An Efficient Approach for Detecting and
Repairing Data Inconsistencies
Resulting from Retroactive Updates in

Multi-temporal and Multi-version XML
Databases

Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

June 17, 2014

TR-97

A TIMECENTER Technical Report

Title An Efficient Approach for Detecting and Repairing Data Inconsistencies
Resulting from Retroactive Updates in Multi-temporal and Multi-version
XML Databases

Copyright (©) 2014 Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz. All
rights reserved.

Author(s) Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz

Publication History June 2014. A TIMECENTER Technical Report.

TIMECENTER Participants

Michael H. Bohlen, University of Zurich, Switzerland; Curtis E. Dyreson, Utah State University, USA;
Fabio Grandi, University of Bologna, Italy; Christian S. Jensen (codirector), Aarhus University, Denmark;
Vijay Khatri, Indiana University, USA; Gerhard Knolmayer, University of Berne, Switzerland; Carme
Martin, Technical University of Catalonia, Spain; Thomas Myrach, University of Berne, Switzerland;
Mario A. Nascimento, University of Alberta, Canada; Sudha Ram, University of Arizona, USA; John F.
Roddick, Flinders University, Australia; Keun H. Ryu, Chungbuk National University, Korea; Simonas
Saltenis, Aalborg University, Denmark; Dennis Shasha, New York University, USA; Richard T. Snodgrass
(codirector), University of Arizona, USA; Paolo Terenziani, University of Piemonte Orientale “Amedeo
Avogadro,” Alessandria, Italy; Stephen W. Thomas, Queen’s University, Canada; Kristian Torp, Aalborg
University, Denmark; Vassilis Tsotras, University of California, Riverside, USA; Fusheng Wang, Emory
University, USA; Jef Wijsen, University of Mons-Hainaut, Belgium; and Carlo Zaniolo, University of
California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available via TIMECENTER is provided “as is” and without any express or implied
warranties, including, without limitation, the implied warranty of merchantability and fitness for a par-
ticular purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal
lines because the primary storage medium was wood. Runes may also be found on jewelry, tools, and
weapons and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

An Efficient Approach for Detecting and Repairing
Data Inconsistencies Resulting from Retroactive Upates
in Multi-temporal and Multi-version XML Databases

Hind Hamrouni, Zouhaier Brahmia, Rafik Bouaziz
University of Sfax, Tunisia
emails : hindhamrouni@gmail.com, {zouhaier.brahma&pouaziz}@fsegs.rnu.tn

Abstract
Multi-temporal XML databases supporting schema ieaiag contain XML elements of different temporal
formats (snapshot, transaction-time, valid-timej arnemporal), defined under several XML schemasiegrs.
These databases support three types of data upmatesrned with the time when updates are madeacitve,
proactive, or on-time, dealing with past, futurecarrent data respectively. A retroactive update,(modifying
or deleting a past element) due to a detected areans that the database has included erroneaursnaifon
during some period in the past and, thereforegdtssistency should be restored by correcting airerand
inconsistencies that have occurred in the pastdddall processings that have been carried oubglthe
inconsistency period and have used erroneous iafitom have normally produced erroneous information.
this work, we propose an approach which preseraés cbnsistency in multi-temporal and multi-versiiviL
databases. More precisely, after any retroactivatey the proposed approach allows (i) detectinysanalyzing
periods of database inconsistency, which resulihftbat update, and (ii) repairing of all inconsigties and
recovery of all side effects.

Keywords: Temporal XML Databases; Schema Versioning; RetreactUpdate; Data Inconsistency;
Inconsistency Periods; Repairing an InconsisteBaye Effect; Side Effects Recovery.

1 Introduction

Nowadays, supporting the temporal aspect is a reapaint for most computer applications, including
medical, legal, banking, scientific and schedulpglications. In fact, these applications needdoes
and manipulate data while taking into account thme tdimension. This has led to the appearance of
temporal databases [1, 2, 3] which retain datautiaml over transaction-time dimension (concerning
the real world) and/or valid-time dimension (comieg the database life) [4]:

¢ The valid-time of a datum is the time when a datsitnue in the real world; each time-varying
data is timestamped with a validity start time (Y&hd a validity end time (VET).

¢ The transaction-time of a datum is the time whelatam is current in the database; each time-
varying data is timestamped with a transactiont gtare (TST) and a transaction end time
(TET).

Thus, according to the temporal dimensions theypsuptemporal databases are classified into five
categories [4, 5]: transaction-time (including otignsaction-time data), valid-time (containingyonl
valid-time data), bitemporal (storing only bitemabrdata), snapshot (containing only non-
temporal/conventional data) or multi-temporal (supipg data of different temporal formats).

Besides, evolution of database schema (e.g., digapi adding entities, dropping or adding attrilsute
of entities) over time is unavoidable in the conhtek information systems and may occur due to
several reasons: meeting new user requiremeniagtako account new regulations, optimizing the
database schema in order to have best performettcdn temporal databases, changing schema could
lead to some problems like data loss when dropporge entities and/or attributes. Thus, although
temporal databases allow keeping track of datafyisthen the schema is static, they do not proaide
complete history when they do not keep track afstatabase schema evolution over time. Therefore,
1

to avoid this drawback and to provide a completa tistory which allows performing operations on
data defined under any database schema versiogarchers in the database community have
proposed to adopt the schema versioning technigtemiporal databases [5, 6, 7].

In multi-temporal databases, there are three tgpapdates concerned with the time when updates are
made: retroactive, proactive [8], and real-timedo+ttime) updates.

¢ A retroactive update is performed after the chaoagirred in reality (i.e., the TST of the datum
is superior to its VST).

¢ A proactive update is done before the change odaursality (i.e., the TST of the datum is
inferior to its VST).

¢ Areal-time update is done when the change ocoursality (i.e., the TST of the datum is equal
to its VST).

Retroactive and proactive updates [8] occur ndiumalmany applications. For example, a postdated
check is a proactive update, and a salary incn@asebe retroactive to some past date.

On the other hand, currently, XML databases [9] widely used, especially on the Web. The
introduction of temporal [10] aspects in such das#s gave rise to temporal XML databases [11]. In
these databases, any temporal XML document caa stamsaction-time, valid-time and bi-temporal
XML elements. Moreover, these databases are veejulugor several domains (e.g., managing
evolution of e-commerce customer profiles, managevglution of legal texts in e-government
systems, online management of patients’ medicalrdsc..). Notice that temporal XML databases are
richer than temporal relational databases at strecind textual content levels. Moreover, temporal
XML data are presented with temporally grouped datalels [12], which have long been advocated
as the most natural and effective representatiérieroporal information [13]. Indeed, each time-
varying XML element evolves individually over time.

Under such databases, end users/applications sart,inlelete, and modify past, current and future
data. However, these updates are not always peztbreafely (i.e., without problems), since
sometimes data update operations can have a hagfiidt on the consistency of the database.
Indeed, compromising the database consistency amaddr when manipulating any type of data (i.e.,
current, past, or future). In the following, we teetexplain this issue through three cases of data
manipulation operations (we suppose that the cutiree is 2014-04-01):

Case 1: Detecting database inconsistency when maniating current data.

Let's take the example of correcting the current IXklement representing the current price of a
product, which was introduced on 2014-02-01. Alisérg data (e.g., monthly turnovers, total
amounts of customer invoices) that have been pemusing the erroneous price are consequently
erroneous and should be corrected. The databasedhaded inconsistencies during the period going
from 2014-02-01 to 2014-04-01.

