TXSchema - Support for Data- and
Schema-Versioned XML Documents

Shailesh Joshi

August 20, 2007

TR-89

A TIMECENTER Technical Report

Title TXSchema - Support for Data- and Schema-Versioned XML Doaiisne
Copyright(©) 2007 Shailesh Joshi. All rights reserved.
Author(s) Shailesh Joshi

Publication History May 2007, a TMECENTER Technical Report

TIMECENTER Participants

Aalborg University, Denmark 5
Christian S. Jensen (codirector), SimoiEadtenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Faiz A. Currim, SabalCérim, Bongki Moon, Sudha Ram, Stanley
Yao

Individual participants

Yun Ae Ahn, Chungbuk National University, Korea; MichaelBbhlen, Free University of Bolzano, Italy;
Curtis E. Dyreson, Washington State University, USA; Demgf Gao, Indiana University South Bend,
USA; Fabio Grandi, University of Bologna, Italy; Heidi Gegen, Aarhus School of Business, Denmark;
Vijay Khatri, Indiana University, USA; Nick Kline, Microdg USA; Gerhard Knolmayer, University of
Bern, Switzerland; Carme Martin, Technical UniversityQzftalonia, Spain; Thomas Myrach, University of
Bern, Switzerland; Kwang W. Nam, Chungbuk National Uniitgr¥orea; Mario A. Nascimento, Univer-
sity of Alberta, Canada; John F. Roddick, Flinders Univgrgustralia; Keun H. Ryu, Chungbuk National
University, Korea; Dennis Shasha, New York University, US3Aichael D. Soo, amazon.com, USA; An-
dreas Steiner, TimeConsult, Switzerland; Paolo Teremzlaniversity of Torino, Italy; Vassilis Tsotras,
University of California, Riverside, USA; Fusheng Wangei®ens, USA; Jef Wijsen, University of Mons-
Hainaut, Belgium; and Carlo Zaniolo, University of Calift, Los Angeles, USA

For additional information, see ThaMeE CENTER Homepage:
URL: <ht t p: // ww. cs. aau. dk/ Ti meCent er >

Any software made available VviaME CENTER s provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied wamty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” atelrs in the so-called
Runealphabet used one millennium ago by the Vikings, as well athbir precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of Wwhighangular shapes and lack horizontal lines
because the primary storage medium was wood. Runes mayeafeoifid on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respedyive

Thesis Statement

By utilizing schema-constant periods and cross-wall aia@h, it is possible to realize a com-
prehensive system for representing and validating daté-sahema-versioned XML documents,
while remaining fully compatible with the XML standards.

Contents
1 Introduction

2 Motivation
2.1 Motivatingexample e e e

3 Background
3.1 XML Schema e
3.2 Temporal Databases e
3.3 Schema\Versioning e e e e

4 Previous Work
5 Architecture

6 Theoretical Framework

6.1 Snapshot Validation Subsumption
6.2 SchemaPath e e
6.3 Content and Existence Variance e e e
6.4 ItEeMS e e e e
6.5 Versions e e
6.6 Extending Temporal XML Schema Constraints
7 Tools and Algorithms
7.1 Implementation Primitives e e
7.1.1 ThepushUpFunction
7.1.2 ThepushDown Function
7.1.3 Thecoalesce Function
7.2 SCHEMA MAPPER o o e e e e e e e e e e e
7.3 TEMPORALVALIDATOR o i i i e e e e e e e e e e s e e e e s e e
T4 SQUASH . . . o e e e e
7.5 UNSQUASH o e e e e e e e e e e e e e
7.6 RESQUASH e e e

8 Representations

9 Schema Versioning

9.1 Architecture and Example e
9.2 Theoretical Framework e e
9.2.1 Accommodating EvolvingKeys
9.2.2 Accommodating Gaps e e e e
9.2.3 Semantics for mixed data and schemachanges
9.2.4 Non-Sequenced Constraints e

10 Implementation
10.1 Technology e
10.2 ClassDiagram 0 e e e e

11 Support for Bitemporal Data

12
12
13
14

15

16

19
19
19
20
21
23
23

25
25
25
32
32
38
41
43
43
43

49

52
52
61
61
63
65
65

67
67
67

73

12 Evaluation and Conclusion 91

References 94
A Base Schemas 97
A.1 TBSchema: Schemafor TemporalBundle 97
A.2 TXSchema: Schema for Temporal Annotation 98
A.3 PXSchema: Schema for Physical Annotation 100
A.4 TVSchema: Schema for Timestamp Representations 102
A.5 ConfigSchema: Schema for Configuration Document 102

B Schema-Versioning Example 103
B.1 Snapshot Schemas e 103
B.1.1 Snapshot Schema 002-01-01 103
B.1.2 Snapshot Schema @005-01-01 103

B.2 Temporal Annotations e e 104
B.2.1 Temporal Annotation 0B002-01-01 104
B.2.2 Temporal Annotation o08005-01-01 105

B.3 Physical Annotations e e e 105
B.3.1 Physical Annotation 02002-01-01, 105
B.3.2 Physical Annotation o2005-01-01 106

B.4 Snapshot Documents e e 106
B.4.1 Snapshot Document @02-01-01 106
B.4.2 Snapshot Document @903-01-01 107
B.4.3 Snapshot Document @05-01-01 107
B.4.4 Snapshot Document @906-01-01 108

B.5 TemporalBundle e 109
B.6 Representational Schema e 109
B.6.1 Representational Schema fadp2- 01- 01,2005-01-01) 109

B.6.2 Representational Schema f80p2- 01- 01,2005-01-01) 111

B.6.3 Final Representational Schema 113

B.7 Temporal Document e e wa 114

List of Figures

O©oOoO~NOOLAWDNPEF

el
N P O

A AP BEDIMDPWOWWWWWWWWWNDNNDNNNNNNNRERPRERRERPEERRPRE
OO R WNPOOONOOURARWNPOOONOOURRWNPEPOOOWLONO O MW

Afragmentofm nter. xm on2002-01-01. 7
Kjetil won a Silver medal, as &f002-03-01 7
Kjetil won a Gold medal, as &002-07-01, 8
Snippet of a Temporal Document e 8

W NA ympiC. XSA 9
Overall Architecture e 16
Sample WinOlympic Temporal Annotation 17
Sample WinOlympic Physical Annotation 18
Snapshot Validation Subsumption o 20
ltemsand Versions e e 22
Snapshot Schema e 26
Temporal Annotation 26
Physical Annotation e e 26
ExampleopushUp 27
Example opushUp: Continued e 27
Example opushUp: Continued 28
Example opushUp: Continued e 28
Example opushUp e 30
Algorithm:pushUp 31
Algorithm: pushDown e 33
Algorithm: mergeVersions e 34
Algorithm:coalesce 34
Example opushDown 35
Example opushDown: Continued 36
Example opushDown: Continued 36
Example otoalesce 37
Algorithm: SCHEMA MAPPER o o e e e e e e e e e 40
Validating a document with Time-VaryingData 41
TVALIDATOR — Checkingthe Schema 42
TVALIDATOR —Checking the Instance 42
Algorithm: 7VALIDATOR o o e e e e e e e e e e e e e 44
Algorithm: SQUASH L 45
Algorithm: UNSQUASH e e e e e 46
Algorithm: RESQUASH 47
Squash/UnSquash/ReSquash Commutativity Diagram 48
Wina ynmpic.verl. Xxsd 53
Wi nol ynpi c_tenporal _annotation.verl.xm 53
wi nol ynpi c_physi cal .annotation.verl.xm 54
wWinaynmpic.ver2.Xxsd 55
W nol ynpi c_tenporal _annotation.ver2.xm 55
wi nd ynpi ctenporal bundle.xm oL oo 56
T Diagram of Validation e e 57
tvwinAynpic.xm .. 58
windynmpicrepschema.xsd 59
Validating a Document with Time-Varying Schema 60
Gluingand Bridging e e e e e 61

a7
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Presence of Gaps e 63
Cross Wall Gluing: Option1 e e 64
Cross Wall Gluing: Option 2 e e e e 64
Non-Sequenced Constraints e 66
Overview class diagram forthetools, 68
Detailed class diagram foau. xm 69
Detailed class diagram forau. tinme 70
property. xsd e 73
property tenporal annotation.xsd, 74
property_physical annotation.xsd 74
Mortgage being handled by other company. No customer 74
Eva purchased the flaton January 10 75
A bitemporal time diagram corresponding to Eva purctsie flat, performed on January

10 . 76
Peter buys the flat, performedon January 15 76
Peter buys the flat, performedonJanuary 15 77
Peter sells the flat, performed on January 20 78
Peter sells the flat, performed on January 20 78
Discovered on January 23: Eva actually purchased therfldaouary 3 79
Discovered on January 26: Eva actually purchased therflddaouary 5 79
Discovered on January 23: Eva actually purchased therfldaouary 3 80
Discovered on January 26: Eva actually purchased therflddaouary 5 81
January 28: Peter actually purchased the flat on January.12. 81
January 28: Peter actually purchased the flaton January 12 82
Transaction Time Regions i e e e 83
Transaction TimgO01- 10, O01-15) it 83
Transaction TImg01- 20, 01-23) e e e 84
Transaction TIM@O01-26, 01-28) it 85
Transaction TIM@O01-20, 01-23) e 86
Transaction-time splitting of regions, 86
Temporal Document along both valid-time and transadiioe 87
Temporal Document along both valid-time and transadiioe. Continued 88
Temporal Document along both valid-time and transadiioe. Continued 89

Abstract

The W3C XML Schema recommendation defines the structure atadtgpes for XML documents.
An XML document evolves as it is updated over time or as it anglates from a streaming data source.
A temporal document records the entire history of a docurregther than just its current state or snap-
shot. Capturing a document’s evolution is vital to proviglthe ability to recover past versions, track
changes over time, and evaluate temporal queries. XML Salacks explicit support for time-varying
XML documents. Users have to resort to ad hoc, non-standadhanisms to create schemas for time-
varying XML documents.

In this thesis we introduceXSchema, which is an extension of XML Schema, infrastrugtand
a suite of tools to support the creation and validation ofetivarying documents, without requiring
any changes to XML Schema. The data model and architectymgosiuthe creation of a temporal
schema from a non-temporal (snapshot) schema, a tempaoi@kdion, and a physical annotation. These
annotations specify, respectively, which portion(s) ofXviL document can vary over time, how the
document can change, and where timestamps should be pleElceddvantage of using annotations to
denote the time-varying aspects is that logical and phidata independence for temporal schemas can
be achieved while remaining fully compatible with both ¢ixig XML Schema documents and the XML
Schema recommendation. A Temporal ValidateMALIDATOR) augments a conventional validator to
more comprehensively check the validity constraints of euteent, especially temporal constraints that
cannot be checked by a conventional XML Schema validator.

We then exten@XSchema to support versioning of the schema itself. Wheathema s versioned,
the base schema and the temporal and physical annotatiotiseraselves be time-varying documents,
each with their own (possibly versioned) schemas. We dasd¢row a temporal data validator can be
extended to validate documents in this seeming precarituation of data that changes over time, while
its schema and even its representation are also changing.

1 Introduction

XML is becoming an increasingly popular language for docoteeand data. XML can be approached
from two different orientationsdocument-centere¢e.g., HTML) anddata-centerede.g., relational and
object-oriented databases). Schemas are important for Boschema defines the building blocks of an
XML document, such as the types of elements and attributesXML document can be validated against
a schema to ensure that the document conforms to the fongatiles for an XML document (is well-
formed) and to the types, elements, and attributes definéfteischema (is valid). A schema also serves
as a valuable guide for querying and updating an XML docunoemtatabase. For instance, to correctly
construct a query, e.g., in XQuery, a user will (often) cdnthe schema rather than the data. Finally, a
schema can be helpful in query optimization, e.g., in caigsitng a path index.

Time-varying data naturally arises in both document-aext@nd data-centered orientations. A tempo-
ral document records the evolution of a document over tinee, &ll of the versions of the document. Cap-
turing a document’s evolution is vital to supporting timavel queries that delve into a past version [29],
and incremental queries that involve the changes betweendvsions.

In this thesis we consider how to accommodate and validate-tiarying data within XML Schema.
One approach would have been to propose changes to XML Scteeat@ommodate time-varying data.
Indeed, that has been the approach taken by many reseaiwhirs relational and object-oriented models.
This approach inherently introduces difficulties with respto document validation, data independence,
tool support, and standardization. The previous group mgrion TAU Project at the Computer Science
Department at the University of Arizona has proposed a nappfoach that retains the non-temporal XML
Schema for the document, utilizing a series of separatensali®cuments to achieve data independence, to
enable full document validation, and to enable improved sopport, while not requiring any changes to
the XML Schema standard.

The system, called Temporal XML SchemaXSchema), aids in constructing and validating tempo-
ral documents. Temporal XML Schema extends XML Schema vaghability to define temporal element
types. A temporal element type denotes that an element agnovar time, describes how to associate
temporal elements across snapshots, and provides somertmpnstraints that broadly characterize how
a temporal element can change over time. In Temporal XML 8eheny element type can be turned into
a temporal element type by including a simpdéenporal annotatiorin the type definition. So a Temporal
XML Schema document is just a conventional XML Schema documéth a few temporal annotations.
The second type of annotation is hieysical annotationwhich describes how to represent the time-varying
aspects of the document. tdmporal bundlethe XML document that serves as a temporal schema bun-
dles together the non-temporal schema, temporal annotatid physical annotation. ThuXSchema is
consistent and compatible with both XML Schema and the XMia daodel.

In our thesis research, we refinSchema and implement the tools used to construct and talidm-
poral documents. A temporal document is validated by imttigg a conventional validating parser with a
temporal constraint checkerTo validate a temporal document, a temporal schema is firstested to a
representational schemahich is a conventional XML Schema document that desctitogsthe temporal
information is represented. The representational schemsd be carefully constructed to ensure fmap-
shot validation subsumptiaof a temporal document, that is, it is important to guaratie¢ each snapshot
of the temporal document conforms to the original, snapsibbhema (without temporal annotations). A
conventional validating parser is then used to validatet¢hgporal document against the representational
schema.

As mentioned,7XSchema reuses rather than extends XML Schem&Schema is consistent and
compatible with both XML Schema and the XML data model. In approach, a Temporal Validator (
TVALIDATOR) augments a conventional validator to more comprehensitieéck the validity constraints
of a document, especially temporal constraints that cabeathecked by a conventional XML Schema

validator. We describe a means of validating temporal danisthat ensures the desirable property of
snapshot validation subsumption. We show how a temporalrdeat can be smaller and faster to validate
than the associated XML snapshots.

We then extend-XSchema to supporschema versioning When the schema is versioned, the base
schema and temporal and physical schemas can themselvesesearying documents, each with their
own (possibly versioned) schemas. In doing so, we leveragje donventional XML Schema and related
tools (principally, the conventional validator), as wedl @/ALIDATOR for data versioning. A challenge
with schema versioning is thanhythingcan change, and thus must be versioned: the snapshot dadsymen
the base schema, the temporal annotations, the physicatations, the schema documents included by
these documents, even the schemas of these schema conspoftedt because the physical annotations
can change, the concrete representation within a tempadvl document can vary.

With the framework introduced in our research, we will shdwattwe can

e Develop a comprehensive set of tools to support schema aadsdesioning of XML data or docu-
ments,

¢ Achieve logical data independence by specifying what camgé in the temporal annotation,

¢ Achieve physical data independence by specifying the ilmeaif timestamps in the physical annota-
tion,

¢ Implement a set of tools using just three basic primitives, a

e Achieve code reuse by utilizing most of the code used for dataioning to implement schema
versioning.

This thesis document is logically divided into two parts.eTihitial part concerns instance versioning;
the second part extends the approach to support schemaniegsi We first provide a motivating example
that illustrates the challenges of data and schema vergjoin Part 1 we show how the three schemas (base
schema and the two annotations) and the temporal bundiaét® support time varying data; in Part 2
we extend this architecture to incorporate schema versipritach part elaborates a theoretical foundation,
architecture, and the design of the tools. It is followedHtry iimplementation and testing details concerning
both data and schema versioning. We then discuss the supponultiple kinds of time, to be defined in
detail later, within this framework. The last section suniizes the contributions of this work.

2 Motivation

This section discusses whether conventional XML Schemppsogriate and satisfactory for time-varying
data. We first present an example that illustrates how a viamging document differs from a conventional
XML document. We then pinpoint some of the limitations of tBIL Schema in supporting temporal
documents and data. Then we state the desired propertiebarhss for time-varying documents. We end
with a discussion of some real world applications that wdagdefit from schema versioning as supported
in the 7XSchema framework.

2.1 Motivating example

Assume that the history of the Winter Olympic games is desdriin an XML document called winter.xml.
The document has information about the athletes that paate, the events in which they participate, and
the medals that are awarded. Over time the document is ewitedd information about each new Winter
Olympics and to revise incorrect information. Assume thdibrimation about the athletes participating
in the 2002 Winter Olympics in Salt Lake City, USA was added 8602- 01- 01. On2002- 03-01
the document was further edited to record the medal winnEisally, a small correction was made on
2002-07-01.

To depict some of the changes to the XML in the document, wesfon information about the Norwe-
gian skier Kjetil Andre Aamodt. O8002- 01- 01 it was known that Kjetil would participate in the games
and the information shown in Figure 1 was added to winter.qtil won a medal; so 02002- 03- 01
the fragment was revised as shown in Figure 2. The ed2@d2- 03- 01 incorrectly recorded that Kjetil
won a silver medal in the Men’s Combined; Kjetil won a gold mledrigure 3 shows the correct medal
information.

<at hl et e>
<at hName>Kj eti| Andre Aanodt </ at hName>
</ athl ete>

Figure 1: A fragment ofvi nt er . xm on2002- 01- 01

<at hl et e>
<at hNanme>Kj eti| Andre Aanodt</at hNane> won a nmedal in
<nmedal ntype="silver">Men’s Comnbi ned</ nedal >

</ at hl et e>

Figure 2: Kjetil won a Silver medal, as 8002- 03- 01

A time-varying document records a version history, whichsists of the information in each version,
along with the timestamps indicating the lifetime of thatsien. Figure 4 shows a fragment of the time-
varying document that captures the history of Kjetil. Treginent is compact in the sense that each edit re-
sults in only a small, localized change to the document. diufe 4 the transaction-time lifetimes of each ele-
ment are represented with an optional
<tv:tinestanp_TransExt ent > sub-element. If the timestamp is missing, the element leasame

<at hl et e>
<at hNanme>Kj eti| Andre Aanodt</at hNanme> won a nmedal in
<medal ntype="gol d">Men’s Comnbi ned</ nmedal >

</ at hl et e>

Figure 3: Kjetil won a Gold medal, as 8002- 07- 01

lifetime as its enclosing element. For example, there ae<et hl et e> elements with different life-
times since the content of the element has changed. Thedesown of<at hl et e> has two<nedal >
elements because the medal information is revised. Therenany different ways to represent the ver-
sions in a time-varying document; the methods differ in iaretements are timestamped, how the elements
are timestamped, and how changes are represented (elgappeasnly differences between versions are
represented).

<at hl ete_Repltenr
<at hl et e_Ver si on>
<tv:tinmestanp_TransExtent begi n="2002-01-01" end="2002-03-01"/>
<at hl ete>
<at hName>Kj eti| Andre Aanodt </ at hNane>
</ at hl et e>
</ at hl et e_Ver si on>
<at hl et e_Versi on>
<tv:tinmestanp_TransExtent begi n="2002-03-01" end="9999-12-31"/>
<at hl ete>
<at hName>Kj eti| Andre Aanodt </ at hNane>won a medal in
<nedal _Replten>
<nmedal _Ver si on>
<tv:tinmestanp_TransExtent begi n="2002-03-01" end="2002-07-01"/>
<medal ntype="silver">Men’s Conbi ned</ nedal >
<nmedal _Ver si on>
<nmedal _Ver si on>
<tv:timestanp_TransExtent begi n="2002-07-01" end="9999-12-31"/>
<medal ntype="gol d">Men’s Comnbi ned</ nmedal >
<nedal Versi on>
</ medal _Repl tenp
</ athl et e>
</ at hl et e_Ver si on>
</ athl ete_Replten>

Figure 4: Snippet of a Temporal Document

Keeping the history in a document or data collection is udefgause it provides the ability to recover
past versions, track changes over time, and evaluate taingoeries [17]. But it also changes the nature
of validation against a schema. Assume that thewiled ynpi ¢c. xsd contains the snapshot schema
for winter.xml. The snapshot schema is the schema for awithdil version. The snapshot schema is a
valuable guide for editing and querying individual versiol fragment of the schema is given in Figure 5.
Note that the schema describes the structure of the fragshemin in Figure 1, Figure 2, and Figure 3. The

10

problem is that although individual versions conform to fithema, the time-varying document does not.
So winOlympic.xsd cannot be used (directly) to validatettime-varying document of Figure 4.

<el enent name="at hl ete" >
<conpl exType m xed="true">
<sequence>
<el ement nane="at hNane" type="string"/>
<el enent ref="medal " m nCccurs="0" maxCccur s="unbounded"/ >
<el enent name="bi rt hPl ace" type="string" m nOccurs="0"
maxQccur s="1"/ >
</ sequence>
<attribute nane="age" type="nonNegativelnteger"” use="required"/>
</ conpl exType>
</ el ement >

Figure 5:wi nd ynpi c. xsd

The snapshot schema could be used indirectly for validdtioimdividually reconstituting and validat-
ing each version. But validating every version can be exgernfthe changes are frequent or the document
is large (e.g., if the document is a database). While the &/idlympics document may not change often,
contrast this with, e.g., a Customer Relationship Managerdatabase for a large company. Thousands
of calls and service interactions may be recorded every ddys would lead to a very large number of
versions, making it expensive to instantiate and validatehendividually. The number of versions could
further be increased by the presence of both valid and tctinsatime.

To validate a time-varying document, a new, different sché&smeeded. The schema for a time-varying
document should take into account the elements (and a#spand their associated timestamps, specify the
kind(s) of time involved, provide hints on how the elemerasywover time, and accommodate differences
in version and timestamp representation. Since this sch@thexpress how the time-varying information
is represented, we call it thepresentational schemal'he representational schema will be related to the
underlying snapshot schema, and will allow the time-vayydocument to be validated using a conventional
XML Schema validator (though not fully, as discussed in timghfer sections). The representational schema
will also be important in constructing, evaluating, andimjizing temporal queries. Both the person who is
formulating a query and the database need to know which elsnirethe document are temporal elements
since additional operations, like temporal slicing, arplEgble to the temporal elements. Thus the schema
language should have some capability of designating temhp@ments.

Finally, temporal elements can have additional consiairbr instance, it might be important to stipu-
late that an athlete can win only a single medal in an evethipadih the existence and/or type of medal may
change over time (for instance if the athlete is disqualjfiethe valid timecomponent of this constraint
is that only one medal appears in |at hl et e> element at any point in time. But theansaction time
component of the constraint is that multiple versions capriesent (as the element is modified). A schema
language for a temporal document needs to have some way@fyspg and enforcing such constraints.

The conventional XML Schema validator is also incapableutif fvalidating a time-varying document
using the representational schema. First, XML Schema isuificiently expressive to enforce temporal
constraints. For example, XML Schema cannot specify thieviahg (desirable) schema constraint: the
transaction-time lifetime of amedal > element should always be contained in the transaction-ifiee
time of its parenkat hl et e> element. Second, a conventional XML Schema document auguherith
timestamps to denote time-varying data cannot, in genieealised to validate a snapshot of a time-varying
document. A snapshot is an instance of a time-varying dootiatea single point in time. For instance, if

11

the schema asserts that an element is mandatory (minOdgursthe context of another element, there is
no way to ensure that the element is in every snapshot siecgléiments timestamp may indicate that it has
a shorter lifetime than its parent (resulting in times dgrimhich the element is not present, violating this
integrity constraint); XML Schema provides no mechanismréasoning about the timestamps.

Even though the representational and snapshot schemasetyaelated, there are no existing tech-
niques to automatically derive a representational scheama & snapshot schema (or vice-versa). The lack
of an automatic technique means that users have to resaitiio@methods to construct a representational
schema. Relying on ad hoc methods limit data independenice.d&signer of a schema for time-varying
data has to make a variety of decisions, such as whether &stimmp with periods or with temporal el-
ements [32], which are sets of non-overlapping periods ahidlwelements should be time-varying. By
adopting a tiered approach, where the snapshot XML Schesngdral annotations, and physical anno-
tations are separate documents, individual schema desigsiahs can be specified and changed, often
without impacting the other design decisions, or indeed,ftocessing of tools. For example, a tool that
computes a snapshot should be concerned primarily withrtapshot schema, the logical and physical as-
pects of time-varying information should only affect (paps) the efficiency of that tool, not its correctness.
With physical data independence, only a few applicatiomas #ine concerned with representational details
would need to be changed.

Hence, an improved tool support for representing and vatigaime-varying information is needed.
Creating a time-varying XML document and representatiaealema for that document is potentially labor-
intensive. Currently a user has to manually edit the timgig document to insert timestamps indicating
when versions of XML data are valid (for valid time) or are geat in the document (for transaction time).
The user also has to modify the snapshot schema to define titexsynd semantics of the timestamps.
The entire process would be repeated if a new timestampseptation were desired. It would be better
to have automated tools to create, maintain, and updatevimyeng documents when the representation of
the timestamped elements changes.

Schemas designers often edit their schemas, refining aridgadtment and attribute types. As an
example, in2003- 01- 01, the designers of Winter Olympic schema figure out that tHeg aeed the
name of the sport in which the athlete has won the medal. Aey tlecide to add that as a “required”
attribute of the<medal > element. As new release of this schema is developed, all Xduchents that
were instances of its earlier version will be rendered iiyakith the maintainers responsible for updating
their XML documents.

One challenge with schema versioning is that, in this p@kquicksand, anything can change, and
thus must be versioned: the snapshot documents, the bammactine temporal annotations, the physical
annotations, the schema documents included by these datsinegen the schemas of these schema com-
ponents. And, because the physical annotations can chidrggepncrete representation within a temporal
XML document can vary. Thus, it becomes even more difficuleten define validation in such a fluid
environment.

Schema versioning should offer a solution to the above pralidy enabling intelligent handling of any
temporal mismatch between data and its schemas. A framewoeded that would retain past data and
past schemas, while allowing the current data and schemaéatbacted.

