
Coalescing in Temporal Databases

Michael H. B̈ohlen and Richard T. Snodgrass and Michael D. Soo

April 27, 1997

TR-9

A TIMECENTER Technical Report



Title Coalescing in Temporal Databases

Copyright c� 1997 Michael H. B¨ohlen and Richard T. Snodgrass and
Michael D. Soo. All rights reserved.

Author�s� Michael H. Böhlen and Richard T. Snodgrass and Michael D. Soo

Publication History June 1996. Technical Report R-96-2026 Aalborg University
September 1996. Proceedings of the 22nd International Conference on Very Latge
Data Bases.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector)
Michael H. Böhlen
Renato Busatto
Heidi Gregersen
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector)
Anindya Datta
Sudha Ram

Individual participants
Curtis E. Dyreson, James Cook University, Australia
Kwang W. Nam, Chungbuk National University, Korea
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, ETH Zurich, Switzerland
Vassilis Tsotras, Polytechnic University, New York, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

Any software made available viaTIMECENTER is provided “as is” and without any express or implied warranties,
including, without limitation, the implied warranty of merchantability and fitness for a particular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors, The Rune
alphabet (second phase) has 16 letters. They all have angular shapes and lack horizontal lines because the primary
storage medium was wood. However, runes may also be found on jewelry, tools, and weapons. Runes were
perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



Abstract

Coalescing is a unary operator applicable to temporal databases; it is similar to duplicate elimination in con-
ventional databases. Tuples in a temporal relation that agree on the explicit attribute values and that have adjacent
or overlapping time periods are candidates for coalescing. Uncoalesced relations can arise in many ways, e.g., via
a projection or union operator, or by not enforcing coalescing on update or insertion. In this paper we show how
semantically superfluous coalescing can be eliminated. We then turn to efficiently performing coalescing. We
provide a variety of iterative and non-iterative approaches, via SQL and embedded SQL, that require no changes
to the DBMS, demonstrating that coalescing can be formulated in SQL-89. Detailed performance studies show
that all such approaches are quite expensive. We propose a spectrum of coalescing algorithms within a DBMS,
based on nested-loop, explicit partitioning, explicit sorting, temporal sorting, and combined explicit/temporal
sorting, as well as their hybrid variants. These algorithms are empirically compared, paying particular attention
to attribute skew and timestamp distributions. The experiments show that coalescing can be implemented with
reasonable efficiency, and with modest development cost.

1 Introduction

Coalescing[JCE�94] is a unary operator applicable to temporal databases; it is similar to duplicate elimination
in conventional databases. Temporal databases are extensions of conventional databases that support the record-
ing and retrieval of time-varying information [TCG�93]. Associated with each tuple in a temporal relation is a
timestamp, denoting some period of time. In a temporal database, information is “uncoalesced” when tuples have
identical attribute values and their timestamps are either adjacent in time (“meet” in Allen’s taxonomy [All83]) or
share some time in common. Consider the relation in Figure 1. The tuples in this relation denote the fact “Ronald
Reagan was president” over two adjacent time periods. The two tuples can be replaced by a single tuple, times-
tamped with the period [1981/01/20–1989/01/20), to represent when Ron was President, instead of which terms
he was elected to, which is represented in the uncoalesced relation. In general, two tuples in a valid-time relation
are candidates for coalescing if they have identical explicit attribute values, i.e., arevalue-equivalent[Sno87], and
have adjacent or overlapping timestamps. Such tuples can arise in many ways. For example, a projection of a
coalesced temporal relation may produce an uncoalesced result, much as duplicate tuples may be produced by
a projection on a duplicate-free snapshot relation. In addition, update and insertion operations may not enforce
coalescing, possibly due to efficiency concerns.

Name Title V

Ron President [1981/01/20–1985/01/20)
Ron President [1985/01/20–1989/01/20)

Figure 1: Uncoalesced Valid-Time Relation

As with duplicate elimination in snapshot databases, prior coalescing is necessary to ensure the semantics
of some operators in temporal databases [SJS95], e.g., temporal aggregation [KSL95] and temporal selection
[SSJ94]. While many temporal data models and languages have implicitly or explicitly assumed or provided
coalescing [Ari86, BZ82, CC87, GV85, McK88, NA89, SSD87, Sar90a, Sno87, Tan86], only recently has the
importance of this operation with respect to semantics and performance been emphasized [B¨oh94]. Consider
the relation in Figure 1. A relational algebra expression that selects those persons who were president for more
than six years does not return Ron because the valid-time of either fact is less than six years. However, if the
relation is coalesced prior to the evaluation Ron qualifies. Thus, whether a relation is coalesced or not makes a
semantic difference. In general, it is not possible to switch between a coalesced and an uncoalesced representation
without changing the semantics of programs. Moreover, as frequently used database operations (projection, union,
insertion, and update) may lead to potentially uncoalesced relations and because many (but not all) real world
queries require coalesced relations, a fast implementation is imperative.

Coalescing is potentially more expensive than duplicate elimination, which relies on an equality predicate
over the attributes. Coalescing also requires detecting tuple overlap, which is an inequality predicate over the
timestamp attribute. Most conventional DBMSs handle inequality predicates poorly; the typical strategy is to
resort to exhaustive comparison when confronted with such predicates [LM90], yielding quadratic complexity (or
worse) for this operation, as will be demonstrated later in this paper. For these reasons, effective optimization

1



techniques for temporal queries involving coalescing must be devised. Efficient algorithms for evaluating the
coalescing operator are also needed. Together these capabilities are critical to achieving acceptable performance
in a temporal DBMS. We address these topics in this paper.

The remainder of the paper is organized as follows. We first examine how coalescing has arisen in previous
temporal data models and query languages. Section 3 formally defines the coalescing operator. Section 4 discusses
how to eliminate semantically superfluous coalescing. We turn our attention to operator evaluation outside a
DBMS in Section 5. In Section 6 we introduce seven algorithms to evaluate coalescing within the DBMS and
empirically test them under a variety of database and system conditions. Finally, conclusions and directions for
future work are offered in Section 7.

2 Related Work

Early temporal relational models implicitly assumed that the relations were coalesced. Ariav’s Temporally Ori-
ented Data Model (TODM) [Ari86], Ben Zvi’s Time Relational Model [BZ82], Clifford and Croker’s Historical
Relational Data Model (HRDM) [CC87], Navathe’s Temporal Relational Model (TRM) [NA89], and the data
models defined by Gadia [GV85, Gad88], Sadeghi [SSD87] and Tansel [Tan86] all have this property. The term
coalescedwas coined by Snodgrass in his description of the data model underlying TQuel, which also requires
coalescing [Sno87]1. Later data models, such as those associated with HSQL [Sar90a] and TSQL2 [Sno95], ex-
plicitly required coalesced relations. The query languages associated with these data models generally did not
include explicit constructs for coalescing. HSQL is the exception; it includes aCOALESCE ON clause within the
select statement, and anCOALESCE optional modifier immediately followingSELECT [Sar90b]. Some query
languages that don’t require coalesced relations provide constructs to specify coalescing; ChronoBase [Sri91],
which provides amax_holds predicate, ChronoSQL [B¨oh94], and ATSQL2, a variant of TSQL2 which allows
both duplicates and non-coalesced relations [BJS95], are examples.

For many of these query languages, temporal algebras have been defined [MS91]. For those based on attribute
timestamping, projection retains coalescing; generally the algebras for these models extend the union operator so
that it also guarantees coalescing [Tan86, McK88, Gad88]. For those models based on tuple timestamping, some
also include coalescing in the projection operator, e.g., the conceptual algebra for TSQL2 [SJS95]. Navathe and
Ahmed defined the first coalescing algebraic operator; they called this COMPRESS [NA89]. Sarda defined an
operator called Coalesce [Sar90b], Lorentzos’ FOLD operator includes coalescing [LJ88], Leung’s second variant
of a temporal select join operatorTSJ� can be used to effect coalescing, and TSQL2’s representational algebra
also included a coalesce operator [SJS95].

The expressive power of coalescing has been open to question. Leung and Muntz state that “thetime-union
operator is really a fixed-point computation and cannot be expressed in terms of traditional relational algebra”
[LM93, p. 337]. This implies that coalescing is beyond relational completeness; this is a commonly held belief.
Recently, Leung and Pirahesh provided a mapping of the coalesce operation intorecursiveSQL [LP95, p. 329].
However, Lorentzos and Johnson provided a translation of his FOLD operator (which also incorporates coalescing)
into Quel [LJ88, p. 295], implying that coalescing does not add expressive power to the relational algebra. In
Section 5, we settle the question by proving that coalescing is expressible in the relational algebra. We will also
show that performing coalescing solely within SQL or the relational algebra is impractical, due to its extremely
poor performance.

