
An Efficient Approach for Detecting and
Repairing Data Inconsistencies

Resulting from Retroactive Updates in
Multi-temporal and Multi-version XML

Databases

Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

June 17, 2014

TR-97

A TimeCenter Technical Report

Title An Efficient Approach for Detecting and Repairing Data Inconsistencies
Resulting from Retroactive Updates in Multi-temporal and Multi-version
XML Databases

Copyright c© 2014 Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz. All
rights reserved.

Author(s) Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

Publication History June 2014. A TimeCenter Technical Report.

TIMECENTER Participants

Michael H. Böhlen, University of Zurich, Switzerland; Curtis E. Dyreson, Utah State University, USA;
Fabio Grandi, University of Bologna, Italy; Christian S. Jensen (codirector), Aarhus University, Denmark;
Vijay Khatri, Indiana University, USA; Gerhard Knolmayer, University of Berne, Switzerland; Carme
Mart́ın, Technical University of Catalonia, Spain; Thomas Myrach, University of Berne, Switzerland;
Mario A. Nascimento, University of Alberta, Canada; Sudha Ram, University of Arizona, USA; John F.
Roddick, Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Simonas
Šaltenis, Aalborg University, Denmark; Dennis Shasha, New York University, USA; Richard T. Snodgrass
(codirector), University of Arizona, USA; Paolo Terenziani, University of Piemonte Orientale “Amedeo
Avogadro,” Alessandria, Italy; Stephen W. Thomas, Queen’s University, Canada; Kristian Torp, Aalborg
University, Denmark; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Emory
University, USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of
California, Los Angeles, USA

For additional information, see The TimeCenter Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available via TimeCenter is provided “as is” and without any express or implied
warranties, including, without limitation, the implied warranty of merchantability and fitness for a par-
ticular purpose.

The TimeCenter icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal
lines because the primary storage medium was wood. Runes may also be found on jewelry, tools, and
weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

1

An Efficient Approach for Detecting and Repairing
Data Inconsistencies Resulting from Retroactive Updates

in Multi-temporal and Multi-version XML Databases

Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

University of Sfax, Tunisia

emails : hindhamrouni@gmail.com, {zouhaier.brahmia, raf.bouaziz}@fsegs.rnu.tn

Abstract
Multi-temporal XML databases supporting schema versioning contain XML elements of different temporal
formats (snapshot, transaction-time, valid-time, and bitemporal), defined under several XML schema versions.
These databases support three types of data updates concerned with the time when updates are made: retroactive,
proactive, or on-time, dealing with past, future, or current data respectively. A retroactive update (i.e., modifying
or deleting a past element) due to a detected error means that the database has included erroneous information
during some period in the past and, therefore, its consistency should be restored by correcting all errors and
inconsistencies that have occurred in the past. Indeed, all processings that have been carried out during the
inconsistency period and have used erroneous information have normally produced erroneous information. In
this work, we propose an approach which preserves data consistency in multi-temporal and multi-version XML
databases. More precisely, after any retroactive update, the proposed approach allows (i) detecting and analyzing
periods of database inconsistency, which result from that update, and (ii) repairing of all inconsistencies and
recovery of all side effects.

Keywords: Temporal XML Databases; Schema Versioning; Retroactive Update; Data Inconsistency;
Inconsistency Periods; Repairing an Inconsistency; Side Effect; Side Effects Recovery.

1 Introduction
Nowadays, supporting the temporal aspect is a requirement for most computer applications, including
medical, legal, banking, scientific and scheduling applications. In fact, these applications need to store
and manipulate data while taking into account the time dimension. This has led to the appearance of
temporal databases [1, 2, 3] which retain data evolution over transaction-time dimension (concerning
the real world) and/or valid-time dimension (concerning the database life) [4]:

♦ The valid-time of a datum is the time when a datum is true in the real world; each time-varying
data is timestamped with a validity start time (VST) and a validity end time (VET).

♦ The transaction-time of a datum is the time when a datum is current in the database; each time-
varying data is timestamped with a transaction start time (TST) and a transaction end time
(TET).

Thus, according to the temporal dimensions they support, temporal databases are classified into five
categories [4, 5]: transaction-time (including only transaction-time data), valid-time (containing only
valid-time data), bitemporal (storing only bitemporal data), snapshot (containing only non-
temporal/conventional data) or multi-temporal (supporting data of different temporal formats).

Besides, evolution of database schema (e.g., dropping or adding entities, dropping or adding attributes
of entities) over time is unavoidable in the context of information systems and may occur due to
several reasons: meeting new user requirements, taking into account new regulations, optimizing the
database schema in order to have best performance, etc. In temporal databases, changing schema could
lead to some problems like data loss when dropping some entities and/or attributes. Thus, although
temporal databases allow keeping track of data history when the schema is static, they do not provide a
complete history when they do not keep track also of database schema evolution over time. Therefore,

2

to avoid this drawback and to provide a complete data history which allows performing operations on
data defined under any database schema version, researchers in the database community have
proposed to adopt the schema versioning technique in temporal databases [5, 6, 7].

In multi-temporal databases, there are three types of updates concerned with the time when updates are
made: retroactive, proactive [8], and real-time (or on-time) updates.

♦ A retroactive update is performed after the change occurred in reality (i.e., the TST of the datum
is superior to its VST).

♦ A proactive update is done before the change occurs in reality (i.e., the TST of the datum is
inferior to its VST).

♦ A real-time update is done when the change occurs in reality (i.e., the TST of the datum is equal
to its VST).

Retroactive and proactive updates [8] occur naturally in many applications. For example, a postdated
check is a proactive update, and a salary increase may be retroactive to some past date.

On the other hand, currently, XML databases [9] are widely used, especially on the Web. The
introduction of temporal [10] aspects in such databases gave rise to temporal XML databases [11]. In
these databases, any temporal XML document can store transaction-time, valid-time and bi-temporal
XML elements. Moreover, these databases are very useful for several domains (e.g., managing
evolution of e-commerce customer profiles, managing evolution of legal texts in e-government
systems, online management of patients’ medical records...). Notice that temporal XML databases are
richer than temporal relational databases at structure and textual content levels. Moreover, temporal
XML data are presented with temporally grouped data models [12], which have long been advocated
as the most natural and effective representations of temporal information [13]. Indeed, each time-
varying XML element evolves individually over time.

Under such databases, end users/applications can insert, delete, and modify past, current and future
data. However, these updates are not always performed safely (i.e., without problems), since
sometimes data update operations can have a harmful effect on the consistency of the database.
Indeed, compromising the database consistency could occur when manipulating any type of data (i.e.,
current, past, or future). In the following, we better explain this issue through three cases of data
manipulation operations (we suppose that the current time is 2014-04-01):

Case 1: Detecting database inconsistency when manipulating current data.

