
A Study of Conventional Schema Versioning
in the τXSchema Framework

Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Barbara Oliboni

June 13, 2012

TR-94

A TIMECENTER Technical Report

Title A Study of Conventional Schema Versioning
in the τXSchema Framework

Copyright c© 2012 Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Bar-
bara Oliboni. All rights reserved.

Author(s) Zouhaier Brahmia, Rafik Bouaziz, Fabio Grandi, Barbara Oliboni

Publication History June 2012. A TIMECENTER Technical Report.

TIMECENTER Participants

Michael H. Böhlen, University of Zurich, Switzerland; Curtis E. Dyreson, Utah State University, USA;
Fabio Grandi, University of Bologna, Italy; Christian S. Jensen (codirector), Aarhus University, Denmark;
Vijay Khatri, Indiana University, USA; Gerhard Knolmayer, University of Berne, Switzerland; Carme
Martı́n, Technical University of Catalonia, Spain; Thomas Myrach, University of Berne, Switzerland; Mario
A. Nascimento, University of Alberta, Canada; Sudha Ram, University of Arizona, USA; John F. Roddick,
Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Simonas Šaltenis,
Aalborg University, Denmark; Dennis Shasha, New York University, USA; Richard T. Snodgrass (codirec-
tor), University of Arizona, USA; Paolo Terenziani, University of Piemonte Orientale “Amedeo Avogadro,”
Alessandria, Italy; Stephen W. Thomas, Queen’s University, Canada; Kristian Torp, Aalborg University,
Denmark; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Emory University,
USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los
Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

A Study of Conventional Schema Versioning
in the τXSchema Framework

Zouhaier Brahmia, Rafik Bouaziz
University of Sfax, Tunisia − email: {zouhaier.brahmia|raf.bouaziz}@fsegs.rnu.tn

Fabio Grandi
University of Bologna, Italy − email: fabio.grandi@unibo.it

Barbara Oliboni
University of Verona, Italy − email: barbara.oliboni@univr.it

Abstract

Schema versioning is an indispensable feature for applications using temporal databases and re-
quiring an entire history of data and schema. τXSchema [6] is an infrastructure for constructing and
validating temporal XML documents; but any explicit support for XML schema versioning is offered.
A τXSchema schema is composed of a conventional XML Schema document annotated with physical
and logical annotations. All components of a τXSchema schema (i.e., conventional schema, logical an-
notations, and physical annotations) can change over time to reflect changes in user requirements or in
reference world of the database. In a previous work [9], we deal with versioning of logical and physical
annotations. In this work, we study τXSchema conventional schema versioning: we propose a complete
set of low-level primitives for changing such a schema and define their operational semantics.

Keywords: τXSchema, Schema versioning, XML, XML Schema, Temporal database

1 Introduction

Nowadays, lots of applications use XML repositories to store information. Some examples include e-
government, electronic commerce, internet marketing, electronic data interchange, and electronic funds
transfer. In such repositories, we find XML documents which contain data and XML schema which describe
structures of these documents. Furthermore, both data and schema evolve over time to meet changes in
universe of discourse or user requirements; data and schema updates are unavoidable in any information
system.

In this context, several applications using XML repositories (e.g., banking, accounting, personnel manage-
ment, airline reservations, weather monitoring and forecasting) are temporal in nature and require a full
history of data and schema changes, which must be managed efficiently, consistently, and in a transparent
way with regard to the end user. Notice that for generic temporal databases [1], XML provides an excellent
support for temporally grouped data models [2], which have long been considered as the most natural and
effective representations of temporal information [3]. Besides, schema versioning has long been advocated
to be the more appropriate solution to support a complete data and schema history in databases [4,5].

In a temporal setting, XML data can evolve along transaction-time and/or valid-time; thus, they can have
a transaction-time, a valid-time or a bitemporal format. When XML data of different temporal formats
can coexist in the same XML repository, we talk about a multitemporal XML repository. Whereas schema
versioning is required by several applications using multitemporal XML repositories, both existing XML
DBMS and XML tools have no support for that feature until now. Therefore, XML Schema designers and
developers use ad hoc methods to manage schema versioning. To reach our goal which consists of proposing

1

 2

a general approach for schema versioning in multitemporal XML repositories, we have chosen to

extend the τXSchema approach [6,7,8] for reasons presented in [9]. τXSchema [6,7,8] is a framework (a

language and a suite of tools) for the creation and validation of time-varying XML documents. The

τXSchema language extends the standard XML Schema language [10] to explicitly support time in the

definition of temporal XML documents. In τXSchema, the schema is obtained by specifying three parts:

(i) the conventional schema which is a standard XML Schema document that describes the structure of

a standard XML document, without any temporal aspect; (ii) the logical annotations of the conventional

schema, which identify which elements can vary over time; and (iii) the physical annotations of the

conventional schema, which describe how the time-varying aspects are represented.

In the first works on τXSchema [6,7,8], the authors focus on capturing a time-varying XML schema and

validating XML documents against such a schema. In [6], they introduce τXSchema but did not discuss

schema versioning. In [7], they focus on cross-schema change validation. In [8], they extend [7] by

discussing how to accommodate gaps in the existence time of an item, transaction semantics, and non-

sequenced integrity constraints. In all these works, they do not deal with how the schema changes are

made, or what kinds of schema change operations are supported. We have started studying these issues

in our last work [9] on τXSchema: we dealt with changes of physical and logical annotations. We

proposed a set of low-level primitives acting on the annotation document. When the designer decides to

make a change on annotations, he/she applies a set of these primitives on the XML file which stores the

annotations and he/she gets a new version of the annotations.

In the present work, we study changes within the other component of τXSchema: the conventional

schema (or the basic schema). We propose a complete set of primitives allowing the designer to do any

change on this schema, by composing these primitives into valid sequences and collectively executing

them on the conventional schema. This set of primitives is complete, that is each conventional schema

can be generated starting from the empty schema by applying a sequence of primitives, and for each

conventional schema a sequence of primitives exists for transforming it in the empty schema. Moreover,

this set is sound: i.e., each primitive applied to a consistent conventional schema produces a consistent

conventional schema.

The remainder of this paper is organized as follows. We briefly present the τXSchema framework in the

next section. In Section 3, we introduce our approach for versioning of τXSchema conventional schema.

Since a conventional schema is defined using the standard XML Schema language [10], we describe in

Section 4 the different elements that can compose an XML Schema. We propose in Section 5 the set of

primitives for changing the conventional schema. In Section 6, we discuss related work. We conclude

the work in Section 7.

2. The τXSchema Framework

In this section, first we briefly present the τXSchema architecture (more details can be found in [11]),

and then we provide a motivating example that illustrates the usage of τXSchema.

2.1. Architecture

The τXSchema framework [6,7,8,11] allows a designer to create a temporal XML schema for temporal

XML documents from a conventional schema (written in standard XML Schema language), logical

annotations, and physical annotations. Figure 1 illustrates the architecture of τXSchema [11]. We note

that only the components which are shaded in the figure are specific to an individual time-varying

document and need to be supplied by a designer.

The designer starts with the conventional schema (box 3) which is a standard XML Schema document

that describes the structure of the conventional document(s). A conventional document is a standard

XML document that has no temporal aspects [11].

 3

Then, the designer augments the conventional schema with logical annotations (box 5), specifying (i)

whether an element or attribute varies over valid time or transaction time, (ii) whether its lifetime is

described as a continuous state or a single event, whether the item itself may appear at certain times

(and not at others), and (iii) whether its content changes [11]. If no logical annotations are provided, the

default logical annotation is that anything can change. However, once the designer has annotated the

conventional schema, elements that are not described as time-varying are static and, thus, they must

have the same content across every XML document in box 7.

After that, the designer augments the conventional schema with physical annotations (box 6), which

specify the timestamp representation options chosen by the designer, such as where the timestamps are

placed and their kind (e.g., valid time or transaction time) and the kind of representation adopted [11].

The location of timestamps is largely independent of which components vary over time. Timestamps

can be located either on time-varying components (as specified by the logical annotations) or

somewhere above such components. Two documents with the same logical information will look very

different if we change the location of their physical timestamps. Changing an aspect of even one

timestamp can make a big difference in the representation. τXSchema supplies a default set of physical

annotations, which is used to timestamp the root element with valid and transaction times. However,

explicitly managing them can lead to more compact representations.

Figure 1. Architecture of τXSchema

Logical and physical annotations are orthogonal and are independently maintained, although they are

stored together in a single document related to the conventional schema, which is a standard XML

document named the annotation document. The schema for the logical and physical annotations is given

by ASchema (box 2).

0. XML Schema

3. Conventional Schema

5. Logical Annotations 6. Physical Annotations

4. Temporal Schema

2. ASchema

7. Non-Temporal Data

1. TSSchema

8. Temporal Data SQUASH

SCHEMA

MAPPER

9. Representational

Schema

Legend of arrows:

 : Input/Output

 : References

 : Namespace

τXMLLINT

Error Messages

τXMLLINT

Error Messages

 4

By separating the conventional schema, logical annotations, and physical annotations, the three-level

architecture of τXSchema guarantees data independence and allows each component to be changed

independently.

Finally, the designer creates the temporal schema document (box 4) in order to provide the linking

information between the conventional schema, logical annotations, and physical annotations. The

temporal schema is a standard XML document that ties the conventional schema, logical annotations,

and physical annotations together [11]. The temporal schema in the τXSchema environment is the

logical equivalent of the conventional XML Schema in the non-temporal XML environment. This

document contains sub-elements that associate a series of conventional schema definitions with logical

and physical annotations, along with the time span during which the association were in effect. The

schema for the temporal schema document is TSSchema (box 1).