This work has many real-world applications. As an example Botanic Garden and Botanical Museum
in Berlin-Dahlem (BGBM) maintains a repository of XML Schenfaselated to index terms, keywords,
biodiversity data about specimens and observations, teeth-data about collections, organizations, and
networks, and various wrapper and configuration files. Mdghese XML schemas have had multiple
versions over the last two to three years. The BioCASE CutledProfile is up to version 1.24; the Access

thtt p: / / www. bgbm or g
2ht t p: / / www. bgbm or g/ bi odi vi nf/ schema/ def aul t . asp

12

to Biological Collection Data is up to version 2.06.

As another example, tHeharmacogenetics Knowledge BgBtarmGKB) “contains genomic, pheno-
type and clinical information collected from ongoing phacngenetic studies.” Its schema is up to version
4.0; its evolution is documentédThe FHARMGKB XML schema was designed conventionally, not utiliz-
ing an architecture that supports schema versioning. Asret@ases of this schema were developed (for
example, on May 12, 2004 Version 4.0, the latest version, nekemsed), all XML documents that were
instances of this schema were rendered invalid, with thentaimiers responsible for updating their XML
documents. The architecture proposed in this thesis sefzast data and past schemas, while always al-
lowing the current data and schema to be extracted, for thalsare not schema-versioning aware. This
example was discussed further in detail elsewhere [13].

ht t p: / / www. phar ngkb. or g/
*htt p: // www. phar ngkb. or g/ schena/ hi story. ht m

13

3 Background
3.1 XML Schema

The extensible markup language XML has recently emergedhasvastandard for information representa-
tion and exchange on the Internet. It has gained populasityefpresenting many classes of data, including
structured documents, heterogeneous and semi-strugteerdls, data from scientific experiments and sim-
ulations, digitized images, among others. Since XML dageitdescribing, XML is considered one of the
most promising means to define semi-structured data, wkiekipected to be ubiquitous in large volumes
from diverse data sources and applications on the web. XNbwalusers to make up any new tags for
descriptive markup for their own applications. Such usgfirgbd tags on data elements can identify the
semantics of data. The relationships between elementsecdaflmed by nested structures and references.

In the relational data model,sthemalefines the structure of each relation in a database. Eaatiorel
has a very simple structure: a relation is a list of attribyteith each attribute having a specified data type.
The schema also includes integrity constraints, such aspéeification of primary and foreign keys. In a
similar manner, an XML Schema document defines the validtra for an XML document. But an XML
document has a far more complex structure than a relationochment is a (deeply) nested collection of
elements, with each element potentially having (text) eonand attributes.

XML Schema, published as a W3C Recommendation in May 200]., [8bne of the several XML
schema languages. It was the first separate schema languagBlf to achieve recommendation status
by the W3C. An XML schema is a description of a type of XML do@nt) typically expressed in terms
of constraints on the structure and content of documenthaiftype, beyond the basic syntax constraints
imposed by XML itself. Thus an XML schema provides a view af ttocument type at a relatively high
level of abstraction. The XML Schema language is also reteto as XML Schema Definition (XSD).

The Document Type Definition (DTD) language [10], which igiveato the XML specification, was
being used as a schema language before XML Schemas werduogith XML Schema language was
introduced in order to overcome some of the limitations ofil3Tike different syntax from that of XML,
limited data type capability, and limited data types coriigiiéty with those found in the databases.

XML Schema has many advancements over DTDs. Schemas atenwinitthe same syntax as the
instance documents. They have more than 44 built-in datastgvailable, over only 10 data types for
DTDs. A schema designer can also create his/her own data tfypguired. XML 1.1 introduced object-
oriented data types that support inheritance and can exdemestrict a type. It also has a support for
different keys like primary key and referenced key as opgdseonly ID and IDREF support in DTDs.

The process of checking to see if an XML document conformsstthema is calledalidation which is
separate from XML's core concept of syntactic well-formess All XML documents must be well-formed,
but it is not required that a document be valid unless the XMtser is “validating”, in which case the
document is also checked for the conformance with its aatemgtischema. A well formed document obeys
the basic rules of XML established for the structural desifja document. Moreover a valid document also
respects the rules dictated by its corresponding XML Schema

The parser, XML'’s one of the core technologies provides tarface to an XML document, exposing its
contents through a well-specified API. At present, two m&Bt specifications define how XML parsers
work: SAX [25] and DOM [9]. The DOM specification defines a tte@sed approach to navigating an
XML document. It processes XML data and creates an objéettmd hierarchical representation of the
document that can be navigated at run-time. The tree-bas&€tiDOM parser creates an internal tree based
on the hierarchical structure of the XML data. It can be natég and manipulated from the software,
and it stays in memory until it is released. DOM uses funditirat return parent and child nodes, giving
programmer full access to the XML data and providing theigitib interrogate and manipulate these nodes.

The SAX specification defines an event-based approach wheeeber scans through XML data, call-

14

ing handler functions whenever certain parts of the docurteg., text nodes or processing instructions)
are found. In SAX’s event-based system, the parser doesgdtes any internal representation of the doc-
ument. Instead, the parser calls handler functions wherainegvents (defined by the SAX specification)
take place. These events may include the start and the e afocument, finding a text node, finding
child elements, and hitting a malformed element.

3.2 Temporal Databases

Most applications of database technology are temporal fuared18]. Some examples include financial
applications such as banking and accounting; record-kgegpplications such as personnel, and inventory
management; scheduling applications such as airline), teaid hotel reservations; and scientific applica-
tions such as weather monitoring and forecasting. Appboatsuch as these rely on temporal databases,
which record time-referenced data.

A temporal database is a database with built-in supporirfte tispects, e.g. a temporal data model and
a temporal version of a structured query language. In a aegldtabase, there is no concept of time. The
database has a current state, and that's all can be asked bbatemporal database, the database includes
information about when things happened.

More specifically the temporal aspects usually include twbagonal time dimensions: valid time and
transaction time. These two kinds together fdritemporal datg17].

Valid Time: Valid time associates with a fact the time period during ehhihe fact is true with respect
to the real world. Valid time thus captures the time-varystgtes of the mini-world. All facts have
a valid time by definition. However, the valid time of a factynaot necessarily be recorded in the
database, for any of a number of reasons.

Transaction Time: Transaction time associates with the fact the time periadng which the fact is
stored in the database. This enables queries that shovwatieeo$the database at a given time. Unlike
valid time, transaction time may be associated with anylideta entity, not only with facts. Thus,
all database entities have a transaction-time aspect. dadmpisct may or may not, at the database
designers discretion, be captured in the database. Theagton-time aspect of a database entity has
a duration: from insertion to deletion, with multiple indens and deletions being possible for the
same entity. Transaction time captures the time-varyiatpstof the database, and applications that
demand accountability or "traceability” rely on databatdes record transaction time.

Bitemporal Relations: A bi-temporal relation contains both valid and transactiione. Thus, it provides
both temporal rollback and historical information.

Consider the following example emphasizing the use of batlidime and transaction time in a
database table:
Joe was born on Jari*]1 2002. His father happily registered his son’s birth-datddan 2¢, 2002. In the Cit-
izen table, two column¥al i dBegi n andVal i dEnd would be present to record the date when a citizen
is alive. Although the registration was done on J&f, the database states that the information is valid since
Jan F. SoVal i dBegi n contains Jan®l. Joe’s record is valid while he is alive. Séal i dEnd contains
an infinity value. To keep a track of the date when the recorsliwserted into the table two more fields are
added to the Citizen tabl&r ansacti onSt art andTr ansacti onSt op. Transacti onStart is
the time a transaction inserted that data, @ndnsact i onSt op is the time that a transacti®uperseded
that data (or “until changed” if it has not yet been superdgdgor this record, thdr ansacti onSt art
would contain Jan'? while Tr ansact i onSt op would contain “until changed”. What happens if the
data entry operator enters Joe’s birth date as Jgr2001 instead of Jan‘4, 2002? When this is realized

15

e.g., onJan 10, 2002, the old transaction started on J&f, 2002 containing/al i dEnd date as Jan“i,
2001 would be terminated and a new record containing cobiettt date inVal i dBegi n column would
be inserted. Th@r ansact i onSt op column for this record would have a value Jari1@002.

In the above example, the Citizen table is a bitemporal j&lihee it maintains both valid and transaction
times for a every record. Thus, it is possible to rollback gipalar record to a past date. In addition , it
also provides all historical information about a record.

3.3 Schema Versioning

Software systems and especially databases undergo fitecjusmges following an initial implementation.
Lientz has shown that 50% or more of programmer effort areses result of system modifications after
the implementation [19]. Sjoberg has also shown that theesysnodifications that cause changes to the
structure of the data are relatively frequent [26, 27]. Assauit, modifying the database schema is a
common but often a troublesome occurrence in database etiraiion.

Schema versioningeals with the need to retain current data and software rsyBiactionality in the
face of changing structure of the data [24]. It is often natgtical to simultaneously replace all the de-
ployments of the old schemas with the new ones. So applicatidll need to cope with different versions
coexisting in the system. Hence, versioning mechanismaMih $chema should support creation of new
versions, and the schema processors should be able to Hardlestances defined by different versions.
Thus schema versioning should offer a solution to the problty enabling intelligent handling of any
temporal mismatch between data and the data structures.

Schema versioning has been previously researched in thtextaf temporal databases [23]. But an
XML schema is a grammar specification, unlike a (relatiom}abase schema, so new techniques are
required to handle schema versioning.

Since XML Schema changes are very common in the industrye thas been some effort to address
this issue. Some white papers [14, 7] discuss the need fensgersioning and some common techniques
used in the industry to handle it. According to Gabriel, savhéhe important reasons for changes in the
XML schema are as follows [14].

Extending the scope of a schema.

Changing constraints.

Bug-fixing.

Enabling collaborative development.

The previous literature also discusses some of the comnebinitpues and the best practices currently used
to reduce the effects of schema changes on the system naigteand recommend that schema versioning
should be a part of an integrated system evolution plan.

16

4 Previous Work

Methods to represent temporal data and documents on theavelblen actively researched. This research
has covered a wide range of issues that include architectoreollecting document versions [11], strategies
for storing versions [6], studies on the frequency of datange [6], and temporal query languages [15].
The logical representation of deltas between the versiowistiae aspects of physical storage policy for
storing those versions have been proposed so as to maxingzpace utilization [21]. Grandi has created
a bibliography of previous work in this area [16].

A logical data model based on XPath for capturing the entistoly of an XML document is also
proposed [1]. The paper discusses physical represergatibthe document and proposes two specific
representations. Although the paper examines the consistef a XML document in a limited context,
it does not mention modified XML schema for representatiod i validation, nor does it consider the
general problem of validating against a temporal schcemiae dpproach does not provide logical and
physical data independence. It cannot check temporalreanist as well since there is no notion of temporal
constraint.

Version and source control for schemas and schema objenteided, especially in complex, multi-
enterprise development environments. The XML Schema wgrigroup at W3C has discussed desirable
behaviors for use cases that involve schema versioning ih ¥3@]. Various techniques to support evolu-
tion of XML schemas, where they allow for extensibility iretbriginal design have also been proposed [14].
The emphasis of the paper is to avoid changes to the exigiiplications by anticipating changes to the
schemas and then designing them for evolution. This is #fgi@chieved through a careful use of wild-
cards, allowing extensions through namespaces, allowaptications to ignore unknown objects, and forc-
ing applications to understand unknown objects when narapgon is available. This approach does not
address the whole problem, as many schema changes canngiressed in their limited notations.

Some version control tools (that are designed for text files)e also been developed for data and
schema varying XML documents (e.g., [20]). But, since tee-structured data has very different semantics
as compared to text, these tools are not very effective. @uachpproach also lacks the support for any
mechanisms for their validation.

Schema versioning has been previously researched in thtextaf temporal databases [23]. But an
XML schema is a grammar specification, unlike a (relatiom}abase schema, so new techniques are
required. Although various XML schema languages have beepmoged in the literature and in the com-
mercial arena, none model schema changes nor provide nergioNe chose to base our research on XML
Schema because it is backed by the W3C and is the most widely-achema language.

The previous group working on the TAU Project at the Comp&eience Department at the Univer-
sity of Arizona has developed a theoretical framework faadzgersioning in XML documents. The basic
architecture of the system along with base schemas for texhponotation, physical annotation, and the
temporal bundle were also created. The initial implemémadf the 7VALIDATOR, SQUASH and UN-
SQUASHtools to handle data versioning was also developed.

To summarize, in this research we extend the existii§chema system in following ways.

¢ Reimplement the toolsVALIDATOR, SQUASH and UNSQUASH for XML 1.1 specification with a
new design keeping schema versioning in mind.

e Propose a new representatiormn-decomposed representatidor temporal documents.

e Extend the tools to support schema versioning.

17

5 Architecture

In this section we describe the overall architectureX$chema and illustrate with an example. The design

and implementation details of the tools are explained @rrth Section 7.

0. XML Schema

i

1. TB Schema

2. TX Schema

3. PX Schema

4. Base Schema

A

5

8. Non-Temporal Data

|

5. Temporal Bundle

l

6. Temporal Annotation

7. Physical Annotatio

Schema
Mapper

Y

9. Temporal Data

. 10. Representational

Schema

\

Legend of Arrows

EEmm—

Input/Output References Namespace

Figure 6: Overall Architecture

Figure 6 illustrates the architecture ©KSchema. Only those components shaded in the figure are spe-
cific to an individual time-varying document and need to bepdied by a user. The designer annotates the
snapshot schema with temporal annotations (box 6). Thedeahannotations together with the snapshot
schema form the logical schema.

Figure 7 provides an extract of the temporal annotationshenwtinOlympic schema. The temporal
annotations specify a variety of characteristics such astlér an element or attribute varies over valid time
or transaction time, whether its lifetime is described asrgtiouous state or a single event, whether the item
itself may appear at certain times (and not at others), argthhn its content changes. Annotations can be
nested, enabling the target to be relative to that of itsrgaeand inheriting as defaults the kind, content, and
existence attribute values specified in the parent. Thibatitr ‘existence’ indicates whether the element can
be absent at some times and present at others. As an exanegbeesence of existence="varyingWithGaps”
for anat hl et eTeamindicates that a team for a country may be present at soméspaitime and not
at other points in time. The attribute ‘content’ indicatelsather the element’s content can change over the
time. An elements content is a string representation ofriteédiate content, i.e., text, sub-element names,
and sub-element order. Elements that are not describechasviirying are static and must have the same
content and existence across every XML document in box 8. sthema for the temporal annotations
document is given by TXSchema (box 2).

18

<?xm version="1.0" encodi ng="UTF-8"7?>
<t enpor al Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TXSchenma"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://wMv. cs. ari zona. edu/ t au/ t auXSchema/ TXSchenma
TXSchema. xsd" >

<def aul t >

<f ormat pl ugi n="XM_.Schema" granul arity="gDbay"/>
</ defaul t>

<itemtarget="/w nd ynpi c/ country/athl eteTeani >
<transactionTi me content="constant" existence="varyi ngWthGaps">
<maxi mal Exi stence begi n="1924-01-01" />
</transactionTi ne>
<item dentifier nane="t eamNanme" tinmeD nension="transactionTi nme">
<field path="./teamNane"/>
</litem dentifier>
<litenmp

<itemtarget="/w nd ynpi c/country/ at hl et eTean at hl et e/ nedal ">
<val i dTi me/ >
<transactionTi ne/ >
<item dentifier name="medal I d1" tinmeD nmensi on="bitenporal ">
<field path="./text"/>
<field path="../athNane"/>
</item dentifier>
<litenmp

</ tenpor al Annot ati ons>

Figure 7: Sample WinOlympic Temporal Annotation

The next design step is to create the physical annotatioms {h The physical annotations specify
the timestamp representation options chosen by the userexéerpt of the physical annotations for the
winOlympic schema is given in Figure 8

Physical annotations play two important roles.

e They help to define where the physical timestamps will begaa@ersioning level). The location
of the timestamps is independent of which components vagy time (as specified by the temporal
annotations). Two documents with the same logical infoiomatvill look very different if we change
the location of the physical timestamp. For example, algfiothe elements athleteTeam and medal
are time-varying, the user may choose to place the physicaktamp at the country and athlete level.
Whenever any element below medal changes, the entire@ttiknent is repeated.

e The physical annotations also define the type of timestaord(ith valid time and transaction time).
A timestamp can be one of two typestepor extent An extent timestamp specifies both the start and
end instants in the timestamps period. In contrast a step-asonstant (step) timestamp represents
only the start instant. The end instant is implicitly assdne be just prior to the start of the next
version, omowfor the current version. However, one cannot use step tengs$ when there might be
“gaps” in time between successive versions. Extent timgssado not have this limitation. Changing
even one timestamp from step to extent can make a big differeanthe representation.

The schema for the physical annotations document is PXSzlfleox 3).7XSchema supplies a default

19

<?xm version="1.0" encodi ng="UTF-8"7?>
<physi cal Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ PXSchena"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://wMv. cs. ari zona. edu/ t au/ t auXSchema/ PXSchenma
PXSchema. xsd" >

<def aul t >

<format plugi n="XM_.Schema" granul arity="days"/>
</ defaul t>

<stanp target="/w nQA ynpi c/country">
<st anpKi nd ti nmeDi nensi on="transacti onTi ne" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nQ ynpi ¢/ country/ athl eteTeant at hl ete">
<st anpKi nd ti nmeDi nensi on="transacti onTi ne" stanpBounds="step"/>
</ st anp>

</ physi cal Annot ati ons>

Figure 8: Sample WinOlympic Physical Annotation

set of physical annotations, which is to timestamp the réement with valid and transaction time using
step timestamps, so the physical annotations are optional.

We emphasize that the focus of physical annotation is orudagtrelevant aspects of physical repre-
sentations, not on the specific representations themseheslesign of which is itself challenging and is
described in detail in Section 8

The temporal and physical annotations are orthogonal awve $80 separate goals. A user can change
where the timestamps are located, independently of spegifile temporal characteristics of that particular
element. Thus two documents with the same logical inforomatwill look very different if we change
the location of the physical timestamp in physical annotatiThe temporal bundles (box 5) tie the base
schema, temporal annotations and physical annotatiorethiely Each bundle in this document contains
sub-elements that associate a specific snapshot schemimjtbral and physical annotations, along with
the time span during which the association was in effect.

At this point, the designer is finished. She has written omeentional XML schema (box 4), specified
two sets of annotations (boxes 6 and 7) and provided thenlinkiformation via the bundle document (box
5). The boxes 1, 2, and 3 are provided by us while, XML Scheroa () is provided by W3C. Thus new
time-varying schemas can be quickly and easily developddiaployed.

20

6 Theoretical Framework

This section sketches the process of constructing a schenstime-varying document from a shapshot
schema. The goal of the construction process is to creatberscthat satisfies the snapshot validation
subsumption property, which is described in detail below.

6.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped elements. Astiamped element is an element
that has an associated timestamp. (A timestamped attrifautdoe modeled as a special case of a times-
tamped element.) Logically, the timestamp is a collectibtiroes (usually periods) chosen from one or
more temporal dimensions (e.g., valid time, transactioreji Without loss of generality, we will restrict
the discussion in this section to lifetimes that consist sfregle period in one temporal dimension. The
timestamp records (part of) the lifetime of an element. Wk wgie the notatior:” to signify that element

x has been timestamped. Let the lifetimexat be denoted as lifetimer{’). One constraint on the lifetime

is that the lifetime of an element must be contained in thetifife of each element that encloses it.

The snapshot operation extracts a complete snapshot otavinying document at a particular instant.
Timestamps are not represented in the snapshot. A snapstimiea replaces each timestamped element
xT with its non-timestamped copyif ¢ is in lifetime(z”') or with the empty string, otherwise. The snapshot
operation is denoted as

snp(t,DT) =D
where D is the snapshot at time t of the time-varying docuniht

Let ST be a representational schema for a time-varying document The snapshot validation sub-
sumption property captures the idea that, at the very l¢hstrepresentational schema must ensure that
every snapshot of the document is valid with respect to thpsimot schema. Letdt(.S, D) represents the
validation status of documer® with respect to schem8. The status is true if the document is valid but
false otherwise. Validation also applies to time-varyimgaments, e.gyldt” (ST, DT) is the validation
status of DT’ with respect to a representational sche$ia, using a temporal validator.

Property [Snapshot Validation Subsumption] Let S be an XML Schemaudwmnt, D™ be a time-
varying XML document, and”’ be a representational schema, also an XML Schema docussien. said
to have snapshot validation subsumption with respect to S if

oldtT (ST, DT) < Vt[3lifetime(DT) = vidt(S, snp(t, DT))

Intuitively, the property asserts that a good represeamatischema will validate only those time-varying
documents for which every snapshot conforms to the snagsi@ma. The subsumption property is de-
picted in Figure 9.

6.2 SchemaPath

SchemaPath is a language for locating element definitiomsdnapshot schema. Physical and temporal
annotations annotate element definitions in the snapshenst. Each annotation has a “target” attribute
that designates the location of an element in the schemavalbe of the target attribute is a SchemaPath
expression. SchemaPath is very similar to XPath, but haéesiahit data model and a reduced functionality.
XPath’s data model is tree-like structure that is createghdmging an instance of a schema, i.e., an XML
document, but SchemaPath’s data model is a graph that iedrbg parsing the schema itself. The data
model is created as follows. Each element and the attrilefiaition is a node in the graph. A “child” edge
is added from a node to each node that represents a posdibddesunent of the node. There is also a special
“attribute” edge from a node to each attribute of that node.

21

vidt" (87,0)

snp(t,DT) Ve

vidt(S,D)

Figure 9: Snapshot Validation Subsumption

SchemaPath expressions, like XPath expressions, are sechpba number of steps. Each step consists
of an axis (again, like XPath, with the exception that pratlis are not supported). SchemaPath supports
only three axes: parent, child and attribute (unlike XPatticlw supports many; in particular there is no
descendant axis, or the “any element wild-card” axis thata®s non-neighbors of the context node in the
graph). The abbreviated syntax ‘may be used to specify the current context node.

SchemaPath does allow two wildcards, the to select all elements and thé¢ * union operation.
Schemas can be recursive. Using and ‘|’ in combination provides a way to specify elements in a
recursive schema that is more specific than the XPathi Wildcard. SO'C | */+x/ C | */*[*[+]C
could specify the same elements &¢ C'. The * ' may not be in the final step or be the entire expression.
The union operation is only be allowed if the final labels rhate’ and ‘| * constructs are not supported in
the current implementation.

SchemaPath expressions are evaluated exactly like XPptesstons. Each step is evaluated with re-
spect to a context node. For instance the expresgiomi‘l d: : nane(w nol ynpi cs) ’ locates the
winolympics child relative to the schema root. SchemaPathan abbreviated syntax similar to XPath, so
the above expression can be succinctly composefiwasriol ynpi cs’. As another example, the expres-
sion‘attri but e: : name(age) ', which locates the age attribute of the current node, caaltieeviated

as ‘eage’.

6.3 Content and Existence Variance

The data stored in XML documents may change over time. Itéuliso be able to validate the way data
can change. The XSchema standard provides a way to validdtedécuments, but does not define how an
XML document is allowed to change with time. To meet this neetSchema was created as an extension
of the XML standard that validates time-varying XML docurtgen

The two ways that a node in an XML document can vary with time (&) in its content or (2) in its
existence. The content of an item includes the entire sedfwoted at a node. Each branch in the sub-tree
terminates at the first item on the branch, or at a leaf (tekteyaattribute, empty element). Some nodes,
especially those containing loose text, will change theitent. Some nodes will exist in one version of an
XML instance document but will not be present in anotheriegrsOther nodes will have both their content
and existence change over time.

An item definition specifies how a data node may vary in its eohand its existence. Let’s first
consider how an item specifies existence. There are thregbpmslternatives. The first is “varying with
gaps”, which means that each of its corresponding data nodg<e present in some versions of the XML
instance document and absent in others. A second, moritigstform is “varying without gaps.” The data

22

node is not required to always be present. When it is prebent imay not be any gaps in its existence. The
third value is “constant”. Then the corresponding data rie@gther always present or never present. Again
the existence-constant can have many different semarifiesshave identified three of them and provide
support for the first two in our implementation.

e Existence is constant over all time (exists in every instatifetime of universe).
e Existence is constant over document lifetime (documeetitife may have gaps).

e Existence is constant over immediate ancestors items&nhfess.

The other aspect an item may specify is content. The confemtiata node depends on its node type.
The content may change in the data node at any time if thesmoreling item specifies content as varying.
There are restrictions on how a data nodes content may chareeime when the corresponding item
specifies content as constant. The restrictions are diffdoe each of the type of content (e.g., elements,
attributes and loose text). The detailed explanation ofék&ictions can be found in [30].

Content-varying and existence-varying are orthogonatepts. The only restriction is that, when an
item is content-constant, the item’s immediate descesdsimuld be existence-content, but switching of
parents is allowed. When an item specifies content or existas varying, the corresponding data node
may vary with time, but is not required to.

6.4 Items

TXSchema introduces the concept of “items.” An item is a abiten of XML elements that represent the
same real-world entity. An item is a logical entity that exed over time through various versions. An ltem
can be composed of any number of elements. Several elerhahtsoimpose the same item may exist in the
same snapshot document.

In a temporal database, a pair of value-equivalent tuplesbeacoalesced, or replaced by a single
tuple that has a lifespan equivalent to the union of the p#fgspans.Coalescings an important process
in reducing the size of a data collection (since the two @iglan be replaced by a single tuple) and in
computing the maximal temporal extent of value-equivateptes. In a similar manner, elements in two
snapshots of a temporal XML document cartémmporally-associatedA temporal association between the
elements is possible when the element has the stemeidentifierin both snapshots. We will sometimes
refer to the process of associating a pair of elementgidsg the elements. When two or more elements is
glued, an item is created.

Only temporal elements (that is, elements of types that haeenporal annotation) are candidates for
gluing. Determining which pairs should be glued dependsaanfactors: the type of the element, and the
item identifier for the elements type. The type of an elemgiité elements definition in the schema. Only
elements of the same type can be glued. An item identifiereseity semantically identify elements of a
particular type. The identifier is a list of XPath expressigmuch like a key in XML Schema) so we first
define what it means to evaluate an XPath expression.

Definition [XPath evaluation] LetEval(n, E) denote the result of evaluating an XPath expression
E from a context node:. Given a list of XPath expressiond;, = (F1,, Ek), then Eval(n,L) =
(Ewval(n, E1),, Eval(n, Ek)).