Let’s take the example of correcting the current XML element representing the current price of a
product, which was introduced on 2014-02-01. All existing data (e.g., monthly turnovers, total
amounts of customer invoices) that have been produced using the erroneous price are consequently
erroneous and should be corrected. The database has included inconsistencies during the period going
from 2014-02-01 to 2014-04-01.

Case 2: Detecting database inconsistency when manipulating past data.

Let’s take the sample of correcting a past XML element representing a past banking interest rate in a
bank, which was applied during the period going from 2013-01-01 to 2013-12-31. All existing data
(e.g., interest bank accounts, balances of bank accounts, scheduled payment amounts) that have been
obtained using the erroneous past banking interest rate are consequently erroneous and should be
corrected. The database was inconsistent during the period where this interest rate was effective.

Case 3: Detecting database inconsistency when manipulating future data.

Let’s take the example of correcting a future XML element representing the amount of projected
annual sales of a company, which was introduced in the database on 2014-01-10. All existing data
(e.g., future statistics, economic forecasts) that have been calculated using the erroneous future amount
are consequently erroneous and should be corrected. The database was in an inconsistent state between
2014-01-10 and 2014-04-01.

3

In the present work, we deal only with the second case; we left the two other cases to future works.
We focus on the impacts of manipulating past data on the consistency of the database: we show how to
detect inconsistencies and to repair the database consistency, after a transaction which includes some
operations acting on past bitemporal or valid-time data.

For the best of our knowledge, existing database management systems (DBMSs), temporal integrity
constraints [14] and semantics of existing temporal data manipulation operations [15, 16] are
insufficient to cope with such problems, since they do not provide any support to ensure the database
consistency in cases like the three ones presented above. In fact, although some existing DBMSs, like
Oracle 12c, DB2 ver.10, and Teradata Database, include some features for temporal data types and
management [3], none of them provides support for determining database consistency periods and
repairing consistencies resulting from retroactive updates. As for available temporal integrity
constraints, they only guarantee that some rules on data (e.g., key, uniqueness) are being respected and
some relations between data are established (e.g., referential integrity constraint). Moreover, the
previously proposed temporal data manipulation operations [15, 16] only perform actions on temporal
data according to a temporal semantics which does not take into account the checking of database
consistency, since they neither inform the end-user that an inconsistency period has been detected, nor
activate supplementary and transparent processings in order to restore the database consistency in
cases similar to what presented above.

To solve this problem, we neither add new temporal integrity constraints, nor update the current
semantics of temporal data manipulation operations. We propose a new approach that allows the
temporal XML database management system (i) to detect any database inconsistency that happens
after a retroactive data manipulation operation, and (ii) to perform necessary processings, in a
transparent way, in order to repair inconsistencies.

The rest of this paper is organized as follows: the next section motivates the need for a new approach
for preserving the consistency of a multi-temporal XML database supporting schema versioning;
Section 3 describes data inconsistencies resulting from retroactive updates in such a database; Section
4 presents our approach for automatic repairing of data inconsistencies that occur due to a retroactive
update; Section 5 discusses related work; Section 6 concludes the report with a summary and a list of
our future work.

2 Motivation
In this section, we first present two examples that illustrate how maintaining consistency in multi-
temporal and multi-version XML databases after a retroactive update is a complicated task that could
not be achieved using existing practical supports, i.e., supports provided by DBMSs. Then we show
the need for systems providing supports for preserving consistency of muti-temporal and multi-version
XML databases.

2.1 Motivating Examples

In order to show that retroactive updates are not graceful tasks, we present the following two
examples:

Example 1: Data inconsistencies resulting from a retroactive update of an employee’s salary

Suppose that on 2014-06-10, the personnel officer detects an error that has occurred on 2012-01-05:
he/she saved an erroneous value for the salary of the employee Abdullah: 1120 TND (the erroneous
value) instead of 1210 TND (the correct value); thus, an amount of 90 TND has not been considered in
the salary, and during a period of twenty-nine months. Obviously, this error was propagated to all
results of operations that have been performed using this salary (i.e., 1120), especially those which
calculated taxes and social security contributions, as well as to all successor salaries.

Currently, the semantics of the temporal data update operations [15, 16], which should be used to
correct the erroneous salary that was inserted on 2012-01-05, does not support the correction of all

4

effects of this error (i.e., it does not correct all taxes and social security contributions, that were
calculated after 2012-01-05 based on the erroneous salary, as well as all other successor salaries).
Such an operation corrects only the value of the corresponding salary. The XML element that
represents the erroneous salary is stored as a past erroneous element, and the correct salary is stored in
a new XML element which represents a past correct element <salary/> for that employee (see Fig. 1);
the modification is performed in a non-destructive manner, since we are in a temporal setting.

<employees>
<employee>

<SSN>12345678</SSN>
<name>Abdullah</name>
<salaries>

<salary VST=”2012-01-01” VET=”2012-12-31”
 TST=”2012-01-05” TET=”2013-01-03”>1120</s alary>
<salary VST=”2012-01-01” VET=”2012-12-31”
 TST=”2014-06-10” TET=”2014-06-10”>1210</s alary>
<salary VST=”2013-01-01” VET=”2013-12-31”
 TST=”2013-01-03” TET=”2014-01-03”>1250</s alary>
<salary VST=”2013-01-01” VET=”2013-12-31”
 TST=”2014-06-10” TET=”2014-06-10”>1300</s alary>
<salary VST=”2014-01-01” VET=”2014-12-31”
 TST=”2014-01-03” TET=”2014-06-10”>1390</s alary>
<salary VST=”2014-01-01” VET=”2014-12-31”
 TST=”2014-06-10” TET=”UC”>1530</salary>

</salaries>
<socialSecurityContributions>

<socialContribution VST=”2012-01-01” VET=”2012-12 -31”
 TST=”2012-01-05” TET=”2013-01-03”>112</so cialContribution>
<socialContribution VST=”2012-01-01” VET=”2012-12 -31”
 TST=”2014-06-10” TET=”2014-06-10”>121</so cialContribution>
<socialContribution VST=”2013-01-01” VET=”2013-12 -31”
 TST=”2013-01-03” TET=”2014-01-03”>125</so cialContribution>
<socialContribution VST=”2013-01-01” VET=”2013-12 -31”
 TST=”2014-06-10” TET=”2014-06-10”>130</so cialContribution>
<socialContribution VST=”2014-01-01” VET=”2014-12 -31”
 TST=”2014-01-03” TET=”2014-06-10”>139</so cialContribution>
<socialContribution VST=”2014-01-01” VET=”2014-12 -31”
 TST=”2014-06-10” TET=”UC”>153</socialCont ribution>

</socialSecurityContributions>
<taxes>

<tax VST=”2012-01-01” VET=”2012-12-31”
 TST=”2012-01-05” TET=”2013-01-03”>56</tax>
<tax VST=”2012-01-01” VET=”2012-12-31”
 TST=”2014-06-10” TET=”2014-06-10”>60.5</ta x>
<tax VST=”2013-01-01” VET=”2013-12-31”
 TST=”2013-01-03” TET=”2014-01-03”>62.5</ta x>
<tax VST=”2013-01-01” VET=”2013-12-31”
 TST=”2014-06-10” TET=”2014-06-10”>65</tax>
<tax VST=”2014-01-01” VET=”2014-12-31”
 TST=”2014-01-03” TET=”2014-06-10”>69.5</ta x>
<tax VST=”2014-01-01” VET=”2014-12-31”
 TST=”2014-06-10” TET=”UC”>76.5</tax>

</taxes>
</employee>
…

<employees>

Fig. 1. Salaries of the employee Abdullah, and corresponding social security contributions and taxes,
corrected after a retroactive update.