Notice that, whereas the introduction of TSSchema (box 1) and ASchema (box 2) is due to Snodgrass

and colleagues, XML Schema (box 0) is the standard endorsed by the W3C [10].

The temporal schema document (box 4) is processed by the temporal validator τXMLLINT in order to

ensure that the logical and physical annotations are (i) valid with respect to ASchema, and (ii)

consistent with the conventional schema. τXMLLINT reports whether the temporal schema document is

valid or invalid.

Once the annotations are found to be consistent, the Schema Mapper generates the representational

schema (box 9) from the temporal schema (i.e., from the conventional schema plus the logical and

physical annotations). The representational schema becomes the schema for temporal data (box 8).

Temporal data can be automatically created from the non-temporal data (box 7) and the temporal

schema (box 4), using the Squash tool. Moreover, temporal data are validated against the

representational schema through τXMLLINT which reports whether the temporal data document is

valid or invalid.

2.2. Motivating example

Let us resume the example presented in [9] (section 2.2), dealing with the management of customer

accounts in a bank. In that example, we have one version for the conventional schema (see Figure 2),

three versions for the annotation document, and the temporal schema document (see Figure 3), on

August 1, 2010.

We do not consider here the annotation document and its versions, since they are beyond the scope of

the present work.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Bank">
 <complexType>
 <sequence>
 <element ref="Account"/>

 </sequence>
 </complexType>
 </element>

 <element name="Account">
 <complexType>
 <sequence>
 <element name="OwnerName" type="string"/>
 <element name="OpeningDate" type="date"/>

 <element name="Type" type="string"/>

 <element name="Balance" type="float"/>
 </sequence>
 <attribute name="Number" type="nonNegativeInteger" use=”required”/>
 </complexType>
 </element>
</schema>

Figure 2. First version of the conventional schema (Bank_V1.xsd), on February 1, 2010

 5

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">

 <conventionalSchema>
<sliceSequence>
 <slice location="Bank_V1.xsd" begin="2010-02-01" />
</sliceSequence>

 </conventionalSchema>

 <annotationSet>
<sliceSequence>
 <slice location="BankAnnotations_V1.xml" begin="2010-02-01" />
 <slice location="BankAnnotations_V2.xml" begin="2010-06-01" />
 <slice location="BankAnnotations_V3.xml" begin="2010-08-01" />
</sliceSequence>

 </annotationSet>
</temporalSchema>

Figure 3. Temporal schema (BankTemporalSchema.xml) on August 1, 2010

3. Versioning of τXSchema Conventional Schema

In this section, we first briefly describe how τXSchema conventional schema is versioned in our

approach, and then we describe the effects of versioning the conventional schema.

3.1. Conventional schema versioning technique

The first step of a schema versioning sequence is the creation of the first schema version: the designer

creates a conventional XML-Schema document (i.e., an XSD file) annotated with some logical and

physical annotations in an independent document (which is stored as an XML file), through a graphical

interface. Moreover, he/she creates the temporal schema (also stored as an XML file) that ties together

the conventional schema and the annotations.

In further steps of the versioning sequence, when necessary, the designer can independently change the

conventional schema, the logical annotations or the physical annotations.

Changing the conventional schema leads to a new version of it. Similarly, changing a logical or a

physical annotation leads to a new version of the whole annotation document. Therefore, the temporal

schema is updated after each change of the conventional schema or of the annotation document. In this

paper, we deal with changes of the conventional schema.

Schema change operations performed by the designer are high-level, since they are usually conceived

having in mind high-level real-world object properties. Each of these high-level schema change

operations is then mapped onto a sequence of low-level schema change operations (or schema change

primitives) by the schema change processor to be implemented.

In this paper, we investigate primitive changes of conventional schema and not high-level changes. In

fact, each high-level change can be expressed as a sequence of primitive changes. Thus, the consistency

of the resulting conventional schema is always guaranteed, if primitive schema changes preserve the

document consistency.

3.2. Effects of versioning the conventional schema

Having different versions of the conventional schema is very important. It allows:

(i) reusing of legacy applications developed against past XML schema and documents;

(ii) supporting of complex temporal queries involving one past XML schema version or many

XML schema versions (i.e., multi-schema XML queries);

(iii) keeping an efficient archive of XML schema and data history.

In fact, after defining a new conventional schema version:

 XML documents which were valid for any past conventional schema version continue to be

 6

valid;

 programs (which contain XML queries and XML updates) working on existing conventional

schema versions and their associated XML documents remain operational;

 document access policies, such as access control policies or index reorganization, defined for

existing XML documents should not be revised.

Notice that conventional schema versioning does not lead automatically to proliferation of schema

versions. The creation of a new conventional schema version is anyway a seldom task during the XML

repository lifetime, which can only be performed by an administrator or a designer of this repository.

This task may consist of dozens of schema change primitives which are grouped together in the same

single transaction. But, if application context is very dynamic and fast-growing (i.e., systems that are

characterized by a collaborative and a distributed nature of their development and content management,

like content management systems, wiki-based web portals, and web systems for large collaborative

scientific projects relying on very large scientific databases), schema changes become very frequent and

obviously the number of schema versions will increase; it is natural and unavoidable. Whatever is the

application context, if the need arises, XML schema have to be changed to conform to real-world

changes, to new requirements and constraints, etc.

4. XML Schema Language

XML Schema [10] is a standard language to define the schema for XML documents. It is worth

mentioning that we do not address here the full XML Schema definition (e.g. involving the latest W3C

Part 1: Structures and Part 2: Datatypes recommendations) which is quite complex, but we focus indeed

on a subset of it which we consider very significant for applications, that is the latest W3C Part 0

recommendation [10].

An XML Schema consists of several elements, which describe the structure and the content of any

XML document supposed to be valid with respect to such schema. These elements are summarized in

Table 1 (their total number is forty-two); for each element, we present its attributes and its containers

(i.e., where the element can be included).

Table 1. XML Schema elements

XML Schema

element

Attributes of the

element
Containers of the element

schema

id,

attributeFormDefault,

blockDefault,

elementFormDefault,

finalDefault,

targetNamespace,

version, and xml:lang

It can not be included in any other XML Schema

element

include id and schemaLocation schema

import
id, schemaLocation, and
namespace

schema

redefine id and schemaLocation schema

element

id, name, type,

abstract, block,

default, final, fixed,

form, maxOccurs,

minOccurs, nillable,

ref, and
substitutionGroup

all, choice, schema, or sequence

group
id, name, maxOccurs,

minOccurs, and ref
complexType, choice, redefine, schema, or sequence

any

id, namespace,

processContents,

maxOccurs, and minOccurs
choice or sequence

 7

attribute

id, default, fixed,

form, name, ref, type,

and use
attributeGroup, complexType, extension, or schema

attributeGroup id, name, and ref
attributeGroup, complexType, extension, redefine

or schema

anyAttribute
id, namespace, and
processContents

attributeGroup, complexType, or extension

complexType

id, name, default,

final, mixed, abstract,

and block
element, redefine, or schema

all
id, minOccurs, and
maxOccurs

complexType or group

choice
id, minOccurs, and
maxOccurs

choice, sequence, complexType, or group

sequence
id, minOccurs, and
maxOccurs

choice, sequence, complexType, or group

complexContent id and mixed complexType

simpleContent id complexType

extension id and base simpleContent or complexContent

simpleType id, name, and final
attribute, element, redefine, list, union,

restriction, or schema

list id and itemType simpleType

union id and memberTypes simpleType

restriction id and base simpleType, simpleContent or complexContent

enumeration id and value restriction

pattern id and value restriction

totalDigits id, value, and fixed restriction

fractionDigits id, value, and fixed restriction

minInclusive id, value, and fixed restriction

maxInclusive id, value, and fixed restriction

minExclusive id, value, and fixed restriction

maxExclusive id, value, and fixed restriction

minLength id, value, and fixed restriction

maxlength id, value, and fixed restriction

length id, value, and fixed restriction

whiteSpace id, value, and fixed restriction

key id and name element

keyref id, name and refer element

unique id and name element

selector id and xpath key, keyref, or unique

field id and xpath key, keyref, or unique

notation
id, name, public, and
system

schema

annotation id

all, any, anyAttribute, attribute,

attributeGroup, choice, complexContent,

complexType, element, enumeration, extension,

field, fractionDigits, group, import, include,

key, keyref, length, list, maxExclusive,

maxInclusive, maxLength, minExclusive,

minInclusive, minLength, notation, pattern,

redefine, restriction, selector, sequence,

simpleContent, simpleType, totalDigits, union,

unique, whiteSpace, or schema

appinfo source annotation

documentation source and xml:lang annotation

5. Primitives for Changing τXSchema Conventional Schema

In this section, we first present our design choices, and then we describe primitive changes acting on

conventional schema in τXSchema. We have individuated primitive operations (i.e., non-further

decomposable in terms of the other ones) which make up a complete set of changes (i.e., such that any

possible complex change can be defined via a combination/sequence of them). For each primitive

 8

change, we describe its arguments and its operational semantics.