Since an XPath expression evaluates to a list of nalles|(n, L) evaluates to a list of lists.

Definition [ltem identifier] An item identifier for a typeT’, is a list of XPath expression,, such that
the evaluation of. partitions the set of typ@ elements in a (temporal) document. Each partition is an.item

An item identifier has a target and at least one field, an iteomra keyref. A target is a SchemaPath
expression that specifies an element’s location in the siéRsA field, itemref and a keyref each specify

23

part of an item identifier. A field contains a path, a SchemaRapression that specifies an element or
attribute that is part of the item identifier. A keyref refeces a snapshot key and an itemref references an
item identifier. This way an item may be specified in terms oéaisting item or schema key. An itemref
and keyref use the name of an item/key and are not Schemafadssions. The item identifier may consist
of any combination of field(s), itemref(s) and keyref(s).ckdield expression specifies either an attribute
or an element. If an attribute is indicated, then the itenmtifier uses the attribute’s value. If an element is
indicated, then the item identifier uses the element’s laese The current implementation supports only
fields.

A schema designer specifies the item identifiers for the teat@bements. As an example, a designer
might specify the following item identifiers for the tempbedements<at hl et e>and<nedal >.

e <athl ete> = [at hNane/ *]

e <nedal > = [../athName/*, ./*]

The item identifier for arcat hl et e>is the name of the athlete, while the item identifierforedal >
is the athlete’s name (the parent’s item identifier) comébivwéth the description of the event (the text within
the medal element). An item identifier is similar to a (tengpkey in that it is used for identification.
Unlike a key however, an item identifier is not a constraiather it is a helpful tool in the complex process
of computing versions.

Over time, many elements in a temporal document may belorlgetsame item as the item evolves.
The association of these elements in an item is defined below.

Definition [Temporal association] Let be an element of typ& in the i** snapshot of a temporal
document. Lety be an element of typ& in the j** snapshot of the document. Finally |&tbe the
item identifier for elements of typ@. Then x is temporally-associated gaf and only if Eval(x, L) =
FEwval(y, L) and it is not the case that there exists an elemafttype T' in a snapshot between tk#& and
4% snapshots such tha&tval(z, L) = Eval(z, L).

A temporal association relates elements that are adjaceimé and that belong to the same item. For
instance, the athlete element in Figure 1 is temporallycata to the athlete element in Figure 2 but not
the athlete element in Figure 3 (though the athlete elemmehtgure 2 is temporally related to the one in
Figure 3).

2002-01-01 2002-03-01 2002-07-01

doc doc doc
athlete f— athlete f— athlete
at hNane @t hNane t ext at hNane t ext
‘ nedal nedal
Kjetil Kjetil ‘ Kjetil ‘
si | ver gol d

Figure 10: Items and Versions

24

6.5 Versions

When an item is temporally associated to an element in a napstiot, the association either creates a new
version of the item or extends the lifetime of the latest igrsvithin the item. A version is extended when
“no difference” is detected in the associated element. ellgffices are observed within the context of the
Document Object Model (DOM).

Definition [DOM equivalence] A pair of elements is DOM equivalent if thair meets the following
conditions.

e Their parents are the same item or their parents are noneteinglements.

e They have the same number of children.

For each child that is a temporal element, the child is theesié@m as the corresponding child of the
other (in a lexical ordering of the children).

For each child that is something other than a temporal eletmenchild is the same value as the
corresponding child of the other (in a lexical ordering af thildren).

e They have the same set of attributes (an attribute is a haathee pair).

As an aside, we observe that DOM equivalence in a temporal Xbitext is akin to value equivalence
in a temporal relational database context [17]. DOM eqeiet is used to determine versions of an item,
as follows.

Definition [Version] Letx be an item of typel’ in a temporal document, with a lifetime that ends at
timet. Lety be an element of typ# in a snapshot at time+ k that is temporally associated to the latest
version ofz, vt. If vtis DOM equivalent tay then the lifetime obt is extended to include+ k. Otherwise,
versionuvt + 1, consisting ofy, is added to item.

A version’s lifetime is extended when the element from thet seaapshot (or a future snapshot) is DOM
equivalent (the lifetime can have gaps or holes, althouginbaa gap may violate a schema constraint as
described in section 6.3). A new version is created when adoeah association is not DOM equivalent.

Figure 10 depicts the items and versions in the example. Atradi representation of the DOM for
each snapshot of the document is shown. The items in the seguwé snapshots are connected within
each shaded region. There is one athlete item and one meuwfal Tthe athlete item has two versions; the
transition between versions is shown as a black stripe lsstwee regions.

6.6 Extending Temporal XML Schema Constraints

In this section we briefly discuss XML Schema constraints it temporal extensions. XML Schema
provides four types of constraints.

1. Identity constraints
2. Referential Integrity constraints

3. Cardinality constraints (in the form of minOccurs and @axgurs for sub-elements and required /
optional for attributes)

4. Datatype restrictions (which constrain the content efdbrresponding element or attribute)

25

The XML Schema constraints are snapshot constraints diegeatre restricted to a specific snapshot docu-
ment. These constraints need to be augmentedX&chema.

The time frame over which a constraint is applicable classitiinto one of two types, eitheequenced
or non-sequencedA temporal constraint is sequenced with respect to a sirailapshot constraint in the
schema document, if the semantics of the temporal consttam be expressed as the semantics of the
snapshot constraint applied at each point in time. A comgtienon-sequenced if it is applied to a temporal
element as a whole (including the lifetime of the data ept#yher than individual time slices.

Given a snapshot XML Schema constraint, we define the carnelpg temporal semantics itXSchema
in terms of a sequenced constraint. For example, a snapsdnalir{ality) constraint, “There should be be-
tween zero and four website URLs for each supplier,” has aessmpd equivalent of: “There should be
between zero and four website URLS for each supplier at gueiryt in time.”

Non-sequenced constraints are not defined based on snagidhoschema equivalents. An example
of a non-sequenced (cardinality) constraint is: “Thereusdhdve no more than ten website URLs for each
supplier in any year.”

Non-sequenced constraints are listed in the temporal atioos document. In a few cases (when
we extend a particular XML Schema constraint for additiohadctionality), sequenced constraints are
also listed in the temporal annotations document. Techieport document [33] further discusses the
sequenced and non-sequenced temporal annotations to theseétMma constraints in detail.

26

7 Tools and Algorithms

Our three-level schema specification approach enablegeauiools operating both on the schemas and
the data they describe. This section gives an overview asuite of tools and the algorithms used by them.

The tools are open-source and beta versions are availaBle The tools have been implemented in
Java using the DOM API [9]. The DOM API was chosen over SAX ABédo its ability to create an
object-oriented hierarchical representation of the XMlcuiment that can be navigated and manipulated
at the run-time. The primitives explained below use thiditgbof the DOM API to easily manipulate the
document-tree.

We first describe the details of the implementation prireitipushUp, pushDown and coalesce.
These primitives are used BWALIDATOR, SQUASH, UNSQUASH, and RESQUASH tools for manipulating
XML trees. SHEMA MAPPER a logical-to-representational mapper, is introduced.n&kis tool takes
as input the snapshot schema, temporal and physical alomstand generates a representational schema.
This representational schema is usedWALIDATOR to validate the given temporal document using a
conventional XML Schema validatot:VALIDATOR does the actual temporal schema and data validation.
Temporal data validation is a several-step process, a mpajarof this process being gluing elements to
form items. The items are then validated individually.

Other tools in the suite squash, unsquash and resquashdbmeots. Given a temporal schema (bun-
dle) and a set of snapshot documentsussH combines all of the snapshot documents into a single tem-
poral document. NSQUASH performs the opposite operation, breaking the single teadpmcument into
multiple snapshot documents. EBQUASH is just a combination of NSQUASH and SYUASH; given a
temporal document, an old physical annotation and a newigdlyannotation, RSQUASH changes the
representation of the given document as per the new phyaicedtation.

7.1 Implementation Primitives

As mentioned earlier, the temporal and physical annotatée orthogonal in nature; a user can change the
location of timestamps, independent of specifying the temalpcharacteristics of a particular element. The
representation of the temporal document will change adeglyd Thus, two documents having a single
temporal annotation can have different physical annatatamd hence different representations.

While processing a temporal document, one of the most firgtyuaeeded operations on the temporal
document moves the timestamygsor downin the hierarchy of XML elements defined by original snapshot
schema. Another operation needed by betLIDATOR and SUASH utilities coalescs the adjacent
versions from a given item. We decided to write primitive détions for these operations so that they could
be reused for building the tools with minimum efforts.We nd@scribe the primitive functions representing
these operations.

7.1.1 ThepushUp Function

Although temporal and physical annotations are orthogomaature, one restriction on the physical anno-
tation is that, at least a single timestamp should be located above the topmost temporal element in the
XML schema hierarchy. If a given physical annotation hasstamps at locations other than the temporal
elements, th@ushUp function moves the timestamps up in the hierarchy afteraszahg the items.

Consider the snapshot schema in Figure 11 and correspotelimgoral annotation (Figure 12) and
physical annotation (Figure 13). Figures 14-17 depict bteptep working of thgpushUp function when
applied to a temporal document having timestamps at thedeahplements.

The first tree representation in Figure 14 represents tlyggnali document before applying tipeishUp
function. The timestamps are present at elenms@®, which is temporal in nature (i.e., present in the

27

temporal annotation). TheushUp function moves the timestamp to eleme®{>, which is present in the
physical annotation. It results in the three copies of el&mé> corresponding to the three versions of item
B. Elements<A>, <C> and<D> are non-temporal in hature. Thus their contents are the sahéence are
duplicated in all the three versions.

<el ement nane="A">
<conpl exType m xed="true">
<sequence>
<el ement nane="B" type="string"/>
<el ement nane="C' type="string"/>
<el ement name="D' type="string"/>
</ sequence>
</ conpl exType>
</ el ement >

Figure 11: Snapshot Schema

<itemtarget="/A' B">
<transacti onTi e/ >
<itemdentifier name="A_id" tineDi mension="transactionTi ne">
<field path="./text"/>
</litem dentifier>
<litenp

Figure 12: Temporal Annotation

<stanp target="/A" datal ncl usi on="expandedVer si on" >
<stanpKi nd ti meDi mensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>

Figure 13: Physical Annotation

28

)

B

B

version3
[t4-t5)

version
[t2-t3)

O

Bl B2 B3

Bversionl
[t1-t2)

Original Document

Ai'(em

[t1-t5)
A

versionl

)

B

B B

version3
[t4-t5)

version
[t2-t3)

O

Bl B2 B3

version]]
[t1-t2)

Before callpushUp (Ajierm, » PhysicalAnnotation)

Figure 14: Example gbushUp

Aversionl
[t1-t5)

item item
)) Cversionl) D versionl
t1-t5 t1-t5
Bversionl B version B version3 [) [)
[t1-t2) [t2-t3) [t4-t5)

O O O

B1 B3 c D

Before call to functiorsplitChildVersions (A, » PhysicalAnnotatior)

A

versionl version2
[t1-t2) [t2-t5)
A A
B1 Citem Ditem
Ciert Dyeri Byersiona Bversion3
[t1-t2 [t1-t [t2-t3) [t4-t5)
c D B2 B3 C D

After first iteration of thirdfor loop in functionsplitChildVersions

Figure 15: Example gbushUp: Continued

29

[t2-t3) [t4-t5)

A A

version2 version2

SO0 S

A
- D -
B2 item item B3 item item
C C
verl IQ/er verl I?/er
[2-13) | [tot3 [4-5) | [t4-15

After seconditeration of thirdfor loop in functionsplitChildVersions

versionl

Figure 16: Example gbushUp: Continued

[t2-t3) [t4-t5)

A A A

versionl version2 version2
A A A
Bl C D B2 C D B3 C D
Final Result

Figure 17: Example gbushUp: Continued

30

ThepushUp function is used in 8UASH and RESQUASH tools. These tools first construct the temporal
document with the timestamps located at the temporal elem&he timestamps are then moved up in the
hierarchy to the elements present in the physical annatatio

The recursive algorithm fgpushUp is given in Figure 19. The function accepts an item repregeemt
of an XML element as one of its parameters. The algorithm lisg@n the root item in the temporal XML
document. If the root element is not an item, it is converted an item usingreateltem function before
pushUp is called. ThepushUp function recurses until it reaches the bottom of the XML tref that
point, it moves timestamps up in the hierarchy by using thetion splitChildVersions. The nestedor
loop in the functionsplitChildVersions may multiply the existing versions of the item by splittifgem
depending upon its versions’s overlap with its child itemsfsions. The child items from the versions of
the parent item are replaced by the child items’ versionoréng the child items not present in the physical
annotation. The timestamp is thus pushed one level up iniénarbhy, closer to the elements present in the
physical annotation.

Other helper functions used in the algorithm are as follows.

e isltem (e): The function checks whether the given XML elemethtas a representation of an item.

e createltem (g, timePeriod: The function creates a new XML element with the repred@riaf an
item and adds the given elemerdas the (single) version of newly create item with the timaqubof
the version beingimePeriod

e replace (src, targed): The function replaces thec element with thaargetelement.

e getTimePeriod (itm): The function returns the complete time-period of an itém, The time-period
with start time equal to the start time of the first version and time equal to the end time of the last
version of an item.

Figure 18 shows a slightly more complicated case, where éngbral elements are siblings of each
other. In this case, movement of timestaniizin the hierarchy could result in the multiplication of the
total number of versions depending upon the time overlapdi/idual versions from the sibling items. In
this case, two versions &fB> and two versions okC> give six versions okA> after the application of
pushUp function.

31

CQ/ersion cQ/ersionZ
[t2-t4) [t6-t8)

Iilersionl |ilersion
[t1-t3) [t5-17)

Bl B2

tl <t2<t3 <t4d & t5 <t6 <t7 <1t8

'AVersion
[t3-t4)

'AVersion
[t2-t3)

'AVersion
[t1-t2)

Aversion6
[t7-t8)

Aversions
[t6-t7)

[t5-t6)

A

A A A A

B1

Figure 18: Example gbushUp

32

Figure 19: Algorithm:pushUp

/lInputs
I/ itm - An element from a temporal document which is an item
[/l physicalAnnotation Parsed physical annotation document
/[Output
// Modified itm element
function pushUp (itm, physicalAnnotation
for each versionv of itm do
for each child element of vdo
if isltem(c)
replace(c, pushUp(c, physicalAnnotatio))
else
ci — createltem(c, getTimePeriod(itm))
replace(c, pushUp(ci, physicalAnnotatio))
splitChildVersions(itm, physicalAnnotation
return itm

/lInputs
/[itm - An element from a temporal document which is an item
I/l physicalAnnotation Parsed physical annotation document
function splitChildVersions (itm, physicalAnnotatioj
for each versionv of itm do
for each child elementi of vdo
if ci notin physicalAnnotation
for each versioncv of ci do
tpChild « timePeriod(cv)
for each versionv’ of itm do
tp < timePeriod(v’)
if tpChild coincides withtp
ci’ « the child item ofv’ corresponding tav
replace(ci’, cv)
else iftpChild andtp overlap
partitiontp andtpChild
tp’ andtpChild’ « the partitions that coincide
V" «+ the version corresponding tp’
ci’ < the child item ofv” corresponding tav
replace(ci’, cv)

33

7.1.2 ThepushDown Function

The pushDown function behaves exactly opposite of gkeshUp function. If a given physical annotation
has timestamps at locations above the temporal elemeatsugnDown function moves these timestamps
down the hierarchy. After executing this function on the pemal document, timestamps will be located at
the temporal elements. At this point, since the temporafadiaristics and the representation coincide, it
becomes easier to perform coalescing on the resultant teing@cument.

Consider the example in Figures 14-17. According to the iphysnnotation in Figure 13, the tree-
structured representation of the temporal document isngimeFigure 17. Although is a temporal
element, timestamp is present at the elem@&kt higher up in the hierarchy. This results in the duplication
of elements<A>, <C> and <D>. WhenpushDown function is applied to the above document, the
timestamps are moved down the hierarchy, the redundandimgated and the final document looks as
shown in the first tree of Figure 14. At this point, the user Imilge wondering, what if the element&>
and<D> are not the same in three different versions<é® in the given temporal document. This would
not happen, since the elemeriS> and<D> are not defined to be time-varying in the temporal annotation
so they better be the same. If they are different, the alyoritvould report this as an error.

The recursive algorithm for thpushDown function is given in Figure 21. The algorithm is called on
the root element in the temporal XML document. If the rootnsdait is not an item, it is first converted
to an item element using functiccreateltem function. The algorithm moves the timestamps down the
hierarchy one level at a time. If an item is not a time-varyaglgment and if it has multiple versions (e.g.
elemenA> of Figure 16), itis converted into a single version by usingrhergeVersions function. The
function groups corresponding child elements having theesdgem-identifier from its different versions
into the same child item. The child element from the first i@rss then replaced by its corresponding child
item XML element. After merging, since the parent item haly aingle version, the item is replaced by its
single version.

Other helper functions used in the algorithm are as follows.

e isTimeVarying (itm, temporalAnnotation The function returndgrue if itm definition is present in
the temporal annotation.

e versionCount (itm): The function returns the number of versions present irgitienitm element.

e GetVersion (itm, n): The function returns theth version of the givelitm element.

Figures 23, 24 and 25 depict the stepwise working of fungioshDown. For the given tree, element
<D> is temporal in nature but the timestamp is present at the exiegA> which is two levels up in the
hierarchy. In the first step, the timestamp is moved to elérBr, while in the next step, the timestamps
are moved to elemertD>, which is actually a time-varying element.

7.1.3 Thecoalesce Function

As explained in Section 6, elements in two snapshots of adesthXML document can be temporally-
associated. If the elements are DOM-equivalent and thesbioaperiods are contiguous, those two elements
could be replaced by a single element with the time periodredihg from the start time of the first element
to the stop time of the last element. This process is terooatbscingand is an integral part of @UASH to
compact the document.

After the snapshots are glued and the items are formmalesce is called for each item. The algorithm
for coalesce is given in Figure 22. The algorithm compares the time-miof the two contiguous ver-
sions. If they meet, and if the contents of the two versioegdlae same (i.e., if they are DOM-Equivalent as

34

Figure 20: Algorithm:pushDown

/lInputs
I/ itm - An element from a temporal document which is an item
/l temporalAnnotation Parsed temporal annotation document
/[Output
/l Modified itm element
function pushDown (itm, temporalAnnotation
if isTimeVarying(itm, temporalAnnotatiohp
processChildElements(itm)
return itm
else
if versionCount(itm) = 1
processChildElements(itm)
return GetVersion(itm, 1)
else
mergeVersions(itm, temporalAnnotatiohn
processChildElements(itm)
return GetVersion(itm, 1)

/lInput
I/ itm - An element from a temporal document which is an item
function processChildElements (itm):
for each versionv of itm do
childElementList— {}
for each child element of vdo
if isltem(c)
¢’ « pushDown(c, temporalAnnotation
else
ci — createltem(c, getTimePeriod(itm))
¢’ «— pushDown(ci, temporalAnnotation
childElementList— childElementListJ ¢’
for each child element of vdo
replace(c, c’)

35

Figure 21: Algorithm:mergeVersions

/lInputs
I/l itm - An element from a temporal document which is an item
/I temporalAnnotation Parsed temporal annotation document
function mergeVersions (itm, temporalAnnotation
let v1 «— GetVersion(itm, 1)
for each child c of vido
if isTimeVarying(c, temporalAnnotatiohp
ci +— createltem(c, getTimePeriod(itm))
replace(c, ci)
else
retainc
for each versionv of itm starting from GetVersion(itm, 2) do
for each child c of vdo
if isTimeVarying(c, temporalAnnotation
evaluate item-identifier foc
addc as a version to itergi from v1
remove versiorv from itm

Figure 22: Algorithm:coalesce

/lInput
// itm - An element from a temporal document which is an item.
function coalesce(itm):
let vl — GetVersion(itm, 1)
for each versionv of itm starting GetVersion(itm, 2) do
V2—V
if (vLtime-periodmeetsv2.time-periodand DOM-Equivalent(vl, v2))
vltime.end— v2time.end
remove versiow?2 from itm
else
vl—v2

36

A

A

versionl A

version2

[t3-t4)

D1 E FQ G D2 E FQ G

Original Document

Ajtem
Aversion
[t1-t4)

After return from mergeVersions (Ajiem)

B version1 Q

/ \ B version2

[t3-t4)

[t1-t2)

o

Figure 23: Example gbushDown

37

Aversion
[t1-t4)

item
Ditem
Brersion1
[t1-t4)
Reersion
[t1-t2)
D1

After return from functiopushDown (Bjtey)

After return from functionmergeVersions (Bjiey)

Figure 24: Example gbushDown: Continued

Reersion1
[t1-t2)

D1

Final Document
(After return from functionpushDown (Ajtem))

Figure 25: Example gbushDown: Continued

38

Aversion3

(t3-t4)

versionl version2

A

version3
(t3-t4)

versionl
(t1-t3)

Figure 26: Example ofoalesce

explained in Section 6.5), the stop time of the first vers®ihen extended to the stop time of the second
version.

Figure 26 shows the process of applying coalescing on Iterm Ahe tree-representation of the doc-
ument, version®\l [t 1-t2) andA2 [t 2-t3) are contiguous. They are also DOM-Equivalent (Sec-
tion 6.5). Thus the two versions are replaced by a singleéamssith time period(t 1- t 3) . After merging
Al andA2, although the resulting version is contiguous with the nexsionA3 [t 3-t 4), they are not
merged, as they are not DOM-Equivalent. Thus, in the reguiiocument, there remain two versiots
andA2.

39

7.2 SCHEMA MAPPER

Once the annotations are found to be consistent, the legiaapresentational mapper generates the rep-
resentational schema from the original snapshot schemahangmporal and physical annotations. The
representational schema is needed to serve as the schemtini@-varying document/data.

Once the annotations are found to be consistent, the legie@presentational mapper (software oval
of Figure 6) generates the representational schema (boxdmM)the original snapshot schema and the
temporal and physical annotations. The representatiaciednsa is needed to serve as the schema for a
time-varying document/data (box 9). The time-varying dzta be created in four ways:

e Automatically from the non-temporal data usin@@sH tool.
e Automatically from the data stored in a database, i.e., @asdbult of a “temporal” query or view.
e Automatically from a third-party tool, or

e Manually.

Every time-varying element is given a timestamp for thed/éiine and/or the transaction time as ap-
propriate. Non-temporal elements and attributes are latetsas is. The process of converting a snapshot
schema into the representational schema is explained imetkifew paragraphs.

An XML Schema specification defines the types of elements #ridudes that could appear in a docu-
ment instance. More generally, the specification can beeadess a (tree) grammar. The grammar consists
of productions of the following form for each element type.

S=<Sa</ S

In the above productiony” describes the contents of elements of type

A temporal schema denotes that some of the element typesnsgesarying. To construct a repre-
sentational schema, several productions are added to #pstsot schema for each temporal element. No
productions are removed from the non-temporal schema theogie are modified. Since only elements
can be temporal, this section focuses on the element-tetaimponents of a schema. The construction
process consists of several steps. We will illustrate tteegss by describing what is done for a single,
representative temporal element tyfe,

The first step is to add a production to indicate that the elgrtypeSis time varying. i.e. an item. The
production has following form:

Sltem=- <Sltemi t em d="n" > SVersion </Slten»

An item has a uniquet em d value, and consists of a list of versions. The third step iadd a
production to specify each version of ty@eThe production for a version of an element of typhas the
following form:

SVersion=- <SVersior t S</ SVersiox

wheret is the definition of timestamp element aBds the non-temporal definition of the element’s
type. We do not impose a particular schema for a timestantperave assume that the schema is given
separately and imported into the temporal document’s sahdfach timestamp can have either or both of
the following forms.

t=<transactionTinme start="..." stop="..."/>

40

OR
t=<validTinme begin="..." end="..."/>

The next step is to modify the context in which a temporal @etappears. For each temporal element
type, S that appears in the left-hand-side of a production, repfawith Slitem For example, assume that
the schema has a production of the following form:

X=<X>[3Svy</X>

whereg and~ describe arbitrary content before and afferespectively. The production is replaced by
the following production.

X = <X> g Sltenry </ X>

Only the element type is replaced, any other constraintdierelement are kept (e.g., minoccurs and
maxoccurs are unaffected).

The final step is to relax the uniqueness constraint impoygeal BTD identifier or XML Schema key
definition. Since the same identifiers and key values canagpanultiple versions of an element, such
values are no longer unique in a temporal document, evergththey are unique within each snapshot.
In temporal relational databases, the concept of a tempasalwhich combines a snapshot key with a
time, has been introduced. Temporal keys can be enforcedtéymporal validating parser, but not by a
conventional parser. So constraints that impose unigsenélin a snapshot must be relaxed or redefined
as follows. The value of each id type attribute in a time-iragyelement is rewritten to be a unique value.
Finally, schema keys are rewritten to include itemlds andive start and end times, creating a temporal
key.

The algorithm for 8HEMA MAPPER is shown in Figure 27. The algorithm uses the same procedure
explained in the above paragraphs to create the repreisgr@iaschema from the snapshot schema. The
helper functionisConsistent checks whether the physical annotation is consistent Wwiltgtven snapshot
schema. As part of consistency, it checks whether all thgetarin the physical annotation are present in
the snapshot schema.

41

Figure 27: Algorithm: SHEMA MAPPER

/lInputs
/I snapshotSchemaParsed snapshot schema document
I/l physicalAnnotation Parsed physical annotation document
/[Output
// Modified snapshotSchen@document
function doSchemaMapping (snapshotSchemahysicalAnnotation

if isConsistent(snapshotSchemahysicalAnnotation

for each elemente in physicalAnnotatiordo
add following definitions t@napshotSchema

<xs:el ement name="eltent >
<xs: conpl exType>
<XS:sequence>
<xs: el erent nane="eVersi on">
<xs: conpl exType>
<XS:sequence>
<tv:.elenment ref="timeStamp"/>
<xs:element ref="¢e"/>
</ Xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ Xxs: sequence>
<xs:attribute nane="item D' type="I1D"/>
</ xs: conpl exType>
</ xs: el enent >

for eachreferenceof e do
replace<xs: el ement ref="¢€" /> with <xs:element ref="eltent />

add following definition to thesnapshotSchema
<xs: el erent nane="ti nmeVaryi ngRoot" >
<xs: conpl exType>
<xs: el ement ref="currentRoot/ >
</ xs: conpl exType>
</ xs: el enent >

return modifiedsnapshotSchema
else
display error

42

7.3 TEMPORAL VALIDATOR

Figure 28 provides the validation procedure used-WgLIDATOR . The temporal bundle document (box 5
of Figure 6) is passed through th&ALIDATOR which first checks to ensure that the temporal and physical
annotations are consistent with the snapshot schema ahaagéh other. Once the annotations are found
to be consistent, the logical-to-representational MageHEMA MAPPER) generates the representational
schema (box 10) from the original snapshot schema and thgoratrand physical annotations. The repre-
sentational schema is needed to serve as the schema foreatigieg document and is used to validate the
temporal document using conventional validator.

