
High-level Operations for Changing
Temporal Schema, Conventional Schema and

Annotations, in the τXSchema Framework

Zouhaier Brahmia, Fabio Grandi, Barbara Oliboni, Rafik Bouaziz

January 15, 2014

TR-96

A TIMECENTER Technical Report



Title High-level Operations for Changing
Temporal Schema, Conventional Schema and
Annotations, in the τXSchema Framework

Copyright c© 2014 Zouhaier Brahmia, Fabio Grandi, Barbara Oliboni,
Rafik Bouaziz. All rights reserved.

Author(s) Zouhaier Brahmia, Fabio Grandi, Barbara Oliboni, Rafik Bouaziz

Publication History January 2014. A TIMECENTER Technical Report.

TIMECENTER Participants

Michael H. Böhlen, University of Zurich, Switzerland; Curtis E. Dyreson, Utah State University, USA;
Fabio Grandi, University of Bologna, Italy; Christian S. Jensen (codirector), Aarhus University, Denmark;
Vijay Khatri, Indiana University, USA; Gerhard Knolmayer, University of Berne, Switzerland; Carme
Martı́n, Technical University of Catalonia, Spain; Thomas Myrach, University of Berne, Switzerland; Mario
A. Nascimento, University of Alberta, Canada; Sudha Ram, University of Arizona, USA; John F. Roddick,
Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Simonas Šaltenis,
Aalborg University, Denmark; Dennis Shasha, New York University, USA; Richard T. Snodgrass (codirec-
tor), University of Arizona, USA; Paolo Terenziani, University of Piemonte Orientale “Amedeo Avogadro,”
Alessandria, Italy; Stephen W. Thomas, Queen’s University, Canada; Kristian Torp, Aalborg University,
Denmark; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Emory University,
USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los
Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.



High-level Operations for Changing
Temporal Schema, Conventional Schema and

Annotations, in the τXSchema Framework

Zouhaier Brahmia
University of Sfax, Tunisia − email: zouhaier.brahmia@fsegs.rnu.tn

Fabio Grandi
University of Bologna, Italy − email: fabio.grandi@unibo.it

Barbara Oliboni
University of Verona, Italy − email: barbara.oliboni@univr.it

Rafik Bouaziz
University of Sfax, Tunisia − email: raf.bouaziz@fsegs.rnu.tn

Abstract

τXSchema [1] is a framework for constructing and validating time-varying XML documents through
the use of a temporal schema. This latter ties together a conventional schema (i.e., a standard XML
Schema document) and its corresponding logical and physical annotations, which are stored in an anno-
tation document. Conventional schema and logical and physical annotations undergo changes to respond
to changes in user requirements or in the real-world. Consequently, the corresponding temporal schema
is also evolving over time. In this report, we study operations which help designers for changing such
schema components. Indeed, we propose three sets of high-level operations for changing temporal
schema, conventional schema, and annotations. These high-level operations are based on the low-level
operations proposed in [2,3], [4,5] and [18]. They are also consistency preserving and more user-friendly
than the low-level operations. Besides, we have divided the proposed operations into basic high-level
operations (i.e., high-level operations that cannot be defined by using other basic high-level operations)
and complex ones.

Keywords: τXSchema, Schema versioning, XML, XML Schema, Temporal database

1. Introduction
τXSchema [1] is a framework (i.e., a language, a repository of XML documents and XSD files, and a suite of
tools) in which an XML schema designer could create and validate temporal XML documents thanks to the
use of a temporal schema. This latter is also used when manipulating or querying temporal XML data that
are stored in temporal documents. The temporal schema associates a conventional schema (i.e., a standard
XML Schema document) to an annotation document which contains logical and physical annotations. The
annotations allow the XML schema designer to specify which portion(s) of an XML document can vary
over time, how the document can change, and where timestamps should be placed.

systems must allow designers to change these schema components, for example, through an easy-to-use
tool which provides user-friendly high-level schema change operations.

In our previous works [2,3], [4,5], and [18], we proposed three complete and sound sets of low-level oper-
ations, for changing conventional schema, logical and physical annotations, and temporal schema, respec-
tively. Obviously, these operations are not designated to be used directly by τXSchema designers, since
they are too primitive and not very user-friendly. They allow us to define high-level and more user-friendly

1



2 

 

operations. A high-level operation is a valid sequence of low-level operations, that correspond to 

frequent schema evolution needs and allows expressing complex changes in a more compact way [14]. 

To help τXSchema designers and to make our approach more useful, we propose in this report two sets 

of high-level operations for changing conventional schema and annotations. Besides, since the temporal 

schema must be updated after changing the conventional schema and/or the corresponding annotations, 
and in order to complete the picture, we propose also a set of high-level operations that provides an 

interface to designers for consistently updating temporal schema.  

τXSchema designers could use these high-level operations to make any change on τXSchema schema, by 

composing them into valid sequences and collectively executing them on the considered component (the 
temporal schema, the conventional schema, the logical annotations or the physical annotations) within 

the same transaction. Here, a transaction consists of a sequence of valid schema change operations that 

would be carried out on the τXSchema framework and that would be either all successfully completed or 
all cancelled. 

The proposed high-level operations are based on the low-level operations (i.e., primitives) already 

defined in [2,3], [4,5], and [18]. Since each low-level operation is consistency preserving (i.e., each 
operation applied to a consistent τXSchema schema component produces a consistent τXSchema schema 

component) and each high-level operation is defined using a sequence of low-level operations, the 

proposed high-level operations are consequently consistency preserving. On the other hand, the proposed 

operations are more user-friendly since they consider complex components and sub-documents rather 
than single elements. 

We have classified the new operations into two categories: basic high-level operations (i.e., high-level 

operations that cannot be defined by using other basic high-level operations) and complex high-level 
operations (i.e., high-level operations that are defined by using other basic and/or complex high-level 

operations).  

The rest of this report is organized as follows. Section 2 describes the proposed set of high-level 

operations for changing the temporal schema in the τXSchema framework. Section 3 presents the 
proposed set of high-level operations for changing conventional schema. Section 4 gives the proposed set 

of high-level operations for changing logical and physical annotations. In Section 5, we discuss related 

work and show the contributions of our present work. Section 6 concludes the report with an outline of 
future steps in our on-going work dealing with versioning aspects in the τXSchema framework. 

2. High-level Operations for Changing the Temporal Schema 

In [18], we defined four change primitives that act on the temporal schema: CreateTemporalSchema, 

RemoveTemporalSchema, AddSlice, and RemoveSlice. Based on these primitives, we proposed four 
high-level operations for changing temporal schema in the τXSchema framework. These operations are 

as follows: 

OpTS01: DefineTemporalSchema(TS.xml, 
sourceFirstVersionCS, targetFirstVersionCS,  
sourceFirstVersionAD, targetFirstVersionAD) 

It creates a new temporal schema document (TS.xml) that includes a first version of a conventional 

schema (located at targetFirstVersionCS and whose contents are obtained from the 
sourceFirstVersionCS) and a first version of the corresponding annotation document (located at 

targetFirstVersionAD and whose contents are obtained from the sourceFirstVersionAD).  

Here, the sourceFirstVersionCS (sourceFirstVersionAD, respectively) parameter could be: 



3 

 

1) The keyword empty; in this case the resource pointed by targetFirstVersionCS 

(targetFirstVersionAD, respectively) is initialized to an empty conventional schema (annotation 

document, respectively). 

2) The keyword current; in this case the resource pointed by targetFirstVersionCS 

(targetFirstVersionAD, respectively) is initialized with a copy of the current conventional schema 

(annotation document, respectively) resource, whose location is found in the TS.xml temporal schema 

file by choosing the <slice/> subelement with the maximum value of begin in the 

<sliceSequence/> element of the <conventionalSchema/> (<annotationSet/>, 

respectively) container. Notice that this is the normal case after the creation of the first temporal schema 

version (obviously with a first conventional schema version and a first annotation document version). 

3) A specified file name (URL): in this case, a copy of the specified resource is renamed as 
targetFirstVersionCS (targetFirstVersionAD, respectively) and used as the new location (e.g., this 

case is used to create a new conventional schema (annotation document, respectively) version from an 

already existing XML schema (XML document, respectively) file, which could be quite common when 
creating the first version but can be used also later for reuse purpose and/or integrating independently 

developed XML schemata (XML documents, respectively) into a τXSchema framework). 

The targetFirstVersionCS (targetFirstVersionAD, respectively) parameter corresponds to the location 

of the new conventional schema (annotation document, respectively) version; it must not correspond 
to the URL of any already existing XML schema (XML document, respectively) file/resource. 

This operation is mapped onto the following sequence of primitives: 

(i) CreateTemporalSchema(TS.xml) 

(ii) AddSlice(TS.xml, conventionalSchema, sourceFirstVersionCS, targetFirstVersionCS) 

(iii) AddSlice(TS.xml, annotationSet, sourceFirstVersionAD, targetFirstVersionAD) 

Example: Suppose that the designer would like to define a new temporal schema for vehicles of a 

company, based on an XML Schema file “Vehicle.xsd” and an XML document 
“VehicleAnnotations.xml” that includes temporal and physical annotations associated to “Vehicle.xsd”. 

To do this, he/she calls the DefineTemporalSchema operation as follows: 

DefineTemporalSchema(“VehicleTemporalSchema.xml”, “Vehicle.xsd”, “Vehicle_V1.xsd”, 

“VehicleAnnotations.xml”, “VehicleAnnotations_V1.xml”) 

OpTS02: UpdateTemporalSchema(TS.xml,  
sourceNewVersionCS, targetNewVersionCS,  
sourceNewVersionAD, targetNewVersionAD) 

It updates a temporal schema by including a new conventional schema version, sourceNewVersionCS, or 

a new annotation document version, sourceNewVersionAD (only one of these two parameters can be 
omitted).  

This operation is mapped onto the following list of primitives: 

(i) If (sourceNewVersionCS is not null) then 
AddSlice(TS.xml, conventionalSchema, sourceNewVersionCS, targetNewVersionCS) 

(ii) If (sourceNewVersionAD is not null) then 
AddSlice(TS.xml, annotationSet, sourceNewVersionAD, targetNewVersionAD) 

OpTS03: DropTemporalSchema(TS.xml) 



4 

 

It allows the designer to drop a temporal schema, if necessary. 

This operation is mapped onto the following list of operations: 

for each sourceLocation := <slice/> element  

               in <conventionalSchema/> container of “TS.xml” do: 

RemoveSlice(TS.xml, conventionalSchema, sourceLocation) 
for each sourceLocation := <slice/> element  

               in <annotationSet/> container of “TS.xml” do: 

RemoveSlice(TS.xml, annotationSet, sourceLocation) 
RemoveTemporalSchema(TS.xml) 

Otherwise, this operation could also be mapped onto the following list of operations: 

for sourceLocation in doc(“TS.xml”)//conventionalSchema/slice 

RemoveSlice(TS.xml, conventionalSchema, sourceLocation) 
for sourceLocation in doc(“TS.xml”)//annotationSet/slice 

RemoveSlice(TS.xml, annotationSet, sourceLocation) 
RemoveTemporalSchema(TS.xml) 

Notice that: 

1) The RemoveSlice(TS.xml, conventionalSchema, sourceLocation) primitive removes from the 

<conventionalSchema/> container the <slice/> element having its attribute location set 

to the value “sourceLocation”. 

2) The RemoveSlice(TS.xml, annotationSet, sourceLocation) primitive removes from the 

<annotationSet/> container the <slice/> element having its attribute location set to the 

value “sourceLocation”. 

3) The RemoveTemporalSchema(TS.xml) primitive removes, from the disk, the empty “TS.xml” 

file. 

OpTS04: RenameTemporalSchema(TS.xml, newName) 

It changes the name of an existing temporal schema (“TS.xml”) to “newName”. 

3. High-level Operations for Changing Conventional Schema 

We have defined thirty-nine basic high-level operations. They deal with XML Schema elements, 

attributes, and constraints. We have also defined ten complex high-level operations which deal with 

entire conventional schema and portions of conventional schema (or subschema). 

3.1. Basic High-Level Operations 

3.1.1. Basic High-Level Operations dealing with Elements 

OpCS01: MoveElement(CS.xsd, elementPath, position, targetElementPath) 

It moves an existing element (located at elementPath) to a new position (i.e., after or before) with regard 

to another element (located at targetElementPath), in the same conventional schema “CS.xsd”. This 
operation must update: 



5 

 

 all other components of this conventional schema that are using (or referring to) this element 

(e.g., <key>, <unique>, and <keyref> components); 

 all <item> and <stamp> components, in the current version of the annotation document 

corresponding to this conventional schema, that are referring to this element. 

Example: Suppose that the designer decides to move an element <manufacturer> from an element 

<vehicle> to another element <vehicle-model> (see Figures 1 and 2), since all vehicles having 

the same model are built by the same manufacturer. To do this, he/she calls the MoveElement operation 

as follows: 

MoveElement(CS.xsd, " //xsd:element[@name='manufacturer']", before, "//xsd:element[@name='model-
name']") 

<?xml version = "1.0" encoding = "UTF-8"?> 

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"> 

<xsd:element name = "vehicles"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element ref = "vehicle" maxOccurs = "unbounded"/> 

    </xsd:sequence> 

   </xsd:complexType> 

  </xsd:element> 
 <xsd:element name = "vehicle"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element name = "registration-number" type = "xsd:string"/> 

     <xsd:element name = "model" type = "vehicle-model"/> 

     <xsd:element name = "color" type = "xsd:string"/> 

     <xsd:element name = "manufacturer" type = "xsd:string"/> 

    </xsd:sequence> 

   </xsd:complexType> 

  </xsd:element> 

 <xsd:element name = "vehicle-model"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element name = "model-name" type = "xsd:string"/> 

     <xsd:element name = "year" type = "xsd:gYear"/> 

     <xsd:element name = "price" type = "xsd:double"/> 

    </xsd:sequence> 

   </xsd:complexType> 

  </xsd:element> 

</xsd:schema> 
Figure 1: Conventional schema for vehicles before change. 

<?xml version = "1.0" encoding = "UTF-8"?> 

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"> 

<xsd:element name = "vehicles"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element ref = "vehicle" maxOccurs = "unbounded"/> 

    </xsd:sequence> 

   </xsd:complexType> 



6 

 

  </xsd:element> 
 <xsd:element name = "vehicle"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element name = "registration-number" type = "xsd:string"/> 

     <xsd:element name = "model" type = "vehicle-model"/> 

     <xsd:element name = "color" type = "xsd:string"/> 

    </xsd:sequence> 

   </xsd:complexType> 

  </xsd:element> 

 <xsd:element name = "vehicle-model"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element name = "manufacturer" type = "xsd:string"/> 

     <xsd:element name = "model-name" type = "xsd:string"/> 

     <xsd:element name = "year" type = "xsd:gYear"/> 

     <xsd:element name = "price" type = "xsd:double"/> 

    </xsd:sequence> 

   </xsd:complexType> 

  </xsd:element> 

</xsd:schema> 
Figure 2: Conventional schema for vehicles after change. 

OpCS02: CopyElement(CS.xsd, elementPath, position, targetElementPath) 

It copies an existing element (located at elementPath) into a new position (i.e., after or before) with 

regard to another element (located at targetElementPath), in the same conventional schema “CS.xsd”. 

Example: Let us resume the example of Figure 2. Suppose that the designer would like to copy the 

element <price> (which is a sub-element of the <vehicle-model> element) in the element 

<vehicle>, after the <color> element. He/She calls the CopyElement operation as follows: 

CopyElement(CS.xsd, "//xsd:element[@name='price']", after, "//xsd:element[@name='color']") 

The element <vehicle> becomes as follows: 

<xsd:element name = "vehicle"> 

   <xsd:complexType> 

    <xsd:sequence> 

     <xsd:element name="registration-number" type ="xsd:string"/> 

     <xsd:element name="model" type="vehicle-model"/> 

     <xsd:element name="color" type="xsd:string"/> 

     <xsd:element name="price" type="xsd:double"/> 

    </xsd:sequence> 

   </xsd:complexType> 

</xsd:element> 

 

OpCS03: RenameElement(CS.xsd, elementPath, newNameElement) 

It changes the name of an existing element (located at elementPath) with a new name 
(newNameElement), in the conventional schema “CS.xsd”. This operation must update: 

 all other components of this conventional schema that are using (or referring to) this element 



7 

 

(e.g., <element> with ref attribute, <key>, <unique>, and <keyref> components) by 

replacing the old name with the new one; 

 all <item> and <stamp> components, in the current version of the annotation document 

corresponding to this conventional schema, that are referring to this element.  

Example: Let us resume the example of Figure 2. Suppose that the designer would like to rename the 

element <price> (which is a sub-element of the <vehicle> element) to <vehicle-price>. 