5.1. Design choices

The definition of the primitives will obey the following principles and conventions:

a) All primitives must work on a well-formed and valid Conventional Schema (CS), that is must

have a well-formed and valid CS as input and produce a well-formed and valid CS as output.

b) All primitives need to work on an XSD file storing the CS, whose name must be supplied as

argument.

c) For all primitives, arguments which are used to identify the object on which the primitive works

are in the first place of the argument list.

d) Primitives adding elements with possibly optional attributes have the values for all the attributes

as arguments; empty places in the argument list stand for unspecified optional attributes.

e) For primitives changing elements (i.e., set primtives), values are specified only for attributes that

are changed; the value “unchanged” means that the corresponding attribute is not updated; an empty

place in the argument list means that the corresponding attribute receives a nil value.

5.2. Proposed primitives

In this section, we propose the set of primitives for changing a conventional schema (their total number

is one hundred and twenty-six). The idea is that each primitive deals with an XML Schema element,

that is it adds, deletes or modifies attributes of such an element. For this reason, some arguments of the

primitives are the attributes of the corresponding XML Schema elements. We list these primitives in

Table 2. Furthermore, due to space limitations, we do not present in this work the effects of all primitive

changes. We give only the effect of some of them. In the following, we choose to present only the

effects of CreateConventionalSchema, AddInclude, AddElement, and AddAny primitive

changes.

Table 2. Primitive changes acting on the conventional schema

Primitive change Description

CreateConventionalSchema(CS.xsd)

It produces a valid conventional schema (CS) that
contains an empty <schema/> element without attributes.
According to the design choice (b), the argument is the
name of the XSD file where the new CS is stored.

DropConventionalSchema(CS.xsd)

It removes the CS.xsd file from disk, with the
constraint that the argument represents an empty CS
(i.e., like the one above initially created by
CreateConventionalSchema). Any other contents must have
been removed before.

SetSchema(CS.xsd, id,

targetNamespace,
elementFormDefault,
attributeFormDefault,
blockDefault, finalDefault,
version, xml:lang)

Changes (or introduces) id, targetNamespace,
elementFormDefault, attributeFormDefault, blockDefault,
finalDefault, version, or xml:lang attributes of the
<schema/> element.
Notice that the id attribute is optional in any XML
Schema component.

AddInclude(CS.xsd,
precedingComponentPath, id,
schemaLocation)

Adds the <include/> element with specified id and
schemaLocation to the <schema/> container, after the
XML Schema component located at the position
precedingComponentPath. If this position is not
specified by the designer, it means that the <include/>
element is the first element in the <schema/>
container.

DeleteInclude(CS.xsd, includePath)

Removes the <include/> element located at the position
includePath, from the <schema/> container.

SetInclude(CS.xsd, includePath, id,
schemaLocation)

Changes (or introduces) id or schemaLocation attributes
of the <include/> element located at the position
includePath, in the <schema/> container.

 9

AddImport(CS.xsd,
precedingComponentPath, id,
namespace, schemaLocation)

Adds the <import/> element with specified id,
namespace, and schemaLocation to the <schema/>
container, after the XML Schema component located at
the position precedingComponentPath. If this position
is not specified by the designer, it means that the
<import/> element is the first element in the <schema/>
container.

DeleteImport(CS.xsd, importPath)

Removes the <import/> element located at the position
importPath, from the <schema/> container.

SetImport(CS.xsd, importPath, id,

namespace, schemaLocation)

Changes (or introduces) id, namespace or schemaLocation
attributes of the <import/> element located at the
position importPath, in the <schema/> container.

AddRedefine(CS.xsd,
precedingComponentPath, id,
schemaLocation)

Adds the <redefine/> element with specified id and
schemaLocation to the <schema/> container, after the
XML Schema component located at the position
precedingComponentPath. If this position is not
specified by the designer, it means that the
<redefine/> element is the first element in the
<schema/> container.

DeleteRedefine(CS.xsd, redefinePath)

Removes the <redefine/> element located at the position

redefinePath, from the <schema/> container.

SetRedefine(CS.xsd, redefinePath,
id, schemaLocation)

Changes (or introduces) id or schemaLocation attributes
of the <redefine/> element located at the position
redefinePath, in the <schema/> container.

AddElement(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
name, type, default, fixed,
abstract, final, ref, minOccurs,
maxOccurs, block, form,
nillable, substitutionGroup)

Adds the <element/> element with specified id, name,
type, default, fixed, abstract, final, ref, minOccurs,
maxOccurs, block, form, nillable, and substitutionGroup
to the toWhat (i.e. <all/>, <choice/>, <sequence/>, or
<schema/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <element/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteElement(CS.xsd, fromWhat,
elementPath)

Removes the <element/> element located at the position
elementPath, from the fromWhat (i.e. <all/>, <choice/>,
<sequence/>, or <schema/>) container.

SetElement(CS.xsd, inWhat,

elementPath, id, name, type,
default, fixed, abstract, final,
ref, minOccurs, maxOccurs,
block, form, nillable,
substitutionGroup)

Changes (or introduces) id, name, type, default, fixed,
abstract, final, ref, minOccurs, maxOccurs, block,
form, nillable, or substitutionGroup attributes of the
<element/> element located at the position elementPath,

in the inWhat (i.e. <all/>, <choice/>, <sequence/>, or
<schema/>) container.

AddGroup(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
name, ref, minOccurs, maxOccurs)

Adds the <group/> element with specified id, name,
minOccurs, maxOccurs, and ref to the toWhat (i.e.
<choice/>, <complexType/>, <redefine/>, <schema/>, or
<sequence/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <group/> element is the first element in the toWhat
container (or the parent XML Schema component).

DeleteGroup(CS.xsd, fromWhat,
groupPath)

Removes the <group/> element located at the position
groupPath, from the fromWhat (i.e. <choice/>,
<complexType/>, <redefine/>, <schema/>, or <sequence/>)
container.

SetGroup(CS.xsd, inWhat, groupPath,
id, name, ref, minOccurs,
maxOccurs)

Changes (or introduces) id, name, ref, minOccurs, or
maxOccurs attributes of the <group/> element located at
the position groupPath, in the inWhat (i.e. <choice/>,
<complexType/>, <redefine/>, <schema/>, or <sequence/>)
container.

AddAny(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
namespace, minOccurs, maxOccurs,
processContents)

Adds the <any/> element with specified id, namespace,
minOccurs, maxOccurs, and processContents to the toWhat
(i.e. <choice/> or <sequence/>) container, at the
position defined by the path of its parent XML Schema
component (parentComponentPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the <any/>
element is the first element in the toWhat container
(or the parent XML Schema component).

 10

DeleteAny(CS.xsd, fromWhat, anyPath)
Removes the <any/> element located at the position
anyPath, from the fromWhat (i.e. <choice/> or
<sequence/>) container.

SetAny(CS.xsd, inWhat, anyPath, id,
namespace, minOccurs, maxOccurs,
processContents)

Changes (or introduces) id, namespace, minOccurs,
maxOccurs, or processContents attributes of the <any/>
element located at the position anyPath, in the inWhat
(i.e. <choice/> or <sequence/>) container.

AddAttribute(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
name, type, default, fixed, use,
form, ref)

Adds the <attribute/> element with specified id, name,
type, default, fixed, use, form, and ref to the toWhat
(i.e. <attributeGroup/>, <complexType/>, <extension/>,
or <schema/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <attribute/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteAttribute(CS.xsd, fromWhat,

attributePath)

Removes the <attribute/> element located at the
position attributePath, from the fromWhat (i.e.
<attributeGroup/>, <complexType/>, <extension/>, or
<schema/>) container.

SetAttribute(CS.xsd, inWhat,
attributePath, id, name, type,
default, fixed, use, form, ref)

Changes (or introduces) id, name, type, default, fixed,
use, form, or ref attributes of the <attribute/>
element located at the position attributePath, in the
inWhat (i.e. <attributeGroup/>, <complexType/>,
<extension/>, or <schema/>) container.

AddAttributeGroup(CS.xsd,
parentComponentPath,
precedingComponentPath, id,
name, ref)

Adds the <attributeGroup/> element with specified id,
name, and ref to the toWhat (i.e. <attributeGroup/>,
<complexType/>, <extension/>, <redefine/>, or
<schema/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <attributeGroup/> element is the first element in
the toWhat container (or the parent XML Schema
component).

DeleteAttributeGroup(CS.xsd,
fromWhat, attributeGroupPath)

Removes the <attributeGroup/> element located at the
position attributeGroupPath, from the fromWhat (i.e.
<attributeGroup/>, <complexType/>, <extension/>,
<redefine/>, or <schema/>) container.

SetAttributeGroup(CS.xsd, inWhat,

attributeGroupPath, id, name,
ref)

Changes (or introduces) id, name, or ref attributes of
the <attributeGroup/> element located at the position
attributeGroupPath, in the inWhat (i.e.
<attributeGroup/>, <complexType/>, <extension/>,
<redefine/>, or <schema/>) container.

AddAnyAttribute(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
namespace, processContents)

Adds the <anyAttribute/> element with specified id,
namespace and processContents to the toWhat (i.e.
<attributeGroup/>, <complexType/>, or <extension/>)
container, at the position defined by the path of its
parent XML Schema component (parentComponentPath) and
the path of its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<anyAttribute/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteAnyAttribute(CS.xsd, fromWhat,

anyAttributePath)

Removes the <anyAttribute/> element located at the
position anyAttributePath, from the fromWhat (i.e.
<attributeGroup/>, <complexType/>, or <extension/>)
container.