5

To repair all inconsistencies that are stored in the database, the DBA should proceed in an ad hoc
manner: first, he/she should determine the list of all operations that were done using the erroneous
salary, in order to define all data that were calculated based on the erroneous salary or calculated based
on other data obtained from the erroneous salary, going from 2012-01-05 to 2014-06-10. Then, he/she
should correct all erroneous data, either manually or by writing an appropriate XML update [16, 17,
18]. Fig. 1 shows that all salaries introduced after the corrected salary have been also corrected by
inserting new correct past <salary/> elements, except the last salary which is replaced by a new correct
current <salary/> element (i.e., the <salary/> element with TET attribute equal to “UC”); notice that
“UC” (Until Change) [4] means that the salary is current until new change. The figure 1 shows also
that both the social security contributions and taxes corresponding to the corrected salaries have also
been corrected accordingly (a social security contribution is equal to 10% of the salary paid during the
same period, whereas a tax is equal to 5% of the corresponding salary).

Example 2: Data inconsistencies resulting from a retroactive update of a deposited amount in a
bank account

Suppose that on 2014-03-25, the auditor detects an error that has occurred on 2014-01-05: the bank
employee saved a deposit transaction which adds an amount of 550 TND (the erroneous value) instead
of 500 TND (the correct value), to the account of a customer; thus, an amount of 50 TND was stored
in the database but really was not provided by the customer. Obviously, this error was propagated to
all other financial transactions that have been done on this account between 2014-01-05 and 2014-03-
25; there was always an amount of 50 TND which should be subtracted from the balance.

As said in Example 1, the semantics of existing data update operation [15, 16], which should be used
to correct both the deposited amount and the balance account on 2014-01-05, does not support the
correction of the impact of this error (i.e., to correct each balance of this account, related to each
transaction performed after 2014-01-05). Such an operation corrects only the details of the financial
transaction (i.e., the deposited amount and the balance of the account at the end of the transaction)
done on 2014-01-05. To restore the database consistency, the DBA should proceed in an ad hoc
manner: first, he/she should determine the list of all transactions that were done this account going
from the transaction during which the error has occurred until the last one. Then, he/she should update
all erroneous data by writing an appropriate XML update query or a program.

2.2 Need for New DBMS Supports

The consistency of a multi-temporal and multi-version XML database could not be ensured easily,
since (i) all temporal dimensions are supported (i.e., data can evolve over transaction time and/or valid
time), (ii) consistency of both conventional and temporal data should be guaranteed, (iii) there are
several schema versions and consequently several database instances, and (iv) a data management
operation that is originally devoted to insert, delete, or update an XML element could involve several
other XML elements (e.g., when the temporal interval of a new element that modifies an existing one
overlaps, completely or partially, temporal intervals of other existing XML elements), defined under
the same XML schema version or under several XML schema versions.

Thus, the challenges described above show that end users/applications, interacting with muti-temporal
and multi-version XML databases, need DBMSs with built-in support for automatic and graceful
repairing of data inconsistencies that result from retroactive updates.

2 Data Inconsistencies Resulting from Retroactive Updates
Inserting, updating and deleting past data can give rise to inconsistencies in multi-temporal and multi-
version XML databases. These inconsistencies generate many side effects affecting other data.

In [19], the author defined a side effect as a database inconsistency generated by a processing which
has used an inconsistent data. A side effect is generated by (i) a retroactive update of data, (ii) a
cancellation of effects of a previous processing, or (iii) a re-execution of a previous processing with

6

correct values for all written and read data (in fact, such a processing had used during its (first)
execution erroneous values for some written or read data, and, thus, it should be re-executed in order
to repair inconsistencies that have occurred). Moreover, the author of [19] defined an inconsistency
period resulting from a retroactive update of data as the temporal interval which delimits the scope of
side effects that are expected to be generated by this update. Such an inconsistency period could be
one of the following three types: “Wrong Absence of Data”, “Wrong Presence of Data”, or “Errors in
Data”.

♦ Wrong Absence of Data: the inconsistency is due to the absence of a datum that had to be
present in the database during this period;

♦ Wrong Presence of Data: the inconsistency comes from the presence of a datum that had to be
absent in the database during this period;

♦ Errors in Data: the inconsistency results from the existence of some data with erroneous values
during this period.

An inconsistency period, resulting from a retroactive update can be divided into several sub-periods;
each one of these sub-periods should be interpreted according to the nature (i.e., insertion, deletion, or
correction) of the retroactive update. In the following, we study periods of inconsistency resulting
from retroactive updates, and their sub-periods.

3.1 Data inconsistencies resulting from a retroactive insertion of data

The insertion of an XML element with retroactive effect generates an inconsistency period of “Wrong
Absence of Data” type: the inserted element, which was absent before its transaction start time, should
be normally present in the temporal database since its validity start time. Fig. 2 illustrates such a
period of inconsistency. In the following, we use CT to denote the “Current Time”.

Fig. 2. The inconsistency period resulting from a retroactive insertion of data.

As shown by Fig. 2, the period of inconsistency, which is delimited by the VST (period beginning)
and the TST (period ending) of ei, can be divided into two sub-periods:

♦ [VSTi – VETi]: the interval during which the consequent side effects concern all processings
that had to use the element ei while it had to be a current element;

♦]VET i – TSTi]: the interval during which the generated side effects concern all processings that
had to use the element ei while it had to be a past element.

3.2 Data Inconsistencies Resulting from a Retroactive Deletion of Data

The removal of an XML element with retroactive effect generates an inconsistency period of “Wrong
Presence of Data” type: the deleted element, which was present before the instant of its deletion (i.e.,
before the transaction start time of the deletion element [15, 16], that is the XML element which is
used to delete the corresponding element), should not normally exist in the temporal database since its
validity start time. Fig. 3 illustrates such a period of inconsistency.

7

Fig. 3. The inconsistency period resulting from a retroactive deletion of data.

As shown by Fig. 3, the period of inconsistency, which is delimited by the VST of ei (period
beginning) and the TST of ej (period ending), can be divided into two sub-periods:

♦ [VSTj - VETi]: the interval during which the resulting side effects concern all processings that
had used the element ei while it was a current element;

♦]VET i - TSTj]: the interval during which the consequent side effects concern all processings that
had used the element ei while it was a past element.