Despite the need for effective query optimization techniques and operator evaluation algorithms for coalescing,
there has been scant coverage in the literature on either of these topics (indeed, a contribution of the present paper
is highlighting this operator for further investigation by the temporal database community). This is in contrast to
the conventional duplicate elimination operator, for which a large body of research exists [Gra93]. Concerning
temporal coalescing, Navathe and Ahmed provided the first algorithm: sort the relation on a composite key of
explicit attributes and time start, then scan the relation, extending the period of some tuples and deleting other
tuples [NA89]. Lorentzos uses a similar algorithm to implement FOLD [Lor93, p. 89]. In Section 6, we evaluate
this algorithm against a suite of other approaches.

1SQL-92 contains an unrelatedCOALESCE operator that is shorthand ofCASE that replaces NULL values with other values [MS93].

2



3 Basic Definitions

While coalescing can be defined in almost all temporal data models, we choose a particular representation in order
to concretely define its semantics. Definitions for other data models, while not given here, can be constructed
similarly.

The data model we use is a first normal form model that timestamps tuples with open periods�ts� te�, i.e., an
instantt is contained in�ts� te� if and only if contained ints � t � te. In this paper, we considervalid-time
relations [SA86, JCE�94], modeling changes in the mini-world represented in the database, though our results
apply equally to transaction-time relations, and can be extended to bitemporal relations.

We define a relation schemaR � �A�� � � � � AN jjVT� as a set ofexplicit attributesfA�, � � � , ANg and an
period timestamp VT� �S � E�. We user to denote an instance ofR, andx andy to denote tuples inr. As a
shorthand, we useA to represent the set of attributesfA�, � � � , ANg.

Prior to defining the coalescing operator we first define three auxiliary predicates. The first predicate deter-
mines if two argument tuples agree on the values of their explicit attributes.

value equivalent�x� y� � �x�A� � y�A���

The remaining predicates accept period timestamps as arguments. The second predicate determines if the begin-
ning of the first argument period meets the ending of the second argument period, and vice-versa.

adjacent��S��E��� �S��E��� � �E� � S� � S� � E���

The third predicate determines if two argument periods share any instant in time (termed achronon), i.e., if the
periods overlap.

overlap��S��E��� �S��E��� � ��c��S� � c � E�� � �S� � c � E�����

Informally, a relation is coalesced if all pairs of tuples from the relation, excluding pairs of the same tuple, are
either not value-equivalent, or, if they are value-equivalent, then they must be non-adjacent and non-overlapping.

Definition 3.1 Let R � �A�� � � � � AN jjV T � be a valid-time relation schema. An instancer of R is coalescedif
and only if

�x � r� y � r� x �� y

��	value equivalent�x� y��

��	overlap�x�V T �� y�V T �� � 	adjacent�x�V T �� y�V T ����

ut

4 Eliminating Superfluous Coalescing

Due to the nature of coalescing (merging value-equivalent tuples), coalescing is at least as costly as duplicate
elimination (deleting identical tuples) in non-temporal databases. This means that it is best to simply avoid coa-
lescing where possible. As previously mentioned, coalescing is required at some places in order to guarantee the
correctness of query results [B¨oh94, NA93, SJS95, Sri91]. However there are many cases where coalescing can
be omitted or where it can be postponed.

4.1 Basic Assumptions

Whether or not coalescing can be omitted or delayed depends on the definition of temporal operations and on the
basic framework of the optimizer. This situation is identical to duplicate elimination in non-temporal databases.
It is well known that projection does (or has the potential to) introduce duplicates when evaluated on a relation
with no duplicates, whereas a join does not. Obviously this is only true for a particular definition of the algebraic
operators. Besides this it is important to know whether duplicates are possible in base relations.

3



We assume that temporal operations are implemented as extensions of standard relational database operations2.
In the following, ti 
 tj denotes the concatenation of two tuples whereas the selection conditionc stands for a
boolean condition on a tuple and the projection functionf for a function that maps between tuples. Roughly,c

corresponds to the where clause andf to the select clause of a SQL statement. We use a “v” superscript to denote
a valid-time operation.

Definition 4.1 The semantics of a period-based temporal algebra is defined as follows.

�vc r
�
� fhtjj�S�E�i j htjj�S�E�i � r � c�htjj�S�E�i�g

�vfr
�
� fht�jj�S�E�i j htjj�S�E�i � r � t� � f�ht�jj�S�E�i�g

r� �
v r�

�
� fhtjj�S�E�i j htjj�S�E�i � r� � htjj�S�E�i � r�g

r� �
v r�

�
� fhht�� �A�B�i 
 ht�� �C�D�ijj�S�E�i j

ht�jj�A�B�i � r� � ht�jj�C�D�i � r� �
S � max�A�C� � E � min�B�D� � S � Eg

r� n
v r�

�
� fhtjj�S�E�i j htjj�A�B�i � r� �

�C�htjj�C�S�i � r� �A � S � S � A� �
�D�htjj�E�D�i � r� �B  E �E � B� � S � E �
	�U� V �htjj�U�V �i � r� � V � S � U � E�g

ut

Temporal selection is a straightforward generalization of non-temporal selection. The same is true for tempo-
ral projection and temporal union. A temporal Cartesian product computes the intersection of the respective
valid-times whereas temporal set difference subtracts periods. As with the relational algebra, additional temporal
operators, e.g., contains join, can be defined in terms of these basic operators.

While all operations areperiod-based, i.e., the format of periods is relevant for the computation of the result,
it is also the case that these operators respectsnapshot reducibility[BJS95, Sno87]. This means that one can
define the semantics of a temporal operation in terms of its non-temporal counterpart applied to all snapshots of
a database. But note that while, at the conceptual level, these operators simultaneously operate on many states of
the databases, only start and end points of periods are considered, never intermediate time points. This allows for
an efficient (granularity-independent) implementation.

Based on Definition 4.1 we identify those operations that potentially destroy coalescing and those that preserve
coalescing.

Theorem 4.1 Temporal projection and temporal union have the potential to return an uncoalesced relation when
evaluated over coalesced input relations.

Proof: Assume temporal schemasR� � �A�BjjV T � andR� � �A�BjjV T � with associated coalesced relation
instancesr� � fha� bjj�����i� ha� cjj�����ig andr� � fha� bjj�����ig. According to Definition 4.1 we have
�vA�r�� � fhajj�����i� hajj�����ig andr� � r� � fha� bjj�����i� ha� cjj�����i� ha� bjj�����ig. Both results are
uncoalesced because they contain value-equivalent tuples with adjacent periods (c.f., Definition 3.1).�

Theorem 4.2 Temporal selection, temporal Cartesian product, and temporal negation preserve coalescing when
evaluated over coalesced input relations.

Proof: Temporal selection selects a subset of the input tuples. The input relation does not contain value-equivalent
tuples with overlapping or adjacent periods which is also true for any subset of the relation. The proofs for
temporal Cartesian product and temporal negation are similar. In both cases (see below) the valid-time of the
tuples of the input relationr� is narrowed, i.e., restricted to a sub-period of the original period. Asr� does not
contain value-equivalent tuples with adjacent or overlapping periods this is also true for any relation that only
contains tuples with a valid-time contained in the valid-time of a value equivalent tuple inr�. It’s straightforward

2While we couch our discussion in terms of a particular temporal algebra, a similar analysis could be performed on other temporal algebras
[MS91].

4



to see that the output relation of temporal negation satisfies this criterion. With temporal Cartesian product we
first abstract the result tuple toht�� � � � jj�S�E�i. Assuming that there are no additional explicit attributes the result
relation qualifies again. By adding explicit attributes we don’t get more value-equivalent tuples. At best, i.e., if for
each tuple the additional explicit attribute values are the same, we get the same number of value-equivalent tuples.
�

These theorems can be extended to apply to derived operators. For example, a contains join can be defined in terms
of temporal Cartesian product (which retains the timestamps of the underlying tuples) and temporal selection, and
thus preserves coalescing.

We discuss coalescing by partitioning the set of coalescing rules into two classes: unconditional and condi-
tional ones. Unconditional coalescing rules only depend on temporal relational operators, whereas conditional
coalescing rules additionally depend on parameters to these operators (e.g., selection conditions). Conditional
rules are harder to deal with because they involve the analysis of functions and boolean expressions.

4.2 Unconditional Coalescing Rules

A first rule eliminates successive coalescing operations.

(r0) coal�coal�r��� � coal�r��

A more enhanced set of optimization rules exploits the fact that some operations preserve coalescing.