Case 2: Detecting database inconsistency when maniating past data.

Let's take the sample of correcting a past XML eabrepresenting a past banking interest rate in a
bank, which was applied during the period goingnfrd013-01-01 to 2013-12-31. All existing data
(e.g., interest bank accounts, balances of banduats, scheduled payment amounts) that have been
obtained using the erroneous past banking intesgst are consequently erroneous and should be
corrected. The database was inconsistent duringehied where this interest rate was effective.

Case 3: Detecting database inconsistency when maniating future data.

Let's take the example of correcting a future XMlereent representing the amount of projected
annual sales of a company, which was introducetthendatabase on 2014-01-10. All existing data
(e.g., future statistics, economic forecasts) tlaae been calculated using the erroneous futur@iamo
are consequently erroneous and should be corrédteddatabase was in an inconsistent state between
2014-01-10 and 2014-04-01.

In the present work, we deal only with the secoaske¢ we left the two other cases to future works.
We focus on the impacts of manipulating past datthe consistency of the database: we show how to
detect inconsistencies and to repair the databassistency, after a transaction which includes some
operations acting on past bitemporal or valid-toaéa.

For the best of our knowledge, existing databaseagement systems (DBMSs), temporal integrity
constraints [14] and semantics of existing tempatata manipulation operations [15, 16] are
insufficient to cope with such problems, since tkeynot provide any support to ensure the database
consistency in cases like the three ones presaia¢k. In fact, although some existing DBMSs, like
Oracle 12c, DB2 ver.10, and Teradata Databasajdactome features for temporal data types and
management [3], none of them provides support &erthining database consistency periods and
repairing consistencies resulting from retroactipdates. As for available temporal integrity
constraints, they only guarantee that some ruledaten (e.g., key, uniqueness) are being respentéd a
some relations between data are established (efgrential integrity constraint). Moreover, the
previously proposed temporal data manipulation ajgans [15, 16] only perform actions on temporal
data according to a temporal semantics which do¢dake into account the checking of database
consistency, since they neither inform the end-tisgran inconsistency period has been detected, no
activate supplementary and transparent processmgsder to restore the database consistency in
cases similar to what presented above.

To solve this problem, we neither add new tempargrity constraints, nor update the current
semantics of temporal data manipulation operatid¥e. propose a new approach that allows the
temporal XML database management system (i) toctetey database inconsistency that happens
after a retroactive data manipulation operationg &ii) to perform necessary processings, in a
transparent way, in order to repair inconsistencies

The rest of this paper is organized as follows:réet section motivates the need for a new approach
for preserving the consistency of a multi-tempoxiL database supporting schema versioning;
Section 3 describes data inconsistencies resutimg retroactive updates in such a database; $ectio
4 presents our approach for automatic repairindatd inconsistencies that occur due to a retraactiv
update; Section 5 discusses related work; Sectioon6ludes the report with a summary and a list of
our future work.

2 Motivation

In this section, we first present two examples thastrate how maintaining consistency in multi-

temporal and multi-version XML databases afterteoeetive update is a complicated task that could
not be achieved using existing practical suppams, supports provided by DBMSs. Then we show
the need for systems providing supports for presgreonsistency of muti-temporal and multi-version
XML databases.

2.1 Motivating Examples

In order to show that retroactive updates are matejul tasks, we present the following two
examples:

Example 1: Data inconsistencies resulting from a teoactive update of an employee’s salary

Suppose that on 2014-06-10, the personnel offieeatls an error that has occurred on 2012-01-05:
he/she saved an erroneous value for the salatyeoéinployee Abdullah: 1120 TND (the erroneous

value) instead of 1210 TND (the correct value)stran amount of 90 TND has not been considered in
the salary, and during a period of twenty-nine rhenObviously, this error was propagated to all

results of operations that have been performedguiis salary (i.e., 1120), especially those which

calculated taxes and social security contributiassyell as to all successor salaries.

Currently, the semantics of the temporal data wd@erations [15, 16], which should be used to
correct the erroneous salary that was inserted0d2-R1-05, does not support the correction of all

3

effects of this error (i.e., it does not corredt takes and social security contributions, thatever
calculated after 2012-01-05 based on the erronealsy, as well as all other successor salaries).
Such an operation corrects only the value of theesponding salary. The XML element that
represents the erroneous salary is stored as @npaseous element, and the correct salary isciare

a new XML element which represents a past cordectent <salary/> for that employee (see Fig. 1);
the modification is performed in a non-destructivenner, since we are in a temporal setting.

<employees>
<employee>
<SSN>12345678</SSN>
<name>Abdullah</name>
<salaries>
<salary VST="2012-01-01" VET="2012-12-31"
TST="2012-01-05" TET="2013-01-03">1120</s alary>
<salary VST="2012-01-01" VET="2012-12-31"
TST="2014-06-10" TET="2014-06-10">1210</s alary>
<salary VST="2013-01-01" VET="2013-12-31"
TST="2013-01-03" TET="2014-01-03">1250</s alary>
<salary VST="2013-01-01" VET="2013-12-31"
TST="2014-06-10" TET="2014-06-10">1300</s alary>
<salary VST="2014-01-01" VET="2014-12-31"
TST="2014-01-03" TET="2014-06-10">1390</s alary>
<salary VST="2014-01-01" VET="2014-12-31"
TST="2014-06-10" TET="UC">1530</salary>

</salaries>
<socialSecurityContributions>
<socialContribution VST="2012-01-01" VET="2012-12 -31”
TST="2012-01-05" TET="2013-01-03">112</s0 cialContribution>
<socialContribution VST="2012-01-01" VET="2012-12 -31”
TST="2014-06-10" TET="2014-06-10">121</so cialContribution>
<socialContribution VST="2013-01-01" VET="2013-12 -31”
TST="2013-01-03" TET="2014-01-03">125</s0 cialContribution>
<socialContribution VST="2013-01-01" VET="2013-12 -31”
TST="2014-06-10" TET="2014-06-10">130</s0 cialContribution>
<socialContribution VST="2014-01-01" VET="2014-12 -31”
TST="2014-01-03" TET="2014-06-10">139</s0 cialContribution>
<socialContribution VST="2014-01-01" VET="2014-12 -31”
TST="2014-06-10" TET="UC">153</socialCont ribution>
</socialSecurityContributions>
<taxes>

<tax VST="2012-01-01" VET="2012-12-31"
TST="2012-01-05" TET="2013-01-03">56</tax>
<tax VST="2012-01-01" VET="2012-12-31"

TST="2014-06-10" TET="2014-06-10">60.5</ta x>
<tax VST="2013-01-01" VET="2013-12-31"
TST="2013-01-03" TET="2014-01-03">62.5</ta x>

<tax VST="2013-01-01" VET="2013-12-31"
TST="2014-06-10" TET="2014-06-10">65</tax>
<tax VST="2014-01-01" VET="2014-12-31"
TST="2014-01-03" TET="2014-06-10">69.5</ta x>
<tax VST="2014-01-01" VET="2014-12-31"
TST="2014-06-10" TET="UC">76.5</tax>
</taxes>
</employee>

<employees>

Fig. 1. Salaries of the employee Abdullah, and correspandocial security contributions and taxes,
corrected after a retroactive update.