3.3 Data Inconsistencies Resulting from a Retroactive Correction of Data

Retroactive correction operations could be done only on valid-time and bitemporal data. In this paper,
we deal only with retroactive correction of bitemporal data, since we think that it is more complex
and, thus, it requires much attention.

The correction of a bitemporal element is performed by inserting a new element containing the correct
values, called the element of correction [15, 16]. In the following examples, ej denotes the correction
element and ei denotes the corrected element. A correction operation can affect (i) the contents of the
corrected element, (ii) values of non-temporal attributes (i.e., attributes different of VST, VET, TST,
and TET attributes) of the corrected element, and/or (iii) the valid-time interval of the corrected
element (i.e., values of VST and VET attributes); obviously, the transaction-time interval (i.e., values
of TST and TET attributes) of any element cannot be modified owing to the definition of transaction
time. In the first and/or the second case (i.e., points (i) and (ii)), the correction operation generates an
inconsistency period of type “Errors in Data” (see the following first subsection). However, in the
third case (i.e., point (iii)), it generates an inconsistency period which can be divided into several sub-
periods each one of them has a different type (see the following second subsection). In the following
two subsections, we study these inconsistencies.

3.3.1 Data inconsistencies resulting from a retroactive correction operation which does

not modify the valid-time interval of a bitemporal element

In this case, the retroactive correction operation updates the contents and/or the values of non-
temporal attributes of a bitemporal element; it modifies neither the VST attribute, nor the VET
attribute. This correction generates an inconsistency period of type “Errors in Data”: it means that the
corrected element had an erroneous value. Fig. 4 illustrates such a period of inconsistency.

Fig. 4. The inconsistency period resulting from a retroactive correction operation which does not

modify the valid-time interval of a bitemporal element.

8

As shown by Fig. 4, the period of inconsistency, which is delimited by the VST of ei (period
beginning) and the TST of ej (period ending), can be divided into two sub-periods:

♦ [VSTi - VETi]: an inconsistency period of type “Errors in Data”: the interval during which the
generated side effects concern all processings that had used the element ei while it was a current
element;

♦]VET i - TSTj]: an inconsistency period of type “Errors in Data”: the interval during which the
consequent side effects concern all processings that had used the element ei while it was a past
element.

3.3.2 Data inconsistencies resulting from a retroactive correction operation which

modifies the valid-time interval of a bitemporal element

In this subsection, we study inconsistencies resulting from a retroactive correction operation that
modifies the VST attribute and/or the VET attribute. When the valid-time interval of a bitemporal
element is modified, we distinguish different cases according to Allen's interval algebra [20] and all
possible relations between the valid-time interval of the correction element (ej) and that of the
corrected element (ei).

Case 1: The valid-time interval of the correction element (ej) follows that of the corrected
element (ei)

Fig. 5. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that follows it.

As shown by Fig. 5, the period of inconsistency, which is delimited by the VST of ei (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTi – VETi]: an inconsistency sub-period of type “Wrong Presence of Data”, during which
the consequent side effects concern all processings that had used ei while it was a current
element;

♦]VET i - VSTj[: an inconsistency sub-period of type “Wrong Presence of Data”, during which the
generated side effects concern all processings that had used ei while it was a past element;

♦ [VSTj - VETj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the generated side effects concern all processings that had to use ej
while it had to be a current element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the correction element ej updates also the contents and/or at least one of the non-
temporal attributes of the corrected element ei. So, during this sub-period, the resulting side
effects concern all processings that had used ei while it was a past element.

♦]VET j - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

9

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTj – VETj] sub-period has also this type. In such a case, during this sub-
period, the resulting side effects concern all processings that had used ei while it was a past
element.

Case 2: The valid-time interval of the correction element (ej) contains that of the corrected
element (ei)

Fig. 6. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that contains it.

As shown by Fig. 6, the period of inconsistency, which is delimited by the VST of ej (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTj – VSTi[: an inconsistency sub-period of type “Wrong Absence of Data”, during which the
consequent side effects concern all processings that had to use the element ej while it had to be a
current element;

♦ [VSTi – VETi]: this interval is not considered always as an inconsistency sub-period; it could be
considered as an inconsistency sub-period of type “Errors in Data” only and only if the
correction element ej updates also the contents and/or at least one of the non-temporal (i.e., non-
timestamping) attributes of the corrected element ei. In that case, during [VSTi – VETi], the
generated side effects concern all processings that had used the element ei while it was a current
element.

♦]VET i – VETj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a current element;

• it also could be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETi] sub-period has also this type. In that case, the resulting side effects
during this sub-period concern all processings that had used ei while it was a past element.

♦]VET j - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETi] sub-period has also this type. In such a case, the side effects
generated during this sub-period concern all processings that had used ei while it was a past
element.

Case 3: The valid-time interval of the correction element (ej) precedes that of the corrected
element (ei)

10

Fig. 7. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that precedes it.

As shown by Fig. 7, the period of inconsistency, which is delimited by the VST of ej (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTj – VETj[: an inconsistency sub-period of type “Wrong Absence of Data”, during which
the consequent side effects concern all processings that had to use the element ej while it had to
be a current element;

♦ [VET j – VSTi]: an inconsistency sub-period of type “Wrong Absence of Data”, during which
the consequent side effects concern all processings that had to use the element ej while it had to
be a current element;

♦]VSTj – VETi]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it also could be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETi] sub-period has also this type. In that case, the resulting side effects
during this sub-period concern all processings that had used ei while it was a current element.

♦]VET j - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETi] sub-period has also this type. In such a case, the side effects
generated during this sub-period concern all processings that had used ei while it was a past
element.

Case 4: The valid-time interval of the correction element (ej) included in that of the corrected
element (ei)

Fig. 8. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that included in it.

11

As shown by Fig. 8, the period of inconsistency, which is delimited by the VST of ej (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTi – VSTj[: an inconsistency sub-period of type “Wrong Presence of Data”, during which
the consequent side effects concern all processings that had used the element ej while it was a
current element;

♦ [VSTj – VETj]: this interval is not considered always as an inconsistency sub-period; it could be
considered as an inconsistency sub-period of type “Errors in Data” only and only if the
correction element ej updates also the contents and/or at least one of the non-temporal (i.e., non-
timestamping) attributes of the corrected element ei. In that case, during [VSTj – VETj], the
generated side effects concern all processings that had used the element ei while it was a current
element.

♦]VET j – VETi]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it also could be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTj – VETj] sub-period has also this type. In that case, the resulting side effects
during this sub-period concern all processings that had used ei while it was a current element.

♦]VET i - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTj – VETj] sub-period has also this type. In such a case, the side effects
generated during this sub-period concern all processings that had used ei while it was a past
element.

Case 5: The valid-time interval of the correction element (ej) overlaps that of the corrected
element (ei) on right

Fig. 9. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that overlaps it on the right.