Representational

Bundle Schema

Schema

Mapper

Error

Temporal) Messages
Document Conventional

Validator

Temporal
Constraint
Validator
Module

Figure 28: Validating a document with Time-Varying Data

Once the representational schema is ready, a conventiafidator is used to parse and validate the
time-varying data. The VALIDATOR utilizes the conventional validator for many of its checkor in-
stance, it validates the temporal annotations against X@®cfiema and physical annotation against the
PXSchema. But using a conventional XML Schema validatinggryais not sufficient due to the limita-
tions of XML Schema in checking temporal constraints. Sodbeond step is to pass the temporal data
to Temporal Constraint Validator ModuleThe module, by checking the temporal data, effectivelyckbe
the non-temporal constraints specified by the snapshotselsmultaneously on all the instances of the
non-temporal data (box 8), as well as the (non-sequencepoi@t) constraints between snapshots, which
cannot be expressed in a snapshot schema.

Figures 29 and 30 depict the two tasks performed byri¥eLIDATOR. (i) validating the consistency of
a temporal schema and (ii) validating the instance of a teadplmcument against the temporal schema.

The time-varying data is validated against the represienttschema in two stages. First, a conven-
tional XML Schema validating parser is used to parse andlatdithe time-varying data since the represen-
tational schema is an XML Schema document that satisfiesdyeshot validation subsumption property.
But using a conventional XML Schema validating parser is sudficient due to the limitations of XML
Schema in checking temporal constraints. For example, @aegML Schema validating parser has no
way of checking something as basic as “the valid time bouedasf a parent element must encompass
those of its child”. These types of checks are implementettiérTemporal Constraint Validator Module
of TVALIDATOR. So the second step is to pass the temporal dat&/taIDATOR as shown in Figure 28.

A temporal XML data file (box 9 of Figure 6) is essentially a éistamped representation of a sequence

43

4. Snapshot Schena i

Error
6. Tenporal Annotation | _____ 5. Tenporal Bundl e TVal i dat or Messages

7.Physical Annotation |q--_-_-_-________

Figure 29:7VALIDATOR — Checking the Schema

T Val i dat or Error Messages

5. Tenporal Bundle

9. Tenporal Data

Figure 30:7VALIDATOR — Checking the Instance

of non-temporal XML data files (box 8). The namespace is séstassociated XML Schema document
(i.e. representational schema). The timestamps are bastée @haracteristics defined in the temporal and
physical annotations (boxes 6 and 7).

TVALIDATOR has agluing componenthat creates all the items and their item identifiers. Twonelets
with the same item identifiers should be glued together. icatenates all of the fields together. It creates
one string that is the schema for all the fields and a secoimydtrat is the value of all the fields. Ele-
ment and attribute hames cannot contain tHesymbol since it is used to separate each field string in the
concatenated string. The fields are concatenated in the spdeified in the item identifier.

TVALIDATOR maintains a hash map to hold all the items. Each item congame$erence to each of its
constituent elements. Two elements are glued if their itdemtifiers match exactly. Both the schema and
instance strings must be equal. Even the amount and locaftihite spaces in a field elements loose text
must be identical. For every time-varying element, themgiutomponent determines whether to create a
new item or to glue this element to an existing item.

Once the items are created, framporal Constraint Validator Modubalidates individual item to check
whether it satisfies the following constraints, if appliato that item.

Content Constant: Content of an element cannot vary over time.
Existence Constant: The element cannot disappear and reappear again.

Content Varying Applicability: The contents of an item cannot change beyond the periodfigusioy the
cont ent Var yi ngAppl i cabi | i ty element in the temporal annotation.

Valid Time Frequency: The element cannot change more than specified number of §psetfied by the
frequency element.

44

Maximal Existence Period: The element can exist only within the period specified by the
maxi mal Exi st ence element.

By checking the constraints on all the items, the modulecéffely checks for all the sequenced and non-
sequenced constraints on the entire temporal document.

The algorithm forrVALIDATOR is given in Figure 31. The algorithm uses a hash-map to mainta
a mapping between item-identifier and the corresponding.iteAfter checking the consistency of the
schemas, the function creates a representational schentgtie SSHEMA MAPPER The given temporal
document is parsed against this schema using the convahtialidator. The for loop creates the items by
gluing together the elements with the same item-identifixch item is then validated for sequenced and
non-sequenced constraints explained in Section 6.6.

7.4 SQUASH

The sQuAsH utility takes a sequence of XML documents, a temporal atimotand a physical annotation
as input and generates a temporal XML document consistehttiaé physical annotation.

The algorithm for QUASH tool is given in Figure 32. It cleverly reusggishUp, pushDown and
coalesce primitives to create a compressed document from a set ofshishglocuments as per the given
temporal schema.

The algorithm first checks for the consistency of the temiparal the physical annotations with the
snapshot schema. It then creates a new XML document«tithmeVar yi ngRoot > as its root and at-
tachesroot elements of the snapshot documents as its versions. At dins, phe timestamps are present
at the root level elemenpushDown function then moves these timestamps down the hierarchyetele-
ments present in the temporal annotation. Every item is toafesced to create its compact representation.
ThepushUp function then moves the timestamps up in the hierarchy upd@kments present in the actual
physical annotation.

7.5 UNSQUASH

The UNSQuASH utility performs the opposite operation 0HBAsH. It takes a temporal XML document, a
temporal bundle and generates multiple non-temporal XMtudeents. It also provides the functionality of
extracting a particular snapshot from the given temporabdoent using BiSQUASH utility. The algorithm
for UNSQUASH is given in Figure 33.

The algorithm first checks for the consistency of the temipanal physical annotations with the snap-
shot schema. It then constructs the representational schiesmg $HEMA MAPPERanNd parses the given
temporal document against the representational schemg tig conventional validator. ThmushDown
function is first called on the given document to move the sitamps to the temporal elements. A new
physical annotation, containing only the root elementréated and passed to the functimmshUp. The
purpose is to move all the timestamps to thet element. At this moment every version of tteot item
element is a snapshot document. These individual versienthan written to the separate files.

7.6 RESQUASH

The RESQUASH ultility takes the temporal XML data and the two physical aabted schemas (the original
schema and the target one) and converts the temporal XMLnglectbased on the target physical annotated
schema. The algorithm forESQUASH is given in Figure 34.

The algorithm first checks for the consistency of the temigmaotation and the source and target physi-
cal annotations with the snapshot schema. It then perfdimeperatiorpushDown on the given temporal
document. The given temporal document has the represemtati per thesrcPhysicalAnnotation The

45

Figure 31: Algorithm:7VALIDATOR

/lInputs
/I snapshotSchemaParsed snapshot schema document
// temporalAnnotation Parsed temporal annotation document
[/l physicalAnnotation Parsed physical annotation document
/l temporalDocumert Parsed temporal document
function doTemporalValidation (snapshotSchem#emporalAnnotationphysicalAnnotation
temporalDocumeit
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(snapshotSchem&mporalAnnotationphysicalAnnotation
repSchema— doSchemaMapping(snhapshotSchemphysicalAnnotation
if conventionalValidator(temporalDocumentepSchempg
for each elementein thetemporalDocumento
if isTimeVarying(e, temporalAnnotation
evaluate the item-identifier
if item-identifierin hash-table
if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version
else
create a new version
else
create a new item ihash-table with one version
for eachitemin hash-tabledo
for each sequenced and non-sequenced constmaitgmporalAnnotatiordo
if the constraint is not satisfied
display errors
else
display errors generated by the conventional validator
else
display errors

46

Figure 32: Algorithm: UASH

/lInputs
/I snapshotSchemaParsed snapshot schema document
// temporalAnnotation Parsed temporal annotation document
[/l physicalAnnotation Parsed physical annotation document
I/l snapshotSet Set of snapshot documents
/[Output
// temporalDocumert Temporal document created from snapshotSet
function doSquash (snapshotSchem#&mporalAnnotationphysicalAnnotationsnapshotSegt
if Consistent(snapshotSchem&mporalAnnotationphysicalAnnotation
repSchema— doSchemaMapping(shapshotSchemphysicalAnnotation
create elementt i meVar yi ngRoot
begi nDat e=" beginDate of first snapshot documént
endDat e=" endDate of last snapshot document
create elemenbotltm corresponding to root level elemenoiot
for each snapshoin the setof snapshotSeato
add root elementot of snapshot as a version mfotitm
root «+— pushDown(rootltm, temporalAnnotatiohn
for eachitemitm in temporalDocdo
coalesce(itm)
if isltem(root)
rootitm < root
else
rootitm < createltem(root)
rootitm < pushUp(rootitm, physicalAnnotatiohn
if rootltm not in physicalAnnotation
replace(rootltm, getVersion(rootitm, 1))
return temporalDoc
else
display errors.

47

Figure 33: Algorithm: WNSQUASH

/lInputs
Il snapshotSchemaParsed snapshot schema document
/l temporalAnnotation Parsed temporal annotation document
I/l physicalAnnotation Parsed physical annotation document
/I temporalDocument Temporal document created from above
/[Output
/l snapshotSetsSet of snapshots extracted from temporalDocument
function doUnSquash(snapshotSchemgemporalAnnotationphysicalAnnotation
temporalDocumeit
if Consistent(snapshotSchemtemporalAnnotatiojphysicalAnnotation
repSchema— doSchemaMapping(shapshotSchenphysicalAnnotation
if conventionalValidator(temporalDocumentepSchemg
newPhysicalAnnotation- root element definition of thenapshotSchema
root «+ temporalDocumenbotElement
if isltem(root)
rootitm < root
else
rootitm < createltem(root)
root «— pushDown(rootltm, temporalAnnotatiohn
if isltem(root)
rootlitem«— pushUp(root, newPhysicalAnnotatign
else
rootlitem«— newltem(root)
replace (root, pushUp(rootltem newPhysicalAnnotatigh
snapshotSet- {}
for each versionrootVer of rootltemdo
add elementootVeras a snapshot documentdoapshotSet
return snapshotSet
else
display errors generated by the conventional validator
else
display errors

48

pushDown function moves all the timestamps to the actual time-vayglements as per themporalAn-
notation The functionpushUp is then called with théargetPhysicalAnnotatioms its parameter, which
then moves the timestamps up in the hierarchy to the elemegrntsioned in the new physical annotation.

Figure 34: Algorithm: RESQUASH

/lInputs
/I snapshotSchemaParsed snapshot schema document
// temporalAnnotation Parsed temporal annotation document
/l temporalDocumert Temporal document to be resquashed
Il srcPhysicalAnnotation Parsed physical annotation document used for creating
temporalDocument
/ targetPhysicalAnnotation Parsed physical annotation document to be used
for creating new temporalDocument
/[Output
/l temporalDocumert resquashed temporal document
function doReSquashing (snapshotSchem&mporalAnnotationsrcPhysicalAnnotation
targetPhysicalAnnotatigtemporalDocumeit
if Consistent(snapshotSchem#&emporalAnnotationsrcPhysicalAnnotationand
Consistent(snapshotSchem#gmporalAnnotationtargetPhysicalAnnotation
root «+ temporalDocumenbotElement
if isltem(root)
rootltem<« pushDown(root, temporalAnnotation
else
rootltem <« newltem(root)
replace(root, pushDown(rootitem temporalAnnotatio))
rootltem« pushUp(rootltem targetPhysicalAnnotation
if rootltm not in physicalAnnotation
replace(rootltm, getVersion(rootltm, 1))
return temporalDocument
else
display errors

49

It is also possible logically to supply two temporal annethschemas (the original one and the tar-
get one) instead of physical ones and convert the tempordl Mbtument based on the target temporal
annotated schema. The only restriction with the temporabtaied schemas is that the data needs to be
consistent according to both temporal annotated schentas.constraint does not exist with the physical
annotated schemas because only the representation of ardmpcument is changing. This could be
easily achieved by using the combination ol SQUASH and SQUASH tools. The given temporal docu-
ment will be unsquashed to retrieve the original snapshotiehents. These snapshot documents will then
be squashed using the target temporal annotation and #ealrphysical annotation. Since the physical
annotation remains the same, the new document will be the sarthe original one. Although, while per-
forming the squashing using the target temporal annotatienSUASH tool would find out any violations
of the sequenced and non-sequenced constraints enfordld target temporal annotation.

I
[

Squash Temporal
Sequence of Document
Non-temporal
Documents

ReSquash
UnSquash
Temporal

Document
(New
Representation

Figure 35: Squash/UnSquash/ReSquash Commutativity &niagr

SQUASH, UNSQUASH and RESQUASH tools retain snapshot reducibility [3] in that the commivigt
diagram in Figure 35 is maintained. Specifically, if we takgagicular sequence of static XML documents,
each associated with a time slice, and squash them into aotaimyML document, then resquash that
into a separate temporal XML document, with a different jitaisschema, and then unsquash it again,
we will get exactly the same sequence of static XML documefitsis of course assumes that the static
documents corresponding to the non-temporal schema mo\ddd that the temporal XML documents are
valid instances of the schema produced by the logical{ioementational mapper.

50

8 Representations

In this section we present a canonical (physical) repraesent for temporal documents. A single tempo-
ral document has many possible physical representatiohs. choice of a representation is dictated by a
temporal document’s physical annotationVALIDATOR and other utilities are designed to generate and
recognize multiple representations of temporal docum&mtong the many physical representations, some
are more conducive than others in representing the meatiagiocument. The canonical representation
is intended to make manifest in the physical representatietemporal semantics of a document. One use
of the representation is to compare whether two documeattharsame (semantically). If both documents
are rendered in the canonical representation they can tsqaitly compared to determine whether they are
the same.

Coming up with a canonical representation turns out to beeqovolved. We considered the following
criteria to select a candidate.

e Size is unimportant - The temporal document(s) may grow dnkhn size with respect to the se-
quence of snapshot documents.

¢ \ersions of a time-varying element must be explicitly reygieted. The representation must capture
the version history by representing both the time-varyilggrent and its versions.

e A version could have an N-dimensional temporal lifetime gémeral there could be many temporal
dimensions, with one or two being the norm. The versioningdoccur in any of the dimensions. A
version lifetime is an N-dimensional temporal elementt thaa set of regions in the N-dimensional
temporal space described by the dimensions.

e The “tree structure” of a document should be retained whessipte. The value of retaining the
tree structure is that XML parsers, query languages, schatidators, etc. have a better chance of
working.

e Whitespace, attributes, text, comments, processinguictidns, and sub-elements should be explic-
itly captured within each version. It should be possible xaatly reconstruct any desired snapshot
document (with the exception of information that is diseatdby an XML parser such as the ordering
of the attributes, whitespace within an element, and emgtyent tags).

e The representation should not adversely impact the rangengporal or non-temporal queries in
XPath/XQuery/XSLT/DOM that can be expressed or evaluated.

e Every copy of a time-varying element and version must hagesttme information and lifetime (there
are no partial versions). If a time-varying element is repréged in multiple locations in a temporal
document, the element’s version history must be the sameviny copy.

e The representation of a versions lifetime must be uniquen [if@times that are the “same” time (i.e.,
two or more copies of the version of an item present at tweethffit places in a temporal document)
must have the “same” representation.

After applying all the above criteria, two representatiomsre considered for the initial implementa-
tion. The final choice between them was a trade-off betweengssing complexity and the document
compression.

51

Decomposed Representation In this representation, every item is present as a child efttp level
<ti meVaryi ngRoot > element and is given a uniquid. All possible occurrences of the corresponding
item in the document are replaced by the elements refergrairrespondindg D. XML datatypel DREF is
used for referencing.

The decomposed representation works best when the timgstare present at the time-varying el-
ements. In this cases it is more space-efficient since datjgit of items if any is avoided by using its
referencing capability to the fullest.

Non-decomposed Representation In this representation, an item can occur at any level in the_Xree
hierarchy. Every occurrence of the actual time-varyingreat from the snapshot document is replaced
by its corresponding item. Multiple XML elements corresgdimy to thesameitem (i.e., item with the
same item-identifier) may exist at multiple places in theuwhoent. This happens if the same element is
being referenced at multiple locations in the original segd document. In that case, even though the
item-identifier for all the item elements is the same, eack owmtain different sets of versions depending
upon the time-period of enclosing items. All sets of versiomust be consistent with each other and when
combined, denote a single item with non-overlapping veisioThe grammar for this representation is
explained in detail in Section 7.2.

This representation is better from the processing comgyigaint of view and hence is easier to imple-
ment. It gives the same space-efficiency in most cases agtioengposed representation.

Both above representations have the following features.

e Only elements are time-varying and can have versions. Tineediate content, that is text and at-
tributes, is considered to be an integral part of an elempdttherefore does not have a separate
time-varying lifetime.

e Aversion of an element is created if/when any of the follagvirappen.

any attribute value changes,
an attribute is deleted,

an attribute is inserted,

the element namespace changes,
a sub element is inserted,

a sub element is deleted,

a sub element changes position, or

the text content changes.

The above conditions capture the idea that a version is aaggehto the element from the previous
state of the element. The change must be observable throDdf Bnly changes observable through
DOM create a new version.

e If an element is glued but remains unchanged, then thertigetif the current version of the element
is extended; no new version is created. This implies thatioes are coalesced.

e The timestamp that represents the version’s lifetime is @irlensional temporal element. It may
include now, until changed, and/or indeterminate times.

We decided to support the non-decomposed representatioa giis easier to implement and has the
same space-efficiency as the decomposed representatioosincases. In this representation, the lexical

52

order of versions is important. The order is by transactiore first, and within transaction-time by valid
time, and within valid-time by other time dimensions. Thagening behind this design decision is given at
the end of Section 11 when we discuisnsaction-timeandvalid-time splitting

53

9 Schema Versioning

Much of the power of a database management system stemsHeoprdasence of a schema that describes
the structure of the database. When the data is versionatheans helps even more, because it expresses
the commonality among the different versions, as well agatohg which parts of the data can change, and
how. The schema is the solid ground upon which the data stegttan stand. When the schema itself is
versioned, there is no solid ground. How schema versiorsrgupported makes the difference between a
fluid motion between versions and awkward struggling agajogksand.

One challenge is that in this potential quicksand, anytliag change, and thus must be versioned:
the shapshot documents, the base schema, the temporahttomutthe physical annotations, the schema
documents included by these documents, even the schentesefschema components. And, because the
physical annotations can change, the concrete repregentaithin a temporal XML document can also
vary.

We now extendrXSchema to also support schema versioning. In doing so, wadge both con-
ventional XML Schema and related tools (principally, théidator), as well as the VALIDATOR for data
versioning.

In this section, we first explain the extensionsrSchema architecture followed by the theoretical
foundation for schema-versioning.

Before that, we introduce a key idea first appeared in a papd¢emporal aggregation [31], that we
will call here, schema-constant perioddt is possible, even with versioned schemas having themsel
versioned schemas, to identify contiguous periods of tirhemthere are no schema changes, anywhere.
These are termed as schema-constant periods. These pméaasn-overlapping and continuous; between
the periods are schema changalls. Now, during these periods the data may be (and probablgis)aned,
but at least we have a fixed base schema and fixed temporab#ionet each of which has a fixed schema.
And since the physical annotations are fixed, the representss also fixed, so it is possible to read and
interpret the temporal document during that schema-cohgt@riod, and even to validate that portion of
the document. So a general temporal document can be viewaedeguence of data-varying documents,
each over a single schema-constant period. Since we catatakach schema-constant period, given the
approaches elaborated on earlier, all we have to do is val@zross schema changes.

While schema versioning has been considered in the confteatid time [8], doing so is quite complex
and in our opinion not worth this complexity. ThusiXSchema schemas vary and are versioned only over
transaction time.

9.1 Architecture and Example

We now generalize the architecture explained in Section Sufgport versioned schemas. Consider the
Winter Olympic example explained in Section 2. We extend #xdample for schema versioning. All the
files mentioned in this example are available in the exanglitestory in the distribution [33]. The example
is also present in the Appendix B.

Consider the snapshot schema in Figure 5. This schema wiadlynilesigned or2002- 01- 01. The
schema has been reproduced again in Figure 36 for convenid@inis snapshot schema undergoes a series
of changes. The corresponding temporal and physical atmageare given in Figures 37 and 38.

Now, assume that the designers decide to add a new eletplioine> to the schema before beginning
of Torino, Italy Olympics in 2006. The changes to the scheneadane or2005- 01- 01. The modified
schema is given in Figure 39. In the new schema, a new eleapdrdne> for a phone number of an athlete
is added as a child cfat hl et e>element. The existence of multiple versions of the basersahmplies
that box 4 of Figure 6 is actually sequenc®f base schemas. Not only does the base schema changes over
time, but the schemas included by it if any, could also vamgrdime. Similarly, the temporal annotations

54

<el enent name="at hl ete">
<conpl exType m xed="true">
<sequence>
<el ement name="at hNane" type="string"/>
<el enent ref="medal " m nCccurs="0" maxCccur s="unbounded"/ >
<el ement nane="birthPl ace" type="string" m nQccurs="0"
maxQOccur s="1"/ >
</ sequence>
<attribute nane="athl D' type="nonNegativel nteger" use="required"/>
<attribute nane="age" type="nonNegativel nteger" use="required"/>
</ conpl exType>
</ el ement >

Figure 36:wi nA ynpi c. ver 1. xsd

<?xm version="1.0" encodi ng="UTF-8"7?>
<t enporal Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TXSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://wwv. cs. ari zona. edu/ t au/ t auXSchema/ TXScherma
TXSchena. xsd" >
<def aul t >
<format pl ugi n="XM.Schema" granul arity="gDay"/>
</ defaul t>

<itemtarget="/w nd ynpi c/country/athl eteTean at hl ete" >
<transactionTi me content="varyi ng" exi stence="constant" />
<item dentifier name="athl D' tinmeD nension="transactionTi me">
<field path="@thl D'/ >
</item dentifier>
<litenp

<itemtarget="/w nd ynpi c/ country/at hl eteTean at hl et e/ nedal ">
<transactionTi me content="varyi ng" exi stence="constant" />
<item dentifier name="medal | d1" tinmeD nmensi on="bitenporal ">
<field path="./text"/>
<field path="../@thl D'/ >
</item dentifier>
<litenmp

</t enpor al Annot ati ons>

Figure 37:wi nol ynpi c_t enpor al _.annot ati on. ver 1. xmi

55

<?xm version="1.0" encodi ng="UTF-8"7?>
<physi cal Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ PXSchena"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemalLocation="http://ww. cs. ari zona. edu/ t au/ t auXSchemnma/ PXScherma
PXSchema. xsd" >
<def aul t >
<format plugi n="XM.Schema" granul arity="days"/>
</ defaul t >

<stanp target="/w nd ynpi c/ country/ at hl et eTeant at hl et e" >
<st anpKi nd ti nmeDi nensi on="transacti onTi ne" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nQ ynpi ¢/ count ry/ at hl et eTeant at hl et e/ nedal " >
<st anpKi nd ti neDi nensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>
</ physi cal Annot ati ons>

Figure 38:wi nol ynpi c_physi cal _.annot ati on. ver 1. xmi

(box 6) and those annotations included by them and the pdiyaimotations (box 7) and those annotations
included by them all can vary over time, resulting in mukipiersions.

As an example, 08005- 01- 01, the designers also decide to malEhone> time-varying and hence
the temporal annotation also undergoes a change. The ntbtdfigooral annotation is represented in Fig-
ure 40. A new item corresponding to the elemgphone> is added to the temporal annotation. For this
example, lets assume that the original physical annotatid#002- 01- 01 remains as it is. Thus, even for
the new schema, the timestamps will be represented at thepts<at hl et e>and<nedal >.

This versioning is handled by timestamping thechenaAnnot at i on> element in the temporal
bundle. To each such element is addedt &i ne> element that specifies when that annotation element
became applicable. The sample temporal bundle documeiveis oy Figure 41. The bundle contains two
<schenmaAnnot at i on> elements. They refer to the two versions of snapshot schemdsheir corre-
sponding temporal annotations. The fiesichenmaAnnot at i on>element containsi t enl dent i fi er Cor r esponde
element as its child, which will be explained in detall in 8@t 9.2.1.

One approach to handle this schema versioning is to havdeaaift document (file) for each version,
similar to what is shown in box 8. While this approach is akolyrXSchema also permits temporal
schemas, in place of multiple versions of conventional st As one possibility, the sequence of snapshot
schemas could be squashed together to produce a singlers@rdpoument v_snapshot . xmi , which
would then be referenced by multiple schema annotationessn Similarly, the SUASH utility could be
used to generate temporal schemas for the schemas inclydbd main snapshot schema.

This rather involved state of affairs, with time-varyingadments and time-varying schemas, is illus-
trated with a T Diagram in Figure 42. In this notation, firssdébed almost forty years ago [4], the input of
a translator is given on the left arm of the “T” (for examplet SCHEMAMAPPERIN the upper right-hand-
side of the figure, the input is the logical schema documemhdl e. xm), the name of the translator is
given at the base of the “T” (here, “SchemaMapper”), and thtput of the translator is given on the right
arm of the “T” (here, a representational schemap. xm). The name of these diagrams was to the best
of our knowledge given by McKeeman, Horning, and Wortmarhgirtclassic compiler book [22].