(r1) coal�r� �
v r�� � coal�r���

v coal�r��
(r2) coal�r� n

v r�� � coal�r�� n
v coal�r��

(r3) coal��vc �coal�r���� � �vc �coal�r���

Temporal Cartesian product and temporal set difference both preserve coalescing and they are invariant with
respect to the timestamp format of the input relations. Note that it is not a priori clear whether to push coalescing
inside or whether to defer it. For example, ifr� andr� are both base relations known to be coalesced (e.g., because
of model inherent constraints or according to database statistics) we push coalescing inside. In this case rule (r1)
degenerates tocoal�r� �v r�� � r� �

v r� and we do not have to coalesce at all. However ifr� andr� are
uncoalesced base relations and if a join (i.e., a Cartesian product followed by a selection) is expected to cut down
on the size of the input relations it might be better to postpone coalescing until after the join (see also (r6), below).

Analogous to these rules is rule (r4) which states that it is unnecessary to coalesce before and after temporal
union.

(r4) coal�coal�r�� �
v coal�r��� � coal�r� �

v r��

This is quite obvious because temporal union potentially destroys coalescing but is invariant with respect to the
timestamp format of input relations. Note that it is not possible to give a similar rule for temporal projection
�vf , the other operation that potentially destroys coalescing. The reason for this is that the result of a temporal
projection may vary with the timestamp format of the input relation (if the projection functionf computes a value
based on the valid-time of the input relation).

A final unconditional optimization applies to temporal set difference.

(r5) r� n
v coal�r�� � r� n

v r�

Rule (r5) states that it is not necessary to coalesce the negated operand in a temporal set difference. This result is
in accordance with non-temporal set difference which is indifferent with respect to duplicates in the negated part.

4.3 Conditional Coalescing Rules

As stated earlier unconditional coalescing rules are easier to deal with than conditional rules. However restricting
attention to this class of rules means not to exploit the full potential of query optimization. Enhanced query
optimizers have to take conditional coalescing rules into consideration as well. A first conditional coalescing rule
states that coalescing can be deferred until after a selection if the selection conditionc does not constrain the
valid-time of the input relation, i.e., ifindependent of vt�c� is true.

(r6) �vc �coal�r��� � coal��vc �r��� iff independent of vt�c�

5



Note that this rule can be quite effective in terms of efficiency, when the selectivity of the predicate is high. Given
that the costs of coalescing are super-linear with the number of tuples to be coalesced (as shown in Sections 5
and 6) it can be useful to postpone coalescing.

A similar rule applies to the temporal projection operator.

(r7) coal��vf �coal�r���� � coal��vf �r��� iff independent of vt�f�

Finally, there is a rule that eliminates coalescing of coalesced (base) relations.

(r8) coal�r�� � r� iff is coalesced�r��

In data models that guarantee that base relations are coalesced this rule is quite effective. Models without this
restriction still can exploit the rule by maintaining appropriate statistics.

5 Performing the Coalescing Operation

In this section we investigate the possibilities available to adatabase userto implement coalescing. A database
user cannot directly access and manipulate physically stored tables. Instead he is forced to use the data manipu-
lation interface (e.g., SQL) to do changes. As we will see this is a significant obstacle. In Section 6 we consider
implementing coalescing within a DBMS.

We assume a valid-time relationr with an explicit attributec. Valid-time is represented by two attributes,S,
denoting the start point andE, denoting the end point.

CREATE TABLE r(S INTEGER NOT NULL, E INTEGER NOT NULL, c INTEGER NOT NULL)

Figure 2 shows two instantiations ofr, each withn tuples, which we have used to run our tests. (See Section 6
for a discussion of different database instances.) The first one,r�, consists of value-equivalent tuples with adjacent
valid-times. All tuples inr� can be coalesced into a single tuple withS � 	 andE � n, i.e., the reduction factor
[Gra93, p.100] isn. Relationr�, on the other hand, is already coalesced, thus, the reduction factor is 1.

r� r�

S E c
0 1 0
1 2 0
2 3 0
� � � � � � � � �

n� � n 0

S E c
0 1 0
1 2 1
2 3 2
� � � � � � � � �

n� � n n � �

Figure 2: Two instantiations ofr which we use to run performance measurements.

5.1 SQL Implementation

All database statements we give are specific to Oracle. The tests have first been run on a Sun 3/80 running Oracle
6.2.1. Later we have rerun them on a Sparc 5 running Oracle 7.0.16. While the absolute numbers were quite
different the relative differences remained about the same.

5.1.1 Iterative Approaches

Coalescing requires (chains of) value-equivalent tuples with adjacent or overlapping valid-times to be coalesced
into a single tuple [B¨oh94]. A similar problem is the computation of the transitive closure of a graph with the
subsequent deletion of non-maximal paths. In SQL the computation of the transitive closure can be implemented
by iterating an insert statement that coalesces two valid-time periods (i.e., paths) and inserts a new tuple into the
relation. An optimization exploits the fact that we are only interested in maximal periods. Therefore rather than
inserting a new tuple (and retaining the old ones) we update one of the tuples that was used to derive the new
one. This approach can be implemented by iterating an update statement. In each case, the statement (INSERT or
UPDATE) is repeated untilr doesn’t change.

6



INSERT INTO r
SELECT l.S, h.E, l.c

FROM r l, r h
WHERE l.c = h.c
AND l.S < h.S
AND h.S <= l.E
AND l.E < h.E

MINUS SELECT * FROM r

UPDATE r l
SET (l.E) = (SELECT MAX(h.E)

FROM r h
WHERE l.c = h.c
AND l.S < h.S
AND l.E >= h.S
AND l.E < h.E)

WHERE EXISTS (SELECT *
FROM r h
WHERE l.c = h.c
AND l.S < h.S
AND l.E >= h.S
AND l.E < h.E)

The basic idea is the same for both statements. We search for value-equivalent tuples with adjacent or overlap-
ping valid-times. The insert statement then coalesces these tuples and computes a new one that is inserted into the
table if it is not there already. The update statement updates one of the existing tuples rather than inserting a new
one. The complexity of the statements indicates that it is less expensive to determine tuples to be inserted than it is
to determine tuples to be updated. However as we will see in Section 5.1.4 this advantage of the insert statement
is more than compensated for by the costs to handle new data (i.e., the data to be inserted).

After both kinds of iterations we have to delete tuples with non-maximal valid-times (i.e., with valid-times that
are contained in the valid-time of another value-equivalent tuple).

DELETE FROM r a0
WHERE EXISTS (SELECT *

FROM r a1
WHERE a0.c = a1.c
AND (a0.S > a1.S AND a0.E <= a1.E OR

a0.S >= a1.S AND a0.E < a1.E))

If a database system supports recursion or transitive closure computations it is possible to perform the iteration
directly in SQL (c.f., [LP95]) instead of embedding SQL into a general purpose programming language.

5.1.2 Non-Iterative Approaches

The algorithms developed in the previous section where based on ideas used for the computation of transitive
path closures. However time has special properties which makes it possible to employ quite different algorithms.
Assuming that time is linear, i.e., totally ordered, it is possible to compute maximal periods with a single SQL
statement (see also [Cel95, p. 291]). The basic idea is illustrated by the following range-restricted first-order logic
formula.

r�hX jj�S� �i� � r�hX jj� �E�i� � S � E �
�A�r�hX jj�A� �i� � S � A � E � �U� V �r�hX jj�U�V �i� � U � A � V �� �
	�A�B�r�hX jj�A�B�i� � �A � S � B � A � E � B��

On the first line we search for two (possibly the same) value-equivalent tuples defining start pointS and end point
E of a coalesced tuple. The second line ensures that all start pointsA betweenS andE of value-equivalent tuples
are extended (towardsS) by another value-equivalent tuple. This guarantees that there are no holes betweenS

andE, i.e., no time points where the respective fact does not hold. The last line makes sure that we get maximal
periods only, i.e.,S andE may not be part of a larger value-equivalent tuple.

The above first-order logic formula can be translated to SQL by first eliminating�-quantifiers and implications
and then translating to SQL directly (c.f., [BCST96]).

SELECT DISTINCT f.S, l.E, f.c
FROM r f, r l
WHERE f.S < l.E
AND f.c = l.c
AND NOT EXISTS (SELECT *

FROM r m
WHERE m.c = f.c

7



AND f.S < m.S AND m.S < l.E
AND NOT EXISTS (SELECT *

FROM r a1
WHERE a1.c = f.c
AND a1.S < m.S AND m.S <= a1.E))

AND NOT EXISTS (SELECT *
FROM r a2
WHERE a2.c = f.c
AND (a2.S < f.S AND f.S <= a2.E OR

a2.S <= l.E AND l.E < a2.E))

The select statement is considerably more complex than the insert or update statement. However it only has to be
executed once and does not require a procedural extension of SQL or use of recursive constructs. In Section 5.1.4
we will see how these aspects impact performance.