He/She calls the RenameElement operation as follows:  

RenameElement(CS.xsd, "//xsd:element[@name='price']", "vehicle-price") 

 

OpCS04: ReplaceElementWithNewElement(CS.xsd, elementPath, newElementId, 
newElementName, newElementType, newElementDefault, 
newElementFixed, newElementAbstract, newElementFinal, 
newElementRef, newElementMinOccurs, newElementMaxOccurs, 
newElementBlock, newElementForm, newElementNillable, 
newElementSubstitutionGroup) 

It replaces an existing simple element (located at elementPath) with a new simple element (having the 

following properties: newElementId, newElementName, newElementType, newElementDefault, 
newElementFixed, newElementAbstract, newElementFinal, newElementRef, newElementMinOccurs, 

newElementMaxOccurs, newElementBlock, newElementForm, newElementNillable, and 

newElementSubstitutionGroup), in the conventional schema “CS.xsd”. This operation must update: 

 all other components of this conventional schema that are using (or referring to) the replaced 

element (e.g., <element> with ref attribute, <key>, <unique>, and <keyref> 

components); 

 all <item> and <stamp> components, in the current version of the annotation document 

corresponding to this conventional schema, that are referring to the replaced element. 

Example: Let us resume the example of Figure 2. Suppose that the designer would like to replace the 

element <color> (which is a sub-element of the <vehicle> element) with a new element 

<vehicle-power>. He/She calls the ReplaceElementWithNewElement operation as follows:  

ReplaceElementWithNewElement(CS.xsd, "//xsd:element[@name='color']", , "vehicle-power", 

"xsd:double", , , , , , 1, , , , , ) 

 

OpCS05: TransformSubElementToAttribute(CS.xsd, subElementPath, newAttributeId, 
newAttributeType, newAttributeDefault, newAttributeFixed, 
newAttributeUse, newAttributeForm, newAttributeRef) 

It transforms a simple sub-element (located at subElementPath) into an attribute (with possibly one or 

more of the following properties: newAttributeId, newAttributeType, newAttributeDefault, 

newAttributeFixed, newAttributeUse, newAttributeForm, or newAttributeRef) of its parent element, in 
the conventional schema “CS.xsd”. This operation could not be performed if the sub-element to be 

transformed does not have a simple type. This operation must update: 

 all other components of this conventional schema that are using (or referring to) the transformed 

element (e.g., <element> with ref attribute, <key>, <unique>, and <keyref> 



8 

 

components); 

 all <item> and <stamp> components, in the current version of the annotation document 

corresponding to this conventional schema, that are referring to the transformed element. 

Example: Let us resume the example of Figure 2. Suppose that the designer would like to transform the 

sub-element <registration-number> of the complex element <vehicle> into an attribute 

“registration-number” of the same element. He/She calls the TransformSubElementToAttribute operation 

as follows:  

TransformSubElementToAttribute(CS.xsd, "//xsd:element[@name='registration-number']", , 

"xsd:string", , , "required", , ) 

 

OpCS06: TransformElementToAttribute(CS.xsd, sourceElementPath, targetElementPath, 
newAttributeId, newAttributeType, newAttributeDefault, 
newAttributeFixed, newAttributeUse, newAttributeForm, newAttributeRef) 

It transforms a simple element (located at sourceElementPath) into an attribute (with possibly one or 
more of the following properties: newAttributeId, newAttributeType, newAttributeDefault, 

newAttributeFixed, newAttributeUse, newAttributeForm, or newAttributeRef) of another element 

(located at targetElementPath), in the conventional schema “CS.xsd”. This operation could not be 

performed if the element to be transformed does not have a simple type and if the element that will 
include the new attribute is not already a complex element. This operation must update: 

 all other components of this conventional schema that are using (or referring to) the transformed 

element (e.g., <element> with ref attribute, <key>, <unique>, and <keyref> 

components); 

 all <item> and <stamp> components, in the current version of the annotation document 

corresponding to this conventional schema, that are referring to the transformed element. 

 

OpCS07: ExchangeElements(CS.xsd, element1Path, element2Path) 

It exchanges the element located at element1Path with the element located at element2Path, in the 

conventional schema “CS.xsd”. Notice here that the two elements are not necessarily sub-elements of the 
same complex element. 

 

OpCS08: SplitElementIntoElements(CS.xsd, elementPath) 

It splits a non-empty complex element (located at elementPath) that contains only simple sub-elements, 
into so many elements as sub-elements. In other words, we could say that this operation replaces this 

complex element by its sub-elements. 

Notice. A complex element contains other elements and/or attributes. There are four kinds of a complex 
element: (i) empty element, (ii) element that contains only other elements, (iii) element that contains only 

text, and (iv) element that contains both text and other elements. In this operation, we deal only with the 

second kind. 

Moreover, this operation must update: 

 all other components of this conventional schema that are using (or referring to) the split element 

(e.g., <key>, <unique>, and <keyref> components); 



9 

 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to the split element. 

Example: Suppose that the designer would like to split a complex element <AuthorContact> which 

contains five simple sub-elements (<Address>, <Phone>, <Cell>, <Fax>, and <Email>) into five 

new elements (as shown in Figure 3). He/She calls the SplitElementIntoElements operation as follows:  

SplitElementIntoElements(CS.xsd, "//xsd:element[@name='Author-contact']") 

Before applying  

SplitElementIntoElements operation 

After applying SplitElementIntoElements 

operation 
<xsd:element name="AuthorContact"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="Address" 

type="xsd:string"/> 

<xsd:element name="Phone" 

type="xsd:string"/> 

<xsd:element name="Cell" 

type="xsd:string"/> 

<xsd:element name="Fax" 

type="xsd:string"/> 

<xsd:element name="Email" 

type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

<xsd:element name="Address" 

type="xsd:string"/> 

<xsd:element name="Phone" 

type="xsd:string"/> 

<xsd:element name="Cell" 

type="xsd:string"/> 

<xsd:element name="Fax" 

type="xsd:string"/> 

<xsd:element name="Email" 

type="xsd:string"/> 

Figure 3: Effect of the SplitElementIntoElements operation. 

 

OpCS09: AddSubElement(CS.xsd, parentElementPath, precedingElementPath, 
newSubElementId, newSubElementName, newSubElementType, 
newSubElementDefault, newSubElementFixed, newSubElementAbstract, 
newSubElementFinal, newSubElementRef, newSubElementMinOccurs, 
newSubElementMaxOccurs, newSubElementBlock, newSubElementForm, 
newSubElementNillable, newSubElementSubstitutionGroup)  

It adds a new simple sub-element (having the following properties: newSubElementId, 
newSubElementName, newSubElementType, newSubElementDefault, newSubElementFixed, 

newSubElementAbstract, newSubElementFinal, newSubElementRef, newSubElementMinOccurs, 

newSubElementMaxOccurs, newSubElementBlock, newSubElementForm, newSubElementNillable, 
and newSubElementSubstitutionGroup) to an existing element (located at parentElementPath), possible 

after the element located at precedingElementPath (if this parameter does not contain any value, the new 

added sub-element is considered as the first one). 

This operation can be effected by means of an AddElement primitive [2,3] only if the target element has 

already a "sequence" structure that, otherwise, must be created before the AddElement primitive can be 

used. For example, the AddSubElement operation applied to: 

<xsd:element name="model-name" type="xsd:string"/> 

must transform it, for instance, into: 



10 

 

<xsd:element name="model-name"> 

    <xsd:complexType mixed="true"> 

        <xsd:sequence/> 

    </xsd:complexType> 

</xsd:element> 

before the AddElement primitive can be used to add the new sub-element to the "sequence". 

This operation is mapped onto the following list of primitives: 

If (parentElementPath refers to an element having a “sequence”, “choice”, or “all” structure) then 

(1) AddElement(CS.xsd, structure, parentComponentPath, precedingComponentPath, id, name, type, 
default, fixed, abstract, final, ref, minOccurs, maxOccurs, block, form, nillable, 
substitutionGroup) 

Else 

(1) DeleteAttribute(CS.xsd, element, ‘parentElementPath/@type’) 

(2) AddComplexType(CS.xsd, element, parentComponentPath, precedingComponentPath, , , , , , 
“true”, ) 

(3) AddSequence(CS.xsd, complexType, parentComponentPath, precedingComponentPath, , , ) 

(4) AddElement(CS.xsd, sequence, parentElementPath, precedingElementPath, id, name, type, 
default, fixed, abstract, final, ref, minOccurs, maxOccurs, block, form, nillable, 
substitutionGroup) 

End If 

 

OpCS10: DropElement(CS.xsd, elementPath) 

It removes an element located at “elementPath” from the conventional schema “CS.xsd”. Such an 

operation must fail with an error message when the element to be removed is used (or referred) by other 

components in the conventional schema “CS.xsd”. Otherwise, this operation must remove all <item> 

and <stamp> components, in the annotation document corresponding to this conventional schema, that 

are referring to the removed element. 

OpCS11: CollapseSubElements(CS.xsd, firstSubElementPath, lastSubElementPath, 
orderIndicator) 

It collapses successive subelements (such as the first one is located at “firstSubElementPath” and the last 

one is located at “lastSubElementPath”) belonging to a same parent element, under an order indicator 

(choice, sequence, or all), in the conventional schema “CS.xsd”. 

This operation must update: 

 all other components of this conventional schema that are using (or referring to) the collapsed 

elements (e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the annotation document corresponding to this conventional 

schema, that are referring to the collapsed elements. 

Example: Suppose that the designer would like to collapse two subelements, e2 and e3, under a 

choice indicator, as shown in Figure 4. To do this, he/she calls the CollapseSubElements operation as 



11 

 

follows: 

CollapseSubElements(CS.xsd, "//xsd:element[@name='e2']", "//xsd:element[@name='e3']", choice) 

As regards this operation, we were inspired by the high-level primitive “collapse_substruct” presented in 

[14]. 

Before applying CollapseSubElements 

operation 

After applying CollapseSubElements operation 

<xsd:sequence> 

<xsd:element name=”e1”/> 

<xsd:element name=”e2”/> 

<xsd:element name=”e3”/> 

</xsd:sequence> 

<xsd:sequence> 

<xsd:element name=”e1”/> 

<xsd:choice> 

<xsd:element name=”e2”/> 

<xsd:element name=”e3”/> 

</xsd:choice> 

</xsd:sequence> 

Figure 4: Effect of the CollapseSubElements operation. 

 

3.1.2. Basic High-Level Operations dealing with Attributes of Elements 

OpCS12: AddAttribute(CS.xsd, targetElementPath, newAttributeId, newAttributeName, 
newAttributeType, newAttributeDefault, newAttributeFixed, 
newAttributeUse, newAttributeForm, newAttributeRef) 

It adds an attribute (having the following properties: newAttributeId, newAttributeName (mandatory), 

newAttributeType (mandatory), newAttributeDefault, newAttributeFixed, newAttributeUse, 

newAttributeForm, and newAttributeRef) to an existing element (located at targetElementPath) that 

could have (or not) a complex type. In case the target element has not a complex type, this operation has 
to change the definition of this element before adding the new attribute. 

Such an operation must fail with an error message when the target element has a complex type and 

already has got an attribute with the same name of the new attribute. 

Example: Let us resume the example of Figure 2. Suppose that the designer should add a new attribute 

“country” (having a string type) to the simple element <manufacturer/> defined as follows: 

<xsd:element name="manufacturer" type="xsd:string"/> 

To do this, he/she calls the AddAttribute operation as follows: 

AddAttribute(CS.xsd, "//xsd:element[@name='manufacturer']", ,"country","xsd:string", , , , , ) 

In order to add the new attribute, this operation has to change the definition of this element to 

<complexType name="manufacturer"> 

   <simpleContent> 

       <extension base="xsd:string"> 

            <attribute name="country" type="xsd:string"/> 

       </extension> 

    </simpleContent> 

</complexType> 

Notice that since high-level operations should rather make reference to the XML document structure 



12 

 

defined by the Schema rather than to punctual definitions in the XML Schema, the AddAttribute 

operation should be applicable, for instance, to an element: 

<manufacturer>...</manufacturer> 

regardless if it has been defined in the Schema as: 

<xsd:element name="manufacturer" type="xsd:string"/> 

or as: 

<xsd:simpleType name="manufacturer-type"> 

    <xsd:restriction base="xsd:string"/> 

</xsd:simpleType> 

<xsd:element name="manufacturer" type="manufacturer-type"/> 

or as: 

<xsd:element name="manufacturer" > 

    <xsd:simpleType name="manufacturer-type"> 

        <xsd:restriction base="xsd:string"/> 

    </xsd:simpleType> 

</xsd:element> 

or other ways. 

 

OpCS13: MoveAttribute(CS.xsd, attributePath, targetElementPath) 

It moves an existing attribute (located at attributePath) from an element to another element (located at 

targetElementPath) that could have (or not) a complex type. In case the target element has not a complex 
type, this operation has to change the definition of the target element before moving the new attribute. 

Such an operation must fail with an error message when the target element has a complex type and 

already has got an attribute with the same name of the new attribute. 

Furthermore, this operation must update: 

 all other components of this conventional schema that are using (or referring to) this attribute 

(e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to this attribute. 

Example: Let us resume the example of Figure 2. Suppose that the designer would like to move an 

attribute "MY" (belonging to the element <vehicle> and having a string type) to the simple element 

<model-name>. To do this, he/she calls the MoveAttribute operation as follows: 

MoveAttribute(CS.xsd, "//xsd:element[@name='vehicle']/xsd:attribute[@name='MY']", 

"//xsd:element[@name='model-name']") 

Thus, the definition of the element <model-name>:  

<xsd:element name="model-name" type="xsd:string"/>  



13 

 

has to be changed to: 

<complexType name="model-name"> 

   <simpleContent> 

       <extension base="xsd:string"> 

            <attribute name="MY" type="xsd:string"/> 

       </extension> 

    </simpleContent> 

</complexType> 

 

OpCS14: CopyAttribute(CS.xsd, attributePath, targetElementPath) 

It copies an existing attribute (located at attributePath) of an element into another element (located at 
targetElementPath) that could have (or not) a complex type. In case the target element has not a complex 

type, this operation has to change the definition of the target element before copying the new attribute 

(see examples of Op
CS

12 and Op
CS

13). 

Such an operation must fail with an error message when the target element has a complex type and 

already has got an attribute with the same name of the new attribute. 

Example: Suppose that the designer would like to copy an attribute “birthdate” of an element 

<student> into another element <university-degree>. To do this, he/she calls the 

CopyAttribute operation as follows: 

CopyAttribute(CS.xsd, "//xsd:element[@name='student']/xsd:attribute[@name='birthdate']", 

"//xsd:element[@name='university-degree']") 

 

OpCS15: RenameAttribute(CS.xsd, attributePath, newAttributeName) 

It changes the name of an attribute (located at attributePath) of an element, in the conventional schema 
“CS.xsd”. This operation must update: 

 all other components of this conventional schema that are using (or referring to) this attribute 

(e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to this attribute. 

Example: Suppose that the designer would like to rename an attribute “customer-number” of an element 

<customer> to “customer-code”. To do this, he/she calls the RenameAttribute operation as follows: 

RenameAttribute(CS.xsd, "//xsd:element[@name='customer']/xsd:attribute[@name='customer-

number']", "customer-code") 

 

OpCS16: TransformAttributeToSubElement(CS.xsd, attributeName, complexElementPath, 
position, neighborSubElementPath, newSubElementId, 
newSubElementType, newSubElementDefault, newSubElementFixed, 
newSubElementAbstract, newSubElementFinal, newSubElementRef, 
newSubElementMinOccurs, newSubElementMaxOccurs, 



14 

 

newSubElementBlock, newSubElementForm, newSubElementNillable, 
newSubElementSubstitutionGroup) 

It transforms an attribute (having the name “attributeName”) of a complex element (located at 

complexElementPath). In case the complex element has a simple content or a complex content, this 
operation has to change the definition of this element, so it becomes a complex element with a complex 

content, including a “sequence” structure which contains only one sub-element corresponding to the 

transformed attribute. However, in case the complex element has already a “sequence” structure 

containing some sub-elements, this operation creates a simple element from the corresponding attribute 
and adds it at a specified position (i.e., after or before) with regard to another neighbor (i.e., predecessor 

or successor) sub-element (located at neighborSubElementPath) of the same parent element (located at 

complexElementPath), in the same conventional schema “CS.xsd”  

Whatever is the case, the new sub-element will have possibly one or more of the following properties: 

newSubElementId, newSubElementType, newSubElementDefault, newSubElementFixed, 

newSubElementAbstract, newSubElementFinal, newSubElementRef, newSubElementMinOccurs, 
newSubElementMaxOccurs, newSubElementBlock, newSubElementForm, newSubElementNillable, 

and newSubElementSubstitutionGroup).  