We extend these diagrams to allow multiple inputs, whictottohately complicates them somewhat.
As shown in Figure 42, SUASH takes both a bundle and a sequence of snapshot documentododgs a

56

<el enent name="at hl ete" >
<conpl exType m xed="true">
<sequence>
<el ement nane="at hNane" type="string"/>
<el enent ref="medal " m nCccurs="0" maxCccur s="unbounded"/ >
<el enent name="bi rt hPl ace" type="string" m nOccurs="0"
maxQccur s="1"/ >
<el ement ref="phone" m nCccurs="0" maxQccur s="unbounded"/>
</ sequence>
<attribute nane="at hNunber" type="nonNegativelnteger" use="required"/>
<attribute nane="age" type="nonNegativel nteger" use="required"/>
</ conpl exType>
</ el ement >

Figure 39:wi nA ynpi c. ver 2. xsd

<?xm version="1.0" encodi ng="UTF-8"?>
<t enpor al Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TXSchena"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schenmalLocati on="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ TXSchena
TXSchema. xsd" >
<def aul t >
<format plugi n="XM.Schenma" granul arity="gDay"/>
</ defaul t>

<itemtarget="/w nd ynpic/country/athleteTeanf athl ete">
<transactionTi me content="varyi ng" exi stence="constant" />
<item dentifier nanme="at hNunmber" tineDi nensi on="transactionTi ne">
<field path="@thNunber"/ >
</item dentifier>
</itenp

<itemtarget="/w nd ynpi c/country/ at hl et eTean! at hl et e/ phone" >
<transactionTi e/ >
<item dentifier name="phoneld" tineD nension="transactionTi ne">
<field path="./countryCode"/>
<field path="./phoneNunber"/>
</item dentifier>
<litenp

</t enpor al Annot ati ons>

Figure 40:wi nol ynpi c_t enpor al .annot ati on. ver 2. xni

57

<?xm version="1.0" encodi ng="UTF-8"7?>
<t enpor al Bundl e xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TBSchema"
xmns:tv="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ TVSchema"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" >
<format pl ugi n="XM.Schema" granul arity="date"/>
<bundl eSequence def aul t Tenpor al Annot ati on="def aul t TA. xm "
def aul t Physi cal Annot ati on="def aul t PA. xm ">
<schenmaAnnot ati on snapshot Schema="wi nd ynpi c. ver 1. xsd"
t empor al Annot at i on="wi nol ynpi c_t enporal _annotation.verl.xm"
physi cal Annot ati on="wi nol ynpi c_physi cal _annot ati on. ver 1. xm ">
<t Ti me>2002-01-01</t Ti me>
<item dentifierCorrespondence ol dRef ="at hl D' newRef ="at hNunber"
mappi ng="useBot h" >
</ schemaAnnot at i on>
<schenaAnnot at i on snapshot Schema="w nd ynpi c. ver 2. xsd"
t enpor al Annot ati on="w nol ynpi ¢_t enporal _annotation. ver2. xn "
physi cal Annot ati on="wi nol ynpi c_physi cal _annot ati on. ver 1. xm ">
<t Ti me>2005- 01- 01</t Ti ne>
</ schemaAnnot at i on>
</ bundl eSequence>
</t enpor al Bundl| e>

Figure 41:wi nA ynpi c_t enpor al _bundl e. xm

temporal document, andNBQUASH does just the opposite (this is illustrated for the temparaiotations,
which are) UASHed into a singlet v_t enp_anno. xnl document, then NSQuUAHed back into their
constituent time slices.

In this figure we show a bundldgndl e. xm , right in the middle of the figure, with the arrows
pointing left) referencing two temporal schemas, one oblige schema and one of the physical annotations;
the bundle also references several temporal annotationnakexats. Note that the base schema for the base
schema (!) is XSchema, which has as its base sché$nhema. xsd.

TVALIDATOR treats each URI it encounters as the specification of a teshgioneslice operation to
select the appropriate version. The timeslice is as of time ©f the document or context that contains
the URI. If the URI represents a temporal document,tieLIDATOR calls UNSQUASH, passing it (a)the
corresponding bundle, (b) the temporal document, and {itd@stamp. It would do so as well, for all the
schemas included by that schema if any. The underlying sesamsures that at any point in time, there
is a single base schema, a single temporal annotation, andla physical annotation. TheVALIDATOR
recursively calls BiISQUASH so that at any point in time, there is a single schema in effect

The snippet of a sample temporal document generated bygle$+ utility is shown in Figure 43.
The document uses two representational schemas http:/fevarizona.edu/tau/RepSchema0 and http://
www.cs.arizona.edu/tau/RepSchema0 for schema consteatlp] 2002- 01- 01, 2005-01- 01) and
[2005- 01- 01, 9999- 12- 31),respectively. The data versioned temporal documentséme schema-
constant periods are embedded inside hemaVer si on0>and<schemaVer si onl1> elements.

What would the representational schema look like for thirmgeral document? We could see that
schema directly by runningSHEMAMAPPER 0N the bundle. The SHEMAMAPPER for the schema ver-
sioned documents generateschenaVer si oni> element withinkschemal t en® for every change of
the base schema or the physical annotation. The repreiseaiatchema is given in the Figure 44. The final
representational schema for the schema-versioned tehgmmament is a sequence<aschenaVer si oni>
elements corresponding to different schema-constanbgeri

58

XSchema_bundle.xml

winOlympic.verl.xsd
winOlympic.ver2.xsd

winOlympic.ver3.xsd

Squash

tv_snapshot.x*‘nl

bundle.xml

Schema
Mapper

rep.xsd

TXSchema_bundle.xml tv_temp_anno.xﬂl

temp_anno.verl.xml
temp_anno.ver2.xml
temp_anno.ver3.xml

Squash

PXSchema_bundle.xml

phy_anno.verl.xml
phy_anno.ver2.xml

phy_anno.ver3.xml

Squash

tv_temp_anno.

TXSchema
_bundle.xml

temp_anno.verl.xm|l

xml
temp_anno.ver3.xm|l

h—|
temp_anno.ver2.xm|l

bundle.xml

UnSquash

tv_phy_anno.xml

datal.verl.xml
data2.verl.xml
datal.ver2.xml
data2.ver2.xml
datal.ver3.xml

Squash

Figure 42: T Diagram of Validation

59

rep.xml | rep.xml

Error
Messages
bundle.xml

tValidator

<?xm version="1.0" encodi ng="UTF-8" ?>
<rep: sv_root
xm ns:rep="http://ww.cs. ari zona. edu/ t au/ RepSchema"
bundl e="w nol ynpi ¢c_bundl e. xm "
xm ns: repO="http://ww.cs. ari zona. edu/ t au/ RepSchenma0"
xm ns: repl="http://ww.cs. ari zona. edu/ t au/ RepSchenal"
xm ns:tv="http://ww. cs. ari zona. edu/ t au/ TVSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="http://ww. cs. ari zona. edu/ t au/ RepSchena
wi nol ynpi c_repl. xsd">
<schemal t en>
<schemaVer si on0>
<tv:timestanp_TransExtent begi n="2002-01-01" end="2005-01-01" />
<repO0:tv_root>
<rep0: wi nA ynpi c_Repl tem ori gi nal El erent ="w nQ ynpi c">

</rep0: wi nd ynpi c_Repl tenr
</rep0:tv_root>
</ schemaVer si on0>

<schemaVer si on1>
<tv:timestanp_TransExtent begi n="2005-01-01" end="9999-12-31" />
<repl:tv_root>
<repl: wi nA ynpi c_Repltem ori gi nal El emrent ="w nQ ynpi c">

</repl:wi nd ynpi c_Repltenr
</rep0:tv_root>
</ schemaVer si onl1>
</ schenal t en>
</rep:sv_root>

Figure 43:t v_wi nd ynpi ¢. xmi

60

<?xm version="1.0" encodi ng="UTF8" ?>
<xsd: schema xnl ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
el emrent For mDef aul t =" unqual i fi ed"
t ar get Nanespace="http://ww. cs. ari zona. edu/ t au/ RepSchema"
xm ns="http://ww.cs. ari zona. edu/ t au/ RepSchema"
xm ns: repO="http://ww.cs. ari zona. edu/ t au/ RepSchenma0"
xm ns: repl="http://ww.cs. ari zona. edu/ t au/ RepSchenal"
xm ns:tv="http://ww.cs. ari zona. edu/ t au/ TVSchena" >
<xsd:inmport namespace="http://ww. cs. ari zona. edu/t au/ TVSchema"
schemaLocat i on="TVSchema. xsd" />
<xsd:inmport namespace="http://ww. cs. ari zona. edu/t au/ RepSchena0"
schenmaLocati on="rep0. xsd" />
<xsd:inmport namespace="http://ww. cs. ari zona. edu/ t au/ RepSchemal"
schemaLocati on="repl. xsd" />
<xsd: el emrent nane="sv_root">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="schemral t ent' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxOccurs="1" m nCccurs="1" nane="schemaVersi on0" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxOccurs="1" ni nCccurs="1"
ref="tv:timestanp_TransExtent" />
<xsd: el ement maxOccurs="1" mi nCccurs="1"
ref="repO:tv_root" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement maxCccurs="1" m nCccurs="1" nane="schemaVersi onl">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxOccurs="1" ni nCccurs="1"
ref="tv:tinmestanp_TransExtent" />
<xsd: el ement maxOccurs="1" mi nCccurs="1"
ref="repl:tv_root" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el emrent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute nane="bundl e" type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Figure 44:wi nA ynpi c.rep_schema. xsd

61

Representational
Bundle Schema Schema
Mapper
Error
Temporal .
Document Conventional

Validator

Messages

Temporal
Constraint
Validator
Module

Bundle
Slice

Time Varying
Data Validator

Figure 45: Validating a Document with Time-Varying Schema

Figure 45 shows the method for validating a document witretirarying schema. To validate such
a documenty VALIDATOR applies the conventional validator to the document, usiegrépresentational
schema produced bycBHEMAMAPPER It then determines the times when the schema changes, éters d
mining schema-constant periods. For each such periodintgeviarying data checker is invoked to check
the temporal integrity constraints over the time-varyiraged with the single base schema, temporal annota-
tion, and physical annotation. Then tteenporal constraint checkejlues across the schema change walls
and performs the temporal checks across these walls.

62

9.2 Theoretical Framework

The above arrangement works very well. However, there ane femaining aspects that do not show up
with time-varying data, but rather are unique to versiongtemas: (1) an evolving definition of keys, (2)
accommodating gaps in lifetimes, (3) the semantics of moad and schema changes, and (4) checking
non-sequenced constraints across schema changes. Waexaanh in turn in this section.

9.2.1 Accommodating Evolving Keys

When documents vary over time, it is important to identifyiethelements in successive snapshots are
in actuality the same item, varying over time. We refer to pnecess of associating elements that persist
across various snapshotsghsing the elements. @UASH must do this gluing; the time-varying data checker
within 7VALIDATOR must also on occasion glue elements.

When a pair of elements is glued, @amis created. An item is an element that evolves over time
through various versions. Determining which elements khba glued depends on two factors: tgpeof
the element, and thigeem identifierfor that element’s type. The item identifiers and gluing @meénts to
form items is already explained in detail in Section 6.4.

When a schema-change wall is encountered, items acrossatheegd to be associated. This process
is called aross-wall gluing or bridging. Figure 46 depicts the concepts of gluing and bridging.

Wall
Item Al Item A2

Bridging

/VS

S \ 7 S

Versions Verslons

Item A

Figure 46: Gluing and Bridging

In this figure, individual elements in individual versionsam XML document are depicted as small
circles in the center of the figure. Here we see six elememtsetof which are determined to be versions
of the same item (A1) and three of which are determined to bsiores of another item (A2). The wall
indicates that the schema was changed between the thirdartt fersion of the document.

Gluing uses the item identifier to associate the first threenehts with an item and likewise the next
three elements. Bridging determines that the element sheagrsion 3 of item Al and the element that is
version 1 of item A2 are actually versions of the same iteemitA. So in fact item A hasix versions,
the three elements before the schema change and the threengteafter the schema change. Gluing
and bridging occur in different stages within the validatooth conspire to realize an item across schema

63

changes, which is the first step in checking the temporaltcaings associated with that item’s definition in
the schema.

What is relevant for our purposes here is that item idensifsgrecified in the temporal annotations, are
usually the (snapshot) key of the element type [5] given énldhse schema, and are used-BLIDATOR
to extract the items from the temporal document and thenkctiectemporal constraints on those items.

What if either the snapshot key (specified in the base schapma) which an item identifier is defined,
or if the item identifier itself (specified in the temporal atetion) changes? This is a particularly insidious
kind of quicksand. Even worse is when the underlying elentigrg of an item changes. As an example,
if the <at hl et e> element in theai nol ynpi c. ver 1. xsd is replaced by<pl ayer > in the future
versions, an item that was a particutaat hl et e> element before the schema change could be associated
with a particular<pl ayer > element in the snapshot document associated with the Etens.

Our solution is to put in the&schemaAnnot at i on> element, which signals a change in some aspect
of the schema, axi t el dent i fi er Cor r espondence> element, specifying how old item identifiers
are to be mapped to new item identifiers. This element hasdttributes: ol dRef , a string naming an
item that appears in the old schenmewRef , a string naming an item that appears in the new schema,
mappi ngType, an XML Schema enumeration, and optionallyr@ppi ngLocat i on, which is a URI.

We have defined four mutually exclusive mapping types.

e useNew. The new identifier must also be present in the old element.
e used d: The old identifier must also be present in the new element.
e useBot h: An attribute’s name is changed, but its value isn't.

e repl ace: Use an externally-defined mapping.

This could be best described with an example. Say that in #@#®R2em identifier is that hl Dattribute
of the<at hl et e>element. In January 2005, this attribute is renamedNunber ; we specify a mapping
type ofuseBot h. In March 2005, the item identifier is changed to #iehNamne element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wased as a key until January 2005.)
Assume that, in June 2005 we add a new attribatéhKey, and specify that as the item identifier, with
a mapping type otised d. Finally, in July 2005, just before the beginning of the gamee replace the
<at hl et e> element with a<pl ayer > element, with gl ayer | Dattribute as the item identifier and a
mapping type of epl ace.

The gluing of elements into items is then done the followiraywBefore 2005, that hl Dis used for
gluing. When the schema change occurs sometime in Janu@by 2@ glue across the schema change by
matching theat hl Dvalue of the element before the schema change witlatheNunber value after the
change: these (integer) values must match for the two eleneme glued. In March 2005, we glue across
the schema change by matching up old elements and new ekethatthave the same (string) value for
theirat hName element, the new item identifier. The only difference is thefore the schema change, that
element was present but wasn'’t being used as a key. In a tmmtsiashion, in June we also glue using the
at hNane element, which was theld item identifier.

July is the most complex. We need to glue<at hl et e> element with an item identifier @it hKey
with a<pl ayer >element with an item identifier gfl ayer | D. For this, we use thehppi ngLocat i on
attribute in the bundle to access a mapping table that pesvédlist of pairs, each with aat hKey and a
pl ayer | Dvalue.

This list of pairs is termed eeplace mapping listAs it is instance-based, containing as it does a list of
key values the replace mapping list should only be used as a last rdsorble is to allow bridging for all
cases in which the other three mapping types, which have ad fwe storing instance information in the
schema, are not appropriate.

64

Of course, the mapping location document can also be timgngg 7VALIDATOR extracts the relevant
timeslice with INSQUASH

9.2.2 Accommodating Gaps

Bridging is more involved when there agapsin the lifetime of an item. Gaps make the process of finding
the correspondence between the items from consecutivensebenstant periods more difficult. If there are
gaps in the lifetime of an item, bridging becomes even morepiex.

Figure 47 shows three cases that may arise while bridgingelres from consecutive schema-constant
periods. It shows the data and schema changes along thadtianstime dimension, from left to right.
The schema-change walls are shown as bold vertical lines. hbhizontal lines depicts the evolution of
a particular item (in this case, three separate items). Tiigibhg process is shown by the jumpers over
schema change walls. An absence of a line indicates wheretinedid not exist in the database. The first
item existed during the entire transaction time period ckepi in this figure. There is a single gap in the
existence time of the second item: it ceased to exist soreaditming P; but reappeared i#,. The third
item had a much longer gap, reappearing only’in

P P
P 1 2 3
[~ A
Gay in . B
the exfstence
Gapin e AN C
the existence

- =

Transaction Time

Figure 47: Presence of Gaps

We now now examine each item in turn.

1. The itemA (the first horizontal line) is present throughout schemastant periodd®; and P,. Thus
the last snapshot d?; and the first snapshot @%, contains versions of iterd.

2. The itemB (the second horizontal line) disappeared for some timé’irand reappeared about
halfway through inP. Thus the last snapshot @ and first snapshot aP, will not contain ver-
sions of itemB.

3. Anitem could also disappear for one or more schema-conptiods and then reappear again. ltem
C (the bottom horizontal line) was present for initial part/f It then disappeared over entire period
P, and again appeared in the later half/ef.

For the first case, no extra work is needed as the items canidgedrdirectly using one of the above
four methods.
But, to handle cases 2 and 3, the following two approaches e@rsidered.

65

[~ A
NIl [N [~ B
,,,,, - o D I N c
Transaction Time
Figure 48: Cross Wall Gluing: Option 1
Py P2 Ps3
[~ A
—_ No Bflidging_— [~ B
Posgible
No Bridging \ C
Possible

- @@ @ -

Transaction Time

Figure 49: Cross Wall Gluing: Option 2

e Associate the pieces of an item across a schema change wattuajly extending period of versions
of the item. As an example, in Figure 48, bridging the two pgeof itemB involves virtually extend-
ing period of itemB’s last version until the end aP;, as if it were present during the last snapshot;
and virtually extending its first version’s period until tetart of P;; and then performing the bridging
using one of the above four methods. Similarly, for the itemresponding to the third line, bridging
involves virtually extending the period of the itefiis last version fromP; over multiple schema-
constant periods followed by bridging using one of abovehoes. SoP,;’s version is extended to
the wall, then bridged to a virtual element over allfef, then bridged to the extended elemenfin

e The second option is not to extend the “item” across a schdraage wall if it does not exist. So
the item matching semantics, e.g., “useNew” matches owlgetfitems that exist immediately before
the wall with those that exist immediately after the wall. &sexample, in Figure 49, bridging the
two pieces of itemd3 and C' having gaps in their existence across the schema change iwalbt
possible.

66

We decided to take the second approach, since we couldilyf fkaow” a priori if an item that reap-
pears is the same item or a different one from the earlier one.

9.2.3 Semantics for mixed data and schema changes

A data change in XML documents can co-exist with schema agngthin a single transaction, and hence

can occur at exactly the same (transaction commit) time.h\8Ghema changes coming into picture, we

also need to consider other factors like name and relativle gfzanges for item identifier fields and other

elements that constitute the content of an item, comptigéatie process of bridging and hence validation.
We considered three ways to handle this situation.

1. Not allow any data change in a transaction containingmehehanges. This is the most stringent
option and makes the user’s job more difficult, forcing hingpdit the task into multiple transactions.
This may not be always feasible from real world point of vi€ansider a situation where an element
is modified to have a new ‘required attribute’, data changeasdatory in this case and hence cannot
be separated from schema change. It could be argued thas tihievable with addition of a new
‘optional’ attribute, followed by required data changesl éimen making the attribute required. But it
requires more work from the user’s side.

2. Allow schema changes to coexist with data changes, eXoegthema changes to item identifier
fields. This will eliminate the need of replace mapping listlahe bridging could always be done
using one of the three optiongseNew, ‘used d’, or ‘useBot h'.

3. Allow data changes to coexist with schema changes withiarsaction without any restrictions.

We decided to go with the third approach, as it is the most igéné schema change for an element
can consist of changes to its structure or its attribute® dhé element definitions nested within it. Thus,
given two schemas, it becomes very difficult to find the défere between the schemas and to validate the
versions. So, we decided not to validate versions of an itewsa schema change walls if a schema change
is detected for it.

9.2.4 Non-Sequenced Constraints

A constraint isnon-sequenced it is applied to a temporal item as a whole (including thetime of the
data entity) rather than to individual time slices. They@aeéned in the temporal annotation as an extension
of snapshot XML Schema constraints. An example of a nonessmpd (cardinality) constraint is: “An item
cannot change more than three times in a year.”. This typeon$tcaint cannot be validated using the
conventional validator and thus needs to be validated usiagTemporal Constraint Checker’ module of
TVALIDATOR.

As mentioned earlier, schemas vary only over transactioe.tiHence, non-sequenced constraint vali-
dation is easier in valid time, as schema changes cannot.occu

We considered two alternatives for the applicability of ars@quenced constraint across schema changes:

e The constraint is applicable only within the schema-cartgt@riod in which it is defined.

e The constraint once defined becomes applicable to the eldtdement.

As per the first approach, any violation of a constraint dymevious schema-constant-periods is ig-
nored, while in the second approach, the constraint maydiated even when first defined.

67

Consider a situation shown in Figure 50. It maintains theesaomventions as Figure 48. Changes to an
item are shown by X’s. A new non-sequenced constraint isdhiced during third schema-constant period
Pj stating that “An item cannot change more than three timeg/gea” But the item has already undergone
four changes during previous schema-constant petigdad P;.

P P2 P3
] [~
January March May August
Constraint Constraint
"No more than dropped

3 changes in a year"
introduced

- =

Transaction Time

Figure 50: Non-Sequenced Constraints

According to first alternative listed above, the constrasnhot violated as long as the item does not
change more than three times in the third schema-constaiodpéintil there are four changes made after
the schema change, the constraint is not considered to ladedo

According to the second alternative semantics, there isddiately a violation of the constraint, due to
activity during the previous two schema-constant periods.

We decided on the first alternative: to apply a non-sequeacastraint only within the schema-constant
period in which it is defined. Thus the non-sequenced cdnsidrare “turned off” on any schema change.
So for instance a constraint that says that the content neusbbstant is checked only up to the schema
wall, and then checked within the new schema starting fraenvtall. In effect the schema change deletes
all the old constraints and then adds them back as new coristra

68

10 Implementation

10.1 Technology

TVALIDATOR and other tools have been written in Java and have been geklsing Java 2, Standard
Edition, v1.4. They use W3C specifications APIs for parsimg XML documents, building DOM trees
and processing XPath expressions. ‘W3C DOM AP/’ is used &sipg the XML documents. ‘XML Path
Language (XPath) Specification Version 1.0’ is used for pssing XPath expressions. Third party imple-
mentations of these APIs from Apache Software Foundati@ilable as part of Apache XML project [2]
were used. The details of these implementations are giviewbe

e XERCES a part of the Apache XML project is a family of software pagé&a for parsing and manip-
ulating XML documents. Xerces provides both XML parsing @yaheration. Xerces provides the
implementation for the W3C DOM API. The implementation isiéable under ‘Apache Software
License’ and is available freely [35].

e XALAN, a popular open source software library from the Apachevigo Foundation, is used as
an implementation of XPath API. It implements the XSLT XMlarisformation language and the
XPath XML query language. The implementation is availabiidar ‘Apache Software License’ and
is available freely [34].

10.2 Class Diagram

The class diagrams for the tool implementation are givehénRigures 51-53. The classes are divided into
three packages.

69

winterface»
3 IRepresentationFactory

£ tau.xml
{3 DecomposedRepresentationFactory
instantiates instantiates instantiates instantiates
winterfaces winterfaces {3 Primitives “interfaces ginterfaces
&3 IDnSchemaMapping 3 IDoTemporalValidation 3 IDoSquashing 3 IDoUNSquashing
HLISER
wLSER sEn
& DoSchemaMapping |~ & DoTemporalValidation {3 DoSquashing “ {3 DoUnSquashing
wLises 1 SHLISE ((L,I.SE))
«LIse» "
«Lisem «use» (9 TemporalValidator sl & Squash sk (& UnSquash
Uz wLSER «Uses
LLSEe» {
A : L b {3 DoSYSquashing & DoSYUnSquashing
{3 DoSYSchemaMapping | «lse» | {3 DoSVYTemporalValidation -
l wLSER
- schemaitern
®
{2 Schemaltem | * © Baseltem
& GenericValidator 1 : ;
- item
*.
@ Item & Repltem
[! 1
3 TemporalAnnotationValidator {5 PhysicalAnnotationValidator
+ itemidentifier 1
LISE
“LsE))
(@ ItemIdentifier

&t = & SchemaPathEvaluator
au.uti

Figure 51: Overview class diagram for the tools

70

«interface»
© IRepresentationFactory

© createDecomposedRepresentation ()

(® DecomposedRepresentationFactory
® createDoSchemaMappingObj ()

@ createDoTemporalvalidationObj ()

@ createDoSquashingObj ()

@ createDoUnSquashingObj ()

@ createPrimitives ()

instantiates P ;
tanat instantigtes Instantiates Lo instantiates
«interface» «interface» (© Primitives «interface»
€ IDoSchemaMapping © IDoTemporalvalidation ® pushUp () © IDoSquashing
© doSquash ()

@ doSchernaMapping ()

(3 DoSchemaMapping
® doSchemaMapping ()

«use»

(3 DoSYSchemaMapping
©® doSchemaMapping ()

@ pushDown ()

® doTemporalvalidation ()
® coalesce ()

«se»

«interface»
© IDoUNnSquashing

@ doUnSquash ()

«LsE» «use»
(® DoTemporalValidation (3 DoSquashing (® DoUnSquashing
© doTemporalvalidation) ©® doSquash () ® doUnSquash ()
«lse» 1 «uzen «use»
(TemporalValidator (® Squash (® UnSquash
«USE» @ main () «Use» g main () «wusen @ man ()
@ validate () ® squash () ® unSquash ()
«Lse» «usen “use» «usen «usen
. (® DoSVYTemporalvalidation (® DoSVYSquashing (3 DoSYUnSquashing
® doTemporalvalidation) ® doSquash () ® doUnSquash ()
- schemaitern
#*
P9 schemaltem o230 Baseltem
® validate () m
1 -item
" @ 1tem 23 RepItem
@ coalesce () @ toXML ()
® validate ()

Figure 52: Detailed class diagram foau. xm

71

£ tau.time

«interface»
© ITime

«interface»
© ITimePeriod
@ getRelationship ()
@ split ()
@ toXML ()

(® TimePeriod
@ getRelationship ()
@ split ()
@ toxXML ()

«LLse»

«interface»
© ITemporalRegion
@ split ()
@ toxXML ()

(TemporalRegion

@ split ()
@ toxXML ()

(® TemporalElement
@ add ()

@ addall ()

@ getTimeSpan ()

Figure 53: Detailed class diagram foau. ti me

72

tau.xml This package contains interfaces and classes correspgptadioolsTVALIDATOR, SCHEMAMAP-
PER SQUASH, and UINSQUASH. The details of the important classes used for data vergjoaie given
below.

e | t em Provides an abstraction for a logical item. It containshods for manipulating versions, their
coalescing validation.

e Repl t em Provides an abstraction for actual representation iteemeht in the XML document.
It provides methods for conversion of an XML element to/frantogical item. Both these classes
extend from the base claBasel t em which provides common functionality.

e Item dentifi er: Provides an abstraction for item-identifier.
e Primtives: Provides implementation for primitives explained in $act7.1.

e Tempor al Annot ati onVal i dat or andPhysi cal Annot at i onVal i dat or : Provide checks
for the consistency of temporal and physical annotatiorik thie snapshot schema.

e DoSchemaMappi ng, DoSquashi ng, DoUnSquashi ng, DoTenpor al Val i dati on: Pro-
vide the implementation for the algorithms explained int®&c7. Each of the classes implement
corresponding interfaces preceding their namelbyAs an exampleDPoSquashi ng implements
| DoSquashi ng.