4

To repair all inconsistencies that are stored & database, the DBA should proceed in an ad hoc
manner: first, he/she should determine the lisalbbperations that were done using the erroneous
salary, in order to define all data that were daltea based on the erroneous salary or calculasedb

on other data obtained from the erroneous salaipggrom 2012-01-05 to 2014-06-10. Then, he/she
should correct all erroneous data, either manuallpy writing an appropriate XML update [16, 17,
18]. Fig. 1 shows that all salaries introducedratite corrected salary have been also corrected by
inserting new correct past <salary/> elements, gxite last salary which is replaced by a new abrre
current <salary/> element (i.e., the <salary/> @etwith TET attribute equal to “UC”); notice that
“UC” (Until Change) [4] means that the salary igremt until new change. The figure 1 shows also
that both the social security contributions andetagorresponding to the corrected salaries haee als
been corrected accordingly (a social security doution is equal to 10% of the salary paid during t
same period, whereas a tax is equal to 5% of thesqwonding salary).

Example 2: Data inconsistencies resulting from a teoactive update of a deposited amount in a
bank account

Suppose that on 2014-03-25, the auditor detectsri@m that has occurred on 2014-01-05: the bank
employee saved a deposit transaction which addsnant of 550 TND (the erroneous value) instead
of 500 TND (the correct value), to the account a@uatomer; thus, an amount of 50 TND was stored
in the database but really was not provided byctistomer. Obviously, this error was propagated to
all other financial transactions that have beeredam this account between 2014-01-05 and 2014-03-
25; there was always an amount of 50 TND which khba subtracted from the balance.

As said in Example 1, the semantics of existingqdgddate operation [15, 16], which should be used
to correct both the deposited amount and the balaccount on 2014-01-05, does not support the
correction of the impact of this error (i.e., torremt each balance of this account, related to each
transaction performed after 2014-01-05). Such arain corrects only the details of the financial
transaction (i.e., the deposited amount and thanlel of the account at the end of the transaction)
done on 2014-01-05. To restore the database censistthe DBA should proceed in an ad hoc
manner: first, he/she should determine the lisalbtransactions that were done this account going
from the transaction during which the error hasuo@d until the last one. Then, he/she should @pdat
all erroneous data by writing an appropriate XMldag@ query or a program.

2.2 Need for New DBMS Supports

The consistency of a multi-temporal and multi-vensXML database could not be ensured easily,
since (i) all temporal dimensions are supportes,(data can evolve over transaction time and/id va
time), (ii) consistency of both conventional anthporal data should be guaranteed, (iii) there are
several schema versions and consequently severbad® instances, and (iv) a data management
operation that is originally devoted to insert,ede) or update an XML element could involve several
other XML elements (e.g., when the temporal inteofaa new element that modifies an existing one
overlaps, completely or partially, temporal intdsvaf other existing XML elements), defined under
the same XML schema version or under several XMies@ versions.

Thus, the challenges described above show thatiggrd/applications, interacting with muti-temporal
and multi-version XML databases, need DBMSs witlitii support for automatic and graceful
repairing of data inconsistencies that result fretroactive updates.

2 Data Inconsistencies Resulting from Retroactive phtates

Inserting, updating and deleting past data can gbeeto inconsistencies in multi-temporal and inult
version XML databases. These inconsistencies generany side effects affecting other data.

In [19], the author defined a side effect as alul#tea inconsistency generated by a processing which
has used an inconsistent data. A side effect i®rgéed by (i) a retroactive update of data, (i) a
cancellation of effects of a previous processing(ii) a re-execution of a previous processinghwit

5

correct values for all written and read data (int,fasuch a processing had used during its (first)
execution erroneous values for some written or gd, and, thus, it should be re-executed in order
to repair inconsistencies that have occurred). B\ge the author of [19] defined an inconsistency
period resulting from a retroactive update of detdhe temporal interval which delimits the scope o
side effects that are expected to be generatetiibyupdate. Such an inconsistency period could be
one of the following three types: “Wrong AbsenceDafta”, “Wrong Presence of Data”, or “Errors in
Data”.

¢ Wrong Absence of Data: the inconsistency is du¢h&absence of a datum that had to be
present in the database during this period;

¢ Wrong Presence of Data: the inconsistency comes the presence of a datum that had to be
absent in the database during this period,;

¢ Errors in Data: the inconsistency results fromekistence of some data with erroneous values
during this period.

An inconsistency period, resulting from a retroaetupdate can be divided into several sub-periods;
each one of these sub-periods should be interpesteatding to the nature (i.e., insertion, deletimm
correction) of the retroactive update. In the failog, we study periods of inconsistency resulting
from retroactive updates, and their sub-periods.

3.1 Data inconsistencies resulting from a retroacte insertion of data

The insertion of an XML element with retroactivéeet generates an inconsistency period of “Wrong
Absence of Data” type: the inserted element, wiiek absent before its transaction start time, shoul
be normally present in the temporal database discealidity start time. Fig. 2 illustrates such a
period of inconsistency. In the following, we usg © denote the “Current Time”.

| ‘ | Time
VST, VET, TST;=CT

Fig. 2. The inconsistency period resulting from a retrivacinsertion of data.

As shown by Fig. 2, the period of inconsistencyjclthis delimited by the VST (period beginning)
and the TST (period ending) qf ean be divided into two sub-periods:

¢ [VST; — VET]: the interval during which the consequent sideat concern all processings
that had to use the elementhile it had to be a current element;

¢ |VET; — TST]: the interval during which the generated side&f concern all processings that
had to use the elementvehile it had to be a past element.

3.2 Data Inconsistencies Resulting from a Retroaete Deletion of Data

The removal of an XML element with retroactive etfgenerates an inconsistency period of “Wrong
Presence of Data” type: the deleted element, wiviah present before the instant of its deletion, (i.e
before the transaction start time of the deletimment [15, 16], that is the XML element which is
used to delete the corresponding element), shatldarmally exist in the temporal database singe it
validity start time. Fig. 3 illustrates such a pérbf inconsistency.

| | } Time

[
VST, = VST, VET, TST,=CT

Fig. 3. The inconsistency period resulting from a retrivactieletion of data.

As shown by Fig. 3, the period of inconsistency,iclthis delimited by the VST of; period
beginning) and the TST of @eriod ending), can be divided into two sub-pesio

¢ [VST, - VET]: the interval during which the resulting sideeeffs concern all processings that
had used the elementvehile it was a current element;

¢]VET,; - TST]: the interval during which the consequent sideatf concern all processings that
had used the elementvehile it was a past element.

3.3 Data Inconsistencies Resulting from a Retroast Correction of Data

Retroactive correction operations could be dong onlvalid-time and bitemporal data. In this paper,
we deal only with retroactive correction of bitemglodata, since we think that it is more complex
and, thus, it requires much attention.

The correction of a bitemporal element is performgdnserting a new element containing the correct
values, called the element of correction [15, 1%}the following examples,; @enotes the correction
element and;alenotes the corrected element. A correction ojperaan affect (i) the contents of the
corrected element, (i) values of non-temporalilaates (i.e., attributes different of VST, VET, TST
and TET attributes) of the corrected element, an¢li) the valid-time interval of the corrected
element (i.e., values of VST and VET attribute$)yiously, the transaction-time interval (i.e., \@du
of TST and TET attributes) of any element cannotroglified owing to the definition of transaction
time. In the first and/or the second case (i.eintsdi) and (ii)), the correction operation genesan
inconsistency period of type “Errors in Data” (dke following first subsection). However, in the
third case (i.e., point (iii)), it generates anansistency period which can be divided into seveudl-
periods each one of them has a different type tfsedollowing second subsection). In the following
two subsections, we study these inconsistencies.