SetAnyAttribute(CS.xsd, inWhat,

anyAttributePath, id, namespace,
processContents)

Changes (or introduces) id, namespace, or
processContents attributes of the <anyAttribute/>
element located at the position anyAttributePath, in
the inWhat (i.e. <attributeGroup/>, <complexType/>, or
<extension/>) container.

AddComplexType(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
name, default, abstract, final,
mixed, block)

Adds the <complexType/> element with specified id,
name, default, abstract, final, mixed, and block to the
toWhat (i.e. <element/>, <redefine/>, or <schema/>)
container, at the position defined by the path of its
parent XML Schema component (parentComponentPath) and
the path of its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<complexType/> element is the first element in the
toWhat container (or the parent XML Schema component).

 11

DeleteComplexType(CS.xsd, fromWhat,

complexTypePath)

Removes the <complexType/> element located at the
position complexTypePath, from the fromWhat (i.e.
<element/>, <redefine/>, or <schema/>) container.

SetComplexType(CS.xsd, inWhat,
complexTypePath, id, name,
default, abstract, final, mixed,
block)

Changes (or introduces) id, name, default, abstract,
final, mixed, or block attributes of the <complexType/>
element located at the position complexTypePath, in the
inWhat (i.e. <element/>, <redefine/>, or <schema/>)
container.

AddAll(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
minOccurs, maxOccurs)

Adds the <all/> element with specified id, minOccurs
and maxOccurs to the toWhat (i.e. <complexType/> or
<group/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <all/> element is the first element in the toWhat
container (or the parent XML Schema component).

DeleteAll(CS.xsd, fromWhat, allPath)
Removes the <all/> element located at the position
allPath, from the fromWhat (i.e. <complexType/> or
<group/>) container.

SetAll(CS.xsd, inWhat, allPath, id,
minOccurs, maxOccurs)

Changes (or introduces) id, minOccurs or maxOccurs
attributes of the <all/> element located at the
position allPath, in the inWhat (i.e. <complexType/> or
<group/>) container.

AddChoice(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
minOccurs, maxOccurs)

Adds the <choice/> element with specified id, minOccurs
and maxOccurs to the toWhat (i.e. <complexType/>,
<choice/>, <sequence/> or <group/>) container, at the
position defined by the path of its parent XML Schema
component (parentComponentPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the <choice/>
element is the first element in the toWhat container
(or the parent XML Schema component).

DeleteChoice(CS.xsd, fromWhat,

choicePath)

Removes the <choice/> element located at the position
choicePath, from the fromWhat (i.e. <complexType/>,
<choice/>, <sequence/> or <group/>) container.

SetChoice(CS.xsd, inWhat,

choicePath, id, minOccurs,
maxOccurs)

Changes (or introduces) id, minOccurs, or maxOccurs
attributes of the <choice/> element located at the
position choicePath, in the inWhat (i.e.
<complexType/>, <choice/>, <sequence/> or <group/>)
container.

AddSequence(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
minOccurs, maxOccurs)

Adds the <sequence/> element with specified id,
minOccurs, and maxOccurs to the toWhat (i.e.
<complexType/>, <choice/>, <sequence/> or <group/>)
container, at the position defined by the path of its
parent XML Schema component (parentComponentPath) and
the path of its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<sequence/> element is the first element in the toWhat
container (or the parent XML Schema component).

DeleteSequence(CS.xsd, fromWhat,

sequencePath)

Removes the <sequence/> element located at the position
sequencePath, from the fromWhat (i.e. <complexType/>,
<choice/>, <sequence/> or <group/>) container.

SetSequence(CS.xsd, inWhat,
sequencePath, id, minOccurs,
maxOccurs)

Changes (or introduces) id, minOccurs, or maxOccurs
attributes of the <sequence/> element located at the
position sequencePath, in the inWhat (i.e.
<complexType/>, <choice/>, <sequence/> or <group/>)
container.

AddComplexContent(CS.xsd,
complexTypePath,
precedingComponentPath, id,
mixed)

Adds the <complexContent/> element with specified id
and mixed to the <complexType/> container, at the
position defined by the path of its parent XML Schema
component (complexTypePath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<complexContent/> element is the first element in the
<complexType/> container (or the parent XML Schema
component).

DeleteComplexContent(CS.xsd,
complexContentPath)

Removes the <complexContent/> element located at the
position complexContentPath, from the <complexType/>
container.

 12

SetComplexContent(CS.xsd,

complexContentPath, id, mixed)

Changes (or introduces) id or mixed attributes of the
<complexContent/> element located at the position
complexContentPath, in the <complexType/> container.

AddSimpleContent(CS.xsd,
complexTypePath,
precedingComponentPath, id)

Adds the <simpleContent/> element with specified id to
the <complexType/> container, at the position defined
by the path of its parent XML Schema component
(complexTypePath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <simpleContent/> element is the first element in
the <complexType/> container (or the parent XML Schema
component).

DeleteSimpleContent(CS.xsd,

simpleContentPath)

Removes the <simpleContent/> element located at the
position simpleContentPath, from the <complexType/>
container.

SetSimpleContent(CS.xsd,

simpleContentPath, id)

Changes (or introduces) id attribute of the
<simpleContent/> element located at the position
simpleContentPath, in the <complexType/> container.

AddExtension(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
base)

Adds the <extension/> element with specified id and
base to the toWhat (i.e. <simpleContent/> or
<complexContent/>) container, at the position defined
by the path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <extension/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteExtension(CS.xsd, fromWhat,

extensionPath)

Removes the <extension/> element located at the
position extensionPath, from the fromWhat (i.e.
<simpleContent/> or <complexContent/>) container.

SetExtension(CS.xsd, inWhat,

extensionPath, id, base)

Changes (or introduces) id or base attributes of the
<extension/> element located at the position
extensionPath, in the inWhat (i.e. <simpleContent/> or
<complexContent/>) container.

AddSimpleType(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
name, final)

Adds the <simpleType/> element with specified id, name,
and final to the toWhat (i.e. <attribute/>, <element/>,
<redefine/>, <list/>, <union/>, <restriction/>, or
<schema/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <simpleType/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteSimpleType(CS.xsd, fromWhat,

simpleTypePath)

Removes the <simpleType/> element located at the
position simpleTypePath, from the fromWhat (i.e.
<attribute/>, <element/>, <redefine/>, <list/>,
<union/>, <restriction/>, or <schema/>) container.

SetSimpleType(CS.xsd, inWhat,
simpleTypePath, id, name, final)

Changes (or introduces) id, name, or final attributes
of the <simpleType/> element located at the position
simpleTypePath, in the inWhat (i.e. <attribute/>,
<element/>, <redefine/>, <list/>, <union/>,
<restriction/>, or <schema/>) container.

AddList(CS.xsd, simpleTypePath,
precedingComponentPath, id,
itemType)

Adds the <list/> element with specified id and itemType
to the <simpleType/> container, at the position defined
by the path of its parent XML Schema component
(simpleTypePath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <list/> element is the first element in the
<simpleType/> container (or the parent XML Schema
component).

 13

DeleteList(CS.xsd, listPath)

Removes the <list/> element located at the position
listPath, from the <simpleType/> container.

SetList(CS.xsd, listPath, id,

itemType)

Changes (or introduces) id or itemType attributes of
the <list/> element located at the position listPath,
in the <simpleType/> container.

AddUnion(CS.xsd, simpleTypePath,
precedingComponentPath, id,
memberTypes)

Adds the <union/> element with specified id and
memberTypes to the <simpleType/> container, at the
position defined by the path of its parent XML Schema
component (simpleTypePath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the <union/>
element is the first element in the <simpleType/>
container (or the parent XML Schema component).

DeleteUnion(CS.xsd, unionPath)
Removes the <union/> element located at the position
unionPath, from the <simpleType/> container.

SetUnion(CS.xsd, unionPath, id,
memberTypes)

Changes (or introduces) id or memberTypes attributes of
the <union/> element located at the position unionPath,
in the <simpleType/> container.

AddRestriction(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
base)

Adds the <restriction/> element with specified id and

base to the toWhat (i.e. <simpleType/>,
<simpleContent/>, or <complexContent/>) container, at
the position defined by the path of its parent XML
Schema component (parentComponentPath) and the path of
its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<restriction/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteRestriction(CS.xsd, fromWhat,
restrictionPath)

Removes the <restriction/> element located at the
position restrictionPath, from the fromWhat (i.e.
<simpleType/>, <simpleContent/>, or <complexContent/>)
container.

SetRestriction(CS.xsd, inWhat,
restrictionPath, id, base)

Changes (or introduces) id or base attributes of the
<restriction/> element located at the position
restrictionPath, in the inWhat (i.e. <simpleType/>,
<simpleContent/>, or <complexContent/>) container.

AddEnumeration(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value)

Adds the <enumeration/> element with specified id and
value to the <restriction/> container, at the position
defined by the path of its parent XML Schema component
(restrictionPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that

the <enumeration/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteEnumeration(CS.xsd,
enumerationPath)

Removes the <enumeration/> element located at the
position enumerationPath, from the <restriction/>
container.

SetEnumeration(CS.xsd,
enumerationPath, id, value)

Changes (or introduces) id or value attributes of the
<enumeration/> element located at the position
enumerationPath, in the <restriction/> container.

AddPattern(CS.xsd, restrictionPath,
precedingComponentPath, id,
value)

Adds the <pattern/> element with specified id and value
to the <restriction/> container, at the position
defined by the path of its parent XML Schema component
(restrictionPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <pattern/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeletePattern(CS.xsd, patternPath)
Removes the <pattern/> element located at the position
patternPath, from the <restriction/> container.