This operation must update: 

 all other components of this conventional schema that are using (or referring to) the transformed 

attribute (e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to the transformed attribute. 

Example: Let us resume the example of Figure 2 and take into account the example that illustrates the 
use of the operation Op

CS
12. Suppose that the designer would like to transform the attribute “country” 

(added to the element <manufacturer> in the example of Op
CS

12) to an element <country> within 

the same parent element (as shown in Figure 5). He/She calls the TransformAttributeToSubElement 
operation as follows: 

TransformAttributeToSubElement(CS.xsd, "country", "//xsd:element[@name='manufacturer']", , , , 

"xsd:string", , , , , , , , , , , ) 

Before the change After the change 

<complexType name="manufacturer"> 

<simpleContent> 

<extension base="xsd:string"> 

<attribute name="country"  

type="string"/> 

</extension> 

</simpleContent> 

</complexType> 

<complexType name="manufacturer"> 

<sequence> 

<element name="country"  

type="string"/> 

</sequence> 

</complexType> 

Figure 5: Effect of the TransformAttributeToSubElement operation.  

 

OpCS17: TransformAttributeToElement(CS.xsd, attributeName, complexElementPath, 
position, neighborElementPath, newElementId, newElementType, 
newElementDefault, newElementFixed, newElementAbstract, 
newElementFinal, newElementRef, newElementMinOccurs, 



15 

 

newElementMaxOccurs, newElementBlock, newElementForm, 
newElementNillable, newElementSubstitutionGroup) 

It transforms an attribute (having the name “attributeName”) of a complex element (located at 

complexElementPath) into a new simple element (with possibly one or more of the following properties: 
newSubElementId, newSubElementType, newSubElementDefault, newSubElementFixed, 

newSubElementAbstract, newSubElementFinal, newSubElementRef, newSubElementMinOccurs, 

newSubElementMaxOccurs, newSubElementBlock, newSubElementForm, newSubElementNillable, 

and newSubElementSubstitutionGroup) located at a specified position (i.e., after or before) with regard 
to another neighbor (i.e., predecessor or successor) element (located at neighborElementPath) that does 

not belong to the old parent element (located at complexElementPath) of this attribute. This operation 

must update: 

 all other components of this conventional schema that are using (or referring to) the transformed 

attribute (e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to the transformed attribute. 

 

OpCS18: ReplaceAttributeWithNewAttribute(CS.xsd, attributeName, targetElementPath, 
newAttributeId, newAttributeName, newAttributeType, 
newAttributeDefault, newAttributeFixed, newAttributeUse, 
newAttributeForm, newAttributeRef) 

It replaces an existing attribute (having the name “attributeName”) of a complex element (located at 
targetElementPath) with a new attribute (having the following properties: newAttributeId, 

newAttributeName (mandatory), newAttributeType (mandatory), newAttributeDefault, 

newAttributeFixed, newAttributeUse, newAttributeForm, and newAttributeRef), in the conventional 
schema “CS.xsd”. Such an operation must fail with an error message when the target element already has 

got an attribute with the same name of the new attribute. Furthermore, this operation must update: 

 all other components of this conventional schema that are using (or referring to) the replaced 

attribute (e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to the replaced attribute. 

Example: Suppose that the designer would like to replace an attribute “birthdate” of an element 

<club-member> with a new attribute “MonthAndYearOfBirth” (having an XSD "gYearMonth" type). 

To do this, he/she calls the ReplaceAttributeWithNewAttribute operation as follows: 

ReplaceAttributeWithNewAttribute(CS.xsd, "birthdate", "//xsd:element[@name='club-member']", , 

"MonthAndYearOfBirth", "xsd:gYearMonth", , , , , ) 

 

OpCS19: SplitAttributeIntoAttributes(CS.xsd, elementPath, attributeName, 
newAttributeNameTypes) 

It splits, in the conventional schema “CS.xsd”, an attribute (having the name “attributeName”) of an 

element (located at elementPath) into two or more attributes (related to the same element), according to 

the number of pairs (newAttributeName, newAttributeType) that are provided by the designer in the 

fourth parameter “newAttributeNameTypes” (which is of string type) and are separated by semicolons. 



16 

 

Moreover, this operation must update: 

 all other components of this conventional schema that are using (or referring to) the split attribute 

(e.g., <key>, <unique>, and <keyref> components); 

 all <stamp> components, in the current version of the annotation document corresponding to 

this conventional schema, that are referring to the split attribute. 

Example: Suppose that a designer would like to split an attribute “address” of an element <customer> 

into five attributes: “number”, “street”, “city”, “zip code”, and “country” (as shown in Figure 6). To do 

this, he/she calls the SplitAttributeIntoAttributes operation as follows:  

SplitAttributeIntoAttributes(CS.xsd, "//xsd:element[@name='customer']", "address", "(number, 

xsd:positiveInteger);(street, xsd:string);(city, xsd:string);(zip, xsd:positiveInteger);(country, 
xsd:string)") 

Before the change After the change 

<xsd:complexType name="customer"> 

<xsd:sequence> 

<xsd:element name="name"  

type="xsd:string"/> 

<xsd:element name="turnover"  

type="xsd:double"/> 

</xsd:sequence> 

<xsd:attribute name="address"  

type="xsd:string"/> 

</xsd:complexType> 

<xsd:complexType name="customer"> 

<xsd:sequence> 

<xsd:element name="name"  

type="xsd:string"/> 

<xsd:element name="turnover"  

type="xsd:double"/> 

<xsd:element name="number"  

type="xsd:positiveInteger"/> 

<xsd:element name="street"  

type="xsd:string"/> 

<xsd:element name="zip"  

type="xsd:positiveInteger"/> 

<xsd:element name="country"  

type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

Figure 6: Effects of the SplitAttributeIntoAttributes operation. 

 

OpCS20: RemoveAttribute(CS.xsd, elementPath, attributeName) 

It removes an attribute (having the name “attributeName”) from an element (located at “elementPath”), 

in the conventional schema “CS.xsd”. 

Such an operation must fail with an error message when the attribute to be removed is used (or referred) 
by other components in the same conventional schema “CS.xsd”. Otherwise, this operation must update 

remove all <stamp> components, in the annotation document corresponding to this conventional 

schema, that are referring to the removed attribute. 

 

3.1.3. Basic High-Level Operations dealing with Conventional Schema Constraints 

XML Schema provides four types of constraints: 

1. Datatype restrictions; 



17 

 

2. Identity constraints; 

3. Referential Integrity constraints; 

4. Cardinality constraints. 

In the following, we propose high-level operations for changing each type of conventional schema 

constraints.  

3.1.3.1. Basic High-Level Operations dealing with Datatype Restrictions  

Datatype restrictions allow defining constraints on the structure and content of elements, or on the 

content of attributes. A datatype restriction is defined using the XML Schema simpleType component 

in order to derive a new simple type from an existing one (built-in or derived)  

OpCS21: DerivingNewSimpleTypeByRestriction(CS.xsd, targetElementPath, position, 
newSimpleTypeName, baseType, nameFirstFacet, valueFirstFacet, 
fixedFirstFacet, nameSecondFacet, valueSecondFacet, fixedSecondFacet) 

It creates a new simple type (having the name “simpleTypeName”) by restricting an existing simple type 

(having the name “baseType”) through the use of a first facet (having the following properties: 

nameFirstFacet, valueFirstFacet, and fixedFirstFacet (optional) which takes “true” or “false”) and 
possibly a second one (having the following properties: nameSecondFacet, valueSecondFacet, and 

fixedSecondFacet), that constrain the existing simple type's range of values. This operation adds the new 

simple type at a specified position (i.e., after or before) with regard to another target element (located at 
targetElementPath). 

Example: Suppose that the designer would like to specify a restriction on the type “float”, in order to 

define a new data type “examination-mark-type” whose range of values is between 0 and 20 (inclusive), 

as shown in Figure 7. To do this, he/she calls the DerivingNewSimpleTypeByRestriction operation as 
follows:  

DerivingNewSimpleTypeByRestriction(CS.xsd, "//xsd:complexType[@name='student-type']", after, 

"examination-mark-type", "xsd:float", "minInclusive", "0", , "maxInclusive", "20", ) 

 

<xsd:complexType name="student-type"> 

… 

</xsd:complexType> 

<xsd:simpleType name="examination-mark-type"> 

  <xsd:restriction base="xsd:float"> 

    <xsd:minInclusive value="0"/> 

    <xsd:maxInclusive value="20"/> 

  </xsd:restriction> 

</xsd:simpleType> 

Figure 7: Effects of the DerivingNewSimpleTypeByRestriction operation. 

 

OpCS22: DefineNewSimpleTypeThroughEnumeration(CS.xsd, targetElementPath, position, 
newSimpleTypeName, baseType, distinctValueSet) 

It creates a new simple type (having the name “newSimpleTypeName”) by limiting the values of an 

existing simple type (having the name “baseType”) to a set of distinct values that are provided by the 
designer in the fourth parameter “distinctValueSet” (which is of string type) and are separated by 



18 

 

semicolons, through the use of the facet “enumeration”. This operation adds the new simple type at a 

specified position (i.e., after or before) with regard to another target element (located at 
targetElementPath). 

Example: Suppose that the designer would like to specify a restriction on the type “xsd:string”, in order 

to define a new data type “customer-type” which contains the following list of values: “regular” and 
“temporary”, as shown in Figure 8. To do this, he/she calls the 

DefineNewSimpleTypeThroughEnumeration operation as follows: 

DefineNewSimpleTypeThroughEnumeration(CS.xsd, "//xsd:complexType[@name='product-type']", 

after, "customer-type", "xsd:string", "regular;temporary") 

 

<xsd:complexType name="product-type"> 

… 

</xsd:complexType> 

<xsd:simpleType name="customer-type"> 

  <xsd:restriction base="xsd:string"> 

    <xsd:enumeration value="regular"/> 

    <xsd:enumeration value="temporary"/> 

  </xsd:restriction> 

</xsd:simpleType> 

Figure 8: Effects of the DefineNewSimpleTypeThroughEnumeration operation. 

 

OpCS23: DropDataTypeRestriction(CS.xsd, dataTypeRestrictionPath) 

It drops a restriction that was specified on a data type, in the conventional schema “CS.xsd”. 

Such an operation could be performed if and only if there is no element, in this conventional schema, that 

has this “data type restriction” as a type. 

Example: Suppose that the designer would like to drop a data type restriction titled “bicycle-type” (since 
the company has decided not to sell any more bicycles). To do this, he/she calls the 

DropDataTypeRestriction operation as follows: 

DropDataTypeRestriction(CS.xsd, "//xsd:simpleType[@name='bicycle-type']")  

 

OpCS24: RenameDataTypeRestriction(CS.xsd, dataTypeRestrictionPath, newName) 

It changes the name of a datatype restriction (located at “datatypeRestrictionPath”) with “newName”, in 

the conventional schema “CS.xsd”. This operation must update all other components of this schema that 
are using (or referring to) this datatype restriction by replacing the old name with the new one. 

Example: Suppose that the designer would like to change the name of the datatype restriction 

“customer-type” (presented above) to “customer-category”. To do this, he/she calls the 
RenameDataTypeRestriction operation as follows: 

RenameDataTypeRestriction(CS.xsd, "//xsd:simpleType[@name='customer-type']", "customer-

category")  

3.1.3.2. Basic High-Level Operations dealing with Identity Constraints 



19 

 

An identity constraint [1] is a key or a unique constraint defined by a conventional schema designer on 

an element or on an attribute.  

An identity constraint is defined using one of the two XML Schema components: <xsd:key> and 

<xsd:unique>. Each one of these two components is a container and it should contain an 

<xsd:selector> component and one or more <xsd:field> components. Both 

<xsd:selector> and <xsd:field> components contain an XPath expression. 

In the following, we first present high-level operations for changing uniqueness constraints and then we 
give high-level operations for changing key constraints.  

A) Uniqueness Constraints 

OpCS25: DefineUniquenessConstraint(CS.xsd, targetElementPath, position, 
uniquenessConstraintName, selectorXpath, firstFieldXpath, 
secondFieldXpath) 

It specifies a new uniqueness constraint (with the name “uniquenessConstraintName”), in the 
conventional schema “CS.xsd”, to express that the value of an element or an attribute must be unique 

within a certain scope. To do this, this operation first selects a set of parent elements (through 

“selectorXpath”) and then indicates the attribute(s) and/or the child element(s) “filed(s)” (through 

“firstFieldXpath” and possibly “secondFieldXpath”) related to each selected element, that has (or have) 
to be unique within the scope of the set of selected elements. This operation adds the new constraint at a 

specified position (i.e., after or before) with regard to another target element (located at 

targetElementPath).  

Example: Suppose that the designer would like to specify a uniqueness constraint on the attribute 

<SSN> of an element <employee>, as shown in Figure 9. To do this, he/she calls the 

DefineUniquenessConstraint operation as follows: 

DefineUniquenessConstraint(CS.xsd, "//xsd:element[@name='employees']/complexType", after, 

"uniqueSSN", "employee", "@SSN", ) 

 

<xsd:element name="employees"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="employee" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

… 

</xsd:sequence> 

<xsd:attribute name="SSN" type="xsd:string"/> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

<xsd:unique name="uniqueSSN"> 

  <xsd:selector xpath="employee"/> 

  <xsd:field xpath="@SSN"/> 

</xsd:unique> 

</xsd:element> 



20 

 

Figure 9: Effects of the DefineUniquenessConstraint operation. 

 

OpCS26: DropUniquenessConstraint(CS.xsd, uniquenessConstraintPath) 

It drops a uniqueness constraint (located at “uniquenessConstraintPath”) from the conventional schema 

“CS.xsd”. 

Such an operation could be performed if and only if there is no referential integrity constraint (defined 

using a keyref component), in this conventional schema, that refers to the uniqueness constraint to be 

dropped. 

Example: Suppose that the designer would like to drop a uniqueness constraint that was defined on a 

sub-element <phone> of a complex element <employee>. To do this, he/she calls the 

DropUniquenessConstraint operation as follows:  

DropUniquenessConstraint(CS.xsd, "//xsd:unique[@name='uniquePhone']") 

 

OpCS27: RenameUniquenessConstraint(CS.xsd, uniquenessConstraintPath, newName) 

It changes the name of a uniqueness constraint (located at “uniquenessConstraintPath”) to “newName”, 
in the conventional schema “CS.xsd”. This operation must update all other components of this schema 

that are using (or referring to) this uniqueness constraint by replacing the old name with the new one. 

 

B) Key Constraints 

OpCS28: DefineKeyConstraint(CS.xsd, targetElementPath, position, keyConstraintName, 
selectorXpath, firstFieldXpath, secondFieldXpath) 

It specifies a new key constraint (with the name “keyConstraintName”), in the conventional schema 

“CS.xsd”, to express that the value of an element or an attribute must be unique within a certain scope 

and must not be set to nil. To do this, this operation first selects a set of parent elements (through 
“selectorXpath”) and then indicates the attribute(s) and/or the child element(s) “filed(s)” (through 

“firstFieldXpath” and possibly “secondFieldXpath”) related to each selected element, that has (or have) 

to be unique within the scope of the set of selected elements and also has (or have) not to be nillable. 
This operation adds the new constraint at a specified position (i.e., after or before) with regard to another 

target element (located at targetElementPath). 

Example: Suppose that the designer would like to specify a key constraint on the attribute “customer-

code” of an element <customer>. To do this, he/she calls the DefineKeyConstraint operation as 

follows:  

DefineKeyConstraint(CS.xsd, "//xsd:element[@name='customers']/complexType", after, "key-customer-

code", "customer", "@customer-code", ) 

 

OpCS29: DropKeyConstraint(CS.xsd, keyConstraintPath) 

It drops a key constraint (located at “keyConstraintPath”) from the conventional schema “CS.xsd”. 

Such an operation could be performed if and only if there is no referential integrity constraint (defined 

using a keyref component), in this conventional schema, that refers to the key constraint to be 



21 

 

dropped. 

 

OpCS30: RenameKeyConstraint(CS.xsd, keyConstraintPath, newName) 

It changes the name of a key constraint (located at “keyConstraintPath”) to “newName”, in the 

conventional schema “CS.xsd”. This operation must update all other components of this schema that are 

using (or referring to) this key constraint by replacing the old name with the new one. 

 

3.1.3.3. Basic High-Level Operations dealing with Referential Integrity Constraints 

A referential integrity constraint [1] in the XML setting is similar to the corresponding constraint in the 

relational setting. It refers to a key or a unique constraint already defined by a conventional schema 
designer on an element or on an attribute.    