5.1.3 Optimizations

There exist standard optimization techniques that might be applied to either the iterative or the non-iterative solu-
tions [O’N94]. It is possible to create an index for the purpose of coalescing.

CREATE INDEX i1 ON r(S)

The effectiveness of such an optimization depends on the query optimizer of the respective database system.
Therefore we only include them selectively into the empirical measurements, mainly to exemplify the relative
speedup that can be expected. It should be obvious that standard optimization techniques, like indexing and
clustering, are applicable to all three approaches provided above. However their effectiveness has to be verified in
each particular situation. We show the results for the most promising algorithm only.

5.1.4 Empirical Results

Figure 3 summarizes the performance of the three approaches, along with the update algorithm using an index.
All were performed on the uncoalesced relation (r� in Figure 2). The x-axis provides the size of the relation;
the y-axis the total time for coalescing, in seconds. Recall that for all but the “select” approach the statement
has to be iterated (in this, worst, case,log��n� times [Böh94]) until the fixpoint is reached, i.e., until no more
tuples are inserted or updated (Oracle provides an easy way to ascertain this). Timings with an index are included
for the update statement only, which has the best overall performance. Here, the index has little impact on the
performance.

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500

el
ap

se
d 

tim
e 

(s
ec

s)

number of tuples (=n)

insert
select

update + index
update

Figure 3: Coalescing a relation where all tuples can be coalesced into a single one.

The costs to coalesce relationr� are dominated a) by the costs to insert new tuples and b) by the complexity of
the SQL statement. It also turns out to be much cheaper to iterate the moderately complex update statement instead

8



of executing the even more complex select statement once. Even an index does not help. Instead of speeding up
the select statement an index slows it down even more. Also the update statement could not take advantage of an
index. Experiments with indexes revealed that it is best to create a temporary index on the valid-time start point
for the purpose of the iteration. A permanent index considerably slows down the delete statement. The increase in
execution time was always greater than the time to create and drop the index. Finally, we note that performance
would perhaps be improved significantly if Oracle supportedlocal tables, as proposed for SQL3. Such tables,
which persist only for the duration of a single transaction, would incur significantly smaller penalties of update
and insertion, as these modifications would not have to be logged or participate in locking.

Figure 4 displays the costs to coalesce an already coalesced relation. Note that the scale of the x-axis has

0

500

1000

1500

2000

2500

3000

3500

1000 2000 3000 4000 5000 6000 7000 8000

el
ap

se
d 

tim
e 

(s
ec

s)

number of tuples (=n)

select
update

insert
update + index

Figure 4: Coalescing a relation without value-equivalent tuples.

changed. When the relation is already coalesced, the coalescing algorithms all are still very slow, with the top
two about 70% more costly than the bottom two. Not surprisingly the insert statement is the most efficient. Even
without an index it achieves a performance comparable to that one of the update statement with an index. Clearly
an index would speed up the insert statement even more. However we have not included these measurements
because of the poor performance of the insert statement when the relation contains value-equivalent tuples.

In summary, performing coalescing in SQL, using any of the approaches discussed, is exceedingly inefficient.

5.2 Main Memory Implementation

One means to improve the performance of coalescing is to load the relation into main memory, coalesce it manu-
ally, and then store it back in the database. A straightforward implementation suffers from two serious constraints.
It is not always feasible to load a (huge) relation into main memory and coalescing is based on sorting which is
time-consuming and non-trivial. Of course, both issues can be addressed with a sophisticated implementation.
However, this means that we have to re-implement DBMS functionality. A better approach is to fetch tuples
ordered primarily by explicit attribute values and secondarily by start time. This allows us to reuse the sorting
mechanism of the DBMS and to perform coalescing with just a single tuple in main memory. The core of the C
code of the coalescing algorithm is displayed below. (The callsoparse, oexec, andofetch are OCI (Oracle
Call Interface) procedures.)

/* open a cursor to fetch tuples from the DB */
oparse(cda1, "SELECT S, E, c FROM r ORDER BY c, S");
oexec(cda1);

/* open a cursor to store tuples back in the DB */
oparse(cda2, "INSERT INTO r_coal VALUES (:1, :2, :3)");

/* main memory coalescing */

9



while (ofetch(cda1) == 0) { /* fetch all tuples */
if (curr_tpl.c == next_tpl.c && next_tpl.S <= curr_tpl.E) {

/* value-equivalent and overlapping */
if (next_tpl.E > curr_tpl.E) curr_tpl.E = next_tpl.E;

} else {
/* not value-equivalent or non-overlapping */
oexec(cda2); /* store back current tuple */
curr_tpl.S = next_tpl.S;
curr_tpl.E = next_tpl.E;
curr_tpl.c = next_tpl.c;

}
}
oexec(cda2); /* store back current tuple */

The main memory approach has one disadvantage when compared to the SQL implementations in the previous
section. It suffers from the so-called “entry-costs”, i.e., the costs to move data between the database and the
application. Our measurements reveal that the entry-costs are indeed significant. However, they are considerably
lower than the costs to execute the SQL statements discussed in the previous section.

Figure 5 illustrates the costs to coalesce the template relations in Figure 2. It is cheaper to apply main memory
coalescing to relations with large reduction factors. (This is in contrast to the SQL-based algorithms discussed in

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

el
ap

se
d 

tim
e 

(s
ec

s)

number of tuples (=n)

a) main memory coalescing (reduction factor = 1)
b) entry costs

c) main memory coalescing (reduction factor = n)
d) duplicate elimination (reduction factor = 1)
e) duplicate elimination (reduction factor = n)

Figure 5: Coalescing a relation by loading it into main memory and then storing it back, as compared with the
entry costs and duplicate elimination.

the previous section.) The reason is that less tuples have to be stored back. Four factors contribute to the total
coalescing time, namely the sorting performed by the DBMS, loading the relation into main memory, the main
memory coalescing steps, and storing back the tuples into the database. The dominating factor are the entry costs
(storing and fetching tuples). The additional costs for coalescing (DBMS sorting and main memory operations)
are the difference between a) and b), the top two graphs. They are not relevant. The costs for storing back are the
dominating factor. These costs are the difference between a) and c). They amount to about 70% of the time. Note
that a) is the upper bound for the coalescing costs (maximal costs for storing back, reduction factor = 1) whereas c)
is the lower bound (no costs for storing back, reduction factor = n). Finally, we recall that, as with the SQL-based
algorithms, performance might improve significantly if local tables were available. Specifically, we expect them
to speed up the storing back into the database.

Also shown in the figure is the cost to eliminate duplicates. Note that in both cases (with and without dupli-
cates), duplicate elimination within the DBMS is much faster than coalescing outside the DBMS. This is an apples
and oranges comparison, as coalescing is somewhat more complex than duplicate elimination. Nevertheless, it in-
dicates the potential performance improvement possible by implementing coalescing within the DBMS, which we
examine in detail in the next section.

10



In summary, a database user should do coalescing by fetching all tuples ordered primarily by explicit attribute
values and secondarily by the start time. A single tuple is kept in main memory. Whenever this tuple cannot be
coalesced with a newly fetched tuple anymore it is stored back.

6 DBMS Implementation

In this section, we derive new algorithms to implement coalescing as an internal DBMS operation, and describe a
performance study comparing these algorithms under a variety of database conditions. Our goals are two-fold: to
identify the space of algorithms applicable to coalescing, and to investigate how coalescing can be implemented
cheaply, and with adequate performance.

6.1 Algorithms

Operationally, coalescing is very similar to unary relational operations such as duplicate elimination, and related
operations such as grouping for aggregation. Whereas duplicate elimination matches value-equivalent tuples, co-
alescing performs the same matching, with the added restriction that tuple timestamps must either be overlapping
or adjacent. We use this similarity to derive coalescing algorithms from well-established techniques for duplicate
elimination.

Duplicate elimination algorithms, and all relational query evaluation algorithms, are based on three main
paradigms: nested-loop, partitioning, and sort-merge [Gra93]. Nested-loop algorithms are the the simplest; typical
implementations perform exhaustive comparison to find matching input tuples. Partitioning and sorting are divide
and conquer algorithms that preprocess the input in order to reduce the number of comparisons needed to find
matching tuples.

Partition-based duplicate elimination divides the input tuples into buckets using the attributes of the input
relation as key values. Each bucket contains all tuples that could possibly match with one another, and the buckets
are approximately the size of the alloted main memory. The result is produced by performing an in-memory
duplicate elimination on each of the derived buckets.

