriction base="xsd:string">

<xsd:length value="12"/>
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

B.2 Temporal Annotations

B.2.1 Temporal Annotation on2002-01-01

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema TXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="gDay"/>

</default>

<item target="/winOlympic">
<transactionTime content="varying" existence="constant"/>
<itemIdentifier name="olympicId1" timeDimension="transactionTime">

<field path="./text"/>
</itemIdentifier>

</item>

<item target="/winOlympic/country">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="countryId1" timeDimension="transactionTime">

<field path="./@countryName"/>
</itemIdentifier>

</item>

106

<item target="/winOlympic/country/athleteTeam">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="teamName" timeDimension="transactionTime">

<field path="./teamName/text"/>
</itemIdentifier>

</item>

<item target="/winOlympic/country/athleteTeam/athlete">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="atheleteId1" timeDimension="transactionTime">

<field path="./athName/text"/>
</itemIdentifier>

</item>
</temporalAnnotations>

B.2.2 Temporal Annotation on2005-01-01

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema TXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="gDay"/>

</default>

<item target="/winOlympic">
<transactionTime content="varying" existence="constant"/>
<itemIdentifier name="olympicId1" timeDimension="transactionTime">

<field path="./text"/>
</itemIdentifier>

</item>

<item target="/winOlympic/country">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="countryId1" timeDimension="transactionTime">

<field path="./@countryName"/>
<field path="./@countryLead"/>

</itemIdentifier>
</item>

<item target="/winOlympic/country/athleteTeam">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="teamName" timeDimension="transactionTime">

<field path="./teamName/text"/>
</itemIdentifier>

</item>

<item target="/winOlympic/country/athleteTeam/athlete">
<transactionTime content="varying" existence="varyingWithGaps"/>
<itemIdentifier name="atheleteId1" timeDimension="transactionTime">

<field path="./athName/text"/>
</itemIdentifier>

</item>
</temporalAnnotations>

B.3 Physical Annotations

B.3.1 Physical Annotation on2002-01-01

<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema PXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="days"/>

</default>

107

<stamp target="/winOlympic">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country/athleteTeam">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>
</physicalAnnotations>

B.3.2 Physical Annotation on2005-01-01

<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotations xmlns="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema PXSchema.xsd">

<default>
<format plugin="XMLSchema" granularity="days"/>

</default>

<stamp target="/winOlympic">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country/athleteTeam">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>

<stamp target="/winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension="transactionTime" stampBounds="extent"/>

</stamp>
</physicalAnnotations>

B.4 Snapshot Documents

B.4.1 Snapshot Document on2002-01-01

<?xml version="1.0" encoding="UTF-8"?>
<winOlympic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="winOlympic.ver1.xsd">
There are
events in the Olympics.
<country countryName="Norway">
<athleteTeam numAthletes="95">

<teamName>Norway_Army</teamName>
Athletes will take part in various events. The athletes participating are listed below
<athlete>

<athName>
Kjetil Andre Aamodt

</athName>
</athlete>
<athlete>

<athName>
Trine Bakke-Rognmo

108

</athName>
His phone numbers are:
<phone>123-402-0340</phone>
<phone>123-402-0000</phone>

</athlete>
<athlete>

<athName>
Lasse Kjus

</athName>
</athlete>

</athleteTeam>
</country>

</winOlympic>

B.4.2 Snapshot Document on2003-01-01

<?xml version="1.0" encoding="UTF-8"?>
<winOlympic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="winOlympic.ver1.xsd">
There are
events in the Olympics.
<country countryName="Norway">
<athleteTeam numAthletes="95">

<teamName>Norway_Army</teamName>
Athletes will take part in various events. The athletes participating are listed below
<athlete>

<athName>
Kjetil Andre Aamodt

</athName>
</athlete>
<athlete>

<athName>
Andre Agassi

</athName>
</athlete>
<athlete>

<athName>
Trine Bakke-Rognmo

</athName>
His phone numbers are:
<phone>123-402-0340</phone>
<phone>123-402-0000</phone>

</athlete>
<athlete>

<athName>
Lasse Kjus

</athName>
</athlete>

</athleteTeam>
</country>

</winOlympic>

B.4.3 Snapshot Document on2005-01-01

<?xml version="1.0" encoding="UTF-8"?>
<winOlympic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="winOlympic.ver2.xsd">
There are
<numEvents>11</numEvents>
events in the Olympics.
<country countryName="Norway" countryLead="Andre Agassi">
<athleteTeam numAthletes="95">

<teamName>Norway_Army</teamName>
Athletes will take part in various events. The athletes participating are listed below
<athlete>