SetPattern(CS.xsd, patternPath, id,
value)

Changes (or introduces) id or value attributes of the
<pattern/> element located at the position patternPath,
in the <restriction/> container.

AddTotalDigits(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <totalDigits/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<totalDigits/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

 14

DeleteTotalDigits(CS.xsd,

totalDigitsPath)

Removes the <totalDigits/> element located at the
position totalDigitsPath, from the <restriction/>
container.

SetTotalDigits(CS.xsd,

totalDigitsPath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <totalDigits/> element located at the position
totalDigitsPath, in the <restriction/> container.

AddFractionDigits(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <fractionDigits/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<fractionDigits/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteFractionDigits(CS.xsd,

fractionDigitsPath)

Removes the <fractionDigits/> element located at the
position fractionDigitsPath, from the <restriction/>
container.

SetFractionDigits(CS.xsd,

fractionDigitsPath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <fractionDigits/> element located at the
position fractionDigitsPath, in the <restriction/>
container.

AddMinInclusive(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <minInclusive/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<minInclusive/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMinInclusive(CS.xsd,

minInclusivePath)

Removes the <minInclusive/> element located at the
position minInclusivePath, from the <restriction/>
container.

SetMinInclusive(CS.xsd,

minInclusivePath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <minInclusive/> element located at the position
minInclusivePath, in the <restriction/> container.

AddMaxInclusive(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <maxInclusive/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<maxInclusive/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMaxInclusive(CS.xsd,

maxInclusivePath)

Removes the <maxInclusive/> element located at the
position maxInclusivePath, from the <restriction/>
container.

SetMaxInclusive(CS.xsd,

maxInclusivePath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <maxInclusive/> element located at the position
maxInclusivePath, in the <restriction/> container.

AddMinExclusive(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <minExclusive/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<minExclusive/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMinExclusive(CS.xsd,
minExclusivePath)

Removes the <minExclusive/> element located at the
position minExclusivePath, from the <restriction/>
container

 15

SetMinExclusive(CS.xsd,

minExclusivePath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <minExclusive/> element located at the position
minExclusivePath, in the <restriction/> container.

AddMaxExclusive(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <maxExclusive/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<maxExclusive/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMaxExclusive(CS.xsd,
maxExclusivePath)

Removes the <maxExclusive/> element located at the
position maxExclusivePath, from the <restriction/>
container.

SetMaxExclusive(CS.xsd,
maxExclusivePath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <maxExclusive/> element located at the position
maxExclusivePath, in the <restriction/> container.

AddMinLength(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <minLength/> element with specified id, value,
and fixed to the <restriction/> container, at the
position defined by the path of its parent XML Schema
component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<minLength/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMinLength(CS.xsd,
minLengthPath)

Removes the <minLength/> element located at the
position minLengthPath, from the <restriction/>
container.

SetMinLength(CS.xsd, minLengthPath,
id, value, fixed)

Changes (or introduces) id, value, or fixed attributes
of the <minLength/> element located at the position
minLengthPath, in the <restriction/> container.

AddMaxLength(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <maxLength/> element with specified id, value,
and fixed to the <restriction/> container, at the
position defined by the path of its parent XML Schema
component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the

<maxLength/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

DeleteMaxLength(CS.xsd,
maxLengthPath)

Removes the <maxLength/> element located at the
position maxLengthPath, from the <restriction/>
container.

SetMaxLength(CS.xsd, maxLengthPath,
id, value, fixed)

Changes (or introduces) id, value, or fixed attributes
of the <maxLength/> element located at the position
maxLengthPath, in the <restriction/> container.

AddLength(CS.xsd, restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <length/> element with specified id, value,
and fixed to the <restriction/> container, at the
position defined by the path of its parent XML Schema
component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the <length/>
element is the first element in the <restriction/>
container (or the parent XML Schema component).

DeleteLength(CS.xsd, lengthPath)
Removes the <length/> element located at the position
lengthPath, from the <restriction/> container.

SetLength(CS.xsd, lengthPath, id,
value, fixed)

Changes (or introduces) id, value, or fixed attributes
of the <length/> element located at the position
lengthPath, in the <restriction/> container.

AddWhiteSpace(CS.xsd,
restrictionPath,
precedingComponentPath, id,
value, fixed)

Adds the <whiteSpace/> element with specified id,
value, and fixed to the <restriction/> container, at
the position defined by the path of its parent XML
Schema component (restrictionPath) and the path of its
preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<whiteSpace/> element is the first element in the
<restriction/> container (or the parent XML Schema
component).

 16

DeleteWhiteSpace(CS.xsd,
whiteSpacePath)

Removes the <whiteSpace/> element located at the
position whiteSpacePath, from the <restriction/>
container.

SetWhiteSpace(CS.xsd,

whiteSpacePath, id, value,
fixed)

Changes (or introduces) id, value, or fixed attributes
of the <whiteSpace/> element located at the position
whiteSpacePath, in the <restriction/> container.

AddKey(CS.xsd, elementPath,
precedingComponentPath, id,
name)

Adds the <key/> element with specified id and name to
the <element/> container, at the position defined by
the path of its parent XML Schema component
(elementPath) and the path of its preceding XML Schema
component (precedingComponentPath). If this latter is
not specified by the designer, it means that the <key/>
element is the first element in the <element/>
container (or the parent XML Schema component).

DeleteKey(CS.xsd, keyPath)

Removes the <key/> element located at the position
keyPath, from the <element/> container.

SetKey(CS.xsd, keyPath, id, name)
Changes (or introduces) id or name attributes of the
<key/> element located at the position keyPath, in the
<element/> container.

AddKeyref(CS.xsd, elementPath,
precedingComponentPath, id,
name, refer)

Adds the <keyref/> element with specified id, name, and
refer to the <element/> container, at the position
defined by the path of its parent XML Schema component
(elementPath) and the path of its preceding XML Schema
component (precedingComponentPath). If this latter is
not specified by the designer, it means that the
<keyref/> element is the first element in the
<element/> container (or the parent XML Schema
component).

DeleteKeyref(CS.xsd, keyrefPath)

Removes the <keyref/> element located at the position
keyrefPath, from the <element/> container.

SetKeyref(CS.xsd, keyrefPath, id,
name, refer)

Changes (or introduces) id, name, or refer attributes
of the <keyref/> element located at the position
keyrefPath, in the <element/> container.

AddUnique(CS.xsd, elementPath,
precedingComponentPath, id,
name)

Adds the <unique/> element with specified id and name
to the <element/> container, at the position defined by
the path of its parent XML Schema component
(elementPath) and the path of its preceding XML Schema
component (precedingComponentPath). If this latter is
not specified by the designer, it means that the
<unique/> element is the first element in the
<element/> container (or the parent XML Schema

component).

DeleteUnique(CS.xsd, uniquePath)

Removes the <unique/> element located at the position
uniquePath, from the <element/> container.

SetUnique(CS.xsd, uniquePath, id,
name)

Changes (or introduces) id or name attributes of the
<unique/> element located at the position uniquePath,
in the <element/> container.

AddSelector(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
xpath)

Adds the <selector/> element with specified id and
xpath to the toWhat (i.e. <key/>, <keyref/>, or
<unique/>) container, at the position defined by the
path of its parent XML Schema component
(parentComponentPath) and the path of its preceding XML
Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <selector/> element is the first element in the
toWhat container (or the parent XML Schema component).

DeleteSelector(CS.xsd, fromWhat,
selectorPath)

Removes the <selector/> element located at the position
selectorPath, from the fromWhat (i.e. <key/>,
<keyref/>, or <unique/>) container.

SetSelector(CS.xsd, inWhat,
selectorPath, id, xpath)

Changes (or introduces) id or xpath attributes of the
<selector/> element located at the position
selectorPath, in the inWhat (i.e. <key/>, <keyref/>, or

<unique/>) container.

AddField(CS.xsd, toWhat,
parentComponentPath,
precedingComponentPath, id,
xpath)

Adds the <field/> element with specified id and xpath
to the toWhat (i.e. <key/>, <keyref/>, or <unique/>)
container, at the position defined by the path of its
parent XML Schema component (parentComponentPath) and
the path of its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the <field/>
element is the first element in the toWhat container
(or the parent XML Schema component).

 17

DeleteField(CS.xsd, fromWhat,
fieldPath)

Removes the <field/> element located at the position
fieldPath, from the fromWhat (i.e. <key/>, <keyref/>,
or <unique/>) container.

SetField(CS.xsd, inWhat, fieldPath,
id, xpath)

Changes (or introduces) id or xpath attributes of the
<field/> element located at the position fieldPath, in
the inWhat (i.e. <key/>, <keyref/>, or <unique/>)
container.

AddNotation(CS.xsd,
precedingComponentPath, id,
name, public, system)

Adds the <notation/> element with specified id, name,
public, and system to the <schema/> container, after
the XML Schema component located at the position
precedingComponentPath. If this position is not
specified by the designer, it means that the
<notation/> element is the first element in the
<schema/> container.

DeleteNotation(CS.xsd, notationPath)

Removes the <notation/> element located at the position
notationPath, from the <schema/> container.

SetNotation(CS.xsd, notationPath,
id, name, public, system)

Changes (or introduces) id, name, public, or system
attributes of the <notation/> element located at the
position notationPath, in the <schema/> container.