The extended tools for schema versioning use these clagsesdlly to manipulate schema-versionsed
XML documents. The classes used for schema-versioninQaEB¥Dat aSquashi ng, DoSVDat aUnSquashi ng,
DoSVTenpor al Val i dat i on,andDoSVSchenmaMappi ng, where SV’ stands for ‘schema-versioned'.
The implementation of these classes first identify scheamstant-periods and call corresponding data-
versioning classes on individual schema-constant-psriod

The classesSquash, UnSquash and Tenpr al Val i dat or provide commond-line tools for the
end-user. These classes accept temporal bundle and catifigufiles as command line parameters and in-
ternally invoke schema-versioning or data-versioningsoepending upon whether the schema is versioned
or not.

tau.time This package contains the implementation of classes tdéaéntk. It provides implementation
for both Ti mePer i od (used for single time dimension) arficenpor al Regi on (used for bitemporal
elements).

tau.util This package contains utility class€schemaPat hEval uat or provides abstraction for eval-
uating schemapath expressions explained in Section 6v&n@itarget and reference element, the function
checks for the consistency of the target according to thpstr@ schema. This functionality is used by both
Tenpor al Annot ati onVal i dat or,

Physi cal Annot ati onVal i dat or andl tem dentifier.

As explained, the class for every tool implements its cqoesling interface. Thus, it is easily pos-
sible to accommodate a new implementation of these tools& foew representations without necessi-
tating many changes to the overall picture. Use of ‘Abstfgattory’ design pattern makes the inte-
gration and selection of the new representation seamlesgltigion of just a few lines of codes to the
Repr esent at i onFact or y class.

To add a new representation, we need to add new classes ieiagithe new representation for each
tool. Each class needs to implement the correspondingactzmentioned earlier. Once these classes are

73

added, a small addition of code is needed toRBpr esent at i onFact or y class. Then, any represen-
tation can be easily selected by providing correspondingrpater to théRepr esent at i onFact ory
class.

74

11 Support for Bitemporal Data

Up to this point, all the examples we have seen consider oahs#action time. But as explained in Sec-
tion 3.2, valid time also plays an important role in modelergities which need to maintain the historical
information. If an entity needs to maintain both the histakinformation as well as the history of changes,
bitemporal support is needed. In this section, we consigdenaeptual extension aiXSchema to provide
support for bitemporal data and procedure for squashingiagshot documents along both time dimen-
sions.

For illustration, we consider a modified example from theptba 10 of the bookDeveloping Time-
Oriented Database Applications in SQL[28].

Nykredit is a major Danish mortgage bank. It maintains tHiermation about properties and customers
into bitemporal tables for historical information and topide tracking support. Traditionally, its been
using relational database tables to maintain this infoionatlf this information needs to be migrated to
XML, 7XSchema with the support for bitemporal data would be useful

In their database, the information about Property, Custsrard their relationship is maintained in the
following three tables.

Property (property_nunber, address, VT_Begin, VI_End, TT.Start,
TT_End)

Cust orrer (name, VT_Begin, VT_End, TT_.Start, TT_End)

Prop_-Omer (custoner _nunber, property_nunber, VT_Begin, VT_End,
TT_Start, TT_End)

Let us assume that, the information about the property ieesgmted in XML using the schema given
in Figure 54. For simplicity, onlypr oper t y _nunber andaddr ess attributes of thePr operty are
considered. Property is associated with a owner byotlweer _nane attribute of the<pr opert y> ele-
ment. To simplify the things a little, we assume that the avismaniquely represented by tleawner _nane
attribute.

Corresponding temporal and physical annotations are giveéigures 55 and 56. As can be seen from
the temporal annotation, thepr oper t y> element is content varying both in transaction-time anétlval
time.

<el enent name="property">
<conpl exType m xed="true">
<sequence>
<el ement nane="address" type="string” m nCccurs="1" nmaxCccurs="1" />
</ sequence>
<attribute nane="property_nunber" type="nonNegativel nteger" use="required"/>
<attri bute nane="owner_nane" type="string" use="optional"/>
</ conpl exType>
</ el ement >

Figure 54:pr operty. xsd

To illustrate the process of gluing in two dimensions, wesider the history, over both valid time and
transaction time, of a flat in Aalborg, at Skovvej 30 for thentioof January 1998. All its transactions are

75

<itemtarget="/properties/property">
<transactionTi me content="varyi ng" exi stence="constant" />
<val i dTi me content ="varyi ng" exi stence="constant" />
<item dentifier nane="property_ nunmber" tineDi nmensi on="bitenporal">
<field path="@roperty_number"/>
</item dentifier>
<litenmp

Figure 55:pr oper t y_t enpor al _annot ati on. xsd

<stanp target="/properties/property">
<stanpKi nd ti neDi mensi on="bi tenmrporal " stanpBounds="extent"/>
</ st anp>

Figure 56:pr operty_physi cal .annot ati on. xsd

listed below in the chronological order of transactiongimThe corresponding bitemporal-time diagrams
and snippets of snapshot XML documents are also given foenstahding.

Assume that, initially, the mortgage for the flat was beingdiad by some other company. So, although
Nykredit maintained the property information, no informoatabout the owner is stored in the database. We
also assume that the flat exists in Nykredit's database feoraary 1. The snippet of the snapshot document
corresponding to this period is shown in Figure 58.

Transaction Time [01-01, UC) (Will be altered to [01-01, 0110))

e Valid Time [01-01, Forever)

<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 57: Mortgage being handled by other company. No costo

On January 10, this flat was purchased by Eva Nielsen. Wedéha information at a current valid-
time(01- 10), current transaction-timeéd(- 10). The snippets of the snapshot documents corresponding to
this transaction period starting @1- 10 are shown in Figure 58.

This information is valid starting now, and was inserted n@ve will see that the transaction-time extent
of all modifications is “now” to “until changed,” which we encode“ézrever.”

The interplay between valid time and transaction time caodvdusing, so it is useful to have a visual-
ization of the information content of a bitemporal tablegiie 59 shows thbitemporal time diagramor
simply time diagram corresponding to the above insertion.

In this figure, the horizontal axis tracks transaction timd ¢he vertical axis tracks the valid time. In-
formation about the owners associated with the propertyglepécted as two-dimensional polygonal regions
in the diagram. Arrows extending rightward denote “untibolged” in transaction time; arrows extending

76

Transaction Time [01-10, UC) (Will be altered to [01-10, 0115))

e Valid Time [01-01,01-10)

<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

e Valid Time [01-10, Forever)

<property property_ nunber="7797" owner _nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 58: Eva purchased the flat on January 10

upward denote “forever” in valid time. Here we have but ongior, associated with Eva Nielsen, that
starts at time 10 (January 10) in transaction time and exstémtuntil changed,” and begins also at time 10
in valid time and extends to “forever.” The arrow pointingward extends to the largest valid time value
(“forever”); the arrow pointing to the right extends to “ngwhat is, it advances day by day to the right (a
transaction time in the future is meaningless).

On January 15 Peter Olsen buys this flat; this legal trarmad¢tansfers ownership from Eva to him.
Figure 60 illustrates how this update impacts the time @iagrThe valid-time extent of this modification
is always “now” to “forever,” so from time 15 on, the propeiisyowned by Peter; at the rest of the time,
from time 10 to 15, the property was owned by Eva. Both regiextend to the right to “until changed.”
This time diagram captures two facts: Eva owning the flat agtéFowning the flat, each associated with a
bitemporal region.

The snippets of the snapshot documents correspondingsttréimsaction are shown in Figure 61.

On January 20, we find out that Peter has sold the propertyni@asne else, with the mortgage again
being handled by another mortgage company. From Nykreglitiat of view, the property no longer has a
owner as of (a valid time of) January 20.

Figure 62 shows the resulting time diagram. If we now reqtiestvalid-time history as best known,
we will learn that Eva owned the flat from January 10 to Jand&ryand Peter owned the flat from January
15 to January 20. All prior states are retained. We can stikettravel back to January 18 and request the
valid-time history, which will state that on that day we tighti that Peter still owned the flat.

The snippets of the snapshot documents correspondingsttréimsaction are shown in Figure 63.

On January 23, we find out that Eva had purchased the flat n@marady 10, but on January 3, a week
earlier. So we insert those additional days, to obtain time tiliagram shown in Figure 64. Corresponding
snippets of the snapshot documents are given in Figure 66

We learn on January 26 that Eva bought the flat not on Januagsliitially thought, nor on January
3, as later corrected, but on January 5. We specify a periaghoiicability of January 3 through 5, with the
result shown in the time diagram in Figure 65. Correspondmgpshot snippets are given in Figure 67

Finally, we learn on January 28 that Peter bought the flat onalg 12, not on January 15 as previously
thought. This change requires a period of applicabilityaulary 12 through 15, setting tbaner _name
to Peter, which results in the time diagram in Figure 68. &féely, the ownership must be transferred from

77

Valid
Time
30

25

20

15

10

5 10 15 20 25 30

Transaction
Time

Figure 59: A bitemporal time diagram corresponding to Evacpasing the flat, performed on January 10

Valid
Time
30

25
20

15

Eva
10 e
0 15 20

5 1 25 30

Transaction
Time

Figure 60: Peter buys the flat, performed on January 15

Eva to Peter for those three days, resulting in the snapsitatndents given in Figure 69.

Gluing elements in two dimensions involves gluing them glome dimension (e.g., valid-time) fol-
lowed by their gluing along the other dimension (e.q., temti®n-time). The last timing diagram on January
28 in Figure 68 could be divided into 7 time-periods alongtthasaction time dimension as shown in Fig-
ure 70, i.e.[01-01 - 01-10),[01-10 - 01-15),[01-15 - 01-20),[01-20 - 01-23),
[01-23 - 01-26),[01-26 - 01-28),[01-28 - UC).

All above snapshot documents are first squashed along tualeldimension as explained soon to give
seven temporal documents corresponding to each of the gimi@ds. The sample sample representa-
tion of these documents corresponding to perip84- 10, 01-15),[01-20, 01-23),[01- 26,

01- 28) are given below in Figure 71, Figure 72 and Figure 73 respelgti These documents are tempo-
ral documents themselves.

Other representations are also possible for these docgm&stin example, The document in Figure 72
could also be represented as shown in Figure 74. In thisgeptation, multiple DOM-equivalent versions
of the <pr opert y> are merged into a single version and their time periods greesented as a single

78

Transaction Time [01-15, UC) (Will be altered to [01-15, 0120))

e Valid Time [01-01,01-10)

<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

e Valid Time [01-10, 01-15)

<property property_nunber="7797" owner_nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>

e Valid Time [01-15, Forever)

<property property_nunber="7797" owner _nane="Peter">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 61: Peter buys the flat, performed on January 15

temporal element, i.e., a set of periods.

These temporal documents then act as snapshot documetepaitiorming squashing along transaction-
time dimension. When squashed along transaction-time rdiios, they give the final temporal document
shown in Figures 76, 77 and 78.

When we were concerned with only valid-time or only trangactime in earlier examples, the coalesc-
ing of content-constant versions was done by lengtheniagébhsion periods. But when the interplay of two
dimensions comes into picture, the periods in a single dgieengeneralize teegionsin the time diagram,
which are considerably more involved than one-dimensipeabds. In terms of time diagram, an item ver-
sion with two valid-time instantsyT_Begi n andVT_End, and two transaction-time instanB]_St ar t
andTT_St op, encodes aectanglein bitemporal space. Such two rectangle can be coalesced &itieer
their valid-time instantd/T_Begi n andVT_End match or their transaction-time instarnitg_St ar t and
TT_St op match.

While representing these regions in the XML document, theyld be split with the vertical lines
(termed agransaction-time splittinghown in Figure 75) or horizontal lines(termedvadid-time splitting.
Due to the semantics of transaction time, regions are ofiktwath vertical lines in the timing diagram.

The temporal document in Figures 76—78 uses the first apipysawe it minimizes the representation
of the document.

79

Valid
Time
30

25

20

15

Eva
10 e
0 15 20 2

5 1 5 30

Transaction
Time

Figure 62: Peter sells the flat, performed on January 20
Transaction Time [01-20, UC) (Will be altered to [01-20, 0123))

Valid Time [01-01, 01-10)

<property property_nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-10, 01-15)

<property property_ nunber="7797" owner _nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-15, 01-20)

<property property_nunber="7797" owner _name="Peter">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-20, Forever)

<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 63: Peter sells the flat, performed on January 20

80

Valid
Time
30

25

20

15
Eva

10

e

5 10 15 20 25 30

Transaction
Time

Figure 64: Discovered on January 23: Eva actually purch#saflat on January 3

Valid
Time
30

25
20,

15

Eva
10
5 | I—»
0 15 20 25 30

5 1

Transaction
Time

Figure 65: Discovered on January 26: Eva actually purch#seflat on January 5

81

Transaction Time [01-23, UC) (Will be altered to [01-23, 0126))

Valid Time [01-01, 01-03)

<property property_nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-03, 01-15)

<property property_nunber="7797" owner_nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-15, 01-20)

<property property_nunber="7797" owner _nane="Peter">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-20, Forever)

<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 66: Discovered on January 23: Eva actually purchéseflat on January 3

82

Transaction Time [01-26, UC) (Will be altered to [01-26, 0128))

Valid Time [01-01, 01-05)

<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-05, 01-15)

<property property_nunber="7797" owner_nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-15, 01-20)

<property property_nunber="7797" owner _nane="Peter">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-20, Forever)

<property property_nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Figure 67: Discovered on January 26: Eva actually purchésaflat on January 5

Valid
Time
30

25

20

15

Eva
10
5 ’ l—»
0 15 20 25 30

5 1

Transaction
Time

Figure 68: January 28: Peter actually purchased the flatrunadp 12

83

Transaction Time [01-28, UC)

Valid Time [01-01, 01-05)

<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-05, 01-12)

<property property_ nunber="7797" owner _nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-12,01-20)

<property property_nunber="7797" owner _nanme="Peter">
<address> Skovvej 30, Al borg </address>
</ property>

Valid Time [01-20, Forever)

<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>

Figure 69: January 28: Peter actually purchased the flatroumaia 12

84

Valid
Time
35

30

25

20

15

10

5 10 15 20 25 30 35

Transaction
Time

Figure 70: Transaction Time Regions

<property_Repltenr
<property_Version>
<timestanp_Val i dExt ent begi n="1998-01-01" end="1998-01-10" />
<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<timestanp_Val i dExt ent begi n="1998-01-10" end="9999-12-31" />
<property property_ nunber="7797" owner _nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>
</property_ Repltenr

Figure 71: Transaction Time01- 10, 01-15)

85

<property_Repltenr

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01-01" end="1998-01- 10"
<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01- 10" end="1998-01- 15"
<property property_nunber="7797" owner_nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti mestanp_Val i dExt ent begi n="1998-01- 15" end="1998-01- 20"
<property property_nunber="7797" owner _nanme="Peter">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01- 20" end="9999-12- 31"
<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

</ property_ Repltenr

Figure 72: Transaction Time01- 20, 01-23)

86

/>

/>

/>

/>

<property_Repltenr

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01- 01" end="1998-01- 05"
<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01- 05" end="1998-01- 12"
<property property_nunber="7797" owner_nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti mestanp_Val i dExt ent begi n="1998-01-12" end="1998-01- 20"
<property property_nunber="7797" owner _nanme="Peter">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti nestanp_Val i dExt ent begi n="1998-01- 20" end="9999-12- 31"
<property property_ nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

</ property_ Repltenr

Figure 73: Transaction Time01- 26, 01-28)

87

/>

/>

/>

/>

<property_Repltenr

<property_\Version>

<ti mestanp_Val i dExt ent begi n="1998-01-01" end="1998-01-10"
<ti nestanp_Val i dExt ent begi n="1998-01- 20" end="9999-12- 31"

<property property_nunber="7797">

<addr ess> Skovvej
</ property>
</ property_Version>

<property_Version>

<ti nestanp_Val i dExt ent begi n="1998-01- 10" end="1998-01- 15"
<property property_nunber="7797" owner_nane="Eva">

<addr ess> Skovvej
</ property>
</ property_Version>

<property_Version>

<ti mestanp_Val i dExt ent begi n="1998-01- 15" end="1998-01- 20"
<property property_nunber="7797" owner _nanme="Peter">

<addr ess> Skovvej
</ property>
</ property_Version>

</property_ Repltenr
Figure 74.

Valid
Time 35

30
25
20
15

10

30, Al borg </address>

30, Al borg </address>

30, Al borg </address>

Transaction Time01- 20, 01-23)

4 6
1 2
—_—
Peteri 7 i

19,
5 10 15 20 25 30 35
Transaction
Time

Figure 75: Transaction-time splitting of regions

88

/>

/>

/>

<property_Repltenr

<property_Version>
<ti nmestanp_TransExtent start="1998-01-01" stop="1998-01-10" />
<ti nestanp_Val i dExt ent begi n="1998-01-01" end="9999-12-31" />
<property property_nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start="1998-01-10" stop="1998-01-15" />
<ti mestanp_Val i dExt ent begi n="1998-01-10" end="9999-12-31" />
<property property_ nunber="7797" owner _nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti nmestanp_TransExtent start="1998-01-10" stop="1998-01-23" />
<ti nestanp_Val i dExt ent begi n="1998-01-01" end="1998-01-10" />
<property property_nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start="1998-01-15" stop="1998-01-20" />
<ti mestanp_Val i dExt ent begi n="1998-01-15" end="9999-12-31" />
<property property_nunber="7797" owner _nane="Peter">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

<property_Version>
<ti nmestanp_TransExtent start="1998-01-15" stop="1998-01-23" />
<ti nestanp_Val i dExt ent begi n="1998-01- 10" end="1998-01- 15" />
<property property_nunber="7797" owner_nane="Eva">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

Figure 76: Temporal Document along both valid-time andgaation-time

89

<property_Version>
<ti mestanp_TransExtent start="1998-01-20" stop="9999-12-31" />
<timestanp_Val i dExt ent begi n="1998-01-20" end="9999-12-31" />
<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti nmestanp_TransExtent start="1998-01-20" stop="1998-01-28" />
<ti nestanp_Val i dExt ent begi n="1998-01- 15" end="1998-01-20" />
<property property_nunber="7797" owner _nane="Peter">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start="1998-01-23" stop="1998-01-26" />
<timestanp_Val i dExt ent begi n="1998-01-03" end="1998-01-15" />
<property property_nunber="7797" owner_nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti nmestanp_TransExtent start="1998-01-23" stop="1998-01-26" />
<ti nestanp_Val i dExt ent begi n="1998-01-01" end="1998-01-03" />
<property property_ nunber="7797">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start="1998-01-26" stop="1998-01-28" />
<timestanp_Val i dExt ent begi n="1998-01-05" end="1998-01-15" />
<property property_nunber="7797" owner_nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

Figure 77: Temporal Document along both valid-time anddaation-time.Continued

90

<property_Version>
<ti mestanp_TransExtent start="1998-01-26" stop="9999-12-31" />
<ti mestanp_Val i dExt ent begi n="1998-01-01" end="1998-01-05" />
<property property_nunber="7797">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

<property_Version>
<ti nmestanp_TransExtent start="1998-01-28" stop="9999-12-31" />
<ti nestanp_Val i dExt ent begi n="1998-01-12" end="1998-01-20" />
<property property_nunber="7797" owner _nanme="Peter">
<addr ess> Skovvej 30, Al borg </address>
</ property>
</ property_Version>

<property_Version>
<ti mestanp_TransExtent start="1998-01-28" stop="9999-12-31" />
<ti mestanp_Val i dExt ent begi n="1998-01-05" end="1998-01-12" />
<property property_ nunber="7797" owner _nane="Eva">
<address> Skovvej 30, Al borg </address>
</ property>
</ property_\Version>

</ property_Repltenr

Figure 78: Temporal Document along both valid-time andgaation-time.Continued

91

In order to support bitemporal data, we anticipate follagvarchitectural and implementational changes
to the existing tools.

SCHEMAMAPPER : SCHEMAMAPPERWould need very little change. As the representation of gptemal
document is going to remain the same, it needs to add botbatéion and valid-time elements from
the TVSchema for the elements from physical annotation which are timegdwng along both the
dimensions.

TVALIDATOR : T7VALIDATOR would also need little change to support bitemporal datacethe repre-
sentation of items in a XML document is not going to change gliing procedure, which is the first
part of therVALIDATOR algorithm, would remain the same. Next step is to validageitidividual
items identified during gluing. In the existing emclass, the validation procedure for the item needs
to be extended to perform the validation of items varyingiglboth valid and transaction time.

SQUASH : To perform squashing of bitemporal data we anticipate d néa wrapper class, e.dpBi t enpor al Squashi

to the existing architecture. This class would use the iegjdDoSquashi ng class to perform the
squashing of documents along valid-time for identified $eartion-time periods. This will generate
the series of temporal documents, which will act as snapb@iments for squash along transaction-
time. The existinddoSquashi ng class and other primitive functions will not be able to hantilese
temporal documents, since they were not designed aniilogptite existence of items in the snapshot
documents. Thus thBoSquashi ng class would need some changes to handle these documents.
Also, although the conceptual algorithms for the primitiuactions remains the same, some imple-
mentation level changes would be needed. The existingmclass has the support for bitemporal
time. But the coalescing algorithm handles only time-pisidt does not handle regions. The current
coalesce function needs an extension to perform coalescing of region

UNSQUASH : UNSQUASH tool would also need some changes similar to the)/&sH tool. A new wrap-
per class (e.gDoBi t enpor al UnSquashi ng) could be added. This class would first unsquash
the given bitemporal document along the transaction-timeedsion to give multiple temporal doc-
uments along valid-time. Each of these documents need toméguashed along the valid-time di-
mension giving multiple snapshot documents. Existingquash would work without any changes
for performing unsquashing along the valid-time dimensi®aome modifications would be needed to
UnSqguash class to perform the unsquashing along the transactioa-tiimension.

Thus, although the tools would be based on the existing edassddition of some new classes and

modifications to the primitive functions would be necessargrder to provide the support for bitemporal
data.

92

12 Evaluation and Conclusion

In this thesis we have considered how to accommodate arghvalime-varying data within XML Schema.
We have presented Temporal XML SchemX$&chema), which is an extension of XML Schema, infras-
tructure, and a suite of tools to support the creation andlatibn of time-varying documents, without
requiring any changes to XML SchemaXSchema provides an efficient way to define temporal element
types; specifically, an element type that can vary over tidescribes how to associate temporal elements
across snapshots, and provides some temporal consttatsroadly characterize how a temporal element
can change over time. Our design conforms to W3C XML Schenfiaitien and is built on top of XML
Schema.

Our approach ensures data independence by separating Gh#pshot schema document for the in-
stance document, (ii) information concerning what poi@rof the instance document can vary over time,
and (iii) where timestamps should be placed and precisely the time-varying aspects should be repre-
sented. Since these three aspects are orthogonal, oursappatiows each aspect to be changed indepen-
dently.

This three-level schema specification approach is expl@itsupporting tools; several new, quite useful
toolsTVALIDATOR, SCHEMAMAPPER SQUASH, UNSQUASH, and RESQUASH are introduced that require
the logical and physical data independence provided by ppiroach. Additionally, this independence en-
ables existing tools (e.g., the XML Schema validator, XQuand DOM) to be used in the implementation
of their temporal counterparts.

We have then extendedXSchema to support schema versionoing. We showed how schensianing
can be integrated with support for time-varying documenis fiashion consistent and upwardly-compatible
with XML, XML Schema, and conventional XML validators. Scha versioning in its full generality is
supported, including (time-varying) schemas that inclodeeference other (time-varying) schemas. In
doing so, we leveraged both conventional XML Schema andeel#ools (principally, the conventional
validator), as well agVALIDATOR for data versioning.

To summarize, in this work we introduced tool&/ALIDATOR, SCHEMAMAPPER SQUASH, UN-
SQuAsH, and RESQUASH and extended them to support schema versioning. The tooiprige the code
of somewhat more than 8000 lines including comments. Fiwve sehemasTBSchema, TXSchenms,
PXSchema, TVSchema, andConf i gSchema are introduced and comprise around 400 lines of XML
code. The framework contains total 44 interfaces and ctasse

7XSchema andVVALIDATOR can be further enhanced to provide a better system and matgds.

e Future work includes extending theXSchema model to fulfill the issues not addressed during the
initial implementation. Indeterminacy and granularitye dwo significant and related issues, and
should be fully supported byXSchema. We anticipate that providing this support woulglune
additions to the TVSchema / TXSchema / PXSchema, but no esatogthe user-designed schemas
would be needed. These augmentations would maintain upseangatibility with previous versions
of 7XSchema and be transparent to the user.

e Another broad area of work is optimization and efficiency.thdugh we do talk about the space-
efficiency of the tools described in Section 7, we haven’egimuch attention to their performance.
New representations can be proposed, incorporated anda¢eelto improve the space-efficiency of
the temporal document. We anticipate that the DOM API coult/@ to be a memory bottleneck
for huge documents. So instead of parsing the complete dexcuat once, other options need to be
evaluated.

One option is to validate the document in parts, bringingy amie item at a time in the memory. This
could be achieved by replacing the immediate descendantdatements by their dummy equivalents

93

and then validating the item for its sequenced and non-segageconstraints. This would result in
less memory utilization since only a part of the documentdamd kept in the memory. As few
changes would be required to manage the items one at a timajoa part of the existing algorithm
for 7VALIDATOR could be reused. Here, if a DOM-based parser is used, theevdnaument needs
to be parsed at least once, even if we are validating one itenirme. This could be avoided by using
an event-based SAX parser and building an in-memory trealgftbe required elements in order to
perform those aspects of the validation that are synchednizith the parsing. This approach would
require complex memory management and parsing of the dadumetiple times, but memory use
would be greatly reduced.