<athName>

109

Kjetil Andre Aamodt
</athName>

</athlete>
<athlete>

<athName>
Andre Agassi

</athName>
</athlete>
<athlete>

<athName>
Trine Bakke-Rognmo

</athName>
His phone numbers are:
<phone>123-402-0340</phone>
<phone>123-402-0000</phone>

</athlete>
<athlete>

<athName>
Lasse Kjus

</athName>
</athlete>

</athleteTeam>
</country>

</winOlympic>

B.4.4 Snapshot Document on2006-01-01

<?xml version="1.0" encoding="UTF-8"?>
<winOlympic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="winOlympic.ver2.xsd">
There are
<numEvents>11</numEvents>
events in the Olympics.
<country countryName="Norway" countryLead="Andre Agassi">
<athleteTeam numAthletes="95">

<teamName>Norway_Army</teamName>
Athletes will take part in various events. The athletes participating are listed below
<athlete>

<athName>
Kjetil Andre Aamodt

</athName>
</athlete>
<athlete>

<athName>
Andre Agassi

</athName>
</athlete>
<athlete>

<athName>
Trine Bakke-Rognmo

</athName>
His phone numbers are:
<phone>123-402-0340</phone>
<phone>123-402-0000</phone>

</athlete>
<athlete>

<athName>
Lasse Kjus

</athName>
</athlete>

</athleteTeam>
</country>

</winOlympic>

110

B.5 Temporal Bundle
<?xml version="1.0" encoding="UTF-8"?>
<temporalBundle xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"

xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema TBSchema.xsd">

<format plugin="XMLSchema" granularity="date"/>
<bundleSequence defaultTemporalAnnotation="defaultTA.xml" defaultPhysicalAnnotation="defaultPA.xml">
<schemaAnnotation snapshotSchema="winOlympic.ver1.xsd"

temporalAnnotation="winolympic_temp_anno.ver1.xml"
physicalAnnotation="winolympic_phy_anno.ver1.xml">

<tTime>2002-01-01</tTime>
</schemaAnnotation>
<schemaAnnotation snapshotSchema="winOlympic.ver2.xsd"

temporalAnnotation="winolympic_temp_anno.ver2.xml"
physicalAnnotation="winolympic_phy_anno.ver2.xml">

<tTime>2005-01-01</tTime>
</schemaAnnotation>

</bundleSequence>
</temporalBundle>

B.6 Representational Schema

B.6.1 Representational Schema for [2002-01-01,2005-01-01)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="unqualified"
targetNamespace="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<xsd:import namespace="http://www.cs.arizona.edu/tau/TVSchema" schemaLocation="TVSchema.xsd" />
<xsd:simpleType name="phoneNumType">
<xsd:restriction base="xsd:string">

<xsd:length value="12" />
<xsd:pattern value="\d{3}-\d{3}-\d{4}" />

</xsd:restriction>
</xsd:simpleType>
<xsd:element name="tv_root">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="winOlympic_RepItem" />

</xsd:sequence>
<xsd:attribute name="begin" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />

</xsd:complexType>
</xsd:element>
<xsd:element name="athleteTeam_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="athleteTeam_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="athleteTeam">

<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element maxOccurs="1"
minOccurs="1" name="teamName" type="xsd:string" />

<xsd:element
maxOccurs="unbounded" ref="athlete_RepItem" />

</xsd:sequence>
<xsd:attribute name="numAthletes"

111

type="xsd:positiveInteger" use="optional" />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="country_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="country_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="country">

<xsd:complexType mixed="false">
<xsd:sequence>

<xsd:element
ref="athleteTeam_RepItem" />

</xsd:sequence>
<xsd:attribute name="countryName"

type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="winOlympic_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="winOlympic_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="winOlympic">

<xsd:annotation>
<xsd:documentation>

Schema for recording non
temporal country information

</xsd:documentation>
</xsd:annotation>
<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element
maxOccurs="unbounded" minOccurs="0" ref="country_RepItem" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="athlete_RepItem">

112

<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="1"
name="athlete_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="athlete">

<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element name="athName"
type="xsd:string" />

<xsd:element
maxOccurs="unbounded" minOccurs="0" name="phone"
type="phoneNumType" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

B.6.2 Representational Schema for [2002-01-01,2005-01-01)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="unqualified"
targetNamespace="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<xsd:import namespace="http://www.cs.arizona.edu/tau/TVSchema" schemaLocation="TVSchema.xsd" />
<xsd:simpleType name="phoneNumType">
<xsd:restriction base="xsd:string">