As shown by Fig. 9, the period of inconsistency, which is delimited by the VST of ej (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTi – VSTj[: an inconsistency sub-period of type “Wrong Presence of Data”, during which
the consequent side effects concern all processings that had used the element ej while it had to
be a current element;

♦ [VSTj – VETi]: this interval is not considered always as an inconsistency sub-period; it could be
considered as an inconsistency sub-period of type “Errors in Data” only and only if the

12

correction element ej updates also the contents and/or at least one of the non-temporal (i.e., non-
timestamping) attributes of the corrected element ei. In that case, during [VSTj – VETi], the
generated side effects concern all processings that had used the element ei while it was a current
element.

♦]VET i – VETj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a current element;

• it also could be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTj – VETi] sub-period has also this type. In that case, the resulting side effects
during this sub-period concern all processings that had used ei while it was a past element.

♦]VET j - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETi] sub-period has also this type. In such a case, the side effects
generated during this sub-period concern all processings that had used ei while it was a past
element.

Case 6: The valid-time interval of the correction element (ej) overlaps that of the corrected
element (ei) on left

Fig. 10. The inconsistency period resulting from a retroactive correction operation which replaces the

valid-time interval of a bitemporal element with a new one that overlaps it on left.

As shown by Fig. 10, the period of inconsistency, which is delimited by the VST of ej (period
beginning) and the TST of ej (period ending), can be divided into four sub-periods:

♦ [VSTj – VSTi[: an inconsistency sub-period of type “Wrong Absence of Data”, during which the
consequent side effects concern all processings that had to use the element ej while it had to be a
current element;

♦ [VSTi – VETj]: this interval is not considered always as an inconsistency sub-period; it could be
considered as an inconsistency sub-period of type “Errors in Data” only and only if the
correction element ej updates also the contents and/or at least one of the non-temporal (i.e., non-
timestamping) attributes of the corrected element ei. In that case, during [VSTi – VETj], the
generated side effects concern all processings that had used the element ei while it was a current
element.

♦]VET j – VETi]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a current element;

13

• it also could be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETj] sub-period has also this type. In that case, the resulting side effects
during this sub-period concern all processings that had used ei while it was a past element.

♦]VET j - TSTj]:

• this sub-period is considered as an inconsistency sub-period of type “Wrong Absence of
Data”, during which the consequent side effects concern all processings that had to use ej
while it had to be a past element;

• it could also be considered as an inconsistency sub-period of type “Errors in Data” only and
only if the [VSTi – VETj] sub-period has also this type. In such a case, the side effects
generated during this sub-period concern all processings that had used ei while it was a past
element.

4 Detecting and Repairing Data Inconsistencies Resulting from Retroactive
Updates in Multi-temporal XML Databases Supporting Schema
Versioning

In this section, we propose an approach that allows restoring automatically the multi-temporal
database consistency after a retroactive update of temporal XML data. First, we describe the process
of restoring automatically the database consistency. Then, we present the architecture of a native
multi-temporal and multi-version XML DBMS which supports restoring automatically the database
consistency after a retroactive update.

4.1 Process of Restoring Automatically the Database Consistency

When an end user or an application submits to the temporal XML DBMS a retroactive update of
temporal XML data, the DBMS performs the following sequence of tasks:

Task 1: it updates the database as required by the end user or the application (obviously after checking
the update syntactically).

Task 2: it determines automatically the period of inconsistency resulting from the retroactive update
of data, and its sub-periods.

Task 3: it determines automatically the list of transactions that were executed during each sub-period
of inconsistency and had used erroneous past data (in case that the corresponding sub-period of
inconsistency is of type “Wrong Presence of Data” or “Errors in Data”) or had to use new data (in
case that the corresponding sub-period of inconsistency is of type “Wrong Presence of Data” or
“Errors in Data”); for each concerned transaction, it should provide its commit time, all its
elementary operations (for the sake of simplicity, we suppose that a transaction is composed of a
single operation, i.e., a single insert, delete, or update operation), and all data that were written
and read by this transaction.

Task 4: it re-executes in a provisory workspace the list of corresponding transactions during each sub-
period of inconsistency either (a) without using the corresponding past data, if this sub-period is
of type “Wrong Presence of Data”, or (b) while using (b.1) the correct values of past data, if this
sub-period is of type “Errors in Data”, or (b.2) the specified past data, if this sub-period is of type
“Wrong Absence of Data”.

Task 5: it compares the old results of determined transactions (i.e., results already stored in the
database, as written data by these transactions) with the new results of them (i.e., the new data
that are written by these transactions in the provisory workspace).

Task 6: it replaces every old result with the corresponding new result when there is a difference
between them.

14

In the following, we provide main requirements of some tasks presented above:

♦ Task 1 requires that the DBMS supports management of temporal XML data under schema
versioning; we have studied this aspect in our previous work [15, 16].

♦ Task 3 requires beforehand keeping track of all transactions which are executed: all operations
which compose each transaction, all written and read data, and its commit time;

♦ Task 4 requires that the provisory workspace should be a copy of the database (schema and
instances) during the inconsistency period, before the execution of the retroactive update
operation.

♦ Task 6 requires that replacing old data with new data should be performed logically and not
physically (i.e., in a destructive manner); each existing erroneous data is logically corrected by a
new correct data. After restoring the database consistency, only correct data must be used by the
DBMS to answer user/application queries; erroneous data could be vacuumed later [21] by the
database administrator.

4.2 Architecture

Owing to the general architecture of a DBMS [22], the transaction manager is the component which is
devoted to managing transactions resulting from user/applications queries and updates submitted to the
database. Therefore, if we would like to have an automatic restoring of the database consistency after
any retroactive update of temporal XML data, we think that (i) the transaction manager of a temporal
XML DBMS should be extended by four new components: “Retroactive Update Checker”,
“Inconsistency Period Manager”, “Side Effect Recovery Manager” and “Optimizer”, and (ii) the
temporal XML DBMS itself should include a “Transaction Catalog Manager”, a “Transaction
Catalog”, and a “Provisory Workspace”. The new general architecture of a temporal XML DBMS is
depicted in Fig. 11.

Fig. 11. General Architecture of a temporal XML database supporting automatic detecting and
repairing of data inconsistencies resulting from retroactive updates.

The “Retroactive Update Checker” checks that the Temporal XML Update submitted by the end
user/application is an update operation with retroactive effect (i.e., this operations adds, deletes, or
modifies past data). Notice that a past data has a valid-time interval which ends before the current time
(i.e., VET < CT).

The “Inconsistency Period Manager”, which is invoked by the “Retroactive Update Checker” in
case it detects a retroactive update, determines automatically the period of inconsistency which results

15

from a retroactive update of data, and its sub-periods with their types. Suppose that an erroneous past
element “ee” is corrected by a correct past element “ce”. The resulting period of inconsistency is
defined by either the interval [VSTee - CT] (if VSTee < VSTce), or [VSTce - CT] (if VSTce < VSTee).
The sub-periods of inconsistency related to this period are identified according to the study presented
in the subsection 3.3.