3.3.1 Data inconsistencies resulting from a retrodiwe correction operation which does
not modify the valid-time interval of a bitemporal element

In this case, the retroactive correction operatipaates the contents and/or the values of non-
temporal attributes of a bitemporal element; it ified neither the VST attribute, nor the VET
attribute. This correction generates an inconsistgreriod of type “Errors in Data”: it means thiagt
corrected element had an erroneous value. Fiustrites such a period of inconsistency.

| | } Time

| |
VSTi=VST, VET,=VET, TST,=cT

Fig. 4. The inconsistency period resulting from a retriv&ctorrection operation which does not
modify the valid-time interval of a bitemporal elent.

As shown by Fig. 4, the period of inconsistency,iachis delimited by the VST of; gperiod
beginning) and the TST of geriod ending), can be divided into two sub-pésio

¢ [VST,; - VET]: an inconsistency period of type “Errors in Dattiie interval during which the
generated side effects concern all processinghtthtised the elementvehile it was a current
element;

¢]VET,; - TST]: an inconsistency period of type “Errors in Dattie interval during which the
consequent side effects concern all processingsh#thused the elementwhile it was a past
element.

3.3.2 Data inconsistencies resulting from a retrodiwe correction operation which
modifies the valid-time interval of a bitemporal eement

In this subsection, we study inconsistencies regulfrom a retroactive correction operation that
modifies the VST attribute and/or the VET attribut®hen the valid-time interval of a bitemporal
element is modified, we distinguish different caaesording to Allen's interval algebra [20] and all
possible relations between the valid-time interg<he correction element feand that of the
corrected element fe

Case 1:The valid-time interval of the correction element §) follows that of the corrected
element (¢

; A L
i VET, VST, VET, TST;=CT

Fig. 5. The inconsistency period resulting from a retriv@ctorrection operation which replaces the
valid-time interval of a bitemporal element witimew one that follows it.

As shown by Fig. 5, the period of inconsistency,iclthis delimited by the VST of; period
beginning) and the TST of @eriod ending), can be divided into four sub-pest

¢ [VST; — VET]: an inconsistency sub-period of type “Wrong Preseof Data”, during which
the consequent side effects concern all processtmishad used; avhile it was a current
element;

¢]VET,; - VST|[: an inconsistency sub-period of type “Wrong Pneseof Data”, during which the
generated side effects concern all processingh#thtised;avhile it was a past element;

¢ [VST,- VET]:

» this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the generated side effects eamall processings that had to use e
while it had to be a current element;

» it could also be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the correction element epdates also the contents and/or at least onkeohon-
temporal attributes of the corrected elemen§e, during this sub-period, the resulting side
effects concern all processings that had usedhiée it was a past element.

¢ IVET,-TST]:

 this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceaom all processings that had to uge e
while it had to be a past element;

8

it could also be considered as an inconsistencypsulbd of type “Errors in Data” only and
only if the [VST; — VET]] sub-period has also this type. In such a casengluhis sub-
period, the resulting side effects concern all pssings that had usedvehile it was a past
element.

Case 2: The valid-time interval of the correction Eement (g) contains that of the corrected
element (¢

T
VST, VST, VET; VET, TST,=CT

Fig. 6. The inconsistency period resulting from a retrv@ctorrection operation which replaces the

valid-time interval of a bitemporal element witmew one that contains it.

As shown by Fig. 6, the period of inconsistency,ohhis delimited by the VST of; gperiod
beginning) and the TST of @eriod ending), can be divided into four sub-pest

¢ [VST,; - VST[: an inconsistency sub-period of type “Wrong Abseof Data”, during which the
consequent side effects concern all processinghéuhto use the elementhile it had to be a
current element;

¢ [VST; — VET]: this interval is not considered always as armigistency sub-period; it could be
considered as an inconsistency sub-period of typeofs in Data” only and only if the
correction element @pdates also the contents and/or at least orteeofdn-temporal (i.e., non-
timestamping) attributes of the corrected elementnethat case, during [VSTF VET], the
generated side effects concern all processingh#thtised the elementwehile it was a current
element.

¢ IVET, - VET]:

this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a current element;

it also could be considered as an inconsistencypsulbd of type “Errors in Data” only and
only if the [VST, — VET] sub-period has also this type. In that caser¢lealting side effects
during this sub-period concern all processings tiaatused;avhile it was a past element.

¢ VET,-TST]:

this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceaom all processings that had to uge e
while it had to be a past element;

it could also be considered as an inconsistencypstbd of type “Errors in Data” only and
only if the [VST, — VET] sub-period has also this type. In such a case,sitie effects
generated during this sub-period concern all psings that had used while it was a past
element.

Case 3: The valid-time interval of the correction EEment (g) precedes that of the corrected
element (¢

| | | I I Time

! |
VST, VET; VST, VET, TST,=CT

Fig. 7. The inconsistency period resulting from a retriv@ctorrection operation which replaces the
valid-time interval of a bitemporal element witimew one that precedes it.

As shown by Fig. 7, the period of inconsistency,clhis delimited by the VST of; gperiod
beginning) and the TST of geriod ending), can be divided into four sub-pest

¢ [VST; — VET][: an inconsistency sub-period of type “Wrong Absemf Data”, during which
the consequent side effects concern all processiragsad to use the elemeptwvhile it had to
be a current element;

¢ [VET; — VST]: an inconsistency sub-period of type “Wrong Absemf Data”, during which
the consequent side effects concern all processiragsad to use the elemeptnvile it had to
be a current element;

¢ VST, - VET]:

» this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a past element;

« it also could be considered as an inconsistencypsubd of type “Errors in Data” only and
only if the [VST, — VET] sub-period has also this type. In that caserdbalting side effects
during this sub-period concern all processings hlagtused;avhile it was a current element.

¢]VET,- TST]:

« this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a past element;

» it could also be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the [VST, — VET]] sub-period has also this type. In such a casesitie effects
generated during this sub-period concern all psings that had used while it was a past
element.

Case 4: The valid-time interval of the correction EEment (g) included in that of the corrected
element (@

o s Tine
VST, VST, VET, VET, TST,=CT

Fig. 8. The inconsistency period resulting from a retriv@ctorrection operation which replaces the
valid-time interval of a bitemporal element witmew one that included in it.

10

As shown by Fig. 8, the period of inconsistency,ohhis delimited by the VST of; gperiod
beginning) and the TST of geriod ending), can be divided into four sub-pest

¢ [VST; — VST][: an inconsistency sub-period of type “Wrong Preseof Data”, during which
the consequent side effects concern all processiregshad used the elementwile it was a
current element;

¢ [VST,; — VET]: this interval is not considered always as ammsistency sub-period,; it could be
considered as an inconsistency sub-period of typeofs in Data” only and only if the
correction element @pdates also the contents and/or at least orteeofdn-temporal (i.e., non-
timestamping) attributes of the corrected elemeninethat case, during [VSF VET], the
generated side effects concern all processingh#thtised the elementwhile it was a current
element.

+ IVET,- VET]:

» this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a past element;

e it also could be considered as an inconsistencypsubd of type “Errors in Data” only and
only if the [VST, — VET]] sub-period has also this type. In that caserehalting side effects
during this sub-period concern all processings hlagt used;avhile it was a current element.

¢+ IVET,-TST]:

» this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceaom all processings that had to uge e
while it had to be a past element;

e it could also be considered as an inconsistencypsulbd of type “Errors in Data” only and
only if the [VST, — VET]] sub-period has also this type. In such a casesitie effects
generated during this sub-period concern all psings that had used while it was a past
element.