<xsd:length value="12" />
<xsd:pattern value="\d{3}-\d{3}-\d{4}" />

</xsd:restriction>
</xsd:simpleType>
<xsd:element name="tv_root">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="winOlympic_RepItem" />

</xsd:sequence>
<xsd:attribute name="begin" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />

</xsd:complexType>
</xsd:element>
<xsd:element name="athleteTeam_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="athleteTeam_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="athleteTeam">

<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element maxOccurs="1"
minOccurs="1" name="teamName" type="xsd:string" />

113

<xsd:element
maxOccurs="unbounded" ref="athlete_RepItem" />

</xsd:sequence>
<xsd:attribute name="numAthletes"

type="xsd:positiveInteger" use="optional" />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="country_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="country_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="country">

<xsd:complexType mixed="false">
<xsd:sequence>

<xsd:element
ref="athleteTeam_RepItem" />

</xsd:sequence>
<xsd:attribute name="countryName"

type="xsd:string" use="required" />
<xsd:attribute name="countryLead"

type="xsd:string" use="required" />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="winOlympic_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="winOlympic_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="winOlympic">

<xsd:annotation>
<xsd:documentation>

Schema for recording non
temporal country information

</xsd:documentation>
</xsd:annotation>
<xsd:complexType mixed="true">
<xsd:sequence>

<!--numEvents added on Wednesday-->
<xsd:element name="numEvents"

type="xsd:nonNegativeInteger" />
<xsd:element

maxOccurs="unbounded" minOccurs="0" ref="country_RepItem" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

114

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>
<xsd:element name="athlete_RepItem">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="1"

name="athlete_Version">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tv:timestamp_TransExtent" />
<xsd:element name="athlete">

<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element name="athName"
type="xsd:string" />

<xsd:element
maxOccurs="unbounded" minOccurs="0" name="phone"
type="phoneNumType" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="isItem" type="xsd:string" />
<xsd:attribute name="originalElement" type="xsd:string" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

B.6.3 Final Representational Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified"
targetNamespace="http://www.cs.arizona.edu/tau/RepSchema"
xmlns="http://www.cs.arizona.edu/tau/RepSchema"
xmlns:rep0="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns:rep1="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<xsd:import namespace="http://www.cs.arizona.edu/tau/TVSchema" schemaLocation="TVSchema.xsd" />
<xsd:import namespace="http://www.cs.arizona.edu/tau/RepSchema0" schemaLocation="rep0.xsd" />
<xsd:import namespace="http://www.cs.arizona.edu/tau/RepSchema1" schemaLocation="rep1.xsd" />
<xsd:element name="sv_root">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="schemaItem">

<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1"
name="schemaVersion0">
<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="1"
minOccurs="1" ref="tv:timestamp_TransExtent" />

<xsd:element maxOccurs="1"
minOccurs="1" ref="rep0:tv_root" />

</xsd:sequence>
</xsd:complexType>

115

</xsd:element>
<xsd:element maxOccurs="1" minOccurs="1"

name="schemaVersion1">
<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="1"
minOccurs="1" ref="tv:timestamp_TransExtent" />

<xsd:element maxOccurs="1"
minOccurs="1" ref="rep1:tv_root" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="bundle" type="xsd:string" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

B.7 Temporal Document
<?xml version="1.0" encoding="UTF-8"?>
<rep:sv_root xmlns:rep="http://www.cs.arizona.edu/tau/RepSchema"

bundle="winolympic_bundle.xml"
xmlns:rep0="http://www.cs.arizona.edu/tau/RepSchema0"
xmlns:rep1="http://www.cs.arizona.edu/tau/RepSchema1"
xmlns:tv="http://www.cs.arizona.edu/tau/TVSchema">
<schemaItem>
<schemaVersion0>

<tv:timestamp_TransExtent begin="2002-01-01"
end="2005-01-01" />

<rep0:tv_root
xmlns:rep0="http://www.cs.arizona.edu/tau/RepSchema0"
begin="2002-01-01" end="2005-01-01">
<rep0:winOlympic_RepItem isItem="y"

originalElement="winOlympic">
<winOlympic_Version>
<tv:timestamp_TransExtent begin="2002-01-01"

end="2005-01-01" />
<winOlympic>

There are events in the Olympics.
<rep0:country_RepItem isItem="y"

originalElement="country">
<country_Version>
<tv:timestamp_TransExtent

begin="2002-01-01" end="2005-01-01" />
<country countryName="Norway">

<rep0:athleteTeam_RepItem
isItem="y" originalElement="athleteTeam">
<athleteTeam_Version>
<tv:timestamp_TransExtent

begin="2002-01-01" end="2003-01-01" />
<athleteTeam

numAthletes="95">
<teamName>

Norway_Army
</teamName>
Athletes will take part in various events. The athletes participating are listed below
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2002-01-01" end="2003-01-01" />