A referential integrity constraint is defined using the XML Schema component <xsd:keyref>. This 

component is a container and it should contain an <xsd:selector> component and one or more 

<xsd:field> components. Both <xsd:selector> and <xsd:field> components contain an 

XPath expression. Moreover, notice that keyref uses a key via its attribute refer and that the list, 

the order and the types of all fields in a keyref must be identical to those of the corresponding key (i.e., 

named by refer). 

OpCS31: DefineReferentialIntegrityConstraint(CS.xsd, targetElementPath, position, 
referentialIntegrityConstraintName, identityConstraintPath) 

It specifies, in the conventional schema “CS.xsd”, a new referential integrity constraint (with the name 

“referentialIntegrityConstraintName”) that refers to the identity (i.e., uniqueness or key) constraint 

located at “identityConstraintPath”. This operation adds the new constraint at a specified position (i.e., 
after or before) with regard to another target element (located at “targetElementPath”). 

Such an operation could not be performed if the key or the unique constraint, to which the referential 

integrity constraint refers, does not exist. 

Example: Suppose that the designer would like to specify a referential integrity constraint within an 

element <invoices> that refers to the key constraint titled “key-customer-code” that was defined on 

the attribute “customer-code” of the element <customer> (see example of Op
CS

28). To do this, he/she 

calls the DefineReferentialIntegrityConstraint operation as follows:  

DefineReferentialIntegrityConstraint(CS.xsd, "//xsd:element[@name='invoices']/complexType", after, 

"refer-customer", "//xsd:key[@name='key-customer-code']") 

 

OpCS32: DropReferentialIntegrityConstraint(CS.xsd, referentialIntegrityConstraintPath) 

It drops a referential integrity constraint (located at “referentialIntegrityConstraintPath”), in the 
conventional schema “CS.xsd”. 

 

OpCS33: RenameReferentialIntegrityConstraint(CS.xsd, referentialIntegrityConstraintPath, 
newName) 

It changes the name of a referential integrity constraint (located at “referentialIntegrityConstraintPath”) 



22 

 

to “newName”, in the conventional schema “CS.xsd”. This operation must update all other components 

of this schema that are using (or referring to) this referential integrity constraint by replacing the old 
name with the new one. 

3.1.3.4. Basic High-Level Operations dealing with Cardinality Constraints 

Cardinality constraints are occurrence constraints. They could be defined on elements or on attributes. 

For elements, they are used to define how often an element can occur (through minOccurs and 

maxOccurs attributes of the XML Schema <xsd:element> component). For attributes, cardinality 

constraints are used to define whether the attribute must appear or not in the corresponding element 

(through the value required or optional that should be assigned to the use attribute of the XML 

Schema <xsd:attribute> component). 

A) Basic High-Level Operations dealing with Cardinality Constraints on Elements 

The three following operations act on the minOccurs and maxOccurs attributes of the XML Schema 

<xsd:element> component.  

OpCS34: SpecifyCardinalityConstraintOnElement(CS.xsd, elementPath, valueMinOccurs, 
valueMaxOccurs) 

It specifies a cardinality constraint on an element (by adding the attribute minOccurs and/or the 

attribute maxOccurs to the corresponding <xsd:element> definition and by assigning a value to 

each one of them), in the conventional schema “CS.xsd”. 

Example: Suppose that the designer would like to specify a cardinality constraint on a subelement 

<ISBN> of a complex element <Book>, in order to express that a book could not have an ISBN. To do 

this, he/she calls the SpecifyCardinalityConstraintOnElement operation as follows:  

SpecifyCardinalityConstraintOnElement(CS.xsd, "//xsd:element[@name='ISBN']", "0", ) 

 

OpCS35: DropCardinalityConstraintOnElement(CS.xsd, elementPath, MinOccurs, MaxOccurs) 

It drops a cardinality constraint that was specified on an element (by removing the attribute minOccurs 

and/or the attribute maxOccurs from the corresponding <xsd:element> definition), in the 

conventional schema “CS.xsd”. 

 

OpCS36: ChangeCardinalityConstraintOnElement(CS.xsd, elementPath, newValueMinOccurs, 
newValueMaxOccurs) 

It changes a cardinality constraint that was specified on an element (by assigning a new value to the 

attribute minOccurs and/or a new value to the attribute maxOccurs in the corresponding 

<xsd:element> definition), in the conventional schema “CS.xsd”. 

 

B) Basic High-Level Operations dealing with Cardinality (or Optionality) Constraints on 

Attributes 

The three following operations act on the use attribute of the XML Schema <xsd:attribute> 



23 

 

component.  

OpCS37: SpecifyOptionalityConstraintOnAttribute(CS.xsd, attributePath, valueUse) 

It specifies a cardinality constraint on an attribute of an element (by adding the attribute use to the 

corresponding <xsd:attribute> definition and by assigning a value (required or optional) to 

it), in the conventional schema “CS.xsd”. 

Example: Suppose that the designer would like to specify an optionality constraint on the attribute 

“SSN” of the element <employee> (see Figure 9), in order to express that each employee should have 

a social security number. To do this, he/she calls the SpecifyOptionalityConstraintOnAttribute operation 
as follows:  

SpecifyOptionalityConstraintOnAttribute(CS.xsd, "//xsd:attribute[@name='SSN']", "required") 

 

OpCS38: DropOptionalityConstraintOnAttribute(CS.xsd, attributePath) 

It drops a cardinality constraint that was specified on an attribute of an element (by removing the 

attribute use from the corresponding <xsd:attribute> definition), in the conventional schema 

“CS.xsd”. 

 

OpCS39: ChangeOptionalityConstraintOnAttribute(CS.xsd, attributePath, newValueUse) 

It changes a cardinality constraint that was specified on an attribute of an element (by assigning a new 

value to the attribute use in the corresponding <xsd:attribute> definition), in the conventional 

schema “CS.xsd”. 

3.2. Complex High-Level Operations 

In this subsection, we study complex high-level schema change operations (i.e., high-level operations 

that are defined by using other basic and/or complex high-level operations). More precisely, we propose 
ten schema change operations: five operations acting on whole conventional schema in the subsection 

3.2.1 and five operations acting on portions of conventional schema (i.e., subschema) in the subsection 

3.2.2. 

3.2.1. Complex High-level Operations dealing with whole Conventional Schema 

OpCS40: CreateConventionalSchemaByExtraction(sourceCS, selectionBeginningPath, 
selectionEndPath, targetCS, option) 

It extracts some XSD code (which starts at “selectionBeginningPath” and ends at “selectionEndPath”) 

from a source conventional schema (“sourceCS”) and saves it as a new target conventional schema 

(“targetCS”), with specified option (leave, delete, or link). The option parameter values are detailed as 
follows: 

1) leave: the sourceCS conventional schema is left unchanged after the extraction (i.e. the operation 

simply saves a copy of the selected subschema into the new targetCS); 

2) delete: the selected subschema is deleted from the sourceCS conventional schema after the extraction 

(this would potentially require propagation of heavy modifications to the XML data instances); 



24 

 

3) link: the selected subschema is substituted in the sourceCS conventional schema by: 

<xsd:include schemaLocation="targetCS"/> after the extraction (unless the use of 

“xsd:include” makes some troubles in the tauXSchema framework, this option leaves the conventional 

schema globally (virtually) unchanged even if it has been split into two parts with the extraction). 

Furthermore, we should notice that the extracted subschema has to be completed with the required 

headers (which may include the outermost <xsd:schema/> element) in order to be saved as a valid 

independent conventional schema. 

Example: Suppose that the designer would like to create a conventional schema for customers which are 
organizations by extracting its XSD code from an existing conventional schema for customers (see 

Figure 10), with option “link”. To do this, he/she calls the CreateConventionalSchemaByExtraction 

operation as follows: 

CreateConventionalSchemaByExtraction(customers.xsd,  

"//xsd:element[@name="customer-organizations"]", 

"//xsd:element[@name="customer-organizations"]",  

customerOrganizations.xsd, link).  

After the execution of this operation, the desired conventional schema will be created (see Figure 11); the 
conventional schema for customers will be changed and becomes as in Figure 12.  

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="customer-persons"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="customer-person" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="turnover" type="xsd:double"/> 

<xsd:element name="birthdate" type="xsd:date"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

<xsd:element name="customer-organizations"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="customer-organization" 

            maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="turnover" type="xsd:double"/> 

<xsd:element name="activityDomain" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 



25 

 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 10: Conventional schema for customers (initial customers.xsd). 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="customer-organizations"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="customer-organization"  

            maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="turnover" type="xsd:double"/> 

<xsd:element name="activityDomain" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 11: Conventional schema for customers which are organizations (customerOrganizations.xsd). 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="customer-persons"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="customer-person" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="turnover" type="xsd:double"/> 

<xsd:element name="birthdate" type="xsd:date"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

<xsd:include schemaLocation="customerOrganizations.xsd"> 

</xsd:schema> 

Figure 12: Changed conventional schema for customers (final customers.xsd). 



26 

 

OpCS41: MergeConventionalSchema(CS.xsd, sourceCS, targetElementPath, position) 

It inserts all the XSD code of a source conventional schema (“sourceCS”) into another target 

conventional schema (“CS.xsd”) at a specified position (i.e., before or after) with regard to a target 
element (located at “targetElementPath”) in the target schema.  

Example: Suppose that a designer in an enterprise has a requirement which consists in merging into a 

conventional schema that describes (permanent) employees “employees.xsd” (see Figure 13) a 
conventional schema that describes temporary employees “temporary-employees.xsd” (see Figure 14). 

To do this, he/she calls the MergeConventionalSchema operation as follows: 

MergeConventionalSchema(employees.xsd, temporary-employees.xsd, "/", after) 

The results could be as in Figure 15. 

 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="employees"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="employee" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="firstName" type="xsd:string"/> 

<xsd:element name="lastName" type="xsd:string"/> 

<xsd:element name="hireDate" type="xsd:date"/> 

<xsd:element name="salary" type="xsd:float"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 13: Conventional schema for permanent employees (initial employees.xsd). 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="temporaryEmployees"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="temporaryEmployee" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="firstName" type="xsd:string"/> 

<xsd:element name="lastName" type="xsd:string"/> 

<xsd:element name="hireDate" type="xsd:date"/> 

<xsd:element name="period" type="xsd:positiveInteger"/> 

<xsd:element name="hourlyRate" type="xsd:float"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 



27 

 

</xsd:schema> 

Figure 14: Conventional schema for temporary employees (temporary-employees.xsd). 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="employees"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:choice maxOccurs="unbounded"> 

<xsd:element name="permanentEmployee"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="firstName" type="xsd:string"/> 

<xsd:element name="lastName" type="xsd:string"/> 

<xsd:element name="hireDate" type="xsd:date"/> 

<xsd:element name="salary" type="xsd:float"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

<xsd:element name="temporaryEmployee"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="firstName" type="xsd:string"/> 

<xsd:element name="lastName" type="xsd:string"/> 

<xsd:element name="hireDate" type="xsd:date"/> 

<xsd:element name="period" type="xsd:positiveInteger"/> 

<xsd:element name="hourlyRate" type="xsd:float"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:choice> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 15: Merged conventional schema for employees (final employees.xsd). 

For the best of our knowledge, merging of schema was studied in classical databases and more precisely 

within the topic of database schema integration [6,7,8,9,10,11,12] or database schema coercion [13], but 

it has not been studied as a schema versioning issue (neither under relational/object/object-oriented 
databases nor under XML databases). We first propose to use merging of schemata as a high-level 

change operation in the context of schema versioning. 

 

OpCS42: ReplaceConventionalSchema(CS.xsd, newCS) 

It replaces an existing conventional schema (“CS.xsd”) with a new one (“newCS”); this latter could be 

provided by the designer either as a string explicitly containing the new schema text or as a file name 

corresponding to a source conventional schema to be used for replacement. 

Such an operation must fail with an error message in case the operation finds other conventional schema 

(in the database) which are referring to the conventional schema that should be replaced. Otherwise, this 

operation must also drop the annotation document corresponding to the replaced conventional schema. 



28 

 

OpCS43: DropConventionalSchema(CS.xsd) 

It removes a conventional schema (“CS.xsd”) from the database.  

Such an operation must fail with an error message in case the operation finds other conventional schema 
(in the database) which are referring to the conventional schema that should be dropped. Otherwise, this 

operation must also drop the annotation document corresponding to the removed conventional schema. 

OpCS44: RenameConventionalSchema(CS.xsd, newName) 

It changes the name of a conventional schema (“CS.xsd”) to “newName”.  

This operation must update all other components of the database that are referring to this conventional 
schema, by replacing the old name with new one. 

 

3.2.2. Complex High-level Operations dealing with Portions of Conventional Schema     

OpCS45: InsertSubSchema(CS.xsd, targetElementPath, position, subSchema) 

It inserts a new subschema (“subSchema”) at a specified position (i.e., before or after) with regard to a 

target element (located at “targetElementPath”) in the conventional schema “CS.xsd”. 

The new subschema to be inserted can be provided by the designer either as a string explicitly containing 
the subschema text or as a file name corresponding to a source conventional schema to be used for 

insertion (after removal of headers). 

Example: Suppose that the designer would like to add a new subschema that describes foreign students 

at the end (i.e., after the complex element <students/>) of the current conventional schema which 

describes only local students “students_V1.xsd” (see Figure 16). To do this, he/she calls the 

InsertSubSchema operation as follows: 

InsertSubSchema(students_V1.xsd, "//xsd:element[@name='students']", after,  

"<xsd:element name="foreign-students"> 
<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="foreign-student" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="country" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element>") 

 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="students"> 

<xsd:complexType> 



29 

 

<xsd:sequence> 

<xsd:element name="student" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 16: Conventional schema for only local students (students_V1.xsd). 

Figure 17 shows the new version “students_V2.xsd” of the updated conventional schema. 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="students"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="student" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

<xsd:element name="foreign-students"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="foreign-student" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="address" type="xsd:string"/> 

<xsd:element name="phone" type="xsd:string"/> 

<xsd:element name="country" type="xsd:string"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:schema> 

Figure 17: New conventional schema for local and foreign students (students_V2.xsd). 



30 

 

OpCS46: RemoveSubSchema(CS.xsd, subSchemaBeginning, subSchemaEnd) 

It removes a subschema which starts at a specified position (“subSchemaBeginning”) and ends at another 

specified position (“subschemaEnd”), in the conventional schema “CS.xsd”. 

Such an operation must fail with an error message in case the operation finds other components of the 

same conventional schema, which are using, directly (e.g., as a type for elements) or indirectly (e.g., as 

base type of an element’s type), some components of the removed subschema. Otherwise, this operation 
must also (i) remove, from the corresponding conventional schema, all constraints (uniqueness, key, 

referential integrity, and datatype constraints) that are defined on items belonging completely to the 

removed subschema, and (ii) update (or remove), in the annotation document corresponding to the 

conventional schema which includes the subschema to be removed:  

 all <item> and <stamp> components that are referring to <element> components in the 

removed subschema; 

 all <stamp> components that are referring to <attribute> components in the removed 

subschema. 

Notice here that the constraints (uniqueness, key, referential integrity, and datatype constraints) defined 

on items belonging completely to the removed subschema, do not forbid the removing of the subschema 

since their remove does not have any effect on the consistency and on the validity of the new schema. 

 

OpCS47: ReplaceSubSchema(CS.xsd, subSchemaBeginning, subSchemaEnd, newSubSchema) 

It replaces a subschema (which starts at “subSchemaBeginning” and ends at “subSchemaEnd”) by a new 

subschema (“newSubSchema”), in the same conventional schema “CS.xsd”. 

The new subschema to be inserted can be provided by the designer either as a string explicitly containing 
the subschema text or as a file name corresponding to a source conventional schema to be used for 

replacement (after removal of headers). 

Such an operation must fail with an error message in case the operation finds other components of the 
same conventional schema, which are using, directly (e.g., as a type for elements) or indirectly (e.g., as 

base type of some element types), some components of the replaced subschema. Otherwise, this 

operation must also (i) remove, from the corresponding conventional schema, all constraints (uniqueness, 

key, referential integrity, and datatype constraints) that are defined on items belonging completely to the 
replaced subschema, and (ii) update (or remove), in the annotation document corresponding to the 

conventional schema which includes the subschema to be replaced: 

 all <item> and <stamp> components that are referring to <element> components in the 

replaced subschema; 

 all <stamp> components that are referring to <attribute> components in the replaced 

subschema. 

 

OpCS48: MoveSubSchema(CS.xsd,  subSchemaBeginning, subSchemaEnd, targetElementPath, 
position) 

It moves a subschema (which starts at “subSchemaBeginning” and ends at “subSchemaEnd”) to a new 
position (i.e., before or after) with regard to a target element (located at “targetElementPath”), in the 

same conventional schema “CS.xsd”. 