Case 5: The valid-time interval of the correction EEment (g) overlaps that of the corrected
element (¢ on right

} i I | I Time

\
VST, VST, VET, VET; TST,=CT

Fig. 9. The inconsistency period resulting from a retriv@ctorrection operation which replaces the
valid-time interval of a bitemporal element witinew one that overlaps it on the right.

As shown by Fig. 9, the period of inconsistency,ohhis delimited by the VST of; gperiod
beginning) and the TST of geriod ending), can be divided into four sub-pest

¢ [VST; — VST][: an inconsistency sub-period of type “Wrong Preseof Data”, during which
the consequent side effects concern all processiagshad used the elementdile it had to
be a current element;

¢ [VST,; — VET]: this interval is not considered always as ammsistency sub-period,; it could be
considered as an inconsistency sub-period of typeofs in Data” only and only if the

11

correction element @pdates also the contents and/or at least orteeafdn-temporal (i.e., non-
timestamping) attributes of the corrected elemeninethat case, during [VSF VET], the
generated side effects concern all processinghtthtised the elementvehile it was a current
element.

¢ IVET, - VET]:

 this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a current element;

» it also could be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the [VST, — VET] sub-period has also this type. In that caserehalting side effects
during this sub-period concern all processings hlaatused;avhile it was a past element.

¢ IVET,-TST]:

« this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceaom all processings that had to uge e
while it had to be a past element;

» it could also be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the [VST, — VET]] sub-period has also this type. In such a casesitie effects
generated during this sub-period concern all pisings that had used while it was a past
element.

Case 6: The valid-time interval of the correction EEment (g) overlaps that of the corrected
element (¢ on left

I | | } | Time

| \
VST, VST, VET, VET, TST,=CT

Fig. 10.The inconsistency period resulting from a retrivactorrection operation which replaces the
valid-time interval of a bitemporal element witmew one that overlaps it on left.

As shown by Fig. 10, the period of inconsistencyicl is delimited by the VST of; €period
beginning) and the TST of geriod ending), can be divided into four sub-pest

¢ [VST; - VST[: an inconsistency sub-period of type “Wrong Abseof Data”, during which the
consequent side effects concern all processinghéuhto use the elementhile it had to be a
current element;

¢ [VST,; - VET]: this interval is not considered always as ammsistency sub-period,; it could be
considered as an inconsistency sub-period of typeofs in Data” only and only if the
correction element @pdates also the contents and/or at least orteeafdn-temporal (i.e., non-
timestamping) attributes of the corrected elemeninethat case, during [VSF VET], the
generated side effects concern all processinghtthtised the elementvehile it was a current
element.

+ IVET,- VET]:

» this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceom all processings that had to uge e
while it had to be a current element;

12

» it also could be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the [VST — VET]] sub-period has also this type. In that caserehalting side effects
during this sub-period concern all processings tiagtused;avhile it was a past element.

¢ IVET,-TST]:

« this sub-period is considered as an inconsistenbypsriod of type “Wrong Absence of
Data”, during which the consequent side effectsceaom all processings that had to uge e
while it had to be a past element;

* jt could also be considered as an inconsistencypsuld of type “Errors in Data” only and
only if the [VST — VET]] sub-period has also this type. In such a casesitie effects
generated during this sub-period concern all psings that had used while it was a past
element.

4 Detecting and Repairing Data Inconsistencies Reléing from Retroactive
Updates in Multi-temporal XML Databases SupportingSchema
Versioning

In this section, we propose an approach that alloegdoring automatically the multi-temporal
database consistency after a retroactive updatengforal XML data. First, we describe the process
of restoring automatically the database consistefityen, we present the architecture of a native
multi-temporal and multi-version XML DBMS which spigrts restoring automatically the database
consistency after a retroactive update.

4.1 Process of Restoring Automatically the Databasgonsistency

When an end user or an application submits to ¢éngporal XML DBMS a retroactive update of
temporal XML data, the DBMS performs the followisgguence of tasks:

Task 1 it updates the database as required by the exrcdbushe application (obviously after checking
the update syntactically).

Task 2 it determines automatically the period of incetemcy resulting from the retroactive update
of data, and its sub-periods.

Task 3 it determines automatically the list of transat that were executed during each sub-period
of inconsistency and had used erroneous past mlatage that the corresponding sub-period of
inconsistency is of type “Wrong Presence of Data™®srors in Data”) or had to use new data (in
case that the corresponding sub-period of incamsistis of type “Wrong Presence of Data” or
“Errors in Data”); for each concerned transactigdnshould provide its commit time, all its
elementary operations (for the sake of simpliaitg, suppose that a transaction is composed of a
single operation, i.e., a single insert, deleteymrate operation), and all data that were written
and read by this transaction.

Task 4 it re-executes in a provisory workspace thedfstorresponding transactions during each sub-
period of inconsistency either (a) without using ttorresponding past data, if this sub-period is
of type “Wrong Presence of Data”, or (b) while gsii.1) the correct values of past data, if this
sub-period is of type “Errors in Data”, or (b.2pthepecified past data, if this sub-period is oktyp
“Wrong Absence of Data”.

Task 5 it compares the old results of determined tranmas (i.e., results already stored in the
database, as written data by these transactiornis)tia@ new results of them (i.e., the new data
that are written by these transactions in the gy workspace).

Task 6: it replaces every old result with the correspagdnew result when there is a difference
between them.

13

In the following, we provide main requirements ofrg tasks presented above:

¢ Task 1 requires that the DBMS supports managemietgngporal XML data under schema
versioning; we have studied this aspect in ouriptesswork [15, 16].

¢ Task 3 requires beforehand keeping track of alidaations which are executed: all operations
which compose each transaction, all written and degda, and its commit time;

¢ Task 4 requires that the provisory workspace shbeldh copy of the database (schema and
instances) during the inconsistency period, befitwe execution of the retroactive update
operation.

¢ Task 6 requires that replacing old data with neta ddnould be performed logically and not
physically (i.e., in a destructive manner); eacisténg erroneous data is logically corrected by a
new correct data. After restoring the databaseistmgy, only correct data must be used by the
DBMS to answer user/application queries; erronetata could be vacuumed later [21] by the
database administrator.

4.2 Architecture

Owing to the general architecture of a DBMS [2B§ transaction manager is the component which is
devoted to managing transactions resulting fronn/agplications queries and updates submitted to the
database. Therefore, if we would like to have aoraatic restoring of the database consistency after
any retroactive update of temporal XML data, welktthat (i) the transaction manager of a temporal
XML DBMS should be extended by four new componeritRetroactive Update Checker”,
“Inconsistency Period Manager”, “Side Effect Reagv&lanager” and “Optimizer”, and (ii) the
temporal XML DBMS itself should include a “Transact Catalog Manager”, a “Transaction
Catalog”, and a “Provisory Workspace”. The new gaharchitecture of a temporal XML DBMS is
depicted in Fig. 11.

Temporal XML Update Transaction

Transaction Manager

Retroactive Update Checker <:> Transaction

Catalog Manager

Inconsistency Period Manager

Jarumdg

Side Effect Recovery Manager

Transaction
Catalog

Multi-Temporal and
Multi-Schema XML
Database

Provisory
Workspace

l‘

Fig. 11.General Architecture of a temporal XML databaggpsuting automatic detecting and
repairing of data inconsistencies resulting frotnog&ctive updates.

The “Retroactive Update Checket checks that the Temporal XML Update submittedthg end
user/application is an update operation with rettiva effect (i.e., this operations adds, deletes,
modifies past data). Notice that a past data hadidtime interval which ends before the curremet

(i.e., VET < CT).