After determining all sub-periods of inconsistency, the “Inconsistency Period Manager” (i) invokes
the “Transaction Catalog Manager” in order to retrieve from the “Transaction Catalog” the list of
transactions that were executed during each one of these sub-periods, and (ii) sends all retrieved
transactions to the “Side Effect Recovery Manager”.

The “Side Effect Recovery Manager” controls the re-execution of transactions which have used
erroneous data (i.e., transactions executed during a period of inconsistency of type “Wrong Presence
of Data” or “Errors in Data”) and transactions that had to use newly added data (i.e., transactions
executed during a period of inconsistency of type “Wrong Absence of Data”). The concerned
transactions are re-executed in a “Provisory Workspace” which is a copy of the database during the
corresponding period of inconsistency. At the end of the re-execution of each transaction, the “Side
Effect Recovery Manager” compares the results of determined transaction already stored (as written
data) in the database with the results of the execution in the provisory workspace. If there are
differences between them, so an inconsistency is detected and it should be repaired. For that, the “Side
Effect Recovery Manager” replaces the old result with the new one.

The “Side Effect Recovery Manager” interacts with the “Optimizer ” module which implements a
set of optimization rules. Indeed, the “Optimizer ” receives a sequence of non-optimized transactions
that should be re-executed, and tries to reduce them (if possible). In the following, we present three
examples of these optimization rules:

♦ Rule 1: if two successive transactions, T1 and T2, act on the same XML element e12, such that
T1 adds e12 and T2 deletes e12, then the system has to ignore these two transactions and do not
re-execute them.

♦ Rule 2: if two successive transactions, T3 and T4, act on the same XML element e34, such that
T3 adds e34 and T4 updates e34, then the system has to combine/merge the two transactions
into the first one (which is T3) and re-executing it (i.e., re-executing T3) but with updated
values provided in the second one (which is T4): adding e34 with updated values provided in
T4.

♦ Rule 3: if a transaction does not include any operation of type data insertion, deletion, or
modification, then the system has to ignore this transaction and do not re-execute it.

The “Transaction Catalog Manager” is added in order to have a history of transactions, which is
complete (all details of transactions) and useful (i.e., easy-to-use by Side Effect Recovery Manager).
For each transaction, it saves its commit time, the specified insert, delete, or update operation (since
we suppose that each transaction include only one data manipulation operation), data read from the
database, data written to the database, data values provided by the user in its data manipulation
operation.

4.3 Implementation

The system prototype which supports our approach and shows its feasibility is yet under development
(at the University of Sfax). It is being developed as a temporal stratum [23] on top of the existing
XML DBMS xDB [24]. The goal is to maximally reuse the facilities of an existing XQuery Update
Facility [18] implementation.

Currently, the prototype system allows only determining periods of inconsistencies when it receives a
temporal XQuery Update Facility query with retroactive effect. The first author (Hind Hamrouni) is
extending the prototype TempoXUF-Tool [16], developed within her master's project for temporal

16

XML data management under schema versioning, to support detecting and repairing data
inconsistencies resulting from retroactive updates.

Fig. 12 reports the main TempoXUF-Tool GUI, which shows (i) a retroactive temporal XQuery
Update Facility query specified by end user about changing a past salary of an employee, and (ii) the
detected period of inconsistency with its sub-periods.

Fig. 12. Main GUI of TempoXUF-Tool.

5 Related Work
Despite the importance of preserving consistency of databases after retroactive updates, this issue has
been considered only to a limited extent in current literature. However, it has not yet been studied in a
multi-temporal and multi-version XML environment.

In the following, we discuss only the few works which are more strictly related with our proposal (i.e.,
[19], [25], and [26]), and we just briefly review some of the studied aspects which are somehow
related with our work.

In [19, 25], the authors proposed a solution for redressing side effects generated by a retroactive
update, named “correction propagation”. This solution is defined to repair only inconsistencies which
affect cumulative attributes (i.e., attributes which can undergo only operations of additions or
subtractions of values, like the balance of a bank account or the turnover of a company). It is
performed as follows: the correction of a past value “v” of a cumulative attribute must be propagated
to all values that have been assigned to this attribute after “v”. So, this solution does not preserve the
database consistency under retroactive updates of values of attributes which are not cumulative.
Furthermore, this solution was defined for a temporal relational environment which does not support
schema versioning.

In [26], the author proposed the use of temporal active rules and retroactive rules [27] in order to
redress side effects resulting from a retroactive update in a temporal relational active database. An
active rule is an Event-Condition-Action (E-C-A) rule where: E is a basic or composite event; C is
either (i) a boolean expression, or (ii) a query in the database query language that results in a true/false

17

answer; A is an execution of a database operation or an arbitrary application program. An active rule is
said to be temporal if (1) the event is temporal, or (2) the condition is temporal. A retroactive rule is a
rule whose action includes a retroactive update. The proposed solution was also limited since (i) it was
devoted to a relational setting, and (ii) it used several triggers and heavy procedures that affect
negatively the performance of the system.

Preserving the consistency of temporal databases was studied in other works which did not consider
retroactive updates. Indeed, some of these works have dealt with database consistency with regard to
(i) the concurrency control of transactions, by proposing new pessimistic [28, 29] and optimistic
algorithms [30, 31], or (ii) the forensic analysis of database tampering [32, 33].

Retroactive and proactive updates were studied in temporal active databases [8] and in conventional
(non-temporal) databases [34]. However, none of these works has dealt with inconsistencies that could
result from such updates.

Campo et al. [35] studied the problem of validating a set of temporal constraints in a temporal XML
document, by (i) presenting the main kinds of inconsistencies that may appear in a temporal XML
document, and (ii) proposing methods for checking the presence of inconsistencies in a document, and
fixing them. They also address documents where more than one consistency condition is violated (i.e.,
documents which include combined inconsistencies).

Martinez et al. [36] propose the concept of inconsistency management policies (IMPs) and show that
IMPs (i) provide end users with tools that allow them to use the policies that they want, and (ii) allow
removing either all tuples involved in the inconsistency or only a subset of them (i.e., a part of the
inconsistency could persist in the database), and (iii) could be embedded as operators within the
relational algebra.

In [37], the authors propose a generic methodology for the management of XML data update in XML-
enabled databases. Such a methodology preserves the conceptual semantic constraints and avoids
inconsistencies in XML data during update operations. But, the authors did not deal with retroactive
updates, and define a data inconsistency as a data invalidity resulting from an XML data update, i.e.,
the updated XML data becomes invalid and not conforming to its original schema.

Brahmia et al. [15] and Hamrouni [16] have studied data management in multi-temporal XML
databases supporting schema versioning, but none of them have taken into account data
inconsistencies resulting from update operations performed on past data.