Such an operation must fail with an error message in case the operation finds other components of the 

same conventional schema, which are using, directly (e.g., as a type for elements) or indirectly (e.g., as 
base type of some element types), some components of the replaced subschema.  



31 

 

This operation must update (i) in the other parts of the corresponding conventional schema, all 

components (constraints, complex elements, …) that are using (or referring to) components belonging to 
the moved subschema, and (ii) in the annotation document corresponding to the conventional schema 

which includes the subschema to be moved: 

 all <item> and <stamp> components that are referring to <element> components in the 

moved subschema; 

 all <stamp> components that are referring to <attribute> components in the moved 

subschema. 

 

OpCS49: CopySubSchema(CS.xsd,  subSchemaBeginning, subSchemaEnd, targetElementPath, 
position) 

It copies a subschema (which starts at “subSchemaBeginning” and ends at “subSchemaEnd”) into a 

specified position (i.e., before or after) with regard to a target element (located at “targetElementPath”), 
in the same conventional schema “CS.xsd”. 

4. High-level Operations for Changing Logical and Physical Annotations 

We have defined fifty-five high-level schema change operations which act on the annotation document. 

We organize them into three categories: (i) operations that are common to the logical and to the physical 
annotations, presented in the subsection 4.1, (ii) operations that are specific to the logical annotations, 

described in the subsection 4.2, and (iii) operations that are specific to the physical annotations, 

presented in the subsection 4.3. 

To illustrate the proposed operations, we will use, as an example, annotations that are associated to a 

given conventional schema (see Figure 18) which describes a commercial enterprise that sells 

equipments to cutomers; invoices of these latters are also modelled.  

<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="enterprise"> 

<xsd:complexType mixed="true"> 

<xsd:sequence> 

<xsd:element ref="equipment" minOccurs="1"  

            maxOccurs="unbounded"/> 

<xsd:element ref="customer" minOccurs="1"  

            maxOccurs="unbounded"/> 

</xsd:sequence> 

</xsd:complexType> 

<xsd:key name="equipmentKey"> 

<xsd:selector xpath="enterprise/equipment"/> 

<xsd:field xpath="@equipmentNo"/> 

</xsd:key> 

</xsd:element> 

<xsd:element name="equipment"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="equipmentName" type="xsd:string" 

minOccurs="1"/> 



32 

 

<xsd:element name="qtyInStock" type="xsd:positiveInteger" 

minOccurs="1" maxOccurs="1"/> 

<xsd:element name="price" type="xsd:float" minOccurs="1" 

maxOccurs="1"/> 

</xsd:sequence> 

<xsd:attribute name="equipmentNo" type="xsd:positiveInteger" 

use="required"/> 

<xsd:attribute name="equipmentCategory" type="xsd:string" 

use="required"/> 

</xsd:complexType> 

</xsd:element> 

<xsd:element name="customer"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="customerName" type="xsd:string" 

minOccurs="1"/> 

<xsd:element name="customerAddress" type="xsd:string" 

minOccurs="0" maxOccurs="unbounded"/> 

<xsd:element name="invoice" minOccurs="0" 

maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="invoiceNo" type="xsd:positiveInteger" 

minOccurs="1"/> 

<xsd:element name="invEquipmentNo" minOccurs="1" 

maxOccurs="unbounded"/> 

<xsd:element name="invEquipmentQty" 

type="xsd:positiveInteger" minOccurs="1" 

maxOccurs="1"/> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

</xsd:sequence> 

<xsd:attribute name="customerNo" type="xsd:positiveInteger" 

use="required"/> 

</xsd:complexType> 

</xsd:element> 

<xsd:unique name="uniqueCustomerNo"> 

<xsd:selector xpath="customer"> 

<xsd:field    xpath="@customerNo"> 

</xsd:unique> 

</xsd:schema> 

Figure 18: Conventional Schema for a commercial enterprise (enterprise_V1.xsd). 

4.1. High-level Operations Common to Logical and Physical Annotations 

We have defined seven high-level change operations that are common to the logical and to the physical 
annotations. They are as follows: 

OpAD01: IncludeAnnotationFiles(AD.xml, logicalAnnotationFileLocation, 



33 

 

physicalAnnotationFileLocation) 

It includes, in the annotation document “AD.xml”, an XML document that contains logical annotations, 

located at “logicalAnnotationFileLocation”, or an XML document that contains physical annotations, 
located at “physicalAnnotationFileLocation” (only one of these two parameters can be omitted). 

This operation is mapped onto the following list of primitives: 

(1) If (logicalAnnotationFileLocation is not null) then 
AddInclude(AD.xml, logical, logicalAnnotationFileLocation) 

(2) If (physicalAnnotationFileLocation is not null) then 
AddInclude(AD.xml, physical, physicalAnnotationFileLocation) 

Example: Suppose that the designer would like to include in an annotation document 

“EnterpriseAnnotations.xml” an XML document that contains logical annotations, located at 
“http://www.enterprise.com/Annotations/enterpriseLogicalAnnotations.xml”, and an XML document 

that contains physical annotations, located at 

“http://www.enterprise.com/Annotations/enterprisePhysicalAnnotations.xml”. To do this, he/she calls the 

IncludeAnnotationFiles operation as follows: 

IncludeAnnotationFiles(EnterpriseAnnotations.xml, 

"http://www.enterprise.com/Annotations/enterpriseLogicalAnnotations.xml", 

"http://www.enterprise.com/Annotations/enterprisePhysicalAnnotations.xml") 

 

OpAD02: SpecifyDefaultTimeFormatUsedInAnnotationDocument(AD.xml, 
annotationType, pluginUsed, granularityOfTimeFormat, 
calendricSystemUsed, dateFormatProperties, valueSchemaUsedForDate) 

It specifies the default time format used in the annotation document “AD.xml” for logical or for physical 

annotations (according to the annotationType parameter that should have the value logical or physical). 

This default time format has the following properties: pluginUsed, granularityOfTimeFormat, 

calendricSystemUsed, dateFormatProperties, and valueSchemaUsedForDate. 

This operation is mapped onto the following list of primitives: 

if (annotationType = logical) then 

AddDefaultTimeFormat(AD.xml, logical, pluginUsed, granularityOfTimeFormat, calendricSystemUsed, 
dateFormatProperties, valueSchemaUsedForDate) 

else 

AddDefaultTimeFormat(AD.xml, physical, pluginUsed, granularityOfTimeFormat, 
calendricSystemUsed, dateFormatProperties, valueSchemaUsedForDate) 

  

OpAD03: RemoveAnnotationDocument(AD.xml) 

It removes an annotation document “AD.xml” from the database.  

OpAD04: RenameAnnotationDocument(AD.xml, newName) 

It changes the name of an existing annotation document (“AD.xml”) with a new name (“newName”).  

OpAD05: ReplaceAnnotationDocument(AD.xml, newAD) 



34 

 

It replaces an existing annotation document (“AD.xml”) with a new one (“newAD”); this latter could be 

provided by the designer either as a string explicitly containing the new annotation document text or as a 
file name corresponding to a source annotation document to be used for replacement. 

OpAD06: MergeAnnotationDocuments(AD.xml, sourceAD) 

It inserts all the XML code of a source annotation document (“sourceAD”) into another target annotation 

document (“AD.xml”) as follows: the set of logical annotations of “sourceAD” are inserted at the end of 

the logical annotations of “AD.xml” (within the <logical/> container) and the set of physical 

annotations of “sourceAD” are inserted at the end of the physical annotation of “AD.xml” (within the 

<physical/> container). 

Notice here that the set of logical (physical, respectively) annotations of “sourceAD” could also be 

inserted at the beginning of the logical (physical, respectively) annotations of “AD.xml” within the 

<logical/> (<physical/>, respectively) container, since the ordering of <item/> elements 

(<stamp/> elements, respectively) in the <logical/> (<physical/>, respectively) container is 

unimportant. 

OpAD07: SplitAnnotationDocument(AD.xml, logicalAnnotationsFirstNewAD, 
physicalAnnotationsFirstNewAD, logicalAnnotationsSecondNewAD, 
physicalAnnotationsSecondNewAD) 

It decomposes an existing annotation document (“AD.xml”) into two new annotation documents as 
follows: the first one contains “logicalAnnotationsFirstNewAD” as a set of logical annotations and 

“physicalAnnotationsFirstNewAD” as a set of physical annotations; the second one stores 

“logicalAnnotationsSecondNewAD” and “physicalAnnotationsSecondNewAD”. 

. Each one of the last four parameters is an XML code provided by the designer as a string which must be 

a set of annotations extracted from “AD.xml” as follows: the contents of the 

“logicalAnnotationsFirstNewAD” or the “logicalAnnotationsSecondNewAD” parameter is a set of 

<item/> elements extracted from “AD.xml”; the contents of the “physicalAnnotationsFirstNewAD” or 

the “physicalAnnotationsSecondNewAD” parameter is a set <stamp/> elements extracted from 

“AD.xml”. 

Furthermore, the set of extracted logical and physical annotations has to be completed with the required 

headers, in order to be saved in valid independent annotation documents. Indeed, first, the contents of the 

“logicalAnnotationsFirstNewAD” or the “logicalAnnotationsSecondNewAD” parameter has to be 

completed with the <logical/> element and the contents of the “physicalAnnotationsFirstNewAD” or 

the “physicalAnnotationsSecondNewAD” parameter has to be completed with the <physical/> 

element. Then, the contents of each one of the two couples (“logicalAnnotationsFirstNewAD”, 
“physicalAnnotationsFirstNewAD”) and (“logicalAnnotationsSecondNewAD”, 

“physicalAnnotationsSecondNewAD”) has to be completed by the outermost <annotationSet/> 

element.       

4.2. High-level Operations for Changing Logical Annotations 

We have defined thirty-eight high-level operations for changing logical annotations. We organize them 

into three categories: (i) operations that act on the whole logical annotation set, presented in the 

subsection 4.2.1, (ii) operations that act on a portion of a logical annotation set, described in the 
subsection 4.2.2, and (iii) operations that act on a time-varying item, presented in the subsection 4.2.3. 



35 

 

4.2.1. High-Level Operations dealing with the whole Logical Annotation Set 

OpAD8: InsertLogicalAnnotationSet(AD.xml, logicalAnnotationSet) 

It adds, in an annotation document “AD.xml”, a set of logical annotations (“logicalAnnotationSet”: a 

data of string type). Since the ordering of <item/> elements in the <logical/> container is 

unimportant, this operation adds the new set of logical annotations (i.e., the new set of <item/> 

elements) at the end of the existing set of logical annotations, within the <logical/> container. If this 

latter does not exist in “AD.xml”, this operation first creates it and then inserts the new set of logical 

annotations.  

Example: Suppose that the designer would like to add a set of logical annotations in the annotation 

document “EnterpriseAnnotations.xml”. To do this, he/she calls the InsertLogicalAnnotationSet 

operation as follows:  

InsertLogicalAnnotationSet(EnterpriseAnnotations.xml, 

"<logical> 
<item target="/enterprise"> 

<transactionTime/> 

<itemIdentifier name="enterpriseId1"  

               timeDimension="transactionTime"> 

<field path="//text"/> 

</itemIdentifier> 

</item> 

<item target="/enterprise/customer"> 

<validTime kind="state" content="varying"  

existence="varyingWithGaps"/> 

<transactionTime/> 

<itemIdentifier name="customerId1" timeDimension="bitemporal"> 

<field path="@customerNo"/> 

</itemIdentifier> 

</item> 

<item target="/enterprise/equipment/price"> 
<validTime kind="state" content="varying"/> 

<transactionTime/> 

<itemIdentifier name="priceId1" timeDimension="bitemporal"> 

<field path="."/> 

</itemIdentifier> 

</item> 

</logical>") 

 

OpAD9: RemoveLogicalAnnotationSet(AD.xml) 

It removes the set of logical annotations (i.e., all sub-elements of the <logical/> element) from an 

annotation document “AD.xml”. 

OpAD10: ReplaceLogicalAnnotationSet(AD.xml, newLogicalAnnotationSet) 

It replaces, in an annotation document “AD.xml”, the existing set of logical annotations with a new set of 

logical annotations (“newLogicalAnnotationSet”) stored in an XML document. 



36 

 

4.2.2. High-Level Operations dealing with a Portion of Logical Annotations 

OpAD11: InsertLogicalAnnotationSubSet(AD.xml, logicalAnnotationSubSet) 

It adds, in an annotation document “AD.xml”, a subset of logical annotations 

(“logicalAnnotationSubSet”: a data of string type). Since the ordering of <item/> elements, in the 

<logical/> container, is unimportant, this operation adds the new subset of logical annotations (i.e., 

the new subset of <item/> elements) at the end of the existing set of logical annotations, within the 

<logical/> container. If this latter does not exist in “AD.xml”, this operation first creates it and then 

inserts the subset of logical annotations. 

Example: Suppose that the designer would like to add a subset of logical annotations in the annotation 

document “EnterpriseAnnotations.xml”. To do this, he/she calls the InsertLogicalAnnotationSubSet 
operation as follows:  

InsertLogicalAnnotationSubSet(EnterpriseAnnotations.xml, 

"<item target="/enterprise/customer/customerAddress"> 
<validTime kind="state" existence="varyingWithGaps"/> 

<itemIdentifier name="addressId1" timeDimension="validTime"> 

<field path="."/> 

</itemIdentifier> 

</item> 

<item target="/enterprise/customer/invoice"> 

<validTime kind="event"/> 

<transactionTime/> 

<itemIdentifier name="invoiceId1" timeDimension="bitemporal"> 

<field path="invoiceNo"/> 

</itemIdentifier> 

</item> 

<item target="/enterprise/equipment/qtyInStock"> 
<validTime kind="state" content="varying"/> 

<transactionTime/> 

<itemIdentifier name="qtyId1" timeDimension="bitemporal"> 

<field path="."/> 

</itemIdentifier> 

</item>") 

OpAD12: RemoveLogicalAnnotationSubSet(AD.xml, beginningItemPath, endingItemPath) 

It removes a subset of logical annotations, delimited by a beginning item (located at 

“beginningItemPath”) and an ending item (located at “endingItemPath”), from the <logical/> 

container of an annotation document “AD.xml”. 

OpAD13: ReplaceLogicalAnnotationSubSet(AD.xml, beginningItemPath, endingItemPath, 
newLogicalAnnotationSubSet) 

It replaces, in an annotation document “AD.xml”, a subset of the logical annotations, delimited by a 

beginning item (located at “beginningItemPath”) and an ending item (located at “endingItemPath”), with 

a new subset of logical annotations (“newLogicalAnnotationSubSet”) stored in an XML document. 

4.2.3. High-Level Operations dealing with Time-Varying Items 



37 

 

Since a single logical annotation is described by a time-varying item (i.e., an <item/> element in the 

<logical/> container), we think that high-level operations for changing logical annotations should 

include operations acting on such a time-varying item. But the <item/> element is a complex one and 

includes several sub-elements. In fact, it has one attribute (target) and eleven sub-elements (see [1], pages 

221-223): <validTime/>, <transactionTime/>, <itemIdentifier/>, <attribute/>, 

<nonSeqUnique/>, <nonSeqKey/>, <uniqueNullRestricted/>, <nonSeqKeyref/>, 

<cardConstraint/>, and <transitionConstraint/>. Notice that each one of these sub-

elements has also sub-elements (possible with attributes). Moreover, the maximal occurrence of each one 

of the last seven sub-elements (i.e., <attribute/>, <nonSeqUnique/>, <nonSeqKey/>, 

<uniqueNullRestricted/>, <nonSeqKeyref/>, <cardConstraint/>, and 

<transitionConstraint/>) is set to unbounded. Therefore, while taking into account all the 

information presented above, we propose the following list of high-level operations for defining, 

removing and changing time-varying items. 