The “Inconsistency Period Managet, which is invoked by the Retroactive Update Checket in
case it detects a retroactive update, determinesnatically the period of inconsistency which résul

14

from a retroactive update of data, and its subgglsrivith their types. Suppose that an erroneous pas
element “ee” is corrected by a correct past eleniesit. The resulting period of inconsistency is
defined by either the interval [VSJ- CT] (if VSTee < VSTge), Or [VST. - CT] (if VSTee < VSTeo.

The sub-periods of inconsistency related to thisopeare identified according to the study presgnte
in the subsection 3.3.

After determining all sub-periods of inconsistenttye “‘Inconsistency Period Managet (i) invokes

the “Transaction Catalog Manager' in order to retrieve from the “Transaction Catgldhe list of
transactions that were executed during each ornihesfe sub-periods, and (ii) sends all retrieved
transactions to theSide Effect Recovery Managet.

The “Side Effect Recovery Manager controls the re-execution of transactions whicvén used
erroneous data (i.e., transactions executed daripgriod of inconsistency of type “Wrong Presence
of Data” or “Errors in Data”) and transactions thestd to use newly added data (i.e., transactions
executed during a period of inconsistency of typerdng Absence of Data”). The concerned
transactions are re-executed in a “Provisory Waksp which is a copy of the database during the
corresponding period of inconsistency. At the ehthe re-execution of each transaction, tisede
Effect Recovery Managel compares the results of determined transactiozadly stored (as written
data) in the database with the results of the dbm@cun the provisory workspace. If there are
differences between them, so an inconsistencytectisl and it should be repaired. For that, thieé
Effect Recovery Managet replaces the old result with the new one.

The “Side Effect Recovery Manager interacts with the Optimizer” module which implements a
set of optimization rules. Indeed, th@ptimizer” receives a sequence of non-optimized transactions
that should be re-executed, and tries to reduam ffifepossible). In the following, we present three
examples of these optimization rules:

¢ Rule 1: if two successive transactions, T1 and T2, adghersame XML element e12, such that
T1 adds el12 and T2 deletes €12, then the systeto igsore these two transactions and do not
re-execute them.

¢ Rule 2: if two successive transactions, T3 and T4, adhersame XML element e34, such that
T3 adds €34 and T4 updates e34, then the systeno ltsnbine/merge the two transactions
into the first one (which is T3) and re-executingiie., re-executing T3) but with updated
values provided in the second one (which is T4¥iregl e34 with updated values provided in
T4.

¢ Rule 3: if a transaction does not include any operatiortype data insertion, deletion, or
modification, then the system has to ignore tldagaction and do not re-execute it.

The “Transaction Catalog Managef is added in order to have a history of transaxsjowhich is
complete (all details of transactions) and usefal,(easy-to-use by Side Effect Recovery Manager).
For each transaction, it saves its commit time,gbecified insert, delete, or update operationcésin
we suppose that each transaction include only @t whanipulation operation), data read from the
database, data written to the database, data valeesded by the user in its data manipulation
operation.

4.3 Implementation

The system prototype which supports our approadnshows its feasibility is yet under development
(at the University of Sfax). It is being developasl a temporal stratum [23] on top of the existing
XML DBMS xDB [24]. The goal is to maximally reusket facilities of an existing XQuery Update
Facility [18] implementation.

Currently, the prototype system allows only detainmg periods of inconsistencies when it receives a
temporal XQuery Update Facility query with retroaeteffect. The first author (Hind Hamrouni) is
extending the prototype TempoXUF-Tool [16], develdpwithin her master's project for temporal

15

XML data management under schema versioning, topa@tipdetecting and repairing data
inconsistencies resulting from retroactive updates.

Fig. 12 reports the main TempoXUF-Tool GUI, whidmows (i) a retroactive temporal XQuery
Update Facility query specified by end user abtainging a past salary of an employee, and (ii) the
detected period of inconsistency with its sub-pigio

% TempoXUF-Taol = | D |
File Help?
™ i = T _ -
B & | XY | Vasion| <vatarez/>
XML
Object [Employee ~| version |w1 [+]

1 <?xml version="1.0" encoding="UTF-16"2%
2 <employees>

3 <employee id="0DSEEEESE"s

4 <firstname>Rafik</firstname>

5 <lastname>Eouaziz<flastname>

6 <salaries>

7 <salary VST="2013-01-01" VET="2013 31 09:10:00">1120</salary>
16:10:03">1210</salary>

1 6: 0" TET=""
9 <salary VST="2013-12-31" VET="now" TST="2Z013-12-31 09:10:03" TET="UC">1500</salary>
10 </salaries>
11 <grades>
1z <grade VST="2013-01-01" VET="nou'">engineer</grade>
13 </yrades>
14 </employees

15 </employees>

16

7
L 18

Update Order Result
[Replace content of node //employees/employee[@id-"08688888"] /salaries/|
salary [vInterval contains "2013/09/11"] with 1210 valid period '[2013
/02/01 - 2013/12/31]’ R

Fig. 12.Main GUI of TempoXUF-Tool.

5 Related Work

Despite the importance of preserving consistenayabdbases after retroactive updates, this isssie ha
been considered only to a limited extent in curfig@tature. However, it has not yet been studied i
multi-temporal and multi-version XML environment.

In the following, we discuss only the few works walniare more strictly related with our proposal.{i.e
[19], [25], and [26]), and we just briefly revievorae of the studied aspects which are somehow
related with our work.

In [19, 25], the authors proposed a solution fafressing side effects generated by a retroactive
update, named “correction propagation”. This soluiis defined to repair only inconsistencies which
affect cumulative attributes (i.e., attributes whican undergo only operations of additions or
subtractions of values, like the balance of a ban&ount or the turnover of a company). It is
performed as follows: the correction of a past @did’ of a cumulative attribute must be propagated
to all values that have been assigned to thidatgiafter “v”. So, this solution does not presethe
database consistency under retroactive updatesalobw of attributes which are not cumulative.
Furthermore, this solution was defined for a terapoelational environment which does not support
schema versioning.

In [26], the author proposed the use of temporéivaaules and retroactive rules [27] in order to
redress side effects resulting from a retroactipdate in a temporal relational active database. An
active rule is an Event-Condition-Action (E-C-A)leuvhere: E is a basic or composite event; C is
either (i) a boolean expression, or (ii) a querthia database query language that results in Agise

16

answer; A is an execution of a database operatiam arbitrary application program. An active risle
said to be temporal if (1) the event is temporal2) the condition is temporal. A retroactive rigea
rule whose action includes a retroactive update. @roposed solution was also limited since (i)asw
devoted to a relational setting, and (ii) it usedesal triggers and heavy procedures that affect
negatively the performance of the system.

Preserving the consistency of temporal databasesstudied in other works which did not consider

retroactive updates. Indeed, some of these works Healt with database consistency with regard to
(i) the concurrency control of transactions, by pgmsing new pessimistic [28, 29] and optimistic

algorithms [30, 31], or (ii) the forensic analysisdatabase tampering [32, 33].

Retroactive and proactive updates were studie@rmpbral active databases [8] and in conventional
(non-temporal) databases [34]. However, none fetlreorks has dealt with inconsistencies that could
result from such updates.

Campo et al. [35] studied the problem of validatinget of temporal constraints in a temporal XML
document, by (i) presenting the main kinds of irgistencies that may appear in a temporal XML
document, and (ii) proposing methods for checkirgpresence of inconsistencies in a document, and
fixing them. They also address documents where ithame one consistency condition is violated (i.e.,
documents which include combined inconsistencies).