Svirec et al. [38] propose an algorithm to repair violations for a given XML document and a set of
integrity constraints, specifically so-called functional dependencies [39]. Such an algorithm
incorporates a weight model and a user interaction into the process of detection and subsequent
application of appropriate repair of inconsistent XML documents.

Afrati et al. [40] have dealt with managing inconsistency in databases, within the framework of
database repairs [41]; a repair of an inconsistent database is a database over the same schema that
satisfies the integrity constraints at hand and differs from the given inconsistent database in some
minimal way. More precisely, the authors study the problem of repair checking about inconsistent
databases, which is the following decision problem: given two databases d1 and d2, is d2 a repair of
d1? Basically, they propose two polynomial-time algorithms for repair checking.

Consistency of data, which takes into account the violation of semantic rules defined over a set of data
items, has been also studied within the issue of data cleansing [42] and considered as a data quality
dimension [43].

Zellag et al. [44] propose an approach for detecting consistency anomalies and automatically reducing
their occurrence, in multi-tier architectures. Since the authors introduce a completely DBMS-
independent approach, they propose that the system implementing their approach should be embedded
into the middle-tier (which is represented usually by an application server, between a Web server and
the database backend tier).

18

6 Conclusion
In this work, we focused on the problem of inconsistencies in multi-temporal XML databases: we
proposed an approach for an automatic and graceful repairing of data consistency in such databases,
resulting from retroactive updates. It allows the database management system (i) to detect any
database inconsistency that happens after a retroactive update operation, and (ii) to perform necessary
processings, in a transparent way, in order to repair inconsistencies automatically.

We think that our approach (i) maintains effectively the consistency of the database, and (ii) provides
a low-impact solution since it requires neither modifications of existing temporal database schema
(which include temporal integrity constraints), nor extensions to existing temporal XML models (e.g.,
τXSchema [45] and XBiT [46]) and query languages (e.g., τXQuery [47] and TXPath [48]).

As a part of our future work, we envisage to extend our work by (i) dealing with retroactive updates
which concern several temporal XML elements (in our present work we have supposed that a
retroactive update consider always one temporal XML element), and (ii) studying transactions that
include several temporal XML updates with retroactive updates (in fact, in the current work we
supposed that a transaction include always a single temporal XML update).

Furthermore, we also plan to study how to repair inconsistencies resulting from on-time and proactive
updates of temporal XML databases, since the update of a current or a future temporal XML element
could also give rise to some inconsistencies.

7 References
[1] Etzion O., Jajodia S., Sripada S., (eds.), Temporal Databases: Research and Practice, LNCS 1399,

Springer-Verlag, 1998.

[2] Jensen C. S., Snodgrass R. T., “Temporal Database,” in Liu L., Özsu M.T., (Eds.), Encyclopedia of
Database Systems, Springer US, 2009, pp. 2957-2960.

[3] Grandi F., “Temporal Databases”, in M. Koshrow-Pour, (Ed.), Encyclopedia of Information Science and
Technology (3rd Ed.), IGI Global, Hershey, (in press, to appear in July 2014).

[4] Jensen, C. S., Dyreson, C. E., (Eds.), Böhlen, M., Clifford, J., Elmasri, R. A., Gadia, S. K., Grandi, F.,
Hayes, P., Jajodia, S. K., Käfer, W., Kline, N., Lorentzos, N., Mitsoupoulos, Y., Montanari, A., Nonen, D.,
Peressi, E., Pernici, B., Roddick, J. F., Sarda, N. L., Scalas, M. R., Segev, A., Snodgrass, R. T., Soo, M. D.,
Tansel, A. U., Tiberio, P., Wiederhold, G., “The Consensus Glossary of Temporal Database Concepts –
February 1998 Version”, In O. Etzion, S. Jajodia, & S. Sripada, (Eds.), Temporal Databases: Research and
Practice, LNCS 1399, pp. 367–405. Berlin, Germany: Springer-Verlag.

[5] De Castro C., Grandi F., Scalas M. R., “Schema versioning for multitemporal relational databases”,
Information Systems, 22 (5), 1997, pp. 249-290.

[6] Grandi F., Mandreoli F., “A formal model for temporal schema versioning in object-oriented databases”,
Data and Knowledge Engineering, 46 (2), 2003, pp. 123–167.

[7] Brahmia Z., Mkaouar M., Chakhar S., Bouaziz R., “Efficient management of schema versioning in multi-
temporal databases,” International Arab Journal of Information Technology, 9 (6), pp. 544–552, 2012.

[8] Etzion O., Gal A., Segev A., “Retroactive and Proactive Database Processing”, Proceedings of the 4th
International Workshop on Research Issues in Data Engineering: Active Database Systems (RIDE-ADS
1994), Houston, Texas, USA, 14-15 February 1994, pp. 126-131.

[9] Bourret R., “XML and Databases”, available at:
<http://www.rpbourret.com/xml/XMLAndDatabases.htm>, last updated in September 2005.

[10] Dyreson C. E., Grandi F., “Temporal XML,” in L. Liu and M. T. Özsu (Eds.), Encyclopedia of Database
Systems. Heidelberg, Germany: Springer-Verlag, 2009, pp. 3032–3035.

[11] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “Schema Change Operations for Full Support of Schema
Versioning in the tauXSchema Framework”, International Journal of Information Technology and Web
Engineering (in press, to appear during 2014).

19

[12] Zaniolo C., Wang F., “Temporal queries and version management in XML-based document archives”,
Data and Knowledge Engineering, 65 (2), 2008, pp. 304-324.

[13] Clifford J., Croker A., Grandi F., Tuzhilin A., “On Temporal Grouping”, Proceedings of the International
Workshop on Temporal Databases, Zürich, Switzerland, 17-18 September 1995, pp. 194–213.

[14] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “High-level Operations for Changing Temporal Schema,
Conventional Schema and Annotations, in the τXSchema Framework”, TimeCenter Technical Report TR-
96, 56 pages, January 2014. <http://timecenter.cs.aau.dk/TimeCenterPublications/TR-96.pdf>

[15] Brahmia Z., Bouaziz R., “Data Manipulation in Multi-Temporal XML Databases Supporting Schema
Versioning”, Proceedings of the 4th International EDBT Workshop on Database Technologies for Handling
XML Information on the Web (DaTaX’09), Saint-Petersburg, Russia, 22 March 2009.

[16] Hamrouni H., Study of Data Management in Multi-temporal XML Databases Supporting Schema
Versioning – Extending XQuery Update Facility to Temporal and Versioning Aspects, Master thesis in
Computer Science, Faculty of Economics and Management of Sfax, Tunisia, December 2012.

[17] Tatarinov I., Ives Z. G., Halevy A. Y., Weld D. S., “Updating XML”, Proceedings of the ACM SIGMOD
Conference 2001, Santa Barbara, California, USA, 2001, pp. 413-424.