Sort-merge duplicate elimination also divides the input relation, but uses physical memory loads as the units
of division. The memory loads are sorted, producing sorted runs, and written to disk. The result is produced by
merging the sorted runs, where duplicates encountered during the merge step are eliminated.

We adapt these basic duplicate elimination algorithms to support coalescing. To enumerate the space of coa-
lescing algorithms, we use the duality of partitioning and sort-merge [GLS94]. In particular, the division step of
partitioning, where tuples are separated based on key values, is analogous to the merging step of sort-merge, where
tuples are matched based on key values. In the following, we consider the characteristics of sort-merge algorithms
and apply duality to derive corresponding characteristics of partition-based algorithms.

For a conventional relation, sort-based duplicate elimination algorithms order the input relation on the re-
lation’s explicit attributes. For a temporal relation, which has timestamp attributes in addition to explicit at-
tributes, there are four possibilities for ordering the relation. First, the relation can be sorted using the explicit
attributes exclusively. Second, the relation can be ordered on time, using either the starting or ending timestamp
[LM93, Seg93]. The choice of starting or ending timestamp dictates an ascending or descending sort order, re-
spectively. Third, the relation can be ordered primarily on the explicit attributes and secondarily on time [NA93].
Lastly, the relation can be ordered primarily on time and secondarily on the explicit attributes.

By duality, the division step of partition-based algorithms can partition using any of these options [LM93,
Seg93]. Hence, four choices exist for the dual steps of merging in sort-merge or partitioning in partition-based
methods.

Lastly, it has been recognized that the choice of buffer allocation strategy, Grace or hybrid [DKO�84], is
independent of whether a sort or partition-based approach is used [Gra93]. Hybrid policies minimize the flushing
of intermediate buffers from main memory, and hence can decrease the I/O cost for a given execution.

Figure 6 shows the choices of sort-merge versus partitioning, the possible sorting/partitioning attributes, and
the possible buffer allocation strategies. Combining all possibilities gives sixteen possible evaluation algorithms.
Including the basic nested-loop algorithm results in a total of seventeen possible algorithms. The seventeen algo-
rithms are named and described in Figure 7.

11



�
Sort-merge
Partitioning

�
�

����
���

Explicit
Timestamp

Explicit/timestamp
Timestamp/explicit

����
���
�

�
Grace
Hybrid

�

Figure 6: Space of possible evaluation algorithms

Algorithm Name Description

Explicit sort ES Grace sort-merge on explicit attributes
Hybrid explicit sort ES-H Hybrid sort-merge on explicit attributes
Temporal sort TS Grace sort-merge on timestamps
Hybrid temporal sort TS-H Hybrid sort-merge on timestamps
Explicit/temporal sort ETS Grace sort-merge on explicit attributes/time
Hybrid explicit/temporal sort ETS-H Hybrid sort-merge on explicit attributes/time
Temporal/explicit sort TES Grace sort-merge on time/explicit attributes
Hybrid temporal/explicit sort TES-H Hybrid sort-merge on time/explicit attributes
Explicit partitioning EP Grace partition on explicit attributes
Hybrid explicit partitioning EP-H Hybrid partition on explicit attributes
Temporal partitioning TP Range partition on time
Hybrid temporal partitioning TP-H Hybrid range partition on time
Explicit/temporal partitioning ETP Grace partition on explicit attributes/time
Hybrid explicit/temporal partitioning ETP-H Hybrid partition on explicit attributes/time
Temporal/explicit partitioning TEP Grace partitioning on time/explicit attributes
Hybrid temporal/explicit partitioning TEP-H Hybrid partitioning on time/explicit attributes
Nested-loop NL Exhaustive matching

Figure 7: Possible algorithms for performance study

Of the seventeen possible choices, we excluded six of the algorithms, TES, TES-H, TP-H, ETP, ETP-H,
TEP, and TEP-H from the final study. TES and TES-H are optimizations of TS and TS-H, respectively, using
a secondary sort-order on the explicit attributes. Intuitively, a secondary ordering on explicit attributes would
not be effective if the start time of value-equivalent tuples are separated by long time periods. TP-H, ETP, ETP-
H, TEP, and TEP-H perform partitioning on time, either primarily (TP, TP-H, TEP and TEP-H) or secondarily
(ETP and ETP-H). For each of these algorithms, range-partitioning [LM91] is performed on the period timestamp
attributes. Whereas range partitioning has been successfully applied in conventional query evaluation with its
discrete attribute values [DNS91], it is much more difficult to perform range-partitioning using more complex
period timestamps. We included the simplest temporal partitioning algorithm, TP, in the study.

The algorithms we include are adaptations of existing duplicate elimination algorithms. A database vendor can
use these techniques to construct coalescing operators from existing code at fairly minimal implementation cost.
While we do not consider them in this study, optimizations such as read-ahead using forecasting, early coalescing,
merge optimizations, large cluster sizes, and bucket tuning [Gra93] can be applied to the coalescing algorithms as
well.

A final few words of explanation are needed. We used a simple implementation of hybrid buffer management.
For partition-based algorithms, e.g., EP-H, a partition was chosen to remain memory resident without being flushed
to disk during, and after, the division step. Similarly, for the sort-based algorithms, ES-H, TS-H, and ETS-H,
most of the last run generated was retained in memory rather than being flushed to disk. This required fairly
straightforward calculations to allocate some of the buffer space being used by the last run to the remaining runs
during merging.

For the algorithms ES, ES-H, TS, TS-H, EP, TP, EP-H, and NL we built the temporal element [Gad88] of
value-equivalent tuples as a main-memory data structure. The temporal element was represented as a modified
binary tree, where nodes in the tree contained a time period and a left and a right child pointer. Partial coalescing

12



Parameter Value

Relation size 16 MB
Tuple size 16 bytes

Tuples per relation 1 M
Timestamp size ([s,e]) 8 bytes
Explicit attribute size 8 bytes

Relation lifespan 100000 chronons
Page size 1 KB

Cluster size 32 KB

Figure 8: System characteristics

Parameter Value

Sequential I/O cost 5 msec
Random I/O cost 25 msec

Explicit attribute compare 2 �sec
Timestamp compare 4 �sec

Pointer compare 1 �sec
Pointer swap 3 �sec
Tuple move 4 �sec

Figure 9: Cost metrics

was performed on insertion, and maximal periods, as required by coalescing, were produced when the tree was
traversed, i.e., after all value-equivalent tuples had been scanned. In all cases, the space requirements of the
temporal element was small relative to the available buffer space. The algorithms ETS and ETS-H did not require
this data structure since the secondary sort order on time allows a constant in-memory workspace [LM93].

The temporal sorting algorithms, TS and TS-H, use tuple caching [SSJ94] to retain, in memory, tuples during
the merging step that could coalesce with tuples appearing later in the scan. The tuple cache size was set at 32 K,
i.e., one cluster of I/O (see Figure 8). The temporal partitioning algorithm, TP, which could also use tuple caching,
was instead implemented using simple tuple replication.

Lastly, all algorithms were developed and experiments were run using the TIME-IT temporal database test en-
vironment [KS95], a system for prototyping query evaluation components. TIME-IT provides a synthetic temporal
database generator, a simulated single disk system, and I/O and CPU cost measurement tools.

6.2 Parameters

Using TIME-IT we fixed several parameters describing all test relations used in the experiments. These parameters
and their values are shown in Figure 8. (The page size of 1 K is fixed by TIME-IT. We plan to enhance the tool
to support variable page sizes, but, in any case, our present results would scale to large page sizes.) We fixed the
tuple size at 16 bytes and the relation size at 16 MB, giving 1 M tuples per relation. We chose a 16 M relation size
since we were less interested in absolute size than in the ratio of input size to available main memory. A scaling
of these factors would provide similar results. In all cases, the generated relations were randomly ordered with
respect to both their explicit and timestamp attributes.

The metrics we used for all experiments are shown in Figure 9. We measured both main memory operations
and disk I/O operations. All operations were measured synthetically using facilities provided by TIME-IT to
eliminate any undesired system effects from the results. For disk operations, random and sequential access were
measured separately with a five times cost factor for random accesses. We included the cost of writing the output
relation in the experiments since sort-based and partition-based algorithms exhibit dual random and sequential I/O
patterns when sorting/coalescing and partitioning/merging.

13



6.3 Simple Experiments

In this section, we mimic the experiments of Section 5, by testing the algorithms when no coalescing occurs, and
when all tuples coalesce into a single tuple. These experiments correspond to duplicate elimination where the
reduction factor is one and the input cardinality, respectively.