As described earlier, all the tools are based on the elemefuactionspushUp, pushDown and
coalesce. If we can modify them to use a SAX parser instead of a docurabjgct-model, we can
easily convert all the tools to use a SAX parser. We think, tbatvertingpushDown to use a SAX
parser woule be easier; the timestamps could be pushed dusiip as the document is being parsed
from start to end. After initial thought it appears thatishUp would need building of an in-memory
tree, pushing the timestamps up and then serializing tlee Trais could also be achieved by building
the tree in parts resulting in more complexigoalesce would also need to build a tree in memory.
But instead of building a complete tree at once, it can buidlaree for each item at a time and then
coalesce it.

Although, the existing representation is easy to implenaat space efficient in the average case,
it may become very space inefficient in certain cases. Genaiv representations such as ‘diff’ or
‘zip’ could be added to tools to increase the space efficiefitige temporal documents. The support
for these new representations could be built on top of thstiexj tools by first creating the temporal
documents in the decomposed or non-decomposed représestand then converting them to ‘diff’
or ‘zip’ format for efficient storage on the disk.

Future work also includes enabling the legacy applicatmmie data inconsistent with a subsequently
changed schema, by exploiting information about the emglgchema that is already captured in the
temporal schema.

Current implementation of tools does not support all deésdrifeatures of XSchema completely.
These features need to be implemented to provide compbstenethe tools. The unimplemented
features, the anticipated changes and the estimatedseffeqiired to implement them are listed
below. The estimated effort does not include becoming faniked with the architecture and the
source code.

— Support for the Step representation of timestamp: Some changes to the classesdnd
Repltem would be needed to support tistep representation. Some changes would also be
needed to the algorithms implemented in clBs$ mi ti ves. 15-20 hours of work is antici-
pated.

— Support for the generic validation of non-sequenced caimf: Currently, the validation for
each non-sequenced constraints is implemented using easspdunction inside t emclass.
To provide a framework for the generic support of non-seqadrconstraints, a ‘Visitor’ pattern
could be used. In that case, the validator for each non-segdeconstraint will be implemented
in a separate class and a reference to an Iltem element widdseg to it. The addition of a new
constraint could be made easier by some properties filewtitligliminate any changes to the
I t emclass for addition/modification of constraints. 15-20 tsonfrwork is anticipated.

— Support for the schemaPath expressions containing ‘wiltd¢acharacters and shortcut rep-
resentation: This will change the way targets are beinguatetl. Changes to the classes

94

SchemaPat hEval uat or, | temandl t em denti fi er would be needed. Around 30—
40 hours of work is anticipated.

— Support for the item-identifiers specified in terms of exigtitems or schema keys, and targets
containing ‘wildcard’ characters: Some changes to theselglst emandl t enl denti fi er
would be needed. Some changes to the functions from Blaisgi t i ve may also be needed
since the procedure for coalescing may change. 20-30 hdw®r is anticipated for this
change.

— Support for nested time-varying schemas: We anticipais, Would result in a considerable
change to all the tools. A couple of weeks of work may be ne¢dedpport this feature.

— Support for RESQUASHIng of a temporal document using a new temporal annotatiome T
changes needed for this functionality are mentioned in theti® 7.6. 4-5 hours of work
should be sufficient for this change.

¢ In this work, only conceptual support for the bitemporalnedats is defined. The tools need to be
extended to support bitemporal elements.

In the future,7XSchema should be integrated with a schema-aware XML-badédr like XML-
Spy [38]. Schema-aware editors generate easy-to-usedtabr updating each type of element defined in
a schema. But they do not track changes to either the schetha data. Enabling versioning for both will
support unlimited undo/redo, improve change tracking, aiadin cooperative editing. Another direction
of future work is to add versioning to XUpdate [39]. XUpdaseai language for specifying changes to the
XML document.

7XSchema can also be extended to support generic aspects Iii2hat approach, we generalized
TXSchema to represent any generic aspect instead of jusstihmes.

A three-level schema specification approach introducedigwork by 7XSchema, the infrastructure,
and a suite of tools provide a system for creation and vatidaif data-versioned XML documents, with-
out requiring any changes to the XML Schema specification.cByer use of schema-constant periods
and cross-wall validation, schema versioning is also iatiegl in the framework with the support for time-
varying documents in a fashion consistent and upwardlypaiibnle with XML, XML Schema, and conven-
tional XML validators. The design conforms to W3C XML Schedefinition and is built on top of XML
Schema. Thus, this research has shown that by utilizingsafmnstant periods and cross-wall validation,
it is possible to realize a comprehensive system for reptesgand validating data- and schema-versioned
XML documents, while remaining fully compatible with the XMtandards.

95

References

[1] T. Amagasa, M. Yoshikawa, and S. Uemura, “A Data ModelTfemporal XML Documents,” irPro-
ceedings of Database and Expert Systems Applications, ldtdmational Conference, DEXA 2000
pages 334-344, London, UK, September 2000.

[2] Apache XML Project, Official website, URL http://xml.aphe.org, Viewed April 12, 2007.

[3] M. H.Bohlen, C. S. Jensen and R. T. Snodgrass, “Tempaai@ent Modifiers,” ilACM Transactions
on Database Syste2§(4): 407-456, December 2000.

[4] H. Bratman, “An Alternate Form of the “UNCOL Diagram,” @ommunications of the ACM (CACM)
4(3):142, 1961.

[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan, “KayXML,”in Computer Network39(5):
473-487, 2002.

[6] S. Chien, V. Tsotras, and C. Zaniolo, “Efficient schem@srhanaging multiversionXML documents,”
Very Large Data Bases Journdl1(4): 332-353.

[7] L. Costello and M. Utzinger, “Impact of XML Schema Vergiag on System Design” URL http://www.
xfront.com/SchemaVersioning.html, Viewed February 2007.

[8] C. De Castro, F. Grandi, and M. R. Scalas, “Schema Vensgprior Multitemporal Relational
Databases,” innformation System22(5): 249-290, 1997.

[9] Document Object Model, W3C. URL http://www.w3.org/DQMiewed March 26, 2007.

[10] Document Type Definition (DTD) language. URL http://mww3.0rg/TR/REC-xml/dt-doctype,
Viewed March 25, 2007.

[11] C. Dyreson, H. L. Lin, and Y. Wang, “Managing Versions\Wweb Documents in a Transaction-time
Web Server,” inProceedings of World Wide Weldew York, NY, pp. 422-432, 2004.

[12] C.Dyreson, R. T. Snodgrass, F. Currim, S. Currim, ani. Soshi, “Weaving Temporal and Reliability
Aspects into a Schema Tapestry,"Data & Knowledge Engineering

[13] C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, an&.Soshi, “Validating Quicksand: Schema
Versioning inTXSchema,” in22nd IEEE International Conference on Data Engineering k&bops
2006.

[14] J. Gabriel, “How to Version Schemas,” iRroceedings of XML 2004-Conference and Exhibi-
tion, Washington DC, November, 2004. URL http://www.idealtarorg/proceedings/xml04/papers/74/
howToVersionSchemas.html, Viewed February 7th, 2007.

[15] D. Gao and R. T. Snodgrass, “Temporal Slicing in the Batibn of XML Queries,” inProceedings of
Very Large Data Bases (VLDB)p. 632—643, 2003.

[16] F. Grandi, “A Bibliography on Temporal and Evolution pects in the World Wide WebTimeCenter
TR-75, 2003.

[17] C. S.Jensen and C. E. Dyreson (Editors), “The Conse@Gfossary of Temporal Database Concepts,”
February 1998 Version.

96

[18] C. S. Jensen and R. T. Snodgrass, “Temporal Databasaddarent, TimeCentefTR-17, 1997.
[19] B. P. Lientz, “Issues in software maintenance,AGM Comput. Surt5(3):271-278, 1983.

[20] A. Marian, “Detecting Changes in XML Documents,” Rroceedings of the 18th International Con-
ference on Data Engineeringp. 41-53, 2002

[21] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet, “ClgarCentric Management of Versions in an
XML Warehouse,” inProceedings of Very Large Data Bases (VLDByme, Italy, pp. 581-590, 2001.

[22] W. M. McKeeman, J. J. Horning, and D. B. Wortma@nCompiler Generator, Prentice-Hall, Engle-
wood Cliffs, NJ, 1970.

[23] J. F. Roddick, “Schema Evolution in Database Systems—Afinotated Bibliography,”"SIGMOD
Record21(4): 35-40, December, 1992.

[24] J. F. Roddick, “A Survey of Schema Versioning Issues Database Systems,” imformation and
Software Technolog¥7(7):383-393, 1995.

[25] SAX project, Official website. URL http://www.saxpesjt.org, Viewed March 26, 2007.

[26] D. Sjoberg, “Measuring schema evolution”, Technicap@rt FIDE/92/36, Department of Computer
Science, University of Glasgow, 1992.

[27] D. Sjoberg, Quantifying schema evolution,lirf. Softw. TechnoB5(1):35-44, 1993.

[28] R. T. Snodgrasseveloping Time-Oriented Database Applications in SQlL Morgan Kaufmann
Publishers, San Francisco, CA, 2000.

[29] R. T. Snodgrass, “The Temporal Query Language TQueKGCM Transactions on Database Systems
12(2):247-298, June 1987.

[30] R.T. Snodgrass, C. Dyreson, F. Currim, S. Currim, anB.Soshi, *XSchema: Support for Data and
Schema Versioned XML DocumentgimeCenteiTR, 2007.

[31] R. T. Snodgrass, S. Gomez, and E. McKenzie, "“Aggregattdse Temporal Query Language TQuel,”
in IEEE Transactions on Knowledge and Data EngineeB(fg):826—842, October, 1993.

[32] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segawl &. T. Snodgrassfemporal Databases:
Theory, Design, and Implementation Benjamin/Cummings Publiihing Company, 1993.

[33] TAU Project, 7XSchema, Computer Science Department at the University rifoAa. URL http:
Ilwww.cs.arizona.edu/projects/tau/txschema/index, iliewed March 26, 2007.

[34] XALAN, Official website of Xalan-Java Version 2.7.0, URL httpalémn.apache.org, Viewed April 12,
2007.

[35] XERCES Official website of Apache Xerces Project Version 1.4.4, LURtp://xerces.apache.org/
xerces-j, Viewed April 12, 2007.

[36] XML Schema Versioning Use Cases “Framework for distus®f versioning” URL http://www.w3.
org/XML/2005/xsd-versioning-use-cases, Viewed Jand&iy, 2006.

[37] XML Schema, W3C Recommendation, May 2001. URL httpmww3.org/XML/Schema, Viewed
March 25, 2007.

97

[38] XMLSpy, “XML editor for modeling, editing, transformig, & debugging XML technologies.” URL
http://www.altova.com/products/xmlispy/xneditor.html, Viewed April 18, 2007.

[39] XUpdate, XML Update Language. URL http://xmldb-omusceforge.net/xupdate, Viewed April 18,
2007.

98

A Base Schemas

A.1 TBSchema: Schema for Temporal Bundle

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema target Nanespace="http://wwv.cs. ari zona. edu/t au/ t auXxSchema/ TBSchema"
xm ns:tb="http://ww.cs. ari zona. edu/ t au/ t auXSchena/ TBSchema"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
versi on="May 5, 2004">

<xs: el ement nane="tenporal Bundl e" >
<xs:annotation>
<xs: docunent ati on>
XML Schera file for tenporal bundle file.
currently mainly discusses identifier evolution
</ xs: docunent ati on>
</ xs:annot ati on>
<xs:conpl exType>
<Xxs:sequence>
<xs: el ement nane="format" m nCccurs="0">
<xs:conpl exType>
<xs:attribute nane="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granul arity" type="xs:string" use="optional"/>
<xs:attribute name="cal endar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="val ueSchema" type="xs:string" use="optional"/>
</ xs: compl exType>
</ xs: el enent >
<xs: el ement nanme="bundl eSequence" mi nCccurs="0">
<xs:conpl exType>
<Xs:sequence>
<xs: el ement name="schemaAnnot ati on" maxCccur s="unbounded" >
<xs:conpl exType>
<Xs:seguence>
<xs:element name="tTi me" type="xs:string" m nQOccurs="0"/>
<xs:el ement name="itemnl dentifierCorrespondence" m nCccurs="0" maxCccurs="unbounded" >
<xs:conpl exType>
<xs:attribute nane="ol dRef" type="xs:string"/>
<xs:attribute name="newRef" type="xs:string"/>
<xs:attribute name="nappi ngType" type="tb: mappi ngType"/>
<xs:attribute name="mappi ngLocation" type="xs:anyURl "/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="snapshot Schema" type="xs:anyURl " use="required"/>
<xs:attribute name="tenporal Annotati on" type="xs:anyURl " use="optional"/>
<xs:attribute nane="physical Annotation" type="xs:anyURl" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="defaul t Tenporal Annot ati on" type="xs:string" use="optional"/>
<xs:attribute nane="defaul t Physi cal Annot ati on" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute nane="defaul t Tenpor al Annot ati on" type="xs:string" use="optional"/>
<xs:attribute name="def aul t Physi cal Annotati on" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:annot ati on>
<xs: docunent ati on>
Dat at ype definitions for tenporal bundle file follow
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:si npl eType nanme="mappi ngType" >

99

<xs:restriction base="xs:string">
<xs:enuneration val ue="useBot h"/>
<xs:enuneration val ue="used d"/>
<xs:enuneration val ue="useNew'/ >
<xs:enuneration val ue="repl ace"/>

</xs:restriction>

</ xs: si npl eType>
</ xs: schema>

A.2 TXSchema: Schema for Temporal Annotation

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema target Nanespace="http://ww:. cs. ari zona. edu/ t au/ t auXSchenma/ TXSchema"
xm ns:ts="http://wwmv cs. ari zona. edu/ t au/ t auXSchema/ TXSchema"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
el ement For nDef aul t =" qual i fi ed" attributeFornDefaul t="unqualified" >
<xs: el ement nanme="tenporal Annot ati ons">
<xs:annot ati on>
<xs: docunent ati on>
XML Scherma file for tenporal annotations file
</ xs: docunent ati on>
</ xs:annot ati on>
<xs:conpl exType>
<Xs:sequence>
<xs: el ement nanme="include" mi nCccurs="0" maxCccur s="unbounded" >
<xs:conpl exType>
<xs:attribute nane="annot ationLocation" type="xs:anyURl "/>
</ xs: conmpl exType>
</ xs: el ement >
<xs: el ement nane="default" mi nCccurs="0">
<xs:conpl exType>
<Xs:sequence>
<xs: el ement nane="format" m nCccurs="0">
<xs:conpl exType>
<xs:attribute nane="plugin" type="xs:string" use="optional"/>
<xs:attribute name="granularity" type="xs:string" use="optional"/>
<xs:attribute nane="cal endar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="val ueSchem" type="xs:anyUR " use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement nane="itent nminCccurs="0" maxQccurs="unbounded">
<xs: conpl exType>
<xXs:sequence>
<xs: el ement nane="validTi ne" m nCccurs="0">
<xs:conpl exType>
<Xs:seguence>
<xs: el ement nane="cont ent Varyi ngApplicability" m nGccurs="0" naxCccurs="unbounded" >
<xs:conpl exType>
<xs:attribute nane="begi n" type="xs:string" use="optional"/>
<xs:attribute name="end" type="xs:string" use="optional"/>
</ xs: conmpl exType>
</ xs: el ement >
<xs: el ement nane="nmaxi mal Exi st ence" m nCccurs="0">
<xs:conpl exType>
<xs:attribute name="begin" type="xs:string" use="optional"/>
<xs:attribute nane="end" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="frequency" type="xs:string" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="ki nd" type="ts:kindType" use="optional "/>
<xs:attribute name="content" type="ts:contentType" use="optional"/>
<xs:attribute name="exi stence" type="ts:existenceType" use="optional"/>

100

</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="transactionTi ne" m nQccurs="0">
<xs: conpl exType>
<Xs:seguence>
<xs:el ement name="frequency" type="xs:string" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="ki nd" type="ts:kindType" use="optional"/>
<xs:attribute nane="content" type="ts:contentType" use="optional"/>
<xs:attribute name="existence" type="ts:existenceType" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="item dentifier" m nCccurs="0">
<xs: conpl exType>
<xs:sequence>
<xs: el ement nane="keyref" m nCccurs="0" maxQccurs="unbounded">
<xs:conpl exType>
<xs:attribute name="ref Nane" type="xs:string" use="required"/>
<xs:attribute name="ref Type" type="ts: keyrefTypell" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="field" m nCccurs="0" maxCccurs="unbounded">
<xs: conpl exType>
<xs:attribute name="path" type="xs:string" use="required"/>
</ xs: conmpl exType>
</ xs: el enent >
</ xs: sequence>
<xs:attribute nane="nane" type="xs:string" use="optional"/>
<xs:attribute name="ti nmeDi nensi on" type="ts:timeDi mensionType" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement nane="attribute" m nCccurs="0" maxCccurs="unbounded" >
<xs:conpl exType>
<Xs:seguence>
<xs:el ement name="validTi me" m nCccurs="0">
<xs:conpl exType>
<Xs: sequence>
<xs: el ement nanme="content Varyi ngApplicability" m nCccurs="0" maxCccurs="unbounded" >
<xs:conpl exType>
<xs:attribute name="begin" type="xs:string" use="optional"/>
<xs:attribute name="end" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="frequency" type="xs:string" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="kind" type="ts:kindType" use="required"/>
<xs:attribute name="content" type="ts:contentType" use="optional"/>
</ xs: conmpl exType>
</ xs: el enent >
<xs: el ement nane="transactionTi ne" m nCccurs="0">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement nane="frequency" type="xs:string" m nCccurs="0"/>
</ xs: sequence>
</ xs: conmpl exType>
</ xs: el enent >
</ xs: sequence>
<xs:attribute name="nanme" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="target" type="xs:anyURlI" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conmpl exType>
</ xs: el ement >
<xs:annot ati on>

101

<xs:document ati on>
Dat at ype definitions for tenporal annotations file follow
</ xs: docunent ati on>
</ xs:annotati on>
<xs: si npl eType nane="ki ndType" >
<xs:restriction base="xs:string">
<xs:enumeration value="state"/>
<xs:enuneration val ue="event"/>
</xs:restriction>
</ xs: si mpl eType>
<xs: si npl eType nane="keyref Typel | ">
<xs:restriction base="xs:string">
<xs:enuneration val ue="snapshot"/>
<xs:enuneration value="item dentifier"/>
</xs:restriction>
<l-- 1l in "keyrefTypell" stands for Item dentifier -->
</ xs: si mpl eType>
<xs: si npl eType nane="cont ent Type">
<xs:restriction base="xs:string">
<xs:enuneration val ue="constant"/>
<xs:enumeration val ue="varying"/>
</xs:restriction>
</ xs: si npl eType>
<xs:sinpl eType name="exi st enceType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="constant"/>
<xs:enuneration val ue="varyi ngWthGaps"/>
<xs:enuneration val ue="varyi ngWt hout Gaps"/ >
</xs:restriction>
</ xs: si npl eType>
<xs:si npl eType nanme="ti meDi nensi onType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="validTi ne"/>
<xs:enumneration val ue="transactionTi me"/>
<xs:enuneration val ue="bitenporal "/ >
</xs:restriction>
</ xs: si npl eType>
</ xs: schema>

A.3 PXSchema: Schema for Physical Annotation

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema target Nanespace="http://ww:. cs. ari zona. edu/ t au/ t auXSchena/ PXSchema"
xm ns: ps="http://wwm. cs. ari zona. edu/ t au/ t auXSchema/ PXSchenma"
xm ns: xs="http://ww.w3. or g/ 2001/ XM_Schena"
el enent For nDef aul t =" qual i fi ed" attri buteFornmDefaul t="unqualified">
<xs: el ement name="physi cal Annot ati ons">
<xs:annot ati on>
<xs:docurment ati on>XM. Schenma fil e describing the physical annotations XM fil e</xs:docunentation>
</ xs:annot ati on>
<xs:conpl exType>
<Xs:sequence>
<xs: el ement nanme="include" m nCccurs="0" maxCccur s="unbounded" >
<xs:conpl exType>
<xs:attribute nane="annot ati onLocation" type="xs:anyURl "/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="default" nmi nCccurs="0">
<xs:conpl exType>
<xs:sequence>
<xs:el ement nane="format" m nCccurs="0">
<xs:conpl exType>
<xs:attribute name="plugin" type="xs:string" use="optional"/>
<xs:attribute nane="granularity" type="xs:string" use="optional"/>
<xs:attribute name="cal endar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute name="val ueSchem" type="xs:string" use="optional"/>

102

</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conmpl exType>
</ xs: el ement >
<xs:el ement name="stanmp" m nCccurs="0" maxCccurs="unbounded" >
<xs: conpl exType>
<Xs:sequence>
<xs: el ement nane="st anpKi nd" >
<xs:conpl exType>
<Xs:seguence>
<xs:el ement name="format" m nCccurs="0">
<xs:conpl exType>
<xs:attribute nane="plugi n" type="xs:string" use="optional"/>
<xs:attribute name="granul arity" type="xs:string" use="optional"/>
<xs:attribute name="cal endar" type="xs:string" use="optional"/>
<xs:attribute name="properties" type="xs:string" use="optional"/>
<xs:attribute nane="val ueSchena" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
<xs:attribute name="ti meDi nensi on" type="ps:timeD nmensionType" use="optional"/>
<xs:attribute name="stanpBounds" type="ps:stanpType" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="orderBy" mi nCccurs="0">
<xs: conpl exType>
<Xs:seguence>
<xs:el ement name="field" nmaxCccurs="unbounded">
<xs: conpl exType>
<xs: choi ce>
<xs: el ement nane="target" type="xs:string"/>
<xs:el ement name="tine">
<xs: conpl exType>
<xs:attribute name="di mension" type="ps:tineD mensi onType"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: conmpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="target" type="xs:string" use="required"/>
<xs:attribute nanme="dat al ncl usi on" type="ps: datal ncl usi onType" use="optional "/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conmpl exType>
</ xs: el ement >
<xs:si nmpl eType nanme="stanpType">
<xs:restriction base="xs:string">
<xs:enumeration val ue="step"/>
<xs:enumeration val ue="extent"/>
</xs:restriction>
</ xs: si nmpl eType>
<xs:si npl eType nane="dat al ncl usi onType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="expandedEntity"/>
<xs:enuneration val ue="referencedEntity"/>
<xs:enuneration val ue="expandedVersi on"/ >
<xs:enuneration val ue="referencedVersion"/>
</xs:restriction>
</ xs: si nmpl eType>
<xs: si npl eType nane="ti neDi nensi onType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="validTi ne"/>

103

<xs:enuneration val ue="transactionTi ne"/>
<xs:enuneration val ue="bitenporal "/ >
</xs:restriction>
</ xs: si npl eType>
<xs:annot ati on>
<xs: docunent ati on>
Note: "referenced-entity" should not be used in conjunction with "contained" tinmeBoundary
</ xs: docunent ati on>
</ xs:annot ati on>
</ xs: schema>

A.4 TVSchema: Schema for Timestamp Representations

<xsd: schema t ar get Nanespace="http://wwv. cs. ari zona. edu/ t au/ TVSchena"
xm ns:tv="http://ww.cs. ari zona. edu/ t au/ TVSchema"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xsd: el ement name="ti nmestanp_TransSt ep">
<xsd: conpl exType>
<xsd:attribute nane="begi n" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="ti mestanp_TransExtent">
<xsd: conmpl exType>
<xsd: attribute name="begi n* type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="ti nestanp_Val i dSt ep">
<xsd: conpl exType>
<xsd:attribute nanme="begi n" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="ti nestanp_Val i dExt ent ">
<xsd: conpl exType>
<xsd:attribute nanme="begi n" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

A.5 ConfigSchema: Schema for Configuration Document

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema target Nanespace="http://wwv. cs. ari zona. edu/ t au/ t auXSchema/ Conf i gSchema"
xm ns: cs="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ Conf i gSchema"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed" attri but eFormDef aul t ="unqualified" >
<xs: el ement name="config">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement nane="snapshot" mi nCccurs="1" maxQccurs="unbounded" >
<xs:conpl exType>
<xs:attribute nane="begi nDate" type="xs:string"/>
<xs:attribute name="endDate" type="xs:string"/>
<xs:attribute nane="file" type="xs:string"/>
</ xs: conmpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="bundl e" type="xs:string"/>
</ xs: conmpl exType>
</ xs: el ement >
</ xs: schema>

104

B Schema-Versioning Example

B.1 Snapshot Schemas
B.1.1 Snapshot Schema 082002- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified">
<xsd: el ement nanme="wi nQ ynpi c">
<xsd: annot ati on>
<xsd: docunent ati on>
Schema for recording non tenporal country information
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement ref="country" m nQccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="country">
<xsd: conpl exType mi xed="fal se">
<xsd: sequence>
<xsd: el ement ref="athl eteTeant'/>
</ xsd: sequence>
<xsd: attribute name="countryName" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="at hl et eTean{ >
<xsd: conpl exType ni xed="true">
<xsd: sequence>
<xsd: el ement nane="t eanNane" m nCccurs="1" maxCccurs="1" type="xsd:string"/>
<xsd: el ement ref="athl ete" nmaxQccurs="unbounded"/>
</ xsd: sequence>
<xsd: attribute nane="numAt hl etes" type="xsd: positivelnteger" use="optional"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="at hl ete">
<xsd: conpl exType ni xed="true">
<xsd: sequence>
<xsd: el ement nane="at hNane" type="xsd:string"/>
<xsd: el ement name="phone" type="phoneNuniType" m nCccurs="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: si npl eType nanme="phoneNunilype" >
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="12"/>
<xsd: pattern val ue="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

B.1.2 Snapshot Schema 082005- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified">
<xsd: el ement name="w nQ ynpi c">
<xsd: annot ati on>
<xsd: docunent ati on>
Schema for recording non tenporal country information
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">