Martinez et al. [36] propose the concept of incstesicy management policies (IMPs) and show that
IMPs (i) provide end users with tools that allowertinto use the policies that they want, and (ipwall
removing either all tuples involved in the incomsiey or only a subset of them (i.e., a part of the
inconsistency could persist in the database), @ndcéuld be embedded as operators within the
relational algebra.

In [37], the authors propose a generic methodofogthe management of XML data update in XML-
enabled databases. Such a methodology preservesoticeptual semantic constraints and avoids
inconsistencies in XML data during update operatidut, the authors did not deal with retroactive
updates, and define a data inconsistency as ardatidity resulting from an XML data update, i.e.,
the updated XML data becomes invalid and not canifog to its original schema.

Brahmia et al. [15] and Hamrouni [16] have stud@mta management in multi-temporal XML
databases supporting schema versioning, but nonehef have taken into account data
inconsistencies resulting from update operatiomBp®ed on past data.

Svirec et al. [38] propose an algorithm to repadlations for a given XML document and a set of

integrity constraints, specifically so-called fuocdal dependencies [39]. Such an algorithm

incorporates a weight model and a user interadtibm the process of detection and subsequent
application of appropriate repair of inconsisteiXdocuments.

Afrati et al. [40] have dealt with managing incatency in databases, within the framework of
database repairs [41]; a repair of an inconsisiatdbase is a database over the same schema that
satisfies the integrity constraints at hand andediffrom the given inconsistent database in some
minimal way. More precisely, the authors study giieblem of repair checking about inconsistent
databases, which is the following decision problgien two databases d1 and d2, is d2 a repair of
d1? Basically, they propose two polynomial-timeoaidhms for repair checking.

Consistency of data, which takes into account tbkation of semantic rules defined over a set dada
items, has been also studied within the issue tf di@ansing [42] and considered as a data quality
dimension [43].

Zellag et al. [44] propose an approach for detgationsistency anomalies and automatically reducing
their occurrence, in multi-tier architectures. ®inthe authors introduce a completely DBMS-
independent approach, they propose that the syatptamenting their approach should be embedded
into the middle-tier (which is represented usualfyan application server, between a Web server and
the database backend tier).

17

6 Conclusion

In this work, we focused on the problem of incotesisies in multi-temporal XML databases: we
proposed an approach for an automatic and gracgaliring of data consistency in such databases,
resulting from retroactive updates. It allows thatatbase management system (i) to detect any
database inconsistency that happens after a rétreapdate operation, and (ii) to perform necessar
processings, in a transparent way, in order toirépaonsistencies automatically.

We think that our approach (i) maintains effectvidile consistency of the database, and (ii) previde
a low-impact solution since it requires neither ffiodtions of existing temporal database schema
(which include temporal integrity constraints), mottensions to existing temporal XML models (e.qg.,
tXSchema [45] and XBIiT [46]) and query languageg.(eXQuery [47] and TXPath [48]).

As a part of our future work, we envisage to extendwork by (i) dealing with retroactive updates
which concern several temporal XML elements (in quesent work we have supposed that a
retroactive update consider always one temporal Xd#ment), and (ii) studying transactions that
include several temporal XML updates with retroaetupdates (in fact, in the current work we
supposed that a transaction include always a stagiporal XML update).

Furthermore, we also plan to study how to repaomsistencies resulting from on-time and proactive
updates of temporal XML databases, since the uprfadecurrent or a future temporal XML element
could also give rise to some inconsistencies.

7 References

[1] Etzion 0., Jajodia S., Sripada S., (ed¥¢mporal Databases: Research and PractichlCS 1399,
Springer-Verlag, 1998.

[2] Jensen C. S., Snodgrass R. T., “Temporal Database.iu L., Ozsu M.T., (Eds.)Encyclopedia of
Database SystemSpringer US, 2009, pp. 2957-2960.

[3] Grandi F., “Temporal Databases”, in M. Koshrow-Bdi#d.), Encyclopedia of Information Science and
Technology (3rd Ed.)GI Global, Hershey, (in press, to appear in 20¢4).

[4] Jensen, C. S., Dyreson, C. E., (Eds.), Bohlen,Q¥fford, J., Elmasri, R. A., Gadia, S. K., Granéh,,
Hayes, P., Jajodia, S. K., Kéafer, W., Kline, N.réntzos, N., Mitsoupoulos, Y., Montanari, A., Nonén,
Peressi, E., Pernici, B., Roddick, J. F., Sardd,.NScalas, M. R., Segev, A., Snodgrass, R. To, §b D.,
Tansel, A. U., Tiberio, P., Wiederhold, G., “Ther@ensus Glossary of Temporal Database Concepts —
February 1998 Version”, In O. Etzion, S. JajodiaS&Sripada, (Eds.J,emporal Databases: Research and
Practice LNCS 1399, pp. 367—405. Berlin, Germany: SpriAderlag.

[5] De Castro C., Grandi F., Scalas M. R., “Schemaiaeirsg for multitemporal relational databases”,
Information Systems, 22 (5), 1997, pp. 249-290.

[6] Grandi F., Mandreoli F., “A formal model for tempbischema versioning in object-oriented databases”,
Data and Knowledge Engineering6 (2), 2003, pp. 123-167.

[71 Brahmia Z., Mkaouar M., Chakhar S., Bouaziz R. fittifnt management of schema versioning in multi-
temporal databasedyiternational Arab Journal of Information Technolo® (6), pp. 544-552, 2012.

[8] Etzion O., Gal A., Segev A., “Retroactive and Ptivac Database Processing”, Proceedingshe &'
International Workshop on Research Issues in Datgifeering: Active Database Systems (RIDE-ADS
1994) Houston, Texas, USA, 14-15 February 1994, pp-12b

[9] Bourret R., “XML and Databases”, available at:
<http://lwww.rpbourret.com/xml/XMLAndDatabases.htniast updated in September 2005.

[10] Dyreson C. E., Grandi F., “Temporal XML,” in L. Liand M. T. Ozsu (Eds.Encyclopedia of Database
SystemsHeidelberg, Germany: Springer-Verlag, 2009, @823-3035.

[11] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “®tha Change Operations for Full Support of Schema
Versioning in the tauXSchema Frameworkiternational Journal of Information Technology aldeb
Engineering(in press, to appear during 2014).

18

[12] zaniolo C., Wang F., “Temporal queries and versmanagement in XML-based document archives”,
Data and Knowledge Engineering, 65, 2008, pp. 304-324.

[13] Clifford J., Croker A., Grandi F., Tuzhilin A., “Ofiemporal Grouping”Proceedings of the International
Workshop on Temporal Databas@&sirich, Switzerland, 17-18 September 1995, pgd—293.

[14] Brahmia Z., Grandi F., Oliboni B., Bouaziz R., “Hidevel Operations for Changing Temporal Schema,
Conventional Schema and Annotations, intk&chema Framework”, TimeCenter Technical Report TR-
96, 56 pages, January 2014. <http://timecenteagsd&/TimeCenterPublications/TR-96.pdf>

[15] Brahmia Z., Bouaziz R., “Data Manipulation in Mtdltemporal XML Databases Supporting Schema
Versioning”,Proceedings of the™international EDBT Workshop on Database Technesdor Handling
XML Information on the Web (DaTaX'Q®Baint-Petersburg, Russia, 22 March 2009.