6.3.1 No Coalescing

Analogous to the experiments in Section 5, we devised a “worst-case” experiment where essentially no coalescing
occurs. We generated a single relation with randomly distributed explicit attribute values and randomly distributed
period timestamps. The explicit attributes were two integer attributes drawn from the range 0 to��� � 
, giving
�����

�
different possibilities for the 1 M tuples. Period timestamps were set to be one chronon in duration, though,

timestamping with longer periods would still result in little coalescing due to the lack of value-equivalence. Each
algorithm was run on the relation using six memory allocations, from 0.5 M to 16 M, for an effective memory to
input ratio of 1:32 at the smallest memory allocation and 1:1 at the largest. The results are shown in Figure 10.
Notice that both thex-axis andy-axis are log-scaled.

Graphs in this section are organized as follows. The same line/point style is used for a given algorithm con-
sistently throughout all graphs in this section. Algorithms appear in a particular graph legend according to their
top-to-bottom order at the left margin of the graph. Lastly, corresponding pairs of Grace/hybrid algorithms are
plotted in the same linestyle, but with different points.

Nested-loop is clearly not competitive in Figure 10. We implemented a standard block-oriented nested-loop
algorithm. However, as noted in Section 5, is not sufficient to make a simple quadratic scan of the input. Like the
SQL solutions of Section 5, the nested-loop program is effectively performing a fixpoint computation.

A simple improvement to this algorithm is to first sort the input on the explicit attributes, and use the sort-
ordering to reduce the number of blocks scanned in the inner loop. This is the essentially the approach proposed
by Navathe and Ahmed for their COMPRESS operator [NA93] and by Lorentzos for his Fold operator [Lor93].
However, rather than perform a separate sort operation, it is possible to sort and coalesce simultaneously. The
sort-merge algorithms we consider operate in this manner. As can be seen from the graph, ES has a nearly 1000%
advantage over NL at the smallest memory size, and is uniformly superior across all memory sizes. We will not
consider nested-loop in the remainder of this paper.

200

300

400

500

600
700

900
1000

2000

3000

4000

5000

6000
7000
8000
9000

10000

0.5 1 2 4 8 16

el
ap

se
d 

tim
e 

(s
ec

s)

main memory (megabytes)

NL
ES-H

ETS-H
EP-H

ES
ETS

TS-H
TP
TS
EP

Figure 10: No coalescing (reduction factor = 1)

In order to get a better picture of the performance of the remaining algorithms, we plot them separately in
Figure 11. Again both thex-axis andy-axis are log-scaled. As can be seen, the results closely agree with those
from duplicate elimination: corresponding sort-based and partition-based algorithms have largely identical perfor-
mance; careful tuning could reduce any differences, and hybrid algorithms outperform their Grace counterparts at
high memory allocations. In our case, this occurs when the ratio of main memory to input size reaches approxi-
mately 1:8 (2 M of main memory) or 1:4 (4 M of main memory).

14



800

700

600

500

400

300

200

400

300

200

0.5 1 2 4 8 16

el
ap

se
d 

tim
e 

(s
ec

s)

main memory (megabytes)

ES-H
ETS-H

EP-H
ES

ETS
TS-H

TP
TS
EP

Figure 11: No coalescing (reduction factor = 1, without NL)

We note that TS-H, the temporal sorting hybrid algorithm performed extremely well in this experiment (see
Figure 11). The reasons for this are two-fold. First, due to the uniform distribution of both the explicit and
timestamp attributes all of the hybrid algorithms incurred essentially the same I/O cost. (The same statement
is true for the set of Grace algorithms.) The cost differential between TS-H and the other hybrid algorithms in
Figure 11 is therefore main memory cost, in this case, sorting cost. Recall that we are using 4 byte integers as
timestamps, and two 4 byte integers as the explicit attribute values. Recall that TS-H (and TS) sort the input using
the starting timestamp as the sort key. Hence, the cost of sorting using timestamps is one-half the cost of sorting
using the explicit attributes. As tuple length increases this gap would grow correspondingly. The cost differential
between TS-H and ETS-H is even higher since ETS-H sorts using both the explicit attribute and the starting
timestamp. Lastly, the tuple caching mechanism used in TS-H (and TS) is quite effective in this experiment since
the timestamp durations are very short (one chronon). Hence, tuples quickly expire from the tuple cache, with no
danger of cache overflow, and subsequent buffer thrashing, is possible. We will revisit this point in Section 6.4.

6.3.2 Total Coalescing

The experiment of the previous section performed essentially no coalescing, due to the uniform distribution of
explicit attribute values over a large domain. We now consider the algorithms when the reduction factor approaches
the cardinality of the input, i.e., when all tuples coalesce into a one or a few tuples.

A critical factor in the performance of duplicate elimination algorithms is the presence (or absence) of skew in
the input attribute values [BD83, Gra93]. Sort-merge algorithms generally out-perform their partition-based coun-
terparts when input distributions are skewed, due to enlarged partition sizes, and subsequent buffer thrashing. For
binary operations such as joins, other factors, such as the relative sizes of the input operands, must be considered,
but for unary operators such as duplicate elimination or grouping, skew is the primary concern for performance.
We investigate explicit attribute skew more closely in the next section, but we mention its effect here to illustrate
the results of this experiment.

We generated a single relation consisting entirely of value-equivalent tuples, i.e., every tuple in the relation
had the same values for its explicit attributes. (Equivalently, the relations explicit attribute values had 100% skew.)
As before the period timestamps of the tuples were randomly distributed with one chronon durations. Notice that
1 M tuples distributed over a 100000 chronon lifespan implies that approximately 10 tuples are valid during each
chronon, thereby supporting a large reduction factor. Each algorithm was again run using six memory allocations,
from 0.5 M to 16 M. The results are shown in Figure 12. Note that both thex-axis andy-axis are log-scaled.

As expected, EP and EP-H suffer when the explicit attribute values are skewed. ES-H enjoys a 176% advantage
over EP-H at the smallest memory allocation, and a 330% advantage at the largest memory allocation. However,
notice that EP’s performance is slightly improved from its performance in Figure 11. This is due to a sorting
optimization, which we applied to all algorithms, but will explain in terms of explicit attribute partitioning. We

15



700

600

500

400

300

200

400

300

200

0.5 1 2 4 8 16

el
ap

se
d 

tim
e 

(s
ec

s)

main memory (megabytes)

ETS-H
ETS

TP
TS-H
EP-H

EP
TS
ES

ES-H

Figure 12: Total coalescing (reduction factor = input cardinality)

used a pointer-based quicksort to coalesce partitions. A partition is read into memory, sorted, and then scanned
and coalesced. If a subarray of pointers is found to be already sorted, as would occur when all tuples are value-
equivalent, then the algorithm skips the sorting step for that subarray. (The cost of detecting the sortedness of
the subarray is included in the algorithm cost.) For this experiment, where all tuples are value-equivalent, this
optimization results in a big savings. Nonetheless, the same optimization was applied to ES and ES-H, (and the
remaining algorithms as well) so the relative difference between those algorithms and EP and EP-H is the same.
This also explains the lack of “tail-up” for ES-H at the smallest memory allocation, as occurs for the other hybrid
algorithms.

One further note of interest is the good performance of TS-H at relatively large memory sizes. Again, this is
due to the uniform distribution of the timestamp attributes, and their short duration. We will relax this assumption
in the next section.

6.4 Explicit Attribute Skew

To further investigate the effect of explicit attribute skew, we generated a series of databases with explicit skew
ranging from 0%, where explicit attribute values were randomly distributed as in the experiment of Section 6.3.1,
to 100%, as in the experiment of Section 6.3.2. We conducted two experiments. In the first, we used short duration
timestamps (one chronon). In both cases, the timestamps were randomly distributed over the timestamp space.
To provide as fair a comparison as possible, we fixed the memory size at two megabytes, the size at which all
algorithms performed most closely in the experiment of Section 6.3.1. The result of the first experiment is shown
in Figure 13. Notice that they-axis of the graph is log-scaled.

Figure 13 shows no surprises. The relative order of EP/EP-H, ETS/ETS-H, and ES/ES-H reflects the increased
I/O cost incurred by EP/EP-H, the higher sorting cost of ETS/ETS-H over ES/ES-H, and the sorting optimization
mentioned earlier for ES and ES-H. As expected, TP shows essentially the same cost as in the previous experiment.
Again the performance of TS-H is exceptional due to the short duration timestamps.

For the second experiment, we increased the timestamp duration to 1000 chronons, making the lifespan of
each tuple 1/100 of the relation lifespan. The results of this experiment are shown in Figure 14.

This experiment shows a serious problem with the timestamp sorting algorithms: both show quadratic cost
when the explicit attribute skew is 50% or below. Recall that the only difference between the trial relations in
Figures 13 and 14 is the length of the tuple timestamps. The effect of a high explicit attribute cardinality (which
is inversely proportional to the degree of explicit skew) coupled with long duration timestamps causes buffer
thrashing. Many tuples will require caching due to their long timestamps, but few tuples will coalesce due to the
high explicit cardinality. Hence, the cache buffer overflows, and the algorithms begin thrashing.