AddAnnotation(CS.xsd, toWhat,
parentComponentPath, id)

Adds the <annotation/> element with specified id to the
toWhat (i.e. <all/>, <any/>, <anyAttribute/>,

<attribute/>, <attributeGroup/>, <choice/>,
<complexContent/>, <complexType/>, <element/>,
<enumeration/>, <extension/>, <field/>,
<fractionDigits/>, <group/>, <import/>, <include/>,
<key/>, <keyref/>, <length/>, <list/>, <maxExclusive/>,
<maxInclusive/>, <maxLength/>, <minExclusive/>,
<minInclusive/>, <minLength/>, <pattern/>, <redefine/>,
<restriction/>, <selector/>, <sequence/>,
<simpleContent/>, <simpleType/>, <totalDigits/>,
<union/>, <unique/>, <whiteSpace/>, <notation/>, or
<schema/>) container, as the first element (since the
annotation element appears always at the beginning of
most XML Schema components) in its parent XML Schema
component (or the toWhat container) located at the
position parentComponentPath.

DeleteAnnotation(CS.xsd, fromWhat,
annotationPath)

Removes the <annotation/> element located at the
position annotationPath, from the fromWhat (i.e.
<all/>, <any/>, <anyAttribute/>, <attribute/>,
<attributeGroup/>, <choice/>, <complexContent/>,
<complexType/>, <element/>, <enumeration/>,
<extension/>, <field/>, <fractionDigits/>, <group/>,
<import/>, <include/>, <key/>, <keyref/>, <length/>,
<list/>, <maxExclusive/>, <maxInclusive/>,
<maxLength/>, <minExclusive/>, <minInclusive/>,
<minLength/>, <pattern/>, <redefine/>, <restriction/>,
<selector/>, <sequence/>, <simpleContent/>,
<simpleType/>, <totalDigits/>, <union/>, <unique/>,
<whiteSpace/>, <notation/>, or <schema/>) container.

SetAnnotation(CS.xsd, inWhat,
annotationPath, id)

Changes (or introduces) id attribute of the
<annotation/> element located at the position
annotationPath, in the inWhat (i.e. <all/>, <any/>,
<anyAttribute/>, <attribute/>, <attributeGroup/>,
<choice/>, <complexContent/>, <complexType/>,
<element/>, <enumeration/>, <extension/>, <field/>,
<fractionDigits/>, <group/>, <import/>, <include/>,
<key/>, <keyref/>, <length/>, <list/>, <maxExclusive/>,
<maxInclusive/>, <maxLength/>, <minExclusive/>,
<minInclusive/>, <minLength/>, <pattern/>, <redefine/>,
<restriction/>, <selector/>, <sequence/>,
<simpleContent/>, <simpleType/>, <totalDigits/>,
<union/>, <unique/>, <whiteSpace/>, <notation/>, or
<schema/>) container.

AddAppinfo(CS.xsd, annotationPath,
precedingComponentPath, source,
content)

Adds the <appinfo/> element with specified source and
content to the <annotation/> container, at the position
defined by the path of its parent XML Schema component
(annotationPath) and the path of its preceding XML

Schema component (precedingComponentPath). If this
latter is not specified by the designer, it means that
the <appinfo/> element is the first element in the
<annotation/> container (or the parent XML Schema
component).

DeleteAppinfo(CS.xsd, appinfoPath)

Removes the <appinfo/> element located at the position
appinfoPath, from the <annotation/> container.

SetAppinfo(CS.xsd, appinfoPath,
source, content)

Changes (or introduces) source attribute or content of
the <appinfo/> element located at the position
appinfoPath, in the <annotation/> container.

 18

AddDocumentation(CS.xsd,
annotationPath,
precedingComponentPath, source,
xml:lang, content)

Adds the <documentation/> element with specified
source, “xml:lang” and content to the <annotation/>
container, at the position defined by the path of its
parent XML Schema component (annotationPath) and the
path of its preceding XML Schema component
(precedingComponentPath). If this latter is not
specified by the designer, it means that the
<documentation/> element is the first element in the
<annotation/> container (or the parent XML Schema
component).

DeleteDocumentation(CS.xsd,

documentationPath)

Removes the <documentation/> element located at the
position documentationPath, from the <annotation/>
container.

SetDocumentation(CS.xsd,

documentationPath, source,
xml:lang, content)

Changes (or introduces) source or “xml:lang” attributes
or content of the <documentation/> element located at
the position documentationPath, in the <annotation/>
container.

The effect of the CreateConventionalSchema(CS.xsd) primitive, that is the contents of the
CS.xsd file after its application, is as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</xsd:schema>

The effect of the AddInclude(CS.xsd, precedingComponentPath, id,

schemaLocation) primitive, that is the contents of the CS.xsd file after its application, is as

follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="targetNamespace">

 <xsd:include id="id" schemaLocation="schemaLocation"/>

 ...

</xsd:schema>

The effect of the AddElement(CS.xsd, toWhat, parentComponentPath,

precedingComponentPath, id, name, type, default, fixed, abstract,
final, ref, minOccurs, maxOccurs, block, form, nillable,
substitutionGroup) primitive, that is the contents of the CS.xsd file after its application, is as

follows:

If toWhat = schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="targetNamespace">

...

<xsd:element id=”id” name=”name” type=”type” default=”minOccurs”

final=”maxOccurs” fixed=”minOccurs” abstract=”abstract”

substitutionGroup=”substitutionGroup” block=”block” form=”form”

nillable=”nillable”>

</xsd:element>

 ...

</xsd:schema>

The effect of the AddAny(CS.xsd, toWhat, parentComponentPath,

precedingComponentPath, id, namespace, minOccurs, maxOccurs,
processContents) primitive, that is the contents of the CS.xsd file after its application, is as

follows:

 19

If toWhat = sequence

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="targetNamespace">

 ...

 <xsd:complexType>

 <xsd:sequence>

 <xsd:any id=”id” namespace=”namespace”

 processContents=”processContents”

minOccurs=”minOccurs”

 maxOccurs=”maxOccurs”/>

 </xsd:sequence>

 </xsd:complexType>

 ...

</xsd:schema>

5.3. Illustrative example

Let us resume the example of the section 2.2. Suppose that on September 1, 2010, the designer realize

that they also need information about all financial transactions done on each bank account. Then, he/she

changes the first version of the conventional schema by adding a complex element

<FinancialTransactions> to the Acount element. This new element contains a sequence of

another complex element <FinancialTransaction> which is composed of three simple

elements: <FinancialTransactionDate>, <FinancialTransactionType>, and

<FinancialTransactionAmount>.

The second version of the conventional schema is shown in Figure 4. Thus, the temporal schema is also

updated by adding a new slice related to this new version of the conventional schema, as shown in

Figure 5. Changes are presented in purple.

The sequence of primitives that have been performed on the first version of the conventional schema

(Bank_V1.xsd) to produce the second one (Bank_V2.xsd) is as follows:

(i) AddElement(“Bank_V1.xsd”, sequence, “/schema/element[@name=’Account’]/complexType/sequence”,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’Balance’]”, ,

“FinancialTransactions”, , , , , , , , , , , ,)

(ii) AddComplexType(“Bank_V1.xsd”, element,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]”

, , , , , , , ,)

(iii) AddSequence(“Bank_V1.xsd”, complexType,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType”, , , ,)

(iv) AddElement(“Bank_V1.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence”, , , “FinancialTransaction”, , , , , , , , unbounded, , , ,)

(v) AddComplexType(“Bank_V1.xsd”, element,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]”, , , , , , , ,)

(vi) AddSequence(“Bank_V1.xsd”, complexType,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]/complexType”, , , ,)

 20

(vii) AddElement(“Bank_V1.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]/complexType/sequence”, , ,

“FinancialTransactionDate”, date, , , , , , , , , , ,)

(viii) AddElement(“Bank_V1.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]/complexType/sequence”,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionDate’]”, ,

“FinancialTransactionType”, string, , , , , , , , , , ,)

(ix) AddElement(“Bank_V1.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]/complexType/sequence”,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactiontType’]”, ,

“FinancialTransactionAmount”, float, , , , , , , , , , ,)

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Bank">
 <complexType>
 <sequence>
 <element ref="Account"/>

 </sequence>
 </complexType>
 </element>

 <element name="Account">
 <complexType>
 <sequence>
 <element name="OwnerName" type="string"/>
 <element name="OpeningDate" type="date"/>

 <element name="Type" type="string"/>

 <element name="Balance" type="float"/>
 <element name="FinancialTransactions">
 <complexType>
 <sequence>
 <element name="FinancialTransaction" maxOccurs="unbounded">
 <complexType>
 <sequence>

 <element name="FinancialTransactionDate" type="date"/>

 <element name="FinancialTransactionType" type="string"/>
 <element name="FinancialTransactionAmount" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="Number" type="nonNegativeInteger" use=”required”/>
 </complexType>
 </element>
</schema>

Figure 4. Second version of the conventional schema (Bank_V2.xsd), on September 1, 2010

 21

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">

 <conventionalSchema>
<sliceSequence>
 <slice location="Bank_V1.xsd" begin="2010-02-01" />
 <slice location="Bank_V2.xsd" begin="2010-09-01" />
</sliceSequence>

 </conventionalSchema>

 <annotationSet>
<sliceSequence>
 <slice location="BankAnnotations_V1.xml" begin="2010-02-01" />
 <slice location="BankAnnotations_V2.xml" begin="2010-06-01" />
 <slice location="BankAnnotations_V3.xml" begin="2010-08-01" />
</sliceSequence>

 </annotationSet>
</temporalSchema>

Figure 5. Temporal schema (BankTemporalSchema.xml) on September 1, 2010

On March 1, 2011, suppose that the designer decides to make some changes to the conventional schema.