105

<xsd: sequence>
<I--nunEvents added on Wednesday-->
<xsd: el ement name="nunEvents" type="xsd: nonNegati vel nteger"/>
<xsd: el ement ref="country" m nQccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="country">
<xsd: conpl exType mi xed="fal se">
<xsd: sequence>
<xsd: el ement ref="athl eteTean!'/>
</ xsd: sequence>
<xsd: attribute name="countryName" type="xsd:string" use="required"/>
<xsd:attribute name="countrylLead" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="at hl et eTeant' >
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nanme="t eanmNane" m nCccurs="1" maxQccurs="1" type="xsd:string"/>
<xsd: el ement ref="athl ete" nmaxCccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="numAt hl etes" type="xsd: positivelnteger" use="optional"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="athl ete">
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nanme="at hNane" type="xsd:string"/>
<xsd: el ement nanme="phone" type="phoneNuniType" m nCccurs="0" maxCccur s="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: si npl eType nane="phoneNunilype" >
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="12"/>
<xsd: pattern val ue="\d{3}-\d{3}-\d{4}"/>
</ xsd:restriction>
</ xsd: si mpl eType>
</ xsd: schenma>

B.2 Temporal Annotations
B.2.1 Temporal Annotation on2002- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<t enpor al Annot ati ons xm ns="http://wwm. cs. ari zona. edu/ t au/ t auXSchenma/ TXSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocation="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ TXScherma TXSchenma. xsd" >
<defaul t >
<format plugi n="XM.Schema" granul arity="gDay"/>
</ def aul t >

<itemtarget="/w nd ynpic">
<transactionTi me content="varying" existence="constant"/>
<item dentifier nane="ol ynpi cld1" tinmeD nension="transactionTi ne">
<field path="./text"/>
</item dentifier>
</itemr

<itemtarget="/w nQO ynpic/country">
<transacti onTi me content="varyi ng" existence="varyi ngWthGaps"/>
<item dentifier nane="countryldl" tinmeD nension="transactionTi ne">
<field path="./@ountryName"/>
</item dentifier>
</itemr

106

<itemtarget="/w nd ynpi c/country/athl et eTeant >
<transactionTi me content="varying" existence="varyi ngWthGaps"/>
<item dentifier nane="teanNanme" tineD mension="transactionTi ne">
<field path="./teanNanme/text"/>
</item dentifier>
<litemp

<itemtarget="/w nQO ynpi c/country/athl eteTeanl at hl ete">
<transactionTi me content="varying" existence="varyi ngWthGaps"/>
<item dentifier nane="athel etel d1" ti nmeDi nensi on="transacti onTi me">
<field path="./athNanme/text"/>
</item dentifier>
</litemp
</ t enpor al Annot ati ons>

B.2.2 Temporal Annotation on2005- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<t enpor al Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TXSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocation="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ TXScherma TXSchenma. xsd" >
<def aul t >
<format plugi n="XM.Schema" granul arity="gDay"/>
</ def aul t >

<itemtarget="/w nd ynpic">
<transactionTi me content="varying" existence="constant"/>
<item dentifier nane="ol ynpi cl d1" tinmeD nension="transactionTi ne">
<field path="./text"/>
</item dentifier>
</itenpr

<itemtarget="/w nQd ynpic/country">
<transactionTi me content="varyi ng" existence="varyi ngWthGaps"/>
<item dentifier nane="countryldl" tinmeD nension="transactionTi ne">
<field path="./@ountryName"/>
<field path="./@ountryLead"/>
</item dentifier>
<litemp

<itemtarget="/w nQO ynpic/country/ athl et eTeant >
<transacti onTi me content="varyi ng" existence="varyi ngWthGaps"/>
<item dentifier nane="teanNane" tineDi nension="transactionTi ne">
<field path="./teanNanme/text"/>
</item dentifier>
<litemp

<itemtarget="/w nQO ynpic/country/athl eteTeani athl ete">
<transacti onTi me content="varyi ng" existence="varyi ngWthGaps"/>
<item dentifier nane="athel etel d1" timeD mensi on="transactionTi me">
<field path="./athName/text"/>
</itemdentifier>
<litemp
</ t enpor al Annot ati ons>

B.3 Physical Annotations
B.3.1 Physical Annotation on2002- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<physi cal Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ PXSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemaLocati on="http://wwm. cs. ari zona. edu/ t au/ t auXSchena/ PXSchena PXSchena. xsd" >
<defaul t >
<format plugi n="XM_.Schema" granul arity="days"/>
</ defaul t>

107

<stanp target="/w nQ ynpic">
<stanpKi nd ti meDi nensi on="transacti onTi me" stanmpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/ country">
<stanpKi nd ti meDi nensi on="transacti onTi ne" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/ country/ at hl et eTeani >
<stanpKi nd ti meDi nensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/country/ athl eteTeanf athl ete">
<stanpKi nd ti meDi nensi on="transacti onTi me" stanmpBounds="extent"/>
</ st anp>
</ physi cal Annot at i ons>

B.3.2 Physical Annotation on2005- 01- 01

<?xm version="1.0" encodi ng="UTF- 8" ?>
<physi cal Annot ati ons xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ PXSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemaLocati on="http://wwm. cs. ari zona. edu/ t au/ t auXSchena/ PXSchena PXSchena. xsd" >
<defaul t >
<format plugi n="XM.Schema" granul arity="days"/>
</ def aul t >

<stanp target="/w nQd ynpic">
<stanpKi nd ti meDi nensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/ country">
<stanpKi nd ti meDi nensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/ country/ at hl et eTeani >
<stanpKi nd ti meDi nensi on="transacti onTi me" stanpBounds="extent"/>
</ st anp>

<stanp target="/w nd ynpi c/country/athl eteTeanf athl ete">
<stanpKi nd ti meDi nensi on="transacti onTi me" stanmpBounds="extent"/>
</ st anp>
</ physi cal Annot at i ons>

B.4 Snapshot Documents
B.4.1 Snapshot Document 02002- 01- 01

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wi nA ynpi ¢ xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchemalLocati on="w nQd ynpi c. ver 1. xsd" >
There are
events in the O ynpics.
<country countryName="Norway" >
<at hl et eTeam numAt hl et es="95">
<t eanNanme>Nor way_Ar nmy</ t eanNane>
Athletes will take part in various events. The athletes participating are |isted bel ow
<at hl et e>
<at hName>
Kjetil Andre Aanodt
</ at hNare>
</ athl et e>
<at hl et e>
<at hName>
Tri ne Bakke- Rognno

108

</ at hNare>
H s phone nunbers are:
<phone>123- 402- 0340</ phone>
<phone>123- 402- 0000</ phone>

</ athl ete>

<at hl et e>
<at hName>

Lasse Kjus

</ at hName>

</ athl et e>

</ at hl et eTean®
</ country>
</ wi nd ynpi c>

B.4.2 Snapshot Document 02003- 01- 01

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wi nA ynpi ¢ xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmaLocati on="w nQd ynpi c. ver 1. xsd" >
There are
events in the O ynpics.
<country countryNanme="Norway" >
<at hl et eTeam numAt hl et es="95">
<t eanNanme>Nor way_Ar ny</ t eanNane>
Athletes will take part in various events. The athletes participating are |isted bel ow
<at hl et e>
<at hName>
Kjetil Andre Aanodt
</ at hName>
</ athl et e>
<at hl et e>
<at hName>
Andr e Agassi
</ at hName>
</ athl et e>
<at hl et e>
<at hName>
Tri ne Bakke- Rognnop
</ at hName>
H s phone nunbers are:
<phone>123- 402- 0340</ phone>
<phone>123- 402- 0000</ phone>
</ athl et e>
<at hl et e>
<at hName>
Lasse Kjus
</ at hName>
</ athl et e>
</ at hl et eTean®
</country>
</ wi nd ynpi c>

B.4.3 Snapshot Document 02005- 01- 01

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wi nA ynpi ¢ xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocati on="w nd ynpi c. ver 2. xsd" >
There are
<nunmEvent s>11</ nunEvent s>
events in the O ynpics.
<country countryName="Norway" countrylLead="Andre Agassi">
<at hl et eTeam numAt hl et es="95">
<t eanNanme>Nor way_Ar ny</ t eanNane>
Athletes will take part in various events. The athletes participating are |isted bel ow
<at hl et e>
<at hName>

109

Kjetil Andre Aanodt
</ at hName>
</ athl et e>
<at hl et e>
<at hName>
Andr e Agassi
</ at hName>
</ athl et e>
<at hl et e>
<at hName>
Tri ne Bakke- Rognnop
</ at hNare>
Hi s phone nunbers are:
<phone>123- 402- 0340</ phone>
<phone>123- 402- 0000</ phone>
</ athl ete>
<at hl et e>
<at hName>
Lasse Kjus
</ at hNare>
</ athl et e>
</ at hl et eTean®
</country>
</ wi nd ynpi c>

B.4.4 Snapshot Document 02006- 01- 01

<?xm version="1.0" encodi ng="UTF-8"?>
<wi nA ynpi ¢ xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocati on="w nQd ynpi c. ver 2. xsd" >
There are
<nunmEvent s>11</ nunEvent s>
events in the O ynpics.
<country countryName="Norway" countrylLead="Andre Agassi">
<at hl et eTeam numAt hl et es="95">
<t eanNanme>Nor way_Ar ny</ t eanNane>
Athletes will take part in various events. The athletes participating are |isted bel ow
<at hl et e>
<at hName>
Kjetil Andre Aanodt
</ at hName>
</ athl et e>
<at hl et e>
<at hName>
Andr e Agassi
</ at hName>
</ athl et e>
<at hl et e>
<at hNane>
Tri ne Bakke- Rognnop
</ at hName>
H s phone nunbers are:
<phone>123- 402- 0340</ phone>
<phone>123- 402- 0000</ phone>
</ athl et e>
<at hl et e>
<at hName>
Lasse Kjus
</ at hName>
</ athl et e>
</ at hl et eTean®
</ country>
</wi nd ynpi c>

110

B.5 Temporal Bundle

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t enpor al Bundl e xm ns="http://ww. cs. ari zona. edu/ t au/ t auXSchena/ TBSchema"
xm ns:tv="http://ww:. cs. ari zona. edu/ t au/ t auXSchena/ TVSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocation="http://ww. cs. ari zona. edu/ t au/ t auXSchema/ TBSchema TBSchena. xsd" >
<format plugi n="XM.Schema" granul arity="date"/>
<bundl eSequence def aul t Tenrpor al Annot ati on="def aul t TA. xm " def aul t Physi cal Annot ati on="def aul t PA. xm ">
<schemaAnnot ati on snapshot Schema="w nQd ynpi c. ver 1. xsd"
t enpor al Annot ati on="wi nol ynpi c_t enp_anno. ver 1. xm "
physi cal Annot ati on="w nol ynpi c_phy_anno. ver 1. xm " >
<t Ti me>2002- 01- 01</t Ti me>
</ schemaAnnot at i on>
<schemaAnnot ati on snapshot Schena="wi nd ynpi c. ver 2. xsd"
t enpor al Annot ati on="wi nol ynpi c_t enp_anno. ver 2. xm "
physi cal Annot ati on="w nol ynpi c_phy_anno. ver 2. xm " >
<t Ti me>2005- 01- 01</t Ti me>
</ schemaAnnot at i on>
</ bundl eSequence>
</ t enpor al Bundl e>

B.6 Representational Schema
B.6.1 Representational Schema forJ002- 01- 01,2005- 01- 01)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsd: schema attribut eFormDef aul t ="unqual i fi ed"
el enent For nDef aul t =" unqual i fi ed"
t ar get Nanespace="http://ww. cs. ari zona. edu/ t au/ RepSchena0"
xm ns="http://ww. cs. ari zona. edu/ t au/ RepSchema0"
xm ns:tv="http://ww.cs. ari zona. edu/ t au/ TVSchema"
xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >
<xsd: i nport nanespace="http://ww. cs. ari zona. edu/ t au/ TVSchema" schemaLocati on="TVSchema. xsd" />
<xsd: si npl eType nane="phoneNunilype" >
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="12" />
<xsd: pattern value="\d{3}-\d{3}-\d{4}" />
</xsd:restriction>
</ xsd: si npl eType>
<xsd: el ement nane="tv_root">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="w nQO ynpic_Repltent />
</ xsd: sequence>
<xsd:attribute nane="begi n" type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="at hl et eTeam Replten >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement maxQccur s="unbounded" m nCccurs="1"
nane="at hl et eTeam Ver si on" >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:tinestanp_TransExtent" />
<xsd: el ement nane="at hl et eTean{ >
<xsd: conpl exType mni xed="true">
<xsd: sequence>
<xsd: el ement maxCccurs="1"
m nCccur s="1" nanme="t eanNane" type="xsd:string" />
<xsd: el enment
maxOccur s="unbounded" ref="athl ete_Repltent />
</ xsd: sequence>
<xsd:attribute nanme="numAt hl et es"

111

type="xsd: positivelnteger" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="isltenl type="xsd:string" />
<xsd:attribute nane="origi nal El enent" type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="country_Replteni>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" ni nCccurs="1"
nanme="country_\Version">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:timestanp_TransExtent" />
<xsd: el ement name="country">
<xsd: conpl exType m xed="fal se">
<xsd: sequence>
<xsd: el ement
ref="at hl et eTeam Repl tem />
</ xsd: sequence>
<xsd: attribute nane="countryNane"
type="xsd: string" use="required" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="islten!' type="xsd:string" />
<xsd:attribute nane="origi nal El enent” type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="wi nA ynpi c_Replten >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" m nCccurs="1"
name="wi nQd ynpi c_Ver si on">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:timestanp_TransExtent" />
<xsd: el ement name="wi nQA ynpi c">
<xsd: annot ati on>
<xsd: docunent ati on>
Schema for recording non
temporal country information
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement
maxQccur s="unbounded" m nOccurs="0" ref="country_Repltent
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="islten!' type="xsd:string" />
<xsd:attribute nane="origi nal El ement” type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="at hl et e_Repl tent >

112

<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" ni nCccurs="1"
nane="at hl et e_Ver si on" >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:tinestanp_TransExtent" />
<xsd: el ement name="athl ete">
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nane="at hNane"
type="xsd:string" />
<xsd: el ement
maxOccur s="unbounded" m nQccurs="0" name="phone"
type="phoneNuniType" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="islten!' type="xsd:string" />
<xsd:attribute nane="origi nal El ement” type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

B.6.2 Representational Schema forJ002- 01- 01,2005- 01- 01)

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema attribut eFormDef aul t ="unqual i fi ed"
el enent For nDef aul t =" unqual i fi ed"
t ar get Nanespace="http://ww. cs. ari zona. edu/ t au/ RepSchenal"
xm ns="http://ww. cs. ari zona. edu/ t au/ RepSchemal"
xm ns:tv="http://ww. cs. ari zona. edu/ t au/ TVSchema"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >

<xsd:inport nanmespace="http://ww.cs. ari zona. edu/ t au/ TVSchema" schenmaLocati on="TVSchena. xsd"

<xsd: si npl eType nane="phoneNunilype" >
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="12" />
<xsd: pattern value="\d{3}-\d{3}-\d{4}" />
</ xsd:restriction>
</ xsd: si nmpl eType>
<xsd: el enent nane="tv_root">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="wi nA ynpic_Repltent />
</ xsd: sequence>
<xsd: attribute nanme="begi n* type="xsd:date" />
<xsd:attribute name="end" type="xsd:date" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement name="at hl et eTeam Replten >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" mni nCccurs="1"
nane="at hl et eTeam Ver si on" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:timestanp_TransExtent" />
<xsd: el ement nane="at hl et eTean{ >
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nmaxCccurs="1"
m nCccurs="1" nanme="t eamNane" type="xsd:string" />

113

/>

<xsd: el ement
maxOccur s="unbounded" ref="athl ete_Repltent />
</ xsd: sequence>
<xsd: attribute nanme="numAt hl et es"
type="xsd: posi tivel nteger" use="optional"
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>

<xsd:attribute nane="isltent type="xsd:string" />

<xsd:attribute nane="origi nal El enent” type="xsd:string" />
</ xsd: conpl exType>

</ xsd: el ement >
<xsd: el ement nane="country_Replteni>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded"
name="country_Version">
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:tinestanp_TransExtent" />
<xsd: el ement name="country">
<xsd: conpl exType m xed="fal se">
<xsd: sequence>
<xsd: el ement
ref="athl eteTeam Repltent />
</ xsd: sequence>
<xsd: attribute nane="countryNane"
type="xsd: string" use="required" />
<xsd:attribute nane="countrylLead"
type="xsd: string" use="required" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>

<xsd:attribute nane="isltenl type="xsd:string" />

<xsd:attribute nane="origi nal El enent" type="xsd:string" />
</ xsd: conpl exType>

</ xsd: el ement >
<xsd: el ement nane="wi nO ynpi c_Replteni>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded"
nane="w nQ ynpi c_Versi on">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:tinestanp_TransExtent" />
<xsd: el ement nanme="wi nQd ynpi c">
<xsd: annot ati on>
<xsd: docunent ati on>
Schema for recording non
tenporal country information
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType ni xed="true">
<xsd: sequence>
<I--nunEvents added on Wednesday-->
<xsd: el ement nane="nunEvent s"
type="xsd: nonNegati vel nteger" />
<xsd: el ement
maxCccur s="unbounded” m nQccurs="0"
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

/>

m nCccur s="1"

m nCccur s="1"

ref="country_Repltent />

114

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="islten!' type="xsd:string" />
<xsd:attribute nane="origi nal El ement” type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="at hl et e_Replteni>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" ni nCccurs="1"
nane="at hl et e_Ver si on" >
<xsd: conmpl exType>
<xsd: sequence>
<xsd: el ement ref="tv:tinestanp_TransExtent" />
<xsd: el ement name="athl ete">
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el ement nane="at hNane"
type="xsd:string" />
<xsd: el ement
maxOccur s="unbounded" m nQccurs="0" name="phone"
type="phoneNunType" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="islten!' type="xsd:string" />
<xsd:attribute nane="origi nal El ement” type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schena>

B.6.3 Final Representational Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
el enent For nDef aul t =" unqual i fi ed"
target Nanespace="http://ww. cs. ari zona. edu/ t au/ RepSchema"
xm ns="http://ww.cs. ari zona. edu/ t au/ RepSchema"
xm ns: rep0O="http://wwm. cs. ari zona. edu/ t au/ RepSchena0"
xm ns:repl="http://ww.cs. ari zona. edu/ t au/ RepSchenal"
xm ns:tv="http://ww. cs. ari zona. edu/ t au/ TVSchema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<xsd:inport nanmespace="http://ww.cs. ari zona. edu/ tau/ TVSchema" schenmaLocati on="TVSchena. xsd" />
<xsd:inport nanespace="http://ww. cs. ari zona. edu/ t au/ RepSchema0" schemaLocati on="rep0. xsd" />
<xsd:inport namespace="http://ww.cs. ari zona. edu/ t au/ RepSchemal" schemalLocati on="repl. xsd" />
<xsd: el ement nane="sv_root">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="schenaltent >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nmaxCccurs="1" mi nCccurs="1"
name="schemaVer si on0" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccurs="1"
m nCccurs="1" ref="tv:tinmestanp_TransExtent" />
<xsd: el ement nmaxCccurs="1"
m nCccurs="1" ref="rep0:tv_root" />
</ xsd: sequence>
</ xsd: conpl exType>

115

</ xsd: el ement >
<xsd: el ement naxCccurs="1" m nCccurs="1"
name="schenaVer si onl" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement maxCccurs="1"
m nCccurs="1" ref="tv:tinmestanp_TransExtent" />
<xsd: el ement maxQccurs="1"
m nCccurs="1" ref="repl:tv_root" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute nane="bundl e" type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schena>

B.7 Temporal Document

<?xm version="1.0" encodi ng="UTF- 8" ?>
<rep:sv_root xm ns:rep="http://ww.cs. ari zona. edu/ t au/ RepSchema"
bundl e="w nol ynpi c_bundl e. xm '
xm ns: rep0="http://wwm. cs. ari zona. edu/ t au/ RepSchena0"
xm ns: repl="http://ww.cs. ari zona. edu/ t au/ RepSchenal"
xmns:tv="http://ww.cs. ari zona. edu/ t au/ TVSchema" >
<schemal t em>
<schemaVer si on0>
<tv:timestanp_TransExtent begi n="2002-01-01"
end="2005-01- 01" />
<rep0:tv_root
xm ns:repO="http://wwmv. cs. ari zona. edu/ t au/ RepSchema0"
begi n="2002-01- 01" end="2005-01-01">
<rep0:w nA ynpi c_Repltemisltenr"y"
ori gi nal El ement ="wi nQ ynpi c">
<wi na ynpi c_Ver si on>
<tv:timestanp_TransExtent begi n="2002-01-01"
end="2005-01-01" />
<wi nd ynpi c>
There are events in the A ynpics
<rep0: country_Repltemisltenr"y"
ori gi nal El ement ="country" >
<country_Versi on>
<tv:timestanp_TransExtent
begi n="2002-01- 01" end="2005-01-01" />
<country countryNanme="Norway" >
<rep0: at hl et eTeam Repl t em
isltens"y" original El enent="at hl et eTeant' >
<at hl et eTeam Ver si on>
<tv:timestanp_TransExtent
begi n="2002- 01- 01" end="2003-01-01" />
<at hl et eTeam
numAt hl et es="95">
<t eanNanme>
Nor way _Ar ny
</ t eanNanme>
Athletes will take part in various events. The athletes participating are |isted bel ow
<rep0: athl ete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2002-01- 01" end="2003-01-01" />
<at hl et e>
<at hName>

116

Kjetil Andre Aanodt
</ at hNanme>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Repltenm>
<rep0: athl ete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2002-01- 01" end="2003-01-01" />
<at hl et e>
<at hNane>
Trine
Bakke- Rognmo
</ at hNare>
H s phone nunbers are:
<phone>
123-402- 0340
</ phone>
<phone>
123-402- 0000
</ phone>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Replten>
<rep0: athl ete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2002-01- 01" end="2003-01-01" />
<at hl et e>
<at hName>
Lasse Kjus
</ at hNane>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Replten>
</ at hl et eTean
</ at hl et eTeam Ver si on>
<at hl et eTeam Ver si on>
<tv:timestanp_TransExtent
begi n="2003- 01- 01" end="2005-01-01" />
<at hl et eTeam
numAt hl et es="95">
<t eamNane>
Nor way _Ar ny
</ t eanName>
Athletes will take part in various events. The athletes participating are listed bel ow
<rep0: athl ete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Versi on>
<tv:timestanp_TransExtent
begi n="2003-01- 01" end="2005-01-01" />
<at hl et e>
<at hName>
Kjetil Andre Aanodt
</ at hNanme>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Repltenm>
<rep0: athl ete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2003-01- 01" end="2005-01-01" />
<at hl et e>
<at hName>
Andr e Agassi

117

</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Replten>
<rep0: athl ete_Repltem
isltens"y" original El ement="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent

begi n="2003-01- 01" end="2005-01-01" />

<at hl et e>
<at hName>
Trine
Bakke- Rognmo
</ at hNanme>
Hi s phone nunbers are:
<phone>
123- 402- 0340
</ phone>
<phone>
123-402- 0000
</ phone>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Repl ten>
<rep0: athl ete_Repltem
islten"y" original El ement="athl ete">
<at hl et e_Versi on>
<tv:timestanp_TransExtent

begi n="2003-01-01" end="2005-01-01"

<at hl et e>
<at hName>
Lasse Kjus
</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</rep0: athl ete_Replten>
</ at hl et eTean>
</ at hl et eTeam Ver si on>
</ rep0: at hl et eTeam Repl t en>
</ country>
</ country_Versi on>
</rep0: country_Replten>
</ wi nd ynpi c>
</w nQA ynpi c_Ver si on>
</ rep0: wi nA ynpi c_Repltenr
</rep0:tv_root>
</ schemaVer si on0>
<schemaVer si onl>
<tv:timestanp_TransExtent begi n="2005-01-01"
end="9999-12- 31" />
<repl:tv_root
xm ns:repl="http://ww.cs. ari zona. edu/ t au/ RepSchemal"
begi n="2005-01- 01" end="9999-12-31">
<repl:wi nd ynpic_Repltemisltem="y"
ori gi nal El ement ="wi nQ ynpi ¢" >
<wi nd ynpi c_Ver si on>
<tv:timestanp_TransExtent begi n="2005-01-01"
end="9999-12- 31" />
<wi nd ynpi c>
There are
<nunEvent s>11</ nunEvent s>
events in the O ynpics.
<repl:country_Repltemisltenr"y"
ori gi nal El ement ="country">
<country_Versi on>
<tv:timestanp_TransExtent
begi n="2005-01- 01" end="9999-12-31" />
<country countrylLead="Andre Agassi"

118

count r yNanme="Nor way" >
<repl: athl et eTeam Repl tem
isltens"y" original El ement="athl et eTeant >
<at hl et eTeam Ver si on>
<tv:timestanp_TransExtent
begi n="2005- 01- 01" end="9999-12-31" />
<at hl et eTeam
numAt hl et es="95">
<t eanNanme>
Nor way _Ar ny
</t earNane>
Athletes will take part in various events. The athletes participating are |isted bel ow
<repl:athlete_Repltem
isltem="y" original El enent="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2005-01-01" end="9999-12-31" />
<at hl et e>
<at hNane>
Kjetil Andre Aanodt
</ at hNanme>
</ at hl et e>
</ at hl et e_Ver si on>
</repl:athl ete_Replten>
<repl:athlete_Repltem
islten"y" original El ement="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2005-01-01" end="9999-12-31" />
<at hl et e>
<at hNane>
Andr e Agassi
</ at hName>
</ athl et e>
</ at hl et e_Ver si on>
</repl:athl ete_Replten>
<repl:athlete_Repltem
islten"y" original El ement="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2005-01- 01" end="9999-12-31" />
<at hl et e>
<at hName>
Trine
Bakke- Rognmo
</ at hNanme>
Hi s phone nunbers are:
<phone>
123- 402- 0340
</ phone>
<phone>
123-402- 0000
</ phone>
</ at hl et e>
</ at hl et e_Ver si on>
</repl:athl ete_Replten>
<repl:athlete_Repltem
islten"y" original El ement="athl ete">
<at hl et e_Ver si on>
<tv:timestanp_TransExtent
begi n="2005-01-01" end="9999-12-31" />
<at hl et e>
<at hName>
Lasse Kjus
</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</repl:athl ete_Replten>

119

</ at hl et eTean
</ at hl et eTeam Ver si on>
</repl: at hl et eTeam Replten
</country>
</ country_Version>
</repl: country_Replten>
</wi nd ynpi c>
</ wi nd ynpi c_Ver si on>

</repl:w nA ynpi c_Replten>
</repl:tv_root>
</ schemaVer si onl>

</ schemal t en>
</rep:sv_root>

120