To see this, recall that our test relation had a lifespan of 100000 chronons, and contained 1 M tuples whose
timestamps were randomly distributed throughout the relation lifespan. This implies that approximately 10 = 1 M

16



250

300

350

400

450

500

550

0 25 50 100

el
ap

se
d 

tim
e 

(s
ec

s)

explicit attribute skew (percentage)

EP
TS

EP-H
ETS

ETS-H
TP

ES-H
ES

TS-H

Figure 13: Explicit attribute skew (short duration timestamps)

250

300

400

500

600

700

800

900
1000

2000

2900

0 25 50 100

el
ap

se
d 

tim
e 

(s
ec

s)

explicit attribute skew (percentage)

TS
TS-H

TP
EP

EP-H
ETS-H

ETS
ES

ES-H

Figure 14: Explicit attribute skew (long duration timestamps)

/ 100000 tuples arrive and depart every chronon. Since each tuple has a lifespan of 1000 chronons, we must scan
the first 10000 tuples, approximately, before any tuples can safely be purged from the tuple cache. However, with
a 32K cache size (holding 32K / 16 = 2048 tuples), we have already overflowed the tuple cache. Again, this effect
was induced by the interplay of a high explicit attribute cardinality and fairly long duration timestamps.

This did not happen in the experiments of Figure 11 and 13 since tuple timestamps there had short durations,
i.e., a single chronon. Tuples with short lifespans are less likely to coalesce than tuples with long lifespans.
Therefore, short lifespan tuples are more quickly flushed from the tuple cache, thereby reducing the exposure to
overflow and subsequent thrashing.

We conjecture that a similar effect occurs when the explicit attribute cardinality is low, but long duration
timestamps are still present. Further experimentation is needed to confirm this. Also, notice that the effect would
be mitigated if the relation lifespan were longer, thereby decreasing the arrival rate of tuples.

To see the effect of explicit attribute skew on the remaining algorithms, we have replotted their data in Fig-
ure 15. From the figure, we can see that EP-H had almost uniformly poorer performance than its Grace counterpart.
This is due to the nature of the skew. In none of the hybrid experiments did the skewed partitions happen to be the
same as the memory resident partitions, meaning that a large amount of buffer space was left unoccupied during
partitioning. More sophisticated buffer allocation techniques could have alleviated this problem.

We make one last observation from this set of experiments. In all pairs of Grace and hybrid variants of the

17



300

350

400

450

500

550

0 25 50 100

el
ap

se
d 

tim
e 

(s
ec

s)

explicit attribute skew (percentage)

TP
EP

EP-H
ETS

ETS-H
ES

ES-H

Figure 15: Explicit attribute skew (long duration timestamps, without TS and TS-H)

same algorithms, the evaluation cost shows an overall decrease, rather than increase, as the percentage of skewed
tuples rises. This is due to two factors, the sorting optimization mentioned earlier, and the size of the output
relation. As the skew increases, more tuples coalesce together, thereby decreasing the size of the output relation.

6.5 Timestamp Attribute Skew

In the previous experiments, we investigated the effects of explicit attribute skew on the coalescing algorithms.
We designed an analogous experiment to test the effect of timestamp skew.

We generated databases with increasing timestamp skew, from 0%, where timestamps were randomly dis-
tributed, to 100%, where all timestamps had the same values. As before, the explicit attribute values were ran-
domly distributed over the range 0 to��� � 
. We used short duration (1 chronon) timestamps to mitigate the
effect of long duration timestamps on TS and TS-H. Unfortunately, this was not successful. The relations in this
experiment had a high explicit attribute cardinality and increasing timestamp skew. As the timestamp skew rises,
more tuples are clustered in time, and must be cached. As the explicit cardinality is high, the likelihood of these
tuples coalescing is low. Hence, both TS and TS-H overflowed their caches, and thrashed buffers to disk.

The results of the experiment are shown in Figure 16. As the performance of TS and TS-H closely follows
their performance in Figure 14, we omit their lines. As can be seen, the expected result, where TP suffers due to
the timestamp skew,is obtained.

6.6 Combined Explicit/Timestamp Attribute Skew

In the previous experiments, we tested the performance of the algorithms under explicit and timestamp skew
separately. We now consider the simultaneous effect of both types of skew.

As before, we generated a series of databases with increasing explicit and timestamp skew from 0% (random
distributions) to 100% (all tuples are identical). The results are shown in Figure 17.

It is somewhat surprising to see that TS, TS-H, and TP exhibit comparable performance to the other algorithms
in Figure 17, given their performance under similar input in the previous experiments. The difference is in the way
the input relation has been skewed. We created a single tuple, with a fixed period timestamp and explicit attribute
values. Skew, for both the timestamp and explicit attribute dimensions, was created by adding increasing numbers
of this tuple to the input relations. In effect, this synchronized the timestamp and explicit skew.

The effect of this procedure on TS and TS-H was to enhance the efficiency of the tuple cache since many
value-equivalent tuples with identical timestamps would coalesce, and prevent overflow. For TP, the effect of
partitioning the skewed data is offset somewhat by the reduced in-memory sorting cost. This is evidenced by the
rise in cost between the 25% and 50% trials, and the subsequent decrease at the 100% trial.

18



510

520

530

540

550

560

600

700

0 25 50 100

el
ap

se
d 

tim
e 

(s
ec

s)

timestamp skew (percentage)

EP
EP-H

TP
ETS

ES
ES-H

ETS-H

Figure 16: Timestamp skew

250

300

350

400

450

500

550

0 25 50 100

el
ap

se
d 

tim
e 

(s
ec

s)

explicit/timestamp attribute skew (percentage)

EP
TS

EP-H
ETS

ETS-H
ES

ES-H
TP

TS-H

Figure 17: Combined explicit/timestamp skew

6.7 Summary

We investigated the performance of nested-loop (NL), explicit partitioning (EP and EP-H), explicit sorting (ES
and ES-H), temporal sorting (TS and TS-H), temporal partitioning (TP), and combined explicit/temporal sorting
(ETS, ETS-H) when performing coalescing. The timestamp-based algorithms, especially TS and TS-H, show
good performance in special cases, e.g., when timestamps are randomly distributed, are short in duration, and
little value-equivalence is present in the explicit attributes. However, the performance of these algorithms degrades
quickly when timestamp durations increase, causing tuple caching for TS and TS-H and replication for TP, or when
the explicit and timestamp distributions interact in certain ways, e.g., high explicit cardinality with increasing
timestamp skew. While these algorithms appear beneficial in certain circumstances, but it would be unwise for a
DBMS to rely on a solely on them.

Unlike the timestamp-based algorithms, EP, EP-H, ES, and ES-H, along with the simple variants ETS and
ETS-H, show relatively stable performance. As in conventional databases, the performance of EP and EP-H
degrade when explicit skew is present. However, ES, ES-H, ETS, ETS-H show relatively stable performance
in the presence of explicit skew and timestamp skew, as expected. This is good news for commercial vendors
interested in implementing temporal operations—they can construct temporal operators easily by modifying their
existing software base, at presumably small development cost, and still achieve very acceptable performance. The
choice of between ES/ES-H and ETS/ETS-H is a tradeoff between the additional sorting expense ETS and ETS-H

19



incur to secondarily order the input on time, and the cost that ES and ES-H incur to build in-memory temporal
elements. While the space requirement for temporal element construction is usually small, the size of the available
buffer space may be the deciding factor. Of course, when sufficient main memory is available, hybrid algorithms
should be chosen over their Grace counterparts.

7 Conclusions

Temporal coalescing is an important operation in terms of both database semantics and performance. While many
temporal data models and languages have implicitly or explicitly assumed or provided coalescing, only recently
has the importance of this operator to performance been emphasized. We hope the work described in this paper
will help focus the research community’s attention on this operation.

The contributions of this paper can be summarized as follows.

� We motivated the importance, and difficulty, of performing coalescing.

� We defined rules for eliminating superfluous coalescing operations in algebraic expressions.

� We showed how database users can implement coalescing through SQL expressions and investigated the
performance of three different ways of doing this. The best performance, which was quadratic in the number
of input tuples, was achieved by iterating an SQL update statement. We also showed that the relational
algebra has sufficient expressive power to implement coalescing, by exhibiting a (non-iterated) SQL select
statement for coalescing.