<athlete>
<athName>

116

Kjetil Andre Aamodt
</athName>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2002-01-01" end="2003-01-01" />

<athlete>
<athName>

Trine
Bakke-Rognmo

</athName>
His phone numbers are:
<phone>

123-402-0340
</phone>
<phone>

123-402-0000
</phone>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2002-01-01" end="2003-01-01" />

<athlete>
<athName>

Lasse Kjus
</athName>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
</athleteTeam>

</athleteTeam_Version>
<athleteTeam_Version>
<tv:timestamp_TransExtent

begin="2003-01-01" end="2005-01-01" />
<athleteTeam

numAthletes="95">
<teamName>

Norway_Army
</teamName>
Athletes will take part in various events. The athletes participating are listed below
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2003-01-01" end="2005-01-01" />

<athlete>
<athName>

Kjetil Andre Aamodt
</athName>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2003-01-01" end="2005-01-01" />

<athlete>
<athName>

Andre Agassi

117

</athName>
</athlete>

</athlete_Version>
</rep0:athlete_RepItem>
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2003-01-01" end="2005-01-01" />

<athlete>
<athName>

Trine
Bakke-Rognmo

</athName>
His phone numbers are:
<phone>

123-402-0340
</phone>
<phone>

123-402-0000
</phone>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
<rep0:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2003-01-01" end="2005-01-01" />

<athlete>
<athName>

Lasse Kjus
</athName>

</athlete>
</athlete_Version>

</rep0:athlete_RepItem>
</athleteTeam>

</athleteTeam_Version>
</rep0:athleteTeam_RepItem>

</country>
</country_Version>

</rep0:country_RepItem>
</winOlympic>

</winOlympic_Version>
</rep0:winOlympic_RepItem>

</rep0:tv_root>
</schemaVersion0>
<schemaVersion1>

<tv:timestamp_TransExtent begin="2005-01-01"
end="9999-12-31" />

<rep1:tv_root
xmlns:rep1="http://www.cs.arizona.edu/tau/RepSchema1"
begin="2005-01-01" end="9999-12-31">
<rep1:winOlympic_RepItem isItem="y"

originalElement="winOlympic">
<winOlympic_Version>
<tv:timestamp_TransExtent begin="2005-01-01"

end="9999-12-31" />
<winOlympic>

There are
<numEvents>11</numEvents>
events in the Olympics.
<rep1:country_RepItem isItem="y"

originalElement="country">
<country_Version>
<tv:timestamp_TransExtent

begin="2005-01-01" end="9999-12-31" />
<country countryLead="Andre Agassi"

118

countryName="Norway">
<rep1:athleteTeam_RepItem

isItem="y" originalElement="athleteTeam">
<athleteTeam_Version>
<tv:timestamp_TransExtent

begin="2005-01-01" end="9999-12-31" />
<athleteTeam

numAthletes="95">
<teamName>

Norway_Army
</teamName>
Athletes will take part in various events. The athletes participating are listed below
<rep1:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2005-01-01" end="9999-12-31" />

<athlete>
<athName>

Kjetil Andre Aamodt
</athName>

</athlete>
</athlete_Version>

</rep1:athlete_RepItem>
<rep1:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2005-01-01" end="9999-12-31" />

<athlete>
<athName>

Andre Agassi
</athName>

</athlete>
</athlete_Version>

</rep1:athlete_RepItem>
<rep1:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2005-01-01" end="9999-12-31" />

<athlete>
<athName>

Trine
Bakke-Rognmo

</athName>
His phone numbers are:
<phone>

123-402-0340
</phone>
<phone>

123-402-0000
</phone>

</athlete>
</athlete_Version>

</rep1:athlete_RepItem>
<rep1:athlete_RepItem

isItem="y" originalElement="athlete">
<athlete_Version>

<tv:timestamp_TransExtent
begin="2005-01-01" end="9999-12-31" />

<athlete>
<athName>

Lasse Kjus
</athName>

</athlete>
</athlete_Version>

</rep1:athlete_RepItem>

119

</athleteTeam>
</athleteTeam_Version>

</rep1:athleteTeam_RepItem>
</country>

</country_Version>
</rep1:country_RepItem>

</winOlympic>
</winOlympic_Version>

</rep1:winOlympic_RepItem>
</rep1:tv_root>

</schemaVersion1>
</schemaItem>

</rep:sv_root>

120