OpAD14: DefineTimeVaryingItem(AD.xml, itemTarget,  
validTimeKind, validTimeContent, validTimeExistence, 
validTimeContentVaryingApplicabilityBegin, 
validTimeContentVaryingApplicabilityEnd, 
validTimeMaximalExistenceBegin, validTimeMaximalExistenceEnd, 
validTimeFrequency,  
transactionTimeFrequency,  
itemIdentifierName, itemIdentifierTimeDimension, 
itemIdentifierKeyRefName, itemIdentifierKeyRefType, 
itemIdentifierPathField) 

It defines, in an annotation document “AD.xml”, a new time-varying item for an element (located at 

“itemTarget” in the conventional schema corresponding to “AD.xml”) and having the following 
properties: validTimeKind, validTimeContent, validTimeExistence, 

validTimeContentVaryingApplicabilityBegin, validTimeContentVaryingApplicabilityEnd, 

validTimeMaximalExistenceBegin, validTimeMaximalExistenceEnd, validTimeFrequency, 

transactionTimeFrequency, itemIdentifierName, itemIdentifierTimeDimension, 
itemIdentifierKeyRefName, itemIdentifierKeyRefType, and itemIdentifierPathField. This operation 

inserts a non-empty new <item/> element in the <logical/> container of “AD.xml”. It is mapped 

onto the following list of primitives: 

(i) AddItem(AD.xml, itemTarget) 

(ii) AddValidTimeToItem(AD.xml, itemTarget, validTimeKind, validTimeContent, validTimeExistence) 

(iii) AddContentVaryingApplicabilityToValidTimeInItem(AD.xml, itemTarget, 
contentVaryingApplicabilityBegin, contentVaryingApplicabilityEnd) 

(iv) AddMaximalExistenceToValidTimeInItem(AD.xml, itemTarget, maximalExistenceBegin, 
maximalExistenceEnd)  

(v) AddFrequencyToValidTimeInItem(AD.xml, itemTarget, validTimeFrequency) 

(vi) AddTransactionTimeToItem(AD.xml, itemTarget, transactionTimeKind, transactionTimeContent, 
transactionTimeExistence) 

(vii) AddFrequencyToTransactionTimeInItem(AD.xml, itemTarget, transactionTimeFrequency) 

(viii) AddItemIdentifierToItem(AD.xml, itemTarget, itemIdentifierName, 
itemIdentifierTimeDimension)  



38 

 

(ix) AddKeyRefToItemIdentifier(AD.xml, itemTarget, itemIdentifierName, keyRefName, keyRefType) 

(x) AddFieldToItemIdentifier(AD.xml, itemTarget, itemIdentifierName, pathField) 

Example: Suppose that the designer would like to annotate the element <equipment> through a new 

logical annotation (i.e., through a new <item> element) in the annotation document 

“EnterpriseAnnotations.xml”. To do this, he/she calls the DefineTimeVaryingItem operation as follows: 

DefineTimeVaryingItem(EnterpriseAnnotations.xml, "/enterprise/equipment",  

"state", "varying", "varyingWithGaps", , , , , , ,  

"equipmentId1", "bitemporal", "equipmentKey", "snapshot", ) 

The new <item> element that will be added to the annotation document “EnterpriseAnnotations.xml” is 

as follows: 

<item target="/enterprise/equipment"> 
<validTime kind="state" content="varying" 

existence="varyingWithGaps"/> 

<transactionTime/> 

<itemIdentifier name="equipmentId1" timeDimension="bitemporal"> 

<keyref refName="equipmentKey" refType="snapshot"/> 

</itemIdentifier> 

</item> 

 

OpAD15: RemoveTimeVaryingItem(AD.xml, itemTarget) 

It removes, from the annotation document “AD.xml”, an existing time-varying item associated to an 
element located at “itemTarget” in the conventional schema corresponding to “AD.xml”. This operation 

deletes the corresponding <item/> element and all its sub-elements from the <logical/> container. 

This operation is mapped onto the following list of primitives: 

(i) for each <attribute/> sub-element in <item/> element 
RemoveAttributeFromItem(AD.xml, itemTarget, attributeName) 

(ii) for each <nonSeqUnique/> sub-element in <item/> element 
RemoveNonSeqUniqueFromItem(AD.xml, itemTarget, constraintName) 

(iii) for each <nonSeqKey/> sub-element in <item/> element 
DeleteNonSeqKeyFromItem(AD.xml, itemTarget, constraintName) 

(iv) for each <uniqueNullRestricted/> sub-element in <item/> element 
RemoveUniqueNullRestrictedFromItem(AD.xml, itemTarget, constraintName) 

(v) for each <nonSeqKeyref/> sub-element in <item/> element 
DeleteNonSeqKeyRefFromItem(AD.xml, itemTarget, constraintName) 

(vi) for each <cardConstraint/> sub-element in <item/> element 
DeleteCardConstraintFromItem(AD.xml, itemTarget, constraintName) 

(vii) for each <transitionConstraint/> sub-element in <item/> element 
DeleteTransitionConstraintFromItem(AD.xml, itemTarget, constraintName) 

(viii) DeleteItemIdentifierFromItem(AD.xml, itemTarget, constraintName) 

(ix) DeleteTransactionTimeFromItem(AD.xml, itemTarget, constraintName) 

(x) DeleteValidTimeFromItem(AD.xml, itemTarget, constraintName) 

(xi) DeleteItem(AD.xml, itemTarget, constraintName) 



39 

 

OpAD16: ChangeTimeVaryingItem(AD.xml, itemTarget,  
newValidTimeKind, newValidTimeContent, newValidTimeExistence, 
newValidTimeContentVaryingApplicabilityBegin, 
newValidTimeContentVaryingApplicabilityEnd, 
newValidTimeMaximalExistenceBegin, newValidTimeMaximalExistenceEnd, 
newValidTimeFrequency,  
newTransactionTimeFrequency,  
newItemIdentifierName, newItemIdentifierTimeDimension, 
newItemIdentifierKeyRefName, newItemIdentifierKeyRefType, 
newItemIdentifierPathField) 

It changes, in the annotation document “AD.xml”, the value of one or more of the properties (i.e., 

validTimeKind, validTimeContent, validTimeExistence, validTimeContentVaryingApplicabilityBegin, 

validTimeContentVaryingApplicabilityEnd, validTimeMaximalExistenceBegin, 
validTimeMaximalExistenceEnd, validTimeFrequency, transactionTimeFrequency, itemIdentifierName, 

itemIdentifierTimeDimension, itemIdentifierKeyRefName, itemIdentifierKeyRefType, and 

itemIdentifierPathField) of a time-varying item associated to an element located at “itemTarget” in the 
conventional schema corresponding to “AD.xml”. 

OpAD17: ReplaceTimeVaryingItem(AD.xml, itemTarget, newItemTarget  
newItemValidTimeKind, newItemValidTimeContent, 
newItemValidTimeExistence, 
newItemValidTimeContentVaryingApplicabilityBegin, 
newItemValidTimeContentVaryingApplicabilityEnd, 
newItemValidTimeMaximalExistenceBegin, 
newItemItemValidTimeMaximalExistenceEnd, 
newItemValidTimeFrequency,  
newItemTransactionTimeFrequency, 
newItemIdentifierName, newItemIdentifierTimeDimension, 
newItemIdentifierKeyRefName, newItemIdentifierKeyRefType, 
newItemIdentifierPathField) 

It replaces, in the annotation document “AD.xml”, a time-varying item (having as a target the element 
located at “itemTarget” in the conventional schema corresponding to “AD.xml”) with a new time-

varying item (having the following properties: newItemTarget, newItemValidTimeKind, 

newItemValidTimeContent, newItemValidTimeExistence, 
newItemValidTimeContentVaryingApplicabilityBegin, 

newItemValidTimeContentVaryingApplicabilityEnd, newItemValidTimeMaximalExistenceBegin, 

newItemValidTimeMaximalExistenceEnd, newItemValidTimeFrequency, 

newItemTransactionTimeFrequency, newItemIdentifierName, newItemIdentifierTimeDimension, 
newItemIdentifierKeyRefName, newItemIdentifierKeyRefType, and newItemIdentifierPathField). 

 

Notice that after defining a new time-varying item (through the DefineTimeVaryingItem operation 
presented above), the designer could add, to this new item, an attribute that is being annotated or a non-

sequenced constraint [1,19]. High-level operations for managing attributes and non-sequenced 

constraints within time-varying items are presented in the subsections 4.2.3.1 and 4.2.3.2, respectively. 

4.2.3.1. High-Level Operations dealing with Attributes in Time-varying Items  

In conventional schema, attributes of elements (i.e., defined through <attribute> components) can 



40 

 

vary over time. However, they cannot be specified as items in an annotation document; an attribute’s 

enclosing data element can be part of an item. 

The designer could use the four following high-level operations for managing an <attribute> sub-

element in an <item> element. 

OpAD18: AddTimeVaryingAttributeToItem(AD.xml, itemTarget, attributeName, 
validTimeKind, validTimeContent, 
validTimeContentVaryingApplicabilityBegin, 
validTimeContentVaryingApplicabilityEnd, validTimeFrequency, 
transactionTimeFrequency)  

It adds a time-varying attribute (having the following properties: attributeName, validTimeKind, 
validTimeContent, validTimeContentVaryingApplicabilityBegin, 

validTimeContentVaryingApplicabilityEnd, validTimeFrequency, and transactionTimeFrequency) to a 

time-varying item (associated to an element located at “itemTarget” in the conventional schema 

corresponding to the annotation document “AD.xml”). This operation adds an <attribute/> sub-

element to an <item/> element. 

Example: Suppose that the designer would like to express that the attribute “equipmentCategory” of the 

element <equipment> is time-varying; thus, he/she should annotate this attribute through a new 

<attribute> subelement of the <item> element corresponding to the <equipment> element, in 

the annotation document “EnterpriseAnnotations.xml”. To do this, he/she calls the 

AddTimeVaryingAttributeToItem operation as follows: 

AddTimeVaryingAttributeToItem(EnterpriseAnnotations.xml, "/enterprise/equipment",  

"equipmentCategory", "state", "varying", , , , ) 

The <attribute> element that will be added to the annotation document 

“EnterpriseAnnotations.xml” is as follows: 

<attribute name="equipmentCategory"> 
<validTime kind="state" content="varying"/> 

<transactionTime/> 

</attribute> 

Furthermore, in the annotation document “EnterpriseAnnotations.xml”, the <item> element 

corresponding to the <equipment> element will become as follows:  

<item target="/enterprise/equipment"> 

<validTime kind="state" content="varying" 

existence="varyingWithGaps"/> 

<transactionTime/> 

<itemIdentifier name="equipmentId1" timeDimension="bitemporal"> 

<keyref refName="equipmentKey" refType="snapshot"/> 

</itemIdentifier> 

<attribute name="equipmentCategory"> 
<validTime kind="state" content="varying"/> 

<transactionTime/> 

</attribute> 

</item> 

 



41 

 

OpAD19: RemoveTimeVaryingAttributeFromItem(AD.xml, itemTarget, attributeName)  

It removes a time-varying attribute (having the name “attributeName”) from the time-varying item 

associated to an element located at “itemTarget” in the conventional schema corresponding to the 

annotation document “AD.xml”. This operation removes an <attribute/> sub-element from an 

<item/> element. 

OpAD20: ChangeTimeVaryingAttributeInItem(AD.xml, itemTarget, attributeName, 
validTimeKind, validTimeContent, 
validTimeContentVaryingApplicabilityBegin, 
validTimeContentVaryingApplicabilityEnd, validTimeFrequency, 
transactionTimeFrequency)  

It changes the value of one or more of the properties (i.e., attributeName, validTimeKind, 
validTimeContent, validTimeContentVaryingApplicabilityBegin, 

validTimeContentVaryingApplicabilityEnd, validTimeFrequency, and transactionTimeFrequency) of a 

time-varying attribute (having the name “attributeName”) in a time-varying item (associated to an 
element located at “itemTarget” in the conventional schema corresponding to the annotation document 

“AD.xml”).  

OpAD21: ReplaceTimeVaryingAttributeInItem(AD.xml, itemTarget, attributeName, 
newAttributeName, newAttributeValidTimeKind, 
newAttributeValidTimeContent, 
newAttributeValidTimeContentVaryingApplicabilityBegin, 
newAttributeValidTimeContentVaryingApplicabilityEnd, 
newAttributeValidTimeFrequency, 
newAttributeTransactionTimeFrequency)  

It replaces a time-varying attribute (having the name “attributeName”) with a new time-varying attribute 

(having the following properties: newAttributeName, newAttributeValidTimeKind, 

newAttributeValidTimeContent, newAttributeValidTimeContentVaryingApplicabilityBegin, 
newAttributeValidTimeContentVaryingApplicabilityEnd, newAttributeValidTimeFrequency, and 

newAttributeTransactionTimeFrequency), in a time-varying item (associated to an element located at 

“itemTarget” in the conventional schema corresponding to the annotation document “AD.xml”). 

4.2.3.2. High-Level Operations dealing with Non-sequenced Constraints in Time-varying Items  

A non-sequenced constraint is a temporal constraint specified on an element or an attribute, as a logical 

annotation within an item. It is evaluated over a time interval (i.e., over some part or the whole of the 
applicability bound) rather than at each point in time separately. For example, a non-sequenced unique 

(or key) constraint requires that the constrained element (or attribute) is unique over time (not just at a 

point in time). 

Each non-sequenced constraint is specified in the logical annotations through a subelement of the 

<item> element. 

Furthermore, a non-sequenced constraint could be one of the following six types:  

 a non-sequenced unique constraint (specified through the <nonSeqUnique> subelement); 

 a non-sequenced key constraint (specified through the <nonSeqKey> subelement); 

 a non-sequenced unique constraint with null value restrictions (specified through the 

<uniqueNullRestricted> subelement);  



42 

 

 a non-sequenced referential integrity constraint (specified through the <nonSeqKeyref> 

subelement); 

 a non-sequenced cardinality constraint (specified through the <cardConstraint> subelement); 

 a non-sequenced transition constraint (specified through the <transitionConstraint> 

subelement).  

In each subsection of the following six subsections, we present the proposed high-level operations acting 

on each type of non-sequenced constraints. 

A) High-Level Operations acting on Non-sequenced Unique Constraints 

OpAD22: AddNonSeqUniqueConstraintToItem(AD.xml, itemTarget, constraintName, 
conventionalIdentifier, dimension, evaluationWindow, slideSize, 
applicabilityBegin, applicabilityEnd, selector, field) 

It adds a non-sequenced unique constraint (having the following properties: constraintName, 

conventionalIdentifier, dimension, evaluationWindow, slideSize, applicabilityBegin, applicabilityEnd, 
selector, and field) to a time-varying item (associated to an element located at “itemTarget” in the 

conventional schema corresponding to the annotation document “AD.xml”).  

Example: Let us resume our example of Figure 18. We have a conventional unique constraint defined on 

the attribute “customerNo” of the element <customer>. Since a conventional unique constraint does 

not imply non-sequenced uniqueness, the same “customerNo” could be re-used for another customer or 

changed between snapshots (for the same customer, as long as it remains unique).  

Suppose that the designer would like to specify that the value of the attribute “customerNo” is unique 
across a temporal document (with snapshots coalesced across the window of evaluation). To do this, 

he/she defines a non-sequenced unique constraint on the attribute “customerNo” by calling the 

AddNonSeqUniqueConstraintToItem operation as follows: 

AddNonSeqUniqueConstraintToItem(EnterpriseAnnotations.xml, "/enterprise/customer", 

"nonSeqUniqCustNo", , , "year”, "day", "2013-01-01", , ".", "@customerNo") 

The <nonSeqUnique> subelement that will be added to the annotation document 

“EnterpriseAnnotations.xml” is as follows: 

<nonSeqUnique name="nonSeqUniqCustNo" evaluationWindow="year" 

slideSize="day" > 

<applicability begin="2013-01-01" /> 

<selector xpath="." /> 

<field xpath="@customerNo" /> 

</nonSeqUnique> 

Furthermore, in the annotation document “EnterpriseAnnotations.xml”, the <item> element 

corresponding to the <customer> element will become as follows:  

<item target="/enterprise/customer"> 

<validTime kind="state" content="varying" 

existence="varyingWithGaps"/> 

<transactionTime/> 

<itemIdentifier name="customerId1" timeDimension="bitemporal"> 

<field path="@customerNo"/> 

</itemIdentifier> 



43 

 

<nonSeqUnique name="nonSeqUniqCustNo" evaluationWindow="year"  

slideSize="day"> 

<applicability begin="2013-01-01" /> 

<selector xpath="." /> 

<field xpath="@customerNo" /> 

</nonSeqUnique> 

</item> 

  

OpAD23: RemoveNonSeqUniqueConstraintFromItem(AD.xml, itemTarget, constraintName) 

It removes a non-sequenced unique constraint (having the name “constraintName”) from the time-
varying item associated to an element located at “itemTarget” in the conventional schema corresponding 

to the annotation document “AD.xml”. 

OpAD24: ChangeNonSeqUniqueConstraintInItem(AD.xml, itemTarget, constraintName, 
newName, newConventionalIdentifier, newDimension, 
newEvaluationWindow, newSlideSize, newApplicabilityBegin, 
newApplicabilityEnd, newSelector, newField) 

It changes the value of one or more of the properties (i.e., constraintName, conventionalIdentifier, 

dimension, evaluationWindow, slideSize, applicabilityBegin, applicabilityEnd, selector, and field) of a 
non-sequenced unique constraint (having the name “constraintName”) in a time-varying item (associated 

to an element located at “itemTarget” in the conventional schema corresponding to the annotation 

document “AD.xml”). 