� We devised seven algorithms which could be used as part of an internal DBMS implementation for coa-
lescing, and compared their performance under a variety of database conditions. The conclusion was that
existing algorithms can be augmented to implement coalescing, at presumably modest development cost,
and with acceptable performance.

In terms of future research, more work is needed to understand the interplay of coalescing and other temporal
operators with respect to query optimization and evaluation. Concerning query optimization, existing approaches,
such as predicate pushdown [Ull88] and pullup [HS93, Hel94], early and late aggregation (c.f., [YL94], duplicate
elimination removal [PL94], andDISTINCT pullup and pushdown, should be applied to coalescing. Effective cost
formulas for coalescing are needed. Concerning evaluation, composite operators which implement two or more
operators from a base set of algebraic operators could be exploited. Finally, a more thorough study of the algorithm
space for temporal coalescing would be beneficial to identify cases where specialized temporal algorithms can be
exploited.

8 Acknowledgments

The second and third authors were supported in part by NSF grant ISI-9202244 and a grant from the AT&T
Foundation. The authors thank Goetz Graefe for his insights.

References

[All83] J. F. Allen. Maintaining Knowledge about Temporal Intervals.Communications of the ACM,
16(11):832–843, 1983.

[Ari86] G. Ariav. A Temporally Oriented Data Model.ACM Transactions on Database Systems, 11(4):499–
527, December 1986.

[BCST96] M. Böhlen, J. Chomicki, R. Snodgrass, and D. Toman. Querying TSQL2 Databases with Temporal
Logic. In Proceedings of the International Conference on Extended Database Technology, to appear,
1996.

20



[BJS95] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating and Enhancing the Completeness of
TSQL2. Technical Report TR 95-5, Computer Science Department, University of Arizona, 1995.

[Böh94] M. Böhlen. The Temporal Deductive Database System ChronoLog. PhD thesis, Departement Infor-
matik, ETH Zürich, 1994.

[BD83] D. Bitton and D. J. DeWitt. Duplicate Record Removal in Large Data Files. ACM Transactions on
Database Systems, 8(2), June 1983, p. 255.

[BZ82] J. Ben-Zvi.The Time Relational Model. PhD thesis, Computer Science Department, UCLA, 1982.

[CC87] J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and Algebra Based on
Lifespans. InProceedings of the International Conference on Data Engineering, pages 528–537.
IEEE Computer Society, IEEE Computer Society Press, February 1987.

[Cel95] J. Celko.SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann, 1995.

[DKO�84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. Wood. Implementation
Techniques for Main Memory Database Systems. InProceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1–8, June 1984.

[DNS91] D. DeWitt, J. Naughton, and D. Schneider. An Evaluation of Non-Equijoin Algorithms. InProceed-
ings of the Conference on Very Large Databases, p. 443, 1991.

[Gad88] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal Databases.ACM
Transactions on Database Systems, 13(4):418–448, December 1988.

[GLS94] G. Graefe, A. Linville, and L. D. Shapiro. Sort vs. hash revisited.IEEE Transactions on Knowledge
and Data Engineering, 6(6):934–944, December 1994.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases.ACM Computing Surveys, 25(2):73–
170, June 1993.

[GV85] S. K. Gadia and J. H. Vaishnav. A Query Language for a Homogeneous Temporal Database. In
Proceedings of the ACM Symposium on Principles of Database Systems, pages 51–56, March 1985.

[Hel94] J. M. Hellerstein. Practical Predicate Placement. InProceedings of the ACM Conference on Manage-
ment of Data, pages 325–335, June 1994.

[HS93] J. M. Hellerstein and M. Stonebraker. Predicate Migration: Optimizing Queries with Expensive
Predicates. InProceedings of the ACM Conference on Management of Data, pages 267–276, May
1993.

[JCE�94] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia. A Glossary of Temporal
Database Concepts.SIGMOD RECORD, 23(1):52–64, March 1994.

[KS95] N. Kline and M. D. Soo. TIME-IT: TheTIME Integrated Testbed. Pre-beta version 0.1 available via
anonymous ftp fromftp.cs.arizona.edu, September 1995.

[KSL95] N. Kline, R. T. Snodgrass, and T. Y. C. Leung. Aggregates. In R. T. Snodgrass, editor,The TSQL2
Temporal Query Language, chapter 21, pages 395–425. Kluwer Academic Publishers, 1995.

[LJ88] N. Lorentzos and R. Johnson. Extending Relational Algebra to Manipulate Temporal Data.Informa-
tion Systems, 15(3), 1988.

[LM90] C. Leung and R. Muntz. Query Processing for Temporal Databases. InProceedings of the Interna-
tional Conference on Data Engineering, February 1990.

[LM91] T. Y. C. Leung and R. R. Muntz. Temporal Query Processing and Optimization in Multiprocessor
Database Machines. Technical Report CSD-910077, Computer Science Department, University of
California, Los Angeles, November 1991.

21



[LM93] T. Y. C. Leung and R. R. Muntz. Stream Processing: Temporal Query Processing and Optimization.
In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal
Databases: Theory, Design, and Implementation, chapter 14, pages 329–355. Benjamin/Cummings
Publishing Company, 1993.

[Lor93] N. Lorentzos. The Interval-extended Relational Model and Its Application to Valid-time Databases.
In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal
Databases: Theory, Design, and Implementation, chapter 3, pages 67–91. Benjamin/Cummings Pub-
lishing Company, 1993.

[LP95] T. Y. C. Leung and H. Pirahesh. Querying Historical Data in IBM DB2 C/S DBMS Using Recursive
SQL. In J. Clifford and A. Tuzhilin, editors,Recent Advances in Temporal Databases, Workshops in
Computing, Zürich, Switzerland, September 1995. Springer Verlag.

[McK88] E. McKenzie. An Algebraic Language for Query and Update of Temporal Databases. PhD thesis,
University of North Carolina, Computer Science Department, September 1988.

[MS91] L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational Algebras Incorporating the Time
Dimension in Databases.ACM Computing Surveys, 23(4):501–543, December 1991.

[MS93] J. Melton and A. R. Simon.Understanding the New SQL: A Complete Guide. Morgan Kaufmann
Publishers, Inc., 1993.

[NA89] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.Information
Systems, 49(2):147–175, 1989.

[NA93] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL. In A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal Databases: Theory,
Design, and Implementation, pages 92–109. Benjamin/Cummings Publishing Company, 1993.

[O’N94] P. O’Neil. Database Principles Programming Performance. Morgan Kaufmann, San Francisco, 1994.

[PL94] G. N. Paulley and P.-A. Larson. Exploiting Uniqueness in Query Optimization. InProceedings of the
International Conference on Data Engineering, pages 68–79, February 1994.

[SA86] R. T. Snodgrass and I. Ahn. Temporal Databases.IEEE Computer Journal, 19(9):35–42, September
1986.

[Sar90a] N. Sarda. Algebra and Query Language for A Historical Data Model.IEEE Computer Journal, 33,
1990.

[Sar90b] N. Sarda. Extensions to SQL for Historical Databases.IEEE Transactions on Knowledge and Data
Engineering, pages 220–230, June 1990.

[Seg93] A. Segev. Join Processing and Optimization in Temporal Relational Databases. In A. Tansel, J. Clif-
ford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal Databases: Theory,
Design, and Implementation, chapter 15, pages 356–387. Benjamin/Cummings Publishing Company,
1993.

[SJS95] M. D. Soo, C. J. Jensen, and R. T. Snodgrass. An Algebra for TSQL2. In R. T. Snodgrass, editor,The
TSQL2 Temporal Query Language, chapter 27, pages 505–546. Kluwer Academic Publishers, 1995.

[Sno87] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transactions on Database Systems,
12(2):247–298, June 1987.

[Sno95] R. T. Snodgrass.The TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995.

[Sri91] S. M. Sripada.Temporal Reasoning in Deductive Databases. PhD thesis, Imperial College of Science
and Technology, University of London, 1991.

22



[SSD87] R. Sadeghi, W. B. Samson, and S. M. Deen. HQL — A Historical Query Language. Technical report,
Dundee College of Technology, Dundee, Scotland, September 1987.

[SSJ94] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the Valid-Time Natural Join. In
Proceedings of the International Conference on Data Engineering, pages 282–292, February 1994.

[Tan86] A. U. Tansel. Adding Time Dimension to Relational Model and Extending Relational Algebra.Infor-
mation Systems, 11(4):343–355, 1986.

[TCG�93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass.Temporal Databases:
Theory, Design, and Implementation. Benjamin/Cummings Publishing Company, 1993.

[Ull88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Computer Science
Press, 1988.

[YL94] W. P. Yan and P.-A. Larson. Performing Group-By Before Join InProceedings of the International
Conference on Data Engineering, pages 89–100, February 1994.

23