In the <Account> element, he/she renames the <OwnerName> element to be

<AccountHolderName>. He/She adds a new element, <FinancialTransactionInstant>,

to the element <FinancialTransaction>, in order to notify the instant of the financial

transaction. He/She replaces the “Number” attribute of the <Account> element by a new attribute

named “BBAN”, which denotes the “basic/national bank account number”. Furthermore, he/she adds a

new attribute named “IBAN” to the <Account> element, which denotes the “international bank

account number”.

The third version of the conventional schema is shown in Figure 6 and the updated temporal schema

document is shown in Figure 7. Changes are presented in purple.

The sequence of primitives that have been performed on the second version of the conventional schema

(Bank_V2.xsd) to produce the third one (Bank_V3.xsd) is as follows:

(i) SetElement(“Bank_V2.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’OwnerName’]”,

unchanged, “AccountHolderName”, unchanged, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged)

(ii) AddElement(“Bank_V2.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’ FinancialTransaction’]/complexType/sequence”,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionDate’]”, ,

FinancialTransactionInstant, time, , , , , , , , , , ,)

(iii) SetAttribute(“Bank_V2.xsd”, complexType,

“/schema/element[@name=’Account’]/complexType/attribute[@name=’Number’]”, unchanged, “BBAN”,

positiveInteger, unchanged, unchanged, unchanged, unchanged, unchanged)

(iv) AddAttribute(“Bank_V2.xsd”, complexType, “/schema/element[@name=’Account’]/complexType”,

“/schema/element[@name=’Account’]/complexType/attribute[@name=’BBAN’]”, , “IBAN”, string, , ,

required, ,)

 22

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Bank">
 <complexType>
 <sequence>
 <element ref="Account"/>

 </sequence>
 </complexType>
 </element>

 <element name="Account">
 <complexType>
 <sequence>
 <element name="AccountHolderName" type="string"/>
 <element name="OpeningDate" type="date"/>

 <element name="Type" type="string"/>

 <element name="Balance" type="float"/>
 <element name="FinancialTransactions">
 <complexType>
 <sequence>
 <element name="FinancialTransaction" maxOccurs="unbounded">
 <complexType>
 <sequence>

 <element name="FinancialTransactionDate" type="date"/>
 <element name="FinancialTransactionInstant" type="time"/>

 <element name="FinancialTransactionType" type="string"/>
 <element name="FinancialTransactionAmount" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="BBAN" type="positiveInteger" use=”required”/>
 <attribute name="IBAN" type="string" use=”required”/>
 </complexType>
 </element>
</schema>

Figure 6. Third version of the conventional schema (Bank_V3.xsd), on March 1, 2011

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">

 <conventionalSchema>
<sliceSequence>
 <slice location="Bank_V1.xsd" begin="2010-02-01" />
 <slice location="Bank_V2.xsd" begin="2010-09-01" />
 <slice location="Bank_V3.xsd" begin="2011-03-01" />
</sliceSequence>

 </conventionalSchema>

 <annotationSet>
<sliceSequence>
 <slice location="BankAnnotations_V1.xml" begin="2010-02-01" />
 <slice location="BankAnnotations_V2.xml" begin="2010-06-01" />
 <slice location="BankAnnotations_V3.xml" begin="2010-08-01" />
</sliceSequence>

 </annotationSet>
</temporalSchema>

Figure 7. Temporal schema (BankTemporalSchema.xml) on March 1, 2011

On April 1, 2012, suppose that the designer decides to make some other changes to the conventional

schema:

 He/She changes the types of the elements <Balance> and

<FinancialTransactionAmount>, which become “double”, and the type of the attribute

<BBAN>, which becomes “string”.

 He/She replaces the two elements <FinancialTransactionDate> and

 23

<FinancialTransactionInstant> by a single element

<FinancialTransactionTime>, which denotes both the date and the instant of the

financial transaction.

 He/She defines, at the end of the schema, two new simple types, “accountType” (for account

types) and “financTransactType” (for financial transaction types), by restricting the existing

simple type “string”. The “accountType” type limits the “string” type to the following set of

distinct values: “deposit”, “checking”, “current”, “personal”, and “transaction deposit”. The

“financTransactType” type limits the “string” type to the following set of distinct values:

“deposit”, and “withdrawal”. After that, he/she changes the types of the elements <Type> and

<FinancialTransactionType>, which become “accountType” and “financTransactType”

respectively.

The fourth version of the conventional schema is shown in Figure 8 and the updated temporal schema

document is shown in Figure 9. Changes are presented in purple.

The sequence of primitives that have been performed on the third version of the conventional schema

(Bank_V3.xsd) to produce the fourth one (Bank_V4.xsd) is as follows:

(i) SetElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’Balance’]”, unchanged,

unchanged, double, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged)

(ii) SetElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionAmount’]”,

unchanged, unchanged, double, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged, unchanged)

(iii) SetAttribute(“Bank_V3.xsd”, complexType,

“/schema/element[@name=’Account’]/complexType/attribute[@name=’BBAN’]”, unchanged, unchanged,

string, unchanged, unchanged, unchanged, unchanged, unchanged)

(iv) SetElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionDate’]”,

unchanged, “FinancialTransactionTime”, dateTime, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged)

(v) DeleteElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionInstant’]”)

(vi) AddSimpleType(“Bank_V3.xsd”, schema, “/schema”, “/schema/element[@name=’Account’]”, ,

accountType,)

(vii) AddRestriction(“Bank_V3.xsd”, simpleType, “/schema/simpleType[@name=’accountType’]”, , , string)

(viii) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’accountType’]/restriction”, , ,

“deposit”)

(ix) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’accountType’]/restriction”,

“/schema/simpleType[@name=’accountType’]/restriction/enumeration[value=’deposit’]”, , “checking”)

 24

(x) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’accountType’]/restriction”,

“/schema/simpleType[@name=’accountType’]/restriction/enumeration[value=’checking’]”, , “current”)

(xi) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’accountType’]/restriction”,

“/schema/simpleType[@name=’accountType’]/restriction/enumeration[value=’current’]”, , “personal”)

(xii) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’accountType’]/restriction”,

“/schema/simpleType[@name=’accountType’]/restriction/enumeration[value=’personal’]”, , “transaction

deposit”)

(xiii) AddSimpleType(“Bank_V3.xsd”, schema, “/schema”, “/schema/simpleType[@name=’accountType’]”, ,

financTransactType,)

(xiv) AddRestriction(“Bank_V3.xsd”, simpleType, “/schema/simpleType[@name=’ financTransactType’]”, , ,

string)

(xv) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’ financTransactType’]/restriction”, , ,

“deposit”)

(xvi) AddEnumeration(“Bank_V3.xsd”, “/schema/simpleType[@name=’ financTransactType’]/restriction”,

“/schema/simpleType[@name=’ financTransactType’]/restriction/enumeration[value=’deposit’]”, ,

“withdrawal”)

(xvii) SetElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’Type’]”, unchanged,

unchanged, accountType, unchanged, unchanged, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged, unchanged)

(xviii) SetElement(“Bank_V3.xsd”, sequence,

“/schema/element[@name=’Account’]/complexType/sequence/element[@name=’FinancialTransactions’]/

complexType/sequence/element[@name=’

FinancialTransaction’]/complexType/sequence/element[@name=’FinancialTransactionType’]”,

unchanged, unchanged, financTransactType, unchanged, unchanged, unchanged, unchanged, unchanged,

unchanged, unchanged, unchanged, unchanged, unchanged, unchanged)

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Bank">
 <complexType>
 <sequence>
 <element ref="Account"/>

 </sequence>
 </complexType>
 </element>

 <element name="Account">
 <complexType>
 <sequence>
 <element name="AccountHolderName" type="string"/>
 <element name="OpeningDate" type="date"/>

 <element name="Type" type="accountType"/>

 <element name="Balance" type="double"/>
 <element name="FinancialTransactions">
 <complexType>
 <sequence>
 <element name="FinancialTransaction" maxOccurs="unbounded">
 <complexType>
 <sequence>

 <element name="FinancialTransactionTime" type="dateTime"/>

 <element name="FinancialTransactionType" type="financTransactType"/>
 <element name="FinancialTransactionAmount" type="double"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>

 25

 <attribute name="BBAN" type="string" use=”required”/>
 <attribute name="IBAN" type="string" use=”required”/>
 </complexType>
 </element>
 <simpleType name="accountType">
 <restriction base=”string”/>
 <enumeration value=”deposit”/>
 <enumeration value=”checking”/>
 <enumeration value=”current”/>
 <enumeration value=”personal”/>
 <enumeration value=”transaction deposit”/>
 </restriction>
 </simpleType>
 <simpleType name="financTransactType">
 <restriction base=”string”/>
 <enumeration value=”deposit”/>
 <enumeration value=”withdrawal”/>
 </restriction>
 </simpleType>
</schema>

Figure 8. Fourth version of the conventional schema (Bank_V4.xsd), on April 1, 2012

<?xml version="1.0" encoding="UTF-8"?>
<temporalSchema xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema">

 <conventionalSchema>
<sliceSequence>
 <slice location="Bank_V1.xsd" begin="2010-02-01" />
 <slice location="Bank_V2.xsd" begin="2010-09-01" />
 <slice location="Bank_V3.xsd" begin="2011-03-01" />
 <slice location="Bank_V4.xsd" begin="2012-04-01" />
</sliceSequence>

 </conventionalSchema>

 <annotationSet>
<sliceSequence>
 <slice location="BankAnnotations_V1.xml" begin="2010-02-01" />
 <slice location="BankAnnotations_V2.xml" begin="2010-06-01" />
 <slice location="BankAnnotations_V3.xml" begin="2010-08-01" />
</sliceSequence>

 </annotationSet>
</temporalSchema>

Figure 9. Temporal schema (BankTemporalSchema.xml) on April 1, 2012

6. Related Work

Schema versioning in the τXSchema [6,7,8,11] framework means versioning of conventional schema

and versioning of annotations. In [9,12], the authors study versioning of annotations. They propose a

complete set of change primitives for physical and logical annotations and define their operational

semantics. The present work completes the picture by studying conventional schema versioning and by

proposing a set of primitives for supporting also the evolution of this component of the τXSchema

framework.