OpAD25: ReplaceNonSeqUniqueConstraintInItem(AD.xml, itemTarget, constraintName, 
newConstraintName, newConstraintConventionalIdentifier, 
newConstraintDimension, newConstraintEvaluationWindow, 
newConstraintSlideSize, newConstraintApplicabilityBegin, 
newConstraintApplicabilityEnd, newConstraintSelector, 
newConstraintField) 

It replaces a non-sequenced unique constraint (having the name “constraintName”) with a new non-
sequenced unique constraint (having the following properties: newConstraintName, 

newConstraintConventionalIdentifier, newConstraintDimension, newConstraintEvaluationWindow, 

newConstraintSlideSize, newConstraintApplicabilityBegin, newConstraintApplicabilityEnd, 
newConstraintSelector, and newConstraintField), in a time-varying item (associated to an element 

located at “itemTarget” in the conventional schema corresponding to the annotation document 

“AD.xml”). 

B) High-Level Operations acting on Non-sequenced Key Constraints 

OpAD26: AddNonSeqKeyConstraintToItem(AD.xml, itemTarget, constraintName, 
conventionalIdentifier, dimension, evaluationWindow, slideSize, 
applicabilityBegin, applicabilityEnd, selector, field) 

It adds a non-sequenced key constraint (having the following properties: constraintName, 

conventionalIdentifier, dimension, evaluationWindow, slideSize, applicabilityBegin, applicabilityEnd, 

selector, and field) to a time-varying item (associated to an element located at “itemTarget” in the 



44 

 

conventional schema corresponding to the annotation document “AD.xml”). 

OpAD27: RemoveNonSeqKeyConstraintFromItem(AD.xml, itemTarget, constraintName) 

It removes a non-sequenced key constraint (having the name “constraintName”) from the time-varying 
item associated to an element located at “itemTarget” in the conventional schema corresponding to the 

annotation document “AD.xml”. 

OpAD28: ChangeNonSeqKeyConstraintInItem(AD.xml, itemTarget, constraintName, 
newName, newConventionalIdentifier, newDimension, 
newEvaluationWindow, newSlideSize, newApplicabilityBegin, 
newApplicabilityEnd, newSelector, newField) 

It changes the value of one or more of the properties (i.e., constraintName, conventionalIdentifier, 

dimension, evaluationWindow, slideSize, applicabilityBegin, applicabilityEnd, selector, and field) of a 
non-sequenced key constraint (having the name “constraintName”) in a time-varying item (associated to 

an element located at “itemTarget” in the conventional schema corresponding to the annotation 

document “AD.xml”). 

OpAD29: ReplaceNonSeqKeyConstraintInItem(AD.xml, itemTarget, constraintName, 
newConstraintName, newConstraintConventionalIdentifier, 
newConstraintDimension, newConstraintEvaluationWindow, 
newConstraintSlideSize, newConstraintApplicabilityBegin, 
newConstraintApplicabilityEnd, newConstraintSelector, 
newConstraintField) 

It replaces a non-sequenced key constraint (having the name “constraintName”) with a new non-
sequenced key constraint (having the following properties: newConstraintName, 

newConstraintConventionalIdentifier, newConstraintDimension, newConstraintEvaluationWindow, 

newConstraintSlideSize, newConstraintApplicabilityBegin, newConstraintApplicabilityEnd, 
newConstraintSelector, and newConstraintField), in a time-varying item (associated to an element 

located at “itemTarget” in the conventional schema corresponding to the annotation document 

“AD.xml”). 

C) High-Level Operations acting on Non-sequenced Unique Constraints with Null Value 

Restrictions 

OpAD30: AddNonSeqUniqueNullRestrictedConstraintToItem(AD.xml, itemTarget, 
constraintName, conventionalIdentifier, nullCountMin, nullCountMax, 
dimension, evaluationWindow, slideSize, applicabilityBegin, 
applicabilityEnd, selector, field) 

It adds a non-sequenced unique constraint with null value restrictions (having the following properties: 

constraintName, conventionalIdentifier, nullCountMin, nullCountMax, dimension, evaluationWindow, 

slideSize, applicabilityBegin, applicabilityEnd, selector, and field) to a time-varying item (associated to 
an element located at “itemTarget” in the conventional schema corresponding to the annotation 

document “AD.xml”). 

OpAD31: RemoveNonSeqUniqueNullRestrictedConstraintFromItem(AD.xml, itemTarget, 



45 

 

constraintName) 

It removes a non-sequenced unique constraint with null value restrictions (having the name 

“constraintName”) from the time-varying item associated to an element located at “itemTarget” in the 
conventional schema corresponding to the annotation document “AD.xml”. 

OpAD32: ChangeNonSeqUniqueNullRestrictedConstraintInItem(AD.xml, itemTarget, 
constraintName, newName, newConventionalIdentifier, newNullCountMin, 
newNullCountMax, newDimension, newEvaluationWindow, newSlideSize, 
newApplicabilityBegin, newApplicabilityEnd, newSelector, newField) 

It changes the value of one or more of the properties (i.e., constraintName, conventionalIdentifier, 

nullCountMin, nullCountMax, dimension, evaluationWindow, slideSize, applicabilityBegin, 

applicabilityEnd, selector, and field) of a non-sequenced unique constraint with null value restrictions 
(having the name “constraintName”) in a time-varying item (associated to an element located at 

“itemTarget” in the conventional schema corresponding to the annotation document “AD.xml”). 

OpAD33: ReplaceNonSeqUniqueNullRestrictedConstraintInItem(AD.xml, itemTarget, 
constraintName, newConstraintName, 
newConstraintConventionalIdentifier, newConstraintNullCountMin, 
newConstraintNullCountMax, newConstraintDimension, 
newConstraintEvaluationWindow, newConstraintSlideSize, 
newConstraintApplicabilityBegin, newConstraintApplicabilityEnd, 
newConstraintSelector, newConstraintField) 

It replaces a non-sequenced unique constraint with null value restrictions (having the name 

“constraintName”) with a new non-sequenced unique constraint with null value restrictions (having the 
following properties: newConstraintName, newConstraintConventionalIdentifier, newNullCountMin, 

newNullCountMax, newConstraintDimension, newConstraintEvaluationWindow, 

newConstraintSlideSize, newConstraintApplicabilityBegin, newConstraintApplicabilityEnd, 
newConstraintSelector, and newConstraintField), in a time-varying item (associated to an element 

located at “itemTarget” in the conventional schema corresponding to the annotation document 

“AD.xml”). 

D) High-Level Operations acting on Non-sequenced Referential Integrity Constraints 

OpAD34: AddNonSeqKeyRefConstraintToItem(AD.xml, itemTarget, constraintName, refer, 
applicabilityBegin, applicabilityEnd, selector, field) 

It adds a non-sequenced referential integrity constraint (having the following properties: constraintName, 

refer, applicabilityBegin, applicabilityEnd, selector, and field) to a time-varying item (associated to an 

element located at “itemTarget” in the conventional schema corresponding to the annotation document 
“AD.xml”). 

OpAD35: RemoveNonSeqKeyRefConstraintFromItem(AD.xml, itemTarget, constraintName) 

It removes a non-sequenced referential integrity constraint (having the name “constraintName”) from the 

time-varying item associated to an element located at “itemTarget” in the conventional schema 

corresponding to the annotation document “AD.xml”. 



46 

 

OpAD36: ChangeNonSeqKeyRefConstraintInItem(AD.xml, itemTarget, constraintName, 
newName, newRefer, newApplicabilityBegin, newApplicabilityEnd, 
newSelector, newField) 

It changes the value of one or more of the properties (i.e., constraintName, refer, applicabilityBegin, 

applicabilityEnd, selector, and field) of a non-sequenced referential integrity constraint (having the name 
“constraintName”) in a time-varying item (associated to an element located at “itemTarget” in the 

conventional schema corresponding to the annotation document “AD.xml”). 

OpAD37: ReplaceNonSeqKeyRefConstraintInItem(AD.xml, itemTarget, constraintName, 
newConstraintName, newConstraintRefer, 
newConstraintApplicabilityBegin, newConstraintApplicabilityEnd, 
newConstraintSelector, newConstraintField) 

It replaces a non-sequenced referential integrity constraint (having the name “constraintName”) with a 

new non-sequenced referential integrity constraint (having the following properties: 
newConstraintName, newConstraintRefer, newConstraintApplicabilityBegin, 

newConstraintApplicabilityEnd, newConstraintSelector, and newConstraintField), in a time-varying item 

(associated to an element located at “itemTarget” in the conventional schema corresponding to the 
annotation document “AD.xml”). 

E) High-Level Operations acting on Non-sequenced Cardinality Constraints 

OpAD38: AddNonSeqCardConstraintToItem(AD.xml, itemTarget, constraintName, 
restrictionTarget, itemIdentifierRef, dimension, evaluationWindow, 
slideSize, sequenced, aggregationLevel, minOccurs, maxOccurs, selector, 
field, applicabilityBegin, applicabilityEnd) 

It adds a non-sequenced cardinality constraint (having the following properties: constraintName, 

restrictionTarget, itemIdentifierRef, dimension, evaluationWindow, slideSize, sequenced, 
aggregationLevel, minOccurs, maxOccurs, selector, field, applicabilityBegin, and applicabilityEnd) to a 

time-varying item (associated to an element located at “itemTarget” in the conventional schema 

corresponding to the annotation document “AD.xml”). 

OpAD39: RemoveNonSeqCardConstraintFromItem(AD.xml, itemTarget, constraintName) 

It removes a non-sequenced cardinality constraint (having the name “constraintName”) from the time-
varying item associated to an element located at “itemTarget” in the conventional schema corresponding 

to the annotation document “AD.xml”. 

OpAD40: ChangeNonSeqCardConstraintInItem(AD.xml, itemTarget, constraintName, 
newName, newRestrictionTarget, newItemIdentifierRef, newDimension, 
newEvaluationWindow, newSlideSize, newSequenced, 
newAggregationLevel, newMinOccurs, newMaxOccurs, newSelector, 
newField, newApplicabilityBegin, newApplicabilityEnd) 

It changes the value of one or more of the properties (i.e., constraintName, restrictionTarget, 

itemIdentifierRef, dimension, evaluationWindow, slideSize, sequenced, aggregationLevel, minOccurs, 
maxOccurs, selector, field, applicabilityBegin, and applicabilityEnd) of a non-sequenced cardinality 

constraint (having the name “constraintName”) in a time-varying item (associated to an element located 



47 

 

at “itemTarget” in the conventional schema corresponding to the annotation document “AD.xml”).  

OpAD41: ReplaceNonSeqCardConstraintInItem(AD.xml, itemTarget, constraintName 
newConstraintName, newConstraintRestrictionTarget, 
newConstraintItemIdentifierRef, newConstraintDimension, 
newConstraintEvaluationWindow, newConstraintSlideSize, 
newConstraintSequenced, newConstraintAggregationLevel, 
newConstraintMinOccurs, newConstraintMaxOccurs, 
newConstraintSelector, newConstraintField, 
newConstraintApplicabilityBegin, newConstraintApplicabilityEnd) 

It replaces a non-sequenced cardinality constraint (having the name “constraintName”) with a new non-

sequenced cardinality constraint (having the following properties: newConstraintName, 
newConstraintRestrictionTarget, newConstraintIemIdentifierRef, newConstraintDimension, 

newConstraintEvaluationWindow, newConstraintSlideSize, newConstraintSequenced, 

newConstraintAggregationLevel, newConstraintMinOccurs, newConstraintMaxOccurs, 
newConstraintSelector, newConstraintField, newConstraintApplicabilityBegin, and 

newConstraintApplicabilityEnd), in a time-varying item (associated to an element located at 

“itemTarget” in the conventional schema corresponding to the annotation document “AD.xml”). 

F) High-Level Operations acting on Non-sequenced Transition Constraints 

OpAD42: AddNonSeqTransitionConstraintToItem(AD.xml, itemTarget, constraintName, 
dimension, selector, field, oldValuePair, newValuePair, valueEvolution, 
applicabilityBegin, applicabilityEnd) 

It adds a non-sequenced transition constraint (having the following properties: constraintName, 

dimension, selector, field, oldValuePair, newValuePair, valueEvolution, applicabilityBegin, and 

applicabilityEnd) to a time-varying item (associated to an element located at “itemTarget” in the 
conventional schema corresponding to the annotation document “AD.xml”). 

OpAD43: RemoveNonSeqTransitionConstraintFromItem(AD.xml, itemTarget, constraintName) 

It removes a non-sequenced transition constraint (having the name “constraintName”) from the time-

varying item associated to an element located at “itemTarget” in the conventional schema corresponding 

to the annotation document “AD.xml”. 

OpAD44: ChangeNonSeqTransitionConstraintInItem(AD.xml, itemTarget, constraintName, 
newName, newDimension, newSelector, newField, oldValuePair, 
newValuePair, newValueEvolution, newApplicabilityBegin, 
newApplicabilityEnd) 

It changes the value of one or more of the properties (i.e., constraintName, dimension, selector, field, 

oldValuePair, newValuePair, valueEvolution, applicabilityBegin, and applicabilityEnd) of a non-

sequenced transition constraint (having the name “constraintName”) in a time-varying item (associated to 

an element located at “itemTarget” in the conventional schema corresponding to the annotation 
document “AD.xml”). 

OpAD45: ReplaceNonSeqTransitionConstraintInItem(AD.xml, itemTarget, constraintName, 



48 

 

newConstraintName, newConstraintDimension, newConstraintSelector, 
newConstraintField, newConstraintOldValuePair, 
newConstraintNewValuePair, newConstraintValueEvolution, 
newConstraintApplicabilityBegin, newConstraintApplicabilityEnd) 

It replaces a non-sequenced transition constraint (having the name “constraintName”) with a new non-

sequenced transition constraint (having the following properties: newConstraintName, 
newConstraintDimension, newConstraintSelector, newConstraintField, newConstraintOldValuePair, 

newConstraintNewValuePair, newConstraintValueEvolution, newConstraintApplicabilityBegin, and 

newConstraintApplicabilityEnd), in a time-varying item (associated to an element located at 

“itemTarget” in the conventional schema corresponding to the annotation document “AD.xml”). 

 

4.3. High-level Operations for Changing Physical Annotations 

We have defined ten high-level operations for changing physical annotations. We organize them into 

three categories: (i) operations that act on the whole physical annotation set, presented in the subsection 
4.3.1, (ii) operations that act on a portion of a physical annotation set, described in the subsection 4.3.2, 

and (iii) operations that act on a physical timestamp, presented in the subsection 4.3.3. 

4.3.1. High-Level Operations dealing with the whole Physical Annotation Set 

OpAD46: InsertPhysicalAnnotationSet(AD.xml, physicalAnnotationSet) 

It adds, in an annotation document “AD.xml”, a set of physical annotations (“physicalAnnotationSet”: a 

data of string type). Since the ordering of <stamp/> elements, in the <physical/> container, is 

unimportant, this operation adds the new set of physical annotations (i.e., the new set of <stamp/> 

elements) at the end of the existing set of physical annotations, within the <physical/> container. If 

this latter does not exist in “AD.xml”, this operation first creates it and then inserts the new set of 
physical annotations. 

Example: Suppose that the designer would like to add a set of physical annotations in the annotation 

document “EnterpriseAnnotations.xml”. To do this, he/she calls the InsertPhysicalAnnotationSet 

operation as follows:  

InsertPhysicalAnnotationSet(EnterpriseAnnotations.xml, 

"<physical> 
<stamp target="//enterprise" dataInclusion="expandedVersion"> 

<stampKind timeDimension="transactionTime" stampBounds="step"/> 

</stamp> 

<stamp target="/enterprise/customer" 

dataInclusion="expandedVersion"> 

<stampKind timeDimension="bitemporal" stampBounds="extent"/> 

</stamp> 

<stamp target="//price" dataInclusion="expandedVersion"> 

<stampKind timeDimension="bitemporal" stampBounds="extent"/> 

</stamp> 

</physical> 

") 

 



49 

 

OpAD47: RemovePhysicalAnnotationSet(AD.xml) 

It removes the set of physical annotations (i.e., all sub-elements of the <physical/> element) from an 

annotation document “AD.xml”. 

OpAD48: ReplacePhysicalAnnotationSet(AD.xml, newPhysicalAnnotationSet.xml) 

It replaces, in an annotation document “AD.xml”, the existing set of physical annotations with a new set 

of physical annotations (“newPhysicalAnnotationSet”) stored in an XML document. 