[18] W3C, XQuery Update Facility 1.0, W3C Candidate Recommendation, 17 March 2011.
<http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/>

[19] Bouaziz R., Temporal Management and Historisation of Data in Information Systems, PhD thesis in
Computer Science, Faculty of Science of Tunis, Tunisia, December 1991.

[20] Allen J. F., “Maintaining Knowledge About Temporal Intervals,” Communications of the ACM, 26 (11),
1983, pp. 832-843.

[21] Skyt J., Jensen C. S., Mark L., “A foundation for vacuuming temporal databases”, Data and Knowledge
Engineering, 44 (1), 2003, pp. 1-29.

[22] Hellerstein J. M., Stonebraker M., Hamilton J., “Architecture of a Database System”, Foundations and
Trends® in Databases, 1 (2), 2007, pp. 141-259.

[23] Torp K., Jensen C. S., Snodgrass R. T., “Stratum Approaches to Temporal DBMS Implementation”,
Proceedings of the 1998 International Database Engineering and Applications Symposium (IDEAS 1998),
Cardiff, Wales, U.K., 8-10 July 1998, pp. 4-13.

[24] EMC, Documentum xDB, 2014. Available at:
<http://www.emc.com/products/detail/software2/documentum-xdb.htm>

[25] Bouaziz R., Moalla M., “Historisation of Data and Recovery of Side Effects” (in french), Proceedings of
the 14th Journées de Bases de Données Avancées (BDA’1998), Hammamet, Tunisia, 23-26 October 1998,
pp. 487-507.

[26] Samet A., Automatic Recovery of Side Effects in a Multi-Version Environment, Master Thesis in Computer
Science, Faculty of Science of Tunis, Tunisia, March 1997.

[27] Pissinou N., Snodgrass R. T., Elmasri R., Mumick I. S., Özsu M. T., Pernici B., Segev A., Theodoulidis B.,
Dayal U., “Towards an Infrastructure for Temporal Databases: Report of an Invitational ARPA/NSF
Workshop”, SIGMOD Record, 23 (1), 1994, pp. 35-51.

[28] Finger M., McBrien P., “Concurrency Control for Perceivedly Instantaneous Transactions in Valid-Time
Databases”, Proceedings of the 4th International Workshop on Temporal Representation and Reasoning
(TIME 1997), Daytona Beach, Florida, USA, 10-11 May 1997, pp. 112-118.

[29] De Castro C., “On Concurrency Management in Temporal Relational Databases”, Proceedings of the 6th
Italian Symposium on Advanced Database Systems (SEBD 1998), Ancona, Italy, 1998, pp. 189-202.

[30] Makni A., R. Bouaziz, “Performance evaluation of an optimistic concurrency control algorithm for
temporal databases”, Proceedings of the 2nd International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA 2010), Menuires, France, 11-16 April 2010, pp. 75–81.

[31] Shirvani M. H., Mohsenzadeh M., Shirvani S. M. H., “A New Concurrency Control Algorithm in Temporal
Databases”, Journal of Advances in Computer Research, 4 (2), 2013, pp. 63-73.

[32] Snodgrass R. T., Yao S., Collberg C. S., “Tamper Detection in Audit Logs”, Proceedings of the 30th

20

International Conference on Very Large Data Bases (VLDB 2004), Toronto, Canada, 31 August - 3
September 2004, pp. 504-515.

[33] Pavlou K. E., Snodgrass R. T., “Generalizing database forensics”, ACM Transactions on Database Systems,
38 (2), 2013, paper 12.

[34] Deng M., Sistla A. P., and Wolfson O., “Temporal Conditions with Retroactive and Proactive Updates”,
Proceedings of the 1st International Workshop on Active and Real-Time Database Systems (ARTDB-95),
Skövde, Sweden, 9-11 June 1995, pp. 122-141.

[35] Campo M., Vaisman A. A., “Consistency of Temporal XML Documents”, Proceedings of the 4th
International XML Database Symposium (XSym 2006), Seoul, Korea, 10-11 September 2006, pp. 31-45.

[36] Martinez M.V., Parisi F., Pugliese A., Simari G. I., Subrahmanian V., “Inconsistency management
policies”, Proceedings of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008), Sydney, Australia, 16-19 September 2008, pp. 367–377.

[37] Pardede E., Rahayu J. W., Taniar D., “XML data update management in XML-enabled database”, Journal
of Computer and System Sciences, 74 (2), 2008, pp. 170-195.

[38] Svirec M., Mlýnková I., “Efficient Detection of XML Integrity Constraints Violation”, Proceedings of the
4th International Conference on Networked Digital Technologies (NDT 2012) - Part I, Dubai, UAE, 24-26
April 2012, pp. 259-273.

[39] Vincent M. W., Liu J., “Functional Dependencies for XML”, Proceedings of the 5th Asian-Pacific Web
Conference (APWeb 2003), Xian, China, 23-25 April 2003, pp. 22-34.

[40] Afrati F. N., Kolaitis P. G., “Repair Checking in Inconsistent Databases: Algorithms and Complexity”,
Proceedings of the 12th International Conference on Database Theory (ICDT 2009), St. Petersburg, Russia,
23-25 March 2009, pp. 31-41.

[41] Arenas M., Bertossi L., Chomicki J., “Consistent Query Answers in Inconsistent Databases”, Proceedings
of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1999),
Philadelphia, Pennsylvania, USA, 31 May – 2 June 1999, pp. 68-79, 1999.

[42] Mezzanzanica M., Boselli R., Cesarini M., Mercorio F., “Automatic Synthesis of Data Cleansing
Activities”, Proceedings of the 2nd International Conference on Data Management Technologies and
Applications (DATA 2013), Reykjavík, Iceland, 29-31 July 2013, pp. 138-149.

[43] Batini C., Scannapieco M., (eds.), Data Quality: Concepts, Methodologies, and Techniques, Springer,
Heidelberg, 2006.

[44] Zellag K., Kemme B., “Consistency anomalies in multi-tier architectures: automatic detection and
prevention”, The VLDB Journal, 23 (1), 2014, pp. 147-172.

[45] Snodgrass R. T., Dyreson C. E., Currim F., Currim S., Joshi S., “Validating Quicksand: Schema Versioning
in τXSchema”, Data Knowledge and Engineering, 65 (2), 2008, pp. 223-242.

[46] Wang F., Zaniolo C., “XBiT: An XML-based Bitemporal Data Model”, Proceedings of the 23rd
International Conference on Conceptual Modeling (ER 2004), Shanghai, China, 8-12 November 2004, pp.
810-824.

[47] Gao D., Snodgrass R.T., “Temporal slicing in the evaluation of XML documents”, Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany, 9-12 September
2003, pp. 632-643.

[48] Rizzolo F., Vaisman A. A., “Temporal XML: modeling, indexing, and query processing”, The VLDB
Journal, 17 (5), 2008, pp. 1179-1212.