[16] Hamrouni H., Study of Data Management in Multi-temporal XML [ises Supporting Schema
Versioning — Extending XQuery Update Facility tomperal and Versioning AspectMaster thesis in
Computer Science, Faculty of Economics and ManagenfeSfax, Tunisia, December 2012.

[17] Tatarinov I., Ilves Z. G., Halevy A. Y., Weld D. SUpdating XML", Proceedings of the ACM SIGMOD
Conference 20Q1Santa Barbara, California, USA, 2001, pp. 413:424

[18] W3C, XQuery Update Facility 1.0,W3C Candidate Recommendationl7 March 2011.
<http://lwww.w3.0rg/TR/2011/REC-xquery-update-10-20317/>

[19] Bouaziz R.,Temporal Management and Historisation of Data irfiotrmation SystemsPhD thesis in
Computer Science, Faculty of Science of Tunis, JianiDecember 1991.

[20] Allen J. F., “Maintaining Knowledge About Tempotatervals,” Communications of the ACN26 (11),
1983, pp. 832-843.

[21] Skyt J., Jensen C. S., Mark L., “A foundation f@cuuming temporal databaseBata and Knowledge
Engineering 44 (1), 2003, pp. 1-29.

[22] Hellerstein J. M., Stonebraker M., Hamilton J., ¢Aitecture of a Database SysterfFhundations and
Trend$ in Databasesl (2), 2007, pp. 141-259.

[23] Torp K., Jensen C. S., Snodgrass R. T., “Straturprégches to Temporal DBMS Implementation”,
Proceedings of the 1998 International Database Begiing and Applications Symposium (IDEAS 1998)
Cardiff, Wales, U.K., 8-10 July 1998, pp. 4-13.

[24] EMC, Documentum xDB, 2014. Available at:
<http://lwww.emc.com/products/detail/software2/doemtum-xdb.htm>

[25] Bouaziz R., Moalla M., “Historisation of Data ana&ddvery of Side Effects” (in frenchproceedings of
the 14" Journées de Bases de Données Avancées (BDA:198B)mamet, Tunisia, 23-26 October 1998,
pp. 487-507.

[26] Samet A. Automatic Recovery of Side Effects in a Multi-\terdenvironmentMaster Thesis in Computer
Science, Faculty of Science of Tunis, Tunisia, M&t897.

[27] Pissinou N., Snodgrass R. T., EImasri R., Mumic®.].Ozsu M. T., Pernici B., Segev A., TheodoulBlis
Dayal U., “Towards an Infrastructure for TemporahtBbases: Report of an Invitational ARPA/NSF
Workshop”,SIGMOD Record23 (1), 1994, pp. 35-51.

[28] Finger M., McBrien P., “Concurrency Control for Beivedly Instantaneous Transactions in Valid-Time
Databases”Proceedings of the™International Workshop on Temporal Representatiod Reasoning
(TIME 1997) Daytona Beach, Florida, USA, 10-11 May 1997, x®2-118.

[29] De Castro C., “On Concurrency Management in TenipRedational DatabasesProceedings of thes
Italian Symposium on Advanced Database SystemdY3B83) Ancona, Italy, 1998, pp. 189-202.

[30] Makni A., R. Bouaziz, “Performance evaluation of aptimistic concurrency control algorithm for
temporal databases’Proceedings of the "2 International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA 201®lenuires, France, 11-16 April 2010, pp. 75-81.

[31] Shirvani M. H., Mohsenzadeh M., Shirvani S. M. ¥A ,New Concurrency Control Algorithm in Temporal
Databases”Journal of Advances in Computer Researtl2), 2013, pp. 63-73.

[32] Snodgrass R. T., Yao S., Collberg C. S., “Tampete&®n in Audit Logs”,Proceedings of the 30
19

International Conference on Very Large Data BaseiOB 2004) Toronto, Canada, 31 August - 3
September 2004, pp. 504-515.

[33] Pavlou K. E., Snodgrass R. T., “Generalizing dadalfarensics’ACM Transactions on Database Systems
38 (2), 2013, paper 12.

[34] Deng M., Sistla A. P., and Wolfson O., “Temporaln@itions with Retroactive and Proactive Updates”,
Proceedings of the*1International Workshop on Active and Real-Timedbase Systems (ARTDB-95)
Skoévde, Sweden, 9-11 June 1995, pp. 122-141.

[35] Campo M., Vaisman A. A., “Consistency of TemporaMX Documents”, Proceedings of the "4
International XML Database Symposium (XSym 2086pul, Korea, 10-11 September 2006, pp. 31-45.

[36] Martinez M.V., Parisi F., Pugliese A., Simari G, Bubrahmanian V., “Inconsistency management
policies”, Proceedings of the Minternational Conference on Principles of Knowledgepresentation and
Reasoning (KR 2008pydney, Australia, 16-19 September 2008, pp. 367-

[37] Pardede E., Rahayu J. W., Taniar D., “XML data tpadaanagement in XML-enabled databaskyrnal
of Computer and System Sciences(Zj42008, pp. 170-195.

[38] Svirec M., Mlynkova ., “Efficient Detection of XMllntegrity Constraints Violation"Proceedings of the
4™ International Conference on Networked Digital Teslogies (NDT 2012) - Part Dubai, UAE, 24-26
April 2012, pp. 259-273.

[39] Vincent M. W., Liu J., “Functional Dependencies %ML", Proceedings of the 5th Asian-Pacific Web
Conference (APWeb 2003), Xian, China, 23-25 Apoi02, pp. 22-34.

[40] Afrati F. N., Kolaitis P. G., “Repair Checking imdonsistent Databases: Algorithms and Complexity”,
Proceedings of the Anternational Conference on Database Theory (ICIDD9) St. Petersburg, Russia,
23-25 March 2009, pp. 31-41.

[41] Arenas M., Bertossi L., Chomicki J., “Consistente@uAnswers in Inconsistent Databasd2fpceedings
of the 18' ACM SIGACT-SIGMOD-SIGART Symposium on Principld3atabase Systems (PODS 1999)
Philadelphia, Pennsylvania, USA, 31 May — 2 Jur@9]1 9p. 68-79, 1999.

[42] Mezzanzanica M., Boselli R., Cesarini M., Mercorto, “Automatic Synthesis of Data Cleansing
Activities”, Proceedings of the"2 International Conference on Data Management Teldgies and
Applications (DATA 2013Reykjavik, Iceland, 29-31 July 2013, pp. 138-149.

[43] Batini C., Scannapieco M., (edsData Quality: Concepts, Methodologies, and Techegjspringer,
Heidelberg, 2006.

[44] zellag K., Kemme B., “Consistency anomalies in ratétr architectures: automatic detection and
prevention”, The VLDB Journal, 281), 2014, pp. 147-172.

[45] Snodgrass R. T., Dyreson C. E., Currim F., Currimd8shi S., “Validating Quicksand: Schema Versigni
in tXSchema” Data Knowledge and Engineering5 (2), 2008, pp. 223-242.

[46] Wang F., Zaniolo C., “XBiT: An XML-based Bitempordbata Model”, Proceeding®f the 2%
International Conference on Conceptual Modeling (#R4) Shanghai, China, 8-12 November 2004, pp.
810-824.

[47] Gao D., Snodgrass R.T., “Temporal slicing in thaleation of XML documentsProceedings of the 39
International Conference on Very Large Data BasékB 2003) Berlin, Germany, 9-12 September
2003, pp. 632-643.

[48] Rizzolo F., Vaisman A. A., “Temporal XML: modelingndexing, and query processingrhe VLDB
Journal 17 (5), 2008, pp. 1179-1212.

20