4.3.2. High-Level Operations dealing with a Portion of Physical Annotation Set 

OpAD49: InsertPhysicalAnnotationSubSet(AD.xml, physicalAnnotationSubSet) 

It adds, in an annotation document “AD.xml”, a subset of physical annotations 

(“physicalAnnotationSubSet”: a data of string type). Since the ordering of <stamp/> elements, in the 

<physical/> container, is unimportant, this operation adds the new subset of physical annotations 

(i.e., the new subset of <stamp/> elements) at the end of the existing set of physical annotations, 

within the <physical/> container. If this latter does not exist in “AD.xml”, this operation first creates 

it and then inserts the subset of physical annotations. 

Example: Suppose that the designer would like to add a subset of physical annotations in the annotation 

document “EnterpriseAnnotations.xml”. To do this, he/she calls the InsertPhysicalAnnotationSubSet 
operation as follows:  

InsertPhysicalAnnotationSubSet(EnterpriseAnnotations.xml, 

"<stamp target="//customerAddress" dataInclusion="expandedVersion"> 
<stampKind timeDimension="validTime" stampBounds="extent"/> 

</stamp> 

<stamp target="//invoice" dataInclusion="expandedVersion"> 

<stampKind timeDimension="bitemporal" stampBounds="extent"/> 

</stamp> 

<stamp target="//qtyInStock" dataInclusion="expandedVersion"> 

<stampKind timeDimension="bitemporal" stampBounds="extent"/> 

</stamp>") 

 

OpAD50: RemovePhysicalAnnotationSubSet(AD.xml, beginningStampPath, endingStampPath) 

It removes a subset of physical annotations, delimited by a beginning stamp (located at 

“beginningStampPath”) and an ending stamp (located at “endingStampPath”), from the <physical/> 

container of an annotation document “AD.xml”. 

OpAD51: ReplacePhysicalAnnotationSubSet(AD.xml, beginningStampPath, endingStampPath, 
newPhysicalAnnotationSubSet) 

It replaces, in an annotation document “AD.xml”, a subset of the physical annotations, delimited by a 
beginning stamp (located at “beginningStampPath”) and an ending stamp (located at 

“endingStampPath”), with a new subset of physical annotations (“newPhysicalAnnotationSubSet”) 

stored in an XML document. 



50 

 

4.3.3. High-Level Operations dealing with Physical Timestamps 

Since a single physical annotation is described by a physical timestamp (i.e., a <stamp/> element in the 

<physical/> container), we think that high-level operations for changing physical should include 

operations acting on such a physical timestamp (i.e., on the <stamp/> element). According to the 

schema of the annotation document presented in [1], the <stamp/> element is a complex one: it has 

two attributes (target and dataInclusion) and includes three sub-elements (see [1], page 234-235): 

<stampKind/>, <defaultTimeFormat>, and <orderBy>. Since the maximal occurrence of 

each one of the sub-elements of the <stamp/> element is set to 1, we could propose high-level 

operations for managing such an element without problems. 

OpAD52: SpecifyPhysicalTimeStamp(AD.xml, stampTarget,  
stampDataInclusion, 
timeDimensionStampKind, stampBoundsStampKind,  
pluginStampKindFormat, granularityStampKindFormat, 
calendarStampKindFormat, propertiesStampKindFormat, 
valueSchemaStampKindFormat,  
targetFieldOrderBy, timeDimensionFieldOrderBy) 

It defines, in an annotation document “AD.xml”, a new physical timestamp for an element or an attribute 

(located at “stampTarget” in the conventional schema corresponding to “AD.xml”) and having the 
following properties: stampDataInclusion, timeDimensionStampKind, stampBoundsStampKind, 

pluginStampKindFormat, granularityStampKindFormat, calendarStampKindFormat, 

propertiesStampKindFormat, valueSchemaStampKindFormat, targetFieldOrderBy, and 

timeDimensionFieldOrderBy. This operation inserts a non-empty new <stamp/> element in the 

<physical/> container of “AD.xml”. It is mapped onto the following list of primitives: 

(i) AddStamp(AD.xml, stampTarget, stampDataInclusion, timeDimensionStampKind, 
stampBoundsStampKind) 

(ii) SetFormatInStampKind(AD.xml, stampTarget, pluginStampKindFormat, 
granularityStampKindFormat, calendarStampKindFormat, propertiesStampKindFormat, 
valueSchemaStampKindFormat) 

(iii) AddOrderByFieldToStamp(AD.xml, stampTarget, targetFieldOrderBy, 
timeDimensionFieldOrderBy) 

Example: Suppose that the designer would like to annotate the element <equipment> through a new 

physical timestamp (i.e., through a new <stamp> element) in the annotation document 

“EnterpriseAnnotations.xml”. To do this, he/she calls the SpecifyPhysicalTimeStamp operation as 
follows: 

SpecifyPhysicalTimeStamp(EnterpriseAnnotations.xml, "/enterprise/equipment",  

"expandedVersion", "bitemporal", "extent", , , , , , , ) 

The new <stamp> element that will be added to the annotation document “EnterpriseAnnotations.xml” 

is as follows: 

<stamp target="/enterprise/equipment" dataInclusion="expandedVersion"> 

<stampKind timeDimension="bitemporal" stampBounds="extent"/> 

</stamp> 

 



51 

 

OpAD53: RemovePhysicalTimeStamp(AD.xml, stampTarget) 

It removes, from the annotation document “AD.xml”, an existing physical timestamp associated to an 

element (or an attribute) located at “stampTarget” in the conventional schema corresponding to 

“AD.xml”. This operation deletes the corresponding <stamp/> element and all its sub-elements from 

the <physical/> container of “AD.xml”. 

OpAD54: ChangePhysicalTimeStamp(AD.xml, stampTarget,  
newStampDataInclusion, 
newTimeDimensionStampKind, newStampBoundsStampKind,  
newPluginStampKindFormat, newGranularityStampKindFormat, 
newCalendarStampKindFormat, newPropertiesStampKindFormat, 
newValueSchemaStampKindFormat, newTargetFieldOrderBy, 
newTimeDimensionFieldOrderBy) 

It changes, in the annotation document “AD.xml”, the value of one or more of the properties (i.e., 
stampDataInclusion, timeDimensionStampKind, stampBoundsStampKind, pluginStampKindFormat, 

granularityStampKindFormat, calendarStampKindFormat, propertiesStampKindFormat, 

valueSchemaStampKindFormat, targetFieldOrderBy, and timeDimensionFieldOrderBy) of a physical 

timestamp associated to an element (or an attribute) located at “stampTarget” in the conventional schema 
corresponding to “AD.xml”. 

OpAD55: ReplacePhysicalTimeStamp(AD.xml, stampTarget,  
newStampTarget, newStampDataInclusion, 
newTimeDimensionStampKind, newStampBoundsStampKind,  
newPluginStampKindFormat, newGranularityStampKindFormat, 
newCalendarStampKindFormat, newPropertiesStampKindFormat, 
newValueSchemaStampKindFormat, newTargetFieldOrderBy, 
newTimeDimensionFieldOrderBy) 

It replaces, in the annotation document “AD.xml”, a physical timestamp (having as a target the element 

or the attribute located at “stampTarget” in the conventional schema corresponding to “AD.xml”) with a 

new physical timestamp (having the following properties: newStampTarget, newStampDataInclusion, 
newTimeDimensionStampKind, newStampBoundsStampKind, newPluginStampKindFormat, 

newGranularityStampKindFormat, newCalendarStampKindFormat, newPropertiesStampKindFormat, 

newValueSchemaStampKindFormat, newTargetFieldOrderBy, and newTimeDimensionFieldOrderBy). 

5. Related Work Discussion 

In [14], the authors introduce a set of high-level evolution primitives that could be used by an XML 

Schema designer to express complex schema changes; each high-level primitive is expressed as a 

sequence of atomic primitives which are also proposed in [14]. But due to space limitations, they do not 
give enough details on these high-level primitives (e.g., which is their complete set and operational 

semantics, which atomic primitives compose each high-level primitive and in which way). Furthermore, 

the authors do not refer the reader to any technical report or any other work. They present an example in 
which they use only two high-level primitives: insert_substruct and collapse_substruct. They note that 

these high-level primitives mainly include primitives for inserting, moving, and changing whole 

substructures rather than single elements. 

In [15], the authors propose a set of three high-level DTD change operations (i.e., SubtreeMoveUp, 



52 

 

SubtreeMoveDown, and RelationshipInverse) and study their effect on XML documents whose DTD is 

being evolved. The authors note that this set of high-level operations is based on the set of primitive 
DTD change operations that was proposed in [16]. 

In [17], the authors propose a set of composite operations for changing XML schema at conceptual levels 

(i.e., PIM and PSM levels), within an approach based on the principles of Model-Driven Development. 
Obviously, each composite operation is a sequence of two or more atomic operations. But the authors 

give only three composite operations and do not refer the reader to a work in which he/she find more 

details or the full list of possible composite operations. In fact, the authors suppose that the particular set 

of composite operations depends on the choice of the vendor of a particular system and the requirements 
of users. Their aim in [17] was to demonstrate that the proposed mechanism can be used in real-world 

situations. 

Similar to all the works presented above (i.e., [14], [15], and [17]), our current work proposes also high-
level schema change operations that are validity preserving (i.e., each operation applied to a consistent 

conventional schema produces a consistent conventional schema).  

But our contributions with regards to [14], [15], and [17], are as follows: 

1) We have proposed a large set of high-level operations in order to provide more various user-

friendly operations that could be directly implemented by creators of tools or systems for XML 

Schema evolution/versioning. Notice here that our proposed set of high-level operations is not 

complete: we do not claim to provide all possible high-level operations, since we could not list all 
requirements of all XML Schema designers; but, if required, an XML Schema designer could 

build a new customized high-level operation by composing some low-level operations and/or some 

high-level operations. 

2) We have classified the proposed high-level operations in basic operations (i.e., high-level 

operations that cannot be defined by means of other basic high-level operations) and complex 

operations. 

3) We have not proposed only operations for manipulating portions of schema (i.e., sub-schema or 
sub-tree), but we have provided also operations dealing with whole conventional schema, XML 

Schema elements, XML Schema attributes, and XML Schema constraints (datatype restrictions, 

and key, unique, cardinality, and referential integrity constraints). 

6. Conclusion 

In this report, we focused on the problem of changing schema in the τXSchema framework: we tried to 

deal with what kinds of meaningful schema change operations can be supported, and how the schema 

changes would be actually effected in terms of primitive operations. 

Since a τXSchema schema consists of three components (a temporal schema that ties together a 

conventional schema and an annotation document), we have proposed three sets of high-level schema 

change operations and described their semantics; each set is devoted to a different schema component. 
These operations are user-friendly and help designers to perform suitable changes to schema, by allowing 

them to express complex schema changes in a more compact way. 

As a part of our future work, we intend to develop a tool for schema versioning in the τXSchema 

framework, that supports these operations and provides them to designers. Their implementation will be 
based on the low-level operations already proposed in [2,3], [4,5], and [18].We will also study the 

propagation of changes performed by these operations, i.e., their effects on (i) non-temporal data stored 

in conventional documents which are valid to conventional schema, and also on (ii) temporal data stored 
in temporal documents and generated, by the Squash tool [1], from non-temporal data and temporal 

schema. Obviously, this requires studying first of all propagation of changes made by low-level 



53 

 

operations. Currently, we are focusing on this issue. 

Furthermore, we also plan to study schema changes affecting the overall XML schema design style, that 
is involving change of (i) namespaces and their influence on qualified/unqualified local/global 

definitions, and (ii) design pattern (Russian doll, Salami, Bologna, Venetian blind, and Garden of Eden). 

7. References 

[1]  Currim F., Currim S., Dyreson C. E., Joshi S., Snodgrass R. T., Thomas S. W., Roeder E., 
“τXSchema: Support for Data- and Schema-Versioned XML Documents”, Technical Report TR-91, 

TimeCenter, 279 pages, September 2009. <http://timecenter.cs.aau.dk/TimeCenterPublications/TR-

91.pdf>  

[2] Brahmia Z., Bouaziz R., Grandi F., Oliboni B., “A Study of Conventional Schema Versioning in the 

τXSchema Framework”, Technical Report TR-94, TimeCenter, 29 pages, June 2012. 

<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-94.pdf> 

[3] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “Versioning of Conventional Schema in the 
τXSchema Framework”, Proceedings of the 8

th
 International Conference on Signal Image 

Technology & Internet Systems (SITIS’2012), Sorrento – Naples, Italy, 25-29 November 2012, pp. 

510-518. 

[4] Brahmia Z., Bouaziz R., Grandi F., Oliboni B., “Schema Versioning in τXSchema-Based 

Multitemporal XML Repositories”, Technical Report TR-93, TimeCenter, 25 pages, December 

2010. <http://timecenter.cs.aau.dk/TimeCenterPublications/TR-93.pdf> 

[5] Brahmia Z., Bouaziz R., Grandi F., Oliboni B., “Schema Versioning in τXSchema-Based 

Multitemporal XML Repositories”, Proceedings of the 5
th
 IEEE International Conference on 

Research Challenges in Information Science (RCIS 2011), Guadeloupe - French West Indies, 

France, 19-21 May 2011, pp. 1-12. 

[6] Kosky A., “Modeling and Merging Database Schema”, Technical Report MS-CIS-91-65, University 

of Pennsylvania, 1991. 

[7] Kosky A., “A Formal Model for Databases with Applications to Schema Merging”, Proceedings of 
the International Workshop on Specifications of Database Systems, Glasgow, 3–5 July 1991, pp. 

154-170. 

[8] Buneman P., Davidson S. B., Kosky A., “Theoretical Aspects of Schema Merging”, Proceedings of 
the 3

rd
 International Conference on Extending Database Technology (EDBT 1992), Vienna, Austria, 

March 23-27, 1992, pp. 152-167. 

[9] Buneman P., Davidson S. B., Kosky A., VanInwegen M., “A Basis for Interactive Schema 

Merging”, Proceedings of the 25
th
 Annual Hawaii International Conference on System Sciences 

(HICSS’1992), 7-10 January 1992, Kauai, Hawaii, volume 2, pp. 311-322. 

[10] Quix C., Kensche D., Li X., “Generic Schema Merging”, Proceedings of the 19
th
 International 

Conference on Advanced Information System Engineering (CAiSE’2007), Trondheim, Norway, 11-
15 June 2007, pp. 127-141. 

[11] Pottinger R., Bernstein P. A., “Schema merging and mapping creation for relational sources”, 

Proceedings of the 11
th

 International Conference on Extending Database Technology (EDBT 2008), 

Nantes, France, 25-29 March 2008, pp. 73-84. 

[12] Li X., Quix C., Kensche D., Geisler S., “Automatic schema merging using mapping constraints 

among incomplete sources”, Proceedings of the 19
th
 ACM Conference on Information and 

Knowledge Management (CIKM 2010), Toronto, Ontario, Canada, 26-30 October 2010, pp. 299-



54 

 

308. 

[13] Critchlow T., "Schema Coercion: Using Database Meta-information to Facilitate Data Transfer", 
PhD thesis in computer science, University of Utah, 1997. 

[14] Guerrini G., Mesiti M., Rossi D., “Impact of XML Schema Evolution on Valid Documents”, 

Proceedings of the 7
th
 ACM International Workshop on Web Information and Data Management 

(WIDM 2005), Bermen, Germany, 4 November 2005, pp. 39-44. 

[15] Prashant B. V. N., Kumar P. S., “Managing XML data with Evolving Schema”, Proceedings of the 

13
th

 International Conference on Management of Data (COMAD’2006), Delhi, India, 14-16 

December 2006, pp. 174-177. 

[16] Su H., Kramer D., Chen L., Claypool K. T., Rundensteiner E. A.,  “XEM: Managing the evolution 

of XML Documents”, Proceedings of the 11
th
 International Workshop on Research Issues in Data 

Engineering: Document Management for Data Intensive Business and Scientific Applications (RIDE 
2001), Heidelberg, Germany, 1-2 April 2001, pp. 103-110. 

[17] Necaský M., Klímek J., Malý J., Mlýnková I., “Evolution and change management of XML-based 

systems”, Journal of Systems and Software, vol. 85, n° 3, 2012, pp. 683-707. 

[18] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “Schema Change Operations for Full Support of 

Schema Versioning in the τXSchema Framework”, International Journal of Information Technology 

and Web Engineering (in press). 

[19] Currim F., Currim S., Dyreson C. E., Snodgrass R. T., Thomas S. W., Zhang R., “Adding Temporal 
Constraints to XML Schema”, IEEE Transactions on Knowledge and Data Engineering, vol. 24, n° 

8, 2012, pp. 1361-1377. 

 