In [13], the authors propose six generic operations for XML schema change; three operations act on an

XML schema element (i.e. addition, deletion and modification of an XML Schema element) and three

operations act on an attribute in an XML schema element (i.e. addition, deletion and modification of an

attribute). In this work, a completion of the work started in [13] is done in the context of the τXSchema

approach, at a deeper and more detailed level (in the end, we introduced one hundred and twenty

primitives). In fact, we investigate changes to all elements that belong to definition of the XML Schema

language [10].

In [6], the authors introduce τXSchema but do not discuss schema versioning. In [7], [8] and [11], the

authors deal with schema versioning in τXSchema, but focus only on capturing a time-varying schema

 26

and validating documents against such a schema. All these previous works on τXSchema (i.e. [6], [7],

[8], and [11]) do not study how the schema changes are performed, or what schema change operations

are supported.

In [14], a set of primitives for updating XML schema has been defined. But these primitives deal only

with simple types, complex types and elements. Our work is both more detailed and more global since it

proposes primitives for changing all components of an XML Schema.

In [15], the authors present X-Evolution which is a web-based tool making the primitives defined in

[14] available to the user both through a graphical interface and through a specifically tailored schema

update language named XSchemaUpdate. In [16] and [17], the authors present EXup which is an engine

for specifying XSchemaUpdate statements, translating them in XQuery Update Facility [18]

expressions and evaluating them against XML Schema and associated documents.

In [19], the authors propose a set of rules and an algorithm for reducing sequences of XML Schema (or

XML documents) updates: reducing a sequence of updates on an XML Schema (or an XML document)

tree means deriving a shorter sequence with the same effect on this tree.

As surveyed in [20], updates on XML Schema have received less attention by database research

community despite of their importance in XML databases. Furthermore, the authors show that the

support of XML schema updates is absent in commercial XML tools (like Stylus Studio or XML Spy)

and limited in commercial DBMSs (like Oracle 11g, Tamino, or DB2 v.9). Our work deals with the

issue of XML Schema updates in an environment that supports XML Schema versioning.

7. Conclusion

In this work, we focused on the versioning of conventional schema in the τXSchema framework. In

particular, we proposed a sound and complete set of primitives allowing the designer to define and to

make changes on conventional schema; the syntax and operational semantics of each primitive have

been defined.

We think that even if we have not considered the full XML Schema definition (e.g., involving the latest

W3C Part 1: Structures and Part 2: Datatypes recommendations), we have addressed the XML Schema

detail at a reasonable depth, since our work considers all the features listed in the XML Schema Part 0:

Primer [10].

Currently, we are integrating our previous work on τXSchema [9,12] with the present one, in order to

have a complete and consistent approach for schema versioning in τXSchema-based multitemporal

XML repositories.

As for future work, we aim at extending our approach by studying temporal queries across schema

versions in the τXSchema framework. To do this, we will start from the τXQuery language [21], which

allows user to perform temporal queries in that framework, but without support for schema versioning.

8. References

[1] Dyreson C. E., Grandi F., “Temporal XML”, in L. Liu and M. T. Özsu (Eds.), Encyclopedia of Database

Systems. Heidelberg, Germany: Springer-Verlag, 2009, pp. 3032–3035.

[2] Zaniolo C., Wang F., “Temporal queries and version management in XML-based document archives”, Data

and Knowledge Engineering, 65(2), 2008, pp. 304-324.

[3] Clifford J., Croker A., Grandi F., Tuzhilin A., “On Temporal Grouping”, Proceedings of the International

Workshop on Temporal Databases, Zürich, Switzerland, 17-18 September 1995, pp. 194–213.

[4] De Castro C., Grandi F., Scalas M. R., “Schema versioning for multitemporal relational databases”,

Information Systems, 22 (5), 1997, pp. 249-290.

 27

[5] Roddick J. F., “Schema Versioning”, in L. Liu and M. T. Özsu (Eds.), Encyclopedia of Database Systems.

Heidelberg, Germany: Springer-Verlag, 2009, pp. 2499–2502.

[6] Currim F., Currim S., Dyreson C. E., Snodgrass R. T., “A Tale of Two Schemas: Creating a Temporal XML

Schema from a Snapshot Schema with τXSchema”, Proceedings of the 9
th

 International Conference on

Extending Database Technology (EDBT 2004), Crete, Greece, 14-18 March 2004, pp. 348-365.

[7] Dyreson C. E., Snodgrass R. T., Currim F., Currim S., Joshi S., “Validating Quicksand: Schema Versioning

in τXSchema”, Proceedings of the 22
nd

 International Conference on Data Engineering Workshops (ICDE

Workshops 2006), Atlanta, GA, USA, 3-7 April 2006, pp. 82.

[8] Dyreson C. E., Snodgrass R. T., Currim F., Currim S., Joshi S., “Validating Quicksand: Schema Versioning

in τXSchema”, Data Knowledge and Engineering, 65 (2), 2008, pp. 223-242.

[9] Brahmia Z., Bouaziz R., Grandi F., Oliboni B., “Schema Versioning in τXSchema-Based Multitemporal

XML Repositories”, Proceedings of the 5
th
 IEEE International Conference on Research Challenges in

Information Science (RCIS 2011), Guadeloupe - French West Indies, France, 19-21 May 2011, pp. 1-12.

[10] XML Schema Part 0: Primer Second Edition, W3C Recommendation, 28 October 2004.

<http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/>

[11] Currim F., Currim S., Dyreson C. E., Joshi S., Snodgrass R. T., Thomas S. W., Roeder E., “τXSchema:

Support for Data- and Schema-Versioned XML Documents”, TimeCenter Technical Report TR-91, 279

pages, September 2009. <http://timecenter.cs.aau.dk/TimeCenterPublications/TR-91.pdf>

[12] Brahmia Z., Bouaziz R., Grandi F., Oliboni B., “Schema Versioning in τXSchema-Based Multitemporal

XML Repositories”, TimeCenter Technical Report TR-93, 25 pages, December 2010.

<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-93.pdf>

[13] Brahmia Z., Bouaziz R., “An approach for schema versioning in multi-temporal XML databases”,

Proceedings of the 10
th

 International Conference on Enterprise Information Systems (ICEIS 2008),

Barcelona, Spain, 13-16 June 2008, Volume DISI, pp. 290-297.

[14] Guerrini G., Mesiti M., Rossi D., “Impact of XML Schema Evolution on Valid Documents”, Proceedings of

the 7th ACM International Workshop on Web Information and Data Management (WIDM 2005), Bermen,

Germany, 5 November 2005, pp. 39-44.

[15] Guerrini G., Mesiti M., “X-Evolution: A Comprehensive Approach for XML Schema Evolution”,

Proceedings of the 19
th

 International Workshop Database and Expert Systems Applications (DEXA 2008),

Turin, Italy, 1-5 September 2008, pp. 251-255.

[16] Cavalieri F., “EXup: an engine for the evolution of XML schemas and associated documents”, Proceedings

of the 2010 EDBT/ICDT Workshops, Lausanne, Switzerland, 22-26 March 2010.

[17] Cavalieri F., Guerrini G., Mesiti M., “Updating XML schemas and associated documents through exup”,

Proceedings of the 27
th

 International Conference on Data Engineering (ICDE 2011), Hannover, Germany,

11-16 April 2011, pp. 1320-1323.

[18] W3C, “XQuery Update Facility 1.0”, W3C Candidate Recommendation, 17 March 2011.

<http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/>

[19] Cavalieri F., Guerrini G., Mesiti M., Oliboni B., “On the Minimization of Sequences of XML Document and

Schema Update Operations”, Workshops Proceedings of the 27
th

 International Conference on Data

Engineering (ICDE 2011), Hannover, Germany, 11-16 April 2011, pp. 77-86.

[20] Colazzo D., Guerrini G., Mesiti M., Oliboni B., Waller E., “Document and Schema XML Updates”, in Li C.,

Ling T. W., (Eds.), Advanced Applications and Structures in XML Processing: Label Stream, Semantics

Utilization and Data Query Technologies, IGI Global, 2010, pp. 361-384.

[21] Gao D., Snodgrass R. T., “Temporal slicing in the evaluation of XML documents”, Proceedings of the 29
th

International Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany, 9-12 September 2003,

pp. 632-643.

